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Abstract segmentation, the approach described here has the potential to
Nonlinear edge preserving smoothing often is performé’cpify nonlinear edge preserving smoothing with segmentation

prior to medical image segmentation. The goal of the nonling3@sed on differential edge detection at multiple scales. The
smoothing is to improve the accuracy of the segmentation Balysis of multidimensionahtD) image data is decomposed
preserving changes in image intensity at the boundaries /B0 independent 1-D problems that can be solved quickly.
structures of interest, while smoothing random variations dggn©0thing in various directions along 1-D profiles through
to noise in the interiors of the structures. Methods includ®® ”'D_ data is driven by a measure of local structure
median filtering and morphology operations such as gray scSfparation, rather than by a local contrast measure. Isolated

erosion and dilation, as well as spatially varying smoothirfgf9€s are preserved independent of their contrast, given an
driven by local contrast measures. adequate contrast to noise ratio (CNR). In addition, analytic

_ ) ) . . expressions are obtained for the derivatives of the edge
Rather _than irreversibly alterm_g the image data prior _tBreserved 1-D profiles. Using these expressions, one can
segmentation, the approach described here has the potentigldnose multidimensional edge detection operators such as

unify nonlinear edge preserving smoothing with segmentatione | aplacian or the second derivative in the direction of the
based on differential edge detection at multiple scales. TRg,ge intensity gradient.

analysis ofn-D image data is decomposed into independent o ]
1-D problems that can be solved quickly. Smoothing in various Future applications of these methods include 4-D
directions along 1-D profiles through theD data is driven by SPatiotemporal segmentation of respiratory gated cardiac
a measure of local structure separation, rather than by a loRgBitron emission tomography (PET) transmission images to

contrast measure. Isolated edges are preserved independelfflBfove the accuracy of attenuation correction [4, 5], and
their contrast, given an adequate contrast to noise ratio. ~ 4°D spatiotemporal segmentation of dynamic cardiac single
photon emission computed tomography (SPECT) images

| INTRODUCTION tq fapilitate unbiased estimati(_)n of time activity curves and
’ kinetic parameters for left ventricular volumes of interest [6].
Nonlinear edge preserving smoothing often is performed
prior to medical image segmentation. The goal of the nonlinear
smoothing is to improve the accuracy of the segmentation by
preserving changes in image |nter_1$|ty at the bOl_Jn_darles/Q]c Recursive Multiscale Blending
structures of interest, while smoothing random variations due
to noise in the interiors of the structures. Methods include Given linearly smoothed versions of a 1-D sigriak)
median filtering and morphology operations such as gray scafed its first two derivatives a/ scales, one can perform
erosion and dilation [1], as well as spatially varying smoothingenlinear edge preserving smoothing as follows. The linearly
driven by local contrast measures [2, 3]. By comparison, linegfnoothed versions of(z) are denoted by(x,a;), and the
smoothing via spatially invariant convolution uniformly blurdineéarly smoothed first and second derivatives are denoted
structure boundaries, as well as noise. The benefits of nofef" (z, a;) and £ (z, ay), respectively, forj =1,...,J.
reduction can be offset by deformations of the boundaries th€ scale coordinate controls the width of the convolution

adversely affect the accuracy of the subsequent segmentatiof'nels used in the linear filtering. The kernels are based on
the uniform cubic B-spline basis function and its first two

Qerivatives [7, 8]. The cubic B-spline has a supportdof
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II. THE 1-D ALGORITHM

Rather than irreversibly altering the image data prior
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smoothed versions: 8

-~

f(:r,al) j =1
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[1-Cj(@)f(@,a;1)
+Cj(x)f(w,aj) J=2,...,J a

=

The blending functions{C,(z); j=2,...,J} play a role
similar to that of the spatially varying diffusion coefficients
used in typical implementations of edge preserving smoothing 1t
via inhomogeneous diffusion (e.g., [2]). Whe&h(zo) =0,
smoothing stops in the neighborhood of and f(:co,aj)

remains unchanged from the valf(esy, a; 1) obtained using

nonlinear smoothing at the previous, finer scale. Conversely, ‘ ‘ ‘
whenC;(zo) = 1, smoothing is unabated aritlzo, a,) is set -20 0 20
to the valuef(zo,a;) obtained using linear smoothing at the X

current, coarser scale.

Figure 1: Augmented scale-space fingerprint for an isolated edge

.. . . of width four and a CNR of 2.5. Solid fingerprint lines depict the
B. Deflnlng the Blendlng Functions zero-crossing locations 61(2>(a:,a) (i.e., edge and ledge locations)

The blending function§C;(z); j = 2,...,J} are defined over a continuum of scales. Dashed lines depict the zero-crossing
via the following analysis of the augmented scale-spatgsations off ™ (z, a) (i.e., ridge and trough locations). The noiseless
fingerprint for f(z). The augmented scale-space fingerprilﬁignm is shown with the noisy signal below the fingerprint.

(Figure 1) is a graphical depiction of the locations of the

zero-crossings of the first two derivatives of the linearljnversely with the scale;, while the number of isolated true
smoothed signal as a function of scale [8]. At a particul&dges will remain roughly constant.

scalea;, each zero-crossing location 6% (z, a;) is labeled Given the values{v;s; k=1,...,K;} at the edge

as either a local maximum (edge) or local minimum (ledgégcations, the blending functiol”;(x) can be defined for

in gradient magnitude, depending on its proximity to nearll = as follows. The blending functiorC;(z) must be
Zero_crossing locations 6f1) (.’L‘, aj) (i_e_, ridges and troughs)_ continuous through at least its §eC0nd derivative, in order for
For each of the resulting edge locatiofsj,; k = 1,...,K;}, the nonlinearly smoothed signé{z, a;) to have continuous
the distanceAz;; separating the ridge, trough, or ledgdi'st and second derivatives. ~Rearranging the factors in
on either side of the edge is calculated. The blendirf‘éq”at'on (1) ?nd denotlr;g the first and second derivatives
function C,(x) is then assigned values ranging betwee®f C;(z) by C} )(ff_) andC} )(56)1 respectively, one obtains the
zero and one at the edge locations, based on the separaft%lﬁw'”g expressions for the first and second derivatives of the
distance§ Az, k=1,...,K;}. nonlinearly smoothed signé(z, a; ):

The value assigned t@;(z) at the edge location £ (2, ay)
is denoted by~;, and is selected using a monotonically

) : ; . [{¢b) L
decreasing function that maps larger separation distances (@, m) =1
to smaller values. This heuristic mapping is based on the )
observation that the separation distarke tends to be larger =<f (x,aj—}) )
for an isolated true edge, than it is for a random second +Cj(x) {f(l)(:maj)—f(l)(r,aj—l)] j=2,...,J
dgrivgtiye zerp-cros_sing associateq wi_th noise (Figure 1). For + V() F(%aj) _ f(xﬂjil)}
simplicity, a piecewise linear mapping is used: 3)
1 Azjp < aj (@, a))
AT —os
k=1 Tt < Axg < B (2) £ (2, a1) j=1
0 B < Azjp,
: {9 (2,a;-1)
where o; and ; are selected as follows. The separation +Ci(a) [FD (2, ay) — FO A
distances{Az;; k = 1,..., K;} are first sorted in ascending J T) [ B ~(x’a7*1)} im0
order, and themy; and3; are set to values corresponding to a +2C8 () [f(l)(w,aj) - f(l)(%aj—l)] T
lower and an upper percentile of the sorted values, respectively. +c® () [f(% a;) — (z, aj—l)]
The lower and upper percentiles can be selected based on the ! 4)
expected numbers of true and random edges afftrszale. In

practice, the expected number of random edges due to ndfgeeachieve the desired continuity in a relatively straightforward
in the linearly smoothed signdl(x,a;) will vary roughly fashion, the blending functioi;(z) is defined to be the



2000 IEEE Nuclear Science Symposium and Medical Imaging Conference Rieqomelss — preprint) LBNL-46941

IV. RESULTS

1 A. Simulated 1-D Edge

To test the performance of the 1-D algorithm, Gaussian
white noise was added to a simulated signal composed of

K a single ramp transition of width four and a CNR of 2.5

X, .
k-1 k
k1) X J

(Figure 1).

Linear smoothing was performed at four scales
using uniform cubic B-spline basis functions with scale
0 parametersi; = 1, ag = 2, az = 4, anday = 8. Nonlinear
smoothing was performed at the scalgs a3, anday, using
X equation (1). Results at the scaleare shown in Figure 3(a).

The blending functionsCy(z), Cs(z), and Cy(z) were

Figure 2: The smooth step functi®y (z) given by equation (6). defined using values fof,, (s, and 3, in equation (2)

piecewise quartic function
C;(x)
Vi1 r < Zj
. ZTik—1) < T < Zjk;
= /y _ _|_ ’Yk: — fy _ Sk: T J
-0 + [k = W] Sn(@) T
ViK; zjk; <,

®)

whereS ;. (z) is a smooth step function obtained by integrating
the uniform cubic B-spline basis function on which the linear
smoothing is based:

2

v 1 oy (u—u,
) = [ —kn(—k’“)du ©

Tj(k—1)

where wji = [w(-1) + z5x] /2, vik = [255 — Tj0-1)] /4,
andIT*4(u) denotes the uniform cubic B-spline basis function.
The functionS;.(x) is zero atx = x;;—1) and increases
monotonically to one at = x;;, (Figure 2). It is continuous
through its third derivative, and its first through third derivative<C 4
are all zero at bothr = (1) andz = z;,. Thus, using

this construction one obtains a blending functiOn(x) that
ranges between zero and one and is continuous through
third derivative.

s

[11. THE n-D ALGORITHM

Edges can be preserved in multidimensional image data |
applying the 1-D algorithm independently along the coordinat
axis directions, as well as along the diagonal directions of tt
2-D planes spanned by the coordinate axes, and averaging 2
results. This builds on the work described in [2], in which
processing was performed only along the coordinate ax
directions.

By processing the diagonal directions, additional

0.

1.

O.

-20 0 20
(@)

=7

-20 0 20
X

(b)

'_nformat'on is obtained thgt aIIovys one to .Characterlze tr?—‘?gure 3: Results for a simulated 1-D edge of width four and a CNR
first and second order differential properties of the daf3 5 |y (a), the dashed line and the solid line depict the linear and
in any direction [8]. Using this additional information,noniinear smoothing results, respectively, at the seale- 8. The
multidimensional edge detection operators such as thgited line depicts the unsmoothed signal, which is shown also in
Laplacian or the second derivative in the direction of theigure 1 with its scale-space fingerprint. The blending functions used
gradient can be composed and used to segment the data [8]to perform the nonlinear smoothing are shown in (b).
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corresponding to th@4™ 89" and 80" percentiles of the
sorted separation distances, respectively [Figure 3(b)]. Th
upper percentile fog, was selected so that four out of every
five edges would undergo some smoothing at the coarse
scale,ay, = 8. Then, using the heuristic that the expected
number of random edges due to noise varies roughly inverse
with scale, the upper percentiles f65 and 3, were selected
so that eight out of nine edges and 16 out of 17 edges woul
undergo some smoothing at the finer scales- 4 anday = 2,
respectively. The lower percentiles associated with «s,
and a4 in equation (2) were selected to be one-half of thg
upper percentiles, i.e., the7", 44" and 40" percentiles,
respectively.

The nonlinear smoothing yielded a sharper edge than di
the linear smoothing, and provided comparable smoothin
away from the edge [Figure 3(a)]. The blending functions @) (b)
consistently reached their minimum near the edge, thus
reducing the amount of smoothing in the neighborhood of th{
edge [Figure 3(b)]. Away from the edge, the blending functiond
increased, thus increasing the amount of smoothing.

B. Respiratory Gated PET Transmission Images

A 3-D version of then-D algorithm was applied to
respiratory gated PET transmission images analyzed previouq
in [5]. The images were reconstructed from 1.3 min of datd
(190,000 counts per transverse plane) acquired during t
end-expiration respiratory phase [Figure 4(a)]. As a reference
Figure 4(b) shows results obtained using linear smoothing wit
a 7x7x7 operator that approximates a 3-D Gaussian.

The 1-D algorithm was applied independently alongthe
y, andz coordinate axis directions of the 12828x 41 dataset,
using the same linear filters that were used to process the
simulated 1-D edge in Section IV.A. Six diagonal directions
in the zy (transverse);z (coronal), andyz (sagittal) planes Figure 4: Results for respiratory gated PET transmission images.
were also processed. Figure 4(c) shows the results of simy Original images; (b) ¥7x7 linear smoothing; (c) average of
averaging the outputs of the nine large scale3%) 1-D linear 279 scale («35) 1-D linear smoothing operators applied along
filters, corresponding to the scale parametgr—S8. For the three coordlnate_ axis dlrectlo_ns and six dlagonal directions; and
independent, identically distributed Gaussian noise, this Iine(%P large scale nonlinear smoothing. .The top, m'dqle’ and bOttpm
e P . . . ’ Tows show transverse, coronal, and sagittal cross sections, respectively.
filtering operation would yield noise reduction comparable

to that of the &7x7 operator used to obtain the resu“%lssociated withs, a3, anday in equation (2) were selected

in Figure 4(b). For the case of these transmission iMaggs§.pe one-half of the upper percentiles, i.e., 108, 33, and
averaging the outputs of the nine large scale 1-D linear filteggth percentiles, respectively.

appears to do a better job of decorrelating the noise, at the
expense of blurring the edges.

() (d)

The nonlinear smoothing results shown in Figure 4(d)
) ) ) were obtained in only 9.3 min using a 195 MHz MIPS

Figure 4(d) shows the results of nonlinear smoothing at the| o0oo-based Silicon Graphics workstation. These images
scaleas = 8. The blending function€’s (), C3(2), andCa(z)  gre sharper and noisier than those shown in Figure 4(c). The

were defined using villuesh foh, 63;1 and 3, in equation (2) nponjinear smoothing results appear to be sharper than, but not
corresponding to the0", 67", and50™ percentiles of the sorted yisier than. the results shown in Figure 4(b).

separation distances, respectively. The upper percentilgsfor
was selected so that one out of every two edges would undergo
some smoothing at the coarsest scale= 8. Then, using the V. FUTURE DIRECTIONS

heuristic that the expected number of random edges due to noiseJltimately, the figure of merit for this methodology will
varies roughly inversely with scale, the upper percentilesifor be the accuracy of the segmentations obtained in conjunction
and 3, were selected so that two out of three edges and fowith the nonlinear edge preserving smoothing, when applied
out of five edges would undergo some smoothing at the finer time sequences of noisy volumetric nuclear medicine
scalesas = 4 andas, = 2, respectively. The lower percentilesimages. We are working to implement the edge preserving



2000 IEEE Nuclear Science Symposium and Medical Imaging Conference Rieqomelss — preprint) LBNL-46941

smoothing in 4-D, as well as to compose 4-D edge detection DISCLAIMER
operators using the analytic expressions for the directional This document was prepared as an account of work

derivatives of the nonlinearly smoothed images. The U”iverS@()onsored by the United States Government. While this

of North Carolina Mathematical Cardiac Torso (MCAT)yocyment is believed to contain correct information, neither
phantpm [9] _W'" be used to vahc_zlate the accuracy of thf‘he United States Government nor any agency thereof, nor

resulting spatiotemporal segmentations. The Regents of the University of California, nor any of their
employees, makes any warranty, express or implied, or assumes
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