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Abstract

Study of Pair and Many-Body Interactions in Rare-Gas Halide Atom Clusters Using

Negative Ion Zero Electron Kinetic Energy (ZEKE) and Threshold

Photodetachment Spectroscopy

by

Ivan Yourshaw

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Daniel M. Neumark, Chair

The diatomic halogen atom-rare gas diatomic complexes KrBr-, XeBr-, and KrC]-

are studied in this work by zero electron kinetic energy (ZEKE) spectroscopy in order to

characterize the weak intermolecular diatomic potentials of these species. Also, the

ZEKE and threshold photodetachment spectra of the polyatomic clusters Ar.Br- (n = 2-9)

and ArnI- (n = 2-19) are studied to obtain information about the non-additive effects on

the interactions among the atoms. This work is part of an ongoing effort to characterize

the pair and many-body potentials of the complete series of rare gas halide clusters. In

these studies we obtain information about both the anionic and neutral clusters.

In the spectra of the diatomic complex we observe well-resolved vibrational

structure which is used in conjunction with scattering results from the literature to



construct accurate intermolecular potentials. We also obtain accurate electron affinities

for these species.

From the spectra of the polyatornic species we obtain accurate electron affini[ ies

and electronic state term values. We observe some partially resolved vibrational

structure for ArnBr- (n = 2-3) and Ar~I- (n = 2-3). The global minimum energy structures

of the clusters are found using a molecular-dynamics based simulated annealing

algorithm. The electron affinities calculated using these structures and the pair potentials

obtained from previous ZEKE studies of the ArBr- and ArI- complexes are found to be

inconsistent with the experimentally observed electron affinities, indicating the

importance of non-additive effects in these clusters. Various non-additive interactions

are considered, and the most important are found to be non-additive induction effects and

the effect arising from the interaction of the halide charge with the multipole moments

due to the distortion of the rare-gas electron clouds. For the neutral clusters ArnBr (n =

2-3) and ArnI (n =2-7) we also observe many-body effects in the electronic structure due

to the presence of the open-shell halogen atom. These effects are successfully modeled

using a simple degenerate perturbation theory treatment of the open shell-closed she 11

interact ion.
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Chapter 1. Introduction

The spectroscopic study of weakly bound van der Waals clusters has experienced

an explosive period of growth in the past two decades, prompted mainly by innovations

in laser and molecular beam technology. At the same time, a tremendous amount of

complementary theoretical work has been done on these systems. This work is still

underway, and it is probably not

“golden age” of cluster research.

an understatement to describe the cument era as a

In this introductory chapter, we will summarize the

reasons for this outpouring of interest in this field, briefly review some highlights of what

has been learned so far, and review the results previous work in the Neumark group in

this field. In particular we will focus on recent advances in the understanding of “many-

body” interactions, i.e., interactions involving synergistic effects among three or more

atoms or molecules.

Here, and in

clusters interacting

the rest of this work, we will restrict our attention to weakly bound

by dispersion or induction forces, and leave aside discussion of

covalently bound or “metallic” clusters, a field of study which has also experienced a

massive amount of attention during this same time period, but is beyond the scope of the

present work.

1.1 Intermolecular forces: importance and brief historical review

“since the end of the nineteenthcentuxya considerableamountof workhas beendevotedto the

exact formulationof the connectionbetweenthe propertiesof matter in bulk and intermolecular

forces. Such a formulationrepresentsthe ultimateaim of the moleculartheoryof mattersince,

when a theoryof this kind is establish~ a knowledgeof the intermolecularforcesis sufficientfor



the evaluationof all the propertiesof the bulk materials.” -G. C. Maittand,M. Rigby.E. B. Smith,

and W. A. Waketwunin Intermolecular Forces, p. 3.[

Interest in the weak interactions of atoms and molecules actually preceded these

recent spectroscopic and theoretical advances by many years. The importance of the

concept of intermolecular interactions with both attractive and repulsive components, and

their connection with the bulk properties of gases was first made clear by van der Waals

in 1873 with his formulation of the van der Wads equation of state. (See Ref. 1, p. 2.)

Subsequently, the term “van der Waals forces” was adopted as a blanket phrase for all of

these weak interactions. An understanding of van der Waals forces is necessary to

understand many bulk properties of matter, such of heats of sublimation and

evaporation,2

dipole-dipole

and solvation. The existence of the inductive dipole-induced dipole and

interactions were first proposed to explain these bulk properties by Debye

(1920), and Keesom (1921). However it was not until the work of Lmdon in 1930 that

dispersion forces were proposed to explain the bulk properties of atoms which do not

posses multipole moments, such as rare gas atoms. For reviews of this early work, see

the articles by Margenaus and Lcmdon.’$ For a very basic and readable introduction to

van der Waals forces, see Chapter 13 of Kauzmannz as well as Chapter 1 of ?vfaitland er.

al.’

With the advent of the full development of quantum mechanics, the conceptual

framework to understand van der Waals forces was established. However, lxcause of the

practical intractability of exact quantum mechanical solution of even the simplest

problem involving van der Waals interactions, it was necessary to take a more empirical

approach to the problem. And thus was born what Maitland et al. refer to as the

2



“Lennard-Jones era” in the study of intermolecular forces. (See Chapter 9 of Ref. 1.)

Under this paradigm the Born-Oppenheimer approximation was assumed to separate

electronic from nuclear motions and simple analytic forms for the internuclear potential--

such as the familiar Lenna.rd-Jones 12-6 potential--were used, with the Coulomb

interactions of the electrons implicitly included in this potential function. Also, pairwise

additivity of the potentials was usually assumed. The methodology under this paradigm

was then to attempt to reconcile these model potentials with the experimentally observed

properties of the bulk substances. For a comprehensive treatment of these early efforts to

understand the relation between intermolecular forces and bulk properties see

Hirsch felder, et. al., Molecular Theory of Gases and Liquids.5 .

During this time some theoretical work was done to advance knowledge about the

non-pairwise interactions among atoms and molecules which are essential to understand

if one is to bridge the gap between molecular and bulk properties. In 1943 Axilrod and

Telle# proposed a three-body dispersion force, which was long accepted, with little

direct experimental confirmation, as the primary many-body effect in bulk substances. In

the early 1960s Jansen7 proposed a model of many-body interactions based on exchange

effects, which seemed to account for discrepancies between pairwise additive potential

predictions and experimental measurements of the binding energies of alkali-halide

crystals. For a review and critique of this early work on many-body forces see Meath and

Aziz.g For a recent, comprehensive review of experimental and theoretical research in

this field see Elrod and Saykally.g

3
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1.2. Early spectroscopic work on ciusters

It became apparent that in order to gain a truly firm understanding of van der

Waals interactions one must begin by studying the potentials of small clusters, beginning

with diatomic complexes, in order to avoid the confounding factors involved with

extrapolate ing from the properties of bulk materials to fundamental intermolecular forces.

Such work began in earnest in the late sixties and early seventies. The earliest work in

this field did not involve the use of molecular beams to produce clusters, but relied on

spectroscopic probes of the high vibrational levels of molecules such as Mgz to determine

the (Rydberg-Klein-Rees) RKR potential at long range in order to characterize the van

der Waals interactions,l” and vacuum ultraviolet absorption spectroscopy of dilute rare

gases with very long absorption path lengths, such as the work of Tanaka et al. on the

rare-gas dimers such as Ar2. 11 Klemperer and co-workers pioneered the use of

supersonic expansions to form molecular beams of clusters in conjunctions with electric

resonance spectroscopy, to study van der Wads systems with

such as Ar-HCl.’2 For a review of this early spectroscopic

Maitland et al. 1

strong dipole moments,

work see Chapter 7 of

The field of cluster research began its period of exponential growth in the late

seventies with the landmark LIF studies by Levy and co-workers on the Iz-Rg (Rg = rare

gas) complexes. 13 Since then the field of cluster research has expanded to such an extent

that it is not possible to begin a summary here. For a comprehensive treatment of recent

cluster research we refer the reader to the review by Cast leman and Bowen. ]4

i



1.3. ZEKE studies of simple van der Wads complexes

The focus of the present work in on anion ZEKE and threshold photodetachment

spectroscopy of halide and halogen atoms with rare gas atoms. This work is of

fundamental importance because we are able to study a very simple example of the

interaction of an open-shell species with a rare gas atom. We also gain important

information about the anionic interaction. In this section we review the basic nature of

the interaction of an open-shell (2P) halogen atom with a single rare gas atom or closed

shell molecule, and then review the results of previous anion ZEKE studies of these

systems.

1.3.1. The interaction of an open-shell (2P) halogen atom with a closed-shell species.

In this section we describe the electronic states that arise when an open-shell

(2Pln,sn) halogen atom interacts with a 1S rare gas atom. First we consider the case when

the spin orbit coupling of the halogen is negligible. In this case we have two electronic

states, pictured schematically in Figure 1.1. When the p-orbital containing the “hole” is

aligned along the internuclear axis, we have a *Z state (A=O), and when this p-orbital is

oriented perpendicular to the internuclear axis we have two 21_Istates (A=l ).



+

+

E State

~ States

Figure 1.1. The electronic states ansing from the interaction of a 2P halogen
atom and a 1S rare-gas neglecting spin-orbit effects.

When spin orbit coupling is included and is small relative to the electrostatic

interaction Hund’s case (a) prevails, and the two states are split into the ‘l_I in and ’11 ~P

states, which in the case of ‘s5p atoms like the halogens would lie higher in energy than

the ground %ln state. This situation is shown on the left-hand side of Figure 1.2 on the

following page. As the spin-orbit interaction increases--or as the internuclear nuclear

increases so that the electrostatic interaction is relatively smaller--the ‘I_l ~fl and ‘Zln

states mix, and the complex is then described by Hund’s coupling case (c) as A ceases to

be a good quantum number. This is shown on the right-hand side of Figure 1.2. The

‘IIln and ‘Zln states have mixed to form the lower X +(j = +,Q = +) state and the upper

11+ (j= + ,!2 = +) state, separated by an amount similar to the atomic spin orbit splitting.

The ‘l’l~n state remains as a pure II state, called the 1 $(j = ~ ,Q = ~) state in case (c)



notation, higher in energy than the X + state by an amount related to the electrostatic

interaction between the atoms.

easel Icasel
(a) \ ~ (~) ~

b
Increasinginternuclearseparation I

Decreasingelectrostaticinteraction

+ 1s

+ 1s

Figure 1.2. Correlation
diagram of the coupling
cases arising from the
interaction of a 2P halogen
atom and a closed shell
species. Adapted from H.
Haberkmd, Z Physik A, 307
35 (1982).

The Hund’s case (c) limit applies to the well and long-range region of most of the rare-

gas halogens. The amount of Z–II mixing in the three electronic states is shown in

Figure 1.3 as a function of internuclear separation.

13/2
Figure 1.3. Diagram

o showing the relative II
5
d 111/2

contribution in the

22 interaction between a 2P
=3
‘u

halogen atom and a 1S

El
closed-shell species as a

xl/2 function of internuclear
67
g

separation.

L 2Z,Q Adapted from V. Hoffmann

o and H. Morgner, J. Phys. E?

Internuclear Separation
12,2857 (1979).

.

Again the situation on the right-hand side of this figure [case (c)] is the most pertinent to

the complexes studied in this work, where the X + state has + Z character and +

l_Icharacter, and the H ~ state has ~ Z and ~ II character. As already mentioned the 1 +

state has pure H character.

7
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It should also be mentioned here that all three of the neutral electronic states can

in principle be observed by ZEKE spectroscopy, since the transitions involve removal of

a single electron from a p-orbital of the halide anion. A detailed derivation of the

rovibronic transition strengths for the anion + neutral transition can be found in

Appendix B. For more detailed information about the interaction between open-shell and

closed shell atoms see Refs. 15 and 16.

1.3.2. Review of previous anion ZEKE studies of halogen atom-closed shell systems

In this section we review previous applications of anion ZEKE spectroscopy to

study the complexes of halide/halogen atoms with closed shell species. The fust such

study was the ZEKE spectrum observed in the Neumark group of the I“-COz complex. 17

In this work it was found that the complex is “T’’-shaped, with the COZ slightly bent.

However, the interaction between the I atom and

(44.5 meV for the X ~ state) that the interaction

the COZ molecule is

resembles a van der

much more than a covalent bond (in contrast to FC02, which is a

sufficiently weak

Waals interaction

covalently bound

molecule. ]8, Low frequent y vibrational progressions were observed in the van der Waals

stretching mode for each electronic state, and the spectra were flt to model one-

dimensional anion and neutral potentials. The binding energy of the anionic

was found to be 212.0 meV. Structure was also observed corresponding to

complex

the COZ

internal bending vibration. Also in this laboratory, the I--CH31 complex was studied by

ZEKE spectroscopy. 19

Schlag and co-workers have studied the

spectroscopy .20 They observed the three electronic states

8

I--HZO complex by ZEKE

discussed above, as well as two



low frequency vibrational progressions. However, due to the uncertainty in the cluster

geometry and the possibility of observable rotational structure, they were not able to

conclusively assign the vibrational features or fit the spectrum to a model potential.

The work of most direct relevance here was our previous anion ZEKE study of

the ArI-, ArBr-, and KrI- cornplexes.2’ Because of the simple nature of the interaction

compared to the studies involving molecular solvents, we were able to observe well

resolved vibrational progressions in all three of the electronic states and fit the spectra to

model potentials, obtaining accurate vibrational frequencies, well depths and bond

lengths for the anion as well as neutral states. The potential parameters for the ArI and

ArBr systems can be found in Chapter 4 (Table 4.3). The work described in Chapter 3 is

a continuation of this study.

1.4. ArDX- and Ar.X clusters: many-body interactions

As mentioned above, the study of polyatomic clusters is ideal to directly observe

the many-body effects which are of importance in bulk phenomena, such as solvation in

liquids and the binding of crystals. In Chapter 4 we will delve in great depth into the

nature of the many-body interactions among a halide neutral or anion and a number of

rare gas atoms. In this introductory section, therefore, we will give a brief, more intuitive

overview of the nature of the most important of these interactions.

In the case of the neutral Rg,X clusters, the non-additivity of the potentials arises “

because of the open-shell nature of the halogen atom. Consider again the spinless states

shown in Figure 1.1. The axis of symmetry is defined by the two nuclei. Because the

electronic structure of the halogen atom is not spherically symmetric, the potential

9



functions differ according to the orientation of the singly occupied p-orbital. Now

consider the situation when a second rare-gas atom is brought near the Rg-X pair. The

symmetry of the diatornic complex is broken, and the p-orbital must reorient to

accommodate the presence of the second Rg atom. Considering this, it seems rather

unlikely that the potentials would add in a simple pairwise fashion. In this sense, that one

must consider the orientation of the orbitals involved, this type of open shell-closed shell

interaction may be considered something of an intermediate case between a “pure” van

der Waals interaction and a covalent bond. This is only meant to be an intuitive

discussion of the topic; for all the “gory details” of how this calculation is accomplished,

we refer the reader to Chapter 4.

The many-body forces at work in RgnX- anionic clusters are of fundamental

interest as models of the forces involved in solvation of ions. The two most important

non-additive interact ions in these systerns are the induction and “exchange charge”

forces.

The induction non-additivity is the dominant many body effect in the RgnX”

clusters, and is quite easy to understand. In Figure 1.4 we show the induction interaction

between a halide anion and two rare gas atoms. The halide induces dipole moments in

both rare gas atoms. If the rare gases are next to each other, as shown, the induced

dipoles repel, reducing the net binding energy of the cluster from what it would be

without this effect.

10
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Figure 1.4. Simplified
# schematic drawing of the

origin of the inductive non-
additivity in a Rg2X- cluster.

Again, we will wait until Chapter 4 to discuss a more complete model of the induction

non-addit ivit y.

The other type of non-additive interaction we have found to be important arises

from the distortion of the electron clouds of two Rg atoms when they are brought close

together with a nearby halide anion. This effect is pictured in Figure 1.5. The exchange

repulsion between the Rg electron clouds causes a net positive charge, 8+, to appear at

the midpoint along the Rg-Rg axis, and partial negative charges, each half the magnitude

of 8+, to appear at the Rg nuclei. Because the positive charge is closer to the halide than

the negative charges, the net effect is an attractive force, and an increase in the binding

energy over what it would be without this effect.

Ox-

0.g“

Rg 2

Figure 1.5. Simplified
representation of the nature of
the “exchange charge” non-
additivity in an Rg2X- cluster
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We have found, from the experiments and calculations described in Chapter 4, that this

“exchange-charge” effect makes a quite significant contribution to the non-additive

energy of the cluster anions, being about half as large as the induction non-additivity with

opposite sign.
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Chapter 2. Experimental techniques and apparatus

In this chapter, we describe the experimental techniques used to study Rg.X-

clusters, with an emphasis on recent improvements to the experimental apparatus. First

we briefly review the basic concepts of anion photoelectron spectroscopy (PES), then

describe the closely related techniques of threshold photodetachment and zero electron

kinetic energy (ZEKE) spectroscopy used in these studies. Finally we describe in some

detail recent improvements to the experimental apparatus which have enabled us to

increase production of large van der Wads clusters, as well as improve the signal-to-

noise properties ‘of the ZEISE spectrometer.

2.1 Anion PES and ZEKE spectroscopy

Two related experimental techniques that have been used to great advantage

the study of van der Waals clusters have been anion PES, and ZEKE spectroscopy.

both of these techniques, one begins by producing an anion and photodetaching

excess electron with a laser pulse. In this way one obtains information about both

for

In

the

the

anion and neutral species. An advantage of anion studies over other types of

spectroscopic probes of clusters, is that because one begins with charged species, one can

mass select the species of interest. Another advantage is that because one starts from the

anion one can in most cases detach to the ground state of the corresponding neutral, and

thus obtain direct spectroscopic information about the ground neutral state. Information

about the ground states of neutral species is often difficult to gather from optical

spectroscopic studies of neutral clusters, such as laser induced “fluorescence (LLF) or

resonance-enhanced multi-photon ionization (REMPI), which usually are more

14



informative about the excited states than the ground states. Also, from the photoelectron

or ZEKE spectrum, one can directly determine the electron affkity (EA) of the neutral

species, which provides information about the relative binding energies of the anion and

neutral. Finally, both techniques provide valuable information about anionic clusters,

which in general are less well studied and understood than neutral systems--for which a

more extensive literature exists. (For a recent review of studies of small neutral clusters,

see Badic and Miller.1)

2.1.1 Anion photoelectron

In anion PES, one

spectroscopy

produces a source of “cold” clusters using a supersonic

expansion anion source (described later in more detail), which are then mass-selected and

photodetached with a fixed frequency laser. By measuring the kinetic energy of the

photoelectrons, one can, knowing the energy of the detachment laser, infer the amount of

internal energy remaining in the neutral, and thus interpret the observed spectrum in

terms of spectroscopic transitions from the anion to the neutral. The concept of anion

PES is shown schematically in Figures 2.1 and 2.2. For an introduction to the literature

on anion photoelectron spectroscopy and a detailed description of the anion photoelectron

spectrometer used in the Neurnark group, see the dissertation of A. Weaver.* In general,

the resolution of conventional anion photoelectron spectroscopy is at best about 5-10

meV (40-80 cm-]). This resolution is sufficient to resolve electronic transitions, and in

many cases vibrational transitions of covalently bound molecules, but is insufficient to

observe the much finer vibrational structure of weakly bound van der Waals clusters.
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I Figure 2.1. Schematic diagram of
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Figure 2.2 The photoelectron spectrum
corresponding to Figure 2.1.

Anion PES has been used in several studies of weakly bound clusters. In the

Neumark group, X-(C02)n, (X = Cl, Br, 1)s,4, and I-(NZO).4 clusters have been studied

with this technique. More recently, time-resolved PES has been performed in this group

on the Iz-(Ar).5

I-X%7, (C02)-ng

and Iz-(C02)~b clusters.

O-Arn,g X-(H20)n10, ]1,12

Other groups have

and X-(CH3CN).Is.

used anion PES to study

From this PES work, one

can determine the EAs of the clusters, and from these make inferences about their binding

energies, but cannot study the details of the low-frequent y van der Waals vibrational

structure.

i I

2.1.2 Anion ZEKE and threshold photodetachment spectroscopy

Anion zero electron kinetic energy (ZEKE) spectroscopy, the primary focus of

this work, offers significant advantages over conventional PES for the study of clusters.

With ZEKE spectroscopy we are able to obtain a resolution of at best 1 cm-l, but more
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typically 2-3 cm-i (or 0.1-0.4 meV), nearly two orders of magnitude better than

conventional PES. This resolution is sufficient to observe the vibrational structure of

small van der Waals clusters, as well as to determine very accurate EAs. In addition,

regardless of the resolution, one can have more confidence in the accuracy of EAs

determined from

determined from

ZEKE (or threshold photodetachment) spectroscopy because the EAs

PES are based on measurement of electron kinetic energies, which are

subject to various systematic errors (such as space charge effects), whereas in ZEKE and

threshold photodetachment the energy calibration depends only on the calibration of the

tunable lasers used in these techniques. The technique is not without its limitations,

however, as will be discussed below.

The basic concept of ZEKE spectroscopy was first applied to the photoionization

of neutral molecules by Miiller-Dethlefs, Schlag and

ZEKE (also known and pulsed field ionization, or PFI)

co-workers. “’*S Since this time

spectroscopy of neutrals has been

employed by many groups to study a wide variety of systems. ]6 There has also been

extensive theoretical work undertaken to understand the processes taking place in neutral

ZEKE-PFI experiments (see, for example, Ref. 17)

ZEKE spectroscopy was first applied to the photodetachrnent of anions by

Neumark and co-workers.18 In contrast to the rapid growth in the field of neutral ZEKE-

PFI, subsequent work in the field of anion ZEKE spectroscopy has been confined to a

small number of’ other groups. *9-21 This is due for the most part to the fundamental

difference between ZEKE-PFI of neutrals, in which molecules are excited to long-lived

Rydberg states and then ionized by a pulsed electric field, and ZE& of anions, in which

the electron is photodetached from the anion in the fwst step because anions do not
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posess long-lived Rydberg states. However, despite its

spectroscopy has proven to be a unique and invaluable tool for

we exepect it will continue to be in the future.

difficulty, anion ZEKE

the study of clusters, and

In anion ZEKE spectroscopy, as

selected packet of anions using pulsed

in anion PES, one begins by creating a mass-

molecular beam techniques, so that one may

isolate the species of interest. In ZEKE spectroscopy, one studies the photodetachment

process of the anions by scanning a tunable laser over the region of spectroscopic

interest, with the apparatus arranged so that only electrons detached with very nearly zero

kinetic energy are detected. Electrons ejected with excess kinetic energy are not

detected. In this way one obtains a spectrum with peaks corresponding to anion +

neutral transit ions as a fimct ion of laser energy. This process is shown in schematic form

in Figures 2.3 and 2.4.

‘{‘Ail:
e- (KE=o)

.. ... .
e (KE>O)

Wlltd
e (KE=o)

. ... .
e (KE>O)

e (KE~O)

hv5 h, hv3 hvl h’y

GroundStateanion

Figure 2.3. Schematic of the process of anion
ZEKE spectroscopy.

LaserEnergy(cm-l)

Figure 2.4. The ZEKE spectrum
corresponding to Figure 2.3.

The key to the success of the ZEKE technique is the ability to discriminate against

the detection of electrons with excess kinetic

combination of spatial and temporal filtering
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will be described in Section 2.2. Here we comment on the asymmetric line shape

observed in ZEKE spectra and shown schematically in Figure 2.4. This lineshape

appears because the onset of the detachment threshold is much sharper than the

discriminate ion function of the ZEKE spectrometer, so that one tends to see peaks with

“tails” at high energy, due to incomplete discrimination against high energy electrons.

Refer to Chapter 3 for a discussion of the detailed form of the ZEKE lineshape. In the

next section we discuss the nature of the photodetachrnent cross-sections near threshold

and its ramifications for ZEKE spectroscopy, as well as the partially discriminated

threshold photodetachment (PDTP) experiments described in Chapter 4.

2.1.3. Wigner’s Law

The problem of the total photodetachment cross section near threshold was first

addressed by Wigner,22 who proposed what has become known as “Wigner’s Law. ” If f

is the orbital angular momentum quantum number of the detached electron, then the

photodetachment cross section, o, according to Wigner’s Law is

~ m Et+~2 (2.1)

where E is the kinetic energy of the detached electron, which is equal to h v – EO, where

hv is the photon energy and EO is the threshold energy. This relation places restrictions

on the systems that may be studied with anion ZEKE spectroscopy. Only those

thresholds with sharply rising cross sections can be observed with ZEKE spectroscopy.

For the cross section to rise sharply at the threshold, it is necess~ to have ~ = O. This

occurs, for example, when an electron is detached from a p-orbital of art atorn. In order

for angular momentum to be conserved when the a photon is absorbed, the orbital angular
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momentum of an electron must change according to the selection rule Al = i 1 when it is

ejected from an atom. Thus when an electron is photodetached from a p-orbital, it will

have I = O (s-wave detachment) or I = 2 (p-wave detachment). ZEKE spectroscopy is

only sensitive to s-wave electrons.

Wigner’s law has been experimentally verified for a number of atorns,zs-~T

however the range of validity of the Wigner law has been open to question. A recent

study of the total photodetachment cross-section of Al- by Calabrese et. al. 28 found good

agreement with Wigner’s law up to 13 meV (105 cm-’) above threshold. Above this,

however, these workers found that the experimental cross-section deviates significantly

from the prediction of Equation (2.1). They in fact found a leveling off and decrease in

the total cross-section, whereas Wigner’s law predicts a monotically monotonically

increasing cross section. In Figure 2.5 we show the total cross-section of I- measured in

this laboratory, and see that it is well fit by the Equation (2.1) up to 150 cm-] (19 meV)

above threshold.
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Thetotal cross section was not measured at higher energies, so this result can only be

considered as a lower bound on the range of validity of Wigner’s law for the case of l-.

This result is of little significance for ZEKE spectroscopy, but is of some interest

“partially discriminated threshold photodetachment” (PDTP) experiments on

clusters discussed in chapter 4.

for the

RgnX-

Another question worth raising with regard to Wigner’s law is whether its range of

validity changes as more solvent atoms are added to the halide chromophore of a cluster.

Theoretical work by 0’Malley2g suggested a correction term to the Wigner law

proportional to the polarizability of the neutral left behind by the departing electron. For

s-wave detachment, O’Malley’s formulation of the cross-section behavior is given in

atomic units by

~ = ~V2[l-$~,Eln(2E)+ ~(~)] (2.2)
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where ad is the polarizability of the neutral after photodetachment. One m“ght wonder

from this if adding polarizable solvent atoms to the halide would influence the observed

PDTP spectra. From our studies of ArnI- and Ar.Br- clusters--to be discussed in Chapter

4--this appears not to be the case for Ar atoms. However, whether this effect may

influence the observed detachment spectra of halide atoms clustered with more

polarizable rare gases, such as the X%l- clusters recently studied in this grouplo remains

to be seen.

Wigner’s law has been extended to understand the ne~-thresho]d ~havior of

molecular systems.3] Because the systems studied in this work may be thought of

essentially as perturbed 1S halide atoms, we shall not concern ourselves with the details

of this work. For an interesting discussion of deviations from

molecules with strong dipole moments, see the recent experimental

the Wigner law for

results of Lineberger

and co-workers on photodetachment of the OH- anion.sz This work is not of direct

relevance here, where we are concerned with non-polar rare-gas solvents, but may be of

some importance for the interpretation if the ZEKE spectra of clusters containing highly

polar solvent molecules.

2.2 The experimental apparatus

The details of the design and operation of the experimental apparatus have been

described previously,33’34 and specific experimental details are given in Chapters 3 and 4

of this work. Therefore here we briefly summarize the operation of the apparatus, and

then focus on recent improvements in its design.

The experimental apparatus is shown schematically in Figure 2.6.
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Figure 2.6 The experimental apparatus for ZEKE and threshold
photodetachment spectroscopy. DP = Diffusion pump, TMP =
Turbomolecular pump.

The cold anions are produced in a supersonic expansion from a pulsed valve crossed with

a 1 keV electron beam in the source chamber shown on the left-hand side of the diagram.

The expansion passes through two skimmers and enters the fwst differentially pumped

region, where the ions are accelerated to 1 keV. The second skimmer placed very close

to the pulsed valve was found to increase production of large clusters, and this “double

skimmer” setup is described in more detail in Section 2.2.1. The ions enter the second

differentially pumped region and are separated according to mass using a Bakker-type

(collinear) time-of-flight arrangement.ss Finally, the ions enter the detector region shown

on the right hand side of the diagram where the mass-selected ion packet of interest is

irradiated

deflected

with a pulsed laser. The electrons are extracted

90° upward to the microchannel plate electron
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measured at the microchannel plate detector at the far end of the machine. Total cross

sections, such as that shown in Figure 2.5, may be measured by detaching the ions at a

point directly beneath the electron detector, so that effectively 100% of the detached

electrons are detected.

When operating in partially discriminated threshold photodetachrnent (PDTP)

mode, the electrons are intersected by the laser at a point approximately 0.5 m from the

electron detector, and immediately extracted with a weak electric field (ea. 1 to 3 V/cm)

applied to the extraction plates. In this mode, off-axis high-energy electrons are

discriminated against. This mode of operation is equivalent to the “steradiancy detector”

described by Spohr et al.36 When optimized for maximum electron signal, the resolution

‘137 However, we have found that by usingin this mode of operation is about 150 cm .

very low extraction voltages and carefully tuning the electron einzel lens--pictured to the

right of the electron extraction plates--to regulate the effective “aperture” she of the

steradianc y detector, resolution on the order of 10 cm-* may be achieved in PDTP mode.

This enhanced resolution, however, comes at the expense of dramatically decreased

electron signal.

To take the ZEKE spectrum of an anion, the anion is photodetached at the same

point used for PDTP, however rather than extracting immediately, the electron extraction

is delayed by 250-500 ns. During this “waiting period,” the higher energy electrons

disperse. Thus the “steradiancy effect” for discriminating high energy electrons is greatly

enhanced. Furthermore, during the delay, the electrons that are scattered along the beam

axis have time to spread out, so that those with different kinetic energies experience

different acceleration because of the differing amounts of time they spend in the
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extraction field. When the electrons are detected, a 30-120 ns wide gate is used to isolate

those with initially zero kinetic energy in the ion beam frame of reference. This gated

detection is what is meant by “temporal discrimination,” however in the sense that the

differences in arrival times of the electrons at the detector are due to the initial spreading-

out of the on-axis scattered electrons, this may be also may ix thought of as another form

of spatial discrimination. In the original design of the ZEKE spectrometer the electrons

experienced no electric field during the delay between photodetachment and extraction.

Recently, however, we have found that by applying a very small (ea. 10 mV/cm)

uniform constant electric field to the extraction plates, with polarity opposite to the that

of the extraction field, the ZEKE signal is greatly enhanced, with no loss of resolution.

The details of this “electron deceleration field” will be described in Section 2.2.2.

2.2.1 “Double skimmer” setup for large cluster production

As mentioned above, it has been found that placing an additional skimmer very

close to the opening of the pulsed valve greatly enhances the production of large van der

Waals clusters. The skimmer used for this is manufactured by the Beam Dynamics

Company, and is contoured, with a 2 mm orifice. It is placed 1 mm from the opening of

the pulsed valve (General Valve Corp) which is

This second skimmer is contained within the

used with a 0.5 mm or 0.8 mm orifice.

source chamber; that is, there is no

differential pumping on either side of it. The opening of this skimmer is placed 2 cm

from the opening of the conical skimmer which separates the source chamber from the

fwst differentially pumped region. This setup is pictured in Figure 2.7.
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Figure 2.7 The “double-skimmer” setup for large cluster production

An example of the increased cluster production using this source is shown in

Figure 2.8, which shows the mass spectrum of ArnC1-clusters. The mass spectra with and

without the second skimmer in place are shown in Figures 2.8(a) and 2.8(b), respectively.

We see that

and the ion

without the second skimmer,

signal of the larger clusters

the cluster with the greatest intensity is ArCl”

decreases, until it becomes very difficult to

observe clusters larger than Ar7Cl”. On the other hand, with the double skimmer setup,

we can easily observe clusters up to Ar12C1-. The ion signal for clusters with n larger than

12 drops suddenly, possibly due to a solvent shell closing at this point;qg however clusters

up to ArlQC1-are still plainly visible in the mass spectrum. This same enhancement in
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large cluster production has also been observed in the mass

studied in this laboratory, including XenI-sOand C1-(N2)nsg.

The reason for the success of this scheme for producing

spectra of other systems

large anion clusters is not

certain. Relative to the knowledge abou( the formation of neutral clusters in supersonic

expansions,40’41 little is known about the clustering processes that take place in this type

of anion source. It is possible that the skimmer near the pulsed valve acts as a kind of

“clustering channel” allowing more collisions to take place between the halide anions

and rare-gas atoms in this confined space, so that larger clusters are formed.
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2.2.2 Electron deceleration field

We mentioned above our finding that the application of a weak, positive electric

field to the electron extraction plates results in enhancement of the observed ZEKE

signal. Here we describe the details of the implementation of this scheme.

The extraction field is applied to of a series of seven molybdenum plates spaced 1

cm apart. Photodetachment takes place between the first two plates. The field is applied

such that there is a potential gradient across the fust four of the plates. The voltage for

electron deceleration is applied at the same place. A schematic diagram of the circuit

used to apply the deceleration voltage is shown in Figure 2.9.

+15VDC -V Pulse (50 (2)

N500 n
100Q

=
Voltage

/

Iphotodetachment I I
I point 1+

Figure 2.9. The circuit for the electron deceleration field.

This is a simple voltage divider circuit, but a few points should be borne in mind in its

use. The values shown for the resistances should not be changed too much, because if the
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impedance from the circuit it too high or low it will interfere with the pulsed extraction.

The values of the resistances shown were chosen empirically to minimize interference

with the extraction pulse. Also this circuit should have its own stable power supply. not

used by any other device in the apparatus, to “ensure stability and reproducibility of the

voltage. Finally, when testing the voltage at the indicated test point with a voltme[er or

oscilloscope, one should not leave the probe connected when the experiment is running,

because the probe will disrupt the extraction pulse. The DC voltage should be measured

with a high impedance probe, rather than with the 50!2 probe of an oscilloscope in order

not to alter the voltage from the voltage divider.

An example of the improvement in signal with the electron deceleration field is

shown in Figure 2.10. This figure shows the ZEKE spectrum of the Cl- atom (detaching

to the ground 2P3n state of Cl, without [Fig. 2.10(a)] and with [Fig 2. 10(b)] the electron

deceleration field circuit in place. In both cases, the spectra are accumulated over 400

laser shots per point. The voltage measured at the test point with a high impedance probe

was, 8 mV, corresponding to an electric field of about 3 mV/cm. Both ordinates in the

fiagre are calibrated to the absolute number of electrons collected. The resolution in both

cases is 2 cm-] FWHM, but we see a nearly three-fold increase in ZEKE signal m’hen the

electron deceleration circuit is used. It is found that with the deceleration field, much

longer delay times can be employed. For example, when detaching the Cl” atom i~ was

possible to see ZE~ signal at delay times of up to 1 ps. However, the resolution

seemed to deteriorate at delay times above 500 ns. We find that when using the

deceleration field, it is necessary to use higher deceleration voltages when shorter delays

are employed to achieve optimal results.
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The reason for the improved ZEKE signal seen with this arrangement is not

known with certainty. One possibility is that the deceleration field separates the detached

electrons from the center of mass of the remaining undetached anions to a great enough

extent that they are less subject to dispersal by the space charge of the remaining anions.

It is also possible that the longer delay times are made possible by the deceleration of the

electrons, which--especially light atoms like Cl---would otherwise travel out of the

extraction field within a few hundred ns. The increased electron signal may also be due

to the fact that the decelerated electrons experience greater acceleration when the

extraction field is applied, because they begin further up on the extraction potential

gradient, and hence are better separated and collected with greater efficiency.
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Chapter 3. Zero electron kinetic energy (ZEKE) spectroscopy of the KrBr-, XeBr-,

and KrC1- anions*

Abstract

Three rare-gas halide (RgX-) anions, KrBr-, XeBr-, and KrC1-, and the corresponding

neutral, open-shell van der Waals complexes are studied with anion zero electron kinetic

energy (ZEKE) spectroscopy. The spectra for each system reveal well-resolved

progressions in the low frequency vibrations of the anion and one or more of the three

neutral electronic states accessed by photodetachment, providing a detailed spectroscopic

probe of the Rg-X- and Rg-X interaction potentials. In the case of KrBr-, transitions to all

three of the “covalent” neutral electronic states (the X ~, 1 ~, and 11~ states) were

observed. For XeBr-, transitions to the X ~ and 11~ neutral states were obserJ’ed. For

KrC1-, only the X ~ state could be studied. From our data, we construct model potentials

for the anion and each observed neutral state, and these are compared with other

experimental and theoretical potentials.

*Submitted to J. Chem. Phys. in slightly different form with co-authors Thomas Lenzer,
Georg Reiser, and Daniel M. Neumark.
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3.1. Introduction

The characterization of the forces between weakly interacting

attracted a great deal of experimental and theoretical attention in recent

species has

years. The

interaction potentials between closed shell neutral species have been characterized in

considerable detail as a result of this effort. 1‘2 However, less is known about the

interactions between open and closed shell atoms, or about those between ions and

neutrals. In this work we describe new experimental results involving the latter two

types of interactions. We report the results of studies of the rare gas-halide atom

complexes KrBr-, XeBr-, and KrC1- using anion zero electron kinetic energy (ZEKE)

spectroscopy. In these experiments we obtain spectroscopic information on both the

neutral and negatively charged complex and derive accurate potentials for both the anion

and neutral species. This work is a continuation of our earlier ZEKE studies of the ArBr-,

KrI-, and ArI- complexes,3’4 and is part of an ongoing effort to obtain ZEKE spectra of

the complete series of rare gas halides.

The rare gas halide (RgX-) species are of interest because the Rg”X- interaction

potentials determine the transport properties of halide ions in rare gases; these are

important in understanding plasmas and gas discharges. Prior to the work reported here,

the only previous experimental results on the KrBr-, XeBr- and KrC1- anions came from

ion mobility studies,S’G horn which potentials can be obtained by iterative fitting or direct

inversion. Interaction potentials had also

theoreticalT~8 and semi-empiricalg-l I models.

spectroscopic probe of these species.

been derived within the framework of

The work described here provides a direct

The rare gas-halogen (RgX) complexes are important for their use in excimer

lasers, in which Iasing takes place between electronically excited, strongly bound charge

transfer states and the repulsive wall of the weakly bound covalent ground states. 12

Excimer emission has also provided spectroscopic information on the charge-transfer and

covalent states. In the cases of KrBr and KrCl, emission from the RgX charge transfer
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states to the ground state (the B-+X band) is broad and relatively unstructured, ]2 as is

typical of bound-free transitions. However, recent emission studies of the B+X band in

XeBr reveal extensive vibrational structure. 13’14 The covalent states of rare gas-halogen

neutrals have also been probed in a series of scattering experiments. Information on the

RgX species studied here comes from differential cross-section crossed molecular beam

experiments of Lee and coworkers, *5 which yielded potentials for the KrBr and XeBr

complexes, and from integral cross sect ion measurements by Aqu ilant i and co-workers 1b

who have characterized the potential of KrC1.

The neutral interactions are of interest also because they are simple examples of

open shell-closed shell interactions. The two spin-orbit states of the ‘P halogen atom

interact with the rare gas to give rise to three molecular electronic states. 17’,1g The lower
.
‘P3n state is split by the electrostatic interaction into two components, corresponding to

Q = 1/2 (the X ~ state, in the notation used here) and Q = 3/2 (the I ~ state), where Cl is

the project ion of the total electronic angu Iar momentum along the internuclear axis. The

upper ‘Pln halogen state gives rise to the 11~ (f2 = 1/2) state in the complex.

Anion ZEKE spectroscopy of rare gas halides probes the van der Waals well

region of the covalent states; this complements earlier studies of emission from excimer

states. Our experiments also complement the scattering experiments because, whereas

the scattering cross-sections contain information about the absolute values of the bond

length and well. depths of ‘the complexes, the ZEKE spectra are sensitive only to the

relative differences between the anion and neutral potentials. However, in the ZEKE

spectra one can observe vibrationally-resolved photodetachment transitions to the various

neutral electronic states, whereas in the crossed beam experiments the contributions of

the X ~ and 1 ~ states to the experimental signal are not clearly separated and must be

extracted by an appropriate data inversion procedure. Also, in the crossed beam
.

experiments involving Br or I atoms, the 11~ electronic state arising from the upper ‘Pln

spin-orbit state of the halogen atom is generally not probed because the population of this
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state is negligible. In the ZEKE

the KrBr and XeBr systems are

states for the f~st time.

experiments, well-resolved spectra of the 11~ states of

seen, and accurate potentials can be derived for these

The anion potentials derived here are a significant improvement over previously “

available potentials. While our ground state potentials for KrBr and XeBr are essentially

the same as those derived from scattering and excimer emission experiments, our excited

states potentials represent improvements over previous work, particularly for the 1]+

state. In the case of KrCl, our spectra confirm the neutral potentials previously deduced

from the scattering experiments.

This article is organized as follows: In Section 3.2 we describe the experimental

setup for anion production and ZEKE spectroscopy. In Section 3.3 we present the ZEKE

spectra of KrBr, XeBr and KrCl, and assign the observed electronic and vibrational

structure. Section 3.4 deals with the construction of model potentials for fitting the

vibrational structure and rotational contours of the ZEKE spectra. Finally, we compare

our potent ials with other experimental and theoretical results in”Section 3.5.

3.2. Experimental

ZEKE spectroscopy was originally developed by Muller-Dethlefs er al. for

photoionization of neutrals. 19-21 It was f~st applied to the study of anions by Neumark

and co-workers.22 The anion ZEKE apparatus

elsewhere.zs-zs A brief description follows.

KrBr- and XeBr- anions are produced by

used here has been described in detail

expanding a mixture of 0.2% CFzC113r/

10-30% Kr (or Xe) / balance He into vacuum through a 0.5 mm aperture in a pulsed valve

(General Valve Corp.). The expansion is crossed near the pulsed valve with a 1 keV

electron beam produced with a thoria-coated iridium filament (Electron Technology).

Halide anions are produced by dissociative attachment and other secondary processes,

and clusters form as the supersonic expansion cools. KrCl anions are produced by
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passing the Kr/He mixture over a reservoir containing CCL at room temperature.

Backing pressures were typically 20-80 psi.

The anions pass through a skimmer into a differentially pumped region and are

accelerated to 1 keV into a 1 m collinear time-of-flight mass spectrometer. The KrCl-

results were obtained using an additional skimmer in the source chamber placed very

close to the beam valve .26 The clusters separate according to mass, and the species of

interest is irradiated with a pulse from an excimer-pumped dye laser (Lambda Physik)

operating at a repetition rate of 30 Hz. After a 200-500 ns delay, the electrons are

extracted coaxially with the ion beam using a pulsed electric field and detected

approximately 1 m away with a microchannel plate detector. The electrons are detected

in a 35-100 ns gate, so that as the laser wavelength is scanned, only electrons with nearly

zero kinetic energy relative to the anion packet are detected. The resulting spectral
-I

resolution is about 1-2 cm for atomic anions. The peaks observed in this work are

somewhat broader because of unresolved rotational structure.

In order to study the X ~ and 1 ~ states, DMQ laser dye was used for KrBr and

XeBr and PTP dye was used for KrC1. The laser pulse energy was about 20 rnJ/pulse for

KrBr and XeBr, and about 3-10 mJ/pulse for KrC1. These spectra were averaged over

1000-2000 laser shots/point. For the 11~ states of KrBr and XeBr, light from

Rhodamine 640 dye was frequency-doubled with a KDP crystal, yielding laser pulse

energies of ca. 2-4 mJ/pulse. The electron signal was normalized to the ion signal and to

the laser pulse energy. Spectra for the 11~ states were averaged over about 8000 laser

shots per point. When using DMQ and PTP dyes, the laser wavelength was calibrated

using a Fe-Ne hollow cathode lamp. An iodine cell was used to calibrate the fundamental

/.

wavelength when Rhodamine 640 dye was frequency-doubled. The spectra were

smoothed with a 5-point, second order Savitzky-Golay algorithnzT which had a

negligible effect on the relative peak intensities.

40



3.3. Results

3.3.1. KrBr

The ZEKE spectra

systems, shown in Figures

of KrBr- are shown in Figure 3.1. We observe two band

3.1 (a) and 3.1 (b), separated by approximately the spin-orbit

constant of Br (3685 cm-’). The lower energy band system in Figure 3.1(a) results from

transitions to the X ~ and I ~ states, and the higher energy system in Figure 3.1(b) is due

to the 11~ state.

Assignment of the vibrational and electronic features in Figure 3.1 is facilitated

by our earlier studies of the /MI-, ArBr- and KrI- spectra.s Specifically, the anion

vibrational frequencies are expected to be considerably larger than the neutral

frequencies, and this enables one to distinguish among the three types of neutral-anion

vibrational transitions (v’-v”) that cmtribute to the spectra: vibrational progressions in

the neutral originating from a single anion vibrational level u“, Av=O sequence band

transitions from a series of vibrational levels of the anion, and Au@ hot band transitions

from vibrationally excited anion levels.

Fig. 3.1 (a) is dominated by one peak, labeled 1, with a set of smaller peaks, al, b,,
-1

and c 1, spaced by about 15 cm towzwd lower energy. A second, weaker progression is

seen at higher energies than peak 1 with a characteristic peak spacing of 20 cm-]. We

assign peak 1 to the origin (O-O) transition from the anion to the X ~ state. Peaks al, bl

and c1 are assigned to Av=O sequence band transitions from vibrationally excited anion

states, i.e. the 1-1, 2-2, and 3-3 transitions. The dominance of Av=O transitions shows

that the anion geometry is very similar to the neutral X ~ state geometry.
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Figure 3.1. Experimental and simulated ZEKE spectra of KrBr-. The solid lines are the
experimental spectra, and the dotted lines are the spectra calculated from the model

potentials described in the text. (a) X ~ and 1 ~ states (halogen atom 2P3n asymptote).

(b) 11~ state (halogen atom 2Plfl asymptote).
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Peak 2, the lowest energy member of the second progression, is assigned to the O-

Otransition to the l; state. This assignment ismadein part because itgivesthe best fit

to a model potential (See Analysis section, below). Peaks az, b2, CZ,and dz are assigned to

the (u ‘-O) vibrational progression with v’= 1-4 originating from the anion v“=O level.

The extent of this progression indicates that the I # state bond length is significantly

shifted from the anion geometry. Peak ez is assigned to the 1-1 sequence band of the 1~
-1

state. Peak f2, 40 cm to the red of peak 2 is assigned to the I ~ O-1 hot band transition,

plus several overlapping bands from the X ~ state. “

In the 11~ state spectrum, Fig. 3.1(b), we see the progression 3, a3, b3, C3, and d3,

with a characteristic spacing of about 20 cm-l, and a smaller peak, e3, 37.2 cm-l below

peak 3. We assign peak 3 to the O-Otransition to the H ~ state, and the series a3, b3, C3,

d3 to the (u’-O) progression with v’=1-4. Peak e3 corresponds to the O-1 hot band

transition, and gives an accurate value for the anion vibrational frequency.

The complete set of peak positions and assignments is given in Table 3.1.
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Table 3.1. Peak Assignments (v’-v”) for KrBr” ZEKE spectra

(Figure 3.1). Energies are in cm-l.

State I Peak I Position I Relative I Assignment

I Energy

1 27602.9 0 0+0
al 27588.4 -14.5 1+1

xl/2 b] 27576.2 -26.7 2+2
c] 27561.0 -41.9 3+3

I a, I 27678.4 I 21.4 I 1+0 I
I & \ 27695.3 I 38.3 I 2+0 I

27710.7 53.7
13/2 :2

3+0
27723.0 66.0 4+0

I e, I 27641.7 I -15.3 I 1+1 I
f* 27619.0 -38.0 0+1

(shoulder)

3 31321.7 0 (-)+(-)

111/2

a3 31343.5 21.8 1+0
b~ 31363.2 41.5 2+0
C3 31380.6 58.9 3+0
d3 31398.3 76.6 4+0
eJ 31284.5 -37.2 0+1
f3 31274.7 -47.0 1+2

3.3.2. XeBr

The ZEKE spectra of XeBr- are shown in Figures 3.2(a) and 3.2(b). Our

assignment of the peaks proceeds in a fashion similar to the assignment of the KrBr

spectrum. Again there are two band systems separated approximately by the Br spin-

orbit constant. The lower energy system in Figure 3.2(a) is dominated by a single peak,

1, with a set of peaks c1, dl and el spaced at ca. 17 cm-* intervals toward lower energy.

We also observe a pair of small peaks, al and bl, 26.5 cm-l and 50.2 cm-l to the blue of

peak 1, respectively. As above we assign peak 1 to the origin transition to the X ~ state,

and the peaks c1, d] and el to the sequence bands 1-1, 2-2 and 3-3, respectively. Peaks al

44



and bl correspond to the 1-O and 2-O transitions, and are consistent within 2.5 cm-l with

the peak spacings calculated from the spectroscopic constants determined by

Tellinghuisen and coworkers in their excimer emission study. 14 & above, the

dominance of the O-Otransition shows that the anion bond length is apparently quite close

to that of the X ~ state. However, in contrast to the K.rBr- spectruw transitions to the

1 ~ state are not seen in Figure 3.2(a).

The more congested 11~ state spectrum in Figure 3.2(b) reveals two vibrational

progressions. Peaks 3, a3, b3, C3,d3 and e3 are spaced by 20 cm-’ toward higher energy,

peaks 3, f3 and g3 are spaced by about 42 cm-] toward lower energy. Based on this

change in peak spacing, peaks 3-es are assigned to a progression arising from the ground

anion vibrational state with the origin at peak 3. Peaks fs and gs are assigned to the O-1

and O-2 hot band transitions, respectively. The XeBr peak positions and assignments are

given in Table 3.2.

Table 3.2. Peak as~ignments for XeBr- ZEKE spectra (Figure 3.2).

Energies are in cm .

State Peak Position Relative Energy Assignment

1 27890.0 0 0+0

al 27916.5 26.5 1+0

b, 27940.2 50.2
xl/2

2+0

c1 27873.0 -17.0 1+1

dl 27855.1 -34.9 2+2

el 27841.9 -48.1 3+3

3 31623.6 0 0+0
as 31647.6 24.0 I+0
b3 31667.1 43.5 2+0

31687.5 63.9
111/2 :.

3+0

31704.7 81.1 4+0

es 31719.8 96.2 5Q
fs 31583.2 -40.4 0+1

E3 31539.8 -83.8 0+2
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Figure 3.2. Experimental and simulated ZEKE spectra of XeBr-. The solid lines are the
experimental spectra, and the dotted lines are the spectra calculated from the model
potentials described in the text. (a) X ~ state (halogen atom ‘PJn asymptote). The I ~

state cannot be seen. (b) 11~ state (halogen atom 2P1n asymptote).
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3.3.3. KrCl

The ZEKE spectrum of KrCl” is shown in Figure 3.3. The largest peak, labeled 1.

is assigned to the origin transition to the X ~ state. Peaks 1, c1, dl, e I and fl are spaced

approximately 26 cm-] toward lower energy. The latter four peaks are assigned to Av=O

sequence band transitions, with additional contributions from the hot band transitions

listed in Table 3.3. Also, peaks gl and hl can be assigned to the overlapping hot band

transitions given in Table 3.3. The partially resolved peaks al and b] to the blue of 1 are

assigned to the (u ‘-O) progression, yielding a frequency of 29 cm-l for the X ~ state. We

were not able to observe the 1 ~ state or the 11~ state for this system. The peak

positions and assignments are shown in Table 3.3.

29500 29600 29700 29800 29900

Energy (cm-l)

Figure 3.3. Experimental and simulated ZEKE spectrum of the X $ state (halogen atom

2P3fl asymptote) of KrC1-.
is the spectrum calculated

The solid line is the experimental spectrum and the dotted line
from the model potentials described in the text.
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Table 3.3. Peak assignments for KrC1- ZEKE spectrum (Figure 3.3). Energies
-1

are in cm . Assignments in parentheses contribute less than 20~0 of the total peak
intensity. The assignment listed fwst contributes the most peak intensity.

State Peak Position Relative Assignment
Energy

1 29724.5 0 0+0
(2+-1 )

al 29753.3 28.8 1+0
3+1

bl 29784.2 59.7 2+0

c1 29698.1 -26.4 1+1

X112 (5+3)
(3-2)

dl 29673.9 -50.6 2+2
(0+1 )

el 29645.4 -79.1 3+3

f, 29621.3 -103.2 4+4

0+2

gl 29601.6 -122.9 1+3
3+4

h, 29575.4 -149.1 2*4
4+5



3.4. Analysis

For each of the three species, the energy of peak 1 yields an accurate electron

affhity: 27603(3) cm-] for KrBr, 27890(3) for XeBr, and 29725(5) cm-] for KrC1. These

values are larger than the corresponding electron affinities of Br and Cl, which are

27129.170 cm-l and 29138.3 cm-t, respectively .28’29 The larger electron affinities for the

complexes show that the RgX- dissociation energies are greater than the RgX dissociation

energies, and that XeBr- is more strongly bound than KrBr-. Also, from the vibrational

assignments in Tables 3.1-3.3 we directly obtain vibrational frequencies for the anion and

neutral states.

To gain further insight into these complexes, we construct model potentials for

the anion and neutral RgX complexes to simulate the experimental ZEKE spectra. The

spectra are fit by choosing model anion and neutral potentials, and calculating the

Franck-Condon factors, which, assuming a Boltzmann distribution of anion vibrational

population, are used to produce a simulated spectrum to be compared with the

experimental spectrum. The potential parameters and vibrational temperature are then

adjusted in a trial-and-error fashion to produce the best agreement between the

experimental and simulated spectra. The vibrational eigenvalues are calculated from the

potentials using a discrete variable representation procedureqo based on a basis set of

Morse potential eigenfunctions.ql See Appendix A for’ the details of this calculation.

We use the flexible, piecewise Morse-Morse-switching fimction-van der Waals

(MMSV) potential form. This is the same potential form used by Lee and co-workers for

the RgX neutral potentials] 5 and in our previous work.3 For the neutral, this potential has

the reduced fo~ with~(x) = V(R)/& and x = R/R :
m

f(x)= /~1(’-’) _ ZeB,(l-x), Ocxsl,
~2/92(1-x)_ Zeflzo-d ~ Jf2 (x)= Icx<x,,

= N’v(x)fkf2 (x)+ [1– Sw(x)p(x] x, < x < X2,

= –c6rx4 - C*,x-’ = w(x) X2< X<W,

(3.1)
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where the switching finction is given by

[ t:i+’lw(x) = + Cos

and
C6 c,

c’6r= —&R:‘ C*,=—
&R:

(3.3)

Here, .s is the potential well depth and Rm is the bond length. CGis the induced dipole-

induced dipole dispersion coefficient, and Cg represents the induced dipole-induced

quadruple dispersion coefficient. Higher dispersion terms zue neglected, as is the small

induction term, varying as R-8, arising from the halogen permanent quadruple moment.

The anion potentials are of the same form, except that the dispersion terms are

replaced by

~(x) = ‘B4,x4 - B6,x4 = ~(x)> x2sx<- (3.4)

with

B,
B,, = —

Bb
Bb, =—.

&R: ‘ &R:

and

(3.5)

(3.6)

Here, q is the halide charge and Bd is the coefficient of the dominant term in the long

range RgX- potential, reflecting the dipole induced in the rare gas atom by the halide
Rg

charge. The Bb term arises from quadruple induction and dipole dispersion terms. ad
Rg

and a are the dipole and quadruple polarizabilities of the rare gas, respectively.
9

The dispersion coefficients C(S and Cs are estimated using the formulas of

Koutselos et al.s2 These formulas involve the dipole and quadruple polarizabilities of

each interacting stow and an effective number of electrons, N, characteristic of each

atom. N is empirically determined from the like-atom C6 coefficients.33-qS In the case of

the halide atoms,

rare gas atoms.

the values of N are assumed to be the same as those of the isoelectronic

50



In calculating the dispersion coefficients for the neutral RgX complexes one must

account for the open shell nature of the halogen atoms which results in anisotropic

polarizabilities. The anisotropy of the dipole polarizability has been calculated for the Cl

atom, neglecting spin-orbit effects, to be 1470 relative to the average over all ML states.JG

The halogen in the Z state of an RgX complex, with the unpaired electron oriented along

the internuclear axis, thus has a smaller polari.zability and smaller dispersion interaction

than in the H state, where the unpaired electron is perpendicular to the axis. Bartolotti et

al.qT have calculated the. anisotropy of the quadmpole polarizability of the Cl atom.

However, in this calculation, the value given for the quadmpole polarizability of the *

atom is 18% higher than the accurate value of Thakhr et al.38 Therefore, the Cl

quadruple polarizabilities have been scaled down by this amount. This gives an

anisotropy of 1670 for ag. Because the anisotropy of ad of Br has not been calculated, it

was assumed to be the same as that of Cl. Likewise, because calculations of a~ are not

available for Br, these were estimated using the “hydrogenic relationship” discussed by

Sastri et al:39

c$ = 1570a#

The anisotropy of a~ was also assumed to be the

(3.7)

same for Br as for Cl. To find the

dispersion coefficients for states including spin-orbit effects, we note that the I ~ state

has pure H character, while at long range the X ~ state is”a mixture of 2/3 Z and 1/3 II

character, and the 11~ state has 1/3 Z and 2/3 H character. 18

mixing coefficients are constant for all regions of the potential

dominant interaction (i.e. x > X2in Eq. (1)). ,

We assume that these

where dispersion is the

The polarizabilities and effective numbers of elmtrons used here can be found in

Table 3.4. The C6 and C8 coefficients for the various interactions are given with the other

potential parameters, discussed below, in Tables 3.5-3.7. The C6 values are fairly close

to those of Lee and co-workers, 15 but the C’gcoefficients are in general larger because

Lee and co-workers approximated C8 with the values from the isoelectronic rare gas
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pairs. Because the ZEKE spectra are not sensitive to the very long range part of the

potential, B4, B6, CC and C8 were kept fixed at the calculated values during the fitting

procedures.

Table 3.4. Dipole and quadruple polarizabilities and effective numbers of
electrons used to calculate dispersion and induction coefficients. In atomic units.

Atom Corresponding Q % N
Neutral Spinless State

E 13.3’ 72.0b 4.2’
cl l-l 15.3’ 84.9b 4.2

z 18.7d 131e 6.2
Br n 21.5’ 154 6.2C

cl- 28. 1= --- 5.404f
Br- ::; 36.4 --- 6.309’
Kr --- 16.79g 99~96h 6.309’
Xe --- 27.16’ 223.29’ 7.253’

References for Table 3.4

(a)

(b)

(c)

(d)

(e)

(0

(g)

(h)

(i)

Ref. 36.

Values from Ref. 37, scaled by a factor of 0.822 as explained in the text

Ref. 33.

Derived from the spherically averaged value given in Ref. 33, assuming the same
anisotropy for Br as for Cl.

Calculated from ~ of Br using the “hydrogenic relationship” ~ ~ 1.570043fl given in
Ref. 39.

Calculated from the CGvalues of the corresponding isoelectronic rare gases from Ref.
34, using the Slater-Kirkwood formula (see, for example, Ref. 35).

Ref. 34.

Ref. 38.

Calculated from the Cfj values from Ref. 34.
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Since the ZEKE spectra do not give information about the absolute values of E

and R., we have used

parameters. For KrBr,

scattering experiments

results from previous experiments to guide our choice of these

we fix Rm and E of the X ~ state at the values determined in the

of Lee and co-workers. 15 For KrCl the values determined by

Aquilanti and co-workers for the X ~ states are used-l 6 For XeBr, R~ and E are taken

from the X + state potential of Tellinghuisen and coworkers, 13’14which they obtained

by combining their vibrationally resolved B $ + X ~ emission spectrum with the

repulsive wall of the potential of Lee and co-workers. 15 The emission spectrum

independently provides a more precise well depth .s than could be determined from the

scattering experiments alone: Clevinger and Tellinghuisen cite an uncertainty of 0.8%

for their value of&, significantly more precise than the uncertainty cited for the scattering

results (-5 %). However the uncertain y in Rm is essentially the same as in be’s potential

(-10%).

To determine &for the anions and the remaining electronic states we then use the

relationships implied by Figure 3.4, on the following page, namely:
an

E =vm(x~)+ao +Ex-f30x-~A (3.8)

E,= Ex-Ax, -Uox+ @of (3.9)

E,l=Ex+fi -A x-,, - @ox+ io” (3.10)
so

where Vm(X ~ ) is the origin of the X ~ state, @O”n,@Ox,etc. represent zero point

energies, EA is the electron al%nity of the halogen atom, Ax-, is the X $- I $ state

splitting (between v=O levels), and Ax-,, is the X+-H+ state splitting.
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Once E isfixed for the 1 ~, 11~ and anion states, Rm k found for these potentials

by first adjusting R~oftheanion to best reproduce the observed peak intensities of the

X + state portion of the spectrum. when R~ is known for the anion, R~ for the X ~ and

11~ states can then also be found by means of the Franck-Condon simulation.

For KrBr the initial values of the X ~ ~d I ~ state potential parameters ~1, ~,, x, .

and Xz were taken to be the same as Lee’s dues.* 5 The PI parameter was kept fixed at

the initial value because of the observation by Lee and co-workers that the slope of the

repulsive part of the potential, with this PI values, agrees well with the slope determined

fi-om analysis of the excimer emission. 15 The remining parameters, /32, xl and x, were.

then adjusted to reproduce the peak spacings seen in the ZEKE spwtra

In the case of XeBr, the ~1, ~2, xl and X2 parameters of the X ~ state were

adjusted to best fit the RKR turning points determined by Tellinghuisen and co-corkers. 14

With this potential form it was possible to reproduce the RKR turning point energies to

within 3.5 cm-’. The vibrational spacings for the first nine levels of the resulting MMSV

potential are within 0.2 cm-i of those calculated from Tellinghuisen’s spectroscopic

constants, with the exception of the v=O to v= 1 spacing, which differed by 0.4 cm-].

This level of agreement was judged to be sufficient for the purposes of this work.

Because of the accuracy of the Tellinghuisen potential, no adjustments were made to the

X ~ state MMSV parameters during the fitting procedure.

For KrCl, the shape of the X ~ state potential was estimated by choosing the

MMSV parameters to reprodu~e the X ~ state potential of Aquilanti and co-workers, 16

who used a different representation of the potentials. This was not modified during the

fitting because of the absence of sufficient detail in the ZEKE spectrum. Therefore, in

the KrCl simulation only the anion parameters are adjusted.

Once the potentials are established by the Franck-Condon fitting procedure, a

rotational simulation is performed to fit the observed asymmetric peak shapes. In this
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procedure, a set of rotational lines are calculated for each vibrational band, and these are

convoluted with the asymmetric ZEKE instrumental line shape. The intensity of the

ZEKE electron signal, I(E), due to an individual line is represented by:

,(E,=KY!YL ~>~
l+{E~EOJ+d[E~EOr-0 (3.11)

= o, E<EO

with a = 4.3, h = 0.19, c = 4.2, and d = 2.3, and where E-E. is the energy above the

threshold, Eo,of the line in cm-l, and 17 is the full width at half maximum (FWHM) in

cm-*. The line shape parameters are obtained by a non-linear least squares fit to the ZEKE

spectra of Br-. This form differs from that used previously and is a more accurate

representation of the true ZEKE line shape. Readers are referred to our previous works

and to Appendix B for further details of the rotational fitting procedure. As in previous

work, the rotational temperature was assumed to be 40 K.

The simulated spectra are shown as dotted lines superimposed on the

experimental spectra in Figures 3.1-3.3. For the KrBr- and Xe13r- spectra, the anion

vibrational temperature for the 11~ state differs slightly from the lower energy state(s)

because the spectra were taken with different source conditions. The best-fit potential

parameters are given in Tables 3.5-3.7, and the potentials are plotted in Figure 3.5, on the

following pages.

Fitting the XeBr and KrCl spectra is fairly straightforward, because the peak

assignments are readily apparent by inspection of the spectra. However, for KrBr the

fitting procedure is used as an aid in assigning spectral features, since not all of the

assignments are obvious from the spectra. Specifically, although the assignments of the

X ~ state features are straightforward, the location of the origin of the 1 ~ state is not

(

obvious upon initial inspection. As mentioned in Section 3.3.1, peak 2 of Figure 3.1(a) is

assigned to the I ~ origin because this allows the best fit with the model potential. Also,
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this assignment gives a value of the X ~- 1 ~ state splitting, Ax.1, of 54.1 cm-]. This is

somewhat larger than Ax./ for ArBr, 38.2 cm‘i,3 a result expected due to the stronger Kr-

Br interaction. On the other hand, if peak e2 were chosen as the 1 ~ state origin, AX-I

would essentially be the same as in ArBr, contrary to expectation. This further

corroborates our choice of peak 2 as the .1~ state origin.

The method for estimating the uncertainties of the potential parameters is

discussed at length in our earlier work.3 Here, we present these estimated uncertainties

along with the potential parameters in Tables 3.5-3.7. The anion and neutral potentials

are plotted in Figure 3.5. It should be remembered that the uncertainties in .Eand Rm are

expected to be fairly rigorous, whereas the uncertainties given for the other potential

parameters represent lower bounds on the true uncertainties, because a complete

multivariate analysis of the correlations amongst these parameters was not performed.
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Table 3.5. MMSV potential parameters for KrBr and KrBr-, and zero point energies (~)

and fundamental vibrational frequencies ( VOI ) calculated from the potentials. Term values
TOare referenced to anion ground vibrational state. Estimated uncertainties are given in
parentheses.

X112 1312 IZ1/2 Anion

T,ti (K) of 68. (4.) 68. (4.) 45. (3.) ---

anion
TO(cm-*) 27602.9 (2.0) 27657.0 (4.0) 31321.7 (2.0) o

Q (cm-’) I 12.5
I

11.7 I 12.4 I 19.2
I

~g

, I

21.4 22.8 37.2
I

E (I_IIev) 19.9 (1.0) 13.1 (0.9) 15.7 (1.0) 79.5 (1.0)

Rm (~) 3.90 (0.30) 4.15 (0.30) 4.03 (0.30) 3.85 (0.30)

p 1 I 5.70 (0.40) I 7.20 (0.50) I 7.00 (0.50) I 4.62 (0.30) I
I 6.72 (0.30) I 8.00 (0.30) I 7.20 (0.30) I “7I

x 1.02 (0.06) 1.05 (0.06) 1.05 (0.06) 1.04 (0.06)1

I 1.70 (0.20)
I

1.65 (0.10)
I

1.85 (0.20) I 1.50 (o. 10) I
C6 (eV*A”) I 86.6 (13.0)

I
92.7 (14.0)

I
89.7 (14.0) I ----- I

C8 (eV*A’)
I

740. (230.)
I

801. (250.) I 770. (240.)
I

I 17.91 (2.70) IBd (eV*~4) ---- ---- ----

6
Bb (eV*~ ) ---- ---- ---- 165. (41.)



Table 3.6. M.MSV potential parameters for XeBr and XeBr-, and zero point energies

(~) and fundamental vibration~l frequencies (VOI)calculatedfrmn the potentials. Term
values To are referenced to anion ground vibrational state. Estimated uncertainties are
given in parentheses.

I xlf2 111/2 Anion

Tvib(K) of 70. (4.) 90. (5.) ---
anion

To (cm-l) 27890.0 (2.0) 31623.6 (4.0) o

q (cm-’) 12.3 12.6 21.3

VOI (cm-’) 24.1 23.1 42.1

E (meV) 31.53 (0.25) 25.52 (0.74) 126.92 (0.50)
, 1 1

Rm (~) I 3.82 (0.19) I 4.00 (0.22) I 3.81 (0.21)
I

P, 4.35 (0.30) 6.42 (0.45) 3.50 (0.25)

p 7.41 (0.30) 7.00 (0.28) 5.30 (o.2i)
2 I

I I I

x 1.01 (0.06)
1 1.03 (0.06) 1.03 (0.06)

x 2.00 (0.24) 1.60 (0.19) 1.60(0.19)2

c, (ev.~’) 128. (20.) 133. (21.) ----

x
Cg (eV*A ) 1260. (400.) 1320. (410.) ----

4
Bd (eV*~ ) ---- ---- 28.98 (4.30)

Bb (eV*~6) ---- I---- 271. (68.)



Table 3.7. MMSV potential parameters for KrCl and KrC1-, and zero point energies (Q)
and fundamental vibrational frequencies (vol) calculated from the potentials. Term values
TOare referenced to anion ground vibrational state. Estimated uncertainties are given in
parentheses.

xlf2 Anion

Tv,~(K) of 210. (lo.) ---
anion
To (cm-[) 29724.5 (2.0) o

q (cm-l) 16.0 29.3

voj (cm-]) 29.9 55.5

e (meV) 22.01 (1.00) 95.7 (1.0)

Rm (~) 3.75 (o.10) 3.83 (0.10)

P, 5.49 (0.40) 5.70 (0.50)

P2 5.70 (0.20) 4.40 (0.20)

x 1.30 (0.08)I 1.30 (0.06)

x 1.90 (0.20) 2.50 (0.20)

;, (eV*A’) 60.8 (9.1) ----

C, (ev.~’) 473. (71.) ----

4
Bb (eV*~ ) ---- 17.91 (2.70)

6
Bb (eV*~ ) ---- 138. (35.)
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Fi@re 3.5. Plots of model potentials for the RgX anion and observed neutral states
determined from the ZEKE spectra, using the MMSV potential parameters given in
Tables 3.5-3.7.
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3.5. Discussion

In this section we discuss our results for the neutral and anion RgX potentials and

compare them to previously published potentials. The neutral potentials presented here

do not differ greatly from earlier potentials. For the KrBr X ~ state, of course, c and Rm

are the same as those from Lee’s study, ]5 since these were not adjusted in our fit ing

procedure. Our values of/12, xl and X2differ somewhat from Lee’s values and result in an

improved match with the vibrational spacings in the ZEKE spectra. As mentioned above,

PI was not adjusted, in order to retain agreement with the repulsive wall slopes from

emission studies. For the I ~ state of KrBr, the bond length is somewhat longer and the

well depth a bit shallower than Lee’s values. The difference in R= values is well within

the stated 10% uncertain y, but the difference in E isjust outside this range at 127o.

Our XeBr X ~ state potential is more or less identical with that determined by

Clevenger and Tellinghuisen,’4 differing only because of the limitations of the MMSV

potential form and was not varied during the fit because of the much higher relative

accuracy of the emission results. The few features of the XeBr X ~ state observed in the

ZEKE spectrum (the progression D’ = O, 1, 2 + ‘u”= O, i.e., peaks 1, al and b, in Figure

2) are consistent with the emission results within our experimental uncertainty.

Our X ~ state potential for KrCl is essentially identical to the integral cross-

sect ion potent ial, 16 differing only in the choice of potential form. This is because the

ZEKE spectra do not contain enough information to significantly improve on the

potential obtained from the scattering experiments.

We obtain significantly more new information about the anion potentials. The

trends in anion binding energies Me similar to those seen in our pr~vious study.J The

larger binding energy for XeBr- compared to KrBr- is due to the larger polarizability of

Xe, and the larger binding energy of KrC1- vs. KrBr- results from the smaller Rm and

stronger charge-polarizability attraction in KrC1-. For all three anions, the change in Rm

upon photodetachment to the X $ state is very small, even though the anion binding
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energy is considerably larger. Apparently the larger radius of the halide in the anions

compensates for the stronger binding energy.

In Table 3.8, on the following page, we compare the potential parameters R~ and &

of the anions horn the present study with other values from the literature, all of which

have been derived through less direct means. It can be seen that the literature values are

quite scattered. In comparing our results with the results of Kirkpatrick and Viehland,6

who obtained potentials via direct inversion of ion mobility data, we find our well depths

me systematically shallower and our bond lengths systematically longer. However,

except for the XeBr- well depth, our values lie within or close to the 10% uncertainties

cited by those authors. Similar discrepancies with other ZEKE potentials were explored

in a recent paper by Kirkpatrick and Viehland, in which they used the ZEKE potentials

of &I- and ArBr- to simulate ion nobilities.40 They found that the ZEKE ArI- potential

satisfactorily reproduced the mobility data, despite significant differences in Rm and

& from the potentials obtained by direct inversion of mobility data. However, the

agreement for &Br- was not as good. The authors cite the relative insensitivity of the

mobility data to well depth to explain these findings.

Potentials derived from the earlier mobility results of McDaniel and co-workerss

for KrBr- and XeBr- are slightly closer to ours, but show the same sign and order of

magnitude deviations in E and Rm. The electron gas calculations of Waldman and

Gordong again give systematically larger well depths than ours, although the bond

lengths are in reasonable agreement.
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Table 3.8. Comparison of ZEKE-determined anion potentials with literature potentials.
Uncertainties are given in parentheses as reported in each work cited, if available.

present work

ion nobilities’

ion
mobil it iesb
electron gas’

electron gasd

empirical’

empirical

seni-
empiricalg
serni-
emDiricalh
serni-
empiricali

Kr13r-

(8.9)

93 3.76

*

--- ---

98 3.99

90.1 3.91

92.5 3.70

85 3.79

XeBr-

=+=

&(meV) R. (A)
126.92 3.81
(0.50) (0.21)
145 3.62

169(17) 3.397

1
159 I 3.64

,
--- I---

i-

167 3.62

99.9 4.05

146 3.74

KrC1-

%

E (meV) Rm (A)

95.7 3.83
(1.0) (o. 1o)
--- ---

102 (10) 3.448

--- ---

115 3.48

105 3.85

95.4 3.79

107 3.55

+

References for Table 3.8

(a) Ref. 5.

(b) Ref. 6.

(c) Ref. 8.

(d) Ref. 7.

(e) Ref. 11.

(f) Empirical method of Ref. 11 modified as explained in the text.

(g) Ref. 32.

(h) Ref. 9.

(i) Ref. 10.



The results of Pirani and coworkers in Table 3.8 are obtained by very simple formulas

based on empirical polarizabilit y correlations. 11 Comparison to the ZEKE potentials

show discrepancies greater than our experimental uncertainties, except for Rm of KrBr-

and KrCl. Because of the simplicity of this method, and its usefulness for predicting

new potentials, it is of interest to “recalibrate” these polarizability conflation formulae

using the current and earlier ZEKE results. Fitting the E and R= parameters of the current

study, and also those of the previous work on KrI, ArBr and ArI we obtain

Rm =1.725 [a,’{1-’-jy~5A

and

(3.12)

—(l+p) meVE = 4380 ‘fB
Rm4

with
CZI(ZB

p.

[1+ (2a, / aB)~]czB~

Here the anion and neutral polarizabilities, al and a~, are in ~3 and Rm is in ~. The

numerical coefficients in Eqs. (3.12) and (3.13) differ somewhat from Pirani’s values,

1,767 and 5200,1 ] which were obtained using E and Rm for the Li+-He and Li+-Ne

interaction potentials as references. The results using our parameters are given in Table

VIII; a significant improvement is obtained, although agreement is certainly not perfect.

Eqs. (3.12) and (3.13) should be useful in predicting other halide-rare gas interactions;

this will be tested in ongoing studies of similar species.

Finally, we should remark on the apparent absence of the 1 ~ state in the XeBr-

and IQ-C]- ZEKE spectra, and the much lower intensity of this state

state in the KrBr- ZEKE spectrum. Examination of these and our
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ArI-, ArBr-, and KrI- shows an overall trend in which the 1 ~ transition is weaker for

smaller halides and larger rare gas atoms. This may reflect variations in the transition

moments, or perhaps the explanation lies in the differences between the s-wave partial

detachment cross sections, since only those photoelectrons ejected with orbital angular

momentum 1=0 contribute to the ZEKE signal.z~

3.6. Concluding Remarks

In this article, we have presented the ZEKE spectra of the RgX- complexes KrBr”,

XeBr-, and KrC1-. We have obtained accurate electron affinities for these systems.

Model anion and neutral potentials were constructed by Franck-Condon simulations of

the spectra. In cases where comparison is possible, the neutral potentials are in

reasonable agreement with the potentials from scattering experiments, with some minor

adjustments in the well region for KrBr and XeBr. The anion potentials constructed from

the data are, we believe, the most accurate experimental determinations available for

these systems so far.

We have recently obtained results for ArnC1-and XenI- clusters. Analysis of these

spectra will yield further insight into the pair potentials and many-body interactions that

govern bonding and structure in these species.
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Chapter4. Observation of many body effects in the zero electron kinetic energy

(ZEKE) and threshold photodetachment spectra of Art?3r- (n=2-9) and Ar~”

(n=2-19)*

Abstract

The anion zero electron kinetic energy (zEKE) spectra of the van der Waals clusters

Arz.JBr- and %Z-71- have been measured, and partially discriminated threshold

photodetachment (PDTP) experiments have been performed on Ard.gBr- and Ar8.1gI-.

Adiabatic electron affinities (EAs) have been determined from these results. The

separation of the halogen 2Psn asymptotic states was measured for the Arz.sBr and ArNI

neutral clusters, and the separations between the 2Pl~ and 2Pqn asymptotic states was

determined for Arz.3Br and Ar2-31. Model potentials were constructed, using the pair

potentials determined from previous work on the diatomic rare gas-halide atom

complexes, as well as various non-additive terms, and the cluster minimum energy

structures were determined using a simulated annealing procedure. A simple fwst-order

degenerate perturbation theory model of the neutral cluster potentials was found to agree

well with the 2P3n asymptotic electronic state separations observed in the ZEKE spectra.

The halogen spin-orbit splittings in the Arz.sBr and ArNI clusters were found to be slightly

smaller than those of the free halogen atoms. The binding energies calculated from a

model additive potentials were found to be inconsistent with the experimental electron

affinities. Model potentials including many-body induction effects, three-body “exchange

* Originally published in slightly different form in J. Chem. Phys. 105, (1996), with co-
authors Yuexing Zhao and Daniel M. Neumark.
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quadruple” effects and a triple-dipole dispersion term were found to agree well with the

experimental results. Many-body induction was found to be the dominant non-additive

effect. The exchange quadruple effect--i. e., the interaction of the exchange induced

electron charge distribution distortion among argon atoms with the halide charge-- was

also found to be important.
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4.1. Introduction

In most studies of weakly interacting atornk or molecules, pairwise additivity of the

potentials is assumed. Given pair potentials, Vu, between atoms i and j, the pairwise

additive approximation to the total potential of N interacting atoms is

‘pair=~ Yj(lri - ‘jl)
icj

(4.1)

Here ri and rj represent the positions of atoms i and j. If the atoms had closed valence

shells, and if no deformation of the atomic charge distributions were induced by the

interactions, then pairwise additivity would hold exactly.’ However, if the deformation of

the charge distributions due to the interatomic interactions (e.g. dispersion, induction or

exchange) is considered, the assumption of pairwise

assumption can also break down if one of the atoms has

additivity breaks down. 1 This

an open valence shell. Then it is

necessary to consider the electronic states of the open-shell atom which arise from the

simultaneous presence of all the other atoms; the potential energy surfaces of these states

cannot, in general, be obtained by simply adding the pair potentials in the sense of

Equation (4. 1). In either case it is necessary to extend Equation (4.1) to include non-

addictive, or many-body, effects:

Vmny-bdy= Vptir+yon.~
M (4.2)

= VP~i,+ ~yj~(ri,rj,rk) +... ,<,<k.:+ ~~jk...z(ri,r,,rr:).r:).
icj<k .

Non-additive effects are believed to play a significant role in determining the

properties of bulk matter. For example, the binding energies of rare gas solids (Ne, Ar, IQ

and Xe) measured experimentally are abut 7-1070 smaller than the binding energies

calculated from accurate pair potentials. 2 However, there has been some controversy
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about the precise nature of the non-additive effects involved.z”3 Furthermore, it is in

general difilcult to extract detailed information about non-additive effects from

measurements of bulk properties.3

Cluster studies represent an alternative approach to learning about non-additive

effects. By probing the spectroscopy and/or energetic of a cluster as a function of its

size, and comparing the results with predictions based on additive forces alone, one can

obtain considerable insight into the various non-additive components of the interaction

potential.3 To this end, we present in this paper the anion zero electron kinetic energy

(ZEKE) spectra of the Arz.sBr- and A2-Z.TI-van der Waals clusters, and partially

discriminated threshold photodetachment (PDTP) spectra of Ard.gBr”and Arg.lgI”. We also

present the results of calculations with model potentials involving various non-additive

terms, in an effort to understand the experimentally observed electron afllnities (EAs) and

electronic structure. Our results probe non-additive effects in

the open-shell neutral cluster resulting from photodetachment.

both the cluster anion and

This work is an extension

of our previous ZEKE study of the diatomic rare gas-halide atom complexes,d and “

previous ZEKE work on the I-COZcomplex.5

In order to extract information on many-body effects from experimental studies of

clusters, the pair potentials must be known more accurately than the magnitude of the

many-body effect. Furthermore, the experiment must provide information about the “true”

potential that can be compared

non-additive potentials. This

with the results of calculations with model additive and

information may consist of spectroscopically measured

vibrational frequencies, rotational constants, etc. In this case, accurate dynamical

calculations are needed to extract this information from the model potentials for
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comparison with experiment. Alternately, some experiments allow a more direct

measurement of the cluster binding energies, in which case comparison with model

potentials is much more straightforward.

Non-additive effects can affect the rotational, vibrational, and electronic

spectroscopy of a cluster. Much of the recent interest in this field has focused on high

resolution spectroscopy of van der Waals clusters. For example, pure rotation spectra of

Ne2Kr and NezXe have been observed using fourier transform microwave spectroscopy.b

The structural information and nuclear hypetfiie coupling constants determined from these

spectra show evidence of non-additivity. There have also been a number of near and far

infrared studies of molecular chromophores in rare gas clusters.3”7”8 In many cases it is

difilcult to extract meaningful information about many-body forces from spectroscopic

studies because the intermolecular pair potentials are often not well enough characterized,

in that the uncertainty in the pair potentials is comparable to the magnitude of the many-

body effects. There has, however, been recent experimental and theoretical progress in

dete mining intermolecular pair potentials accurately enough to learn about three body

interactions in the Ar2HCl,3’809”10’Ar2HF,7’9’l&and Ar2DC13”10bsystems. In work more

closely related to the results presented here, the electronic spectroscopy of Arl 4Hg has

been studied with multi-photon ionization,i 1and Ar@a clusters have been studied by laser

induced fluorescence. ‘z Only the Ar14Hg study was mass-selective. From this work,

progress has been made in identifying “non-additive” effects in the excited electronic state

of these clusters with open-shell chromophores. 1]’12

It is challenging to extract information on non-additive effects from direct

spectroscopic measurements such as those mentioned above. Even when mass selectivityy
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can be obtained, non-trivial dynamical calculations are needed to extract the vibrational

and rotational structure information from a many-body model potential in order to

compare it with the experimental spectrum. It is desirable, therefore, to experimentally

measure the binding energies (B-Es) of clusters, because BEs can be readily obtained from

many-body model potentials by simple methods. Moreover, there is generally an intuitive

connection between a particular non-additive term and the cluster binding energy, in the

sense that one can usually predict by inspection if the binding energy will increase or

decrease when a given many-body term is added to a model potential. However, in most

cases, BEs of clusters cannot be directly obtained from experimental spectra. Exceptions

include the pump-probe experiments of Janda and coworkers on Ar2.3Clz*3’and HeBr2,’3b

and the stimulated emission pumping experiments on the carbazole-Ar system by

Leut wyler and coworkers. ‘d

Anion photoelectron spectroscopy (PES) of clusters has proved useful in providing

more direct information about the relative binding energies of anion and neutral clusters.

It also has the advantage of mass selectivity. Examples inciude the work of Markovich et

al. on X-(HzO)” (X- = Cl-, Br- and 1-),15Bowen and coworkers on O-Ar.,lb and Arnold er

al. on X-(COz)n and X-(NZO)”.17 The theoretical calculations of Berkowitz er al.’8 in

conjunction with the PES spectra of Markovich et al. 15 have demonstrated the

importance of non-additive inductive effects in Br-(HZO)n clusters.

However, there are two problems with trying to extract information on non-

addictive forces from these studies. First, the pair potentials for the relevant neutral and

ionic species are not in general known very accurately; this is particularly true for clusters

involving molecular solvents. Secondly, the resolution of conventional anion PES is
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typically in the range of 80 cm-l (Ref. 17)- 400 cm-] (Ref. 15), depending on the type of

energy analyzer used. Because of this limited resolution, anion PES experiments can only

be sensitive to the largest non-additive

clusters.

The anion ZEKE technique used

effects, such as inductive

in the present experiments

effects in the anion

on ArnBr- and knl-

combines the advantage of mass-selectivity with much higher resolution (ea. 2-3 cm-l for

atomic systems) than PES experiments. This resolution allows accurate measurement of

electron affities, as well as spectroscopic observation of the electronic structure of the

neutral &nX clusters. The Ar-X- and Ar-X pair potentials are known accurately from our

previous work on the diatornic species.4 Thus, by employing

procedures to determine the binding energies and neutral electronic

potentials, we can directly compare our experimental results with

simulated annealing

structure from model

the pairwise additive

predictions, and explore the effects of various

potentials. From this comparison, we can obtain

in ArnX- and Ar~X clusters.

many-body corrections to the additive

a detailed picture of non-additive effects

This paper is organized as follows. In Section 4.2 we

experimental apparatus and techniques. In Section 4.3, we present

PDTP spectra, determine the experimental EAs, assign the electronic

briefly describe

the anion ZEKE

the

and

structure observed in

the zEKE spectra, and briefly discuss the observed vibrational structure. In Section 4.4,

we describe the methods and present the results of calculations of the cluster EAs and

neutral electronic stmcture from model additive md non-tiditive potentials, and compare

them with the experimental results. In Section 4.5, we summarize, considering what we

----- .——— .. -m.. —-...7-.-.--,..- r --
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can and cannot conclude about many-body interactions on the basis of our results, and

suggest future avenues for experimental and theoretical research.

4.2. Experiment

Zero electron kinetic energy (ZEKE) spectroscopy was fwst developed for

photo ionization of neutrals by Miil.ler-Dethlefs et al. 19 and applied to negative ion

photodetachment by Neumark and co-workers.20 The experimental apparatus has been

described in detail elsewhere.20 Briefly, ArnX- clusters are produced by expanding a

mixture of approximately 0.1-0.570 Freon (CF31 or CF2ClBr, PCR Co.) in a ca. 257c

argon/ 75% helium mixture through a pulsed valve (General Valve Series 9) with a 0.5

mm diameter orflce. Backing pressures are typically 60-80 psi. The expansion is crossed

with a 1 keV electron beam. Halide anions are formed by dissociative attachment of low

energy secondary electrons and undergo clustering in the continuum flow region of the

free expansion. The molecular beam is collimated with a skimmer, accelerated to 1 keV,

and mass-selected with a 1 m long collinear time-of-flight mass spectrometer.z&”21 The

mass selected ions then enter a differentially pumped detection region, and are irradiated

with a pulse from an excimer pumped dye laser (Lambda Physik). For the ground states

of ArnI, BBQ, PBBO, Exalite 398, QUI and DMQ laser dyes (Exciton) were used. For

the Arz-31 excited state scans rhodamine 610 dye was frequency doubled with a KDP

crystal. For the Ar@r clusters, DMQ and PTP dyes were used for the ground states;

rhodamine 640 was doubled with a KDP crystal for the excited state Ar2.3Br spectra. The

power of the undoubled light was typically 7-20 mJ per pulse at the interaction region.

The frequency doubled laser power was about 2 rn.1per pulse. The laser wavelength was
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calibrated from 337-400 nrn with the Ne lines observed by the optogalvanic effect in a Fe-

Ne hollow cathode lamp. The fundamental wavelength of the frequency doubled light was

calibrated in the region 600-640 nm with an iodine absorption cell.

Two modes of electron detection were used’ in the present studies: the high

resolution ZEKE mode, and the lower resolution partially discriminated threshold

photodetachment (PDTP) mode. In the ZEKE mode, the photodetached electrons are

extracted collinearly by a weak (2-5 V/cm) electric field after a 300-500 ns delay, and

deflected to an off-axis microchannel detector. Detection is gated to provide temporal

faltering. A series of apertures between the detachment point and detector provide spatial

discrimination. This combination of spatial and temporal faltering discriminates against

high energy electrons, so that as the laser wavelength is scanned, only photoelectrons

with nearly zero kinetic energy are detected. The resolution of the instrument is about 2-3

cm-] for atomic systems.zo However, in the spectra of molecules, the peaks are broadened

by unresolved rotational structure. For the systems studied in this paper, the observed

peaks were at least 8 cm-] wide (lWI-IM).

In the PDTP modezob, there is no delay between the laser pulse and electron

extraction, retaining only spatial filtering as in the “steradiancy detector” fwst described by

Baer et aL22 This results in some discrimination against electrons with energies greater

than about 150 cm-l, and leads to peaks about 200 cm-* wide in the present case.

However, the thresholds, and hence the electron affinities, can be determined more

accurately than this, to within approximately 550 cm-l. Because nearly all of the electrons

are collected, this mode of operation has the advantage of much higher sensitivity than the

ZEKE mode.
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The ZEKE spectra were averaged over several thousand laser shots per point

taken in several separate scans. The PDTP spectra were averaged over 300-1000 laser

shots per point. All spectra were normalized to the ion signal and laser power.

No obvious “magic numbers” were seen in the mass spectra. The ion signal

smoothly decreased in intensity with increasing cluster size in the mass spectra of both the

ArnBr- and ArOI-clusters.

4.3. Results

4.3.1. Arz.sI-, Arz.JBr-

The ZEKE spectra of ArzBr- and ArJBr- are shown in Figure 4.1, along with the

spectrum of the diatomic ArBr- complex, reproduced from Reference 4. zEW3 spectra of

ArI-, ArZI-and ArJI- are displayed in Figure 4.2. All the spectra have two sets of features,

separated by approximately the spin orbit splitting of the halogen atoms: 3685 cm-l for Br

and 7603.15 cm-’ for 1.23 We assign the lower energy set of features to electronic states

arising from the ground 2PJn state of the halogen atonz and the higher energy features to

‘Pln asymptotic states. The ground state manifolds of the Arz-JI clusters are dominated by

two sharp, intense peaks, labeled X and 1, separated by about 40-65 cm-]. In the Ar2.3Br

spectra, both features are also present, but peak 1 is less intense and distinct than in the

ArnI spectra.
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Figure 4J. Zero electron kinetic energy (ZEKE) spectra of(a) ArBr-, (b) ArzBr-, and (c)

Ar3Br”. The arrows indicate the neutral electronic state origins.
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Figure 4.2. ZEKE spectra of (a) ArI-, (b) ArzI-, and (c) Ar31-. The arrows indicate the
neutral electronic state origins.
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In the previous

assigned to the origins

work on the diatonic

of the two electronic

species4 the corresponding features were

states that correlate to the halogen ‘P32

asymptote, referred to as the X$ @ =+, ~ =+) and I; (j. =+, Cl =+) states, in Hund’s

case (c) notation.24 The feature labeled H+ in the diatomic spectra was assigned to the

origin of the II+ state ~a = ~, Q =+), which correlates to the halogen 2Pln asymptote.

We expect an analogous set of three doubly degenerate electronic states to be present in

the polyatomic clusters. The lower 2Pjn halogen state is split into two doubly degenerate

states by the weak interaction with the argon atoms. We refer to these states as the X and

I states, by analogy with the diatornic case, dropping the Q desiagation, as this is no

longer a good quantum number in

always refers to the lowest energy

symmetry of the cluster.

the polyatomic case. Note that here the “X state”

state at the equilibrium geometry regardless of the

The X and U state origins are blue shifted relative to the corresponding atomic

lines by several hundred cm-*. The blue shift increases as the number of argon atoms

increases. This demonstrates that the anionic clusters are more strongly bound than the

neutral species.

In the Ar*Br- spectrum ~lgure 4.1 (b)] we see some partially resolved peaks to the

red and blue of the X state origin. There is also a long “tail” to the blue of the I state

origin. We attribute all these features to transitions to or from vibrationally excited states.

Based on our previous interpretation of the diatofic ArBr- spectrurm4 it is likely that the

features to the red of the X state origin are due to hot-band or sequence band transitions

from vibrationally excited anion states. Likewise, the features to the blue of the X state
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origin may be transitions to vibrationally excited neutral ground states and/or hot-band

transitions to the I state. The vibrational progressions me not as well resolved as in the

diatonic spectra. The observed structure is probably due to many overlapping transitions

involving more than one vibrational mode. This spectral congestion appears to be more

severe to the blue of the I state origin, possibly indicating a larger geometry change

between the I state and the anion than between the X state and the anion, as was seen in

ArBr-.4 The peaks to the red and blue of the 11 state origin may similarly be understood as

sequence band or hot-band transitions, and transitions to vibrationally excited neutral

states, respectively.

The spectrum of A.rJBr- [Figure 4.1(c)] appears even more congested. There is a

distinct peak 20 cm-l to the blue of the X state origin, in addition to numerous poorly

resolved features. Again there appears to be an extended unresolved progression to the

blue of the I state origin. The 11state has two prominent peaks, separated by 14 cm”’, plus

some other indistinct peaks to the blue. It is not clear which of the two peaks is in fact the

H state origin.

In the case of ArzI- [Figure 4.2(b)], the vibrational structure is somewhat less well

resolved than in ArzBr”. There is a clear feature 11 cm-l to the red of the X state origin, as

well as some poorly resolved structure between the origins of the X and 1 states. There is

a tail to the blue of the 1 state origin. The spectrum of the 11 state is rather sparse, with

some peaks 10-30 cm-* to the red of the origin due to sequence or hot bands, and a slight

shoulder to the blue. The lack of any extended progression indicates that the anion-l]

state transition is quite vertical.
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The spectrum of Ar31- [Figure 4.2(c)] shows clearer vibrational resolution than

ArzI-. There are two peaks spaced by 8 and 32 cm-* from the X state origin. However,

the sequence band structure to the red of the origin is not resolved. The 11 state of Ar31

displays three distinct peaks 7, 17 and 24 cm-l to the blue of the origin, as well as some

less distinct sequence band structure to the red.

The partially resolved vibrational

interest and will lx considered further

structure seen in these spectra is of considerable

in future publications. In this paper, we are

primarily concerned with the accurate electron affinities and state splittings yielded by

these spectra.

4.3.2. Ar4.71-

The ZEKE spectra of the Ar~.TI clusters are shown in Figure 3. For these clusters

we studied only the lower (2P3n asymptotic) states. In the ArdI spectrum [Figure 4.3(a)]

the origins of the X and 1 electronic states are distinct. In the %~1- specu-um [Figure

4.3(b)] the peak corresponding to the X state origin is quite broad, and the 1 state appears

as an unresolved shoulder. The 1 state also appears relatively less intense than in the Arl -J

spectra. Based on the profde of this shoulder, we can only estimate the position of the 1

state origin to +30 cm-{.
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Figure 4.3. ZEKE spectra of (a) ArJ-, (b) Ar51-, (c) A@-, and (d) Ar71-. The arrows

indicate the neutral electronic state ongins.
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The spectra of ArbI and ArTI [Figures 4.3(c) and 4.3(d)] are more congested. The

positions of the X and 1 state origins cart be estimated, as indicated by the arrows in the

figures, but it is not possible to discern any reproducible vibrational structure. As we go

from ArdI to ArsI, the separation ~tween the X and 1 states appears to decrease.

Although the exact splitting is dfilcult to discern from the Ar61- spectrum, it appears in

this case that the X-1 splitting again decreases somewhat from ArsI. However, the

splitting appears to increase again in the ArTI spectrum in which the two states are better

resolved than in the ArbI spectrum.

We attempted to observe ZEKE spectra of %81 and larger clusters, but obtained

only unstructured spectra with no reproducible features.

4.3.3. Partially Discriminated Threshold Photodetachment Spectra

Because of the increasing spectral congestion with increasing cluster size and the

difilculty of producing sul%cient quantities of large clusters with our source. it was not

possible to perform the ZEKE experiment on clusters with 07 in the case of ArnI-, and

D3 for %nBr-. In the PDTP mode of operation it is possible to work with much smaller

quantities of anions, because nearly all of the photoelectrons near the detachment

threshold are collected. Therefore, only the PDTP experiment was performed for Ar~-gBr-

and Ar8-lgI-.

The PDTP spectra of Ard-gBr- are shown in Figure 4.4, and those of 1%8.191-in

Figure 4.5 on the following pages.
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The peaks are all about 200 cm-l wide (FWHM), with a rising edge of about 100 cm-l. In

order to estimate the adiabatic EAs from these thresholds, we compared the PDTP and

ZEKE spectra of Ar51-.The adiabatic EA of Ar51-from the ZEKE spectrum corresponds to

the 25910point on the rising edge of the PDTP threshold. Because the shape of the PDTP

spectra is relatively unchanging for the larger clusters, we estimated the adiabatic EAs of

the larger ArnBr- and ArnI- clusters from the 259io point of the partialJy discriminated cross

sections. A reasonable estimate of the uncertainties in the EAs determined in this way is

N() cm-l, corresponding approximately to the width of the rising edge of the PDTP

thresholds.

The adiabatic electron afllnities determined from the ZEKE and PDTP spectra of

ArnBr and ArnI are shown in Tables 4.1 and 4.2, respectively. The origins of the 1 and 11

states, when observed, are also shown, as well as the neutral electronic state splittings Ax./

and Ax./l. The stated uncertainties in the results obtained from ZEKE spectra were

determined by considering the width and reproducibility of the peaks, as well as the scan

step size.
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Table 3.1. Experirrmtal adiabatic electron affinities, excited state origins, and electronic
state splittings for A@r. All energies are in cm-]. Uncertainties are in parentheses.

n EA (X State Origin) Z State Origin Ax.[ H State Origin Ax.\l

o 27129.2* 30814ab 3685b

1 27429.6 (3.0) 27467.4 (1.6) 37.8(2.3) 31132.3(1.6) 3702.7 (3.4)

2 27722.4 (3.0) 27775.5 (5.0) 53. 1(5.5) 31427.8 (2.2) 3705.4 (3.7)

h ] 27994.6 (3.0) I 28059.4 (1.6) I 64.8(2.3) I 31702.8 (2.2) I 3708.2 (3.7) ]
141 XY%6 (50) I l-l I I

5 28532 (50)
6 28778 (50)

Et7

8

_. 329 (50)

29258 (50)

191 29491 (50)

Table 4.2. Experimental adiabatic electronic affinities, excited state origins, and
. .

‘m a

for Ar.I.

11State Origin AX-II1 State Origin I Ax.!

32276.5ab I 7603.15b1-

111 24888.3 (3.0) 24925.5 (1.5) 37.2 (2.2) 32512.6 (2.2) 7624.3
(3.7)

32731.2 (2.2) 7630.3
(3.7)

32936.4 (2.2) 7633.4
(3.7)

25152.9 (3.0) 52.0 (3.4)

Ft-- 25368.0 (4.5) 65.0 (5.1)

1
I 4 I 25502.2 (3.0)

I
25571 (10) 69 (10)

I

1-

EE
8 26247 ~50)

9 26413 (50)

10 26582 (50)
11 26753 (50)

12 26904 (50)

I
I

1- 1
1- 1-

1-
13 27079 (50)
14 27226 (50)

15 27375 (50)

16 27488 (50)

17 27617 (50)

18 27717 (50)

19 27794 (50)

I
I

I 1-

i-

1- 1-

1 I

aH. Hotopand W.C. Lineberger,J. Phys. Chem. Ref.Data 14731 (1985).



bC.E. Moore,Atomic Energy Levefs, v. I, Circ. Natl. Bur. Std. 467 (1949).
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4.4. Analysis and Discussion

Our goal in this section is to compme the experimentally observed electron

a.ffimities and electronic structure with predictions from model potentials. The schematic

energy level diagram shown in Figure 6.6 on the next page relates the experimental

observable, i.e. the adiabatic EAs and neutral electronic state splittings, to the model

anion and neutral potentials. The observed X-J state splitting is then calculated from the

model potential using

Ax-[ =&x–@;– E,+@:, (4.3)

where EXand El are the classical binding energies, and (I)~ and co: are the zero point

energies of the X and 1 states, respectively. Similarly, the X-H state splitting is given by

Ax_[l=Ex –+ E,\+ti:+A , (4.4)

where A is the atomic spin-orbit splitting. Using similar notation for the anion binding

energy and zero point energy, the calculated adiabatic EA of a cluster is given by

EA(ArnBr)= EA(Br) +&a – CO:–Ex + a; , (4.5)

where EA(Br) is the electron affinity of a bare bromine atom (3.3636 eVz5). An analogous

equation holds for Ar.I clusters, with EA(I) = 3.0591 eV.2G

Notice from Equations (4.3) and (4.4) that a comparison of the neutral potentials

with the experimental electronic state splittings is possible without any knowledge of the

anion potential. Thus to some extent the neutral and anion potentials can be compimed

with experiment independently of each other.
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AX-II I

EA(X )

Figure 4.6. Schematic energy level diagram of the ArnX- anion and Ax neutral
electronic states.
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In order to use (4.3)-(4.5), we need model potential functions, and methods to

determine the minimum energy cluster geometries and to calculate the zero point energies.

These are described below. We demonstrate that the experimentally observed cluster

properties are not consistent with pairwise additive potentials, and then consider vmious

non-additive corrections to the potentials.

4.4.1. Pair Potentials

The pair potential of the ArBr neutral has been determined in scattering

experiments by Lee et al.27 The scattering experiments characterized only the neutral Xi

and I+ state potentials. Our previous ZEKE results4 on the ArBr complex provided

further refinement of Lee’s potential, as well as information on the neutral 11~ state and

anion potentials. In the case of ArI, scattering results are not available, so the ZEISE

spectrum is the onlye source of information on the ArI diatomic potentials.

The neutral Ar-X potentials are of the Morse-Morse-switching function-van der

Waals (MMSV) form. The reduced form of this potential, with x = r/rm and ~(x) = V(r)/~

is

~(x) = e2Pi(] -x) _ 2e91(l-~), O<xsl,

e2~~(l-x) _ 2e~2(1-X) ~ M*(X),= l< XSX1,

= SW(X)M*(X) + [1- Sw(x)]w(x), X1< X< X2,

= ‘Cdrx + – c8rx-8 = w(x), X* 5X<-,

wheres is the well depth, r. is the bond length, and the switching function

[

Sw(x) = ; Cos
7C(X-X1)+l 1(X*–X1) ‘
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The reduced dimensionless coefficients Cbr and C’g, are related to the usual dispersion

coefllcients C6 and CS by

(4.8)

The anion potentials have the same form, except that the van der Waals portion is

replaced by a function including charge-induced dipole (rA), and charge-induced

quadruple and dispersion (r-b) terms:

X2< X<W, (4.9)

with

&rm

Further details about the construction

B6
B6, =7. (4.10)

m

of the Ar-Br and Ar-I pair potentials are given in

Reference 4. The MMSV potential parameters used in this work are given in Table 4.3,

below.

Table 4.3. MMSV pair potential parameters of argon halides.

ArI ArBr
x+ 1+ 1]j Anion x+ 1+ 1[+ Anion

E (I_IIev) 18.8 13.9 16.0 45.8 16.5 11.5 14.0 54.4
0

rm(A) 3.95 4.18 4.11 4.07 3.73 3.94 3.89 3.78

1 7.15 7.25 6.90 5.70 6.80 7.72 6.70 5.10

& 6.18 6.30 6.40 4.45 6.50 7.10 6.35 4.45

xl 1.01 1.04 1.04 1.08 1.02 1.012 1.01 1.065

X2 1.62 1.62 1.64 1.62 1.59 1.63 1.58 1.66

C(j (ev”~b) 98.4 98.4 98.4 - 65.2 70.2 68.8 -

CS (eV”~8) 715 715 715 - 379 379 379 -

Bd (eV*~4) - - - 12.8 - - - 12.5

Bs (eV”Ab) - - - 162 - - - 120.5
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Some of the parameters used here have been modfled slightly from those published

previously.d The reason for this is that in the previous work, the well depths of the three

neutral electronic

implied by Figure

equal to half of

states and the anion were related to each other ustig the relationships c

4.6, with the zero point energies used in these relations assumed to be

the observed vibrational fundamental frequencies. A slightly more

accurate procedure, used to obtain the parameters

zero point energies from the model potentials.

in Table 4.3, is to calculate the actual

The well depth parameters are then

iteratively adjusted in order to satisfy Equations. (4.3)- (4.5), as well as to fit the observed

spectra. The well depths obtained in this way differ from those given previously by no

more than 2-3 cm-l, which is within the uncertainties stated in Reference 4.

It is important here to consider the uncertainties in the pair potential parameters.

In the case of the ArBr potentials, the scattering experiments provide information on the

absolute values of the well depths and bond lengths for the X ~ state. On the other hand,

the ZEKE spectra, although quite sensitive to the relative bond lengths and well depths

between the anion and neutral states, are not very sensitive to

parameters. Therefore, the r~ and & parameters for the X ~

the absolute values of these

state of ArBr were fixed at

the values of Lee et al.27 The parameters for the anion and remaining neutral states were

then adjusted to be consistent with the relations implied by Fig. 4.6, as well as to

reproduce the ZEKE spectrum. The uncertainties in r~ and e stated in Reference 27 are

tO.2~ andH cm”l, respectively, so the absolute uncertainties of r. and &for the anion

and the other neutral states are of about the same order. However, the relative

uncertainties in r. and E between the anion and neutral are signflcantly smaller than this.
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For example, because the uncertainty in the EA obtained from the ZEKE spectrum is t3

cm-l, the difference 8.- &X is known with about this same uncertainty. (See Equation 2).

Similarly, the relative uncertainties in r~ are found to be about 1-2% (0.04-0.08 ~), based

on the fit to the ZEKE spectra.

For %1, for which scattering experiments have not been performed, modified

versions of the polarizability correlation formulae of Pirani et a128were used to estimate r~

and s for the 11~ state of ArI, as described in Reference 4. Then the remaining neutral

and anion potentials were adjusted to fit the ZEKE spectrum. The estimated absolure

uncertainties in rm and E of AI are tl 8 cm”l fors, and iO.2 ~ for rm. However, the same

considerations about the relative uncertainties among the anion and neutral states also

apply for ArI. The relative uncertainties in E and rm are H cm-’ and iO.04-O.08 ~,

respectively.

To model the Ar-Ar pair interaction, the accurate Hartree-Fock Dispersion (HFD-

B2) potential of Aziz and Slaman29 was used. For this potential r-m= 3.7565 ~ and E =

99.5465 cm-’. For the detailed form and other parameters of this well-known potential,

see Reference 29.

The pairwise additive approximations to the A@r- and ArnI- binding energies were

found by minimizing the additive potentials, using the simulated annealing procedure to be

described below, from:

&a= ‘in (vArX+ ‘A,A,), (4. 1

with VA,X‘~~,(k ‘rOl)Y‘d ‘.,.,=~~j(lri-rjl), where the sums mn over the
i icj

)

Ar

atoms, ri is an & atom position, and ro is the halide position. The calculation of the

96



neutral potentials is more complex because of the open shell nature of the halogen atom,

and is

4.4.2.

discussed in Section 4.4.5, below.

Simulated Annealing Method

We use a simple molecular dynamics simulated annealing procedure to determine

the minimum energy cluster geometries. The simulated annealing program used here was

adapted from a molecular dynamics program written by Li and Martens.30 The procedure

used is as follows:

(1) Random initial atomic positions are generated. The initial positions lie within

a 6-15 ~ box, depending on the size of the cluster, and are subject to the constraint that

no two atoms may be closer than a certain cutoff distance, usually 3.5 ~. The latter

condition ensures that the cluster starts out in an attractive region of the potential surface

so that dissociation does not occur.

(2) The classical equations of motion are solved for about 5 ps, using a Gear

predictor-corrector algorithm started with a 16 step Runge-Kutta algorithm30. ‘The step

size is 5 fs.

(3) Kinetic energy is removed by resealing the atomic velocities. When starting

with random positions, the kinetic energy is removed very quickly,

and kinetic energies are essentially reset to zero with each resealing.

was found to be necessary to prevent evaporation.

so that the velocities

This rapid quenching

(4) Steps (2) and (3) are repeated until a minimum is found. This typically

requires 100-250 ps.
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(5) Beginning with the minimum configuration found by the above procedure,

kinetic energy is added, constrained so that the translational energy of the cluster center-

of-mass and its angular momentum are zero. To prevent evaporation, the initial kinetic

energy was usually set to not more than 25-33% of the total well depth. Then steps (2)

and (3) are repeated, but with kinetic energy removed much more gradually, by resealing

the velocities by afactor31

1-“Tcons, \ KJ%g ‘)j

every 5 ps. Here T..C=1Cis the time between resealings, Tcowtis a time constant--typically

or 100 ps--KEav~ is the average kinetic energy, and KE[a,g is a target kinetic energy, set

a very small value in order to fmd a minimum. The entire procedure typically requires

10 ns.

50

to

5-

(5) Finally, the minimum energy configuration is located more precisely using a

simple gradient minimization routine.3z

The entire annealing procedure was repeated 5-20 times for each cluster to ensure

that the global minimum was found. In this process, low-lying local minima were often

also found. In order to locate higher lying local minim% an interval of 250 fs or less

between rescaiing steps is used in steps (2)- (4), to prevent equilibration of the cluster as

kinetic energy is removed.

For further detaiis about simulated annealing and the computer program used to

implement it, see Appendix C.

98



4.4.3. Zero Point Energy Calculation

Once the minimum energy configurations and classical binding energies are found,

it is necessary to know the zero point energies in order to use Equations (4.3)- (4.5). The

model potentials are analytical functions of the nuclear Cartesian coordinates, allowing

the zero point energies to be estimated by the following procedure. The normal

coordinates of the clusters were found in terms of linear combinations of Cartesian

displacement coordinates, using standard techniques.33 Then each of the 3N-6 single-

mode vibrational Schrodinger equations was solved using a simple one-dimensional

discrete variable representation (DVR) procedure.5s34’35’3GIn this way, the anharrnonicity

of the potential is approximately accounted for, although interactions between normal

modes are neglected. The total zero point energy was then obtained by adding up the

single mode values. The zero point calculation was limited to the portion of the potential

in the vicinity of the minimum structure, so that any splittings due to tunneling are not

reproduced.

For details of the computer program used to calculate the zero point energies,

refer to

4.4.4.

Appendix C, Sections C5 and C6.

Anion Minimum Energy Geometries

The minimum energy geometries found using pairwise additive potentials for

Ar2.191 are shown in Figure 4.7. Similar structures were found for Arz.gBr”. The

calculated anion binding energies and zero point energies are given in Tables 4.4 and 4.5,

on the following pages.
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Figure 4.7. Minimum energy structures of &2.1gI- clusters found using painvise additive
potentials.
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Table 4.4. Results of calculations with pairwise additive Ar@r- anion potentials, and
“matrix-additive” ArJ3r neutral potentials. AU energies are in cm-].

n E. E, EI EI[ a: @ W; (.0( AX.I AX.ll EA~d

o 0 0 0 0 0 0 0 0 0 3685 27129.2

1 438.8 133.1 92.8 112.9 20.7 15.6 13.5 13.4 38.2 3703.0 27429.8

2 977.1 349.4 295.4 319.6 56.8 42.3 45.0 44.6 56.6 3717.1 27742.3

3 1614.9 662.6 599.9 628.7 107.4 85.1 89.6 88.6 67.3 3722.4 28059.2

4 2260.0 977.3 916.6 945.0 157.8127.6135.2132.968.4 3722.6 28382

5 2911.31293.61243.71267.3207.5168.7181.1176.4 62.3 3719.0 28708

6 3659.71696.21677.216$6.0267.5211.7248.5230.0 55.8 3713.6 29037

7 4318.62042.92001.22014.8 315.5 268.9 289.7 272.9 62.5 3717.1 29358

8 5069.8 2465.0 2413.9 2432.4 371.1 315.8 337.1 323.6 72.4 3725.4 29679

9 5815.2 2880.0 2807.1 2837.7 421.3 360.3 375.7 370.1 88.2 3737.1 30003

Table 4.5. Results of calculations with pairwise additive Ar,I- anion potentials, and
“matrix-additive” Ar”I neutral potentials. All energies are in cm-l.

n E* &x EI EII @ 0$ co: (i): AX.I AX-II EA~d

o 0 0 0 0 0 0 0 0 0 7603.15 24673.3

1 369.4 151.6 112.1 129.0 17.3 14.6 12.3 13.2 37.2 7624.4 24888.3

2 838.4 385.4 332.0 355.5 51.0 41.2 42.4 42.4

1.1 I 653.1I 682.5I 98.4I83.2I85.8I 85.4! 67.6I 7640.9i 25346.8i

1--”4[ 1982.0I1051.5I 986.0I1016.3I145.8I125

54.5I 7634.3I 25116.5I I I I , , I
3 I 1406,8I 718..I I 1 I 1 I I I I

I.1I130.1I128.7I 70.5I 7642.0I 255831 I I 1 , t I
5 I 2562.3I1385.6Il:_..., I 1 I I I [ I

1.3I233.9I222.5I 57.3I7633.8I 26062I I I I 1 , I
7 j 3815.2I2151.3I2112.5I 1

~%5.1 I192.7I165.8I174.9!171.3I 66.2t7639.2t 25823 ]

r-6”I 3229.2!1799.2I1767.6i1782.7I249.4I208

_ 295.3I257.81279.6!264.3!60.6I7634.oI 2f5300]

8 4469.22569.3 - - I343.5300.4 - - - - 26530

I 9 5094.82963.2 “ - I379.9334.7 - - - - 26760

10 5731.83369.0 “ - 436.9390.0 - - - - 26990

11 6366.83764.8 - - 476.1428.1 - - - - 27227

12 7044.34199.3 - - 539.6483.9 - - - - 27463

13 7796.74706.4 - - 586.8530.4 - - - - 27707

14 8519.35159.0 - - 645.1572.8 “ - - - 27961

15 gzme 5686.6 . - 710.5 641.6 - - “ “ 28198
4.- 1

16 I 9914.3I6143.3I - I - I777.5I693.7I - - - - 28360

28565.
I I ! 1

18 I11102.2I706’.._, I i I I I 1 I v

1.81-1-1-1- 1 28725 I

11.3I - I “-- t913.0!804.91 - I - ! - I - ] 28606 i

19I11648.0I7498.0I - I - I979.3I880
I

101



For Ar*.sX- (X = Br or I), there is only one minimum, in which all atoms are in

contact with each other. Linear (ArzX-) or planar (ArJX-) geometries are not stable with

additive potentials. Furthermore, the X-1 state splittings expected for linear and planar

geometries are not consistent with those observed experimentally.

In the minimum energy structures of larger clusters (ArnI” 4%S 17, and ~nBr-

4<nS9), all the Ar atoms contact the central halide atom. This type of structure is

energetically favorable because each Ar-X- “bond” is about four times stronger than an

Ar-Ar “bond.” For ArAX-, one local minimum isomer is seen (CW point group) which has

one i4r atom in contact with the other three argons but not with the halide. In ArJ-, its

energy is about 200 cm-] higher than that of the global minimum. The analogous ArlBr”

isomer lies 256 cm-l above the global minimum. These energy differences correspond

approximately to one Ar-X “ “bond”. Ar5X- has two local minima with approximately the

same separations from the global minimum as in the ArdX- clusters.

The clusters with 6srKl 7 show two types of local minima. In one type, the &

atoms are all in contact with the halide--as in the global minimum--but have fewer ~-%

“bonds.” These typically differ in energy from the global minimum by approximately the

magnitude of an k-Ar “bond,” i.e. about 100 cm-l. The other type, seen already for n<6,

are structures in which one or more Ar atoms are not in direct contact with the halide.

This type of isomer usually differs in energy from the global minimum by approximately

the energy of one or more Ar-X “bonds.”

For ArnI, rare gas atoms continue to fit around the halide without significant

crowding up to n= 15. At n= 16 there is some cro waling, so that the Ar-I- contribution to

the potential is reduced. ArITI-constitutes a “closed” solvent shell (at O K). It consists of a
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capped pentagonal bipymrnid structure (D5h), with the axial k atoms significantly further

from the halide than the others. Subsequent Ar atoms are added outside the fwst solvent

shell. In the case of AnBr-, we did not observe the closing of the solvent shell since we did

not perform calculations for D9.

4.4.5. Neutral Open-Shell Potentials

Because of the anisotropy of the open-shell halogen atom in the neutral clusters,

the potentials cannot in general be obtained by simply adding the Ar-X pair potentials.

This is clear from the observed spectra. For example, in the diatomic #uI molecule an X-I

splitting of 37 cm-l is observed.4 If the potentials were simply additive, one would predict

an X-I splitting of 74 cm-* for ArzI. The observed AX.Iin ArzI is 52 cm-’. The simple

additive prediction is well outside experimental uncertainty.

This “non-additivity” of the open-shell potentials has been discussed by Lawrence

and Apkarian,37 whose explanation we follow here. The non-additivity can most easily be

understood if we momentarily neglect the effect of spin-orbit coupling. In this case there

are two electronic states of the diatomic complex corresponding to the two possible

orientations of the singly occupied halogen p-orbital relative to the argon atom. z4”3*A ‘Z

state arises when the singly occupied p-orbital lies along the internuclear axis, and a

doubly degenerate 2~ state corresponds to the singly occupied p-orbital lying

perpendicular to the internuclear axis. However, if the cluster contains additional Ar

atoms, A is no longer a good quantum number if the polyatomic cluster is not linear.

Consider, for example, the case of ArzI. The singly occupied halogen p-orbital will not, in

general, lie either parallel or perpendicular to either of the Ar-I internuclear axes.
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Therefore the Ar-I interaction potentials in ArzI will not be the same as the potentials of

either the *Z or 211 diatomic states, but--in the f~st approximation--may be considered to

be linear

of ArzI,

pairwise

combinations of the diatomic potentials. Thus, in order to obtain the potentials

and larger open-shell clusters, from the diatornic potentials, our concept of

additivity must be extended to include this mixing of the diatomic electronic

states. We describe how this is done in more detail below.

A simple fwst-order perturbation theory treatment of the interaction of an open-

shell atom with several closed-shell (rare gas) atoms in terms of the diatomic potentials

has been developed by various workers.39040.41”4z These methods have been used to study

open-shell atoms in rare gas matrices, clusters, and on surfaces. 1z37.i3”JJ”~5our

implementation here most closely resembles that of Lawrence and Apkarian,37 who studied

the emission spectra of I atoms in Xe and Kr matrices. The theory is briefly as follows.

The Am-X interaction is modeled by an effective potential depending on the rare

gas coordinates and on the coordinates of the “hole” in the singly occupied halogen p-

orbital in an arbitrary space-fued frame:

~ = Xur”x(m)+ HSO.
k

(4. 12)

Here, the sum is over the rare gas atoms, r is the coordinate of the “hole,” Rk are the rare

gas coordinates relative to the halogen nucleus, and HSO is the spin-orbit interaction

Harniltonian.

The potential VA,~ is then expanded in Legendre polynomials in F. Rk. We are#

ultimately interested in the matrix elements of H‘ in a p-orbital basis, and only the f~st two

even terms of the expansion contribute to these. Hence, we write
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H’=qvo(r,l?k)+v2(r,Rk)P2p”Rk)]+H~o.

In the diatornic case (one Ar atom), the expectation values

coeftlcients, VO(R) and V2(R), can be shown, using the relations

(4.13)

of these two expansion

given by Haberlandz4 and

Aquilanti et al. ,3s to be related to the spectroscopic diatom potentials by

(4.14)vo(~) =+[vx*(~) + K$W + v,+(~)]

and (4.15)

Here, the zero for each potential is set at the potential asymptote. (ZPICfor Vilc, and ‘P:,c

for VXl~ and VIM). In deriving these equations it is assumed that the spin-orbit constant,

A, is independent of R.

With some effort, one can show that for a cluster

perturbation Hamiltonian H’ is given by a 6x6 matrix: 37”JZ

( )-M(%)~=~v~(Rk)”1+v2‘k
k

with many Ar atoms, the

(4.16)

where M(R~) is a 6x6 Herrnitian matrix involving the argon atom coordinates. The

detailed form of the matrix H’ has been given, in the J, mJ ) basis, by La~vrence and

Apkarian.37 Diagonalization of H’ yields three doubly degenerate eigenvalues,

corresponding to the potentials of the X, 1 and H states.

In our implementation, an analytical form for the eigenvalues was found using the

Maple V program. This allowed the eigenvalues to be calculated approximately 10 times

faster than by numerical diagonalization and saved considerable computer time. The

potentials, V~rtx, are then referred to their own asymptotes by adding ~ A to the X and 1
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state potentials, and subtracting $ A tlom the 11 state potential. The total potential of the

cluster is then obtained by adding the Ar-Ar potentials in a pairwise fashion. The well

depths are found by minimizing these potentials using the simulated annealing and gradient

minimization procedures described in Section 4.4.2. For the X state, for example,

“( )‘X = ‘ln ‘ArmX + ‘ArAr , (4.17)

with V,,A, the same as in Equation (4.11).

There are several assumptions implicit in this treatment of the open shell potentials.

First, the basis set

are not included.

is limited to p-orbitals; excited orbitals of the halogen or rare gas atoms

Thus, many-body effects due to polarization of the halogen atom or

charge-transfer are neglected. Also, we assume that the spin-orbit constant, A, is

independent of the internuclear separations, as well as independent of the number of rare

gas atoms in the cluster. To

of R for ArBr and ArI, using

the three diatomic potential

verify the former assumption, A was calculated as a function

the relations given by Haberkmd2d and Aquilanti et aL38, and

energy curves determined from the ZEKE spectra. The

calculated A does not vary more than 1 meV (O.1%) for Ad and not by more than 5 meV

(1%) for ArBr for R greater than the zero crossing point. The assumption that A is

independent of the numbr of argon atoms is more questionable, as we will see below.

The above method of calculating the adiabatic potential surfaces was used directly

in the simulated annealing procedure for the smaller clusters (n<6). For the larger clusters,

the annealing was f~st performed using the anion potentials described above, and then the

system was allowed to relax (to optimize the geometry) on each of the neutral surfaces.

In most cases, the anion and neutral have approximately the same global minimum
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configurations. There are some exceptions. For instance, the global minimum isomer of

the Ar5Br- anion has all five of the Ar atoms in contact with the Br” atom, but this

geometry corresponds to a local minimum of the neutral X state surface. In such cases,

the neutral minimum corresponding to the anion global minimum was always used to

compute the “adiabatic” EAs and neutral electronic state splittings.

The results of the calculation of the neutral binding energies, zero point energies,

Ax.1,and AX-Uare presented in Tables 4.4 and 4.5, for Arz-qBr and J%2-191,respectively. It

is interesting to note that for all D 1, the zero point energy of the I state is greater than

that of the X state, contrary to intuition. This seems to be due to the steep repulsive wall

of the I+ diatomic state, which causes the antisyrnmetric modes to be more steeply

curved in the ] than in the X state. The result is an increase in AX-Jover what would be

calculated if the zero point energies were neglected.

We can compare the X-1 splittings calculated using Equation (4.3) with the

experimental results without reference to the anion potential. This comparison is shown in

Figure 4.8. In the cases where the two states are well resolved, the agreement with

experiment is quite satisfactory.

For n=2 and 3 the splitting between the X and 11 states may also be compared with

experiment using Equation (4.4), as shown in Figure 4.9.
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Figure 4.8. Comparison of experimental and calculated X-I state splittings for (a) ArnBr
and (b) Ar.I. Solid circles: experimental. Open squares: calculated as described in
Section 4.4.5.
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Section 4.4.5.

109



For both Ar2.JBr Figure 4.9(a)] and Ar2.31 [Figure 4.9(b)], the theoretical Ax.lJis greater

than the experimental value by about 5-15 cm-]. The agreement is somewhat worse for

Arz.3Br than for Arz.31. This discrepancy could mean that the atomic spin-orbit splitting,

A, is not independent of the number of Ar atoms, as was assumed above. It is known that

the spin-orbit splitting of atoms in rare gas matrices is different from that of the free

atoms. For example, Lawrence and Apkarian found that the I atom spin-orbit splitting is

decreased by about 39?0or 590 in Xe or Kr matrices, respectively .37 We observe a smaller

decrease of A in the small clusters studied here: about 0.06 Y0-O.1% in Arz.jI and 0.3qo-

0.4%-oin Arz.3Br.

Generally speaking, the open shell interactions described in this section are non-

addictive, in the sense that they are of the form of the additional terms in Eq. 4.2.

However, they are not true many-body effects because they can be obtained directly from

the pair potentials, and do not introduce additional interactions between the Ar atoms in

contrast to the effects described in Section 4.4.7, below. As pointed out by Sando and

coworkers,4z the open-shell potentials in the D 1 clusters can be considered to be additive

as matrices rather than as scalars, and we will refer to these interactions as “matrix

additive” effects in the rest of this discussion.

4.4.6. Electron Afllnities Calculated from Additive Potentials

The adiabatic EAs calculated from Equation (4.5) using the additive anion

potentials [Equation (4. 11)] and “matrix additive” neutral potentials Equation (4. 17)] are

given in Tables 4.4 and 4.5. These are compared with the experimental EAs in Figures

4.10 and4.11.
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First, notice that in both Arz.gBr and ~z.1’31 the calculated EAs are significantly

larger than the experimental results. For ArlT.lgI, the calculated EAs are almost 1000 cm-’

larger than the experimental values. Furthermore, the calculated EAs for rK17 are nearly

linear as a function of n. There is a slight positive curvature due to the nonadditivity of the

neutral X state, and for m 17 the plot becomes flat in the case of ArnI-. On the other hand,

the experimental EAs display a significant negative curvature when plotted versus n. In

Ar.1, the flattening out at n=17 is not observed. Clearly the model potentials, as described

so far, are not consistent with experiment.

Before we consider many-body effects in the anion, let us f~st rule out other

possible explanations for this inconsistency. We first consider the propagation of the

uncertainties in the pair potentials. The theoretical error bars shown in Figures 4. 10(b)

and 4.11 (b) were estimated by assuming an uncertainty of H cm-* in the quantity Ea-&xfor

the pair potentials, as discussed above, and multiplying this by the number of Ar-X nearest

neighbors. The uncertainty in the &-Ar potential, and that due to “relaxation” of the

geometry is neglected. The

uncertainties. The theoretical

shaded areas in

and experimental

the Figures represent the experimental

uncertainty regions show no overlap for

n>2. If a much more conservative estimate of the uncertainties is desired, we can consider

the individual uncertainties in the diatomic well depths, i.e. 9 cm-l for i%Br and ArBr-, and

18 cm-l for ArI and AI-. Even in this case, the experimental and theoretical error ranges

overlap only for ArzBr and Ar2.31.

Furthermore, because the trends in the size dependence of the observed EAs are so

different from those of the calculated EAs, it does not seem possible to mod@ the pair
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potentials so as to simultaneously account for all the experimental EAs. Any modification

of the pair potentials would result in the same more or less linear trend in theoretical EAs.

One might also ask whether the population of local minima affects the trends in the

experimental EAs. We can rule this out for i%2.jX, for which there is only one possible

minimum geometry. For n=4 and 5 the only local rninirna give calculated EAs much lower

than the experimental result. For some of the larger clusters there may be local minima

that would be consistent with the experimental EAs. However, we know from the

diatomic spectra4 that the vibrational temperatures in the beam are on the order of 50 K.

In light of this, a significant population of larger clusters occupying local minima several

hundred cm-l above the global minimum seems unlikely. For this reason, and because it is

not possible to account for the observed EAs of the small clusters with alternate minima, it

is very unlikely that population of local minima could be the sole explanation for the

observed trends in the EAs.

4.4.7.

inboth

anion.

Next we consider various non-additive terms in the potentials.

Many-Body Interactions

Non-additive (or many-body) interactions fall into three categories: those present

the aruon and the neutral, those umque to the neutral, and those unique to the

Many-body interactions present in both anion and neutral include dispersion

(Axilrod-Teller) and exchange interactions. Interactions unique to the neutral include the

many-body effects due to the open shell nature of the halogen atom which have already

been discussed in Section 4.4.5. Many-body effects unique to

involving the charge on the halide atom. These include non-additive

114

the anion are those

induction effects, and

t. I



the interaction of the halide charge with multipole moments caused by exchange and

dispersion interactions between pairs of argon atoms.

Since the experimental observable, the EA, depends on the difference between the

anion and neutral potentials [see Equation (4.5)], we expect the many-body effects unique

to the anion to be the most important in explaining the observed trends.

We will consider each non-additive effect in turn, incorporating it into our

simulated annealing procedure to test its effect on cluster energetic at the minimum

energy geometry.

4.4.7.1. Triple-Dipole Interaction

The leading term in the non-additive dispersion energy, the triple-dipole

interaction,

form of the

was frst derived by Ailrod and Teller4G, and independently by Muto.i7 The

triple-dipole potential is, for three atoms i, j and k,

(3 COS0i COSej COS6~ +1)
VW = C9

R3R3 R? ‘
v jk lk

(4.18)

where 0 i is the interior angle Zjik , RU is the internuclear distance between atom i and

atom j, and C9 is a constant depending only on the identities of the three atoms. C9 can

be calculated using semi-empirical methods48, or by fitting to ab initio calculations.q9

However, because such results are not available for the k.X or Ar,X” systems considered

here, we use the approximation to C9 discussed by various authors,48b50
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where a ~ and q ~ are, respectively, the dipole polarizabilit y and average excitation energy

of atom i.

A simple approximation to qi is, in atomic units, so”s]

(1.Nj +qi=—
Uj “

Here, Ni is an effective number of electrons for a given atom.

(4. 19) gives a three-body analogue of the Slater-Kirkwood

(4.20)

Substituting (4.20) into

formula51 for the C6

dispersion coefllcient. In Koutselos and Mason’s treatment50a, which we follow here, ~i

is treated as an empirical parameter determined from the corresponding CG two-body

dispersion coet%cient for like atoms. Furthermore, the values of Ni for the halide anions

for which the C6 coel%cients are not known are assumed to be the same as those of the

corresponding isoelectronic rare gases. Some theoretical and empirical justiilcation of the

approximations involved in this approach is given by Koutselos and Mason, who estimate

an uncertainty of 59’0-109’0for C9 coefficients determined in this way.50a The parameters

N and a as well as the values of C9 calculated from (4.19) and (4.20) are given in Table

4.6. It should be noted that Equations (4.18) and (4.19) are, strictly speaking, valid only

for atoms in S-states.4cb’50a In extending their use to P-state

neglecting the anisotropy of the halogen atom polarizability.

halogens we are implicitly
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Table 4.6. Atomic dipole and quadruple pokizabilities, effective numbers of electrons,
and Cg coefficients for Ar-Ar-X interactions.

I Atom I a (%3) I C(ao’)I N j C9 (eV-A’)
1 I 1 ,

I Ar I 11.08’ 27.11d 5.90e
n I 1 1

I Br- 35.2b 164d 6.70e 127

Br 20.6C 6.2’ 83

I“ 52.7b 254d 7.79= 179
n I 1 t

t
I I 36.1C 6.5’ 129

References for Table 4.6

a R.R. Teachout and R.T. Pack, At. Data 3, 195 (197 1).

b H. Coker, J. Phys. Chern 80,2078 (1976).

c Handbook of Chemistry and Physics, 74th ed. (CRC, Boca Raton, 1994), pp. 10-198.

d M.V.K. Sastri, P.L. Narasimhulu and K.D. Sen, J. Chem. Phys. 80, 584 (1984). Note

that we use Buckingham’s definition [Adv. Chem- Phys. 12, 107 (1967)] of the

quadruple polarizability, C, which is equal to half of the quadruple polarizability, ~,

used by Sastri et al. [See E.A. Gislason and M.S. Rajan, Chem. Phys. Lett. 50.251 (1977)

and references therein for information on the various quadruple polarizability
. .

conventions.]

=E.A. Mason and E.W. McDaniel, Transport Propetiies of Ions in Gases (Wiley, New

York, 1988), pp. 533-4.
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The triple-dipole interaction is repulsive for near equilateral geometries. In the

case of A21-, VW at the equilibrium geometry is +8.1 cm-l, and 6.3 cm-l for ArzI. For

ArzBr- and ArZBr, the results are 9.0 cm-] and 5.7 cm-’, respectively. The larger values for

the anionic clusters are mainly due to their greater polarizabilities. The net result, then, is

a decrease in the calculated EA by about 2-3 cm-l compared with the additive potentials.

This effect is of the same order as the experimental uncertainty, but maybe more

significant for larger clusters. In the calculations below on clusters with n23, only the

Ar-Ar-X triple-dipole interactions are included. The Ar-Ar-Ar interactions are neglected,

because we expect their energies to be nearly equal in the anion and neutral.

It has been shown that higher-multipole three-body dispersion terms, such as the

dipole-dipole-quadmpole ( Vtiq ) potential, may also contribute substantially to the three-

body dispersion energy.z To ascertain their importance here, we used the formulae of

Koutselos and Masonsoa for the higher multipole coefilcients, and the geometrical factors

given by Bellsz to estimate V’tiq for &zI- and A21. At the equilibrium geometries of the

clusters deter-mined with additive potentials, we obtain approximately 4 cm-’ for ArzI’ and

3 cm-’ for ArzI. The resulting 1 cm-l shift in the EA is smaller than the experimental

uncertainty. Therefore, Vtiq and all higher multipole three-body dispersion terms were

neglected in subsequent calculations.

4.4.7.2. Three-Body Exchange

The second type of three-body interaction that occurs in both anion and neutral

clusters is the three-body exchange interaction. This is caused by the exchange induced
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electron charge distortion on a pair of atoms, which alters the pair’s exchange interaction

with a third atom. This effect is difficult to model without recourse to ab imlio

calculations, and has been the subject of some controversy.2”3 As far as we are awae,

such calculations are not available for the Ar”Br/&nBr- or ArnI/~”l- systems studied here.

However, we can get an idea of the magnitude of this effect from an ab initio calculation

on Ar3 by Chalasinski et al.49 For equilateral Ar- at internuclear separations close to the

equilibrium Ar2 bond length, they fmd the sum of f~st and second order exchange three-

body energies to be -1.5 cm-l, or about 42% of the third order dispersion non-additive

energy (+3.6 cm-l ), and of opposite sign. If we assume the exchange nonadditivity is a

similar percentage of the dispersion nonadditivity in the ADBr/&@r- and ArmI/A.rnI-

systerns, we would anticipate a 2-4 cm-l negative contribution to the binding energies, and

an approximately 1 cm-] difference between anion and neutral three-body exchange

energies. Because this effect is expected to be small compared with our experimental

uncertainties, and due to the practical difi5culty of accurately modeling it, it will be

neglected here.

4.4.7.3. Induction Non-Additivity

The anion pair potentials are dominated by induction. Lkewise, we expect a

rather large non-additive effect to arise from the interaction between multipole moments

induced in the rare gas atoms by the halide charge. In addition, there is non-additivity due

to the polarization of the halide atom itself. Because these effects are entirely absent in the

neutral clusters (if we neglect the relatively small inductive effects due to the permanent
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quadruple moment of the neutral halogen), we expect the induction non-additivity to

have a large effect on the EA.

A model for treating non-additive effects in systems of polarizable particles, frost

developed by Vesel$3, has been extended and used extensively by various workers in

computer simulations of solvated ions54 and electrons,55 polar liquids,sb and ionic

clusters. 18.5M.57Our adaptation of this model is as follows.

Each atom is characterized by a point charge (halide only) and point dipole and

quadruple polarizabilities (halide and rare gases), located at the nucleus. We assume that

the induced dipole of an atom depends linearly on the electric field produced by the

charges and multiples of the other atoms via the dipole polarizability, a. We neglect the

cubic dependence on the electric field due to the hyperpolarizability y, and all higher terms.

Likewise, we consider only quadruples induced by the field gradient due to the other

atoms, characterized

contribution quadratic

B,58 and higher terms.

by the quadruple polarizability C, neglecting the smaller

in the electric field via the dipole-quadrupole hyperpolarizability

We also neglect the damping of the polarizabilities and charges at short range due

to exchange or charge-transfer. Such effects are believed to be significant in the case of

hydrogen bonding56’ and in anions in ionic crystals.59 However, they are probably less

important in the weakly bound clusters considered here.

With these assumptions, the electric field at atom z’is given byw

E:) = Z(_T:)qj

j#i

(4.21)

and the electric field gradient isw
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(4.22)

Here, following the notation of Buckingham,w the subscripts cx, ~, y and 8 stand for any

of the Cartesian components of a vector or tensor, and repeated Greek subscripts imply

summation over the three components. The permanent electric charge is represented by q,

(-1 for the halide and O for the rare gases), and p:) and @~~ are components of the

induced dipole and quadruple moments, respectively, at atom i. We use Buckingham’s

definition of the quadruple moment as a traceless tensor.~ The multipole interaction

tensors are defined by T$~..v = VaVp”. QV, (l/Rti ), where RJ is the vector from atomj to

atom i. The induced dipole at atom i is then given bya

p:) = ai~$), (4.23)

and the induced quadruple ism

@:~ = ciE$, (4.24)

where ~i and Ci are the dipole and quadruple polarizabilities, respectively, of atom i.

The values of a and C used here are given in Table 4.6.

At each time step in the simulated annealing procedure, the induced moments are

calculated iteratively from Equations (4.2 1)-(4.24). At the frst time step, the field and

field gradient due to the halide permanent charge are initially calculated from (4.21) and

(4.22). Then the induced moments are found from (4.23) and (4.24), and substituted back

into (4.2 1) and (4.22). The process is repeated until the magnitudes of the induced

moments do not change by more than one part in 10-10 with successive iterations. It is

found that the moments converge about twice as fast if the individual moments are
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immediately substituted into (4.2 1) and (4.22) for subsequent calculations during a given

iteration, rather than “saved” until the next iteration. For subsequent MD time steps, the

algorithm is initiated with the induced moments saved from the previous MD step. This

saves some computer time.

The total induction energy is then given by

%d.toml = vqM+v@+ vyv+vpe+v%+ycy, (4.25)

where the fust five terms on the right hand side are the charge-dipole, charge-quadrupole,

dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interaction energies. The

final term is the energy required to create the induced dipoles and quadruples, given

bybl’bz

(4.26)

where the sum runs over all atoms. By using (4.21)-(4.24) for one of each of the dipoles

and quadruples in (4.26) and substituting the explicit expressions. for the interaction

energiesa and (4.26) into (4.25), one can show that (4.25) sirnptiles to

(4.27)

This equation gives the total induction energy of the’cluster. However, part of this energy

is already implicitly included in the Ar-X- pair potential. In order to extract the non-

addictive portion, we calculate the induction energy for each Ar-X- pair, neglecting the

other Ar atoms in the cluster, using the same iterative method.

induction energies is then subtracted from (4.27) to give the

energy:

The sum of the pair

non-additive induction
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Yk4i=Wui,tord– Lf,puir” (4.28)

In practice, due to the computational “expense” of this iterative calculation, a

simpler model was employed for the initial simulated annealing procedure. In the simpler

model, the interaction energy ’between dipoles directly induced in the rare gas atoms by the

hahde charges is calculated.G3 The minimum energy geometries found with the simpler

model were then optiinized using the full iteratively calculated induction model described

above. This simple induction model is described in detail in Appendix C.

The results of the calculation for ArzI- and ArzBr- show that the non-additive

induction effect is indeed quite large. For ArzBr-, for example, Vind is 35.3 cm-]. The result

for ArzI” is somewhat smaller, lxcause of the larger Ar-X- internuclear distance. The non-

addictive induction energy is always found to be positive, showing that it is dominated by

the repulsion between adjacent induced multiples on the Ar atoms. The dipole term of

(4.27) contributes 32.7 cm-) to the total in ArzBr-, and the quadruple term contributes 2.6

cm-’. Thus, it does appear necessary to include the induced quadruple effect, usually

neglected in this type of simulation, for accurate calculation of the binding energies. The

results for the larger clusters are discussed below.

4.4.7.4. Exchange and Dispersion Multiples

As fust described by Dick and Overhauser, a the exchange repulsion between two

closed shell atoms produces a buildup of negative charge near the nuclei and a depletion of

electron density between the nuclei. At large distances from the pair of atoms this

distortion of the electron clouds is equivalent to a set of multipole moments, as discussed

by Jansen. 65 If the atoms are identical, the fmt non-vanishing moment is a quadruple.

123



There is also a quadruple, of opposite sign, arising from the dispersion interaction

between two atoms. At the usual van der Waals distances, the dispersion contribution is

somewhat smaller than the exchange contribution.cc

In the case of ArnBr- and ArnI-, a three-body effect then arises from the interaction

of the halide charge with the Arz exchange/dispersion multiples. Ttis is another type of

many-body interaction that is present in the anionic but not in the neutral clusters, and is

therefore expected to have a significant effect on the EA. As with induction, we expect

the interaction of the permanent quadruple of the neutral halogen atom with the

exchange/dispersion moments to be negligible.

In their studies of the Ar2-HCl, -DC], and -HF systems, Hutson and coworkers’”

have found that the interaction of the exchange/dispersion quadruple of the Arz unit with

the permanent multiples of the HX molecule is quite important. This work was mainly

concerned with the interpretation of the vibration-rotation spectra7”8 of the clusters.

However they also found the contribution to the binding energy to be significant.

Chalasinski et al.b’ have found these conclusions about the importance of the exchange

quadruple effect on the ArzHX potential energy surfaces to be qualitatively consistent

with their ab hzitio calculations. In recent work more closely related to our own, Burcl er

al. have extracted information about the exchange multipole energy from ab initio

calculations on ArzC1-.c8 These authors calculated this effect to be -12.8 cm”l near the

equilibrium geometry of ArzC1-. In this light we expect the exchangeJdispersion multipole

contribution to the non-additive binding energies of our ArnBr- and %,1- clusters also to

be quite significant.
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Jansen derived a simple expression for the exchange quadruple using an effective

one electron model for the atomic charge distributions.’5 In this approach, the electronic

charge density of an atom is approximated by a single Gaussian fimction,

pi(r)= –~e-~21Ri-r12 ,~A
(4.29)

where ~ is the Gaussian range parameter, Ri is the position of the nucleus of atom i, and

r is the position of the effective electron. Then the atomic wave function is defined as

The zero-order wavefimction of a pair of atoms,

(4.30)

i and j, is taken to be the antisymmetrized

product of the two atomic wavefunctions (normalized to 2):

‘;(r’r’)=(’-k‘qi(r)q’(f)-qi(r)q’(r)]”
t

(4.31)

Here r and r’ are

which for like atoms

the positions of the two electrons, and Su is the overlap integral,

with Gaussian wavefi.mctions (4.30) is given by

$ = exp(-~2R~/2),

where Rti is the internuclear separation between the atoms. Then, taking the expectation

value of the quadruple moment operator with wavefunction (4.31), a simple expression

for the cylindrically symmetric exchange quadruple is found:G5

(4.32)

In Jansen’s original treatment, the range parameter ~

dispersion interactions, and assumed to be valid for
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This method of estimating P is now believed to significantly overestimate the exchange

quadrupole.c9”70 An approach that has been used to improve the accuracy of the model is

to fit the one-electron functional form for the quantity of interest to the results of accurate

ab initio calculations, to arrive at a more reasonable value of ~. 10’69Here, we shall use the

value ~ = 0.936 ~-1, derived in this way by Hutson and coworkers]m from an SCF

calculation of the quadruple moment of Arz.

The problem now arises of how to calculate the interaction energy of the exchange

quadruple with the halide charge. The simplest way is to represent the exchange charge

distribution with a point quadruple, calculated from (4.32), located at the midpoint

between the two Ar atoms. The energy is then obtained from the standard expression for

a charge-quadrupole interaction.a However, because the typical halide-Arz distances in

the clusters are on the same order as the Ar-k distance, the point quadruple

representation overestimates the magnitude of the interaction. The point quadruple

representation was used by Hutson et al. in their work on Arz-HCl and -DC1, and was

found by them to somewhat overcorrect the pairwise additive potential. 10a”b In more

recent work on Arz-HF, Emesti and Hutsonlk proposed a distributed dipole

representation: The Arz exchange charge distribution is represented by opposed point

dipole moments at the two Ar

chosen to give the same overall

nuclei, parallel to the internuclear axis, with mabgtitudes

quadruple moment as (4.32). Emesti and Hutson found

the distributed dipole representation superior to the point quadruple representation for

Ar2-HF, but noted that it somewhat underesfinmted the electric field of the true charge

distributionlk
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The dfilculty with both of these approaches arises from the use of a multipole

representation at short range. Therefore, it seems logical to attempt a more direct

calculation of the interaction of the exchange charge distribution with the halide charge.

To do this, we form an effective charge density--the part of the charge density that

contributes to the exchange quadrupole--by subtracting the ato.rnic chmge densities (4.29)

from the charge density of the antisymmetrized wavefunction (4.3 1):

Jpcfl(r) = –Iel Y~(r, r’) 2dr’ - pi(r) -pj(r)

le[Sj p 3( )[-B21Ri-rl’+ e-P21Rj-~2_ 2e-@lRC-rl’—— —
= @ #

e 1
(4.33)

Here, Rc = ~(Ri + Rj ) is the midpoint ktween the two ~ nuclei. We see that the

effective charge density is the sum of two negative Gaussian charge distributions located

at the nuclei, and a positive Gaussian distribution, twice as large, at R c.@ If we

approximate the halide with a point charge at RO, the Coulomb interaction energy is then

found to be71

[

e2$$ erf(~l?~o)+ @(P~jo) _ z erf(b~co)
vec=~— 1 (4.34)

~<j 1–S; Rio RjO Reo ‘

where Rio, RN and RCOare the distances of the halide from the Ar nuclei and the midpoint

between the nuclei, respectively, and i and j run over the Ar atoms. The error functions in

(4.34) can be easily evaluated using standard subroutines.72 In the limit

~R -+ ~, erf(~ll) + 1. So at long range, (4.34) is equivalent to the Coulomb interaction

of the halide charge with negative point charges 8 = –lelS~ /(1 – S: ) at the Ar nuclei, and
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a positive point charge, +2181, at Rc .65 In order to prevent non-physical behavior of

Equation (4.34) for small values of RCO(near linear geometries), V,. is cut off for Ar-Ar

separations greater then a certain value, typically 6.5 ~.

We should discuss the approximations implicit in (4.34). First, the nuclear charges

are, in effect, approximated by Gaussian distributions with the same ~ parameter as the

atomic electron densities. Thus, effects of nuclear de-shielding are not included in (4.34).

Second, the approximation of the halide by a point charge will underestimate the extent of

overlap effects and hence tend to slightly overestimate the magnitude of the interaction

energy. This deficiency could be corrected if more were known about the charge densities

of the halide atoms. Finally, and most importantly, we are still working within the

Gaussian one-electron approximation. A single Gaussian function is known to be a rather

poor approximation to the true electron density of an atom.’” This problem could be

overcome by using a more accurate model of the Ar2 charge distribution, such as the result

of an ab initio calculation with Gaussian type basis functions. The method of Gaussian

multiples developed by wheatley’1 could then be used to calculate the Coulomb energy.

Despite the limitations of the present model, we nonetheless expect (4.34) to give a more

accurate value of V.C than either the point quadruple or distributed dipole

representations.

The three models of V~~are compared for ArzX- in Figure 4.12. In the Figure, the

Ar-Ar distance is held constant at the equilibrium value of the Arz molecule, and the Ar-Ar

axis is kept perpendicular to R co, m the ha.lide-Ar~ distance is varied. It can be seen that

at large separations, the three models approach each other, as expected. However, at

separations near the equilibrium structures of ArzI- and ArzBr-, the differences among the
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three models are quite significant. For example, at Rm = 3.61 ~, corresponding to %ZI”,

Equation (4.34) gives VCC= -15.0 cm-*, compared with -18.0 cm-i for the point quadruple

model, and -12.6 cm-] for the distributed dipole representation. The dfierences among the

three models at the equilibrium Rm of ArzBr- (3.28 ~) are even more pronounced. We

conclude that at the interatomic distances considered here, it is important to use an

accurate representation of the exchange charge distribution to calculate V,.. In the

remainder of this work, we shall use (4.34) for V,C..
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Figure 4.12. Comparison
of three models for
exchange quadupole-charge
interaction in ArzX- clusters.
The Gaussian range
parameter ~ is 0.936 ~, and
the Ar-Ar distance is fixed
at 3.7565 ~. R= is the
distance between the halide
nucleus and the Ar-Ar
midpoint. Dashed line:
point quadruple model.
Dotted line: distributed
dipole model. Solid line:
calculated from Equation
(4.34). The vertical lines
represent the ArBf and Arr
dimer equilibrium distances.
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We also need to consider the multipole moments induced in the rare gas atoms by

dispersion. Hunt73 has developed a model for the dispersion induced dipole and

quadruple moments in terms of atomic polarizabilities and dispersion coefilcients. The

average dipole moment induced on atom i by the dispersion interaction with other like

atoms is given by:

(4.35)

.
where RO is the unit vector pointing from atom j to atom i, C6 is the Ar -Ar dispersion

and B is the dipole-quadrupolecoefficient, u is the dipole polarizability,

hyperpolarizability. The components of the dispersion induced quadruple moment on

atom i are given by:

(4.36)

where T~~) = VaVP (l/RO ). W example, in the special case of two atoms lying on the

Z-axis, the quadruples have cylindrical symmetry, with e~dfip = –CelR~ , and

i disp _
QA - e;y = –+e;disp . Following Emesti and Hutsonl& the v~ues of CV and Ce

were found using the Cb constant from the Aziz HFDID 1 potential,z9 and the ratio B/et

from the calculation of Maroulis and Bishop.74 We obtain CP = 1252 ea~ and Ce = 208.6

ea~. The total dispersion induced dipoles and quadruples are czdculated from (4.35) and

(4.36) for each Ar atom. Then the charge-dipole interaction energy, V&, and the charge-

quadrupole energy, Vqdis, are computed from the standard electrostatic forrnulae.a We

denote the total charge-dispersion multipole energy by Vmdis= v~di~+ V~~~,.
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We should note that this calculation is carried out independently of the non-

addictive induction energy calculation described in the previous section (4.4.7.3).

Therefore, interactions between the electrostatically induced multiples and the

exchange/dispersion induced multiples have been neglected. This is reasonable because

the exchange/dispersion multiples are about an order of magnitude smaller than the

charge induced multiples, and, therefore, the interactions of the exchange/dispersion

multiples with the charge are much larger than their interactions with the charge induced

multiples.

The charge-dipole energy,

This proportion is qualitatively

V~~i~$is generally positive and about 30% as large as V...

consistent with the calculations of Lacey and Byers

Brownbb and with the results of Emesti and Hutson. *W Vqtiisis negative, and only about

570 as large % V&fis.For example, in ArzBr-, the dispersion dipole energy is +6.0 cm-l, and

the dispersion quadruple energy is -0.3 cm-l. This may be compared with the exchange

charge energy of -20.3 cm-l. Thus we see that the dispersion dipole makes a non-

negligible contribution to the non-additive energy, whereas the dispersion quadruple

could be neglected without any signMcant loss of accuracy.

Complete results for the larger clusters are discussed in the next section.

4.4.8. Electron Affinities Calculated with Many-Body Potentials

In order to assess the importance of the various many-body effects mentioned

above, we re-optimized the minimum energy geometries found from the simulated

annealing procedure with the additive potentials, successively adding the many-body

terms, in order of their relative magnitudes.
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The fwst non-additive term considered was the multipole induction energy; the

anion potential was then found from

(Ea = min vArx + ‘ArAr +yd) (4.37a)

where the right hand terms are the pairwise additive argon-halide and argon-argon

potentials, and the many-body multipole induction potential. The neutral potential was

identical to that used in the calculation in Section 4.4.6:

(&x =rnin VArx + ‘ArAr) (4.38a)“

where VA, x is the “matrix additive” X state potential described in Section 4.4.5. We refer.

to the electron affinities calculated from (4.37a), (4.38a) and (4.5) as EAid.

We next considered the effect of addition of the exchange-charge and multipole

dispersion energies. The anion binding energies are then

(&a = min VA,X+ ‘ArAr + IJ(nd+ Vec+ vd,~) , (4.37b)

and the neutral binding energies still given by (4.38a). The electron afilnities calculated

from (4.37 b), (4.38a) and (4.5) are referred to m EAind+ec+nu/i~.

Finally, the Axil.rod-Teller term was included in both the anion and neutral

potentials to give

(&a= min VA,X+ VA,Ar
am”on

)
+y~+v.c+v~u+va, , (4.37C)

( )Ex = min VA,x + VA,A,+ Vd~’U’r”l.“ (4.38c)

The EAs calculated from (4.37 c), (4.38c) and (4-5) are referred to N .EAirui+cc+~,~+.t. The

binding energies calculated horn (L$.37c)and (A.S8C)and their components are shown

graphically in Figures 4.13 and 4.14. The anion and neutral binding energies calculated

from (4.37a), (4,37b) and (4.38a), and from (4.37c) and (4.38c) are given, along with the
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corresponding zero-point energies, in Tables 4.7 and 4.8. The theoretical electron

affinities EAi.~, EAiti+CC+tii~and EAiti+CC+tii~+.fare given in Tables 4.9 and 4.10. The

deviations of the theoretical EAs from the experimental values are shown in Figures 4.15

and 4.16.
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Table 4.7. Calculated ArJ3r- anion and Ar@r neutral X state binding energies and zero
point energies, including non-additive terms. IND: non-additive induction. EC:
exchange charge. MDIS: dispersion multipole. AT: Axilrod-Teller triple-dipole

dispersion. Energies are in cm-’.

I I IND+EC+MDIS I IND+EC+MDIS I AT (neutral) I
n +AT (anion)

co @ Ea (i): &a @ .sX 0.);

20.7 438.8 20.7 133.1
t

1 438.8 20.7 438.8 15.6

2 942.4 53.7 955.9 56.1 946.8 55.0 343.7 41.7

3 1515.3 98.5 1555.7 105.1 1528.9 102.3 646.1 83.3
i4 I 2081.3 I 142.6 I 2148.4I 153.2 i 2103.9I 148.8 I 950.0 i 124.71

2672.3

3315.3

.— .

164.7

207.8
3871.5 I 291.8 I 1978.7 i 262.0 !
4494.4 I 341.1 L 307.4 1

i9 I 5029.0 I 367.2 i 5238.7I 395.2 I 5091.0 I 381.9 I 2783.7 i 349.6 i

Table 4.8. Calculated ArnI- anion and Ar,I neutral X state binding energies and zero point
energies, including non-additive terms. IND: non-additive induction. EC: exchange
charge. MDIS: dispersion multipole. AT: Mil.rod-Teller triple-dipole dispersion.

Energies are in cm-l.

IND+EC+MDIS IND+EC+MDIS AT (neutral)
+AT (anion)

#
n co @ Ea (i); Ea co; Ex U;

I 369.4 17.3 369.4 17.3 369.4 17.3 151.6 146

I 6 I 2967.4 I 221.9I 3066.3 I 239.4 ! 2985.9 I 229.2 I 1740.5 I 203.9 ], —----

7 3476.4 261.5 3595.8 280.9 3499.6 270.5 2080.2 251.2

8 4040.0 306.9 4179.8 330.7 4062.8 316.2 2482.0 292.6

9 4567.5 344.5 4721.2 366.2 4585.0 352.0 2859.1 325.1

10 5102.2 386.5 5285.1 415.0 5131.7 398.9 3246.9 378.1

11 5623.9 423.4 5821.0 456.8 5647.2 436.2 3627.1 415.7
12 6197.5 475.9 6427.8 510.4 6233.0 488.9 4047.9 470.3
13 6818.0 516.8 7068.8 554.8 6847.5 528.7 4533.9 513.4
14 7363.8 547.9 7625.0 593.4 7371.8 557.4 4957.0 554.8
15 8021.4 610.6 8322.8 649.3 8038.4 617.9 5465.2 619.4
16 8615.8 683.1 8973.2 725.1 8673.8 694.6 5908.9 667.5
17 9232.3 763.9 9647.9 808.9 9336.7 781.2 6361.9 747.4
18 9737.0 818.1 10159.9 864.8 9840.0 836.3 6810.4 802.8
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I 19 I 10247.0 872.0 I 10676.5 921.2 I 10347.4 891.3 I 7254.8 855.9 1

Table 4.9. Ar~Br electron affhities calculated with various non-additive terms. EA,n~:
non-additive induction term only. ~Aimi+cc+tiis: non-additive induction, exchange charge,
and multipole dispersion terms. EAiti+~c+tiiS+af: induction, exchange charge, multipole

dispersion, and triple-dipole dispersion terms. Energies are in cm-l.

n EAiti EAiti+ec+nwiis EAirui+cc+nuiis+a

o 27129.2 27129.2 27129.2

1 27429.8 27429.8 27429.8

121 27710.8 I 27721.9 I 27718.9 I
3 27968.5 28002.2 27993.0

4 28218 28275 28259

5 28460 28540 28517

6 28681 28792 28761

7 28897 29029 28992

8 29088 29249 29205

I 9 I 29271 29453 29404
1

.
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Table 4.10. ArnI electron affkities calculated with various non-additive terms. EA,d:

non-additive induction term only. EAiti+CC+tiiS:non-additive induction, exchange charge,
and multipole dispersion terms. EAiti+CC+tii$+af:induction, exchange charge, mukipole
dispersion, and triple-dipole dispersion terms. Energies are in cm-l.

n EAiti EAimi+ec+miis EAi~+ec+mc/ix+a

o 24673.3 24673.3 24673.3

1 24888.3 24888.3 24888.3

121 25095.4 I 25103.9 I 25102.6 I

3 25286.6 25312.3 25308.1

4 25474 25518 25510

5 25660 25721 25708

6 25828 25909 25893

7 25995 26095 26073

8 26138 26254 26231

9 26268 26400 26372

10 26410 26565 26537

11 26537 26701 26673

12 26680 26875 26840

13 26798 27011 26972

14 26903 27119 27086

15 27039 27302 27248

16 27156 27472 27411

17 27323 27693 27614

18 27336 27712 27669

19 27431 27811 27731
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It is important to note that the many-body terms Vimi, Vtc, Vmdis, and Vaw all

depend on the absolute values of the Ar-X- distances. Therefore, we must consider the

uncertainties in these terms due to the absolute uncertainty in R~ in the pair potentials,

which, as mentioned in Section 4.4.1, is A.2 ~ for both ArBr- and ArI”. In order to

estimate the uncertainties in

terms in the Ar2Br- and ArzI-

value, as the Ar-X- distances

the many-body terms, we calculated the charges in these

systems with the Ar-Ar distance freed at the Arz equilibrium

were varied over MI.2 ~ about the ArX- equilibrium values.

To estimate these uncertainties in the larger clusters, the AI-2X- uncertainties were

multiplied by the number of nearest neighbor Ar-Ar pairs in contact with the halide. The

uncertainties introduced into the calculated EAs were found to be significantly larger than

those due to the uncertainty in E. – E~ in the pair potentials. These uncertainties are

displayed as error bars in Figures 4.15 and 4.16.

The addition of the many-body induction term significantly decreases the EA

compared with the additive calculation. [Compare Figures 4.15(a) and 4. 16(a) with

Figures 4.10 and 4.11.] EAiti is closer to the experimental values than EA~d, but is

somewhat overcorrected. This is clearest in the k~I clusters, in which EA ,,,? lies well

below the experimental uncertainty region (shaded areas in Figures 4.15 and 4.16) for

n=6, 7 and 9-19. Thus, the &nI results clearly indicate the need for additional non-

addictive terms. In the ArnBr clusters, the experimental and theoretical EA uncertainty

regions overlap except for n=8 and 9, but the ~Aind Values are all systematically lower than

the experimental EAs, again suggesting that induction effects alone decrease the electron

affinity by too much.

141



Inclusion of V,, and Vtiis in the calculation brings the theoretical EAs closer to the

experimental results. [See Figures 4.15(b) and 4.16(b).] In the case of ArJ3r,

EAifld+CC+tii.lies within the experimental error bars in all cases except for ArsBr, which is

overcorrected by about 9 cm-]. But even in this case, the model potential and

experimental uncertainty regions overlap. For the &nI clusters, EA,~+t~+ti,, k

overcorrected by 3.8-20.1 cm-’ for n=2-5, which is outside the experimental error bars

(the shaded region in Figures 4.15 and 4. 16). For 6-19, EAid+fC+di~ lies within

experimental uncertainties except for n= 13-15 and n= 17. However, as in the Ar@r

clusters, the theoretical and experimental uncertainty ranges overlap in all cases for Ar.I.

Inclusion of the Axilrod-Teller term brings the theoretical EAs closer to

experiment for the smaller clusters, but overcomects somewhat for some of the larger

clusters. [See Figures 4.15(c) and 4. 16(c).] NOWfor the ~nBr clusters EA~ti+eC+tils+aflies

within the experimental uncertainties for all cases except n=9. For Arz41, addition of the

Axilrod-Teller term brings the theoretical EA closer to the experimental result, but is still a

few wavenumbers above the experimental error bars. For n=5-10, 17 and 18, the

theoretical result is within experimental uncertainties, but lies below the uncertainty region

for n=l 1-16 and 19. But, again, the theoretical and experimental error bars overlap in all

cases. Thus, inclusion of the triple-dipole term appears to help somewhat for the smaller

clusters, but, because of the uncertainties in Viti and V,c+Vti,,, it is not possible to draw

definite conclusions about the importance of the Pwdrod-TeIler term from the present

results. To do so would require more precise knowledge of r~ in the pair potentials.

4.5. Conclusions
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We have obtained experimental electron a.ffkities and electronic structure

information from the ZEKE and PDTP spectra of Arz.gBr- and ArM 91-. We have

compared these with electronic state splittings and EAs calculated from both pairwise

additive and non-additive model potentials. The following conclusions can be drawn from

this work.

(1) The fist-order degenerate perturbation theory treatment of the open-shell

neutral potentials descrikd in Section 4.4.5 is accurate enough to account for the X-J

electronic state sphttings observed in Arz.jBr and Arz.TI, within experimental uncertainties.

(See Figure 4.8). However, this model somewhat overestimates the X-II state splittings

for Arz-3Br and ~z.JI, possibly indicating that the spin-orbit splitting decreases as Ar

atoms are added around the halogen. (See Figure 4.9).

(2) A pairwise additive model of the anion potentials is completely inadequate to

account for the experimentally measured EAs. (See Figures 4.10 and 4.11). Non-additive

effects in the anion are cleady very important.

(3) The many-body induction effect is the most important non-additive effect in

the anion potential. Inclusion of Viti accounts for most of the discrepancy between the

additive and experimental EAs, but somewhat overcorrects, especially in the case of ArnI.

This result is consistent with the work of Berkowitz et at. *8 who found a non-additive

inductive effect to be very important to model the experimental BEs of Br-(HZO)n clusters.

We also note that, although not explicitly discussed by Bowen and coworkers in their

paper on Ar.O- clusters,*G it seems likely that the non-additive induction effect may in

large part account for the non-linearity of the binding energies as a function of n observed

by them for n<12. (See Figure 4 of Reference 16.)
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(4) The exchange/dispersion multipole term also plays an important role. In both

the Ar2.gBr- and Arz.lsI- clusters inclusion of the V,, and Vti,~ terms in the EA calculation

brings the calculated EAs within the experimental error bars, when the uncertainty in the

size of the induction effect due

into account.

(5) Inclusion of the

potentials appears to slightly

clusters (Arz.5Br- and &2.51-),

to the uncertainty of the pair potential bond length is taken

triple-dipole dispersion effect in the anion and neutral

improve the agreement with experiment for the smaller

but makes the fit slightly worse for the larger clusters.

However, due to the uncertainties in r~ in the k-X” pair potentials, nothing conclusive can

be said about the role of the triple-dipole dispersion effect in these clusters on the basis of

our results. Furthermore, we cannot draw any conclusions about the role of three-body

exchange effects or higher-order multipole dispersion terms from the present work.

Overall, this type of detailed energetic study of many-body effects is

complementary to studies of non-additive effects via high resolution spectroscopy. In

type of experiment we are able to directly measure the difference between anion

this

and

neutral binding energies, allowing a direct comparison of experimental observable with

model potentials including non-additive effects. However, due to limited resolution and

uncertainties in the pair potentials this experiment is not sensitive to the most subtle non-

addictive effects, such as the triple-dipole dispersion energy. This is in contrast to the high

resolution spectroscopic studies of the Ar2-HX systems,3”7-10which provide preciseValues

of molecular constants. Comparison of such results

more difficult, but can in principle provide more

effects.

with non-additive model potentials is

precise information on non-additive
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Further theoretical work needs to b done to interpret the vibrational structure

observed in the smaller clusters (Arz.JBr- and Ar2.31-)studied here. These spectra present

an opportunity to test the various methods of dynamical calculations that have been

developed for weakly bound clusters,’s and such studies would be welcome.

In the future, we hope to observe the ZEKE spectrum of Ar2C1-. This would allow

direct comparison with the recently published ab ini?io study of this system by Burcl et

al.bg Also, the ArzCl neutral cluster would present a more tractable problem for ab initio

theorists than the larger halogen containing clusters studied in the present work.
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Appendix A. Program for calculating vibrational states and Franck-Condon factors

for highly enharmonic one-dimensional potentials based on the eigenfunctions of the

Morse potential using the DVR method

In this Appendix we describe the computer program used to calculate the

vibrational eigenvalues, eigenfunctions and Franck-Condon factors for simu Iating the

rare-gas halide diatomic spectra described in Chapters 3 and 4. The program uses a

matrix method (the discrete variable representation, or DVR, method) to solve the

Harniltonian, with the eigenfunctions of a Morse oscillator as a basis set. The use of a

Morse eigenfunction basis set has advantages over the more commonly used oscillator

basis set when one is dealing with highly enharmonic potentials, such as those of the van

der Waals complexes of interest here.

Al. Brief description of the DVR method

In the DVR method, or in any matrix method, one first sets up the Schrodinger

equation in a matrix representation

H.c=Ec, (Al)

where H = T + V is the Hamiltonian, T is the kinetic energy matrix and T’ is the

potential energy matrix. The problem then is to solve for the eigenvalues E. and

eigenvectors cfl.

To this one chooses a set of basis functions I@.) which are solutions of

where

Hop,)=E:l@n),

HO= T+VO.

(A2)

(A3)
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V. is a reference potential, for which the eigenfunctions, ~.), and the eigenvalues, E:,

are known.

Introducing the “difference potential, ” AV = V – VO, which is the difference

between the potential of interest and the reference potential, the Hamiltonian becomes

H = Ho + AV, and the matrix elements of H are

(~nlHl@~)=($.lHOl@~)+(@.lAvl@~)
= E: + (@nlAVl@m) “

(A5)

The Schrodinger equation then becomes

(EO+AV)+.= E.. (A6)

In order to calculate the matrix elements of the difference potential, we then use

the “transformation method” of Harris, Engerholm and Gwinn, ] cornmonl y known as the

HEG method. The fwst step in this method is to fmd the matrix elements, (On1X1pm), of

the posit ion operator, X, in our basis; i.e., we find the transformation matrix T such that

T-l .X T = diag(~ ) (A7)

The eigenvalues, Rj, of X are the DVR points. It is then a simple matter to calculate the

AV in the DVR basis, because the potential (and difference potential) are diagonal in the

position representation, so that

‘vDvR=r)A‘A’)
In order to solve Eq. (A6) , we must then transform EO into the DVR basis using the

transformation matrices from (A7)
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E:v~ = T-l. EO. T. (A9)

It can be shown2 that the errors introduced in this approach are minimized if the

matrix X is tridiagonal, as it is in the harmonic oscillator basis. For further details and

listing of computer code for implementing the DVR method using a harmonic oscillator

basis, see the dissertation of R. B. Metz.s

Once the eigenvectors C“ and the eigenvalues En are found by diagonalizing Eq.

(A6) it is a simple matter to simulate the vibrational stick spectrum. The anion and

neutral eigenvectors are calculated in the same basis, so the Franck-Condon factors

(FCFS) are found from

FCF(V; e v;’)= C;’.Cm. (A1O)

The peak spacings are found from the differences in the anion and neutral eigenvalues,

and then the FCFS are multiplied by a Boltzmann factor for an assumed anion vibrational

temperature.

Functions of R are quite easy to calculate in the DVR basis. For example we find

the rotational constant for a given vibrational level from

7
Bv = ‘-

1 j32 1—.
~“(vlR21v) = 2P C;’.R. R.cv’

(All)

where R is the diagonal matrix of DVR points diag(Ri).

A2. How to implement DVR using Morse basis functions

The implementation of the DVR method with a harmonic oscillator basis is

straightforward, because the matrix elements of the position operator have a simple

analytical form.3 The eigenfunctions of the Morse oscillator are more complicated, and
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no analytical form exists for (@flX $.). However, because the eigenfunctions of the

Morse oscillator are a closer approximation to the eigenfimctions of the eigenfunctions of

a diatonic van der Waals molecule, it is

the Morse eigenfunctions in the DVR

worthwhile investigating the problem of using

scheme because faster convergence may be

expected. This problem was considered, and solved, by Greenawalt and Dickinson in

1969.4 Here we describe their approach to the problem, and our implementation.

The Morse potentials is given by

V(R) = De(l-exp(-a(R-Rc)))’ (A12)

where De is the well depth, R. is the bond length, and a is a parameter that determines

shape of the potential. Note that in this Appendix, we define the parameter a in the

Morse potential such that it has units of inverse length, whereas the /3 parameter of the

Morse portion of the MMSV potential [See Eq. (2.1)] is unitless. We also define the

quantity

(2pD=)V2
t=

h
(A13)

where p is the reduced mass. The number of eigenvalues of the Morse potential is the

number of integers from zero to t–+. The eigenfunctions of the Morse potential are then

given by

‘n(Y)= ~n-’l’y’-+-+exp(–~)~~~~” (y), (A14)

with y= 2t exp(-a(R - R,)), (A15)

where the L;(y) are the Laguerre polynomials, and N. is a normalization factor given by
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~ _ r(n+ l)r(2t -n)r(2t - 2n – 1)
n— (A16)

ar(2t – ~)

Because no analytical form exists for (@flX @~) in the Morse basis, we use a

generalization of the HEG transformation rnethod,G as follows. First

function, u(R), such that the elements (@~Iu(R)I~~) constitute a tridiagonal

we choose a

matrix. Then

we diagonalize the matrix u to find the transformation matrix T such that

T-’ u T = diag(ai). The DVR points are then found by inverting the function

2, = u(R, ), and the rest of the calculation proceeds as above from Eq. (A8). Greenawalt

and Dickenson4 showed that for the Morse basis, the function

1
U(R) = J- =

y 2texp(-a(l? - RC))

gives a tridiagonal matrix, with elements

(A17)

[)(Mu(w) =~ ‘ +C$”m.,m“2,‘“”’2(1 -n)(t -n-1) ‘ N“
n<m. (A18)

Note that it is not necessary to calculate the Lagueme polynomials in Eq. (A14) inorder

to find the matrix elements from Eq. (Al 8). Also note that the ratio of the two

normalization constants in (Al 8) can be simplified so that one need not evaluate the

gamma functions in Eq. (Al 6). Therefore computation of the matrix elements of X in the

Morse basis is not significantly more time-consuming than in the harmonic oscillator

basis.

LI
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A3. Choosing the parameters for the Morse basis

In this section we describe general guidelines for choosing the optimal Morse

basis set parameters that we have found effective in our calculations with the RgX anion

and neutral MMSV potentials. Note that these are only guidelines, and some trial and

error may be necessary to find the best basis set parameters for other potential forms.

First, we set R, of the Morse potential equal to the bond length of the smaller of

the neutral or anion MMSV potentials. Next we choose the desired number of basis

functions, N. Twenty-five to 75 basis functions were found to be sufficient for most

purposes. We then choose the parameter t [which is roughly equal to the total number of

bound vibrational states of the Morse potential; see Eq. (Al 3)] so that the shape of the

Morse eigenfunctions include functions with shapes similar to those expected for the

range of vibrational levels of the model potential we wish to calculate. To do this, we set

t Estimated total number of MMSV eigenvalues—=
N Number of MMSV eigenvalues to calculate “

(A19)

The total number of IvIMSV eigenvalues is estimated by using (~1 + ~z )/(2Rm ) in place

of a in Eq. (Al 3)--where 91, ~, and R~ are the MMSV parameters as defined in Eq.

(2. l.)-- along with the well depth of the MMSV potential, and p calculated from R~ of the

MMSV potential. If one chooses t by trial and error instead,

one must remember that the quantity t – ~ must be larger

as is sometimes necessary,

than the number of basis

functions, N. Next one chooses the Morse potential force constant

-i

~ _ d2V(R)
= 2aDc.

dR2
R,

(A20)
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Finally, using these values for t and k, one calculates a and D, from Eqs. (Al 3) and

(A20).

As written, the program automatically computes the Morse basis set parameters

based on the desired number of eigenvalues to calculate and the number of basis

functions used according to the above considerations if one uses the MMSV potential

form. If one uses a different potential form, one must provide the Morse parameters Rm,

a, and D. in the input file to the program.

A4. Comparison of Morse and harmonic oscillator basis set convergence for a

highly enharmonic potential

In this section we test the performance of the Morse DVR program by comparing

its convergence behavior with a harmonic oscillator based DVR program for the MMSV

potential for the I ~ state of KrI. This potential has a well depth of 16.7 meV and

supports 18 bound vibrational states. See Ref. 7 for further details of the KrI potential.

The program was tested by calculating the eigenvalues using both the Morse and

harmonic basis sets, increasing the basis set size, N, by 5 with each calculation. The

calculation was performed wit The results for v=l, 5, 10 and 15 are shown in Figure A 1

on the following page. The ordinate of each graph is the relative difference between the

eigenvalue calculated with a given number of basis functions, and that calculated with 5

fewer basis functions.
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This number gives an indication of the convergence of the program. Also, the exponent

of the ordinate is an approximation to the number of significant figures of the calculated

eigenvalues. We see that for v = 1, 5 and 10, the Morse program converges with 25-35

basis functions, whereas, the harmonic oscillator program requires 40-60 basis functions

to converge. In the case of v = 15, the Morse program converges with 50 basis functions,

but the harmonic oscillator program does not converge with up to 150 basis functions,

demonstrating the inadequacy of the harmonic oscillator model for treating high

vibrational levels of enharmonic oscillators.

In general, then, it is found that the Morse program requires nearly a factor of 2

fewer basis functions than the harmonic oscillator program for satisfactory performance

with enharmonic potentials. This is made more significant when one considers that the

speed of the “rate limiting step” in the calculation, solution for the eigenvalues and

eigenvectors of Eq. (A6), is proportional to the third power of the number of basis

functions.g Therefore the use of the Morse basis offers an approximately eight fold

increase in computing speed over the harmonic oscillator basis.

A5. Documentation of the Morse DVR program “idYr”: example of the X + state of

XeBr

In this section we demonstrate the how to use the interactive Morse DVR program

“idvr” for fitting diatomic ZEKE spectra.

.
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A5.1. The input files

A sample input file for fitting the XeBr X ~ state spectrum is shown &low. Note

that the line numbers in boldface are for reference only and are not included in the actual

input file. The fde is named “xebr_x_dvrin.”

1: xebr_x_dvrpa r
2: xebr_x_exp
3: xebr_x_wf
4: xebr_x_s tx
5: xebr_x_bv
6: xebr_x_gau
7: xebr_x_zke
8: 3. 1* H in cm-l for Gaussian convolution

9: 8.5 !* - in cm-l for ZEKE convolution

10: 45 !* n@er of basis functions

11: 10 I* n~er of neutral eigenvalues to calculate
12: 6 ;* number of anion eigenvalues to calculate

13: 27890. !* origin (cm-1)
14: 70. !* vibrational temp (K)

15: 0.00 !* baseline for ZEKE conv. (as fraction of highest peak)

The fmst71ines arethe namesof files used by theprogram. Lines land 2are input files

which are not modified by the program. Linel is the name of afile which contains the

potential and basis set parameters. (See below forasample parameter file.) Line 2 is the

name of the file containing the experimental spectrum that is being fit. This tile mustbe

in wavenumber format. It is used in order to calculate the chi-square goodness of fit

function for comparison with the model spectrum. Lines 3-71ist the names ofthe output

files. Line 3namesthe file to save the DVRpoints and eigenvectors for the anion and

neutral. The eigenvectors should be examined to ensure proper convergence: for each

vibrational level, the eigenvector should be close to O at the smallest and largest DVR

points. If this isnot the case, it isnecessary to either adjust the basis setpararnetersor

use a larger number of basis functions. Line 4 is the name of the file to save the

vibrational stick spectrum in wavenumber format. Line 5 is the name of the fde to save
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the rotational constants. The rotational constants are listed in this file in the same order

as the vibrational sticks, and correspond to the rotational constants for the neutral

vibrational level corresponding to each vibrational stick. Line 6 is the output file for a

spectrum consisting of the vibrational sticks convoluted a Gaussian function with the

FWHM (full width at half maximum) given in line 8. Line 7 is the output file for the

stick spectrum convoluted with the asymmetric ZEKE line shape, with the FWHM given

in line 9. See Eq. (4.11) of Chapter 4 for the form of the ZEKE line shape. Both of the

convoluted spectra are output in wavenumber format. Line 10 is the number of basis

finctions to use in the calculation. Lines 11 and 12, respectively, are the number of

neutral and anion eigenvalues one wishes to calculate. Line 13 is the position of the

vibrational origin, in wavenumbers. Line 14 is the anion vibrational temperature. Line

15 is a baseline, expressed as a fraction of the maximum peak, which may be added to the

spectrum convoluted with the ZEKE line shape.

The parameter file “xebr_x_dvrpar” is listed below. Again, the boldface line

numbers to not appear in the actual file.

1: 131.30, 79.909
2: 3.90, 1.3, 30.
3: 2, 2
4: 0.12692, 3.81, 3.50, 5.30, 1.03, 1.60, 228.3, 2135.2
5: 0.03153, 3.82, 4.35, 6.15, 1.01, 2.00, 4060. , 39962.

Line 1 lists the atomic masses in amu. Line 2 lists the Morse basis parameters Rc, a, and

r. If one uses the MMSV potential form, these parameters are not used by the program,

but are calculated directly from the MMSV potential parameters. See Section A3, above,

for a discussion of the choice of the basis parameters. Line 3 contfi integerswhich

specify which potential form to use for the neutral and anion. See the source code listing
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of the subroutine “poten” in Section A6.6, below, for a listing of the available potential

forms, and their associated parameters. Lines 4 and 5 list the potential parameters of the

for the neutral and anion potentials, respectively. In this example the potentials are of the

MMSV form. The order and units of the MMSV parameters in each line are:

E (eV)
R. (~)
~1 (unitless)
~ (unitless)
xl
X2
Cd& (As) or B4/.s (~4)

Cg/&(As) or B@ (As)

Note that the values of the dispersion coefllcients input to the program are divided by the

well depth, so the numbers shown in the sample input file differ from the parameters

given in Table 3.4 of Chapter 4. Note also thatbecause of this quirk in the program one

must change the dispersion inputs whenever one changes the well depth. Refer to the

source code listing in Section A6.6 for the order and units of the parameters for other

potential forms.

A5.2. Running the program

An example of running

shown in the previous section is

input and output files names are

than using pipes in the customary

> idvr

the Morse DVR program “idvr” using the input files

given Mow. Because this is an interactive program the

input in response to prompts from the program rather

Unix style. The user input is shown in boldface.

Interactive Morse DVR program - Version 1.01, Released March 1998
Copyright 1998, Anion ZEKE Group, Neumark Group,
Department of Chemistry, UC Berkeley
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Enter input filename :
xabr_x_d- in
Enter output filename :
xebr_x_d=out

Gaussian convolution 781 points saved to : xebr_x_gau

ZEKE convolution 275 points saved to : xebr_x_zke

tiion, Neutral parameters
1: 0.12692000000000 3.1530000000000D-02
2: 3.8100000000000 3.8200000000000
3: 3.5000000000000 4.3500000000000

4: 5.3000000000000 6.1500000000000

5: 1.0300000000000 1.0100000000000

6: 1.6000000000000 2.0000000000000

7: 228.30000000000 4060.0000000000

8: 2135.2000000000 39962.000000000

Vibrational temperature : 70.000000000000

ZEKE FWHM (cm-1) 8.5000000000000
Baseline for ZEKE conv. : 0.
Chi-square from ZEKE vibrational convolution : 0.860324E-01
---------------------------------------------------------------- ______

Enter “a/A” to change/optimize an anion parameter
“n/N” to change/optimize a neutral parameter
“v/v” to change/optimize the vib. temperature
“f/F” to change/optimize the ZEKE FWHM
“b/B” to change/optimize the baseline

“q” to quit idvr

At this point, the user may examine the convoluted spectr% and the output file

“xebr_x_dvrout,” which lists the eigenvalues and Franck-Condon factors. Ifthe fit isnot

satisfactory, one can modify the parameters as often as desired before exiting the

program. Note that the modified parameters are not saved in the parameter file.

A5.3. Outline oftheprogram

In the table below we list the subroutines ald functions that are used by[he ’’idvr”

interactive Morse DVR fitting program sorted according to which file they reside in.
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Table Al. Subroutines and functions used bythe’’idvr’’ program.

Source Subroutine
File or Function

idvr. f idvr

I_==_

F
I diffpot

t-

morseig

hcalc

L
setbasis

calcfcf

bvcalc

rsb.f rsb

rs.f rs

matrix.f I showarr4
1

poten2.f poten

m=-
t==

I bucky

I anmrnsvus

I rns6

Description

main program

sets up the u matrix using Eq. (Al 8)

calculates the DVR points Ri

reads in the potential parameters

calculates the difference potential matrix ~q. (A8)]

calculates the matrix E~v~ from Eq. (A9)

sets up the total Hamiltonian matrix H

chooses the Morse basis set parameters according to the

considerations of Section A3

calculates the Franck-Condon factors

calculates rotational constants for individual vibrational

levels from Eq. (Al 1)

EISPACK subroutine for computing the eigenvalues and

eigenvectors of a real (double-precision) symmetric band

matrix

EISPACK subroutine for computing the eigenvalues and

eigenvectors of a real (double-precision) symmetric

matrix

subroutine to print out a matrix

calculates the potential for a specified potential form

Maitland-Smith n-4 anion potential function

anion MMSV potential function

Morse potential function

Buckingham exp-n potential function

unscaled anion MMSV potential function

Maitland-Smith n-6 neutral potential function
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I neumrnsv neutral MMSV potential function I

I
I

msv Morse-Spline-van der Waals potential function for neutral I
I aqx Aquilanti potential for the RgX X ~ staie

I
L

aqi Aquilanti potential for the RgX 1 ~ state
I

neummsvus unscaled neutral MMSV potential function
1

hfd_c Aziz HFD-C potential 10

hfd_b Aziz HFD-B2 potential{o

convol.f congauss subroutine for convolution with a Gaussian line shape
1

conzeke subroutine for convolution with the ZEKE line shape
I

A6. Source code for the Morse DVR program “idvr.f’

In this section we list the complete source code of the “idvr” program and relevant

subroutines and functions. The “rsb” and “rs” subroutines are the standard EISPACK

functions for matrix diagonalization; ]] hence the only the headers are listed for these.

A6.1. File “makeidvr”

The makefile used for recompiling the Morse DVR program is shown below. To

recompile the program one enters “make -f makeidvr”.

idvr: idvrlOl.o rsb.o rs.o matrix. o poten2 .0 convol.o
f77 -02 –o idvr idvrlOl .O rsb.o rs .O matrix. o poten2 .O convol .O -

c

idvrlO1.o: idvrlO1.f
f77 idvrlO1.f -c 02 -C

rsb.o: rsb.f
f77 rsb. f -c -02 -C

rs.o: rs.f
f77 rs.f -c -02 -C

matrix. o: matrix. f
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f77 matrix.f -c -02 -C

poten2.o: poten2.f
f77 poten2.f -c -02 -C

convol.o: convol.f
f77 convol.f -c -02 -C

A6.2. File “idvrlO1.f”

program idvr

implicit undefined(a-z)
integer ndim,ndl,nd5
parameter (ndim=150,ndl=1000,nd5=5000)
double precision norm(ndim+l),u (ndim+l,ndim+l) ,eigval(ndim+l),

& eigvec(ndim+l,ndim+l) ,fvl(ndim+l) ,fvl(ndim+l),r(ndim+l) ,
& diagv(ndim+l), eigndvr (ndim+l,ndim+l),ham(ndim+l, ndim+l),
& peigval (ndim+l),peigvec (ndim+l,ndim+l),adiagv(ndim+l) ,
& apeigval (ndim+l),bvan (ndim+l),bvneu (ndim+l),
& apeigvec (ndim+l,ndim+l) ,fcf(ndim+l,ndim+l),totfcf (ndim+l),
& ymo@(ndl),ymxy2 (ndl),ymxy3 (ndl),
& ymocy4(ndl),xgauss (nd5),ygauss (nd5),xzeke(nd5) ,yzeke(nd5),
& xexp(nd5),yexp (nd5),xexp2 (nd5),yexp2 (nd5),ysim(nd5)
integer ianxy(ndl), ineutxy(ndl) ,npot(2),iarr(3),

& nmax,nfcf,nconv, i,j,ierr,nshow, nanshow, it,iabl,noconv,
& nexp, cint, ibad,cbad,notfirst
character*30 fn,feig,fvsticks,fbv, fgauss,fzeke,fexp, fin,fout
character*l cit
double precision rmu,anbasis (3),neubasis (3),

& anpot(lO) ,neupot (lO),zero,chisq,amassl,amass2,bline,
& gfwhm, zfwhm,evtocm,eO,vibtemp, re,beta,t,
& fv2,depthneu, poten,temp, temp2,depthan, depthm,anioncm, factor,
& abl

parameter (evtocm=8065 .541)

notfirst = O

11

if (notfirst.eq.O) then
write(*,805)
write(’,’) ‘Enter input filename :’
read(*,*) fin
write(*,* ) ‘Enter output filename :’
read(*,*) fout
endi f
if (fout.eq.fin) then
write (*,●)’You do not really want to ovenirite the input file, ‘
write(*,* ) ‘Do YOU???’

goto 11
endif

1 open(8,file=fout)
open(7,file=fin)
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write(8,805)
805 format(/, ‘Interactive Morse DVR program - ‘,

& ‘Version 1.01, Released March 1998’,/,
& ‘Copyright 1998, Anion ZEKE Group, Neumark Group, ‘,/,
& ‘Department of Chemistry, UC Berkeley’,/)
call idate(iarr)
write(8,300) iarr(2), iarr(l),iarr (3)
call itime(iarr)
write(8,301) iarr(l), iarr(2),iarr (3)

300 format( ’Date: ‘,i2,’/’,i2,lx,i4,$)
301 format(t30,’Time: ‘,i2,’:’,i2,’:’,i2,/)

read(7,*) fn
write(8,*) ‘Parameter file : ‘tfn

if (notfirst.eq.O) then
call initpars (fn,rmu,arnassl,amass2,anbasis,npot, anpot,neupot)
do i=~,3

neubasis (i)=anbasis (i)
enddo

endi f

write(8,105) amassl,amass2
105 format( ’Atomic masses : ‘,2f18.10)

write(8,106) npot(l),npot(2)
106 format( ’Potential type Anion : ‘,i2,’ Neutral : ‘,

& i2,/)
write(8,*) ‘ Anion, Neutral parameters’
do i=l,10

write(8,*) i,’ : ‘Janpot (i),neupot(i)
enddo

read(7,*) fexp
write(8, *) ‘Experimental spectrum file (input) : ‘,fexp

open (lO,file=fexp) !* Read in experimental data

do i=l,99999
read(lO, *,end=303) xexp(i),yexp(i)

enddo
303 nexp=i-1

write (8,*) nexp, ‘ points read from ‘,feQ
write (8,309) xexp(l),xexp(nexp)

309 format(’Low, High experimental cm-1 : ‘,2f10.2)
if (xexp(nexp) .lt.xexp(l)) then
write(8,*) ‘Note that experimental file is backwards’
do j=l,nexp

xexp2 (j) = xexp(nexp-j+l)
yexp2(j) = yexp(nexp-j+l)

enddo
do j=l,nexp

xexp(j) = xexp2 (j)
yexp(j) = yexp2 (j)

enddo
endi f

if (notfirst.eq.O) then
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23

24

26

50

55

57

61

66

71

read
read
read
read
read
read

7,*) feig
7,*) fvsticks
7,*) fbv
7,*) fgauss
7,*) fzeke
7,*) gfwhm

read(7,*) zfwhm
read(7,*) nmax
nmax=nmax- 1
read(7,*) nshow
nshow=nshow- 1
read (7,*) nanshow
nanshow=nanshow- 1
read(7,*) eO
read(7,*) vibtemp
read(7,*) bline

endif

write(8,*) ‘File to save DVR points and eigenvectors : ‘,feig
write(8,*) ‘File to save vib. sticks ‘,fvsticks
write(8,*) ‘File to save rotational constants 1,fbv

write(8, *) ‘File to save Gaussian convolution ‘,fgauss
write(8, *) ‘File to save ZEKE lineshape convolution : ‘,fzeke
write(8,23) gfwhm
format(/, ‘FwHM for Gaussian convolution : ‘,f5.2t’ cm-l’)
write(8,24) zfwhm
format(’FWHM for ZEKE convolution : ‘,f5.2,’ cm-l’)
write(8,26) nmax+l
format( ’Number of basis functions : ‘,i3)
write(8,*) ‘show ‘,nshow+l, ‘ neutral eigenvalues’
write(8,*) ‘Show ‘,nanshow+l, ‘ anion eigenvalues’
write(8,50) eO
format( ’Origin : ‘,f9.2,’ cm-l’)
write(8,55) vibtemp
format (’Vibrational Temperature : ‘,f6.2,’ K’)
write(8,57) bline
format( ’Baseline for ZEKE convolution : ‘,f7.4,

& ‘ frac. of max peak’)

call setbasis (nmax,nshow,nanshow, rmu,npot,
& anpot,neupot ,neubasis)
re=neubasis (1)
beta=neubasis (2)
t=neubasis(3 )
depthm= (2.09008e-3)*((beta*t) **2)/rmu

write(8,*)
write(8,*) ‘Basis parameters:’
write(8,61) re
format (‘ Re=’ ,f7.4,’ A’)
write(8,66) beta
format (‘ beta = ‘,f7.4,’ A-1’)
write(8,71) t
format (‘ t=, ,f7.2)
write(8,76) depthm
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76 format(’ Depth = ‘,f10.6,’ eV’)
Write(8,*)

call umat(nmax, t,ndirn,norm,u)

call rsb(ndim+l,nmax+l,2 ,u,eigval,l,eigvec, fvl,iv2,ierr)
if (ierr.ne.0) then
Wite(*,*) ’*** ierr=’,ierr,’ from rsb’

endi f

call rcalc(nmax,ndim, re,t,beta,eigval,r)

call diffpot (ndim,nmax,rmu,neubasis, 2,npot(2),neupot,
& r,diagv,depthneu )

open(2,file=feig)
write(2,*)
write(2, *)‘DVR points (Angsroms, cm-1) :‘
write(2,*)
write(2,345)

345 format (2x,’r(i)’,5x,’anion’,4x,‘neutral’)
do 400 i=O,nmax

write(2,350) r(i+l), (poten(l,npot (l),anpot,r(i+l))+
& anpot(l))’evtocm, (poten(2,npot (2),neupot,r(i+l))+
& depthneu)’evtocm

400 continue
350 format (f8.4,1x,f8.2,1x,f8 .2)

call morseig (ndim,nmax,rmu,neubasis, eigvec,eigmdvr)
call hcalc(ndim,nmax, eigndvr,diagv,ham)
call rs(ndim+l,nmax+l, ham,peigval, l,peigvec, fvl,fv2,ierr)
call bvcalc(ndim,nmax,nshow, rmu,r,peigvec,bvneu)

write(8, *) ‘ Neutral vibrational eigenvalues and rotational’
write(8,*) ‘ constants (in cm-1) : ‘
write(8,*) ‘ ‘
write(8,245)

245 format(15x, ‘Total’, 6x, ‘Spacing’, 6x, IB(v)’)
write(8,*) ‘ ‘
temp2=0.
do i=O,nshow

zero=(peigval (1))*8065.541
temp=(peigval(i+l) )’8065.541
write(8,250) i,temp-zero, temp-temp2 ,bvneu(i+l)
temp2=temp

enddo

250 fozmat(lx,’v = ‘,i2,4x,f9.2,4x,f8.2 ,4x,f9.5)

write(2,*)
write(2,*) ‘Neutral eigenfunctions: ‘
call showarr4(2,ndim+l,peigvec, nmax+l,nshow+l )

*
* Anion calculation--using same basis
*

call diffpot (ndim,nmax,rmu,neubasis, l,npot(l) ,anpot,
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& r,adiagv,depthan)
call hcalc(ndim, nmax,eigmdvr,adiagv,ham)
call rs(ndim+l, nmax+l,ham,apeigval, l,apeigvec, fvl,fv2,

& ierr )
call bvcalc(ndim,nmax, nanshow,rmu, r,apeigvec ,bvan)

write(8,*)
write(8,*) ‘ Anion vibrational eigenvalues and rotational’
write(8,*) ‘ constants (in cm-1) : ‘
write(8,*) ‘ ‘
write(8,245)
write(8,*) ‘ ‘
depthm=((beta*t/21.87343 )**2)/rmu
temp2=0.
do i=O,nanshow

zero=(apeigval (1))’8065.541
temp=(apeigval (i+l))*8065.541
write(8,250) i,temp-zero, temp-temp2,bvan (i+l)
temp2=temp

enddo
write(2,*)
write(2,*) ‘Anion eigenfunctions:’
call showarr4(2,ndim+l, apeigvec,nmax+l ,nanshow+l)
close(2)

call calcfcf (ndim,nmax,nshow,nanshow, apeigvec,peigvec, fcf,
&. totfcf)

write(8,*)
write(8,*) ‘Franck-Condon Factors :‘
write(8,145)

145 format(19x, ‘Anion v = ‘)
write(8,150) (i, i = O,nanshow)

150 format (17x,20(i3,4x),/)
write(8,*)
do 900 j=O,nshow

write(8,155) j, (fcf
900 continue

write(8,*)
155 format (’Neutral v =

i+l,j+l), i = O,nanshow)

,i3,2x,20(f6.4,1x),/)
write(8,160) (totfcf(i), i=ltnanshow+l)

160 format. (’ Total = ‘,5x,20(f6.4,1x),/)
write(8,*)

*
* Make vibrational sticks - NOT normalized
●

it=o

do i = 1, nanshow+l
do j = 1, nshow+l
it=it+l

-l(it) = eo + 8065.541* ((peival(j)-pei~al (1)) -
& (apeigval (i)-apeigval (l)))

ymxy2 (it) = fcf(i,j)
ymxy3 (it) = bvan(i)
ymxy4(it) = bvneu(j)
ia~(it) = i-1
ineutxy(it) = j-1
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enddo
enddo

nfcf = (nshow+l)’(nanshow+l)

it=()

do i = 1, nanshow+l
anioncm = (apeigval (i)-apeigval (1))*evtocm
factor = exp(-anioncm/vibtemp/.695 )
do j = 1, nshow+l

it=it+l
ymxy2 (it) = ynwy2(it)*factor

enddo
enddo

*
● Sort vib sticks
*

do i = 1, nfcf
do j = i, nfcf

if(ymxyl (j).lt.ymxyl (i)) then

abl = ymxyl(j)
-l(j) = -1(i)
ymxyl(i) = abl

abl = m2(j)
ymxy2(j) = ymxy2(i)
ymxy2 (i) = abl

abl = ymxy3 (j)

-3(j) = m3(i)
ymxy3 (i) = abl

abl = ymxy4(j)
m4(j) = ymXy4(i)
ymxy4(i) = abl

iabl . ianxy(j)
ianxy(j) = ianxy(i)
ianxy(i) = iabl

iabl = ineutxy(j)
ineutxy(j) = ineutxy(i)

‘ ineutxy(i) = iabl

endi f
enddo

enddo
*
* Save vib. sticks and rotational constants
*

write(8, *)
write(8, *) ‘Vibrational stick spectrum :‘
write(8,3030)

3030 foxmat(/,’ Pos./cm-l’,5x,’% Inten.’,2x,’v neut. - v an.’,/)
open(4, file=fvsticks)
open(lO,file=fbv)
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do i = 1, nfcf
if (-2(i) .ge..003) then
write (4,930) ymxyl(i)l W2 (i)
write (10,935) -3(i) 1=4 (i)

write(8,9030) ymxyl(i),ymxy2 (i)*l.0d2,ineutxy(i),
& ianxy(i)

endi f
420 enddo

close(4)
close(lO)

930 format (f10.2,f10.6)
935 format(2f12.8)
9030 format (f9.1,3x,f8.2,8x,i2 ,’ -’,i2)
*

*Convolute vib sticks with Gaussian and save only those points that lie
* within the range of the experimental spectrum.
*

open(lO, file=fgauss)
call congauss (gfwhm,nfcf,1000,=l,ymxy2,nconv, 5000,

& xgauss,ygauss)
noconv = O
do i = l,nconv

if ((xgauss(i) .ge.xexp(l)).and. (xgauss (i).le.xexp(nexp) )) then
write(10,9050) xgauss(i),ygauss (i)

else
noconv = noconv+l

endi f
enddo
close(lO)

9050 format (f12.4,f10.6)

write(8,892) nconv-noconv, fgauss
write(*,892) nconv-noconv, fgauss

892 format(/, ‘Gaussian convolution ‘ti5,‘ points saved to : ‘.a30)
*
* Convolute vib sticks with ZEKE lineshape and save convoluted Feints
● that lie within the exp spectrum. Also calculate chi-square for ZEKE
* convolution vs. experimental data (all taken care of in subroutine
* conzekeo
*

open(lO, file=fzeke)
call conzeke (zfwhm,nfcf,1000,ymxyl ,ymxy2,nconv,5000,
& xzeke,yzeke,nexp,xexp,yexp,ysim,bline, chisq)
noconv = O
do i = l,nconv

if ((xzeke (i).ge.xexp(l) ).and. (xzeke(i) .le.xexp(nexp) )) then
wrice(10,9050) xzeke(i),yzeke(i)

else
noconv = noconv+l

endi f
enddo
close(lO)
write(8,891) nconv-noconv, fzeke
write(*,891) nconv-noconv, fzeke

891 format(/, ‘ZEKE convolution ‘ti5,‘ points saved to : ‘,a30)
write(8,898) chisq
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write (*,*)
898 format (’Chi-square from ZEKE vibrational convolution : ‘,g12.6)

close(7)
close(8)

*
● Begin the next iteration in the fitting process
*

notfirst = 1
write(*,*)
write(*,*) ‘ tiion, Neutral parameters’
do i=l,10

if ((anpot (i).ne.O.).and. (neupot(i).ne.O.)) then
write(”,’) i,’ : ‘,anpot (i),neupot(i)

endi f
enddo
write(*,*) ‘Vibrational temperature : ‘,vibtemp
write(*,*) ‘ZEKE FWHM (cm-1) ‘,Zfwhm
write(*,* ) ‘Baseline for ZEKE conv. : ‘,bline
write(*,898) chisq
write(*,1693)

1693 format(79( ’-’))
1695 cbad = O

write(*, *) ‘Enter “a/A” to change/optimize an anion parameter’
write
write
write
write
write

read (1

* ●) ‘ “n/N” to change/optimize a neutral parameter’
*:*) ‘ “v/v” to change/optimize the vib. temperature’
* *) ‘ “f/F” to change/optimize the ZEKE FWHM’
*:*) ‘ “b/B” to change/optimize the baseline’
*,*) ‘ “q“ to quit idvr’

,*) cit
if (tit.eq.’a’) then

1795 write(*,* ) ‘Change which anion parameter (integer l-lo)?’
read(*,*) tint
ibad = O
if ((tint.le.10) and. (tint.ge.1)) then
write(*, ●)‘Enter new value for anion parameter ‘,cint
read(*,*) anpot(cint)

else
ibad = 1

endi f
if (ibad.eq.1) goto 1795

elseif (tit.eq. ‘n’) then
1796 write(”, *) ‘Change which neutral parameter (integer 1-10)?’

read(’,’) tint
ibad = O
if ((tint.le.10).and.(tint .ge.1)) then
write(*, *) ‘Enter new value for neutral parameter ‘,cinc
read(’,’) neupot(cint)

else
ibad = 1

endi f
if (ibad.eq.1) goto 1796

elseif (tit.eq. ‘v’) then
write(*, *) ‘Enter new value for vibrational temperature’
read(’,’) vibtemp

elseif (tit.eq.’f’) then
write(*, *) ‘Enter new value for ZEKE FWHM’
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read (*,*) zfwhm
elseif (tit.eq.’b’) then

write(*,9738)
9738 format(”Enter new baseline as a fraction of total intensity’,

& /,’(i.e. a real number from O to l)’)
read(*,*) bline

elseif ((tit.eq.’q’).or.(cit .eq.’Q’)) then
goto 9999

elseif ((tit.eq.’A’).or.(cit.eq. ‘N’).or.(tit.eq.’V’).or.
& (tit.eq.’F’).or.(tit.eq.’B’)) then

write(*,*) ‘“Optimize” feature not yet implemented’
cbad=l

else
write(’,’) tit,’ is not an option’
cbad=l

endi f
if (cbad.eq.1) goto 1695

goto 1

9999 end

*======-------========--------============================

subroutine umat(nmax, t,ndirn,norm,u)
*==--------==-------------.-------=--------===============
*
* Set up diagonal and diag-1 of u(z) matrix elements, in
* form suitable for input to rsb diagonalization routine
*
* Input: nmax, largest n value to talc.
* t, for Morse
* ndim dimension of norm vector
● norm vector containing ln(norm) . constants
*
* output: u contains diag-1 in first column,
● diag in 2nd, first row index is 1.
*

implicit double precision(a-h, o-z)
double precision t,norm(ndim+l), u(ndim+l,ndim+l)

* Diag-1 elements

U(l,l)=o.
do 100 i=l,nmax

u(i+l, l)=sqrt(i*(2*t-i) /((2*t-2*i+l)*(2*t–2*i) ●*2
& *(2*t-2*i-1)))

100 continue

* Diagonal elements

do 200 i=O,nmax
u(i+l,2)=t/(2*(t-i)* (t-i-l))

200 continue

return
end
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subroutine rcalc(nmax, ndim,re,t,beta,udiag, r)
*------------------------------------------------------------------------------------------------------------------
●

● Calculate points R(i) from diagonalized u(R) matrix
* elements.
●

* Input: udiag, vector with eigenvalues of u(R)
* nmax, maximum n value (=# of evals -1)
* ndim dimension of udiag vector
● re, bond length of Morse
* t, for Morse
* beta, for Morse
*
* output: r, contains R(i) ‘s (in Angstroms if beta
* is in angst-1)
*

implicit double precision (a–h,o-z)
double precision udiag(ndim), r(ndim),re, t
integer nmax,ndim

do 100 i=O,nmax
r(i+l)=re+log (2*t*udiag (i+l))/beta

100 continue
return
end

c ********+**** ************* ************* ************* ● ************ ***+

subroutine initpars (fn,rmu,amassl,amass2,anbasis,npot,
& anpot,neupot )

c ************* ************* ● ************ ************* ************* ****

c
c Read masses, potential parameters, etc from
c the file fname.
●

* Input: fn file name with parms
●

* output: mu Reduced mass (amu)
● anbasis(re, beta,t) Morse basis parms (used if basis
* parameters can’t be calculated
● from the potential)
* amassl Atomic masses (amu) of each atom
● amass2 “ “ . “
* npot(l) ,npot(2) Type of anion,neutral potential
* anpot( ...) Anion potential parms
* neupot(. ..) Neutral potential parms’
*

implicit double precision(a–h, o-z)
character*30 fn
double precision rmu,anbasis (3),anpot(10) ,neupot(lO)
integer npot(2)

open(l,file = fn)
read(l,*) amassl,amass2
rmu=amassl*amass2/ (amassl+amass2)
read(l,’) anbasis (l),anbasis(2 ),anbasis(2)
read(l,’) npot(l), npot(2)
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if ((npot(l) .eq.l).or. (npot(1).eq.4)) then
read(l,’) anpot(l), anpot(2),anpot (3),anpot(4)

else if ((npot(l) .eq.2).or. (npot(1).eq.6)) then
read(l,*) anpot(l), anpot(2),anpot (3),anpot(4),anpot(5) ,

& anpot(6) ,anpot(7) ,anpot(8)
elseif (npot(l) .eq.3) then

read(l,’) anpot(l), anpot(2),anpot (3)
else

pause ‘Error in anion npot in paramater file’
endi f

c
if ((npot(2) .eq.l).or. (npot(2).eq.4)) then

read(l,’) neupot(l),neupot (2),neupot (3),neupot(4)
else if ((npot(2) .eq.2).or. (npot(2).eq.6)) then

read(l, *) neupot(l),neupot (2)tneupot (3),neupot(4),
& neupot(5),neupot (6),neupot(7) ,neupot(8)
elseif (npot(2) .eq.3) then

read(l,’) neupot(l),neupot (2),neupot (3)
elseif (npot(2).eq.5) then

read(l,*) neupot(l),neupot (2),neupot (3),neupot(4),
& neupot(5) ,neupot(6)
elseif ((npot(2) .eq.7).or. (npot(2).eq.8)) then

read(l,’) neupot(l),neupot (2),neupot (3),neupot(4),
& neupot(5) ,neupot(6) ,neupot(7
& neupot(9)
elseif ((npot(2) .eq.9).or. (npot(2).eq.10

read(l,*) (neupot(i), i=l,lO)
else

pause ‘Error in neutral npot in paramal
endif

close(1)

return
end

,neupot(8) ,

) then

er file’

*--------------------------------------------------------------------------------------------------------------------------------------
subroutine diffpot(ndim,nmax, rmass,basis,numb,npot,parms,

& r,diagv,depthp)
*--------------------------------------------------------------------------------------------------------------------------------------
*
* Calculate difference potential matrix (delt-V = V - Vref)
* in dvr by quadrature at points R(i) , and transform to Morse ~br.
* Zero energy is bottom of potential wells.
*
* Inputs: ndim
● nmax
* rmass Reduced mass (amu)
‘$ basis(re,beta,t) Morse parms
* numb 1 for anion, 2 for neutral
● npot type of potential
* parms () potential paramaters
* ro quadrature points
*
* output : diagv () cliff.potl. elements in dvr basis
* deltavo difference potl matrix in Morse basis
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* depthp well depth of poten (needed for Aq poten)
*

implicit double precision(a-h,o-z)
parameter (evtocm=8065 .541)

integer ndim,nmax,numb,npot
double precision basis (3),parms(10),

& r(ndim+l) ,diagv(ndim+l)
double precision poten,morse

re=basis(l )
beta=basis(2 )
t=basis(3)
depthm= (2.09008e-3)“((beta*t)**2) /rmass
if ((npot.eq.9) or. (npot.eq.10)) then !* Need to find min. forAq.

depthp = 1.d99
step = 0.001
rl = 3.0
r2 = 5.0
nstep = (r2-rl)/step
rt = rl
do i=l,nstep

vtest = poten(numb, npot,parms, rt)
if (vtest.lt.depthp) then

depthp = vtest
rvmin = rt

endif
rt = rt+step

enddo
depthp = -depthp
write(*,5000) depthp
write(*,5002) depthp*evtocm
write(*,5001) rvmin

5000 format( ’Neutral potential depth = ‘,f8.5,‘ eV’)
5002 format (‘ =, ,f8.2,’ cm-l’)
5001 format( ’At Rmin = ‘,f7.3,’ Angstroms’)

write(*, *)
else

depthp=parms (1)
endi f

●

* Fill diagonal delta–v with dvr matrix elements
●

do 100 i=l,nmax+l
diagv(i)=poten (numb,npot,parms ,r(i))+depthp

& -morse(depthm, re,beta,r(i ))-depthm
100 continue

return
end

*_____________________________________________________________________---------------------------------------------------------------------

subroutine morseig (ndim,nmax,rmass,basis, tmat,eigmdvr)
*__________________________________________________________________________________________________________________________________________
●

● Calculates eigenvalues of the morse potential
*
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*
*
*
*
*
*
*
*
*
*

Inputs: ndim
nmax
rmass
basis (re,beta,t)
treat() Transformation matrix

output : eigmdver () Matrix with Morse eigenvalues
in eV referred to asymptote,

transformed to dvr basis.

implicit double precision(a-h, o-z)
parameter(cl=O .0457176,c2=2 .09010e-3)

integer ndim,nmax
double precision basis (3),eigmdvr (ndim+l,ndim+l) ,
& tmat(ndim+l ,ndim+l)
double precision eigm(300)

re=basis(l)
beta=basis(2)
t=basis(3)
depthm= (2.09008e-3 )*((beta*t)**2)/rmass

do 100 n=O,nmax
eigm(n+l) =(-5.22519e-4) *beta*beta* ((t*2-1-2*n)**2)

& /rmass+depthm
100 continue

*
* Transform EO(dvr) = T(transpose) *EO(fbr)*T
*

do 400 n=l,nmax+l
do 300 m=l,n

temp=O.
do 200 j=l,nmax+l

temp=temp+tmat (j,n)’tmt(j ,m)’eigm(j)
200 continue

eigmdvr(n,m) =temp
300 continue
400 continue

return
end

*--.----------------------------.=...========.======..=====. =. . . . . . . . .______________-____— ------------

subroutine hcalc(ndim,nmax, eigmdvr,diagv,ham)
*--------------------------------------------------------------- ..=...---------------------------------------------------------------
*
* Calculate total hamiltonian in the dvr basis by adding Morse
* eigenvalue (K) matrix to the potential difference matrix
*
* Input: ndim
* nmax
* eigmdvro Morse eigenvalues transformed to dvr
* diagv () potl difference matrix in dvr
*
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* output : hamo Total ham matrix (lower half)
*

implicit double precision (a-h,o–z)
integer ndim,nmax
double precision eigmdvr (ndim+l,ndim+l) ,diagv(ndim+l),
& ham(ndim+l,ndim+l )

do 100 i=l,nmax+l
do 200 j=l,i-1

ham(i, j)=eigmdvr(i,j)
200 continue
100 continue

do 300 i=l,nmax+l
ham(i, i)=eigmdvr (i,i)+diagv(i)

300 continue
return
end

*================== ================== ==..==.====. ===.=..=..=. ==..==...

subroutine setbasis (nmax,nnshow,nanshow, rmass,
& npot,anparms ,neuparms,basis)

*==.=...=================================================.==.======...
*
* Calculate Morse basis parameters for a given number of basis
* functions and potential parameters. t is set to the same proportion
* of the number of basis functions as the proportion of the approximate
* total number of vibrational levels of the neutral potential to the
* number of neutral levels to be calculated,
* and then beta is chosen to match the
* neutral potential second derivatives (force constants=2*De*betaA2 )
* at Re, which also determines De. Re’s are set equal to min Re of
* anion and neut.
* If it doesn’t know force constants, basis read in is returned
*
● Input: nmax +1 = number of basis functions
* nnshow number of neutral eigvalues to show
* nanshow “ anion “
● rmass
* npot () potential types (l=an,2=neu)
* anparmso anion potential parameters
● neuparmso neutral potential parameters
* basiso read from file
*
* output : basis(re,beta,t)
*

implicit double precision (a–h,o-z)
double precision anparms (lO),neuparms(lO) ,basis(3)
double precision k
integer npot(2) ,nmax,nrshow,nanshow

parameter( evtoj=l.60218e-19, amutokg=l .66054e-27,
& hbar=l.054573e-34, angsttom=l.e-10 )

rmu=rmass*amutokg
depthn=neuparms (1)’evtoj
deptha=anparms (1)’evtoj
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if (npot(l).eq.2) then
betala=anparms (3)/(anParms (2)*an9sttom)
ank=2.*deptha* (betala)**2

else
write(8,*) ‘I dent know the anion second derivative’
write(8,*) ‘Using neutral basis from parameter file:’
return

endi f

if (npot(2) .eq.2) then
betan=(neuparms (3)+neuParms (4))/(2*neuParms (2)*an9s~tom)
aneuk=2.*depthn* (betan)**2
tneu=sqrt (2*rmu*depthn) /(War*betan)

elseif ((npot(2).eq.7) or. (npot(2).eq-8)) then
betan=8./(neuparms (2)*an9sttom)
aneuk=2.*depthn* (betan)●*2
tneu=sqrt (2*rmu*depthn) /(hbar*betan)

else
write(8, *) ‘I dent know the neutral second derivative’
write(8,*) ‘Using neutral basis from parameter file:’
return

endi f

write(8,*) ‘t-neutral= ‘,tneu
if (nnshow.gt.tneu) then

t=dble(nmax) +1.001
else

t=((tneu+l.5) *(nmax+l)/(nnshow+l) )
endif
k=(aneuk)

beta=(k*rmu)**O.25/sqrt (hbar’t)

basis (l)=min(neuparms (2),anparms(2) )
basis (2)=beta*angsttom
basis(3)=t

return
end

* --------------------------------- . ...==== . ..===.. . . ...==. .=...=.. =.---------------------------------
subroutine calcfcf (ndim,nmax,nnshow,nanshow, anwf,neuwf,fci,

& totfcf)
*--------------------------------------------------------------------------------------------------------------------------------------
*
* Calculate Franck-Condon factors
*
* Input: ndim
* nmax max n in basis
* nnshow # neutral wf’s shown
* nanshow # anion wf’s shown
* anwf ( ) anion ei9enfunctions in columns
* neuwf ( ) neutral eigenfunctions (in same basis)
*
* output : fcf(anion n, neutral n)
* totfcf(anion n) Total fcf frOrn aniOn levels
*

181



implicit double precision (a-h,o-z)

integer ndim,nmax,nnshow,nanshow
double precision anwf(ndim+l,ndim+l ),neuwf (ndim+l,ndim+l),

& fcf(ndim+l,ndim+l) ,totfcf(ndim+l)

do 100 i=l,nanshow+l
ftot=o .
do 200 j=l,nnshow+l

ftemp=O.
do 300 n=l,nmax+l

ftemp=ftemp+anwf (n,i)’neuwf(n,j)
300 continue

fcf(i,j)=ftemp’ftemp
ftot=ftot+fcf(i, j)

200 continue
totfcf(i)=ftot

100 continue

return
end

*--------------------------------------------------------------------____________________________________________________________________
subroutine bvcalc(ndim,nmax, nshow,rmass,r,wf,bv)

*----------------------------------------------------------------------------------------------------------------------------------------
*
* Calculate rotational constants
● B(v)=(hbar/4*pi*rmass*c) *<vI (1/RA2)Iv>
●

* Input : ndim
* nmax # of basis fns-1
* nshow # of r consts to calculate-1
* rmass
* ro DVR points, in angstroms
* Wfo matrix with wavefunctions in dvr
*
● output : bvo vector with B(v)s in wavenumbers
*
*

parameter( evtoj=l.60218e-19, amutokg=l .66054e-27,
& hbar=l.054573e-34, angsttom=l.e-10, c=2.99792458e8,
& evtocm=8065 .541,pi=3 .14159265359)

implicit double precision (a-h,o-z)

integer ndim,nmax,nshow
double precision wf(ndim+l, ndim+l),bv(ndim+l) ,

& r(ndim+l) ,rmass

integer i,j
double precision sum,rmu

znm=rmass+amutokg

do 100 i=l,nshow+l
Sum=o .
do 200 j=l,nmax+l
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sum=sum+ (wf(j,i)/r(j)) *’2
200 continue

sum=sum/angsttom**2
bv(i)=( (hbar/(4*pi*rmu*c) )*sum)/100.

100 continue

return
end

A6.3. File’’rsb.f”ll

c

c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

************* ************* ************* ************* *****X***

subroutine rsb(nm,n,mb, a,w,matz, z,fvl, fv2,ierr)

integer’n,mb,nm, ierr,matz
double precision a(nm,mb),w(n), z(nm,n),fvl (n),fv2(n)
logical tf

this subroutine calls the recommended sequence of
subroutines from the eigensystem subroutine package (eispack)
to
of

on

on

find the eigenvalues and eigenvectors (if desired)
a real symmetric band matrix.

input

nm must be set to the row dimension of the two-dimensio~.al
array parameters as declared in the calling program
dimension statement.

n is the order of the matrix a.

mb is the half band width of the matrix, defined as the
number of adjacent diagonals, including the principal
diagonal, required to specify the non-zero portion of che
lower triangle of the matrix.

a contains the lower triangle of the real symmetric
band matrix. its lowest subdiagonal is stored in the
last n+l-mb positions of the first column, its next
subdiagonal in the last n+2-mb positions of the
second column, further subdiagonals similarly, and
finally its principal diagonal in the n positions
of the last column. contents of storages not part
of the matrix are arbitrary.

matz is an integer variable set equal to zero if
only eigenvalues are desired. otherwise it is set to
any non-zero integer for both eigenvalues and eigenveccozs.

output

w contains the

z contains the

eigenvalues in ascending order.

eigenvectors if matz is not zero.
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c
c ierr is an integer output variable set equal to an error
c completion code described in the documentation for tqlrat
c and tq12. the normal completion code is zero.
c
c fvl and fv2 are temporary storage arrays.
c
c questions and comments should be directed to burton s. garbow,
c mathematics and computer science div, argonne national laboratory
c
c rhis version dated august 1983.
c

A6.4.

c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

File’’rs.f”ll

subroutine rs(nm,n,a,w,matz,z, fvl,fv2,ierr)

integer n,nm,ierr,matz
double precision a(nm,n),w(n), z(nm,n), fvl (n),fv2(n)

this subroutine calls the recommended sequence of
subroutines from the eigensystem subroutine package (eispack)
to
of

on

on

find the eigenvalues and eigenvectors (if desired)
a real symmetric matrix.

input

m must be set to the row dimension of the
array parameters as declared in the calling
dimension statement.

n is the order of the matrix a.

a contains the real symmetric matrix.

two-dimensional
program

matz is an integer variable set equal to zero if
only eigenvalues are desired. otherwise it is set to
any non-zero integer for both eigenvalues and eigenvectors.

output

w contains

z contains

ierr is an

the eigenvalues in ascending order.

the eigenvectors if matz is not zero.

integer output variable set equal to an error
completion code described in the documentation for talrat
and tq12. the normal completion code is zero.

fvl and fv2 are temporary storage arrays.

questions and comments should be directed to burton s.
mathematics and computer science div, argonne national

this version dated august 1983.
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c

A6.5. File “matrix.f”

c ----------------------------------------------------------------

subroutine showarr4(nfi le,ndim,a,nra,nca)
c
c displays the matrix A
c

implicit double precision (a-h,o-z)
dimension a[ndim,ndim)

do 10 ir = 1, nra
write(nfile,100) (a(ir,ic), ic = I,nca)

100 format(20(f6.4,1x),/)
10 continue

return
end

A6.6. File’’poten2.f”

c ************** ************** ************** ************** *

double precision function poten(numb,npot,p, rt)
c ************** ************** ************** ************** *

*
*
*
*
●

c
c
c
c

c
c
c
c
c
c
c
c
*
*
●

*

c
c
c
c
*
*
*
*

c

Input: numb set to 1 for anion, 2 for neutral
npot scalar specifies type of potential
P() potential parameter list
rt point in angstroms

Returns: potential in eV

npot
npot

npot
npot

npot
npot
npot
npot
npot
npot

(l.)

= 1 for
= 2 for

= 3 for
= 4 for

= 5 for
= 6 for
= 7 for
= 8 for
= 9 for

Maitland-Smith type potential;
scaled Lee (Morse–Morse-Switch-van der Waals)

type potential;
Morse potential.
Buckingham potential (exp-n for neutral,

or anion. )
Morse-Spline-van der Waals (for neutral only.)
unscaled Morse-Morse-Switch-vdW
HFD-C potential (neutral only)
HFD-B potential (neutral only)
Aquilanti X1/2 (neut only) MSV for VOtbucky for V2

= 10 for Aquilanti 13/2, MSV for VO, bucky for V2

when npot(numb) = 1, potentials are the Maitland-Smith fomn,
n(r*)-6 type for the neutral and n(r*)-4 type for the anion,
respectively. There will be 4 parameters:

(1) Well depth (eV)
(2) Re (Angs)
(3) x
(4) gamma
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c

c

c
●

*

*

*

●

●

●

☛

c
*

c

c
*

*

*

●

●

*

*

*

*

*

*

*

*

*

*

●

●

*

●

*

●

*

●

.

*

*

*

*

●

*

●

*

*

*

●

●

●

●

●

*

●

*

(2.) when npot(numb) = 2, potentials are the Lee form, i.e., the
Morse-Morse-Switch-van der Waals form, there will be eigh~

parameters for each potential:
(1) Well depth (eV)
(2) Re (Angst.)
(3) Betal (unitless)
(4) E3eta2 (unitless)
(5) xl
(6) x2
(7) anion C4/well depth, or neutral C6/well depth
(8) anion C6/well depth, or neutral C8/well depth

(units An9sA (-n), n=4,6 or 8)

(3.) when npot(numb) = 3, potentials take on the Morse potential
form, there will be three parasneters for each potential.
(1) depth (eV)
(2) Re (Angst)
(3) Beta (Angst-1)

(4.) npot(nurnb) = 4: Buckingham (exp-n) potential:
(1) Well depth
(2) Re
(3) beta
(4) m

(5.) npot(2)=5: Morse-Spline-van der Waals (Aquilanti)--Neutral
6 parameters
(1) Depth (eV)
(2) Rmin (tigst)
(3) Beta (Angst-1) -- Unscaled, different from Aqui.
(4) xl (unitless)
(5) x2 (unitless)
(6) CO (eV*Angst”6)

(6.) npot(numb) = 6: Unscaled Morse-Morse-Switch-vdW
--Same parameters as scaled MMSV, but betas have

angst–1 units, and Cn have eV*AngsA(-n) units
(Obtained from scaled beta and Cn by dividing
by Re or multiplying by well depth, respectively)

(7.) npot(2)=7: HFD-C potential
(1) Depth (eV)
(2) Re (Angst)
(3) Alpha
(4) gamma
(5) A
(6) C6 (unitless)
(7) C8 ‘
(8) Clo “
(9) D

(8.) npot(2)=8: HFD-B potential
(1) Depth (eV)
(2) Re (Angst)
(3) Alpha
(4) beta
(5) A
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*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

c

c
*

*

(6) C6 (unitless)
(7) C8 “
(8) Clo “
(9) D

(9) npot(2)=9: Aquilanti X1/2 potential, VO=MSV, V2=Buckingham
(1) Depth of VO (eV) (Different from pOten depth!)
(2) Rmin of VO (Fmgst)
(3) Beta of VO (Angst-1) -- Unscaled.
(4) xl of VO (unitless)
(5) x2 of VO (unitless)
(6) CO of VO (eV*AngstA6)
(7) A2 of V2 (eV)
(8) alpha2 of V2 (Angst”-1)
(9) C2 of V2 (ev*A.ngst”6)
(lo) halogen spin-orbit constant (eV)

(10) npot(2)=10: Aquilanti 13/2 potential, same parameters as 9

implicit double precision (a-h,o-z)
integer numb,npot
double precision p(lO),rt
double precision ms4,anmmsv,morse, bucky,anmmsvus,

& ms6,neummsv, msv,neurmnsws ,hfd_c,hfd_b,
& aqx,aqi

if (numb.eq.1) then
if (npot.eq.2) then
poten=anmmsv(p (l),p(2),p (3),P(4),P(5),P (6),P(7),p(8),rt)

elseif (npot.eq.1) then
poten=ms4(p (l),p(2),p(3 ),p(4),rt)

elseif (npot.eq-3) then
poten=morse (p(l),p(2),p (3),rt)

elseif (npot.eq.4) then
poten=bucky(p (l),p(2),p (3),p(4),rt)

elseif (npot.eq.6) then
poten=anmmsvus (p(l),p(2),P(3),P (4),P(5),P(6),P (7),p(8),rt)

else
pause ‘Error in anion potential call’

endif
elseif (numb.eq.2) then

if (np”ot.eq.2)then
poten=neummsv(p (l),p(2),P(3),P (4),P(5),P(6),P(7) ,p(8),rt)

elseif (npot.eq.8) then
poten=hfd_b(p (l),p(2),p(3) ,P(4),P (5),P(6),P(7),P (8),p(9),rt)

elseif (npot.eq.7) then
poten=hfd_c (p(l),p(2),p (3),P(4),P (5),P(6),P(7) ,p(8),p(9),rt)

elseif (npot.eq.1) then
poten=ms6(p(l),p (2),p(3),p(4),rt)

elseif (npot.eq.3) then
poten=morse (p(l),p(2),p (3),rt)

elseif (npot.eq.4) then
poten=bucky(p (l),p(2),p (3),p(4),rt)

elseif (npot.eq.5) then
poten=msv(p(l),p (2),p(3),p(4),p(5),p(6),rt)

elseif (npot.eq.6) then
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poten=neummsvus (p(l),p(2),p(3) ,P(4),D(5),P(6),P(7), P(8),rt)
elseif (npot.eq.9) then

poten=aqx (p(l),p(2),p(3 ),P(4),P(5),P(6),P(7),P (8),P(9),
L p(lO),rt)

elseif (npot.eq.10) then
poten=aqi (p(l),p(2),p(3 ),P(4),P (5),P(6),P(7),P (8),P(9),

& pilO),rt)
else

pause ‘Error in neutral potential call’
endi f

endi f
return
end

c–--------------------------------------------------------------

double precision function ms4(depthl, rminl,xml,xlamdal ,rt)
c––-------------------------------------------------------------
●

c Maitland-Smith n-4
c

implicit double precision (a-h,o–z)

xt = rt/rminl
rtn = xml+xlamdal*(xt-1. )
ms4 = depthl/(rtn-4.)*(4 .*(l./xt)**rtn -

& rtn*(l./xt)**4)
return
end

*______________________________________________________________

double precision function an.mn-sv(depthl,rminl,pnibetall,
& pmbeta21, xrstarll, xrstar21, c4vdwl,c6vdwl,rt)

c--------------------------------------------------------------
c Scaled MMSV for anion
c

implicit double precision(a-h,o–z )
parameter (pi=3.14159265359)

xt = rt/rminl
if (xt.le.l.) then
Tsum = depthl* (exp(2.*pmbetall* (1.-xt))-2.*exp

& pmbetall’(1.-xt) ))
else if ((xt.gt.1) and. (xt.le.xrstarll)) then
Tsum = depthl’ (exp(2.*pmbeta21* (1.-xt))-2.*exp

& pmbeta21*(l. -xt)))
else if ((xt.gt.xrstarll) and. (xt.lt.xrstar21)) then
swxt=0.5* (cos(pi’ (xt-xrstarll)/(xrstar21-xrstarll) )+1.)
pmorse2=exp(2. ●pmbeta21*(l.-xt) )-2.*exp(

& pmbeta21*(l.-xt))
pvdw=-l. *(c4vdwl*rt’* (-4)+c6vdwl*rt’* (-6))
Tsum = depthl* (swxt*pmorse2+ (1.-swxt)*pvdw)

else
Tsum = -1.*depthl* (c4vdwl*rt** (-4)+c6vdwl*rt** (-6))

end if
anmmsv=Tsum
return
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end

*---------------------------------------------------------------

double precision function morse(depth, rmin,beta,rt)
c----- ----------------------------------------------------------

C Morse potential
c

implicit double precision(a–h, o-z)

xt = rt/rmin
morse = depth* (exp(2.*beta*rmin* (1.-xt))-2.*exp(

& beta’rmin’(1.-xt) ))
return
end

*---------------------------------------------------------------

double precision function bucky(depth, rmin,beta,xm, rt)
c---------------------------------------------------------------
*

c Exp-n Potential
c

implicit double precision (a-h,o-z)
xt=rt/rmin

bucky = (depth/(beta*rmin-xn)) *
& (xm’exp(-beta’ (rt-rmin))
& -beta’rmin’( (rmin/rt)**xm) )
return
end

* --------------------------------------------------------------

double precision function anmmsvus (depthl,rminl,pmbetall,
& pmbeta21, xrstarll,xrstar21 ,c4vdwl,c6vdwl,rt)

c--------------------------------------------------------------

c Unscaled MMSV
c
*

implicit double precision (a-h,o-z)
parameter (pi=3.14159265359)

xt=rt/nninl
pmbetall = pmbetall * rminl
pmbeta21 = pmbeta21 * rminl
c4vdwl = c4vdwl / depthl
c6vdwl = c6vdwl / depthl
if (xt.le.l.) then
Tsum = depthl* (exp(2.*pmbetall* (1.-xt))-2.*exp(

& pmbetall’(1.-xt) ))
else if ((xt.gt.1) and. (xt.le.xrstarll)) then
Tsum = depthl* (exp(2.*pmbeta21* (1.-xt))-2.*exp(

& pmbeta21*(l.-xt) ))
else if ((xt.gt.xrstarll) and. (xt.lt.xrstar21)) then

swxt=O.5*(cos (pi’(xt-xrstarll) /(xrstar21-xrstarll) )+1.)
pmorse2=exp(2 .*Pmbeta21*(l. -xt))-2.*exp(

& pmbeta21*(l.-xt))
pvdw=-1.* (c4vdwl*rt** (-4)+c6vdwl*rt** (-6) )
Tsum = depthl* (swxt*Pmorse2+ (1.-swxt)*Pvdw)
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else
Tsum = -1.*depthl* (c4vdwl*rt** (-4)+c6vdwl*rc** (-6))

end if
anmmsvus=Tsum
return
end

c---------------------------------------------------------------
double precision function ms6(depth2, rmin2,m2,xlamda2 ,rt)

c---------------------------------------------------------------
*

c Maitland-Smith n-6
c

implicit double precision (a–h,o–z)
xm2=rClrmin2
rtn = mn2+xlamda2* (xt-1.)
ms6 = depth2/(rtn-6.)*(6 .*(l./xt)**rtn -
& rtn*(l./xt)**6)
return
end

*______________________________________________________________

double precision function neummsv (depth2,rmin2,pmbeta12 ,
& pmbeta22,xrstar12 ,xrstar22,c6vdw2 ,c8vdw2,rt)

c--------------------------------------------------------------
●

c Scaled MMSV
c

implicit double precision (a-h,o-z)
parameter (pi=3.14159265359)

xt=rt/rmin2
if (xt.le.l.) then
Tsum = depth2* (exp(2.*pmbeta12* (1.-xt))-2.*exp(

& pmbeta12*(l.-xt) ))
elseif ((xt.gt.1)and. (xt.le.xrstar12) ) then
Tsum = depth2* (exp(2.*pmbeta22* (1.-xt))-2.*exp(

& pmbeta22*(l.-xt) ))
elseif ((xt.gt.xrstar12) and. (xt.lt.xrstar22)) then
swxt=O.5* (cos(pi’ (xt-xrstar12)/(xrstar22-xrstar12) )+1.)
pmorse2=exp (2.*pmbeta22* (1.-xt))-2.*exp(

& pmbeta22*(l.-xt) )
pvdw=-1.’ (c6vdw2*rt** (-6)+c8vdw2*rt** (-8))
Tsum = depth2* (swxt*pmorse2+ (1.-swxt)’pvdw)

else
‘1’su.m= -1.*depth2* (c6vdw2*rt** (-6)+c8vdw2*rt** (-8))

endi f
neummsv=Tsum
return
end

*_________________________________________________________________

double precision function msv(depth2, rmin2,beta2 ,xlmsv,
& x2msv,cOmsv, rt)

c-----------------------------------------------------------------
*

c MSV (Aquilanti)
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L
implicit double precision (a-h,o–z)

rlmsv = xlmsv*rmin2
r2msv = x2msv*rmin2
if (rt.le.rlmsv) then

Tsum = depth2* (exp(2.*beta2*(rmin2-rt) )
& -2.*exp(beta2* (rmin2-rt)))

else if (rt.lt.r2msv) then
bls = exp(2. *beta2* (rmin2-rlmsv) )

& -2.*exp(beta2* (rmin2-rlmsv) )
b2s = -((cOmsv/(depth2*r2msv**6) )+bls)/(r2msv-rlmsv)
b3s = (2.*beta2* (exp(beta2* (rmin2-rlmsv) )

& -exp(2.*beta2* (rmin2-rlmsv) ))-b2s)
& /(rlmsv-r2msv)

b4s = ((6.*cOmsv/(depth2*r2msv**7) )-b2s
& -b3s*(r2msv-rlmsv) )/(r2msv-rlmsv) **2

Tsum = bls+(rt-rlmsv) *(b2s+(rt-r2msv)
& *(b3s+(rt-rlmsv) *b4s))

Tsum = Tsum*depth2
else
Tsum = -cOmsv/rt**6
end if
msv=Tsum
keturn
end

*_________________________________________________________________

double precision function aqx(depth, rmin,beta,xl ,x2,
& cO,a2,alpha2, c2,soconst, rt)

*-----------------------------------------------------------------
*
● X1/2 State Aquilanti, JPC v.97, P.2063
*

implicit double precision (a-h,o-z)
double precision msv

vO=msv(depth, rmin,beta, xl,x2,c0,rt)
V2 = -a2*exp (-alpha2*rt) + c2/(rt**6)
tl = sqrt(9.*v2’*2/25. + soconst**2 - 2.*v2*soconst/5.)
aqx = Vo + v2/lo. + soconst/2. - tl/2.
return
end

*-----------------------------------------------------------------

double precision function aqi(depth, rmin,beta,xl, x2,
& cO,a2,alpha2,c2,soconst, rt)

*-----------------------------------------------------------------
*
● 13/2 State Aquilanti
*

implicit double precision (a-h,o-z)
double precision msv

vO=msv(depth, rmin,beta, xl,x2,c0,rt)
V2 = -a2*exp (-alpha2*rt) + c21(rt**6)

aqi = VO - v2/5.
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return
end

*-----------------------------------------------------------------

double precision function neummsvus (depth2,rmin2 ,pmbeta12,
& pmbeta22,xrstar12 ,xrstar22,c6vdw2 ,c8vdw2,rt)

c___–____ ----------------------------------------------------- .,___
*

c Unscaled MMSV
c

implicit double precision (a-h,o-z)
parameter (pi=3.14159265359)

xt=rt/rmin2
pmbeta12 = pmbeta12 * rmin2
pmbeta22 = pmbeta22 * rmin2
c6vdw2 = c6vdw2 / depth2
c8vdw2 = c8vdw2 / depth2
if (xt.le.l.) then
Tsum = depth2* (exp(2.*pmbeta12* (1.-xt))-2.*exp(

& pmbeta12*(l.-xt) ))
else if ((xt.gt.1) and. (xt.le.xrstar12)) then
Tsum = depth2* (exp(2.=pmbeta22* (1.-xt))-2.*exp(

& pmbeta22*(l.-xt) ))
else if ((xt.gt.xrstar12) and. (xt.lt.xrstar22) ) then-
swxt=O.5* (cos(pi’ (xt-xrstar12)/(xrstar22-xrstar12) )+1.)
pmorse2=exp(2 .*pmbeta22*(l. -xt))-2.*exp(

& pmbeta22*(l.-xt) )
pvdw=-1. *(c6vdw2*rt** (-6)+c8vdw2*rt** (-8))
Tsum = depth2* (swxt*pmorse2+ (1.-swxt)’pvdw)

else
TSUKI = -1.*depth2* (c6vdw2*rt** (-6)+c8vdw2*rt** (-8))

end if
neummsvus=Tsum
return
end

*__________________________________________________________________

double precision function hfd_c(depth2, rmin2,alpha2 ,gamma2,
L acoef2,c6vdw2 ,c8vdw2,c10vdw2 ,damp2,rtl

*------------------------------------------------------------------
*
* Hartree-Fock Dispersion-C
*

implicit double precision (a-h,o–z)

xc=rt/rmin2
*
* Dispersion d3.mping function
*

if (xt.lt.damp2) then
fdamp=exp(-(damp2/xt-1)**2 )

else
fdamp=l .

endi f
●

* Repulsive part
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.

repul=acoef2* (xt**gamma2)*exp(-alpha2*xt)
*
* Dispersion terms
*

disp=c6vdw2*xt** (-6)+c8vdw2*xt** (-8)+c10vdw2*xt** (-10)

Tsum=repul-fdamp’disp
hfd_c=depth2*Tsum
return
end

*
*----------------------------------------------------------------

double precision function hfd_b(depth2, rmin2,alpha2 ,beta2,
& acoef2, c6vdw2,c8vdw2, c10vdw2,danp2,rt)

*----------------------------------------------------------------
*
* Hartree-Fock Dispersion-B Potential
* Ref: Aziz & Slaman Mol. Phys. v.58, P.679
*

implicit double precision (a-h,o-z)

xt=rt/rmin2
*
*
*

*
*
*

●

●

☛

Dispersion damping function

if (xt.lt.damp2) then
fdamp=exp(-(damp2/xt-1) **2)

else
fdamp=l .

endi f

Repulsive part

repul=acoef2*exp (-alpha2*xt+beta2*xt*xt)

Dispersion terms

disp=c6vdw2*xt** (-6)+c8vdw2*xt** (-8)+c10vdw2*xt** (-10)

Tsum=repul-fdamp*disp
hfd_b=depth2 *Tsum
return
end

A6.7. File “convol.f”

● ✝✝✎✎✝ ✝✝✝✝✝ ✝✝✝✝ ✝✝✝✝✝ ✎✎✝✝✝ ✝✝✝✝✎ ✎✝✝✎✎ ✎✝✝✎✝ ✝✝✝✝✝ ✎✎✝✝✝ ✝✝✎✎✎ ✎✝✝✝✝ ✎✎✝✝✝ ✝✎✝✎✝

subroutine congauss (fwh,nsticks,nvec,xstk,ystk,nconv,nvecgau,
& xgauss,ygauss)

*-----------------------------------====.=====..=============..====..=__----—_—-— ------------------------
*
* Convolutes stick spectrum with Gaussian
* Sticks are assumed to already be sorted from low to high cm-1.
*
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*
*
●

●

☛

☛

☛

☛

☛

●

☛

●

☛

●

☛

☛

Input: fwhm FWHM of Gaussian in cm-1
nsticks Number of sticks
nvec Dimension of xstk & ystk vectors
xstko vector containing wavenumbers of sticks
ystko vector containing intersities of sticks
nvecgau

output : nconv
xgausso
ygausso

Dimension of xgauss & ygauss

Number of points in convoluted spectrum
Wavenumbers of convoluted spectrum
Intensities of convoluted spectrum (normalized)

implicit undefined(a-z)

integer nsticks,nvec, nconv,nvecgau
double precision fwhm
double precision xstk(nvec),ystk (nvec),xgauss(nvecgau),

& ygauss(nvecgau )

integer i,j
double precision wmin,wmax, step,wn,cmax, con,hwhm

Wmin . xstk(l)
wmax = xstk(nsticks)

hwhm = fwhm/2.dO
step = fwhm/10.dO
wmin = wmin-fwhm*5.d0
wmax = wmax+fwhm*5.d0
nconv = nint( (wmax-wmin)/step)+2
cmax = O.

do i=l,nconv !* Loop over grid points
wn = wmin+dble (i-l)*step
xgauss(i) = wn
ygauss(i) = O.
do j=l,nsticks !* Loop over sticks

if (((wn-xstk(j))/hwhm) **2.1t.100. ) then
con = ystk(j)’

& exp(-O. 5dO*((wn-xstk (j))/(fwhm/2.354))y*2 .)
else

con = O.dO
endi f
ygauss(i)=ygauss (i)+con

enddo
if (ygauss(i) .gt.cmax) then

cmax = ygauss(i)
endi f

enddo

do i=l,nconv !* Normalize
ygauss(i)=ygauss (i)/cmax

enddo

return
end
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* ===== == ..= ==== ==== ===== ====. .= .== == ..= == . . . ===== ===== == =.= ==.== == ..= .
subroutine conzeke (fwh, nsticks,nvec,xstk,ystk,nconv,nveczek,

& xzeke,yzeke,nexp,xexp,yexp,ysim, bline,chisq)
*------------------------------------------------------------------------------------------------------------------------------------------
*
●

☛

☛

☛

●

☛

☛

☛

☛

☛

☛

☛

☛

☛

☛

☛

☛

☛

☛

☛

☛

☛

☛

☛

☛

☛

☛

☛

☛

☛

☛

☛

☛

Convolutes stick spectrum with ZEKE lineshape from fit to bromine
atomic data, form

y=(a*x+b*x”3) /(l+c*x’’2+d*x”4)
Sticks are assumed to already be sorted from low to high CZ-1.
Also calculates the chi-square between the convoluted and
experimental spectra.

Input: fwhm FWHM cm-1
nsticks Number of sticks
nvec Dimension of xstk & ystk vectors
xstko vector containing wavenumbers of sticks
ystko vector containing intensities of sticks
nveczek Dimension of xzeke & yzeke
nexp number of experimental points
xexp wavenumbers of experimental points
yexp intensities of experimental points
bline Baseline for convolution (as fraction of

highest peak normalized to 1)

output : nconv Number of points in convoluted spectrum
xzeke () Wavenumbers of convoluted spectrum
yzeke () Intensities of convoluted spectrum (normalized)
ysimo Intensities of ZEKE convoluted simulation

at points of experimental spectrum
chisq chi-square, weighted by square root (ie so

the peaks are weighted more than the valleys)

implicit undefined(a-z)

integer nsticks,nvec,nconv,nveczek,nexp
double precision fwhm,bline
double precision xstk(nvec),ystk (nvec),xzeke (nveczek),

& yzeke(nveczek),xexp (nexp),yexp(nexp),ysim(nexp)

integer i,j
double precision wmin,wmax, step,wn,cmax, con,hwhm,a,b,c,d,cc,xl,
& wn2,x2-jchisq
parameter (a=l.3342091765d0,
& b=0.0059500947d0,
& c=O.40742214d0,
& d=0.022329373dO)

X1 = 0.43dO*fwhm
cc = 3.2d0/fwhm

wmin = xstk(l)
wmax = xstk(nsticks)

hwhm = fwhm/2.dO
step = fwhm/10.dO
wmin = wmin-fwhm*5.d0
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wmax = wmax+fwhm*5. d0
nconv = nint( (wmax-wmin)/step)+2
cmax = O.

do i=l,nconv !* LOOp OVer eXP points

wn = wmin+dble (i-l)’step
xzeke(i) = wn
wn2 = Wn + xl
con = O.OdO
yzeke(i) = O.OdO
do j=l,nsticks !* Loop over sticks

if (xstk(j) .lt.wn2) then
x2 = (wn2 - xstk(j))
con = ystk(j) *(a* (x2*cc)+b* (x2*cc)**3)/

& (l.OdO+c* (cc*x2)**2+d*(cc*x2) **4)
yzeke(i) = yzeke(i) + con

endif
enddo
if (yzeke(i) .gt.cmax) then

cmax = yzeke(i)
endif

enddo

do i=l,nconv !* Nomalize (w/baseline)

yzeke(i)=(yzeke (i)/cmax)*(l .OdO-bline)+bline
enddo

*
* Do the convolution again at the points of the exp specturm
*

cmax = O.
*

chisq = O.
do i=l,nexp !* LOOp OVer C?XPpoints

m = xexp(i)
wn2 = Wn + xl
ysim(i) = O.OdO
do j=l,nsticks !* LOop over sticks

if (xstk(j).lt.wn2) then
X2 = (wn2 - xstk(j))
con = ystk(j) *(a* (x2*cc)+b* (x2*cc)**3)/

& (l.OdO+c*(cc*x2)**2+d* (cc*x2)**4)
ysim(i) = ysim(i) + con
endif

enddo
if (ysim(i) .gt.cmax) then

cmax = ysim(i)
endi f

enddo

do i=l,nexp !* Normalize
ysim(i)=(ysim(i) /cmax)* (1.OdO-bline)+bline

enddo

chisq = O.OdO
do i=l,nexp

chisq = chisq + dabs (yexp(i))’(yexp (i)-ysim(i))**2
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enddo

return
end
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Appendix B. Progmm for fitting rovibronic transitions in RgX- photodetachment

In this appendix we describe the computer program used to simulate the rotational

profiles of the line shapes observed in the ZEKE spectra of the diatomic RgX- complexes.

First we review the derivation of the selection rules and rotational line strength factors for

photoelectron transitions of Hund’s case (c) molecules. We then describe in detail the use

of the rotational fitting program.

B1. Line strength factors for photodetachment of Hund’s case (c) molecules.*

As mentioned in Chapter 3, the peak shapes of the ZEKE spectra are asymmetric

and change from band to band. In addition, the peak widths vary with source conditions.

We explain the peak shape and width in terms of the asymmetric ZEKE experimental

peak shape combined with the effect of the unresolved rotational structure associated

with each vibrational transition. Both effects are discussed in this section, with the main

focus on how one treats the rotational contribution to the peak widths.

The ejected electron has spins = 1/2 and orbital angular momentum 1= O (only s-

wave photodetachment is observed in anion ZEICE experiments, as discussed in Chapter

1). Hence, the anion+ neutral rotational selection rules are ~ = *~ ,i ~. Since

individual rotational lines are not resolved in our spectra, several assumptions are

required to simulate these transitions. For calculating the energies of the rotational

transitions in each band, equilibrium rotational constants B, are assumed, using the R~

values from the potentials obtained in the vibrational analysis described in chapter 2.

“ Most of this sectionwas tiginally publishedin slightlyrevisedformin J. Chern F@. 101,6538 (1994),
withco-authorsY. Zhao,G. Reiser,C. C. Arnold,andD. M. Neurnark.
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We now derive expressions for the relative intensities of the rotational transitions

in each band. Xie and 22ure]’2derived an expression for the photoionization probabilityy

of a diatornic molecule conforming to Hund’s case (b) in terms of a generalized rotational

line strength factor and the reduced multipole moments. Here, we adapt this approach to

a Hund’s case (c) molecule. A diagram of the Hund’s case (c) angular momentum scheme

is presented for reference in Figure B 1. The results of this treatment are valid for

photodetachment as well as photoionization. Although we do not resolve individual

rotations in the spectra presented in this work, the results presented below should be

useful for future investigations in which rotational structure is resolved. Moreover, the

final expressions obtained are quite simple, and result in a very satisfactory fitting of the

peak shapes.

R

vlolecule-
ixed Z-axis

lace-fixed
.zcxis Figure B1. Hund’s case (c).

L and S are the orbital and

T
spin anawlar momenta,
which are strongly coupled
to form the total electronic
angular momentum j. R is
the rotational angular

momentum, which adds to j
M to form the total angular

J

momentum J. The good
quantum numbers are J, M
(the projection of J on the
space fixed axis), and f2 (the
projection of J on the
molecule-fixed axis), which
defines the electronic state of
the molecule.

The eigenstates of a case (c) molecule are represented by

lmK2Mv) = IJQM)lrzQ)\v} (Bl)
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where the angular momentum quantum numbers are defined in Table B 1; v is the

vibrational quantum number, and n represents the remaining quantum numbers.

Table B1. Quantum number nomenclature for rotational analysis.

Angular
Momentum

J

1

k

+-t+-

4 1P

Description

Total angular momentum of
neutral
Total angular momentum of
anion
Total photoelectron angular
momentum (orbital + spin)
Angular momentum of photon

Vector sum of photon and
photoelectron angular

On the right side of Equation B 1 we have assumed the Born-Oppenheimer

approximation and independence of rotaional from vibrational degrees of freedom to

separate the eigenstate into rotational, electronic, and vibrational parts. The de(ached

electron is assumed to be well approximated asymptotically by a partial wave expansion

in a spherically symmetric potentials The eigenstate of a given electron partial wave in

the coupled representation appropriate to case (c) is 1.jm), where j is the total (orbital and

spin) angular momentum of the electron partial wave, and ~ is its projection in the SPaCe-

fwed frame. The electronic dipole operator transforms as a spherical tensor, T(LP,) ,

under rotation. The photodetachment probability for a given electron angular momentum

from rotational state J of the anion to state J of the neutral is then (neglecting constants

and the vibrational eigenvectors)
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q(m) = ~ ~ (Jml(nQl(jmlT(l,#o)ln-Q-)lJ-Q-M-)12.
m M.M”

(B2)

It is necessary to get the electron and photon wavefunctions into the molecule-

fixed frame, so that

transform the dipole

we can separate nuclear and electron coordinates. To do this we

operator and electron eigenstates to the molecule fixed frame using

the Wigner rotation matrices as defined by Zare4 as follows:

?-(l,po) = ~~;@-(L/t) (photon),

(~4=k(R)~‘ “
w

where R stands for the Euler angles

(B3)
(jco] (electron),

~, 6, and X, and the angular momentum quantum

numbers are defined in Table B 1.

The rotational eigenfinctions are

(B4)

Substituting Equations B3 and B4 into Eq. B2 gives

(2.7+ I)(2J-+1)
Pj(J-, J)cc , ,

(8n-)

xx ~ x(jDLn(R)D:.(R)D:,o-.(R)D!M--n-@)dR) (B5)
M M, M- JI.w

x(nCll(jOIT(l,p) n-fl-) 2,

where all the dependence on angular nuclear coordinates is contained in the integral

over the four rotation matrices.
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To evaluate the integral over the four rotation matrices, we expand those from the

detached electron and dipole operator in a Clebsch-Gordon series4

D;@(R)D!po..(R)= z(z~ +o
k [: -;0 X UP :)D’’JR) ‘B’)

with

k=l+j, ”””,ll–jl,

p=po–m,

9= P–~”

In Equation (B6) we have coupled the electron and photon angular momenta, where k is

the vector sum of the photon electron angular momenta, and p and q are the space- and

molecule-fixed projections of this quantity, respectively (see Table B 1). Substituting this

into Equation (B5) we obtain an integral over three rotation matricesd

Using Eqs. (B6) and (B7) in Eq. (B5) we obtain

Pj(J-, J)=(2J+l)(2J- +1)

X2 ~ ~(2k + 1)
m ,U,hi- k [: -:0 :)(:-: -2(: Q~Q- 4 “8)

‘x 1P :)

(nQ1(j@]T(l,#)ln-i2-) 2.

The condition q = Q–Q- (i. e., p +Q- = @+Q) determines the electronic selection

rules.

The M and M- dependent terms in the square of the sum over k for a given k’ and

k“ give rise to sums
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(B9)q ‘-“--x_-:-2=+=’kk-hi. M- ~- P

so that the cross terms vanish, leaving

~(J-, J)=~S&J)lpj( k,q)l’. (B1O)
k

Here, following Xie and Zare,l’2 we have defined the rotational line strength factor”

[

~

sk(J-, J)=(2J+l)(2J- +1) -’; ~:a_ _J
)

(B]])

which contains all the J and J- dependence, and a generalized multipole transition

moment

. ..(. 1P :)
lPj(’>q)12 = (2k + I) ~ (nCll(j@lT(l,L)lrz-C2-) ‘. (B

The phrase “generalized multipole transition moment” refers to the fact that this

2)

erm

involves both the incoming photon and ejected electron angular momenta, in contrast to

the familiar “dipole transition moment” in photo absorption processes which involves

only the photon.

In anion ZEKE spectroscopy, j = ~ (because 1=0 for the detached electrons that

are detected) and Eq. (B 10) becomes

~,z(J-,J) = CV2S,,2(J-,J)+ S3,2(J-, J) (B13)

.
The expression for the rotational line strength factor may be compared with the

familiar expression for the Honl-Lmdon factors for the intensity of rotational transitions
in the photoabsortion process J“,K“+J\K’ of a rigid rotor:’$

[ 1
2

S(J’K’, J’’K”) = (2 J’+1)(2J11+1) _JK, K,: K,, ;;, .
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with

c=
/fl/2(hd 2

(B14)
‘2 Pi/2(+79) “

For s-wave detachment, AJ = J-– J = t+ ,*; . Expressions for the line strength

factors for transitions from Cl- = O to Cl= ~ ( X ~ and H ~ states) and to f2 = ~ (I+

state) for each of the allowed branches are given in Table B2. Note that S1,2(.I-, J)

vanishes for the AJ = t; branches of the transitions to Q = ~ states and for all branches

of transitions to the f2 = ~ state.

Table B2. Rotational line strengths for transitions to the three neutral states

s~2(J-,J) S3,2(J-,J)
AJ I? X$ or 11+ I+ X+ orII~

1 0 J-+l
+–

3(J- + l)(J- +2) J-( J-+l)

2 2(2 J-+3) 2(2 J- +3)

1 0 J_
3J-(J- -1) J-( J-+l)——

2 2(2 J--1) 2(2 J--1)

3 0 0 (J- +2)(J- +3) 3( J- + l)(J- +2)

‘5 2(2 J- + 3) 2(2 J-+3)

3 0 0 (J- -l)(J- -2) 3J-(T -1)——
2 2(2 J--1) 2(2 J--1)

I

One can calculate a rotational stick spectrum by multiplying Eq. (B13) by a

Boltzmann factor, treating the coefficient CV* (for the ~ = ~ neutr~ states) M an

adjustable parameter. To obtain realistic peak shapes, the rotational lines must be
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convoluted with the empirically determined ZEKE instrumental line shape. Refer back to

Chapter 3 ~q. (3. 11)] for the detailed form of the ZEKE line shape.

B2.

x:

Documentation of the rotational fitting program “i-fit”: example of the XeBr

state

This section describes the computer program used to fit the rotational profiles of

the RgX” ZEIU3 spectra. The program as input uses the vibrational stick spectrum

generated by the fitting program “idvr” (described in Appendix A) to general the final

rotational spectrum convoluted with the ZEKE line shape.

parameters in the rotational fitting procedure are the rotational

The available variable

temperature, the ZEKE

FWHM (full width at half maximum),

(B 13) and (B 14)], the baseline, an offset

the parameter Cl/z discussed above [see Eqs.

for the origin, and the maximum peak intensity.

Note that the input vibrational sticks are not modified in any way: the program “rfh” only

fits the above mentioned above. The program uses a simple gradient rninimiza~ion

algorithms to perform the optimization.

B2.1. The input files

An example of the input file for the X ~ state of XeBr is shown below. The line

numbers in boldface are only for reference, and are not included in the actual input file.

The file is named “xebr_x_rfin.” The comments after the “!*” symbol may be included

after numerical input lines, but not after text (file name) input lines.

1: 1 !* Mode (1 fit & uncer, 2 fit only, 3 uncertainties only)
2: 2 !* output type (I long, 2 short)

3: xebr_x_exp
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4: 500. !* peak electron counts

5: 1 !* # of vib stick input files (1 or 2)
6: xebr_x_stx
7: 0 !* State for file 1 (0 X, 1 I, 2 II)

8: 3.82 !* Neutral rmin file 1 (Ang)
9: 3.81 !* Anion rmin (An9)
10: 131.30, 79.909 !* massl, mass2 (amu)
11: xebr_x_fit
12: y !* Log of C1/2 for file ~-va~?

13: y !* -Uncertainty?
14: -o. !* -Initial value
15: 0.05 !* -Step size
16: -2.0,2.0 !* -Min,max
17: n !* Relative intensity Of file 1 - vaq?

18: n !* -Uncertainty?
19: 1. !* -Initial value
20: 0.01 .I* -Step size
21: 0.1,1.5 !* -Min, max
22: n !* Rot. Temp - vary?
23: n !* -Uncertainty?
24: 40. !* -Initial value
25: 2. I* -Step size
26: 1.0,200. I* -Min, max
27: y !* ZEKE H - Va~?

28: y !* -Uncertainty?
29: 3.0 !* -Initial value (cm-l)
30: 0.1 !* -Step size
31: 0.1,25. !* -Min, max
32: y !* origin shift - varY?

33: n !* -Uncertainty?
34: -0.0 !* -Initial value (cm-1)
35: 0.02 !* -Step size
36: -3., 3. !* -Min, max
37: y !* Baseline - vary?

38: n !* -Uncertainty?
39: 0.00 !* -Initial value
40: 0.01 !* -Step size
41: 0.,0.5 !* -Min, max

The fwst line is an integer which

frac)

tells the program whether to find uncertainties

(standard deviations) during the fit or not. If line 1 is set to 1 then both the fit is

performed anduncertainties are found. If line 2 is set to 2, only the fit is performed, and

ifit is set to 3 only uncertainties are found, using the initial values given for the fitting

parameters. The program performs a fill multivtiate analysis of the parameters in

fmdingthe uncefltinties, so thkcan bequite time-consufing, and it is often desirable to

run in mode 2 when quick results are needed. Line 2 is an integer: 1 for long form
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output, i.e. each step in the gradient minimization is shown, 2 for short form output,

where only the final result of the fit are shown, and the intermediate steps during the

process of finding the standard deviations.

Line 3 contains the name of the

wavenumber format. If uncertainties are

estimate of the number of electron counts

experimental spectruw which must be in

to be calculated, line 4 should contain an

at peak in the experimental spectrum. This

number is used in the calculation of the absolute value of ~z (Ref. 5). When uncertainties

are to be calculated, the standard deviation is defined by a change in a given parameter,

with re-optirnization of the other parameters, such that Z2 is increased by ones If

uncertainties are not calculated, the absolute value of ~z is not important.

Line 5 indicates the number of vibrational stick spectra to be read in (either 1 or

2). In this example only one file is read in. However, one may read in, for example. both

the vibrational stick spectra for the X ~ and 1$ electronic states for simultaneous fitting

with the same experimental spectrum. If two vibrational stick files were specified, the

inputfilewould have to containadditionallines to specify fitting parameters for the

second electronic state; for details see the listing of the source code in Section B3 below.

Line 6 contains

example, only)

electronic state:

the file name of the vibrational stick spectrum for the first (and in this

electronic state. Line 7 is an integer which specifies the case (c)

1 for the X ~ state, 2 for the 1 ~ state, or 3 for the 11~ state. This input

determines the form of the rotational line strength factors, as shown in Table B2. Lines 8

and 9 specify the neutral and anion bond lengths, respectively, in ~. Line 10 lists the

atomic masses in amu. This information is used to calculate B..
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Line 11 specifies the name of the file to which the final rotational spectrum,

convoluted with the ZEKE line shape, is saved. This spectrum is in wavenumber format,

with the same number and spacing of points as the experimental spectrum

The remaining line, 12-41, are grouped into sets of five lines for each parameter

in the fit. The fwst line of each set is set to “y” if the parameter is to be adjusted during

the fit, or to “n” if it is to be fixed at its initial value. The second line of the set is set to

“y” if one wishes to find the standard deviation of a given parameter or “n” if not. Note

that line 1 of the input file must be set to 1 or 3 for any uncertainties to be computed. The

third line of each set specifies the initial value of the parameter. The fourth line specifies

the initial step size for the gradient minimization. The step size is adjusted as the fit

progresses. The fifth line lists the minimum and maximum allowable values of the

parameters. An explanation of each parameter and is given below:

Lines 12-16:

Lines 17-21:

Lines 22-26:

Lines 27-31:

Lines 32-36:

Lines 37-41:

base 10 log of CV2[see Eqs. (B 13) and (B 14)]

intensity of the highest

experimental spectrum.

peak of the convoluted spectrum relative to the

If two electronic states are included in the fit, the

intensity of one may be fixed and the other allowed to vary in order to

determine the relative transition strengths.

the rotational temperature of the anion in Kelvin. A Boltzmann

distribution of anion rotational states is assumed.

the ZEKE FWHh4 in cm-l

the shift in the rotational origin, in cm-]

the baseline added to the convoluted spectrum as a fraction of the

maximum peak height.
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B2.2. Running the program

One runs the program in the usual Unix fashion, by piping in the input file. If one

is calculating standard deviations as well as performing a fit it is usually desirable to run

the program in the background, as in the following example using the input file

“xebr_x_rfin” discussed above:

> nice +19 xfit t xebr_x_rfin > xebr_x_xfout &

>

The output file “xebr_x_rfout” then contains the optimized parameters and standard

deviations, and the convoluted spectrum is saved to the file “xebr_x_fit” named in the

input file.

B2.3. Outline of the program

The program “rfit” is contained in only one file, “rfit.f.” There is no makefile; the

program is recompiled with a command such as:

> f77 -O -o rfit rfit. f -C

The subroutines and functions used by the program are listed in Table B3.
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Table B3. Subroutines and fimctions used by the rotational fitting program “rfit”

Subroutine or Description
Function

tilt main program

optchi general-purpose subroutine implementing the gradient

optimization method

chisquar calculates %2for a given set of fitting parameters

rsticks calculates a rotational stick spectrum given one or two

vibrational stick spectra, and the fitting parameters.

be function to calculate the rotational constant

boltz calculates the Boltzmann factor for a given rotational

temperature and anion rotational state

conzeke convolutes the rotational stick spectrum with the ZEKE line

shape

cp2 compares the experimental and convoluted spectra and

calculates %2
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B3. Source code for the rotational fitting program “dlt”

program rfit

implicit undefined (a-z)
●

real frac,evtocm
parameter (frac=O.l,evtocm=8065. 541)
real vstk(2,2,100)
real temp,org,baseln
real beneu, bean,reneu(2 ),rean
real massl,mass2,rmass
integer ninfil, i,j,k,state (2),j,nvstk(2),rct
integer mpts
character*25 infile(2), outfile,especfil
real relfcf(2), scoef(2)
real fwhmcm, fwhmev,delta, deltawn
real smooth (2,100000),espec (2,100000),espec2 (2,100000),

& rstk(2,500000)
integer nspec
real dfwhmcm, dtemp,dscoef (2),drelfcf(2) ,dorg,dbaseln
real mfwhmcm,mtemp,mscoef (2),mrelfcf (2),morg,mbaseln
real xfwhmcm, xtemp,xscoef (2),xrelfcf(2) ,xorg,xbaseln
real slfwhm, sltemp,slscoef (2),slrelfcf(2) ,slorg,slbaseln
real s2fwhm, s2temp,s2scoef (2),s2relfcf(2) ,s20rg,s2baselr.
logical ufwhm,utemp,uscoef(2) ,urelfcf (2),uorg,ubaseln
real chisq,xinc,chiopt
character*l ans
logical vscoef(2),vrelfcf (2),vtemp,vfwhm,vorg,vbaseln
integer ncomp
real a(30),da(30),ma(30), xa(30), aopt(30),abest (3o)
real sla(30),s2a(30)
logical va(30),ua(30),vl
integer nparm,mode,tout
logical pr
real ncounts, chilast,slast, slope

*

cormnon Iconvl/ fwhmcm,fwhmev,delta, deltawn
common /conv2/ mpts
common Ifuncl bean,beneu
common /rvars/ massl,mass2, rmass,rean,temp,org,baseln
common /ivars/ rct,ninfil
common/arrays/reneu(2) ,state(2) ,nvstk(2),
& relfcf(2) ,scoef(2)
common /comp/ chisq,ncomp
common /comp2/ ncounts
common /opti/ nparm
common /optr/ a(30),abest(30)
common /sticks/ vstk(2, 2,100),rstk(2, 500000)
common /specl/ smooth(2, 100000),espec (2,100000)
common /spec2/ nspec
common /prl/ pr,tout

*_________________________________________________________________
* Read in constants and fitting parameters
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* --------- --------------------------------------------------------

write (*,*)
write (*,*) ‘Rotational Fitting Program’
write (*,*) “
write (*,*) ‘Choose mode:’
write (*,*) ‘ 1) Fit and find uncertainties’
write (*,*) ‘ 2) Fit only’
write (*,*) ‘ 3) Find uncertainties only’
read (*,*) mode
write(’,’) ‘Type of output:’
write(*, *) ‘ 1) Long -- show all steps. ‘
write(*,*) ‘ 2) Short -- show only optimized values’
read (*,*) tout
write (*,*) ‘Enter name of file containin9 experimental spectrum’
write(’,’) ‘in inverted cm-1 format:’
read (*,*) especfil

*

open (8,file=especfil)
do i=l,99999

read (8,*,end=l12) espec(l, i),espec(2,i)
enddo

112 nspec=i-1
write(*,*)
write (*,*) nspec,’ points read from ‘,especfil
write(*,* ) ‘ranging from’,espec(l,l), ‘ to ’,espec(l,nspec)
if (espec(l,nspec) .lt.espec(l,l)) then
write(’,’) ‘Not@ that experimental file is backwards’
do j=l,nspec

espec2(l,j) = espec(l,nspec-j+l)
espec2(2,j) = espec(2,nspec-j+l)

enddo
do j=l,nspec

espec(l,j) = espec2(l,j)
espec(2,j) = espec2(2,j)

enddo
endif

write(*,*)
write(”,’) ‘How many electron counts at peak (determines the’
write(’,’) ‘uncertainty)?’
read(*,*) ncounts

*

write (*,*) ‘HOWmany vibrational stick input files? (l-2)’
read (*,*) ninfil
do i = l,ninfil

write (*,*) ‘Enter name of vib. stick file’,i
read (*,*) infile(i)
write (*,*) ‘Enter neutral state for ‘, infile(i)
write (*,*) ‘ O) X 1/2 State’
write (*,*) ‘ 1) I 3/2 State’
write (*,*) ‘ 2) II 1/2 State’
read (*,*) state(i)
write (*,*) ‘Enter neutral rmin
read (*,*) reneu(i)

enddo

write (*,*) ‘Enter rmin (angstroms
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read (*,*) rean
write (*,*) ‘Enter masses of atoms (amu) : ‘
read (*,*) massl, mass2

write (*,*) ‘Enter name of file to save fit spectrum: ‘
read (*,*) outfile
write (*,*)
write (*,*) ‘Fitting Parameters: ‘
dscoef(l)=O.
dscoef(2)=0.
vscoef(l)=.false.
vscoef(2)=.false.
vrelfcf(l)=. false.
vrelfcf(2)=. false.
do i=l,ninfil

if (state(i) .ne.1) then
write(*, *)
write(*,*) ‘ Log of coefficient of S1/2 for file ‘,infile(i)
write(*, *) ‘ Vary? (Y/N) ‘
read(*, *) ans
vscoef(i) =(ans.eq. ’y’).or. (ans.eq. ’Y’)
write(’,’) ‘ Find uncertainty? (Y/N) ‘
read(*, *) ans
uscoef(i) =((ans.eq. ’y’).or. (ans.eq. ’Y’))
write(*, *) ‘ Initial value : ‘
read (*,*) scoef(i)
write(*, *) ‘ Step size : ‘
read(’,’) dscoef(i)
write(*, *) ‘ Min, max : ‘
read (*,

else
scoef (i

endif
write(*,*
write(*, *
write(*, *
read(*, *)

) mscoef(i ),xscoef(i)

=0.

Relative intensity of file ‘,infile(i)
Vary? (Y/N) ‘

ans
vrelfcf (i)=(ans.eq. ‘y’).or. (ans.eq.’Y’)
write(*,*) ‘ Find uncertainty? (Y/N) ‘
read(*, *) ans
urelfcf (i)=(ans.eq. ‘y’).or. (ans.eq. ’Y’)
write(*, *) ‘ Initial value : ‘
read(’,’) relfcf(i)
write(*, *) ‘ Step size : ‘
read(’,’) drelfcf(i)
write(*, *) ‘ Min, max : ‘
read(’,’) mrelfcf (i),xrelfcf(i )

enddo
write(*,*)
write(*,*) ‘ Rotational temperature (K):’
write(*,*) ‘ Vary? (Y/N) ‘
read(*,*) ans
vtemp=(ans .eq.’y’).or. (ans.eq.’Y’)
write(*,*) ‘ Find uncertainty? (Y/N) ‘
read(*,*) ans
utemp=(ans .eq.’y’).or. (ans.eq.’Y’)
write (*,*) ‘ Initial value : ‘
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read (*,*) temp
write(*,*) ‘ Step size : ‘
read(*, *) dtemp
write(*,*) ‘ Min, max : ‘
read(*,*) mtemp,xtemp
write(*, *)
write(*,*) ‘ ZEKE instrumental FWHM (cm-1):‘
write(*,*) ‘ Vary? (Y/N) ‘
read(*,*) ans
vfwhm=(ans. eq.’y’) .or.(ans.eq.’Y’)
write(*,*) ‘ Find uncertainty? (Y/N) ‘
read(*,*) ans
ufwhm=(ans .eq.’y’).or. (ans.eq.’Y’)
write*,*)’ Initial value : ‘
read(*,*) fwhmcm
fwhmev = fwhmcm/evtocm
write(*, *) ‘ Step size : ‘
read(*,*) dfwhmcm
write(*,*) ‘ Min, max : ‘
read(*,*) mfwhmcm,xfwhmcm
write(*, *)
write(*,*) ‘ Origin shift from given vibrational sticks (cm-l):I
write(*,*) ‘ Vary? (Y/N) ‘
read(*, *) ans
vorg=(ans .eq.’y’).or. (ans.eq.’Y’)
write(*, *) ‘ Find uncertainty? (Y/N) ‘
read(*, *) ans
uorg=(ans .eq.’y’).or. (ans.eq.’Y’)
write(*,*) ‘ Initial value : ‘
read(’,’) org
write(*,*) ‘ Step size : ‘
read(”,’) dorg
write(*,*) ‘ Mint max : ‘
read(*, *) morg,xorg
write(*, *)
write(*, *) ‘ Baseline (as fraction of intensity) :‘
write(*,*) ‘ Vary? (Y/N) ‘
read(*,*) ans
vbaseln=(ans.eq. ‘y’)or. (ans.eq.‘Y’)
write(*,*) ‘ Find uncertainty? (Y/N) ‘
read(*,*) ans
ubaseln=(ans.eq. ‘y’)or. (ans.eq.‘Y’)
write(*,*) ‘ Initial value : ‘
read(’,’) baseln
write(*,*) ‘ Step size : ‘
read(’,’) dbaseln
write(*,*) ‘ Min, max : ‘
read(’,’) mbaseln,xbaseln

*
*__________________________________________________________________
* Read in vibrational sticks in cm-1 format
* ------------------------------------------------------------------

do i = l,ninfil
j=6+i
open (j, file = infile(i))
do k = 1,100

read (j,*,end=200) vstk(i,l,k), vstk(i,2,k)
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enddo
200 nvstk(i)=k–1

close (j)
write (*,*)
write (*,*) nvstk(i),’ vibrational sticks read from ‘

& ,infile(i)
enddo
write(*,*)

*
*-----------------------------------------------------------------
* Assign initial values to parameters
*_________________________________________________________________

nparm=8
●

a(l)=fwhmcm
a(2)=temp
a(3)=org
a(4)=scoef(l)
a(5)=scoef(2)
a(6)=relfcf(l)
a(7)=relfcf(2)
a(8)=baseln

*

da(l)=dfwhmcm
da(2)=dtemp
da(3)=dorg
da(4)=dscoef(l)
da(5)=dscoef(2)
da(6)=drelfcf(l)
da(7)=drelfcf(2)
da(8)=dbaseln

*

ma(l)=mfwhmcm
ma(2)=mtemp
ma(3)=morg
ma(4)=mscoef(l)
ma(5)=mscoef (2)
ma(6)=mrelfcf(l)
ma(7)=mrelicf(2)
ma(8)=mbaseln

*

xa(l)=xfwhmcm
xa(2)=xtemp
xa(3)=xorg
xa(4)=xscoef(l)
xa(5)=xscoef (2)
xa(6)=xrelfcf(l)
xa(7)=xrelfcf(2)
xa(8)=xbaseln

*

va(l)=vfwhm
va(2)=vtemp
va(3)=vorg
va(4)=vscoef (1)
va(5)=vscoef(2)
va(6)=vrelfcf(l)
va(7)=vrelfcf(2)



va(8)=vbaseln
*

ua (1)=ufwhm
ua (2)=utemp
ua (3)=uorg
ua (4)=uscoef (1)
ua (5)=uscoef (2)
ua(6)=urelfcf (l)
ua(7)=urelfcf (2)
ua(8)=ubaseln

*-------------------------------------------------
* Optimize parameters
*-------------------------------------------------

write(*,1400) ‘FWHM’,‘R.TemP’,’Scoef(l)’, ‘Inten(l) ‘
&, ‘Inten(2)’,’Org. shft.’, ’Baseln.’ChiCSq-Sq.‘

1400 format (8 alO)

if (mode.eq.3) then
call chisquar
go to 403

endi f

call optchi(a, da,ma,xa,va,nparm)

1700 open(15, file=outfile)
do i = 1, nspec

write (15, 74) smooth(l,i), smooth(2,i)
74 format (f10.2,f10.6)

enddo
close(15)
write(*,*)
write(*,*) nspec, ‘ points saved in ‘,outfile
write(*, *)

403 do i=l,nparm
aopt(i)=a(i)

enddo
chiopt=chisq

*----------------------------------------------------------------------
* Find uncertainties by finding displacement in each parameter needed
* to increase chi-square by 1. Parameters are displaceci in steps of
* da(i), and linear interpolation is used to find delta-chi-square=l.
* --------- . ------------------------------------------------------------

if (mode.eq.2) go to 1003
do i=l,nparm

sla(i)=O.
s2a(i)=0.

enddo

do i=l,nparm
if (us(i)) then
write(*,*) ‘Finding uncertainty in a(’,i, ‘)‘

write(*,1400) ‘FWHM ‘,’Rot.Temp’, ’Scoef(l)’,
& ‘Inten(l) ’,’Inten(2)’,’0r9. Shift ’,’Baseline’,
& ‘Chi-Sq. ‘

vl=va(i)
va(i)=.false.
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do j=l,nparm
a(j)=aopt (j)

enddo
*
●

☛

700

●

●

☛

600

*
●

☛

601

800

*
*
*

500

510

——. - —_____________

Pos . uncertainties
------------- —----

chilast=chiopt
slast=O.O
xinc=a(i)+da (i)
if (xinc.ge.xa(i)) then

sla(i)=xa (i)–aopt(i)
go to 601

endi f
a(i)=xinc
call optchi(a, da,ma,xa,va, nparm)
if ((chisq-chiopt) .ge.1) then

sla(i)=a (i)-aopt(i)
go to 600

else
chilast=chisq
slast=a(i) -aopt(i)

endi f
go to 700
----_----_--__------—--—__—__

Linear interpolation for pos.
------—----—---_--— __________

slope= (chisq-chilast) /(sla(i)-slast)
sla(i)=( (1-chilast+chiopt) /slope)+slast
---—----—--——--—--

Neg. uncertainties
---—----—--—— -----

chilast=chiopt
slast=O.O
do j=l,nparm

a(j)=aopt(j)
enddo
xinc=a(i)-da (i)
if (xinc.le.ma(i)) then

s2a(i)=aopt (i)-ma(i)
go to 510

endi f
a(i)=xinc
call optchi(a, da,ma,xa,va,nparm)
if ((chisq-chiopt) .ge.1) then

s2a(i)=aopt (i)-a(i)
go to 500

else
chilast=chisq
slast=aopt (i)-a(i)

endif
go to 800
-------------------__— _______

Linear interpolation for neg.
-----------------------------

slope= (chisq-chilast) /(s2a(i)-slast)
s2a(i)=( (1-chilast+chiopt) /slope)+SlaSt
va(i)=vl
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endi f
enddo

*

fwhmcm=aopt (1)
temp=aopt (2)
org=aopt (3)
scoef (I)=aopt (4)
scoef (2)=aopt (5)
relfcf(l)=aopt(6)
relfcf(2)=aopt(7)
baseln=aopt( 8)

*

slfwhm=sla(l)
sltemp=sla (2)
slorg=sla(3)
slscoef(l)=sla(4)
slscoef(2)=sla(5)
slrelfcf(l)=sla (6)
slrelfcf(2)=sla (7)
slbaseln=sla (8)

*

s2fwhm=s2a(l)
s2temp=s2a(2)
s20rg=s2a(3)
s2scoef(l)=s2a(4)
s2scoef(2)=s2a(5)
s2relfcf(l)=s2a (6)
s2relfcf(2)=s2a(7)
s2baseln=s2a (8)

*
* Print Optimized parameters & uncertainties
*

1003 write(*,*)
write(*, *) ‘Optimized Parameters:’
write(*,*)
write(*,1005)’ ‘t’ ‘t’+sigma ‘r’-sigma ‘

1005 format(a22, 3 all)
do i=l,ninfil

if (state(i) .ne.1) then
write(*,lOll) ‘109(S1/2 Coef.) ‘Ji,scoef(i), slscoef (i),

& s2scoef(i)
write(*,lOll) ‘S1/2 Coef. ‘,i,lO**scoef(i) ,

& 10** (scoef(i)+slscoef(i) )-10**scoef(i) ,
& -(lO**(scoef (i)-s2scoef(i) )-10**scoef(i) )

endi f
write(*,lOll) ‘Rel. Intensity ‘,i,relfcf(i), slrelfcf (i),

& s2relfcf(i)
enddo
write(*,lOIO) ‘Rot. Temp. (K)’,temP#sltemPts2temP
write(*,lOIO) ‘ZEKE PWHM (cm-l)’,fwhmcm,slfwhm, s2iwhm
write(*,lOIO) ‘Origin Shift ’torgtslorgts20rg
write(*,lOIO) ‘Baseline’ ,baseln,slbaseln, s2baseln

1010 format(a22, 3 fll.6)
1011 format(a21, il, 3 fll.6)

write(*,*)
write(*,1030) ‘Chi-Square’ ,chiopt

103o format(a22,f11.6)
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write (*,*)

end
*
*--------------------------------------------------------------------------------------------------------------------------------------
* Subroutine to find optimal parameters, given starting parameter
* values, a; parameters to vary, va; min and max parm values, ma,
● xa.
*=....=..=.=...===================..===..=====.===......===.........

●

☛

●

☛

☛

☛

subroutine optchi(a, da,ma,xa,va, nparm)
.

parameter (frac=O.l,niter=20)
integer nparm,rct,ninfil
real a(30),da(30),ma(30),xa (30)
real ga(30)
real abest(3O)
logical va(30),vany,pr

real chisq,chibest,chinow, chiprev,gnorm,xinc
integer i,count,ncomp, tout

common /comp/ chisq,ncomp
common /ivars/ rct,ninfil
common /prl/ prrtout
common /spec2/ nspec

Find gradient of Chi-Square

w = .true-
call chisquar
if (tout.eq.2) then
pr = false.

endif
chinow=chi sq
chibest=chisq
do i=l,nparm

abest(i)=a(i)
enddo

count=l
vany=.false.
do i=l,nparm

if (va(i)) then
vany=.true.

endif
enddo
if (.not.vany) then

return
endi f

1500 do i=l,nparm
ga(i)=O

enddo

pr = false.
do i=l,nparm

if (.not.va(i)) go to 300
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a(i)=a(i)+frac’da (i)
call chisquar
a(i)=a(i)-frac*da (i)
ga (i)= (chisq-chinow) /frac

300 enddo
if (tout.ne.2) then

pr = .true.
endif

*---------------------
* Normalize gradient
● ---------------------

gnorm=o .
do i=l,nparm

gnorm=gnorm+ga (i)**2
enddo
gnorm=sqrt(gnorm)
do i=l,nparm

ga(i)=ga(i)/9norm
enddo

*--------------------------------------------------------
* Increment parameters in direction of -gradient & find
* chi-square
● --------------------------------------------------------

1600 do i=l,nparm
xinc=a(i)-ga(i) *da
if (xinc.lt.ma(i))

a(i)=ma(i)
elseif (xinc.gt.xa

a(i)=xa(i)
else

a(i)=xinc
endif

i)
then

i)) then

enddo

chiprev=chinow
call chisquar
chinow=chisq
count=count+l

* ---------------------------------------------------------------------
* Stop search if chi-square hasn’t improved in past niter iterations
*--------------------------------------------------------------- ------

if (chisq.lt.chibest) then
count=l
do i=l,nparm

abest(i)=a(i)
enddo
chibest=chisq

endi f
if (count.ge.niter) then

do i=l,nparm
a(i)=abest(i)

enddo
write(*,*) ‘Chi-Square has not improved in’,niter,

&’ iterations, search stopped. ‘
write(*,*) ‘Best values: ‘
pr = .true.
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call chisquar
return

endif
*_____________________________________________________________
* -Find gradient again if chi-square has increased, otherwise
* continue to increment parameters along same gradient.
*_____________________________________________________________

if (chinow.gt .chiprev) go to 1500
go to 1600
end

*
*-------------------------------------------------------------------___________________________________________________________________
* Subroutine to find chi-square from parameter list a(nparm) .
* a(l)=fwhmcm, a(2)=rot. temp, a(3)= origin shift
* a(4)=scoef(l), a(5)=scoef(2), a(6)=rel inten(l),
* a(7)=rel inten(2), a(8)=baseline.
*-------------------------------------------------------------------___________________________________________________________________

subroutine chisquar
*

integer nparm
real a(30),abest(30)

*

parameter (evtocm=8065.541)
real vstk(2, 2,100),rstk(2 ,500000)
real temp,org
real reneu(2)
integer state(2) ,nvstk(2) ,rct,ninfil
integer mpts
real relfcf(2), scoef(2)
real fwhmcm,fwhmev
real smooth(2, 100000),espec (2,100000)
integer nspec
real chisq
integer ncomp
logical pr

*

common /convl/ fwhmcm,fwhmev,delta, deltawn
cormnon fconv2/ mpts
common /func/ bean,beneu
common /rvars/ massl,mass2, rmass,rean, temp,org,baseln
common /ivars/ rct,ninfil
common/arrays/reneu(2) ,state(2) ,nvstk(2),

& relfcf(2) ,scoef(2)
common /comp/ chisq,ncomp
common/opti/nparm
common/optr/a(30) ,abest(30)
common /sticks/ vstk(2, 2,100),rstk(2 ,500000)
common /specl/ smooth (2,100000),espec (2,100000)
common /spec2/ nspec
common /prl/ pr,tout

*

fwhmcm=a(l)
fwhmev=fwhmcm /evtocm
temp=a(2)
org=a(3)
scoef(l)=a(4)
scoef(2)=a(5)
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relfcf(l)=a(6)
relfcf(2)=a(7)
baseln=a(8)
call rsticks (vstk,rstk,NR)
call conzeke (rstk,rct,espec,nspec, fwhmcm,relfcf(l) ,baseln,

& smooth,NR,NS)
call cp2(espec, smooth,nspec)
if (pr) then
write(*,1405) fwhmcm,temp,scoef(l) ,relfcf(l),

& relfcf(2) ,org,baseln,chisq
endif

1405 format (8 g10.4)
return
end

*
*----------------------------------------------------------------------------------------------------------------------------------------
* Calculate rotational sticks--Note in this subroutine, scoefo
* is assumed to actually be log(scoefo). And SC() is the real coef.
* This is different from the rsticks.f program.
*=====================================--------================ .======

subroutine rsticks (vstk,rstk,NR)
*
* Common variables
*

parameter (evtocm=8065 .541)
common /func/ bean,beneu
common /rvars/ massl,mass2, rmass,rean,temp,org,baseln
common /ivars/ rctrninfil
common/arrays/reneu(2) ,state(2) ,nvstk(2),

& relfcf(2) ,scoef(2)
*

real bean,beneu
real massl,mass2, rmass,rean,temp,baseln
integer rct,ninfil
real reneu(2), relfcf(2),scoef (2)
integer state(2),nvstk(2)

*
*-----------------------------------------------------------------
* Variables local to rsticks subroutine:
*

real omneu,vorg,vfcf,maxstk, jan,jneu,linstr,sc(2)
integer i,k,rc(2)
real vstk(2, 2,100),rstk(2 ,500000),rstk2(2,500000)

*_________________________________________________________________

do i=l,ninfil
sc(i)=lO**scoef (i)

enddo
rmass = massl*mass2/(massl+mass2)
bean = be(rean,rmass)
ret = 1

do i = 1, ninfil

beneu = be(reneu(i), rmass)

if (state(i) .eq.1) then
omneu = 1.5
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else
omneu = 0.5

endi f

do k = 1, nvstk(i)

maxstk = -1
●

☛

☛

*
●

☛

10

*
.
●

20

&

●

☛

☛

30

&

Origin shift parameter ‘erg’ added

vorg = vstk(i,l,k)+org
vfcf = vstk(i,2,k)
jan = O
----------——-----—----—----

-3/2 Branch
——--——--------———---—--—---

jneu = jan - 1.5
if (jneu.lt.omneu) then

go to 20
endif
rstk(l,rct) =vorg+beneu*jneu* (jneu+l)-bean*jan* (jan+l)
if (state(i) .eq.1) then

linstr=O .5*(jan-l)*(jan-2 )/(2*jan-1)
else

linstr=l.5*jan* (jan-1)/(2*jan-1)
endif
rstk(2, rct)=vfcf*boltz (jan,temp)*linstr
ret = ret + 1
———-—-——------—---—----—-

-1/2 Branch
------————----——----—---—

jneu = jan - 0.5
if (jneu.lt.omneu) then

go to 30
endi f
rstk(l,rct) =vorg+beneu*jneu* (jneu+l)-bean*jan* (jan+l)
if (state(i).eq.1) then

linstr=l.5*jan*(jan-1)/ (2*jan-1)
else

linstr=sc(i) ‘jan
+0.5*jan*(jan+l)/(2*jan-l )

endif
rstk(2, rct)=vfcf*boltz (jan,temp)*linstr
ret = ret + 1
--------————----———--—--—

+1/2 Branch
-———-—-------———-------—-

jneu = jan + 0.5
if (jneu.lt.omneu) then

go to 40
endi f
rstk(l,rct) =vorg+beneu’jneu’ (jneu+l)-bean*jan* (jan+l)
if (state(i).eq.1) then

linstr=l .5*(jan+l)*(jan+2 )/(2*jan+3)
else

linstr=sc (i)’(jan+l)
+0.5*jan*(jan+l)/(2*jan+3 )

224



*
*
*

40

50

endif
rstk(2,rct) =vfcf*boltz (jan,temp)*linstr
ret = ret + 1
-------------------------

+3/2 Branch
-------------------------

jneu = jan + 1.5
if (jneu.lt.omneu) then

go to 50
endi f
rstk(l,rct) =vorg+beneu*jneu* (jneu+l)-bean*jan* (jan+l)
if (state(i).eq.1) then

linstr=O. 5*(jan+2)*(jan+3) /(2*jan+3)
else

linstr=l .5*(jan+l)*(jan+2) /(2*~an+3)
endif
rstk(2,rct) =vfcf*boltz (jan,temp)*linstr
if ((rstk(2,rct)/vfcf) .gt.maxstk) then
maxstk = rstk(2,rct)/vfcf

endi f
ret = ret + 1

jan = jan + 1
if ((rstk(2,rct-1)/vfcf) .lt.(maxstk*O.05)) then

go to 500
endi f
go to 10

500 enddo

rc(i)=rct-1

enddo

ret = ret-l
*
*-------------------------------------------------------------
* Normalize sticks so that largest stick = relfcf(i)
* Normalize electronic states separately.
*--------------------------------------------------------- ----

maxstk = O.
do i = l,rc(l)

if (rstk(2,i) .gt.maxstk) then
maxstk = rstk(2,i)

endif
enddo

do i = l,rc(l)
rstk(2,i) = rstk(2,i)*relfcf(l)/maxstk

enddo
*

if (ninfil.gt.1) then
maxstk = 0.
do i = rc(l)+l,rc(2)

if (rstk(2,i) .gt.maxstk) then
maxstk = rstk(2,i)

endif

225

— .-,’Cm.. .,-. - -z .??.-7.,-..7.- .-. , .—.-.. -T--nTr!%mzI-n7.-r- .-m.~,~
-,-. -



enddo

do i = rc(l)+l, rc (2)
rstk(2, i) = rstk(2, i)*relfcf (2)/maxstk

enddo
endif

●

c write(*,*) ret, ‘ rotational sticks generated’
*
*
● Sort rsticks into bins
*

cmmax=O.eO
cmmin=99999.eO
do i=l,rct

if (rstk(l,i).gt.cmmax) cmmax = rstk(l,i)
if (rstk(l,i).lt.cmmin) cmmin = rstk(l,i)

c write(*, *) rstk(l, i),cmmax,cmmin
enddo
delt = l.OeO !* 1 cm–l bin size

nbins = int( (cmmax-cmmin)/delt) +1
write(’,’) cmmax,cmmin,nbins, ‘ cmax, cmin, nbins’
do i=l,nbins

rstk2(l,i) = real (i)*delt+cmmin
rstk2(2,i) = O.eO

enddo
do i=l,rct

ibin = int((rstk (l,i)–cmmin)/delt)+l
rstk2(2,ibin) = rstk2(2, ibin)+rstk(2 ,i)

enddo
ret = nbins
do i=l,rct

rstk(l, i)=rstk2(l,i)
rstk(2, i)=rstk2(2,i)

enddo

write(*, *) ret, ‘ bins’

return
end

*______________________________________________________________________________________________________________________________________
● Function to calculate rotational constant, from Re in angstroms,
* reduced mass in amu.
*______________________________________________________________________________________________________________________________________

real function be(re,rmass)

real mi,re,rmass
*
* Calc . moment of inertia in kg mA2
●

mi = 1.66054e-l * rmass * (re**2)
be = 2.79928 / mi
end

*

LI

*____________________________________________________________________________________________________________________________________
● Function to calulate anion Boltzmann distribution.
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* Note that line strength already includes degeneracy.
*============-----===.--------===============...====== .........=...

real function boltz(jan,temp)
*
● Convert temp in K to cm-1
*

common /func/ bean,beneu
real jan,temp,tempk,er
real bean,beneu

tempk = 0.69504*temp

er = bean*jan*(jan+l)
boltz=2.71828**(-er/tempk)
return
end

*======================-----------------------------------------------_______________________________________________

subroutine conzeke (rstk,nsticks,espec,nexp, fwhm,relfcf,bline,
& ospec)

*================ ================ ===---------------——-—------—--------__________________________________
*
*
*
*
*
*
●

☛

☛✎

☛

☛

☛

☛

☛

Convolutes stick spectrum with ZEKE lineshape from fit to bromine
atomic data, form

y=(a*x+b*xA3) /(l+c*xA2+d*x”4)
Sticks are assumed to already be sorted from low to high cm-1.

Input: rstko rotational sticks
nsticks number of rotational sticks
espec () experimental spectrum
nexp number of points in experimental spectr’um
fwhm FWHM (cm-1) of ZEKE lineshape
relfcf intensity of largest peak (usu.=1)
bline baseline as fraction of relfcf

* output : ospec () output (convoluted) spectrum
* (same number of pts as espec)
*
*

implicit undefined(a-z)
*

integer nsticks,nexp
real fwhm,bline

integer i,j
real wn,cmax,con,a,b, c,d,cc,xl,

& wn2,x2, chisq,relfcf,rstk(2 ,500000),espec(2,100000) ,
& ospec(2,nexp)

parameter (a=l.3342091765e0,
& b=0.0059500947e0,
& c=O.40742214e0,
& d=0.022329373eO)

*

xl = 0.43eO*fwhm
cc = 3.2e0/fwhm
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cmax = O.
*

chisq = O.
do i=l,nexp !* Loop over exp points

wn = espec(l,i)
wn2 = Wn + xl
ospec(2,i) = O.OeO
ospec(l,i) = wn
do j=l,nsticks !* LOOp over sticks

if (rstk(l,j).lt.wn2) then
x2 = (wn2 - rstk(l,j))
con = rstk(2, j)*(a*(x2*cc) +b*(x2*cc)**3)/

& (1.0dO+c’(cc*x2) **2+d*(cc*x2 )“4)
ospec(2,i) = ospec(2,i) + con
endi f

enddo
if (ospec(2,i) .gt.cmax) then

cmax = ospec(2,i)
endif

enddo

do i=l,nexp !* Normalize
ospec(2, i)=relfcf* ((ospec(2,i)/cmax)*(l .OdO-bline)+bline)

enddo

return

end

*---------------------------------------------------------------------------——-————-----—------—------ -----_--_------—___— _________________

* Compare experimental and simulated spectra, assuming they have the
● Same number of points and same x-components--no interpolation
* ao contains exp. spectrum. ncounts is number of electron cojlnts.
*------------------------------------------------------------------------------------------------------------------------------------------

subroutine cp2(a,b,n)
integer n
real a(2,n),b(2,n)
real chisq
integer i,ncomp
real ncounts

common /comp/ chisq,ncomp
common /comp2/ ncounts

ncomp=n
chisq=O
asigma=(sqrt (ncounts))/ncounts

do i=l,ncomp
chisq=chisq+ ((a(2,i)-b(2,i))/asigma)**2

enddo
end
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Appendix C. Simulated Anneating

Cl. Introduction

One problem we face in trying to understand the energetic of a cluster containing

many atoms or molecules is determining the global minimum equilibrium geometry.

Especially in the case of the weakly bound clusters considered in this work, the number

of possible isomers increases dramatically as one adds more atoms. For example a

cluster of 13 identical Lennard-Jones atoms has 988 stable, distinct geometric isomers. 1

It is also known that for large clusters the number of local minima increases

exponentially with the number of atoms.2 often there are many local minima located

close in energy to the global minimum energy geometry, and this makes the problem of

finding the global minimum non-trivial.

C2. Brief survey of methods of finding global minima of clusters

If one had an arbitrarily fast computer, the problem of finding the global

minimum would simple. One could simply calculate the cluster potential at all points on

as small a grid as required to locate the minimum. In this “brute force” approach, it

would be necessary to calculate the potential points on a 3N-6 dimensional grid (N being

the number of atoms in a polyatomic cluster). If a 100 point grid were used, this would

amount to 106, 10IZ and 1018 calculations of the potential for 3, 4 and 5 atom clusters,

respectively. Hence, we can see that with currently available computers, such a “brute

force” calculation is impractical for clusters with more than 3 or 4 aioms. In the case of

some small clusters, this approach could be speeded up by making assumptions about the

L
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symmetry of the equilibrium geometry. However this is not a generally used technique

for large clusters and will not be considered further.

Many algorithms are available for finding the minimum of a mathematical

function when initial values of the independent variables are assumed.3,4 These include

gradient minimization,4 the simplex method,3 and conjugate gradient methods.s If the

internuclear coordinates of the cluster are taken to be the independent variables and the

potential energy the function, then any of these methods maybe used to efficiently find a

minimum on the potential energy surface. The problem with all of these techniques when

used by themselves, however, is that they cannot distinguish between local and global

minima. For a given initial configuration of atoms, the minimization algorithm may

become trapped in a local minimum.

One approach that may be used to try to locate the global minimum energy

structure is to apply the minimization algorithm repeatedly, with many different--possibly

randomly chosen--starting geometries, and with luck and persistence the global minimum

may be stumbled upon in this way. This is a viable approach, but it suffers from the

drawback that it is hard to determine if one has found the true global minimum. Also it is

not a very systematic approach, relying as it does on random or arbitrarily chosen points

on the potential energy surface.

Another quite elegant method for finding the global optimum of a system was

first developed and applied to problems in computer design by Kirkpartick et al.s This is

the method of simulated annealing, which was based on the Metropolis Monte-Carlo

algorithm6 originally developed as a general-purpose tool for characterizing the
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properties of large collections of interacting molecules at a given temperature, i.e., a way

of simulating a canonical ensemble of particles at equilibrium.

(1)

(2)

(3)

(4)

(5)

The original Metropolis Monte Carlo rnethodG may be outlined as follows:

An arbitrary initial configuration of the system is chosen. .

A random displacement is made in the system.

The change in the energy, AE, of the system is calculated.

If A.E<O,the move is accepted, the system is reset with the new configuration, and

the simulation continues again with step 2.

If ADO, the move is allowed with a probability of exp(-AE/k7), where k is the

Boltzmann constant and T is the temperature. In practice, this is implemented by

choosing a random number, ~, ktween O and 1, and allowing the move if ~<exp(-

AE/kT).

Metropolis et al. showed that this if one averages any property of interest over

each step in the simulation, one may calculate accurate values of thermodynamic

properties, the accuracy being limited only by the duration of the simulation (and of

course by the accuracy of the model interaction potential between the particles).

To illustrate how the Metropolis algorithm is applied to global op~imization, we

begin by following the discussion in Press et al.s of the simulated annealing method

applied to the “traveling

travel to a large number

salesperson” problem. In

of cities, visiting no city

this problem, a salesperson must

more than once, and the cost of

traveling between the cities is proportional to the distance between the cities. The

problem then consists of finding the order of cities that minimizes the cost. This is a
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problem in discrete combinatorial mathematics. According to Kirkpatrick et al-s there is

no known algorithm for finding an exact solution to this problem for which computation

time does not scale exponentially with the number of cities visited. This is consistent

with our above discussion of the scaling of the ‘brute force’ approach for finding the

global minimum energy of a cluster. However, according to Press et al., “simulated

annealing has effectively

difficulty in this problem

‘solved’ the famous traveling salesman problem... “s The

lies in the fact that there are many possible near-solutions--

solutions close in cost to the optimal solution, as is the case in the cluster problem.

simulated annealing algorithm for a discrete combinatorial problem such as this is:

The

(1)

(2)

(3)

(4)

(5)

(6)

Choose an initial ordering (permutation) of the set of cities.

Calculate the “cost function” or “objective function,” which we will also call E,

which in this case is the sum of the distances between the cities taken in order.

Rearrange the ordering of the cities.

As in the Metropolis algorithm, evaluate E for the new permutation and keep the

move if E is reduced, or, if E is increased, keep the move with a probability

proportional to exp(-E/kT). In this specific example, of course, k no longer has

the same value as the Boltzmann constant, but may be considered a scaling factor

between the cost function E and an effective “temperature,” T.

Run the Metropolis algorithm for a large number of iterations, to allow the system

to “e~~ilibrate.”

Gradually reduce the effective temperature,

schedule,” until the system becomes “frozen,”

the arrangement of order of visiting the cities.
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Press et al. 3 provide a computer program to explicitly treat the traveling

salesperson problem by simulated annealing, as well as an excellent introduction to the

concepts of simulated annealing and other optimization methods.

The beauty of the simulated annealing algorithm as shown in this example is that,

unlike the direct minimization procedures mentioned above the algorithm is

likely to become trapped in local minima. The reason for this is that the

interest is allowed to explore a portion of phase space at each stage in the

much less

system of

annealing

schedule, and moreover, “uphill” moves are allowed, according to the Boltzmann

distribution. Thus, even if the system finds itself within a local optimum during the

procedure, it has a chance to “escape” to find the global optimum.

Kirkpatrick et al. confined their discussion to discrete systems, and simulated

annealing has since been used extensively in VLSI design and for other discrete

combinatorial problems. The implementation of a simulated annealing algorithm

bcomes more complicated in the case of a problem involving continuous variables. A

large part of the problem lies in the optimal choice of step sizes and directions. This

problem has been discussed at length by Vanderbilt and Imuie.T

The problem of finding the global minimum energy of a cluster is, of course, a

problem involving continuous variables. Monte Carlo approaches have been successfully

used to such problems; see, for example, Ref. 8. Another approach is also used for

physical systems, in which the molecular dynamics (MD) methods are used to simulate

the actual motions of the atoms and molecules in the system. Various methods are used

to adjust the system in order to produce a distribution kinetic energies corresponding to a
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certain temperature. These methods are described in more detail in the following

sections. Then, as in Monte Carlo methods, the temperature is reduced according to an

annealing schedule, until the system freezes at the global minimum configuration.

The molecular dynamics approach to simulated annealing has the advantage of

intuitive simplicity, and a closer resemblance to the actual behavior of a physical system.

Thus it is the method of choice if one wishes to study such things as the dynamics of

cluster formation. However, if one wishes to simply find equilibrium geometries, the

molecular dynamics method would seem to be more computationally time-consuming

than the Monte-Carlo approach. This is because to perform a MD simulation one must

calculate forces as well as potentials in order to solve the equations of motion. The MD

approach was used for the current studies because easily-adapted pre-existing MD

programs were available, not because of considerations of computational efficiency. To

our knowledge no systematic study has been made of the relative computational

efficiency of the Monte Carlo and MD simulated annealing methods.

C3. Molecular dynamics simulated annealing

In this section we describe our approach to simulated annealing, which is based

on a molecular dynamics program obtained from Prof. C. C. Martens (UC Irvine). First

we review the basics of constant-energy (microcanonical) molecular dynamics simulation

methods. We then discuss how to implement constant-temperature molecular dynamics

(to simulate a canonical ensemble). Finally we discuss a modification of the latter

method for simulated annealing.
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C3.1 Microcanonical molecular dynamics

The basic problem that we will deal with here is how to simulate the motions of

atoms which interact according to potential energy functions. Our treatment is drawn

mainly from the book Computer Simulation of Liquids, by M. P. Allen and D. J.

Tildesley,g which discusses these issues in much more depth, and is an essential resource

for anyone interested in molecular dynamics simulations. We assume that the Bom-

Oppenheimer approximation is valid, and treat the atoms as points interacting according

to classical mechanics. The problem then becomes how to solve the equations of motion

of a set of i atoms with masses m; and momenta pi at positions r; under the influence of

the potential V(ri) due to interactions with the other atoms. The equations of motion can

then be represented by:g

wheref, is the force on atom i.

Of the many algorithms

d–q=%
dt m,

(cl)

~P, =–VV(r, ) =f i
(c~)

available for solving the equations of motion, the most

commonly used methods in molecular dynamics computations are the Gear predictor-

corrector algorithm, which solves the set of f~st order differential equations given above,

and the Verlet algorithm, which treats the problem in terms of a singleset of second

order differential equations. Both of these are finite difference methods, i.e. methods

which start from an initial configuration and propagate the equations forward in time.

For a discussion of the relative merits of these and other methods, see Allen and

Tildesley.g Well-documented computer code to implement these algorithms as described
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in Allen and Tildesley’s book may be obtained from the website:

httP://toucm.uhv. bris.ac.uMAllenTildesleYAom.htti. The program used in this work

employs the Gear predictor-corrector algorithm. Hence we confine our discussion to a

brief description of this method.

As the name implies, the Gear algorithm takes place in two steps, a prediction

step, and a correction step. In the first step, the configuration of the atoms are estimated

from the previous configuration by a truncated Taylor expansion around the time, t. The

program used in this work is a six-value Gear algorithm provided by the group of Prof. C.

C. Martens. 10 We show here the f~st step of this algorithm, using the notation of Allen

and Tildesley:

rp(t + ~t) = r(t) +~tv(r) +~&za(t)+~&3b(t) +~&4c(t)~8t5d(t)

VP(I +&)= v(t) +&a(t) +~6t2b(t)+~&3c( r)+~6t4d(r)

ap(f +&)= a(t) +&b(t) ++&2c(t)+~&3d(t)

bp(t + &) = b(f) +&c(f) ++& ’d(f)

Cp(t+&)= C(f)+iid(t)

dp(t +&)= d(t)

(A3)

Here, r, v, and a stand for the set of positions, velocities and accelerations of all of the

atoms, b and c stand for the first and second time derivatives, respectively, of the

acceleration, and & stands for the time step. The superscript p indicates that these are

predicted values.

The equations of motion are introduced in the second, “corrector,” step. In this

step the forces are calculated from Eqs. (C 1) and (C2) from the predicted positions r at

time ?+&. Then the “correct” accelerations a’ are calculated tlom Equation (C3). The

error in the predicted accelerations are then estimated from
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Aa(f+&)=ac(r +&)-a’(l+&). (C4)

Finally, the initially predicted values are corrected using this estimated error in the

acceleration:

rc(f+&) =rp(f+&)+cOAa(t+&)

vC(t+&)= vp(t+&)+c,Aa(f+&)

aC(t+&) =ap(t+&)+c2Aa(t +&)

bc(f+c%) = bp(r+&)+c,Aa(t +&)

Cc(t + bt) = Cp(?+ &)+c4Aa(? + at)

dc(t+c%)=dp(t +&)+c,Aa(t+&)

(C5)

The coefficients co,...,C4 are chosen to optifize the stability and accuracy of the

algorithm, and suggested coefficients given by Gear.

C3.2. Constant temperature molecuiar dynamics

The method in the above section is used to simulate atoms in the microcanonical

ensemble, i.e., with total energy conserved. The temperature of a cluster simulated in this

way is not a well defined quantity, but follows a distribution, as the kinetic energy is not

constant during the simulation. One method that has been used to simulate a canonical

ensemble of atoms is to periodically rescale the velocities of all the particles by a factor:

(C6)

where T1.,g is the desired temperature of the system and Tdv~ is the average kine(ic

temperature of the system calculated from:

(C7)
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where N is the total number of atoms, k is Boltzmann’s constant, and (KE) is the average

kinetic energy from the preceding time interval. This and other methods of constant

temperature MD are described by Allen and Tildesley.g.

C3.3. Using the resealing of velocities for simulated annealing

Our implementation of simulated annealing using molecular dynamics was

suggested by modification of the above constant-temperature MD algorithms described

above in which the velocities are resealed at each time step by a factor involving a time

constant that governs the relaxation rate towards the desired “constant” temperature.g

This suggested a method of setting the annealing schedule where the average kinetic

energy of the cluster is decreased by resealing the velocities of the atoms by the factor

.=Jl+&[*-l], (C8)

where tCOnS,is the time constant, and At is an interval of a number of time steps--in our

application about 100-1000 time steps were used for At. The target temperature is then

set to a number very small number, and the cluster is allowed to relax to this temperature.

Whether or not this type of

other schedules are possible.

annealing schedule is optimal is open to debate, as many

C4. Documentation of the simulated anneaiing program “amain.f”

In this section we discuss in detail our implementation of the simulated annealing

problem as applied to the Rg~X systems, including examples of how to run the program,
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as well as a discussion of the construction of the program for those who wish to modify

it,

C4.1 The input file

In order to run the simulated annealing program one must supply a parameter file

containing the pair potential parameters, flags to indicate which many body forces to

include, and so on. A sample parameter file is given below, followed by a discussion of

each of its components. This example is for the ~cl- anion without any many-body

forces included, titled “in 1”:

1: 7.28 !* argon mass (me*10000)
2: 23.13 !* iodine atom mass (me*10000)
3: 0.03794 !* ar-ar epsilon for Lennard-Jones

4: 0.05935 !* ar-I epsilon for LJ

5: 64.34 !● ar.ar sigma for ‘J

6: 68.35 !● ar-I sigma for ‘J

7: 10000 !* nstep used in thermgen

8: 250 !* nskip used in thermgen

9: 250 !* ntconst (time constant for thermgen, in steps of h)

10: 1000 !* nave (n~er of steps for averaging run)

11: 2. !* time step (au*100)
12: 0.00000001 ‘* desired final temp. in kelvin used in thermgen
13: 526878 ;* dseed (seed for random number generator)

14: 0.000 !* esc~le (Initial energy in ‘v)

15: 7. !. boxsize (An9.)

16: 3.5 !* cutoff (Ang.)
17: 6 !● ncluster (ntier of rare gas atoms)

18: 2 !* ~r=ot (~.m poten: 1 for LJ, 2 for Aziz)
I* nhalpot (1 anion,19: 1 . 2 neut, 3 neut central cliff, 4 anal neut)

20: 1 !* neigval (1, 2 for X; 3,4 for I; 5,6 for II)
21: 1.Od-5 !* delta (for numerical derivatives, A.ng)
22: 0.01 !* gstepin (initial step for gradient minimization, Ang)
23: l.Od-11 !* gsmall (convergence criterion for gradient rein,eV)
24: 0 !* indflag (3 body induction, old model 1 on, O off)
25: 0 !* iexqflag (Charge–exchange quadruple, Jansen model, I on,

o off)
26: 0 !* indi (iterated induction--dipoles only, 1 on, O off)
27: 0 ;* iexqd (distributed dipole exchange quadruple, 1 on, O

off)
28: 0 !* ind~ (charge induced Rg quadrupoles--not iterated,

O=off, l=on)
29: 0 !* iexg (charge-Gaussian exchange, O=off, I=on)
30: 0 !* indqi(iterated dipoles & quadruples, O=off, l=on)
31: 0 !* iaxtel (~ilrod-Teller, O=off, l=on)
32: 2 !* ninit (1 pOs. from file, 2 rand. pos save to file, 3 to

240



33:
34:
35:

36:

37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:

49:
50:
51:
52:
53:

restart, 4 to restart with average, 5 Pos from file avg
only,6 grad rein)

1.6419 !* polind (RG polarizability AngA3 for 3-body ind)
11.08 !* polrg (RG polarizability, aOA3, for iterated induction)
52.7 !* polx (halide polarizability, aOA3, for iterated

induction)
27.11 !* pqrg (RG quadruple polarizability, aOA5,= C Buckingham

defn. )
254. !* pqx (halide quadruple polarizability, aOA5) 254.
0.936 !* betaexq (Exchange quadruple range parameter, Ang’-l)

6.5 !* ~utexq (exchange quad cutoff distance, -9)

2086. !* theta6 (Rg quadruple dispersion coeff, e*aOA8)
179. !* c9anion (eV*AngA9)
130. !* c9neut (eV*AngA9)
0.94268 !* soconst (eV)
0.0458, 4.07, 5.70, 4.45, 1.08, 1.62, 279.5, 3537. !* Anion MMSV
0.0188, 3.95, 7.15, 6.18, 1.01, 1.62, 5234., 38032. !* x1/2 MMSV
0.0139, 4.18, 7.25, 6.30, 1.04, 1.62, 7079., 51439. !* 13/2 MMSV
0.0160, 4.11, 6.90, 6.40, 1.04, 1.64, 6150., 44688. !* 111/2 MMSV
0.0123422, 3.7565,10.77874743 ,1.8122004 t2.26210716e5 ,1.10785136,
0.56072459,0.34602794,1 .36 !* Argon HFD-B parameters

init_config_6
output_filel_6
restart_filel_6
average_filel_6
poten_filel_6

Note that the line numbers in boldface are not included in the actual file, but are

shown here for reference purposes. A1153 Iinesof the file must represent, regardlessof

whether an anion or neutral simulation is b-eingperforrned, or which many-body potential

options are in use. The comments after the “!*” symbols are ignored by the program; in

some cases the variable name used in the program is given in this comment field, aswell

as a brief explanation of its meaning. Note that comments are not allowed after lines

containing filenames (lines 49-53), and will cause the program to crash.

Lines 1 and 2 are the masses of the rare gas and halide, respectively, in units of

10000~, where ~ is the atomic unit of mass (i.e., the electron mass). Lines 3-4 are

Lennard Jones parameters, which were not used in the present application. One does

have the optionto usethe Lennard Jones parameters for the Ar-Ar potential, however one

maynot use the many-body forces with this option.
,
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Lines 7-14 provide information about the timescale of the simulation and the

annealing schedule. The basic time step of the simulation is set by Line 8, in 10OrO

(where To is the atomic unit of time, equal to approximately 0.024 fs). Thus the value of

2 in the sample input file corresponds to a time step of about 5 fs. Line 7, nstep is[he

total number of MD steps in the simulation. Line 8, nskip isthe number of MD time

steps between energy resealings. Line 9, ntconst, isthe time constant,in units of

number of MD steps, that determines the factor by which the energies are resealed after

each nski~ number oftimesteps,by theequation(SeeChapter4,Section4.4.2):

Typically, when starting with a random configuration of atoms, we set ntconst equalto

nskip, so thatthe resealingfactoris close to O (because for SA we normally set

KE,a,~<<E.,.~) and energy is removed as fast as possible from the cluster. When the

simulated annealing run, the cluster is allowed to run, and the average positions of [he

atoms are determined during this “averaging run.” Line 10, nave, indicates the number

of time steps to perform this averaging. Line 12 is sets the desired final temperature for

the simulation, which is used to directly calculate KE rargin the above equation. When the

program isused forsimulatedannealing

possible. In other applications, i.e.,

this line should be set as arbitrarily close to O as

MD simulation of a system at a non-zero

temperatures, this could be set to higher temperatures,

so that this variable could be used to set the annealing

seed for the random number generator, and may be any

or one could modify the program

schedule. Line 13, dseed, isthe

integer. Note thatthe sequence of

“random” numbers produced by the program is entirely determined by the initial choice
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of seed. Thus & one does not change dseed one will produce identical initial

configurations of atoms, and lf all the other parameters for the anneal are the same, one

will arrive at identical final configurations. ~erefore it is essential to change dseed

eve~ time one wishes to start with a “fresh” initial configuration.

initial total kinetic energy, in eV, given to the atoms. This energy

among all the atoms. In general, for the fust step when the atom

chosen with a box, escale is set to O, so that the initial kinetic

Line 14, escale, is the

is distributed randomly

positions are randomly

energy of the atoms is

determined only by the potential of the other atoms. If escale is set to a larger value, the

atoms tend to evaporate out of the box.

Lines 15-17 determine the initial placement of the atoms in a box when the flag

ninit (line 32) is set to 2. When this flag is set, the atoms are placed randomly within a

cubic box with the side dimension boxsize (line 15) given in Angstroms. The initial

configuration of the atoms is not allowed to contain any pairs closer together than cuco f f

(line 16). The value shown, 3.5 ~, was found to be usefid so that the initial configuration

does not contain atoms in highly repulsive regions of the potential surface, which would

lead to rapid evaporation. Line 17 gives the number of rare gas atoms (the number of

halide atoms is always assumed to be one). This initial configuration is saved to the file

named in line 49, here called “init_config_6.” The format of this file is explained in

detail below.

Lines 18-21 are integer inputs that tell the program what kinds of pair potentials

to use. Line 18 nrg-pot may be set to 1 to use the Lennard-Jones form for the Rg-Rg

interaction, or to 2 to use the more accurate Hartree-Fock Dispersion (HFD-B2) form. 11

The parameters for the Ar-Ar I-IFD-B2 potential are given in line 48, listed in the same
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order as in Ref. 1]. In all of the simulations in this work, the I-IFD-B2 form was used for

the Ar-Ar pair potential. Line 19, nhalpot, indicates whether to calculate the anion or

neutral potential. If nhalpot is set to 1, the anion RgnX- potential is used, with the anion

MMSV parameters given in line 44 and many body terms as described below. If

nhalpot issetto 2, 3 or 4, the neutral RgnX potential is calculated according to the

method outlined in Chapter 4. If nhalpot is set to 2 or 3, the neutral eigenvalues are

calculated by numerical diagonalization of the 6x6 matrix Eqn. (4.16) of Chapter 4. Line

21 specifies the displacement, delta, in ~, to be used for calculation of the forces from

the potentials. For nhalpot equal to 2, the forces are calculated by finite difference,

whereas if n.halPot=3, the forces are calculated by central difference, which in principle

should give more accurate values of the forces.3 However the calculation runs somewhat

slower with nhalpot=3, and the precise values of the forces are not extremely significant

for simulated annealing applications, so it is not recommended to run in the mode. When

nhalpot is set to 4, the neutral eigenvalues are found analytically, resulting in an

approximate tenfold increase in speed. Therefore, this is the recommended mode of

operation for calculation of neutral potentials. The numerical mode of calcu Iat ion may

be used as a check on the analytical calculation.

Line 32, ninit, specifies the mode of operation of the program. These modes are

explained below. When ninit is equal to:

1. The initial positions and momenta of the atoms are read in from the file named in

line 49, here called “init_config_6,” the final configuration is save in the file

named in line 51, here “restart_file 1_6° the configuration after the annealing run
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is save in the file named in line 52, here “average_file l_6,” and the final total

potential is saved in the file on line 53, here named “poten_filel_6;”

2. The atoms are placed at random in a box, and if escale is non-zero, are given

initial kinetic energies totaling escale. This initial configuration is save in the

file named in line 49, and the output files are saved as described above for

ninit=l;

3. The program isrun Withtheinitialconfigurationtakenfrom thefilenamed in line

51 (“restartfilel_6”), and the final configuration is saved to this same file; the

“average” and “poten” files are also updated after running in this mode, but the

“init_config” file is not modified; this mode of operation is used if one wishes to

“restart” the simulation from the point where the previous simulation ended.;

4. The program is run as if nini t=3, above, except that the initial confi=-ration is

read in from line 52, here “average_file l_6;” this mode is useful for rapid cooling

of a cluster when it is near a minimum configuration;

5. In this mode, the initial positions and momenta are read in from the file named in

line 49 (“init_config_6”), and only the averaging run is performed, the results of

which are saved in “average_filel_6” (line 52); the simulated annealing

procedure is not performed in this mode; this mode is useful to get an idea of the

standard deviations in atomic positions and potential energy of a given

configuration;

6. In this mode, the initial positions are read in from the file specified in line 49, and

a gradient minimization procedure is performed; the final potential is saved in the
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file named in line 53, but the final configuration is not saved. This mode is used

to quickly optimize the potential when one is veryneartheminimum.

In allmodes of operation, an output file, named in line 50 is produced, which contains

information about the cluster geometry, potential, etc., and is described in detail below.

Lines 24-31 are flags which turn on or off various many-body interactions.

Except for the Axilrod-Teller interaction (line 31), these flags are only applicable to the

anionic clusters and are ignored by the program when a neutral cluster is being simulated.

Lines 24, 26, 28 and 30 specify various modes of implementation of the induction

effects described in Chapter 4. When line 30, indqi, k setto 1, the fulliterative

procedureincludinginduceddipolesand quadruples isperformed forfindingthe non-

addictive energy. This mode was used to obtain the results presented in Chapter 4. The

other flags may be set to implement simpler (and faster running) models of the non-

addictive induction energy. If line 26, indi,issetto 1,theiteratedinductionprocedureis

performedneglectingthequadruple moments oftheatoms. The inclusionofquadruple

inductioneffectsisan extensionof the method as originallyintroduced]2 and as usually

implemented for simulationsof polarsolvents,as for example by Jedlovzky et al., 13

which normally stop at the dipole term. However, it seems that the quadruple non-

addictive portion contributes significantly to the non-additive energy in the case of highly

polarizable anions and moderately polarizable rare gases such as Ar. It is probable that

simulations involving highly polarizable rare gases, such as those of the XenI- clusters

that are currently underway in the Neumark group, the quadruple induction effect

should be quite significant.

/.
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men indflag isset(line~) a simpler

used. In thiscase,we onlyconsiderthedipoles

model of the many body interaction is

induced in the rare gases by the halide

charge, and the pair interactions between these induced dipoles. Then for an RgnX-

cluster, the non-additive induction energy is approximated by

[

ynd=~~ ~i”~j-

+~i-%)(~i%)

,<j Rv 4; 1
(Clo)

where RU is the vector from rare gas atom i to rare gas atom j, P, is the dipole moment

induced by the halide charge on rare gas atom i, and the sum runs over all pairs of rare

gas atoms. The induced dipole moments are found from

Pi ‘fRi (Cll)

where q is the halide charge, @ is the rare gas dipole polarizability, and R, is the vector

from the rare gas to the halide. This induction model may be considered a first order

approximation to the full iterative solution of Eqn. (4.23) of Chapter 4. For an example

of the application of this model with simulated annealing see the work of Asher et al. *4

on metal-argon clusters.

When indq,line2S,issetto 1thenon-additiveenergy due to induced quadruple

moments is included in a non-iterative manner similar to the dipole induction model

described above. When indq isset,the quadruple moments induced ineach raregas

atom by the halidechargearecalculated,and thepairinteractionsof thesequadruples

arecalculated,as Wellas theinteractionsof thequadruples With the dipolescalculated

iteratively.For the formulas for the quadrupole-quadrupole and dipole-dipole

interactions see Buckingham. 15 In order for this to function properly, indi (line 26)
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must also be set to 1. If indi is not set, the dipole-quadrupole interactions will not be

included and the overall effect of the quadruple will be severely underestimated.

The flags 25, 27 and 29 control which of the three models described in Chapter 4

for the “exchange quadruple” effect is used. If iexqf lag (line 25) is set to 1, the non-

addictive exchange quadruple energy is calculated from the interaction of the halide

charge with the cylindrically symmetric quadmpole moments located at the midpoints

between the nuclei of two rare gas atoms, ~$~), calculated from Equation 32 of Chapter

4. The total charge-exchange quadmpole energy for the cluster is then given by:

VtC(point quadruple)=
%%cos’”-$)

(C12)

“where Rd is the vector from the Rg-Rg midpoint to the halide nucleus, @is the angle

between the quadruple and IL-o. men line 27 (iexqd) is set to 1, the distributed dipole

model of the exchange quadmpole introduced by Hutson et al.16 is used. When line 29

(iexg),the “Gaussian exchange-charge,” model developed in Chapter 4 is employed, and

the non-additive energy is found from Equation 34 of Chapter 4.

Line 31, iaxtel, issetto 1 to turn on the

interaction[seeEqn. (4.18)of Chapter 4]. This

anionorneutralcalculation.

Axilrod-Teller three body dispersion

interaction may be used for both the

Lines 33-43 of the input file contain atofic data and interaction constants used in the

calculation of the many-body potentials. These ~“~ listed below in the same notation as

Chapter 4:

Lke 33 polind a (Rg) Dipole polarizability of the rare gas atom in

A’
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Line 34 polrg a (Rg) Dipole polarizability of the rare gas atom in %3

Line 35 POIX a (X-) Dipole polarizability of the halide anion in %3

Line 36 pqrg C (Rg)” Quadruple polarizability of the rare gas in ms.

Line 37 pqx c (x-)” Quadruple polarizabilit y of the halide anion in %5.

Line 38 betaexq P Gaussian range parameter in ~-1 for

exchange

quadruple - -

Line 39 cutexq A distancein~ which isused asthecutoffpointfor

the

exchange-charge calculation, to prevent non-physical

behavior of Equation 34 of Chapter 4.

Line 40 theta6

induced

Ce Coet%cient for calculating the dispersion

quadruple moment on a rare gas atom [see Eqn.

(4.36), Chapter 4]

Line 41 c9anion c9(X--Rg-Rg)Axilrod-Tellercoefficientfor halide

anion-

rare gas three-body dispersion interaction in eV.~9

Line 42 c9neut C9(X-Rg-Rg) Axilrod-Teller coefficient for

halogen

neutral-rare gas three-body dispersion interaction in eV.~9.

Line 43 soconst A Halogen spin-orbit constant in eV.

“Note that the definition of the quadruple polarizability here is that of Buckingham, 15
which differs from other definitions (e.g. this is not the same ~ used in Chapter 3: see
the footnote to Table VI of Chapter 4).
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44, and the

lines 45, 46

The MMSV pair potential parameters for the RgX- anion are given in line

MMSV parameters for the neutral X1/2, 13/2, and 111/2 states are given in

and 47 respectively. The order and units of the MMSV parameters in each

line the same as those in the input file for the Morse DVR program described in

Appendix A (See Section A5. 1).

C4.2 The atomic confiWration files

This section describes the format of the files which describe the configurations of

atoms, which are named in lines 49, 51 and 52 of the input file. A configuration

gas atoms and one halogen atom would be represented in the following format:

1 x, Y* z, p;l) p;l) p;l)

iv XN YN ZN

N+ 1

p;~) p;’”) p;N)

Xhczl Yhcd Zha[
p;hnl) p;hal) p;hal)

of fVrare

The fwst N lines of the file give the rare gas configuration, and the final line is the halide ~

configuration. The fwst column is an integer index. X~ , Y~ and Z~ are the Cartesian

coordinates in units of @10. P~N), etc. are the corresponding components of the

momentum vector, with units 10OO~a@o.

C4.3

using

Running the program: example of Arsl-

To show how the simulated program is used we will show how to run the program

the input file “inl” shown in section C4. 1. This input file is set up to find a

minimum energy configuration of a Ar61-cluster with no many body interaction, starting
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from a random configuration of atoms. Below, we present the actual computer session.

The user input is shown in boldface:

> amain
File name for parameters
inl
Parameter file name : inl
initial poten = -0.21661377022324 eV
initial energy = -0.21661377022324 eV

Time (ps) facA2 Temp. (K) Target Temp. Avg. Poten (eV)
1.21898128 0.00000000 46.81750652 0.00000001 -0.25897768
2.42828811 0.00000000 50.57195025 0.00000001 -0.30302060
3.63759493 0.00000000 27.21839795 0.00000001 -0.33263926
4.84690176 0.00000000 18.96968172 0.00000001 -0.36209274
6.05620858 0.00000000 9.81563601 0.00000001 -0.37959737
7.26551541 0.00000000 3.20781834 0.00000001 -0.38662604
8.47482223 0.00000001 0.92424026 0.00000001 -0.38892251

..

...
44.75402699 0.00000011 0.08753625 0.00000001 -0.38971920
45.96333382 0.00000012 0.08580413 0.00000001 -0.38972086
47.17264064 0.00000012 0.08425250 0.00000001 -0.38972236
48.38194747 0.00000012 0.08268986 0.00000001 -0.38972335
>

Here we see thatbecause the factorforresealingthe velocitiesispracticallyzero the

clustercoolsquiterapidly.we can thenexamine theRg-X and Rg-Rg bond distances

given in the output file “output_filel_6J’

Alternately, one could plot the data

to ascertain

from the

the structure of this cluster.

averaged configuration file

“average_filel_6J’ with a three-dimensional plotting program. We find that this

configuration has the six argons all about 4 ~ from the iodine ion, and arranged in a

warped trapezoid-like arrangement, as shown in figure Cl.
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Figure Cl. A local minimtm
energy geometry of Arbr.

C4.3.1 Gradient minimization when near a local minimum

To illustrate the use of the gradient minimization procedure for optimizing the

binding energy, we modify the input “inl” to “in2,” showing ixlow on]Y the lines of “in~”

that are different from “in 1:“

32: 6 !* ninit (1 POs - from file, 2 rand. pos save to file, 3
to restart, 4 to restart with average, 5 for POS from file,
averaging only,6 grad rein)

49: average_ filel_6
50: output_file2_6
51: restart_file2_6
52: average_file2_6
53: poten_file2_6

Here we have changed the file name inline49 to “average_filel_6,”which contains

the con.f@ationoutputfiom the f~strun ofthepro~~ad settheflagninit to6for

gradientminimization.We performtheminimizationasfollows:

> min
File name for parameters

Parameter file name : in2
Initial potential:

eV
Total potential . -0.38979933606317
RG-X Contribution . -().2747g44163g68g
RG-RG Contribution . -().1150()491966628

cm- 1
-3143.943
-2216.366
-927.577

/.
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Potential after gradient minimization:
eV

Total potential . -0.38980032561780
RG-X Contribution = -0.27479155778784
RG-RG Contribution = -0.11500876782996

>

cm-l
-3143.951
-2216.343
-927.608

We see that because the cluster is already quite cold, the gradient rninirnization in this

case refines the minimum energy only byabout 0.03 cm-l.

C4.3.2 Reheatingandannealing

Nowthat we have minimum energy configurationof the%GI-, we must perform

the simulated annealing procedure to try to determine if this is this is the global

minimum. To do this we make the following changes to the input file, and rename it

“in3:”

7:
8:
9:

14:

32:

49:
50:
51:
52:
53:

75000 !* nstep used in thermgen

500 !* nskip used in thermgen

5000 !* ntconst (time constant

0.200 !, escale (Initial ener=

for thermgen, in steps of h)

eV)

1 !* ninit
to restart, 4 to
averaging only,6

average_file3_6
output_file4_6
restart_file4_6
average_file4_6
poten_file4_6

(1 pos. from file, 2 rand. POS save to file, 3
restart with average, 5 for POS from file,

grad rein)

Here we have changed nstep so that the total duration of the SA run will be

about360ps, and increased nskipbyafactor of2, sothat the clusterwillhave more time

to equilibrate between resealings. Most importantly, the time constant ntconst has been

set to be 10 times as large as nskip, so that the kinetic energies will be resealed by a
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factor of 0.9 and that the cooling will take place slowly. The cluster is heated initially by

changing escale, the initial kinetic energy, to 200 meV, which will be distributed

randomly to the atoms in the cluster. Experience has shown that in general one should

not set escale to more than about one half of the potential of the minimum energy of the

cluster (here cu. 400 meV), in order to prevent evaporation of atoms. The starting point

is the configuration output from the gradient minimization in the file “average_file3_6,”

which file name is no place in line 49 of the input file. The flag nini t is changed to 1 to

start the program with this initial configurate ion (plus the added kinetic energy).We now

do the anneal:

> amain
File name for parameters
iI13
Parameter file name : in3
initial poten = -0.38979933606317 eV
initial energy = -0.18979933606317 eV

Time (ps) facA2 Temp. (K) Target Temp. Avg. Poten (eV)
2.42828811 0.90000000
4.84690176 0.90000000
7.26551541 0.90000000
9.68412906 0.90000000
12.10274271 0.90000000

55.63778842 0.90000000
58.05640207 0.90000000
60.47501572 0.90000000

106.42867508 0.90000000
108.84728873 0.90000000
1~1.26590238 0.90000000

357.96449475 0.90000001
360.38310840 0.90000001
362.80172205 0.90000001
>

104.01207847
57.03555081
53.54463990
67.22189146
51.55501604

41.73466731
43.29693083
37.04248189

21.10488494
20.05677511
19.26204642

0.16330365
0.15893369
0.14923592

0.00000001
0.00000001
0.00000001
0.00000001

0.00000001

0.00000001
0.00000001
0.00000001

0.00000001
0.00000001
0.00000001

0.00000001
0.00000001
0.00000001

-0.28391709
-0.24823823
-0.25235669
-0.27198294
-0.26514639

-0.33538076
-0.34037302
-0.337’44994

-0.37646628
-0.37843554
-0.38014508

-0.40021528
-0.40022694
-0.40023536

6

We see that at the end of the annealing procedure, the potential energy is lower

than that of the previously located minimunz indicating that we have found a different



minimum on thepotentialenergysurface.Examining theoutputfileswe findthatthisis

indeeda differentisomerof&G1- withthestructurepicturedinFigure(2

Figure C2. The global minimum
energy geometry of knr.

This k theconfigurationthatwe recognizeastheglobalminimum energygeometry from

Figure7 of Chapter4. In this structure, as in the previously located minimum, all of the

Ar atoms are in “contact” with the 1- atom. However, we see that in this structure, the

number of Ar-Ar nearest neighbor “bonds” is 10, compared to 9 for the isomer pictured in

Figure C 1. Furthermore, the energies of these structures differ by 85 cm-l, which is

reasonably close to the Ar-Ar dimer bond energy (about 100 cm-l).

We know from previous experience that this is the global minimum of %61-.

However, with an unknown system a greater number of annealing runs must be

performed to ensure that the global minimum has been found. It is not possible to give an

exact answer to the question of how many times one must repeat the annealing process,

&cause, as noted above, simulated annealing is not an exact method.

runs necessary will increase with the complexity of the system studied.

should perform the process enough times to gain an understanding

categories of local minima for a given system and their relative energies.
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C4.4. Outline of the program

The subroutines and functions used by the simulated annealing program are

presentedinTableCl organizedaccordingtowhich filetheyresidein.

Table Cl. Files, subroutines and functions used by the simulated annealing program

param.file

amain.f i

aderiv.f

initzandiat.f

thermgen.f

pforce.f

Subroutine
m Function

deriv

initpos

initzangdiat

ggubs

thermgen

anmmsv

hfd_b

pfind

pfexq

Description

Contains constants and common blocks used by the

program

Main program; reads input and writes output file

Function to calculate the forces on each atom and

potential of the cluster for a given atomic configuration

Generates random initial positions for the atoms

Removes CM translation and sets overall angular

momentum of cluster to zero

Random number generator

PropagatestheMD equationsofmotion accordingto

thescheme describedabove.

Function for anion MMSV pair potential and force

Function for HFD-B2 (Rg-Rg) pair potential and force

Calculates three-body induction potential and forces

from Eq. (C1O)

Calculates the three-body “exchange-quadrupole”

potential and forces from Eq. (Cl 2)
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porb Calculates neutral many-body eigenfunctions

numerically.
.

meummsv Calculates neutral MMSV pair potential

porba Calculates neutral many-body eigenvalues analytically

veqd Calculated exchange charge effect using distributed

dipole model
.

vindi Calculates many-body dipole induction potential using

the iterative method.

vindq Calculates induced quadrupole-induced quadruple and

induced quadrupole-induced dipole potential; for use in

conjunction with the subroutine “vindi”

vinddq Calculates many-body dipole and quadruple potential,

using the iterative method described in Chapter 4.

exg Charge exchange calculation of three body potential

from Eq. (4.34)

erf Error function adapted from Ref. 3

vat Calculates three-body Axilrod-Teller potential

averages. f averages Calculates average parameters during a constant energy

MD run

ch.f ch EISPACK subroutine for finding the eigenvalues and

eigenvectors of a complex Hermitian matrix
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C5. Source code for the simulated annealing program.

C5.1. File “Makefile”

The makefile used for recompiling the simulated annealing program is

shown below. To recompile the program one enters simply “make” because the makefile

has the default name. The executable code will be save in the subdirectory “RUN” with

the makefile as shown.

OBJ = amain.o aderiv. o initzangdiat. o thermgen.o pforce. o averages .0
ch.o groin.o

LIB = -lgl_s -lm -lmpc
OPT = -O
oPT3 = -g

main : $(OBJ)
f77 $(OPT) $(OBJ) -o RUN/amain

.f.o :
f77 $(OPT) -C $<

.C.o :
cc $(OPT) ‘C $<

C5.2. File “param.file”

c
IMPLICIT double precision (A-H,O-Z)

c PARAMETER (ncluster=19,nmolec=l,natmax = ncluster+nmolec)
c PARAMETER (NQ=6,NDIM=NQ*Natmax, NEQM=NDIM, NEQ=NDIM)

parameter (ncl=25,nmolec=l, natmaxc = ncl+nmolec)
parameter (NQ=6, NDIMC=NQ*natmaxc, NEQMC=NDIMC, NEQC=NDIMC)
P.~ETER (ECONv=2196.dO, DcONV=O.0529dO)

parameter (pi=3.1415926535898d0 ,aO=0.529177249d0,
& harev=27. 2113961d0, evtocm=8065 .5410dO)
parameter (evtoj=l.60217733d-19 ,amutokg=l .6605402d-27 ,
& hztocm=3. 335640952d-11, hbarev=6. 5821220d-16,
& hbar=l. 05457266d-34)

c
common
common
common
common

/nc/ncluster, natmax,NDIM,NEQM, NEQ
/param/rmc,rml ,eec,eeint,sigc ,sigint,nrgpot
/param2/nhalpot ,neigval,delta
/atoms/poten, rgr~ot,rgxpot ,cddpot,exqpot ,vindit,vexqd,

& rgdrgq,rgqq, rgqxd,viq, cdpot,cqpot, cdqpot,gexpot, ddispot,
& qdispot,gextot ,atpot
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c
c
c
c
c

common /atomsl/rgxXpot, rgxIpot,rgxIIpot
common /atoms2/potfin, tempfin
common /threeb/indflag,iexqflag, indi,iexqd,indq,indqi ,iexg,

& iaxtel

ncluster = number of rare gas atoms
nmolec = number of halide atoms
Constants from Cohen & Taylor, Rev. Mod. Phys. Vol. 59, No. 4
hbarev units eV*s
hbar units J*s

C5.3. File’’amain.f”

*
* Simulated annealing program by Zhiming Li and Prof. CC Martens (UC

Irvine)
* Modified and extended by Ivan Yourshaw
*

include ‘param.file’
common /anion/ p(lO),q(lO)
common /neutral/ PX(10) ,P1(10),p2(10),soconst
common /nonadpar/ polind, betaexq, cutexq,polrg,polx, theta6,

& pqrg,pqx,c9at
common/box/boxsize, cutoff

c
DIMENSION YO(neqmc), dx(ncl),dy(ncl) ,dz(ncl

& ang(ncl,ncl) ,yave(neqc) ,rgx(2,nc
& dip(natmaxc) ,qin(natmaxc )
double precision p(lO),q(lO),px(lO),pl (lO)

,dist(ncl),
),rgrg(2,ncl,ncl),

p2(lo)
character*30 aparam, initcond,outcond, restart,avrestart,pocfile
character*80 commentl,comment2
integer iarr(3)

c
c OPEN FILES
c

write(*,* ) ‘File name
read(*,*) aparam
write(*,*) ‘Parameter
open(7, file=aparam)
read(7,*)rmc
read(7,*)rml
read(7,*)eec
read(7,*)eeint
read(7, *)sigc
read(7,*)sigint

c
READ(7,*)nstepT
READ(7,*)nskipT
read(7,*)ntconst

for parameters’

file name : ‘,aparam

read(7,*)nave !* Number of steps for avera9in9

READ(7,*)h
READ(7,*)ekelvin

c
READ(7,*)dseed
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dseedint=dseed
READ(7,*)escale !* Initial kinetic energy, in ev
escale = (escale/harev)*100.dO !* Convert to hartree/100

read(7, *)boxsize !* In ang, for initpos
boxsize = (boxsize/aO)*lO.dO
read(7,*)cutoff !* In Ang, for initpot
cutoff =
read(7, *
read(7,*
read(7,*

forces )
*

differences)

(cutoff/aO)*10.dO
ncluster !* Number of rare gas atoms

nrgpot !* 1 for RG-RG LJ poten, 2 for Aziz
nhalpot !* 1 for anion, 2 for neutral (num.

3 for neutral (forces by central

read(7,*)neigval !* eigenvalue # for neutral potential
* lor2forX,30r4 for I,50r6for II

if (nhalpot.eq.4) then
if ((neigval.eq.1) or. (neigval.eq.2)) then

naval = 1
elseif ((neigval.eq.3) or. (neigval.eq.4)) then

naval = 2
elseif ((neigval.eq.5) or. (neigval.eq.6)) then

naval = 3
endif
neigval = naval

endif
read(7, *) delta I* delta–r for numerical derivatives

(Ang)
delta = delta*10.OdO/aO !* convert to aO/10

read(7, *) gstepin !* initial step for gradient
minimization (A)

gstepin = gstepin’lO.OdO/aO !* convert to aO/10

read(7, *) gsmall !* convergence test for gradient min (eV)

gsmall = gsmall*100./harev !* convert to hart/~00

read(7, *) indflag !* Three-body induction, O.off, I=on
read(7, *) iexqflag !* Charge-Exchange Quadruple, O=off,

~=on

read(7, *) indi J* Iterated many-body (dipole) induction
* !* O=off,l=on

if (indi.eq.1) then
indflag = O

endif
read(7, *) iexqd !* Distributed diDole exchange quadruple

l=on
if (iexqd.eq.1) then

iexqflag = O
endi f
read(7, *) indq !* Charge Induced Rg quadruples, O=off,

l=on
if (indq.eq.1) then

indflag = O
indi = 1 !* Need dipole calculation to do quadruples

endif
read(7,*) iexg !* Charge-Gaussian exchange, O=Off, l=on

if (iexg.eq.1) then
iexqflag = O
iexqd = O

endi f

(
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read(7,*) indqi !* Iterated dipole and quadruple

induction
if (indqi.eq.1) then .I* turns off other induction options

indflag = O
indi = O
indq = O

endif
read(7, *) iaxtel !* Axilrod-Teller, O=Off, I=on

read(7, *) ninit !* 1 to use initial positions from file

initcond,
* 2 to generate random initial positions and save to
initcond,
* 3 to restart from previous run
● 4 to restart with averages from prev run
* 5 to do averaging run only starting with initcond file
* 6 ta do gradient potential minimization (POS saved to avg)
* 7 for Powell search

read(7,*) polind !* Rare gas polarizibility for 3-bed ind
* units AngstromA3

read(7,*) polrg !* Rare gas polarizability for iterated

ind
*

read
*

read
(aOA5)

read
(aOA5)

read
quadruple
*

units aOA3
7,*) polx !* Halide polarizability for iterated ind

units aOA3
7,*) pqr9 !* Rare gas quadruple polarizability

7,*) pm 1* Halide ~adrupole polarizabili~y

7,*) betaexq !* Range parameter for exchange

units Angstrom”-l
betaexq = betaexq*aO/lO.dO !* Converted to (ao/~O)A–l

read(7,*) cutexq !* Cutoff distance for exchange ~~ad.

(ang)
cutexq = (cutexq/aO)*10.dO !* converted to (aO/lo)”-i

read(7, *) theta6 !* Quadruple dispersion coeff. (e’aOA8)
read(7, *) c9anion !* Ax-Tel C9 for i3niOn (ev*AngA9)
read(7,*) c9neut !* Ax-Tel C9 for neutral (eV*Ar?gA9)
if (nhalpot.eq.1) then

c9at = c9anion/harev/aO**9 !* convert to au

else
c9at = c9neut/harev/aO**9

endif
read(7, *) soconst !* Atomic spin-orbit const. in e~

soconst = (soconst/harev)*100.dO !* convert to hartree/100
read(7,*) (p(i), i=l,8) !* RG-X anion MlfSVparameters
read(7,*) (px(i), i=l,8) !* RG_X neutral X1/2 ~SV

parameters
read(7, *) (pi(i), i=l,8) !* RG-X neut 13/2 MMSV parameters

read(7,*) (p2(i), i=l,8) !* RG-X neut 111/2 MMSV parameters

read(7,*) (q(i), i=l,9) !* RG.RG HFD-B parameters

read(7,*) initcond !* Initial condition file name

read(7,*) outcond !* output file name

read(7,*) restart !* restart file name

read(7,*) avrestart !* average restart file n-e

read(7,*) potfile !* potential save file nane
read(7,101) commentl
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101
c

c

c

read (7,101) comment2
format (a80)

natmax = ncluster+nmolec
NDIM=NQ *Natmax
NEQM=NDIM
NEQ=NDIM

close(7)

if ((ninit.eq.l).or. (ninit.eq.5).or. (ninit.eq.6).or.
&(ninit.eq.7)) then

open (7, file = initcond)
do 123 n = l,neq-5,6
read(7, *)junk,yO(n),y0 (n+l),yO(n+2),yO(n+3),
yO(n+4),yO(n+5)

123 continue
close (7)

elseif (ninit.eq.2) then
call initpos(yO,dseed)
open(7, file=initcond)
icount = O
do n = l,neq-5,6

icount = icount+l
write(7,*) icount,yO (n),yO(n+l),yO(n+2),yO(n+3),

& yO(n+4),yO(n+5)
enddo

elseif (ninit.eq.3) then
open (7, file = restart)
do n = l,neq-5,6

read(7, *)junk,yO(n) ,yO(n+l),yO(n+2) ,yO(n+3),
yO(n+4) ,yO(n+5)

enddo
close (7)

elseif (ninit.eq.4) then
open (7, file = avrestart)
do n = l,neq-5,6

read(7, *)junk,yO(n) ,yO(n+l),yO(n+2) ,yC)(n+3) ,

yO(n+4) ,yO(n+5)
enddo
close (7)

endif
L

ii ((ninit.eq.2) .or.(ninit.eq.1).or. (ninit.eq.5)) then
call initzangdiat (yO,dseed,escale)

endi f
if (ninit.lt.5) then

call thermgen (yO,nstepT,nskipT,ntconst, h,ekelvin)
endif

iframe = 1
call writeframe (yO,iframe)

c
c write out the final positions
● (and pos. and momenta to restart file)
c

open (8, file = outcond)
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write (8,*) ‘RGX Simulated Annealing Program’
write(8,*)
write(8,*) commentl
write(8,*) comment2
write(8,*)
write(8,*) ‘init cond file: ‘,initcond
write(8,*) ‘output file: ‘,outcond
write(8,*) ‘restart file: ‘,restart
write(8,*) ‘average confi9. file: ‘ ,avrestart
write(8,*) ‘potential file: ‘,potfile
write(8,*)
call idate(iarr)
write(8,300) iarr(2), iarr(l),iarr (3)
call itime(iarr)
write(8,301) iarr(l), iarr(2),iarr(3 )

30“0 format( ’Date: ‘,i2,’/’,i2,lx,iQ)
301 format( ’Time: ‘,i2,’:’,i2,’:’,i2)

write(8,*)
write(8,*) l*******************parameters *********** ********9

write(8,*) ‘nstep = ‘,nStepTt ‘ nskip = ‘, nskipT
write(8,*) ‘ntconst = ‘,ntconst, ‘ nave = ‘,nave
write(8,*) ‘h = ‘,h
write(8,*) ‘initial dseed = ‘,dseedint
write(8,*) ‘escale (eV) = ‘,escale*harev/100 .dO
Write(E,*) ‘boxsize = ‘tboxSize*aO/10.# ‘ AW’
write(8,*) ‘cutoff = ‘,cutoff*aO/10./ ‘ -9’
write(8,*) ‘nrgpot = ‘,nrgpot,’ nhalpot = ‘,nhalpot
if ((nhalpot.eq.2) or. (nhalpot.eq.3) or. (nhalpot.eq.4)) then
write(8,*) ‘neigval = ‘,neiWal
write(8, *) ‘soconst = ‘,SoconSt*harev/100.
write(8,*) ‘delta = ‘,delta*aO/10-OdO

endi f
if (nhalpot.eq.1) then

if (indflag.eq.1) then
write(8,981) polind

981 format( ’Dipole induction ON’,3x,’polind =’,f10.6,3x,’A.ngA3’)
endi f
if (iexqflag.eq.1) then
write(8,991) betaexq/aO*10.dO,cutexq*aO/10 .dO

991 format(’ExQ 0N’,3x,’betaexq =’,f10.6,3x,
& ‘cutexq =’,f10.6)

endi f
if (indi.eq.1) then
write(8,1001) polrg,polx

1001 format(’Iter dipole Ind ON’,3x,’R9 PO1 = ‘,f10.6,3x,
& ‘Hal pol = ‘,f10.6,3x,’aOA3’)

endi f
if (indq.eq.1) then
write(8,1011) pqrg

1o11 format(’Rg charge induced quadruple ON’,3x,’Rg Quad. PO1 =’,
& f10.6,3x,’aOA5’)

endi f
if (indqi.eq.1) then
write(8,1085) polrg,polx,pqr9,Pqx

1085 format (’Dipole-Quadrupole iter. Induction ON’,/,
& ‘Dipole polarizabilities, aOA3: Rg = ‘,f10.6,3x, ‘Hal = ‘,
& f10.6,/, ‘Quad. polarizabilities, aOA5: Rg = ‘,f10.6,3x,
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& ‘Hal = ‘,f10.6)
endif
if (iexqd.eq.1) then
write(8,1003) betaexq*10./a0,theta6

1003 format(’Dist. Dip. ExQ ON’,3x, ‘betaexq =’,f10.6,3x,
& ‘theta6 = ‘,f15.3)

endif
if (iexg.eq.1) then
write(8,1057) betaexq*10./a0,theta6

1057 format( ’Gaussian Ex. Chg. ON’,3x,’beta = ‘,f10.6,3x,
& ‘theta6 = ‘,f15.3)

endif
write(8, *) ‘Anion rg-x MMSV parameters: ‘
write(8,173) (p(i),i=l,8)

else
write(8, *) ‘Neutral rg-x MMSV Parameters (X,1,11 diatom states) :‘

write(8,173) (px(i),i=l,8)
write(8,173) (pl(i),i=l,8)
write(8,173) (p2(i),i=l,8)

endif
if (iaxtel.eq.1) then
write(8,1083) c9at*harev*aO**9

1083 format (’Axilrod-Teller ON’,3X, ‘C9 (eV*Ang”9) = ‘,flo.6)
endif
if (nrgpot.eq.2) then
write(8, *) ‘RG-RG HFD–B Parameters: ‘
write(8,173) (q(i),i=l,9)

endif
173 format(2x,5g14.8,/,2x,5g14 .8)

write(8,1051) aO,harevrevtocm
1051 format(’aO = ‘,g18.12,1x,’harev = ‘,g18.12,1x, ’evtocm = 1,g18.12)
*

if (ninit.ge.5) goto 5000
*

write(8,*) ‘*********Configuration After Annealing********** I
write(8, *)
open (1, file =restart)
icount = O

c write(8,*) ‘ Atom coordinates (aO/10)‘
do 124 n = l,neq-5,6
icount=icount+l

c write (8,*)icount,yO(n) ,yO(n+l),yO(n+2)
write (l,*)icount,yO(n) ,yO(n+l),yO (n+2),yO(n+3),yO(n+4),
& yO(n+5)

124 continue
close(1)

c write(8,*)
icount = O
do n=l,neq-11,6

icount=icount+l
dx(icount) = yO(n)-yO(neq-5)
dy(icount) = yO(n+l)-yO(neq-4)
dz(icount) = yO(n+2)-yO(neq-3)
dist(icount) = (yO(n)-yO (neq-5))**2 + (yO(n+l)-yO(neq-4))**2

& + (yO(n+2)-yO(neq-3) )**2
dist(icount) = sqrt(dist (icount))

enddo
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do i=l,ncluster
do j=l,ncluster

dot = dx(i)*dx(j)+dy
if (i.eq.j) then
ang(i,j) = O.

else

i)*dy(j )+dz(i)*dz(j)

ang(i,j) = acos(dot/(dist(i)*dist (j)))
ang(i,j) = ang(i,j)*180/pi

endif
enddo

enddo
write(8, *)
write(8,*) ‘ RG-RG Angles (deg.)‘
do n=l,ncluster

write(8,201) n, (ang(n,i),i=ltncluster)- ‘“
if (mod(ncluster,lO) .ne.0) then
write(8,*)

endif
enddo

200 format (i3, 3x, f8.4)
201 format (i2, 10f7.2,/,2x,10f7.2)

.

write(8,*)
write(8,*) ‘Final temp. (K):’,tempfin
write(8, *)

c
c
5000 if (ninit.lt.6) then

call averages (yO,nave,h,potave,potsd,pmin,prgrg,prgxt
& pind,pexq,pex, pddis,pqdis ,pextot,pindi ,pcd,pcq,pinddq,
& prgdrgq,prgqq ,prgqxd,piq,
& pexqd,prgxX, prgxI,prgxI I,ekinave,energy ,yave,rgx,rgrg,
& dip,qin,paxtel )
elseif (ninit.eq.6) then

call ~in(yO, gstepin,gsmall,pmin,prgrg,prgx,pind,pcd,pcq,
& pinddq,pexq ,pex,pddis,pqdis,pextot ,pindi,prgdrgq ,prgqq,
& prgqxd,piq, pexqd,prgxX,
& prgxI,prgxII ,rgx,rgrg,dip ,qin,paxtel)
elseif (ninit.eq.7) then

call pmin(yO,gstepin,gsmll,pmin,prgrg,pr~,pind,pcd,pcq,
& pinddq,pexq ,pex,pddis,pqdis,pextot ,pindi,prgdrgq ,prgqq,
& prgqxd,piq, pexqd,prgxX,
& prgxI,prgxI I,rgx,rgrg,dip ,qin,paxtel)
endif
open(9, file=potfile)
if (indi.eq.1) then
pind = pindi

endif
if (indqi.eq.1) then
pind = pinddq
prgdrgq = pcd
prgqq = pcq

endif
if (iexqd.eq.1) then
pexq = pexqd

endif
if (iexg.eq.1) then
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pexq = pextot
endif

write(9,501) ncluster,pmin*harev/100 .,prgx*harev/lOO.,
& prgrg*harev/lOO.,pind*harev/lOO .,pexq*harev/lOO.,
& prgdrgq*harev/lOO.,prgqq*harev/lOO .,pddis*harev/lOO.,
& pqdis*harev/lOO.,pex*harev/lOO .,paxtel*harev/100.
close(9)

501 format (i3,1x,llg16.8)
*
● Fill in lower triangles
*

if (ninit.lt.6) then
do i=2,ncluster

do j=l,i-1
rgrg(l, i,j)=rgrg(l ,j,i)
rgrg(2, i,j)=rgrg(2 ,j,i)

enddo
enddo

write
write
write
write

8,*)

8,*) O***************Averaging ~un”***.********h *hh*hkB
8,*)
8,*) ‘Avg. Potential (eV) = ‘,potave*harev/lOO .

write(8,*) ‘Std. Dev. of poten (eV) = ‘,potsd*harev/100.
write(8, *)
write(8, *) ‘Potential at avg. configuration (eV) : ‘

else
write(8, *)
write(8, *) ‘***********Gradient Minimization******* ********I
write(8, *)
write(8, *) ‘gstep final = ‘,gstepin*aO/lO., ‘ Ang’
write(8, *) ‘Convergence = ‘,gsmall*harev/100., ‘ ev’
write(8, *)

endif
write(8,7000) pmin*harev/lOO. ,pmin*harev/100.*evtocm

7000 format(33x, ‘eV’,24x, ‘cm-l’,/,
& Total potential = ‘,g21.14,3x,f14.3)
if (nhalpot.eq.1) then

write(8,7005) prgx*harev/lOO. ,prgx*harev/100.*evtocm
7005 format (‘ RG-X Contribution = ‘,g21.14,3x,f14.3)

elseif (nhalpot.lt.4) then
if (neigval.le.2) then
write (8,7010)prgx*harev/100. ,prgx*harev/100.*evtocm,

& prgxI*harev/lOO .,prgxI*harev/lOO .“evtocm,
& prgxII*harev/100 .,prgxII*harev/100 .*evtocm

7010 format (‘ RG-X X State Contrib = ‘,g21.14,3x,f14.3,/,
& ‘ (Vertical I contrib = ‘,g21.14,3x,f14.3,’)’,/ ,
& ‘ (Vertical 11 contrib = ‘,g21.14,3x,f14.3,’ )’)

elseif (neigval.le.4) then
write (8,7015)prgx*harev/100 .,prgx*harev/100.*evtocm,

& prgxX*harev/lOO .,prgxX*harev/100 .*evtocm8
& prgxII*harev/ 100. ,prgxII*harev/ 100.*evtocm

7015 format (‘ RG-X I State Contrib = ‘tg21.14,3x,f14.3,/,
& ‘ (Vertical X contrib = ‘,g21.14,3x,f14.3,’)’,/,
& ‘ (Vertical II contrib = ‘,g21.14,3x,f14.3,’ )’)

else
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write (8,7020)prgx*harev/100. ,prgx*harev/100.*evtocm,
& prgxX*harev/lOO .,prgxX*harev/lOO .’evtocm,
& prgxI*harev/ 100.,prgxI*harev/ 100.*evtocm

7020 format (‘ RG-X II State Contrib = ‘,g21.14,3x,f14.3,/,
& ‘ (Vertical X contrib = ‘,g21.14,3x,f14.3,’)’,/,
& ‘ (Vertical I contrib = ‘,g21.14,3x,f14.3,’ )’)

endif
elseif (nhalpot.eq.4) then

if (neigval.eq.1) then
write (8,7010)prgx*harev/100 .,prgx*harev/100.*evtocm,

& prgxI*harev/lOO .,prgxI*harev/lOO .’evtocm,
& prgxII*harev/lOO .,prgxII*harev/lOO .’evtocm

elseif (neigval.eq.2) then
write (8,7015)prgx*harev/100 .,prgx*harev/100.*evtocm,

& prgxX*harev/ 100.,prgxX*harev/100 .’evtocm,
& prgxII*harev/lOO. ,prgxII*harev/lOO .*evtocm

elseif (neigval.eq.3) then
write (8,7020)prgx*harev/100 .,prgx*harevllOO .*evtocm,

& prgxX*harev/lOO .,prgxX*harev/lOO -*evtocm,
& prgxI*harev/lOO .,prgxI*harev/lOO .’evtocm

endif
endif
write(8,7025)prgrg*harev/100. ,prgrg*harev/lOO .’evtocm

7025 format(’ RG-RG Contribution = ‘,g21.14,3x,f14.3)
if (indflag.eq.1) then
write(8,7030) pind*harev/lOO., pind*harev/100 .*evtocm

7030 format (‘ Charge-dipole-dipole = ‘,g21.14,3x,f14.3)
endif
if (iexqflag.eq.1) then
write(8,7035) pexq*harev/lOO., pexq*harev/100.*evtocm

7035 format (‘ Charge-Ex. Quadruple = ‘,g21.14,3x,f14.3)
endif
if (indi.eq.1) then
write(8,7040) pindi*harev/lOO. ,pindi*harev/100.*evtocm

7040 format (‘ Dipole Induction et ,g21.14,3x,f14.3)
endif
if (indq.eq.1) then
write(8,7045 )prgdrgq*harev/lOO. ,prgdrgq*harev/lOO .’evtocm,

& prgqq*harev/100 .,prgqq*harev/lOO .’evtocm,
& prgqxd*harev/lOO .,prgqxd*harev/lOO .’evtocm,
& piq*harev/100 .,piq*harev/lOO .*evtocm

7045 format (‘ Rg Ind Qp - Rg Ind Dip = ‘,g21.14,3x,f14.3,/,
& , Rg Ind Qp - Rg Ind Qp = ‘,g21.14,3x,f14.3,/,
& , Rg Ind Qp - X Ind Dip = ‘,g21.14,3xtf14.3,/,
& ‘ (Total Ind. Qp. = ‘,g21.14,3x,f14.3,’ )’)
endif
if (indqi.eq.1) then
write(8,7050)pcd*harev/100. ,pcd*harev/100.*evtocm,

& pcq*harev/100 .,pcq*harev/100 .’evtocm,
& pinddq*harev/lOO .,pinddq*harev/lOO .’evtocm

7050 format (‘ Dipole Induction = ‘,g21.14,3x,f14.3,/,
& ‘ Quadruple Induction = ‘,g21.14,3x,f14.3,/,

& ‘ (Total Induction = ‘,g21.14,3x,f14.3,’ )’)
endif
if (iexqd.eq.1) then
write(8,7055) pexqd*harev/lOO. ,pexqd*harev/100.*evtocm

7055 format (‘ Ex. Quad. (dist dip) = ‘,g21.14,3x,f14.3)
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endif
if (iexg.eq.1) then
write(8,7060)pex*harev/100. ,pex*harev/100 .’evtocm,

& pddis*harev/lOO .,pddis*harev/lOO .’evtocm,
& pqdis*harev/lOO .,pqdis*harev/lOO .*evtocm,
& pextot*harev/lOO .,pextot*harev/lOO .’evtocm

7060 format (‘ Ex. Gaussian Charge = ‘,g21.14,3x,f14.3,/,
& , Disp. Dipole . ‘,g21.14,3x,f14.3,/,
& Disp. Quadruple = ‘,g21.14,3x,f14.3r/,
& ‘ (Total Ex. + Disp. MP = ‘,g21.14,3x,f14.3,’ )’)
endif
if (iaxtel.eq.1) then
write(8,7065)paxtel*harev/100. ,paxtel*harev/100. *evtocm

7065 format (‘ Axilrod-Teller = ‘,g21.14,3x,f14.3)
endif
if (ninit.ne.6) then
write(8, *)
write(8,*) ‘Avg. Kinetic energy (eV) = ‘,ekinave*harev/lOO.
write(8, *) ‘Total Energy (eV) = ‘,energy*harev/100.
write(8,*)

endif
open(9, file=avrestart)
icount = O
do i = l,neq-5,6

icount = icount +1
if (ninit.lt.6) then
write(9, *) icount,yave (i),yave(i+l),yave (i+2),0.,0 .,0.

else
write(9, *) icount,yO (i),yO(i+l),yO(i+2),0.,0.,0.

endif
enddo

if (ninit.lt.6) then
write(8, *) ‘Average / Std. Dev. of RG-X distances (Angst):‘
write(8, *)
do n=l,ncluster
write(8,350) n,rgx(l,n)*aO/10.,rgx (2,n)*a0/10.

enddo
350 format (i3,3x,f8.4,g12.4)

write(8, *)
write(8, *) ‘Average of RG-RG distances (Angst.):‘
write(8,*)

do i=l,ncluster
write(8,351) i, (rgrg(l,i,j)*aO/10. ,j=l,ncluster)
if (mod(ncluster,5) .ne.0) then
write(8, *)

endif
enddo

endif

351 format(i3,3x,5f8.4,/,6x, 5f8.4,/,6x,5f8.4,/,6x,5f8 .4)
353 format (i3,3x,5g12.4,/,6x,5g12.4, /,6x,5g12.4,/,6x,5g12.4)

if (ninit.ge.6) then
icount = O
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do n=l,neq-11,6
icount=icount+l
dx(icount) = yO(n)-yO(neq-5)
dy(icount) = yO(n+l)-yO(neq-4)
dz(icount) = yO(n+2)-yO(neq-3)
dist(icount) = (yO(n)-yO (neq-5))**2 +

& (yO(n+l)-yO(neq-4))**2 + (yO(n+2)-yO(neq-3))**2
dist(icount) = sqrt(dist (icount))

enddo
do i=l,ncluster

do j=l,ncluster
dot = dx(i)’dx(j) +dy(i)’dy(j)+dz (i)’dz(j)
if (i.eq.j) then

ang(i,j) = O.
else

ang(i,j) = acos(dot/(dist(i)*dist (j)))
ang(~,j) = ang(i,j)*180/pi

endif
enddo

enddo
write(8, *)
write(8, *) ‘ RG-X (angs)‘
do n=l,ncluster
write(8,200) n,dist(n)*aO/lO.

enddo
write(8, *)
write(8,*) ‘ RG-RG Angles (deg.)‘
do n=l,ncluster

write(8,201) n, (ang(n,i),i=l,ncluster)
if (mod(ncluster,lO) .ne.0) then
write(8, *)

endif
enddo

endif

if (ninit.le.6) then
if ((indi.eq.1) or. (indqi.eq.1)) then
write(8,*) ‘Rg Dipole Moments, e*aO :’
write(8, *)
write(8,2005) (dip(i),i=l,ncluster)

2005 format (8(2x,f8.6))
write(8,*)
write(8,2010) dip(ncluster+l)

2010 format( ’Halide dipole moment : ‘,f12.10)
% endif

if ((indq.eq.l).or. (indqi.eq.1)) then
write(8,*)
write(8,*) ‘Rg Quadruple Moments, e*aOA2 :’
write(8, *)
write(8,2005) (qin(i),i=l,ncluster)

endif
if (indqi.eq.1) then
write(8, *)
write(8,2045) qin(ncluster+l)

2045 format( ’Halide quadruple moment : ‘,f12.10)
endif
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endif

close(8)

stop
end

C5.4. File’’aderiv.f’”

c Written by Zhiming Li
* Changed by IY to use anion MMSV potential, and Aziz potential
* for RG-RG & open shell neutral potential
c subroutine that calculates forces in a rare cluster
c with a halogen anion or neutral impurity
c

subroutine deriv(force,y)
include ‘param.file’
common /anion/ p(lO),q(lO)
common /neutral/ px(lO),pl (10),p2(10),soconst
common /nonadpar/ polind,betaexq, cutexq,polrg,polx, theta6,

& pqrg,pqx,c9at
common /dipoles/dx(natmaxc) ,dy(natmaxc) ,dz(natmaxc) ,

& qind(natmaxc), dpol(natmaxc, 3),qpol(natmaxc,3,3)
c

double precision p(lO) !* anion ~SV parameters

double precision q(lO)
double precision eval(6),evala(3)
dimension PX(10),P1(10),P2 (1O)
dimension force (neqc),y(neqc)
dimension RX(ncl+nmolec), RY(ncl+nmolec),
.RZ(ncl+nmolec) ,
.FX(ncl+nmolec), FY(ncl+nmolec),
.FZ(ncl+nmolec)
double precision

dx(natmaxc), dy(natmaxc), dz(natmaxc), dx2(natmaxc) ,
& dy2(natmaxc), dz2(natmaxc) ,dhalpair (ncl),drgpair (ncl),
& qhalpair (ncl),qrgpair(ncl)

c
c
************* ************* ************* ************* ************* **

c
c

c

100
c

c

write(*,* ) ‘aderiv’
DO 100 I = 1, ncluster+nmolec

FX(I) = O.OdO
FY(I) = O.OdO
FZ(I) = O.OdO

CONTINUE

icount . 0

do 10 n = l,neq-5,6
icount = icount + 1

(.I
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rx(icount) = y(n)
ry(icount) = y(n+l)
rz (icount) = y(n+2)

c
10 continue

c
poten = O.OdO !*

rgxpot = O.OdO !*

rgrgpot = O.OdO !*

cddpot = O.OdO !*

exqpot = O.OdO !*

contribution
c
c calculate cluster-cluster
c

if (nrgpot.eq.1) then
DO 200 I = 1, ncluster-1

c
RXI = RX(I)
RYI = RY(I)
RZI = RZ(I)
FXI = FX(I)
FYI = FY(I)
FZI = FZ(I)

Total potential
RG-X contribution
RG-RG contribution
induction (3-body) contribution
Charge- exchange quadruple

(RG-RG) pairwise interactions

!* Lennard-JOneS

c
c

c
DO 199 J = I + 1, ncluster

RXIJ = RXI - RX(J)
RYIJ = RYI - RY(J)
RZIJ = RZI - RZ(J)

c

RIJSQ = RXIJ ** 2 + RYIJ ** 2 + RZIJ ** 2
c

SR2 = Si9C*SigC / RIJSQ
SR6 = SR2 * SR2 * SR2
SR12 = SR6 ** 2
VIJ = 4.0dO*eec*(SR12 - SR6)

rgrgpot = rgrgpot + VIJ
WIJ = 24.0dO*eec* (2.0dO*sr12 - sr6)/(sigc**2)
FIJ = WIJ * sr2
FXIJ = FIJ * RXIJ
FYIJ = FIJ * RYIJ
FZIJ = FIJ * RZIJ
FXI = FXI + FXIJ
FYI = FYI + FYIJ
FZI = FZI + FZIJ
FX(J) = FX(J) - FXIJ
FY(J) = FY(J) - FYIJ
FZ(J) = FZ(J) - FZIJ

c
c
199 CONTINUE
c
c’ ** lNNER LOOP ENDS **
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c
200

c

c

c

c

c

c

c

&

FX(I) = FXI
FY(I) = FYI
FZ (I) = FZI

CONTINUE

** OUTER LOOP ENDS **

elseif (nrgpot.eq.2) then

DO 250 I = 1, ncluster-1

RXI = RX(I)
RYI = RY(I)
RZI = RZ(I)
FXI = FX(I)
FYI = FY(I)
FZI = FZ(I)

DO 159 J = I + 1, ncluster

RXIJ = RXI - RX(J)
RYIJ = RYI - RY(J)
RZIJ = RZI - RZ(J)

RIJ = sqrt(RXIJ ** 2 + RYIJ ** 2 + RZIJ ** 2)

call hfd_b(q(l), q(2),q(3) ,q(4),q(5),q(6),q(7),

c

c

159
c
c

c
250

!* Aziz potential (Ar-Ar)

rgrgpot
FIJ =
FXIJ =
FYIJ =
FZIJ =
FXI =
FYI =
FZI =
FX(J) =
FY(J) =
FZ(J) =

q(8),q(9),RIJ,VIJ,FIJ)
= rgrgpot + VIJ

FIJ/RIJ
FIJ * RXIJ
FIJ * RYIJ
FIJ * RZIJ
FXI + FXIJ
FYI + FYIJ
FZI + FZIJ
FX(J) - FXIJ
FY(J) - FYIJ
FZ(J) - FZIJ

CONTINUE

** INNER LOOP ENDS **

FX(I) = FXI
FY(I) = FYI
FZ(I) = FZI

CONTINUE

L ** OUTER JXIOP ENDS **
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c
c
c

c

c

c

c

c

c

else
pause ‘Error in deriv’

endi f

poten = poten + rgrgpot

calculate RG-Halogen pairwise interaction

if (nhalpot.eq.1) then !* Z.mien

i=ncluster+l

RXI = RX(I)
RYI = RY(I)
RZI = RZ(I)
FXI = FX(I)
FYI = FY(I)
FZI = FZ(I)

do 299 j=l,ncluster

RXIJ = RXI - RX(J)
RYIJ = RYI - RY(J)
RZIJ = RZI - RZ(J)

RIJ = sqrt(RXIJ ** 2 + RYIJ ** 2 + RZIJ ** 2)

call anmmsv(p (l),p(2),p(3),P(4),P(5),P(6),
& P(7),P(8),RIJ,vIJ, FIJ)

rgxpot = rgxpot + VIJ
FIJ = FIJ / RIJ
FXIJ =
FYIJ =
FZIJ =
FXI =
FYI =
FZI =
FX(J) =
FY(J) =
FZ(J) =

299 continue

poten = poten
FX(I) = FXI
FY(I) = FYI
FZ(I) = FZI

c

FIJ * RXIJ
FIJ * RYIJ
FIJ * RZIJ
FXI + FXIJ
FYI + FYIJ
FZI + FZIJ
FX(J) - FXIJ
FY(J) - FYIJ
FZ(J) - FZIJ

+ rgxpot

c Calculate Three body interactions involving halide & 2 RGs
c

if ((indflag+iexqflag) .gt. o) then
XO = rx(ncluster+l)
yO = ry(ncluster+l)
20 = rz(ncluster+l)
do i = 2 , ncluster

do j = l,i-1 .
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&

&

&

&

if (indflag.eq.l) then
call pfind(polind,xO,yO, zO,rx(i),ry(i),rz(i) ,

rx(j) ,ry(j),rz(j),vcdd,fOxtfOy,
foz,flx,fly,flz, f2x,f2y,f2z)

cddpot = cddpot + vcdd
fx(ncluster+l) = fx(ncluster+l) + fOx
fy(ncluster+l) = fy(ncluster+l) + fOy
fz(ncluster+l) = fz(ncluster+l) + fOz
fx(i) = fx(i) + flx
fy(i) = fy(i) + fly
fz(i) = fz(i) + flz
fx(j) = fx(j) + f2x
fy(j) = fy(j) + f2Y
fz(j) = fz(j) + f2z

endif
if (iexqflag.eq.1) then

call pfexq(betaexq, cutexq,xO,yO, zO,rx(i),ry(i),
rz(i),rx(j),ry(j)rrz (j),vexq,fOx,fOy,
foz,flx,fly,flz, f2x,f2y,f2z)

exqpot = exqpot + vexq
fx(ncluster+l) = fx(ncluster+l) + fOx
fy(ncluster+l) = fy(ncluster+l) + fOy
fz(ncluster+l) = fz(ncluster+l) + fOz
fx(i) = fx(i) + flx
fy(i) = fy(i) + fly
fz(i) = fz(i) + flz
fx(j) = fx(j) + f2x
fy(j) = fy(j) + f2y
fz(j) = fz(j) + f2Z

endif
enddo

enddo
poten = poten + cddpot + exqpot

endif

*
*
* Many body induction (by iteration) and new exchange quadruple
model,
* & quadruple induction
*

if (((indi.eq.l).or. (iexqd.eq.l).or. (indq.eq.1)).and.
& (indqi.eq.0)) then

if (indi.eq.1) then
call vindi(polrg,polx, rx,ry,rz,dx,dy,dz,dhalpair,

& drgpair,vindit )
c write(*,1001) dsqrt(dx(l) **2+dy(l)**2+dz(l)**2),
c & dsqrt(dx (2)**2+dy(2)**2+dz (2)”’2),
c & dsqrt(dx(3) **2+dy(3)**2+dz (2)”2)
Clool format (3(f15.12,1x))

else
vindit = O.OdO

endif
if (indq.eq.1) then

call vindq(pqrg,pqx, rx,ry,rz,dx,dy,dz,dhalpair,drgpair,
& qind,rgdrgq ,rgqq,rgqxd ,viq)

else
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xdrgq = O.OdO
rgqq = O.OdO
rgqxd = O.OdO
viq = O.OdO

endif
if (iexqd.eq.1) then

call veqd(betaexq, theta6,rx,ry,rz,dx,dy,dz,dx2, dy2,dz2,
& vexqd )

else
vexqd = O.OdO

endif

vindexqd = vindit + vexqd + viq

do i“= I,ncluster+l !* Forces calculated numerically

rxi = rx(i)
ryi = ry(i)
rzi = rz(i)
rx(i) = rxi + delta

if (indi.eq.1) then
call vindi(polrg,polx, rx,ry,rz,dx,dy,dz,dhalpair,

& drgpair,vinditx)
else

vinditx = O.OdO
endif

if (indq.eq.1) then
call vindq(pqrg,pqx, rx,ry,rz,dx,dy,dz, dhalpair, drgpair,

& qind,rgdrgqdum ,rgqqdum,rgqxddum,viqx)
else
viqx = O.OdO

endif

if (iexqd.eq.1) then
call veqd(betaexq, theta6,rx,ry,rz,dx,dy,dz,dx2 ,dy2,dz2,

& vexqdx )
else
vexqdx = O.OdO

endif

rx(i) = rxi
ry(i) = ryi + delta

if (indi.eq.1) then
call vindi(polrg,polx, rx,ry,rz,dx,dy,dz,dhalpair,

& drgpair,vindi ty)
else

viridity = O.OdO
endif

if (indq.eq.1) then
call vindq(pqrg,pqx, rx,ry,rz,dx,dy,dz,dhalpair, drgpair,

& qind,rgdrgqdtun,rgqqdum,rgqxddum ,viqy)
else

vi~ = O.OdO
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endif

if (iexqd.eq.1) then
call veqd(betaexq, theta6,rx,ry,rz,dx,dy,dz,dx2 ,dy2,dz2,

& vexqdy )
else

vexqdy = O.OdO
endif

m(i) = wi
rz(i) = rzi + delta

if (indi.eq.1) then
call vindi(polrg,polx, rx,ry,rz,dx,dy,dz,dhalpair,

& drgpair,vinditz )
else

vinditz = O.OdO
endif

if (indq.eq.1) then
call vindq(pqrg,pqx, rx,ry,rz,dx,dy,dz,dhalpair, drgpair,

& qind,rgdrgqdum ,rgqqdum,rgqxddum ,viqz)
else

viqz = O.OdO
endif

if (iexqd.eq.1) then
call veqd(betaexq, theta6,rx,ry,rz,dx,dy,dz,dx2 ,dy2,dz2,

& vexqd z)
else
vexqdz = O.OdO

endif

rz(i) = rzi
fx(i) = fx(i) - (vinditx+vexqdx+viqx-vindexqd) /delta
fy(i) . fy(i) - (vindity+vexqdy+viqy-vindexqd) /delta
fz(i) = fz(i) - (vinditz+vexqdz+viqz-vindexqd) /delta

enddo

poten = poten + vindexqd

endif
*
* Iterated dipoles and quadruples, Gaussian Exchange & Axilrod-Teller
*

if ((indqi.eq.l).or. (iexg.eq.l).or. (iaxtel.eq.1)) then

if (indqi.eq.1) then
call vinddq(polrg,polx,pqrg,pqx, rx,ry,rz,dpol,dhalpair,

& drgpair,qhalpair, qrgpair,qpol,cdpot, cqpot,cdqpot)
else

cdpot = O.
Cqpot = o.
cdqpot = O.

endif
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if (iexqd.eq.1) then
call veqd(betaexq, theta6,rx,ry,rz,dx,dy,dz,dx2,dy2 ,dz2,

& vexqd )
elseif (iexg.eq.1) then

call exg(betaexq, theta6,rx,ry,rz,gexpot,ddispot, qdispot,
& gextot)

vexqd = O.OdO
else

vexqd = O.
gexpot = O.
ddispot = O.
qdispot = O.
gextot = O.

endif

if (iaxtel.eq.1) then
call vzt(c9at, rx,ry,rz,atpot)

else
atpot = O.

endif

vindexqd = cdqpot + vexqd + gextot + atpot

do i = I,ncluster+l !* Forces calculated numerically

rxi = rx(i)
ryi = ry(i)
rzi = rz(i)
rx(i) = rxi + delta

if (indqi.eq.1) then
call vinddq(polrg,polx,pqrg,pqx, rx,ry,rz,dpol,dhalpair,

& drgpair,qhalpair, qrgpair,qpol ,cddum,cqdtun,cdqpotx)
else

cdqpotx = O.
endif

if (iexqd.eq.1) then
call veqd(betaexq, theta6,rx,ry,rz,dx,dy,dz,dx2 ,dy2,dz2,

& vexqdx )
elseif (iexg.eq.1) then

call exg(betaexq, theta6,rx,ry,rz,gexdum,ddisdum, qdisdum,
& gextotx)

vexqdx = O.OdO
else

gextotx = O.
vexqdx = O.Od[

endif

if (iaxtel.eq.l
call vat(c9at

else
atpotx = O.

endif

rx(i) = rxi

then
rx,ry,rz,atpotx)

w(i) = ryi + delta
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if (indqi.eq.1) then
call vinddq(polrg,polx,pqrg,pqx, rx,ry,rz,dpol,dhalpair,

& drgpair,qhalpair, qrgpair,qpol ,cddu.m,cqdum,cdqpoty)
else

cdqpoty = O.
endif

if (iexqd.eq.1) then
call veqd(betaexq, theta6 ,rx,ry,rz,dx,dy,dz,dx2 ,dy2,dz2,

& vexqdy )
elseif (iexg.eq.1) then

call exg(betaexq, theta6,rx,ry,rz,gexdum,ddisdum, qdisdum,
& gextoty)

vexqdy = O.OdO
else

gextoty = O.
vexqdy = O.OdO

endif

if (iaxtel.eq.1) then
call vat(c9at, rx,ry,rz,atpoty)

else
atpoty = O.

endif

ry(i) = ryi
rz(i) = rzi + delta

if (indqi.eq.1) then
call vinddq(polrg,polx,pqrg,pqx, rx,ry,rz,dpol,dhalpair,

& drgpair,qhalpair, qrgpair,qpol ,cddum,cqdum,cdqpotz)
else

cdqpotz = O.
endif

if (iexqd.eq.1) then
call veqd(betaexq, theta6 ,rx,ry,rz,dx,dy,dz,dx2 ,dy2,dz2,

& vexqdz )
elseif (iexg.eq.1) then

call exg(betaexq, theta6,rx,ry,rz,gexdum,ddisdum, qdisdum,
& gextotz)

vexqdz = O.OdO
else

gextotz = O.
vexqdz = O.OdO

endif

if (iaxtel.eq.1) then
call vat(c9at, rx,ry,rz,atpotz)

else
atpotz = O.

endif

&

rz(i) = rzi
fx(i) = fx(i) - (cdqpotx+vexqdx+gextotx+atpotx

-vindexqd)/del ta
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fy(i) = fy(i) - (cdqpoty+vexqdy+gextoty+atpoty
& -vindexqd)/del ta

fz(i) = fz(i) - (cdqpotz+vexqdz+gextotz+atpotz
& -vindexqd)/del ta

enddo

poten = poten + vindexqd

endif

elseif (nhalpot.eq.2) then !* Neutral

if (iaxtel.eq.1) then
pause ‘Ax-Tel not implemented for numerical neutral’

endif

call porb(rx, ry,rz,eval)
rgxpot = eval(neigval)
rgxXpo t = eval(l)
rgxIpot = eval(3)
rgxIIpot = eval(5)

*
* Forces calculated numerically
*

do i = l,ncluster+l !* Forces on rare gases and halogen

rxi = rx(i)
ryi = ry(i)
rzi = rz(i)
rx(i) = rxi + delta
call porb(rx, ry,rz,eval)
fx(i) = fx(i) - (eval(neigval)-rgxpot)/delta
rx(i) = rxi
ry(i) = ryi + delta
call porb(rx, ry,rz,eval)
fy(i) = fy(i) - (eval(neigval)-rgxpot)/delta
ry(i) = ryi
rz(i) = rzi + delta
call porb(rx, ry,rz,eval)
fz(i) = fz(i) - (eval(neigval)-rgxpot)/delta
rz(i) = rzi

enddo
poten = poten + rgxpot

elseif (nhalpot.eq.3) then !* Neutral, Central Difference

if (iaxtel.eq.1) then
pause ‘w-Tel not implemented for numerical neutral’

endif

call porb(rx, ry,rz,eval)
rgxpot = eval(neigval)
rgxXpot = eval(l)
rgxIpot = eval(3)
rgxIIpot = eval(5)
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do i = I,ncluster+l !* Forces on rare gases and halogen

Using Central difference approximation
rxi = rx(i)
ryi = ry(i)
rzi = rz(i)

rx(i) = rxi + delta/2.OdO
call porb(rx, ry,rz,eval)
evalplus = eval(neigval)
rx(i) = rxi - delta/2.OdO
call porb(rx, ry,rz,eval)
fx(i) = fx(i) - (evalplus-eval (neigval))/delta
rx(i) = rxi

ry(i) = ryi + delta/2.OdO
call porb(rx, ry,rz,eval)
evalplus = eval(neigval)
ry(i) = ryi - delta/2.OdO
call porb(rx, ry,rz,eval)
fy(i) = fy(i) - (evalplus-eval (neigval))/delta
ry(i) = ryi

rz(i) = rzi + delta/2.OdO
call porb(rx, ry,rz,eval)
evalplus = eval(neigval)
rz(i) = rzi - delta/2.OdO
call porb(rx, ry,rz,eval)
fz(i) = fz(i) - (evalplus-eval (neigval))/delta
rz(i) = rzi

enddo

poten = poten + rgxpot

elseif (nhalpot.eq.4) then !* Neutral, calculated analytically

call porba(rx, ry,rz,evala)
rgxpot = evala(neigval)
rgxXpot = evala(l)
rgxIpot = evala(2)
rgxIIpot = evala(3)

if (iaxtel.eq.1) then
call vat(c9at, rx,ry,rz,atpot)

else
atpot = O.

endif

Forces calculated numerically

do i = l,ncluster+l !* Forces on rare gases and halogen
rxi = rx(i)
ryi = ry(i)
rzi = rz(i)
rx(i) = rxi + delta
call porba(rx, ry,rz,evala)
if (iaxtel.eq.1) then
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call vat
else

atpotx =
endi f
fx(i) = fx

&

c9at,rx,ry,rz,atpotx)

o.

i) - (evala(neigval )+atpotx-rgxpot
-atpot)/delta

rx(i) = rxi
ry(i) = ryi + delta
call porba(rx, ry,rz,evala)
if (iaxtel.eq.1) then

call vat(c9at, rx,ry,rz,atpoty)
else

atpoty = O.
endif
fy(i) = fy(i) - (evala(neigval)+atpoty-rgxpot

& -atpot)/delta
ry(i) = ryi
rz(i) = rzi + delta
call porba(rx, zy,rz,evala)
if (iaxtel.eq.1) then

call vat(c9at, rx,ry,rz,atpotz)
else

atpotz = O.
endif
fz(i) = fz(i) - (evala(neigval)+atpotz-r9xpot

& -atpot)/delta
rz(i) = rzi

enddo
poten = poten + rgxpot + atpot

endif
c
c

icount = O
c

do 1000 n = l,6*ncluster-5, 6
c

icount = icount + 1
force(n) = y(n+3)/rmc
force(n+l) = y(n+4)/rmc
force(n+2) = y(n+5)/rmc
force(n+3) = fx(icount)
force(n+4) = fy(icount)
force(n+5) = fz(icount)

c
1000 continue

c
icount = icount + 1

c
n = 6*(ncluster+l) - 5

c
force(n) = y(n+3)/rml
force(n+l) = y(n+4)/rml
force(n+2) = y(n+5)/rml
force(n+3) = fx(icount)
force(n+4) = fy(icount)
force(n+5) = fz(icount)
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c

c

c

c

100

c

C5.5.

RETURN
END

subroutine kinetic(y,ekin)
include ‘param.file’

dimension y(neqmc)
ekin = O.OdO

do 100 n = l,6*ncluster-5,6
ekin = ekin
+ (y(n+3)**2 + y(n+4)**2 + y(n+5)**2)/(2.OdO*rmc)

continue

n = 6*(ncluster+l) - 5
ekin = ekin

+ (Y(n+3)**2 + y(n+4)**2 + y(n+5)**2)/(2.0dO*rml )

return
end

File “initzangdiat.f”

*--__-.-__----_--------—__-—__________________——____—______________________________________

subroutine initpos(yO,dseed)
*__________________________________________________________________________________________
*
* Generate random initial positions
*

include ‘param.file’
common/box/boxsize, cutoff
dimension yO(neqc), x(ncl+nmolec) ,y(ncl+nmolec), z(ncl+nmolec) ,
& dist(ncl+l,ncl+l)
logical tooclose

10 do n=l,ncluster+l
call ggubs(dseed,l,r)
x(n)=boxsize*r
call ggubs(dseed,l,r)
y(n)=boxsize*r
call ggubs(dseed,l,r)
z(n)=boxsize*r

enddo
*
* Check that no atoms are too close together
*

tooclose=.false.
do n=l,ncluster+l

do m=n+l,ncluster+l
dist(n,m)=sqrt( (x(n)-x(m))**2+(y(n)-y(m) )**2+(z(n)-z(m) )“2)
if (dist(n,m).lt.cutoff) then

tooclose=. true.
endif

enddo
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enddo

if (tooClose) go to 10

do n=l,ncluster+l
i= 6* (n-1)
yO(i+l)=x(n)
yO(i+2)=y(n)
yO(i+3)=z(n)

enddo

return
end

*===============================================================.____=

c

c

c

c

150

c
c
c

11
10
c
c
c
c
c

c

c

subroutine initzangdiat (yO,dseed,escale)
include ‘param.file’

dimension yO(neqc)
dimension px(3000),py(s0C)O),pZ (sOOO)
dimension x(3000),Y(3000), z(3000)
dimension rmass(3000)
dimension r(1)
dimension rmom(3, 3),rinv(3,3)

rmtot = rmc*ncluster + rml

do 150 n = l,ncluster
rmass(n) = rmc
continue
rmass(ncluster+l) = rml

zero out moment of inertia tensor

do 10 i=l,3
do 11 j=l,3
rmom(i,j) = O.OdO
continue
continue

read in initial configuration and calculate the momemt of
inertia tensor

xcm = O.OdO
ycm = O.OdO
zcm = O.OdO

do 20 n = l,ncluster + 1

i. = 6*(n-1)
x(n) = yO(i+l)
y(n) = yO(i+2)
z(n) = yO(i+3)
xcm = xcm + rmass(n)*x(n)
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20
c

c

c

c

c
21

c

c
c
c

c
c
c
c

c

50

55
c
c
c

ycm = ycm + rmass(n) *y(n)
zcm = zcm + rmass(n) ’z(n)
continue

xcm = xcm/rmtot
ycm = ycm/rmtot -
zcm = zcm/rmtot

do 21 n = I,ncluster + I

x(n) = x(n) - xcm

y(n) = y(n) - ycm
z (n) = z(n) - zcm

rmom(l,l) = rmom(l,l) + rmass(n)*(y(n) **2 + z(n)**2)
rmom(l,2) = rmom(l,2) - rmass(n)*x(n) *y(n)
rmom(l,3) = rmom(l,3) - rmass(n)*x(n) *z(n)
rmom(2,2) = rmom(2,2) + rmass(n)*(x(n)**2 + z(n)**2)
rmom(2,3) = rmom(2,3) - rmass(n)*y(n) *z(n)
rmom(3,3) = rmom(3,3) + rmass(n)*(x(n) **2 + y(n)**2)

continue

rmom(2,1) = rmom(l,2)
rmom(3,1) = rmom(l,3)
rmom(3,2) = rmom(2,3)

invert the moment of inertia tensor

call invert(rmom,rinv)

calculate random momenta and subtract CM momentum

pxtot = O.OdO
pytot = O.OdO
pztot = O.OdO

do 50 n = l,ncluster + 1
call ggubs(dseed,l,r)
px(n) = 2.0dO* (r(l) - 0.5dO)
call ggubs(dseed,l,r)
py(n) = 2.OdO*(r(l) - 0.5d0
call ggubs(dseed,l,r)
pz(n) = 2.0dO* (r(l) - 0.5d0
pxtot = pxtot + px(n)
pytot = pytot + py(n)
pztot = pztot + pz(n)
continue
do 55 n = l,ncluster + 1
px(n) = px(n) - rmass(n)*pxtot/rmtot
py(n) = py(n) - rmass(n)*pytot/rmtot
pz(n) = pz(n) - rmass(n)*pztot/rmtot
continue

calculate angular momenta and angular velocity
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c

c

c
57
c

c
c
c
c

c

c

c

c

c
60
c

c

c

c
75
c

c

angx = O.OdO
angy = O.OdO
angz = O.OdO

do 57 n = l,ncluster + 1

angx = angx + y(n)”pz(n) - z(n)*py(n)
angy = angy + z(n)*px(n) - x(n)’pz(n)
angz = angz + x(n)’py(n) - y(n)’px(n)

continue

wx = rinv(l,l)*angx + rinv(l,2)*angy + rinv(l,3)*angz

WY = rinv(2Jl)*an9x + rinv(2,2)*an9y + rinv(2,3)*angz
Wz = rinv(3,1)*angx + rinv(3,2)*angy + rinv(3,3)*angz

adjust particle momenta to remove overall angular moment~m
also, calculate the total kinetic energy

ekin = O.OdO

do 60 n = I,ncluster + 1

dpx = rmass(n)’(wy”z(n) - wz”y(n))
dpy = rmass(n)’(wz’x(n) - wx’z(n))
dpz = rmass(n)*(wx*y(n) - wy*x(n))

px(n) = px(n) - dpx
py(n) = py(n) - dpy
pz(n) = pz(n) - dpz

ekin = ekin + (px(n)**2 + py(n)**2
+ pz(n)**2)/(2.0dO*rmass (n))

continue

angx = O.OdO
angy = O.OdO
angz = O.OdO
pxtot = O.OdO
pytot = O.OdO
pztot = O.OdO

do 75 n = l,ncluster + 1

pxtot = pxtot
pytot = pytot
pztot = pztot
angx = angx +
angy = angy +
angz = angz +

continue

+ px(n)
+ py(n)
+ pz(n)
Y(n)’pz(n) - z(n)*py(n)
z(n)*px(n) - x(n)’pz(n)
x(n)’py(n) - y(n)*px(n)

fac = dsqrt(escale/ekin)
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.

pxf = O.OdO
pyf = O.OdO
pzf = O.OdO

c
do 70 n = l,ncluster + 1
px(n) = px(n)’fac
py(n) = py(n)*fac
pz(n) = pz(n)’fac
pxf = pxf + px(n)
pyf = pyf + py(n)
pzf = pzf + pz(n)

c
70 continue

do 100 n = l,ncluster + 1
i = 6*(n-1)
yO(i+l) = x(n)
yO(i+2) = y(n)
yO(i+3) = z(n)
yO(i+4) = px(n
yO(i+5) = py(n
yO(i+6) = pz(n

100 continue
c

return
end

c
c

c
c
c

c

subroutine invert(rmom,rinv)
implicit real*8(a-h,o–z)
dimension rmom(3,3), rinv(3,3),cf(3,3),rident (3,3)

inverts the three by three zmom matrix must be symmetric!

cf(l,l) = rmom(2, 2)*rmom(3,3) – rmom(2, 3)*rmom(3,2)
cf(l,2) = rmom(2,1)*mom(3 ,3) - rmom(2,3)*mom(3 ,1)
cf(l,3) = mnom(2, 1)*rmom(3,2) - rmom(2,2)*mom(3 ,1)
cf(2,1) = cf(l,2)
cf(2,2) = rmom(l, l)*mnom(3,3) - rmom(l,3)*mom(3 ,1)
cf(2,3), = .rmom(l,l)*rmom(3,2) - rmom(l,2)*rmom(3,1)
cf(3,1) = cf(l,3)
cf(3,2) = cf(2,3)
cf(3,3) = rmom(l, l)*rmom(2,2) - rmom(l,2)*mom(2 ,1)

det = rmom(l,l)’cf(l,l) - rmom(l,2)*ci(l,2) + rmom(l,3)*ci(l,3)
c
c

20

10

c
c
c

do 10 i=l,3
do 20 j=l,3
ifac = (-l)**(i+j)
rinv(i,j) = dfloat(ifac)*cf(j,i)/det
continue
continue

check if this is the inverse

do 30 i = 1,3
do 40 j = 1,3
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rident(i,j) = O.OdO
do 50 k = 1,3
rident(i,j) = rident(i,j) + rmom(i,k)*rinv(k,j)

50 continue
40 continue .

30 continue
do 60 i = 1,3

c write (*,*) (rident(i,j),j=l ,3)
60 continue

return
end

c IMSL ROUTINE NAME - GGUBS
c
c----------------------------------------------------------------------

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

COMPUTER

LATEST REVISION -

PURPOSE

USAGE

ARGUMENTS DSEED -

NR-
R

PRECISION/HARDWA.RE -

REQD . IMSL ROUTINES -

NOTATION

COPYRIGHT

WARRANTY

IBM77/sINGLE

JUNE 1, 1980

BASIC UNIFORM
GENERATOR

(0,1) PSEUDO-FU+NDOM NUMBER

CALL GGUBS (DSEED,NR,R)

INPUT/OUTPUT DOUBLE PRECISION VARIABLE
ASSIGNED AN INTEGER VALUE IN THE
EXCLUSIVE RANGE (1.DO, 2147483647.DO).
DSEED IS REPLACED BY A NEW VALUE TO BE
USED IN A SUBSEQUENT CALL.

INPUT NUMBER OF DEVIATES TO BE GENERATED.
OUTPUT VECTOR OF LENGTH NR CONTAINING THE

PSEUDO-RANDOM UNIFORM (0,1) DEVIATES

SINGLE/ALL

NONE REQUIRED

INFORMATION ON SPECIAL NOTATION AND
CONVENTIONS IS AVAILABLE IN THE MANUAL
INTRODUCTION OR THROUGH IMSL ROUTINE UHELP

1980 BY IMSL, INC. ALL RIGHTS RESERVED.

IMSL WARRANTS ONLY THAT IMSL TESTING HAS BEEN
APPLIED TO THIS CODE. NO OTHER W~’I’Y,
EXPRESSED OR IMPLIED, IS APPLICABLE.

---------------------------------------------------------------------

c
SUBROUTINE GGUBS (DSEED,NR,R)

c SPECIFICATIONS FOR ARGUMENTS
c note. ..1 have changed this to be real*8 for all vars. CCM
1/28/90

INTEGER NR
REAL*8 r(NR) ,dseed

c SPECIFICATIONS FOR LOCAL VARIABLES
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c
c

c

5

C5.6.

c
c----

real*8 D2P31M, D2P31
D2P31M=(2**31)
D2P31 =(2’’31)

DATA D2P31M/2147483647 .DO/
DATA D2P31/2147483648.DO/

-1
OR AN ADJUSTED VALUE

FIRST EXECUTABLE STATEMENT
DO 5 I=l,NR

DSEED = DMoD(16807 .DO*DSEED,D2P31M)
R(I) = DSEED / D2P31
RETWRN
END

File ‘‘thermgen.f”

subroutine thermgen (yO,nstep,nskip,ntconst, h,ekintarget)
include ‘param.file’

DIMENSION Y(neqc), DlY(neqc),D2Y (neqc),D3Y(neqc), D4Y(neqc) ,
.ZY(neqc) ,YO(neqc) ,Yl(neqc) ,Y2(neqc) ,Y3(neqc) ,YH(neqc) ,Y3P(neqc) ,
.FO(neqc) ,Fl(neqc) ,F2(neqc),F3 (neqc),FH(neqc) ,ZF(neqc)

------------------------------------------------------------------
-----———

c DATA FOR INTEGRATOR ALGORITHMS
c----------------------------------------------------------------------

c
c

---———--

c DATA FOR RUNGE KUTTA INTEGRATION
Bll= 1.ODO/3.ODO
B21=-1.ODO/3.ODO
B22= 1.ODO
B31= 1.ODO
B32=-1.ODO
B33= 1.ODO
WI= 1.oDo/8.oDo
w2= 3.ODO/8.ODO
W3= 3.ODO/8.ODO
W4= 1.oDo/8.oDo

DATA FOR HYBRID GEAR ROUTINE
GA02= 153.ODO/128.ODO
GAO1= 25.ODO/16.ODO
GAOO=-225.0DO/128.0D0
GB02= 45.ODO/128.ODO
GBO1= 75.ODO/32.ODO
GBOO= 225.0DO/128.0D0

c
c ALPHA1=-0.5 FOR STABILITY
c

GA12= (15.ODO/16.ODO)-O.5DO*(29 .ODO/32.ODO)
GA1l= (-1.0DO)-0.5DO*(1. ODO)
GA1O= (17.ODO/16.ODO)-O.5DO* (-61.ODO/32.ODO
GB12= (5.ODO/16.ODO)-O.5DO*(43 .ODO/160.ODO)
GB1l= (11.ODO/12.ODO)-O.5DO*(41 .ODO/24.ODO)
GB1O= (-11.ODO/16.ODO)-O.5DO* (31.ODO/32.ODO
=10= (4.ODO/3.ODO)-O.5DO*(-2 .ODO/15.ODO)
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c
c ALPHA2=1.0, BETA=9/56
c

BETA= 9.ODO/56.ODO
GA22= l.5DO*(29.0DO/32.0DO)+BETA* (-45.0DO/4.0DO)
GA21= 1.5DO*(1. 0DO)+BETA*(0. ODO)
GA20= l.5DO*(-61.0DO/32.0DO)+BETA* (45.ODO/4.ODO)
GB22= l.5DO*(43.0DO/160.0DO)+BETA* (-71.ODO/20.ODO)
GB21= l.5DO*(41.0DO/24.0DO)+BETA* (-16.ODO)
GB20= l.5DO*(31.0DO/32.0DO)+BETA* (-3.ODO/4.ODO)
GG20= 1.5DO*(-2.ODO/15.ODO)+BETA* (-16.ODO/5.ODO)
GG21= BETA*l.ODO

c
open(7, file= ’therm.out’,status= ‘unknown’)

c .

call deriv(fO,yO)
c

call kinetic(yO,ekin)
energy = ekin + poten
write(*,*) ‘initial poten = ‘,poten*harev/lOO., ‘ eV’
WRITE(*,*) ‘initial energy =’,energy*harev/lOO., ‘ eV’
write(*,*)
write(*,667)

667 format(5x, ‘Time (PS)’,8X,‘facA2’,10x, ‘Temp. (K)’,7x,‘Target
Temp. ‘,

& 3x, ‘Avg. Poten (eV)‘)
therm = 2.OdO*ekin/(3.OdO*(ncluster+nmolec) )
therm = therm/0.0003167d0
write (7,*)0.0d0,therm

c
c----------------------------------------------------------------------
--------

c SIXTEEN STEP RUNGE KUTTA INTEGRATION TO START
c----------------------------------------------------------------------
--------

c

99
c

c

c

c

c

100
c

200

DH=H/8,0Do
ICOUNT=O
DO 99 I=l,NEQ
Y(I)=YO(I)
CONTINUE

CALL DERIV(FO,Y)

DO 1000 ISTEP=1,16

ICOUNT=ICOUNT+l

CALL DERIV(ZF,Y)

DO 100 I=l,NEQ
DIY(I)=DH*ZF(I)
CONTINUE

DO 200 I=l,NEQ
zY(I)=Y (I)+B1l*DIY(I)
CONTINUE

. .—-—. .. .— .. ... ~.. ,-, . . ,-.,.. .—”4-,<.

289

-.”rR--, --, ,-.–..,.. -; ,,77T-
._. ..—



c

c

300
c

400

c

c

500
c

600
c

c

700
c

800
c

810

820

c
1000
c
c

CALL DERIV(ZF, ZY)

DO 300 I=l,NEQ
D2Y(I)=DH*ZF(I)
CONTINUE

DO 400 I=l,NEQ
ZY(I)=Y (I)+B21*D1Y (I)+B22*D2Y (I)
CONTINUE

CALL DERIV(ZF,ZY)

DO 500 I=l,NEQ
D3Y(I)=DH*ZF(I)
CONTINUE

DO 600 I=l,NEQ
ZY(I)=Y(I) +B31*D1Y(I) +B32*D2Y (I)+B33*D3Y(I)
CONTINUE

CALL DERIV(ZF,ZY)

DO 700 I=l,NEQ
D4Y(I)=DH*ZF(I)
CONTINUE

DO 800 I=l,NEQ
Y(I)=Y(I)+WI’DIY (I)+W2*D2Y (I)+W3*D3Y (I)+W4*D4Y(1)
CONTINUE

IF(ICOUNT.EQ. 8)THEN
CALL DERIV(F1,Y)
DO 810 I=l,NEQ
Y1(I)=Y(I)
CONTINUE
ELSE IF(ICOUNT. EQ.16)THEN
CALL DERIV(F2,Y)
DO 820 I=l,NEQ
Y2(I)=Y(I)
CONTINUE
END IF

CONTINUE

c----------------------------------------------------------------------
——______

c ENTER MAIN INTEGRATION LOOP
c______________________________________________________________________
---——---

ICOUNT=2
itime = 2
iave = O
ekinave = O.OdO
potave = O.OdO

c
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DO 2000 ISTEP=l,NSTEP
ICOUNT=ICOUNT+l
itime = itime + 1
iave = iave + 1

c

1100
c

c
c
c

1300
c

c
c
c

DO 1100 I=l,NEQ
J=I
YH(I)=GA02*Y0 (I)+GA01*Y1 (I)+GAOO*Y2 (I)+
.H*(GB02*F0 (I)+GBOI*FI (I)+GBOO*F2(I) )
CONTINUE

CALL DERIV(FH,YI-1)

CALCULATE PREDICTED ARRAY Y3P

DO 1300 I=l,NEQ
Y3P(I)=GA12*Y0 (I)+GA11*Y1 (I)+GA10*Y2 (I)+
.H*(GB12*F0 (I)+GB11*F1(I)+GB1O*F2(I))+
.H*GG1O’FH(I)
CONTINUE

CALL DERIV(F3,Y3P)

CALCULATE CORRECTED ARRAY Y3
SET LOCAL TRUNCATION ERROR ERRLOC EQUAL TO ZERO
ERRLOC=O.ODO

c
DO 1500 I=l,NEQ
Q=GA22*Y0 (I)+GA21*Y1 (I)+GA20*Y2(I)+
.H*(GB22*F0 (I)+GB21*F1(I)+GB20*F2(I))+
.H*(GG20*FH (I)+GG21*F3 (I))

c

1500
*
*
*

c
c
c

Y3(I)=Y3P(I)+Q
CONTINUE

Recalculate F3 with corrected array Y3

call deriv(F3,Y3)
potave = potave + poten

RESET ARRAYS FOR NEXT STEP

DO 1600 I=l,NEQ
YO(I)=Y1 (I)
Y1(I)=Y2 (I)
Y2(I)=Y3 (I)
FO(I)=F1(I)
F1(I)=F2 (I)
F2(I)=F3 (I)

1600 CONTINUE
call kinetic(y2,ekin)

ekinave = ekinave + ekin
if(iave.eq.nskip) then
ekinave = ekinave/(1.OdO*nskip)
potave = potave/(l.OdO*nskip)
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1602
1601
c

therm = 2.0dO*ekinave/(3.0dO* (nmolec+ncluster))
therm = therm/O.0003167d0
write(7,*)h*itime/413 .47,therm

fac = dsqrt(l.+(dble(nskip)/dble (ntconst))
& *(ekintarget/therm-l .))

ptave=potave*harev/lOO .

c
2000
2100
c
3000
c

write(*,2100)h*itime/413 .46,fac**2,therm, ekintzrget,ptave
do 1601 n = l,ncluster+nmolec
do 1602 1=4,6
yO(6* (n-1)+1) = fac*yO(6* (n-1)+1)
yl(6* (n-1)+1) = fac*yl(6* (n-1)+1)
y2(6* (n-1)+1) = fac*y2(6* (n-1)+1)
continue
continue

iave = O
ekinave = O.OdO
potfin = potave
tempfin = therm
potave = O.OdO
endif

CONTINUE
format(5f16.8)

c~ose(7)

do i = 1, neq
yO(I)=y2 (i)
end do

c

return
END

C5.7. File “pforce.F’

*______________________________________________________________

subroutine anmmsv(depth, rmin,betal,
& beta2,xl,x2,c4,c6,rtin, pot,force)

c--------------------------------------------------------------
c Scaled MMSV for anion
* In: rtin R in aO/10 units
* OUL: pot potential (hartree/100)
* force (hartree/100)/(aO/10), negative whez a~zractive
c

implicit double precision (a–h,o–z)
parameter(pi=3 .14159265359d0,aO=0.529177249d0,

& harev=27. 2113961dO)

rt = aO*rtin/10. I* Convert to Angstroms
xt = rt/rmin

if (xt.le.l.) then
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e2 = exp(2. *betal*(l. -xt))
el = exp(betal*(l. -xt))
pot = depth*(e2-2.*el)
force = -(depth/rmin)*2.*betal*(el-e2 )

else if ((xt.gt.1).and. (xt.le.xl)) then

e2 = exp(2. *beta2*(l.-xt) )
el = exp(beta2*(l. -xt))
pot = depth*(e2-2.*cl)
force = -(depth/rmin)*2.*beta2*(el-e2)

else if ((xt.gt.xl) and. (xt.lt.x2)) then

p21=pi/(x2-xl)
pt=p21*(’:t-xl)
Swxt=o. s’(cos(pt)+l. )
dswxt=-O. 5*p21*sin(pt) /rmin

e2 = exp(2. *beta2*(l.-xt) )
el = exp(beta2*(l. -xt))
pmorse2 = e2-2.*el
dmorse2 = 2.*beta2*(el-e2)/zmin

pvdw = -(c4*rt’* (-4)+c6*rt** (-6))
dvdw = 4.*c4*rt** (-5)+6.*c6*rt** (-7)

pot = depth* (swxt*pmorse2+(l .-swxt)’pvdw)
force = -depth* (dswxt* (pmorse2-pvdw)+swxt*dmorse2

& +(1.-swxt)’dvdw)

else

pot = -depth’ (c4*rt*’ (-4)+c6*rt** (-6))
force = -depth* (4.*c4*rt** (-5)+6.*c6*rt** (-7))

end if
pot = 100.*pot/harev
force = 10.*force*aO/harev

return
end

* ----------------------------------------------------------------

subroutine hfd_b(depth, rmin,alpha, beta,
& acoef,c6,c8,c10,damp, rtin,pot,force)

*----------------------------------------------------------------
*
* Hartree-Fock Dispersion-B Potential
* Ref: Aziz & Slaman Mol. Phys. v.58, P.679
*
* Input: 9 potential parameters
* rtin R in aO/10 units
* output: pot potential in hartree/100
* force force in (hartree/100)/(aO/10)
●

implicit double precision (a-h,o-z)
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(.

parameter (aO=0.529177249d0, harev=27. 2113961dO)

●

☛

☛

*
*
*

*
*
*

rt = aO*rtin/10. I* Convert to Angstroms
xt=rt/rmin

Dispersion damping function

if (xt.lt.damp) then
fdamp=exp(- (damp/xt-l)**2)
ddamp=(2.*damp/xt**2) *(damp/xt-l. )’fdamp

else
fdamp=l .
ddamp=O .

endif

Repulsive part

repul=acoef’exp (–alpha*xt+beta*xt*xt)
drepul=(-alpha+2 .*beta*xt)●repul

Dispersion terms

disp=c6*xt** (-6)+c8*xt** (-8)+clO*xt** (-10)
dciisp=-6.*c6*xt** (–7)–8.*c8*xt** (–9)-10.*clO*xt** (-11)

pot=depth* (repul-fdamp*disp)
force=-depth’ (drepul-fdamp’ddisp-ddamp”disp) /rmin

pot = 100.*pot/harev
force = 10.*force*aO/harev

return
end

*-----------------------------------------------------------___________________________________________________________

subroutine pfind(pol, xO,yO,zO, xl,yl, zl,x2,y2, z2,poten,
& fox,fey,foz,flx,fly,flz,f2x,f2y, f2z)

*______________________________________________________________________________________________________________________
●

* Charge-Ind Dipole-Ind Dipole Three body potential & force
●

* Input: pol Rare gas polarizibility (A”3)
● Xo,yo,zo Halide cartesian coordinates (aO/IO)
● Xl,yl,zl, x2,y2,z2 Rare gas coordinates (aO/10)
*
* output : poten Potential (hartree/100)
* fox,y,z Force on halide (hartree/100)/(aO/10)
* flx,y,z;f2x,y,z Force on rare gases
*

implicit double precision (a-h,o–z)
parameter (pi=3.14159265359d0, aO=0.529177249d0,
& harev=27. 2113961dO)

const = (pol/(aO**3)*l.d3) **2

rlOsqr = (xl-xO)**2+(yl-yO) **2+ (zl-zO)**2

294



r20sqr = (x2-xO)**2+ (y2-yO)**2+ (z2-zO)**2
r12sqr = (xl-x2)**2+(yl-y2)**2+ (zl-z2)**2

dot1020 = (Xl-XO)*(X2-XO)+(Y1-Y0)*(Y2-YO) +(z1-zO
dot1012 = (xl-xO)*(X1-X2)+(Y1-YO)* (yl-y2)+(zl-zO
dot1220 = (x1-x2)*(x2-xO)+(Y1-Y2) *(y2-YO)+(Zl-Z2

tl = dsqrt(rlOsqr)
t2 = r10sqr**2
t6 = dsqrt(r12sqr)
t7 = r12sqr**2
t10 = dsqrt(r20sqr)
tll = r20sqr**2
poten = const*tl/t2*t6/t7*t10/tll* (dot1020-
& 3*dot1012*dot1220/r12sqr)
poten = poten*l.d3

*

● dv/dxO
*

tl = dsqrt(rlOsqr)
t2 = r10sqr**2
t7 = dsqrt(r12sqr)
t8 = r12sqr**2
tlo = t7/t8
t12 = dsqrt(r20sqr)
t13 = r20sqr**2
tls = t12/t13
t20 = l/r12sqr
t22 = dot1020-3*dot1012*dot1220*t20
t29 = const*tl/t2
t39 = -X1+X2

*(Z2-ZO)
*(Z1-Z2)
*(Z2-ZO)

t47 = -3.DO/2.DO*const*tl/t2/r10sqr*t10*t15*t22* (-2*xl+2*x())-
3.DO/

#2.DO*t29*t10*t12/t13/r20sqr*t22* (-2*x2+2*xO)+t29*t10*t15* (-
X2+2*X0

#-xl-3*t39*dot1220*t20-3*dot1012*t39*t20)
fOx = -t47*l.d3

*

* dv/dyO
*

t26 = l/r12sqr
t28 = dot1020-3*dot1012*dot1220*t26
t35 = const*tl/t2
t45 = -yl+y2
t53 = -3.DO/2.DO*const*tl/t2/r10sqr*t10*t15*t28* (-2*yl+2”yO)-

3.DO/
#2.DO*t35*t10*t12/t13/r20sqr*t28* (-2*y2+2*yO)+t35*t10*t15* (-

y2+2*yo
#-yl-3*t45*dot1220*t26-3*dot1012*t45*t26)
fOy = -t53*l.d3

*

* dv/dzO
*

t45 = -Z1+Z2
t53 = -3.DO/2.DO*const*tl/t2/r10sqr*t10*t15*t28* (-2*zl+2*zO)-

3.DO/
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#2
22+2*ZO

,DO*t35‘tlo*t12 /t13/r20sqr*t28*(-2*z2+2’ Zo) +t35*tlo*t15*(-

#-zl-3*t45 ● dot122 0*t26-3* dot1012 *t45*t26)
foz -t53*l.d3

●

●

●

dv/dxl

4
t9 = l/t8
tlo = t7*t9
t17 = X2-XO
t25 = dot1012*dot1220
t2.g= t15*((xl-xo)*t17
t40 = 2*X1-2*X2
t54 = –3.DO/2.DO*const

3.DO/2.DO*
%t35*t7/t8/r12sqr*t29*t

xO)*dot1220
#*t26-3*dot1012*t17*t26
flx = -t54*l.d3

*

+(yl-ye)* (y2-yo

*tl/t2/rlOsqr*t

40+t35*tlo*t15*

+3*t25*t9*t40)

)+(Z1-ZO)

lo*t29*(2

(x2-xO-3*

*(z2-zO) -3*t25*t26)

*xl-2*xo)-

(2*xl-x2-

●

☛

dv/dyl

t20 . y2-yo
t29 . tls’ (xl-Xo )* (x2-Xo)+(yl -yo )*t20+(zl-zo) * (Z2 Zo) -3*L25*t26)
t 40 . 2‘yl ,-2*y2
ts4 . -3.DO/2.DO*const ●tl/t2/r10sqr*t10*t2 9* (2” ‘yo )

-y2-

3.DO/2 DO*
t35*‘E7/t8/r12sqr*t29 *t 40+t35*tlo*t15* (y2-yO-3* (2

yo )*dot1220
*t26-3*dotl,012*t20*t26+3*t25*t9 ● t4o)
fly . t54*l d3

●

● dv/dzl

t23 . Z2-ZO
t29 = t15*((xl-xo) *(x2
i140= 2*Z1-2*Z2
t54 = –3.DO/2.DO*const

/2.DO*

-Xo)+(yl-yo) ●

*tl/E2/rlOsqr

(y2-yo)

‘*tlo*t2

+(zl-

9*(2”

Zo

‘Z1

)*t23-3’t25”t

-2*zo)-

.25

3.DO
t.35*t7/t8/r12sqr.* t29* t40+t35*tlo*t .15* (Z2-z O-3*(2*Z 1–z2-

z()) *dot1220
t26-3*dot1012 ●c23*t2 6+3*t25*t9 *t .40)

flz . t54●1 . d3
*
● dv/dx2
*

ts . const *cl/t2
t6 . dsqrt (rl2sqr )

25*t26

t5*t6/t

t7 =
t28

r12sqr
= dot10

.**2

20-3*t
t30 . -2*X1+2*X2
t33 . l/t7
t34 t6*t33
t55 -3 DO/2 DO * 7/r12sqr*t15*t28*t30-

4*t15* (xl-x13-3*(-
3.

xl

DO/2.DO*t5*t34*t12/
#tl 3/r20sqr* t28*(2 *X2-2●xo)+t5*t3

.+XO ●dot1220 ●t2
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#6-3*dot1012* (-2*x2+xO+xl)*t26+3*t25*t33*t30)
f2x = -t55*l.d3

*
* dv/dy2
*

t30 = -2*yl+2*y2
t55 = -3.DO/2.DO*t5*t6/t7/r12sqr*t15*t28*t30-

3.DO/2.DO*t5*t34*t12/
#t13/r20sqr*t28* (2*y2-2*yO)+t5*t34*t15* (yl-yO-3*(-

yl+yo)*dot1220*t2
#6-3*dot1012* (-2*y2+yO+yl)*t26+3*t25*t33*t30)
f2y = -t55*l.d3

*

* dv/dz2
*

-.
t30 = -2*Z1+2*Z2
t55 = -3.DO/2.DO*t5*t6/t7/r12sqr*t15*t28*t30-

3.DO/2.DO*t5*t34*t12/
#t13/r20sqr*t28*(2*z2-2*zO) +t5*t34*t15* (zl-zO-3*(-

zl+zO)*dot1220*t2
#6-3*dot1012* (-2*z2+zO+zl)*t26+3*t25*t33*t30)
f2z = -t55*l.d3

return
end

*----------------------------------------------------------------------------------------------------------------------------------------
subroutine pfexq(beta, cutoff,xO,YO, z0,x1,Y1,z1,x2 ,y2,z2,pozen,

& fox,foy,foz,flx, fly,flz,f2x,f2y, f2z)
*===========.======.=========================.==.==.=.............==.
*
* Exchange Quadruple, potential & forces
*
● Input: beta range parameter ((aO/lO)A-l)
* cutoff (aO/10)
* Xo,yo,zo Halide coords (aO/IO)
* xl,... RG 1 coords
* x2,... RG 2 coords
*
* Output : poten potential (hartree/100)
* fox, ... Forces (hartree/100) (aO/10)
*

implicit double precision (a-h,o-z)
parameter (pi=3.14159265359d0, aO=0.529177249d0,
& harev=27. 2113961d0, evtocm=8065 .5410dO)

r12sqr = (xl-x2)**2+(yl-y2) **2+(zl-z2)**2
if (r12sqr.gt .cutoff**2) then
poten = O
fox = o.
foy = o.
foz = o.
flx = o.
fly = o.
flz = o.
f2x = o.
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f2y = o.
f2z = o.
return

endif
rcsqr = (xl/2.-xo+x2/2.)**2+(yl/2 .–yo+y2/2.)**2

& +(zl/2.-zo+z2/2.) ●*2
dotc12 = (xl/2-xO+x2/2)*(xl-X2)+ (yl/2-yO+y2/2!*(yl-y2)

& +(zl/2-zo+z2/2)*(zl-z2 )
ex = exp(-r12sqr*beta**2/2 .dO)
quad = -r12sqr*ex/(1.dO-ex)/2
rcthir = rcsqr**l.5d0
vexq = -(quad/rcthir) ●(3.dO*dotc12**2/rcsqr/r12sqr-l .dO)/2.dO

poten = vexq*l.d3
*
● ~ox
*

tl = beta**2
t3 = dexp(-r12sqr*tl/2.OdO)
t4 = r12sqr*t3
t6 = l/(1-t3)
t8 = dsqrt(rcsqr)
t9 = rcsqr**2
t13 = dotc12**2
t14 = l/rcsqr
t16 = l/r12sqr
t20 = -X1+2*X0-X2
t23 = l/t9
t36 = -3.DO/4.DO*t4*t6*t8/t9/rcsqr* (3.DO/2.DO*t13*t14*t16-

1.Do/2.D
#O)*t20+t4*t6*t8*t23*(3*dotc12*t14*t16*(-xl+x2)-

3.DO/2.DO*t13*t23*t
#16*t20)/2
fox = -t36*l.0d3

*
● FOy
*

t20 = -yl+2*yo-y2
t36 = -3.DO/4.DO*t4*t6*t8/t9/rcsqr* (3.DO/2.DO*t13*t14*t16–

1.Do/2.D
#0)’t20+t4*t6*t8’t23* (3*dotc12’t14*t16* (-yI+y2)-

3.DO/2.DO*t13’t23*t
#16*t20)/2
fOy = -t36*l.0d3

*
* FOZ
*

t20 = -Z1+2*Z0-Z2
t36 = -3.DO/4.DO*t4*t6*t8/t9/rcsqr* (3.DO/2.DO*t13*t14*t16-

1.Do/2.D
#O)*t20+t4*t6*t8*t23’ (3*dotc12*t14’t16* (-zl+z2)-

3.DO/2.DO*t13*t23*t
#16*t20)/2
fOz = -t36*l.0d3

*
* FIx
*
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tl = 2*X1-2*X2
t2 = beta**2
t4 = dexp(-r12sqr*t2/2)
t6 = l-t4
tl = l/t6
t8 = dsqrt(rcsqr)
t9 = rcsqr**2 “
tlo = l/t9
tll = t8*t10
t12 = t7*tll
t13 = dotc12**2
t14 = l/rcsqr
tls = t13*t14
t16 = l/r12sqr
t18 = 3.DO/2.DO*t15*t16-l.DO/2 .DO
t24 = tll*t18
t27 = t4**2
t29 = t6**2
t35 = r12sqr*t4
t41 = xl/2-xo+x2/2
t51 = r12sqr**2
t58 = tl*t4*t12*t18/2-r12sqr*tl*t2’t4*t7*t2414-

r12sqr*t27/t29*t24*
#tl*t2/4-

3.DO14.DO*t35*t7*t8/t9/rcsclr*t18*t41+t35*t12* (3*dotc12*t14
#*t16*(xl-xO)-3.DO/2 .DO*t13*t10*t16*t41-3 .DO/2.DO*t15/t51”~l)/2

flx = -t58*l.0d3
*
* Fly
*

tl = 2*yl-2*y2
t41 = yl/2-yo+y2/2
t58 = tl*t4*t12*t18/2-r12sqr*tl*t2*t4*t7*t24/4-

r12sqr*t27/t29*t24*
#tl*t2/4-

3.DO/4.DO*t35’t7*t8/t9/rcsqr*t18*t41+t35*t12* (3*dotc12*t14
#*t16*(yl-yO)-3.DO/2 .DO*t13*t10*t16*t41–3 .DO/2.DO*t15/t51mzl)/2
fly = -t58*l.0d3

*
● Flz
*

t?.= 2*Z1-2*Z2
t41 = zl/2-zo+z2/2
t58 = tl*t4*t12*t18/2-r12sqr*tl*t2*t4*t7*t24/4-

r12sqr*t27/t29*t24*
#tl*t214-

3.DO/4.DO*t35*t7”c8/t91rcsqr*t18*t41+t35*t12* (3*dotc12*t14
#*t16*(zl-zO)-3.DO/2.DO*t13*t10*t16*t41-3 .DO/2.DO*t15/t517cl)/2
flz = -t58*l.0d3

*
* F2x
*

tl = -2*X1+2+X2
t41 = xl/2-xo+x2/2
t58 = tl*t4*t12*t18/2-r12sqr*tl*t2*t4*t7*t24/4-

r12sqr*t27/t29*t24*
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+tl*t2/4-
3.DO/4.DO*t35*t7*t8/t9/rcsqr*t18*t41+t35*t12* (3*dotc12*t14

#*t16*(-x2+xO)-3.DO/2 .DO*t13*t10*t16*t41-3 .DO/2.DO*t15/t51*tl)/2
f2x = -t58*l.0d3

*
* F2y
*

tl = -2*yl+2*y2
t41 = yl/2-yo+y2/2
t58 = tl*t4*t12*t18/2-r12sqr*tl*t2*t4*t7*t24/4-

r12sqr*t27/t29*t24 *
%tl*t2/4-

3.DO/4.DO*t35*t7*t8/t9/rcsqr*t18*t41+t35*t12* (3*dotc12*t14
#*t16*(-y2+yO)-3.DO/2 .DO*t13*t10*t16*t41-3 .DO/2.DO’t15/t51*tl)/2
f2y = -t58*l.0d3

*
* F2Z
*

tl = -2*Z1+2*Z2
t41 = zl/2-zo+z2/2
c58 = tl*t4*t12*t18/2-r12sqr* tl*t2*t4*E7*t24/4-

r12sqr*t27/t29*t2 4*
#tl*t2/4-

3.DO/4.DO*c35*t7’t8/t9/rcsqr*t18*t41+t35*t12* (3*dotc12’c14
#*t16*(-z2+zO)-3.DO/2 .DO*t13*t10*t16*t41-3 .DO/2.i)O*c15/t51*tl)/2
f2z = -t58*l.0d3

.

.

return
end

x ____________________________________________________________________________________________________________________________

subroutine porb(qx, qy,qz,eval)
.--------------------------------------------------------------______________________________________________________________
x
* Calculate p–orbital splitting, including SO coupling.
. Ref.: Lawrence & Apkarian, JCP v.101, p.1820.
. Note the matrix element <1/2,–l/21v13/2,1/2> is izcorrect
. in che paper.
.
* Input : W(1 ..nrg+l) 1-..nrg x.positions of rare gas atoms
* nrg+l x pos of halogen atom (aO/IO)
* Q( ) y positions
. qz ( ) z positions
x
* output : eval(l. .6) Eigenvalues (hartree/100)
*
* Uses : poten2.f: poten
*

include ‘param.file’
parameter(nb=2 ,np=2,x=l,y=2, z=3)
comiion /neutral/ px(lO) ,pl(lO),p2(10),soconst

*
● Note soconst must be in hartree/100
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*

integer ncluster, i,j,k,ierr
double precision qx(ncl+l), qy(ncl+l), qz(ncl+l) ,

& px(lo),pl (lo),p2 (lo)
double precision vr(-l:l, -l:l),vi(-1:1,-l :1),

& vjr(6,6),vji (6,6),eval (6), evecr(6, 6),eveci(6, 6),fvl(6),
& fv2(6),fml(2,6)
double precision rneummsv, rt,soconst
double precision sr2,sr3,xhal,yhal,zhal,

& xk,yk, zk,vOk,v2k, cl,rsq,vx0,”vi0,vii0

sr2 = dsqrt(2.OdO)
sr3 = dsqrt(3.OdO)

*

xhal = qx(ncluster+l) !* Halogen atom coordinates

yhal = qy(ncluster+l)
zhal = qz(ncluster+l)

*
* Calculate matrix elements in spinless basis Ilm>
*

do i=-1,1
do j=-1,1

vr(i,j)=O.
vi(i,j)=O.

enddo
enddo

do k=l,ncluster
xk = qx(k) - xhal
yk = qy(k) - yhal
zk = qz(k) - zhal

rsq=xk**2+yk**2+zk**2
rt = sqrt(rsq)

-O=rneummsv(px(l),px(2 ),px(3),px(4)
& px(8),rt)

viO=rneummsv(pl (l),pl(2),pl(3),pl(4)
& pl(8),rt)

viiO=rneununsv(p2(l),p2(2),P2(3),P2(4
& p2(8),rt)

vOk = (vxO+viiO+viO)/3.
v2k = 5.*(vxO+viiO-2.*viO)/3. .I*

cl = (3.*zk**2-rsq)*v2k/rsq

vr(O,O) = vr(O,O) + vOk + (1./5.)*cl

PX(5),PX(6),PX(7),

Pi(5),Pl(6),pl(7),

,P2(5),P2(6 ),P2(7),

Assuming constant soconst

vr(l,l) = vr(l,l) + vOk - (1./lO.)*cl

vr(l,o) = vr(l,O) -3.*zk*xk*v2k/(5.*sr2*rsq)
vi(l,O) = vi(l,O) +3 .*zk*Yk*v2ki (5.*sr2*rsq)

vr(l,-1) = vr(l, -1) -3.* (xk**2-Yk**2 )*v2k/(10.*rsq)
vi(l,-1) = vi(l,–1)+3.*xk*Yk*v2k/ (5.*rsq)
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enddo

vr(–1,-1) = vr(l,l)

vr(–1,1) = vr(l,-1)
vi(–1,1) = -vi(l,–1)

vr(O,l) = vr(l,O)
vi(O,l) = -vi(l,O)

vr(O, -1) = -vr(l,O)
vi(O,-1) = –vi(l,O)

vr(-1,0) = -vr(l,O)
vi(-1,0) = vi(l,O)

●

● Calculate matrix elements in coupled basis IJM>
*

vjr(l, l) = 2.*vr(l,l)/3.+vr(O,O)/3 .+2.*soconst/3.
vji(l,l) = O.

vjr(l,2) = O.
vji(l,2) = O.

vjr(l,3) = (sr2/3.)*(vr(l,l)-vr(O,O))
vji(l,3) = O.

vjr(l,4) = (2.*vr(l,O)-vr(O,-1))/3
vji(l,4) = (2.*vi(l,O)-vi(O,-1))/3

vjr(l,5) = –vr(O,l)/sr3
vji(l,5) = -vi(O,l)/sr3

vjr(l,6) = vr(l,-l)*sr2/sr3
vji(l,6) = vi(l,–l)*sr2/sr3

vjr(2,1) = O.
vji (2,1) = O.

vjr(2,2) = vjr(l,l)
vji(2,2) = O.

vjr(2,3) = (vr(O,l)-2.*vr(-1,0))/3. !* Incorrect in Apkarian’s

paper
vji(2,3) = (vi(O,l)-2.*vi(-1,0))/3. !* “

vjr(2,4) = (vr(O,O)-vr(-1,-l))*sr2/3 .
vji(2,4) = O.

vjr(2,5) = -vr(-l,l)*sr2/sr3
vji (2,5) = -vi(-l,l)*sr2/sr3

vjr(2,6) = vr(O,-1)/sr3
vji(2,6) = vi(O,-1)/sr3

vjr(3,1) = vjr(l,3)
vji(3,1) = O.
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vjr (3,2) = vjr(2,3)
vji (3,2) = -vji (2,3)

vjr (3,3) = 2.*vr(0, 0)/3.+vr(l,l)/3.-soconst/3 .
vji (3,3) = O.

vjr (3,4) = O.
vji (3,4) = O.

vjr(3,5) = vr(0,1)*sr2/sr3
vji{3,5) = vi(0,1)*sr2/sr3

vjr(3,6) = vr(l,-1)/sr3
vji(3,6) = vi(l,-1)/sr3

vjr(4,1) = vjr(l,4)
vji(4,1) = -vji(l,4)

vjr(4,2) = vjr(2,4)
vji(4,2) = O.

vjr(4,3) = O.
vji(4,3) = O.

vjr(4,4) = vjr(3,3)
vji(4,4) = O.

vjr(4,5) = vr(-1,1)/sr3
vji(4,5) = vi(-1,1)/sr3

vjr(4,6) = vr(O,-l)*sr2/sr3
vji(4,6) = vi(O,-l)*sr2/sr3

vjr(5,1) = vjr(l,5)
vji(5,1) = -vji(l,5)

vjr(5,2) = vjr(2,5)
vji (5,2) = -vji (2,5

vjr(5,3) = vjr(3,5)
vji(5,3) = -vji(3,5

——__.._ . -p.-,?T-, ------ -y- ,., -,-- ,-,. -< -,r.rr:. ...-<. 7:-..C,,,, <S.fm . ‘.; .; - -5?:TC7-P— ———— -1--- . ..—...-.

vjr(5,4) = vjr(4,5)
vji (5,4) = -vji(4,5

vjr(5,5) = vr(l,l)-soconst/3.
vji(5,5) =“O.

vjr(5,6) = O.
vji(5,6) = O.

vjr(6,1) = vjr(l,6)
vji(6,1) = -vji(l,6)

vjr(6,2) = vjr(2,6)
vji(6,2) = -vji(2,6)
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vjr (6,3) = vjr (3,6)
vji (6,3) = -vji (3,6)

vjr (6,4) = vjr (4,6)
vji (6,4) = -vji (4,6)

vjr (6,5) = O.
vji (6,5) = O.

vjr (6,6) = vjr (5,5)
vji (6,6) = O.

*
*
●

* Find eigenvalues (complex hermitian routine from Eispack)
*

call ch(6,6,vjr,vji, eval ,1,evecr,eveci, fvl,fv2,fml,ierr)
if (ierr.ne.0) then
write (*,*) ‘Error in Eispack ch.f subroutine! ‘
write (*,*) ‘ierr=’,ierr

endif
eval(l) = eval(l) + soconst/3.
eval(2) = eval(2) + soconst/3.
eval(3) = eval(3) + soconst/3.
eval(4) = eval(4) + soconst/3.
eval(5) = eval(5) – 2.*soconst/3.
eval(6) = eval(6) - 2.*soconst/3.

return
end

c ________________________________________________________________

subroutine showarr3(ndim, a,nra,nca)
c
c displays the matrix A
c

implicit double precision (a–h,o–z)
dimension a(ndim,ndim)

do 10 ir = 1, nra
write(*,100) (a(ir,ic), ic = l,nca)

100 format(20(f15.8,1x),/)
10 continue

return
end

*--------------------------------------------------------------

double precision function rneununsv(depth2,rmin2,pmbeta12,
& pmbeta22,xrstar12, xrstar22 ,c6vdw2,c8vdw2,rtin)

c--------------------------------------------------------------
*

c Scaled MMSV
c R in aO/10
c Poten in hartree/100
c

implicit double precision (a-h,o–z)
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parameter (pi=3.14159265359d0, aO=0.529177249d0,
& harev=27. 2113961dO)

rt=rtin*aO/10.dO !* Convert aO/10 to Ang.
xt=rt/rmin2

if (xt.le.l.) then
.Tsum = depth2* (exp(2.*pmbeta12* (1.-xt))-2.*exp(

& pmbeta12*(l.-xt) ))
elseif ((xt.gt.1) and. (xt.le.xrstar12)) then
Tsum = depth2* (exp(2.*pmbeta22* (1.-xt))-2.*exp(

& pmbeta22*(l.-xt) ))
elseif ((xt.gt.xrstar12) and. (xt.lt.xrstar22)) then
swxt=O.5*(cos (pi*(xt-xrstar12)/(xrstar22-xrstar12) )+1.)
pmorse2=exp(2 .*pmbeta22*(l. -xt))-2.*exp(

& pmbeta22*(l.-xt) )
pvdw=-l. *(c6vdw2*rt** (-6)+c8vdw2*rt** (-8))
Tsum = depth2* (swxt*pmorse2+ (1.-swxt)’pvdw)

else
Tsum = -1.*depth2* (c6vdw2*rt** (-6)+c8vdw2*rt** (-8))

endi f
rneummsv=(Tsum/harev) *100.dO !* Convert ev to hartree/100

return
end

*--------------------------------------------------------------------------------------------------------------------------------------------
------

subroutine porba(qx, qy,qz,eval)
*--------------------------------------------------------------------------------------------------------------------------------------------
.==
*
● Calculate p-orbital states analytically
*
* Input: qx,~,qz(nrg+l) coordinates of rgs & halogen
(aO/10)
* output : eval(l. .3) eigenva~ues X, I, II (hartree/loO)
*

include ‘param.file’
common /neutral/ px(lO) ,pl(lO),P2(10) ,soconst

*
‘k Note soconst must be in hartree/100
*

double precision av,so,vO,kv,gv,fv,hv
double precision qx(ncl+l), qy(ncl+l ),qz(ncl+l) ,
& px(lO),pl (10),p2(10),eval (3)
double precision soconst
double complex t60,tlOO,t124,t148,t151, t152,t153,t157,

& t158,t159,t160

sr2=dsqrt(2 .dO)

xhal = qx(ncluster+l) !* Haloaen atom coordinates

yhal = qy(ncluster+l)
zhal = qz(ncluster+l)

av = O.dO
kv = O.dO
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gv = O.dO
fv = O.dO
hV = O.dO
VO = O.dO

do k=l,ncluster
xk = qx(k) - xhal
yk = qy(k) - yhal
zk = qz(k) - zhal
rsq=xk**2+yk**2+zk**2

rt = sqrt(rsq)
vxO=rneummsv (px(l

& px(8)
viO=rneummsv (pl(l

& pi(8)
viiO=rneummsv (p2(:

& P2(8),

,PX(2),PX (3),PX(4),PX(5) ,PX(6),PX(7),
rt)
,P1(2),P1(3 ),P1(4),P1 (5),P1(6),P1(7),
rt)
),P2(2),P2 (3),P2(4),P2 (5),P2(6),P2 (7),
rt)

vOk = (vxO+viiO+viO)/3.
VO = VO + vOk
v2k = 5.*(vxO+viiO-2. *viO)/3. !* Assuming constant soconst
av = av + (3.*zk**2–rsq)*v2k/rsq
fV = fV - 3.*zk*xk*v2k/(5.*sr2*rsq)
gv = gv + 3.*zk*yk*v2k/(5. *sr2*rsq)
hv = hv - 3.*(xk**2-yk**2)*v2k/(10 .*rsq)
kv = kv + 3.*xk*yk*v2k/(5.*rsq)

enddo

so = soconst
*
* Maple generated code
●

* fortran (ev[l],optimized) ;
*

tl = av**2

t2 = SO”*2
t3 = kv**2
t4 . 9V**2
ts = fv**2
t6 = hv**2
C7 = VO**2
t10 = C1’av
tll = t2*so
t14 = hv*t4
t16 = t6*av
t19 = t4*av
t20 = t3*av
t21 = t5*av
t27 = t3*t6
t31 = tl’t3
t33 = tl*t6
c36 = t2**2
L38 = t5*t6
t42 = t5*fv
t45 = t5*t3
tsl = t5**2
t55 = av’hv
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t60 = -36OOOO*t27*t5-l62O*hv*tlO*t5-l8OO*t3l*t2-l8OO*t33*t2-
27000*

#t33*t4-300*t36*tl-2340000*t38*t4-
360000*t27*t4+3240600*hv*gv*kv*t4

#2+252OOOO*t45*t4+6O*tlO*tll-54OO*t5*t4*tl-27OOO*t38*tl-
162000*t51*

#hv*av-27OOO*t45*tl+l62OOO*t55*t45+l62O*tlO*t4*hv-27OO*t5l*tl
t65 = tl**2
t67 = fV*kV
t68 = t4*gv
t71 = t3**2
t75 = av*gv
t82 = t6*hv
t95 = t2*t3
t98 = t4**2
t100 = 450000*t6*t51-120000*fv*gv*tll*kv-27*t2*t65-

324000*t67*t68*
#aV+54OO*tl't7l+324OOO*fv*t3*kv*t75-324OOOO*fv*hv*t68*kv-324O*t67*
#tlO*W+l62OOO*t2l*t82-324OOO*t42*~*kv*av-l8OOOO*t7l*t4-243*t65*t
#6-36OO*tl*t4*t2-36OO*tl*t5*t2-2OOOO*t36*t4-2OOOO*t36't5-

120000*t95
#*t4-3r)OOO*t2*t717120000*t2’t98
t102 = t6**2
tl16 = t2*t6
t124 = -30000*t2*t102-10000*t36*t3+324000*t67*t75*t6-

120000*t2*t51
#-l8OOOO*t4*tlO2-36OOOO*t3*t98+l62OOO*t55*t98-9OOOO*t7l*t6-

9oooo*t3
#*t102-180000*t71*t5-30000*t71*t3-243*t65*t3-

60000*tl16*t3+6000*t19
#*tll-l8OOOO*t5*tlO2-72OOOO*t98*t5-72OOOO*t4*t5l-36OOOO*t3*t5l-

1200
#OO*tl16*t4
t148 = -240000*t2*t5*t4-10000*t36*t6-120000*t95*t5-

120000*tl16*t5-
#l62OOO*t2O*tl4-l62OOO*av*t82*t4-3OOOO*tlO2*t6-24OOOO*t5l*t5+45OOO
#O*t98*t6-24OOOO*t98*t4+lO8OO*t33*t3+6OOO*t2l*tll-27OOO*t3l+t4-

6000
#O*t5*tll*hv+54OO*tl*tlO2-27OO*t98*tl+6OOOO*t4*tll*hv-

6000*t16*tll-
#6000*t20*tll
t151 = sqrt(t60+t100+t124+t148)
t152 = -(-3.DO/100.DO*tl-t2/3-t3-2*t4-2’t5-t6+3*t7) *vO/2+t10/1000

#+tll/27-vO*t5-3.DO/200 .DO*vO*tl+t14-t6*v0/2-t16/10-t3*v0/2-t4*
#vO+tl9/lO-t2O/lO+t2l/lO-hv*t5-2*v*kv*fv-vO*t2/6+3 .DO/2.DO*t7*v0
#+t151/9oo
t153 = t152**(l.DO/3.DO)
t158=(-tl/100-t2/9-t3/3-2 .DO/3.DO*t4-2.DO/3.DO*t5-t6/3 )/t153
t157 = t153-t158+v0

c write(*, *) ’evl’,t157
c write(*, *)‘evl’,dble(t157)-2.*soconst/3 .

evall = dble(t157)
*

* hand generated code
*
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t158=(-tl/100-t2/9-t3/3-2 .DO/3.DO*t4-2.DO/3.DO*t5-t6/3 )/t153
t159 = cmplx(O .dO,l.dO)*sqrt (3.dO)*(t153+t158)
t160 = -t153/2.dO+t158/2.dO+vO
eva12 = dble(t160+t159/2.dO)
eva13 = dble(t160-t159/2.dO)

●

* Sort eigenvalues in order X,1,11
*

eval(l) = dminl(evall, eva12,eva13 ) + soconst/3.dO
eval(3) = dmaxl(evall, eva12,eva13 ) - 2.dO*soconst/3.dO
eval(2) = evall+eva12+eva13-eval (1)-eval(3)

return
end

*--------------------------------------------------------------------------------------------------------------------------------------
subroutine veqd(betain, theta6,qx,qy,qz,dxin,dyin, dzin,dxout,

& dyout,dzout,potout)
*--------------------------------------------------------------------------------------------------------------------------------------
*
* Exchange quadrupole-dipole & dispersion quadruple
* Ref: Ernesti & Hutson, Phys. Rev. A v.51,p.239
*
* Input : betain Exchange quadruple range parameter
(aO/lO)A-l

● theta6 quadruple dispersion coefficient
(e*aOA8)
* qx,qy,qz”(ncl+l) Rg, halide coordinates (aO/10)
* dxin,dyin,dzin(ncl+l) Dipoles input
*
* output : potout potential (hartree/100)
* dxout,dyout,dzout Dipoles with exchange & disp
● contribution added
*

include ‘param.file’
double precision betain,theta6
double precision qx(ncl+l), qy(ncl+l),qz (ncl+l),dxin(ncl+l),

& dyin(ncl+l), dzin(ncl+l) ,dxout(ncl+l), dyout(ncl+l) ,dzout(ncl+l),
& dx(ncl+l ),dy(ncl+l),dz (ncl+l),
& rijx(ncl+l,ncl+l), rijy(ncl+l ,ncl+l),rijz(ncl+l,ncl+l) ,
& rij2(ncl+l,ncl+l), rij3 (ncl+l,ncl+l),rijl(ncl+l,ncl+l)

*
*

beta = betain*10.OdO
nhal = ncluster+l

●

do i = l,ncluster !* Relative Rg-Rg and Rg-X vectors

do j = i+l,ncluster+l !* (rij is vector from Rg j to Rg i)
rijx(i,j) = (w(i) - qx(j))/10.Odo !* Convert to aO
rijy(i,j) = (qY(i) - qy(j))/10.OdO
rijz(i,j) = (qz(i) - qz(j))/10.OdO
rijx(j,i) = -rijx(i,j)
rijy(j,i) = -rijy(i,j)
rijz(j,i) = -rijz(i,j)
rij2(irj) = rijx(i, j)**2+rijy(i ,j)**2+rijz (i,j)**2
rijl(i,j) = dsqrt(rij2(i,j))
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rij3(i,j) = rijl(i,j)**3
rijl(j,i) = rijl(i,j)
rij2(j,i) = rij2(i,j)
rij3(j,i) = rij3(i,j)

enddo
enddo

*

* Zero out dipoles
*

do i = l,ncluster
dx(i) = O.OdO
dy(i) = O.OdO
dz(i) = O.OdO

enddo
*
* Add contribution to Rg dipoles from exchange quadruple and
* dispersion quadruple between each pair of Rgs
*

do i = l,ncluster-1
do j = i+l,ncluster

ex = exp(-(beta**2) ’rij2(i,j)/2.OdO)
exquad = -rij2(i,j)*ex/(l.0dO-ex) /2

& +theta6/(rij3(i,j)**2 )
exdip = exquad/rij2(i,j)/2.0d0
dx(i) = dx(i)+exdip’rijx(i, j)
dy(i) = dy(i)+exdip’rijy(i, j)
dz(i) = dz(i)+exdip’rijz (i,j)
&(j) = dx(j)+exdip’rijx(j, i)

dy(j) = dy(j)+exdip’rijy(j, i)
dz(j) = dz(j)+exdip”rijz (j,i)

enddo
enddo

*
*
*
* Add toinput dipoles
*

do i = l,ncluster
dxout(i) = dxin(i
dyout(i) = dyin(i
dzout(i) = dzin(i

enddo
*

+dx(i)
+dy(i)
+dz(i)

* Compute charge-dipole interactions
*

vcd = O.OdO
do i = l,ncluster

dotprod “=dx(i)’rijx(nhal, i)+dy(i)“rijy(nhal,i)
& +dz(i)’rijz (nhal,i)

vcd = vcd - dotprod/rij3(nhal,i)
enddo

potout = vcd*l.0d2 !* Convert to hartree/100

return
end
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B2.2. Running the program

One runs the program in the usual Unix fashion, by piping in the input file. If one

is calculating standard deviations as well as performing a fit it is usually desirable to run

the program in the background, as in the following example using the input file

“xebr_x_rfin” discussed above:

> nice +19 xfit x xebr_x_rfin > xebx_x_rfout k

>

The output file “xebr_x_rfout” then contains the optimized parameters and standard

deviations, and the convoluted spectrum is saved to the file “xebr_x_tl” named in the

input file.

B2.3. Outline of the program

The program “rfit” is contained in only one file, “rfit.f.” There is no ma,kefile; the

program is recompiled with a command such as:

> f77 -O -o rfit rfit.f -C

The subroutines and functions used by the program are listed in Table B3.
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Table B3. Subroutinesand iimctions used by the rotational fitting program “rfit”.

Subroutine or Description
Function

tilt main program

optchi general-purpose subroutine implementing the gradient

optimization method

chisquar calculates %2for a given set of fitting parameters

rsticks calculates a rotational stick spectrum given one or two

vibrational stick spectra, and the fitting parameters.

k function to calculate the rotational constant

boltz calculates the Boltzmann factor for a given rotational

temperature and anion rotational state

conzeke convolutes the rotational stick spectrum with the ZEKE line

shape

cp2 compares the experimental and convoluted spectra and

calculates X2
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B3. Source code for the rotational fitting program “tilt”

program rfit

implicit undefined (a-z)
*

real frac,evtocm
parameter (frac=O.l,evtocm=8065 .541)
real vstk(2,2,100)
real temp,org,baseln
real beneu,bean, reneu(2) ,rean
real massl,mass2,rmass
integer ninfil, i,j,k,state(2) ,j,nvstk(2),rct
integer mpts
character*25 infile(2), outfile,especfil
real relfcf(2), scoef(2)
real fwhmcm, fwhmev,delta, deltawn
real smooth (2,100000),espec (2,100000),espec2 (2,100000),

& rstk(2,500000)
integer nspec
real dfwhmcm, dtemp,dscoef (2),drelfcf(2) ,dorg,dbaseln
real mfwhmcm,mtemp,mscoef (2),mrelfcf(2) ,morg,mbaseln
real xfwhmcm, xtemp,xscoef (2),xrelfcf(2) ,xorg,xbaseln
real slfwhm, sltemp,slscoef (2),slrelfcf(2) ,slorg,slbaseln
real s2fwhm, s2temp,s2scoef (2),s2relfcf(2) ,s20rg,s2baseln
logical ufwhm,utemp,uscoef (2),urelfcf (2),uorg,ubaseln
real chisq,xinc,chiopt
character*l ans
logical vscoef(2),vrelfcf (2),vtemp,vfwhm,vorg,vbaseln
integer ncomp
real a(30),da(30),ma(30), xa(30), aopt(30),abest (30)
real sla(30),s2a(30)
logical va(30),ua(30),vl
integer nparm,mode,tout
logical pr
real ncounts, chilast,slast, slope

*

common /convl/ fwhmcm,fwhmev,delta, deltawn
common /conv2/ mpts
common /func/ bean,beneu
common /ruars/ massl,mass2, rTnass,rean, temp,org,baseln
common /ivars/ rct,ninfil
common/arrays/reneu (2),state(2) ,nvstk(2) ,

& relfcf(2) ,scoef(2)
common
common
common
common
common
common
common
common

*____________

/comp/ chisq,ncomp
/comp2/ ncounts
/opti/ nparm
/optr/ a(30),abest(30)
/sticks/ vstk(2, 2,100),rstk(2,500000)
/SpeC1/ smooth(2, 100000),espec(2 ,100000)
/spec2/ nspec
/prl/ prttout
-----------------------------------------------------

* Read in constants and fitting parameters
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vpair = vpair + drg2/(2*rij 2(nhal,i))

enddo

potout = (vpol-vpair)*1.0d2 !* Convert to hartree/100

return

end

* ======. . ======= ====. . ===========. =. . ===============. . . . ===. =. . ==.
subroutine vindq(pqrg,pqx, qx,qy,qz,dx,dy,dz,dhalpair,

& drgpair, qind,viqrgd,viqq,viqxd,potout)
*========----------==-----========-------========================
*
* Calculate induced quadrupole-induced dipole & ind quad-ind quad
* potentials
*
* Input: pqrg,pqx Rare gas, halide quadruple
* polarizabilities (aO”5)
* qx,qy,qz(ncl+l) Rg, halide coordinates (aO/IO)
* dx,dy,dz(ncl+l) Induced dipoles from vindi (au)
* dhalpair(ncl) Induced halogen dipole in pair potens
* drgpair(ncl) Induced Rg dipole in pair potens
*
* Output : viqrgd Ind Rg Q - Ind Rg dip poten (hart/100)
* viqq Ind Rg Q - Ind Rg Q (hart/100)
* viqxd Ind X dip - Ind Rg Q (3-body
contrib. )(hart/100)
* potout Total Potential (hartree/100)
* qind(ncl+l) Quadruples on Rgs & halide (e*aOA2)
*

include ‘param.file’
*

common /distances/ rijx(ncl+l,ncl+l) ,rijy(ncl+l,ncl+l) ,
& rijz(ncl+l,ncl+l), rij2 (ncl+l,ncl+l),rij3(ncl+l,ncl+l) ,
& rijl(ncl+l,ncl+l), dip(ncl+l)

●

double precision pqrg,pqx,potout
double precision qx(ncl+l), qy(ncl+l), qz(ncl+l) ,dx(ncl+l),

& dy(ncl+l), dz(ncl+l),rijl (ncl+l,ncl+l),
& rijx(ncl+l,ncl+l), rijy(ncl+l,ncl+l) ,rijz(ncl+l,ncl+l),
& rij2(ncl+l,ncl+l), rij3 (ncl+l,ncl+l),qind(ncl+l) ,dip(ncl+l),
& dhalpair (ncl),drgpair(ncl)

*

nhal = ncluster+l
*
* Compute quadruples on Rgs due to halide charge
*

do i = l,ncluster
qind(i) = 2.0dO*pqrg/rij3(i,nhal)

enddo
*
* Compute ind quadrupole-ind Rg dipole energy, and ind q-ind q.
*
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viqrgd = O.OdO
viqq = O.OdO
do i = l,ncluster !* Quadruple at i

do j = l,ncluster !* Dipole at j

if (i.ne.j) then !* Q-dip: double counted

dotq = rijx(nhal, i)’rijx(j,i) + rijy(nhal, i)’rijy(j,i)
+ rijz(nhal, i)*rijz(j ,i)

cthetaq = dotq/(rijl(nhal,i)*rijl (j,i))
if (cthetaq.gt.l.OdO) then

cthetaq = l.OdO
elseif (cthetaq.1t.-l.OdO) then

cthetaq = -1.OdO
endif
thetaq = acos(cthetaq) !* angle between Q (Rg-x)~ Rg–Rg

dotd = dx(j)*rijx(i, j)+dy(j)*rijy(i ,j)+dz(j)’rijz(i,j)
cthetad = dotd/(rijl(i,j)*dip(j ))
if (cthetad.gt.l.OdO) then

cthetad = l.OdO
elseif (cthetad.1t.-l.OdO) then

cthetad = -1.OdO
eridif
thetad = acos(cthetad) !* angle between dip, Rg-Rg

dothjij = rijx(i, j)’rijx(nhal,j) + rijy(i,j)*rijy(nhal,j)
+ rijz(i, j)’rijz(nhal ,j)

cchi = dothjij/(rijl(i,j)*rijl (nhal,j))
rpar = cchi’rijl(nhal,j)
rparx = rpar*rijx(i,j)/rijl(i, j)
rpary = rpar*rijy(i,j)/rijl (i,j)
rparz = rpar*rijz(i,j)/rijl (i,j)
ux = rijx(nhal,j) - rparx !* U=vector in Rhj,Ril

uy = rijy(nhal,j) - rpary !* perpendicular to Rij
uz = rijz(nhal,j) - rparz
dpar = dip(j)’cthetad
dparx = dpar*rijx(i,j)/rijl(i,j )
dpary = dpar*rijy(i,j)/rijl(i,j )
dparz = dpar*rijz(i,j)/rijl(i,j )

vx = dx(j) - dparx !* v=vector in
dipole,Rij plane

vy = dy(j) - dpary !* perpendicular to Rij
vz = dz(j) – dparz
dotuv = UX*~+Uy*Vy+UZ*VZ
cphi = dotuv/dsqrt( (ux**2+uy**2+uz**2 )

& * (VX**2+vy**2+vz**2) )
* !* angle between dipole,Rij and Rhi,Rij planes

if (cphi.gt.l.OdO) then
cphi = l.OdO

elseif (cphi.1t.-l.OdO) then
cphi = -1.OdO

endif
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viqrgd = viqrgd + l.5dO*dip (j)*qind(i)
& * (cthetad* (3.0dO*cthetaq**2-l .0dO)+2.0dO*sin (thetad)
& *sin (thetaq)*cthetaq*cphi) /(rij2(i,j)**2)

endif

if (i.lt.j) then !* Q-Q not double counted

dotq2 = rijx(nhal, j)’rijx(i,j) + rijy(nhal, j)’rijy(i,j)
& + rijz(nhal, j)*rijz(i ,j)

cthetaq2 = dotq2/(rijl(nhal,j)*rijl (i,j))
if (cthetaq2.gt.l.OdO) then

cthetaq2 = l.OdO
elseif (cthetaq2.1t.-l.OdO) then

cthetaq2 = -1.OdO
endif
thetaq2 = acos(cthetaq2)

phiqq = O.OdO !* both QS in same plane, pointing at X

cphiqq = cos(phiqq)

viqq = viqq + 0.75dO*qind(i) *qind(j )*(1.OdO
& - 5.0dO*cthetaq**2 - 5.0dO*cthetaq2**2
& + 17.0dO* (cthetaq**2)*(cthetaq2**2)
& + 2.0dO*(sin(thetaq) **2)*(sin(thetaq2) **2)*cphiqq**2
& + 16.0dO*sin(thetaq) ●cthetaq*sin(thetaq2 )*cthetaq2
& *cphiqq)/(rij3(i,j )*rij2(i,j))

endif

enddo
enddo

*
* Compute halogen dipole - Rg quadruple energy Total (pair+3B)
* minus pair contrib = 3B part
*

viqxd = O.OdO
vpair = O.OdO
do i = l,ncluster

thetaq = O.OdO
cthetaq = cos(thetaq)

dotd = rijx(i,nhal) ’dx(nhal) + rijy(i,nhal) *dy(nhal)
& + rijz(i,nhal) *dz(nhal)

cthetad = dotd/(rijl(i,nhal)*dip (nhal))
if (cthetad.gt.l.OdO) then

cthetad = l.OdO
elseif (“cthetad.1t.-l.OdO) then

cthetad = -1.OdO
endi f
thetad = acos(cthetad)

phi = O.OdO
cphi = cos(phi)

viqxd = viqxd + 1.5dO*dip (nhal)*qind(i)
& ●(cthetad*(3 .0dO*cthetaq**2-l .0dO)+2.0dO*sin(thetad)
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& *sin(thetaq) *cthetaq*cphi) /(rij2(nhal,i)**2)

!* Pair contribution

vpair = vpair + 3.OdO’dhalpair (i)*qind(i)
& /(rij2(nhal,i)**2)

enddo
vicpcd = viqxd - vpair

viqrgd = viqrgd*l.0d2
viqq = viqq*l.0d2
viqxd = viqxd*l.0d2
v-pair = vpair*l.0d2
potout = viqrgd + viqq + viqxd
return
end

*--------------------------------------------------------------------------------------------------------------------------------------------
.==== .=

subroutine vinddq(polrg,polx,pqrg,pqx, qx,qy,qz,dp,dhalpair,
& drgpair, qhalpair,qrgpair, qp,vcd,vcq,potout)

*______________________________________________________________________----------------------------------------------------------------------
.==== .=
●

● Iterative dipoles & quadruples
* Using eqrs from Buckingham, Adv Chem Phys.
●

● Input: polrg,polx RG, halide polarizabilities, aOA3
* pqrg,pqx RG, halide quadruple polarizabilities, aO”5
● =“C”’as defined by Buckingham for sph. symm.
● qx,qy,qz(ncl+l) RG, halide coordinates (aO/IO)
* dp(ncl+l,3) Initial dipoles (e*aO)
* dhalpair(ncl ) Induced halide dipole in pair potens
* drgpair(ncl) Induced Rg dipole in pair potens
* qhalpair(ncl ) Induced halide quadruple in pair
potens,initial
* (scalar = Qzz = -2Qxx = -29yy, units e*aOA2)
● qrgpair(ncl) Induced Rg quadruple in pair potens,
initial
● qp(ncl+l,3,3) Initial quadruples
●

* output : VCd Charge-Induced, iterated dipole
poten(hart/100) ,
● three-body part
* Vcq Charge-Induced, iterated quadruple
poten(ht/100)
●

✌ three body part
● potout Total potential, three body part
(hart/100)
* dp(ncl+l,3) Iterated dipole vectors (e*aO)
* qp(ncl+l,3,3) Iterated quadruple tensors (e*aOA2, 3x3)
*

include ‘param.file’
implicit undefined(a-z)
double precision conv,small,smal12,catas, catas2
parameter (conv=l.Od-10,small = 1.Od-6,
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& sma112=small*small, catas = 10.,catas2=catas*catas)

double precision rmc,eec,eeint,sigc,sigint, delta,poten,
& rgrgpot, rgxpot,cddpot, ex~ot,vindit,vexqd, rgqq,rgqxd,
& viq,rgxxpot,rgxipot, rgxiipot,potfin, tempfin,exqpot,rml,
& rgdrgq, cdpot,.cqpot,cdqpot,gexpot,ddispot, qdispot,gextot,
& atpot
double precision dab,dag,dbg,dad,dbd,dgd, fgrg,ferg,vcdt,

& vcqt, fex,fgx,vcdpair,vcqpair,drgold, dhalold, qrgold,qhalold
*

double precision polrg,polx,pqrg,pqx,vcd,vcq,potout
double precision qx(ncl+l), qy(ncl+l), qz(ncl+l) ,dp(ncl+l,3),

& dhalpair (ncl),drgpair(ncl) ,qhalpair (ncl),qrgpair (ncl),
& qp(ncl+l, 3,3),rij(ncl+l,ncl+l, 3),rijl(ncl+l,ncl+l),
& rij2(ncl+l,ncl+l), rij3 (ncl+l,ncl+l),rij5(ncl+l,ncl+l) ,
& rij7(ncl+l,ncl+l), rij9 (ncl+l,ncl+l),tl(ncl+l,ncl+l, 3),
& t2(ncl+l,ncl+l, 3,3),t3 (ncl+l,ncl+l,3,3,3),rij4 (ncl+l,ncl+l),
& t4(ncl+l,ncl+l, 3,3,3,3) ,fe(ncl+l,3),fg(ncl+l, 3,3),
& dmag(ncl+l),qmag (ncl+l),dmagp(ncl+l),qmagp(ncl+l)

integer ncluster,natmax,ndim,new,neq,nr~ot,nhalpot,neiWal,
&indflag, iexqflag, indi,iexqd, indq,indqi, iexg,iaxtel
integer nhal, i,j,k,iexit,niter, alp,bet, gam,del,iexsave

nhal = ncluster+l
niter = O

*
* Calc initial dipole and quadruple magnitudes
*

do i = l,ncluster+l
dmagp(i) = dp(i,l)**2+dp (i,2)**2+dp (i,3)**2
qmagp(i) = O.OdO
do alp = 1,3

do bet = 1,3

and Rg-X coords
from atom j to atom i)
!* Convert tO aO

!* Relative Rg-R9

!* (rij is vector
- qx(j))/10.OdO
- qy(j))/10.OdO
- qz(j))/10.OdO

qmagp (i) = qmagp(i) + qp(i,alp,bet)**2
enddo

enddo
enddo

●

* Set up position vectors and distances
*

do i = l,ncluster
do”j = i+l,ncluster+l

rij(i,j,l) = (qX(i)
rij(i,j,2) = (qy(i)
rij(i,j,3) = (qZ(i)
rij(j,i,l) = -rij(i,j,l)
rij(j,i,2) = -rij(i,j,2)
rij(j,i,3) = -rij(i,j,3)
rij2(i,j) = rij(i,j,l) ●*2+rij(i,j,2) **2+rij(i,j,3)**2

rijl(i,j) = dsqrt(rij2(i,j))
rij3(i,j) = rij2(i, j)*rjjl(i,j)
rij4(i,j) = rij2(i,j)*”2
rij5(i,j) = rij3(i,j)*rij2(i,j)
rij7(i,j) = rij5(i,j)*rij2(i,j)
rij9(i,j) = rij7(i, j)*rij2(i,j)
rijl(j,i) = rijl(i,j)
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rij2(j, i) = rij2(i, j)
rij3(j, i) = rij3(i, j)
rij4(j, i) = rij4(i, j)
rij5(j, i) = rij5(i, j)
rij7(j, i) = rij7(i, j)
rij9(j, i) = rij9(i, j)

enddo
enddo

*
*
* Set up interaction tensors (gradients of I/R)
*

do i = I,ncluster !* To atom i
do j = i+l,ncluster+l !* from atom j

do alp = 1,3 !* Alpha
tl(i,j,alp) = -rij(i,j,alp)/rij3(i, j)
tl(j,i,alp) = -tl(i,j,alp)
do bet = 1,3 !* Beta

if (alp.eq.bet) then
dab = l.OdO !* Delta function

else
dab = O.OdO

endif
t2(i,j,alp,bet) = (3.OdO*rij (i,j,alp)*rij (i,j,bet)

& rij2(i,j)*dab)/rij5 (i,j)
t2(j,i,alp,bet) = t2(i,j,alp,bet)
do gain= 1,3 !* Gamma

if (alp.eq.gam) then
dag = l.OdO

else
dag = O.OdO

endif
if (bet.eq.gam) then

dbg = l.OdO
else

dbg = O.OdO
endif
t3(i,j,alp,bet,gam) = -3.OdO*
(5.0dO*rij (i,j,alp)*rij (i,j,bet)’rij (i,j,gam)
— rij2(i, j)*(rij(i,j, alp)*dbg + rij(i,j,bet)’dag
+ rij(i,j,gam)*dab))/rij7 (i,j)

t3(j,i,alp,bet,gam) = -t3(i,j,alp,bet,gam)
do del = 1,3 !* Delta

if (alp.eq.del) then.
dad = l.OdO

else
dad = O.OdO

endif
if (bet.eq.del) then

dbd = l.OdO
else

dbd = O.OdO
endif
if (gam.eq.del) then

dgd = l.OdO
else

dgd = O.OdO
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&
&
&

&
&

&
&
&
&.

&

endif
t4(i,j,alp,bet, gam,del) = 3.0dO*
(((rij2(i,j)*dab-5.0dO*rij (i,j,alp)*rij (i,j,bet))*dgd ,
+(rij2(i, j)*dag-5.0dO*rij (i,j,alp)’rij (i,j,gam))*dbd
+(rij2(i, j)*dad-5.0dO*rij (i,j,alp)*rij (i,j,del))’dbg
)/rij7(i,j) - 5.OdO*
(( rij(i,j,gam)*rij(i, j,del
+rij(i, j,bet)*rij (i,j,del
+rij(i,j,bet)*rij (i,j,gam
)*rij2(i,j) - 7.OdO*

rij(i,j,alp)*rij (i,j
●rij(i,j,del) )/rij9(i,j)

*dab
*dag
*dad

bet)’rij(i,j,gam)
)

&

&

t4(j,i,alp,bet,gam,del) = t4(i,j,alp,bet,gam,del)
enddo

enddo
enddo

enddo
enddo

enddo
*
*
* Compute electric field, fe, & field gradient, fg, at atoms from
other atoms
●

500 do alp = 1,3
fe(nhal,alp) = O.OdO
do bet = 1,3

fg(nhal,alp,bet) = O.OdO
enddo

enddo

do i = l,ncluster !* Contribution from halide charge to Rgs

do alp = 1,3
fe(i,alp) = tl(i,nhal,alp) I* q = _l

fg(i,alp,alp) = t2(i,nhal,alp,alp)
enddo
do alp = 1,2

do bet = alp,3
fg(i,alp,bet) = t2(i,nhal,alp,bet) !*q=-l

fg(i,bet,alp) = fg(i,alp,bet)
enddo

enddo
enddo

*

do i = l,ncluster+l !* Field produced by atom j at atom i

do j = l,ncluster+l
if (i.ne.j) then

do alp = 1,3
do bet = 1,3 !* field from dipoles

fe(i,alp) = fe(i,alp)
+ t2(i,j,alp,bet)*dp (j,bet)
do gam = 1,3 !* field fro.,~quadruples

fe(i,alp) = fe(i,alp)
- t3(i,j,alp,bet,gam)*qp (j,bettgam)/3.OdO

enddo
enddo
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enddo

&

&

&

&

do alp = 1,2
dogam=l,3 !* Gradient from dipoles

fg(i,alp,alp) = fg(i,alp,alp)
+ t3(i,j,alp,alp,gam) *dp(j,gam)
do del = 1,3 !* Gradient from quadruples

fg(i,alp,alp) = fg(i,alp,alp)
- t4(i,j,alp,alp,gam,del) *qp(j,gam,del)/3.OciC

enddo
enddo
do bet = alp+l,3

do gain= 1,3 !* Gradient from dipoles

fg(i,alp,bet) = fg(i,alp,bet)
+ t3(i,j,alp,bet,gam) ‘dp(j,gam)
do del = 1,3 !* Gradient from qUa~”LIPoles

fg(i,alp,bet) = fg(i,alp,bet)
- t4(i,j,alp,bet,gam,del) ●qp(j,gam,del)/3.CdO

enddo
enddo
fg(i,bet,alp) = fg(i,alp,bet)

enddo
enddo
fg(i,3,3) = -fg(i,l,l)-fg(i,2,2)

endif

enddo I* j
*
* Compute new induced dipoles & quadruples for atom i from E-
field
* & field gradient “on the fly”
*

if (i.eq.nhal) then
dp(nhal,l) = polx’fe(nhal,l)
dp(nhal,2) = polx*fe(nhal,2)
dp(nhal,3) = polx*fe(nhal,3)

qp(nhal,l,l) = fg(nhalll/l)*pqx
qp(nhal,2,2) = fg(nhal,2,2)*pqx
~(nhal/3,3) = fg(nhal,3#3)*pw
do alp = 1,2

do bet = alp+l,3

W(nhal,alpjbet) = fg(nhaltalp~bet)’pqx
qp(nhal,bet,alp) = qp(nhal,alp,bet)

enddo
enddo

else
dp(i,l) = polrg’fe(i,l)
dp(i,2) = polrg*fe(i,2)
dp(i,3) = polrg*fe(i,3)
qp(i,l,l) = fg(i,l,l)’pqrg
qp(i,2,2) = fg(i,2,2)*pqrg
qp(i,3,3) = fg(i,3,3)*pqrg.
do alp = 1,2

do bet = alp+l,3
qp(i,alp,bet) = fg(i,alp,bet)’pqrg
qp(i,bet,alp) = qp(i,alp,bet)
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enddo
enddo

endif .

enddo

●

☛ Check D-dot-D and Q-double dot-Q for convergence
*

iexit = 1
do i = I,ncluster+l

qmag(i) = qp(i,l,l)**2+qp(i,2,2) **2+qp(i,3,3)**2
& +2.*qp(i,l,2)**2+2. *qp(i,l,3)**2+2 .*qp(i,2,3)**2

dmag(i) = dp(i,l)**2+dp(i,2)**2+dp (i,3)**2
if (dmag(i).gt.O. ) then

if ((dabs((dmag(i)-dmagp(i) )/dmag(i)).gt.conv) and.
& (dmag(i).gt.smal12)) then

iexit = O
endif

endif
if (cynag(i).gt.O.) then

if ((dabs((qmag(i)-qmagp (i))/qmag(i)) .gt.conv) -and.
& (qmag(i).gt.smal12)) then

iexit = O
endif

endi f
if (niter.eq.0) then

iexit = O
endi f

●

☛

☛

Check for polarization catastrophe

if ((dmag(i) .gt.catas2) or. (qmag(i).gt.catas2) ) iexit=2

enddo

if (iexit.eq.2) then
write(*, *) ‘dipoles : ‘
write(*,1000) (dmag(i), i=l,ncluster+l)
write(*, *) ‘quadruples : ‘
write(*,1000) (qmag(i), i=l,ncluster+l)

endif
1000 format (7(f10.6,1x))

niter = niter + 1
*
* If converged or catastrophe, skip out of loop
*

if (iexit.ne.0) goto 2000
*

* Otherwise reset dipole & quadruple magnitudes & loop back
*

do i = l,nhal
qmagp(i) = qma9(i)
dmagp(i) = dma9(i)

enddo
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goto 500
●

*

2000 k=O
●

* converged, now calculate pair RG-X quadruple and
* dipole interaction energy. Note this is the total induction energy
● including charge-dipole, charge-quadrupole, dipole-dipole,
● dipole-quadrupole, quadrupole-quadrupole, and dipole and quadruple
* self energies. However, the latter 5 terms cancel out.
* (See Ahlstrom et at,
*

vcdt = O.
Vcqc = o.
do j = l,ncluster

do alp = 1,3
vcdt = vcdt -
do bet = 1,3

Vcqt = Vcqt
Quad.

enddo
enddo

enddo
vcdt = vcdt/2.
vcqt = vcqt/6.

*

Mol. Phys. v.68, p.563.)

!* Loop over Rgs

tl(j,nhal,alp)’dp(j,alp) !* Charge-dipole

- t2(nhal,j,alp,bet)*qp(j ,alp,bet) !* chg-

* calculate pair induced dipoles and quadruples, iteratively.
* ferg= electric field (z) at Rg, fgrg = field gradient (ZZ) at Rg,
* fex, fgx are those at halide
*

iexsave = iexit
vcdpair = O.
vcqoair = O.
do i=l,ncluster !* LOOp over Rgs

5000 ferg = -1./rij2(nhal,i)+2.*dhalpair (i)/rij3(nhal,i)
& +3 .‘qhalpair(i) /rij4(nhal,i)

fgrg = 2./rij3(nhal,i)-6.*dhalpair (i)/rij4(nhal,i)
& -12.*qhalpair(i) /rij5(nhal,i)

drgold = drgpair(i)
drgpair(i) = polrg*ferg
qrgold = qrgpair(i)
qrgpair(i) = pqrg’fgrg
fex = 2.*drgpair(i)/rij3(nhal, i)-3.*qrgpair(i)/rij4(nhal ,i)
fgx = 6.*drgpair(i)/rij4(nhal, i)-12.*qrgpair(i)/rij5(nhal ,i)
dhalold = dhalpair(i)
dhalpair(i) = polx’fex
qhalold = qhalpair(i)
qhalpair(i) = pqx’fgx
iexit = 1
if (drgpair(i) .ne.O.) then

if ((dabs((drgold-drgpair (i))/drgpair(i) ).gt.conv) and.
& (dabs(drgpair (i)).gt.small)) iexit=()

endi f
if (dhalpair(i) .ne.O.) then

if ((dabs((dhalold-dhalpair (i))/dhalpair(i)) .gt.conv) and.
& (dabs(dhalpair(i) ).gt.small) )iexit=o

endi f
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if (qrgpair
if ((dabs

& (dabs
endi f

i).ne.O.) then
(qrgold-qrgpair(i))/qrgpair (i) .gt.conv).and
qrgpair(i)) .gt.small) )iexit=O

if (qhalpair(i) .ne.O.) then
if -((dabs(.(qhalold-qhalpair(i))/qhalpair(i)) -gt-conv) and.

& (dabs(qhalpair (i)).gt.small))iexit=o
endi f
if ((drgpair(i) .gt.catas) -or. (dhalpair (i).gt.catas) or.

& (qrgpair(i) .gt.catas).or. (qhalpair(i) .gt-catas)) then
iexit = 2

endi f
if (iexit.eq.0) goto 5000
vcdpair = vcdpair + drgpair(i)/(2.*rij2(nhal, i))
vcqpair = vcqpair - qrgpair(i)/(2.*rij3(nhal, i))

enddo
if (iexsave.eq.2) iexit = 2

*
* Subtract pair from total to get nonadditive parts
*

vcd = (vcdt - vcdpair)*l.0d2
Vcq = (vcqt - vcqpair)*l.0d2
potout = vcd+vcq

if (iexit.eq.2) then !* Reset multiples if catastrophe has

happened
write(*, *) ‘****** Polarization catastrophe ‘******’
do i=l,ncluster

write(’,’) ‘pair dipoles rg, x’ ,drgpair (i),dhalpair (i)
drgpair(i) = O.
dhalpair(i) = O.
write(*, ‘) ‘pair quadruples rg,x’,qr~air(i), qhalpair (i)
qrgpair(i) = O.
qhalpair(i) = O.
do alp = 1,3

dp(j,alp) = O.
do bet = 1,3

@(j,alp,bet) = O.
enddo

enddo
enddo

endi’f

return
end

* ===== === ===== ==.= =. .= === ==== ===== == === ===== ======== ===== ==============
------

subroutine exg(betain, th6,qx,g,qz,vexx,vddisptvqdisp,potout)
*============--------------------------------------------------------------------------------------------------------------------
.==
*
* Exchange quadrupole-charge energy calculated exactly from Gaussian
● overlaps
*
* Input: betain Gaussian range parameter (aO/lO)”-l
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* th6 Dispersion quadruple coeff (e*aOA8)
● m,qy,qz(ncl+l) Rg, halide coordinates (aO/IO)
●

* output : potout potential (hart/100)
●

* Uses : erf error function
*

include ‘param.file’
parameter (toosmall = l.Od-1)
double precision betain, th6,potout,erf
double precision qx(ncl+l), qy(ncl+l), qz(ncl+l) ,

& rxi(ncl), rxix(ncl), rxiy(ncl) ,rxiz(ncl),coef(ncl),
& disd(ncl, 3),disq(ncl,3, 3),t2 (3,3)
integer alp,bet

beta = betain*10.OdO
beta2 = beta**2
thq = -th6/10. !* quadruple coeff
thd = 3.*th6/5. !* dipole coeff
nhal = ncluster+l
potout = o.
vexx = O.
vddisp = O.
vqdisp = O.

do i = l,ncluster
rxix(i) = (qx(i)-qx(nhal))/10. !* RG-X distances
rxiy(i) = (qy(i)-qy(nhal))/10.
rxiz(i) = (qz(i)-qz(nhal))/10.
rij2 = rxix(i)**2+rxiy(i) **2+rxiz(i) **2
rxi(i) = dsqrt(rij2)
coef(i) = O.
do alp=l,3

disd(i,alp)=O.
do bet=l,3

disq(i, alp,bet)=O.
enddo

enddo
enddo

do i = l,ncluster-1
do j = i+l,ncluster

rijx = (qx(i)-qx(j))/10. !*.Rg_Rg distances

rijy = (qy(i)-qy(j))/10.
rijz = (qz(i)-qz(j))/10.
rijz = rijx**2+rijy**2+rij Z**2

t2(l,l) = (3.*rijx**2/rij2 - 1) !* Quadruple int tensor
t2(2,2) = (3.*rijy**2/rij2 - 1)
t2(3,3) = (3.*rijz**2/rij2 - 1)
t2(l,2) = 3.*rijx*rijy/rij2
t2(l,3) = 3.*rijx*rijz/rij2
t2(2,3) = 3.*rijy*rijz/rij2
t2(2,1) = t2(l,2)
t2(3,1) = t2(l,3)
t2(3,2) = t2(2,3)
rij6 = rij2**3

324



rij8 = rij6*rij2
qco = thq/rij6/2.
dco = thd/rij8
disd(i,l) = disd(i, l)+dco’rijx !* Dispersion dipoles

disd(i,2) = disd(i,2)+dco*rijy
disd(i,3) = disd(i,3)+dco*rijz
disd(j,l) = disd(j, l)-dco’rijx
disd(j,2) = disd(j,2)-dco*rijy
disd(j,3) = disd(j,3)-dco*rijz
do alp = 1,3 !* Dispersion quadruples

do bet = 1,3
disq(i,alp,bet) =disq(i,alp,bet) +qco*t2(alp,bet)
disq(j,alp,bet) =disq(j,alp,bet) +qco*t2(alp,bet)

enddo
enddo
SOV2 = exp(-beta2*rij2/2.)
fac = sov2/(1-sov2)
rcx = (rxix(i)+rxix(j))/2. !* X-(Rg-Rg center) distances

rcy = (rxiy(i)+rxiy(j))/2.
rcz = (rxiz(i)+rxiz(j))/2.
rc = dsqrt(rcx**2+rcy**2+rcz**2)
if (rc.gt.toosmall) then
vexx = vexx-2. *fac*erf(beta*rc) Irc !* Contrib from + chg

coef(i) = coef(i) + fac !* at Rg-Rg center

coef(j) = coef(j) + fac
endif

enddo
enddo

do i = l,ncluster
vexx = vexx + coef
rij2 = rxi(i)**2
t2(l,l) = (3.*rxix

tensor
t2(2,2) = (3.’rxiy

!* Contribs from - charges at Rg nuclei

i)*erf(beta*rxi(i))/rxi (i)

i)**2/rij2 - 1) !* Quadruple int

i)**2/rij2 - 1)
t2(3,3) = (3.*rxiz(i)**2/rij2 - 1)
t2(l,2) = 3.*rxix(i)*rxiy(i)/rij2
t2(l,3) = 3.*rxix(i)*rxiz(i)/rij2
t2(2,3) = 3.*rxiy(i)*rxiz(i)/rij2
t2(2,1) = t2(l,2)
t2(3,1) = t2(l,3)
t2(3,2) = t2(2,3)
vddisp = vddisp + (rxix(i)*disd(i,l)+rxiy (i)*disd(i,2)

& +rxiz(i)*disd(i,3) )/(rxi(i)**3)
qsum2 = o.
trace = O.
do alp = 1,3

do bet = 1,3
vqdisp = vqdisp

& - t2(alp,bet)*disq(i,alp, bet)/(rxi(i)**3)/3.
enddo

enddo
enddo

vexx = vexx*l.0d2 !* convert to hartree/100
vddisp = vddisp*l.d2
vqdisp = vqdisp*l.d2
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potout = vexx+vddisp+vqdisp

return
end

*.=.=..============================================.==.====.===.
double precision FUNCTION ERF(xin)

● .==.=.========================================.====.========...
*
* Error function. Adapted from Numerical Recipies.
*

implicit double precision (a-h,o-z)
PARAMETER (ITMAX=500,EPS=5.d-14,GLN=0 .57236494292470d0,

& fpmin = 1.d-30)

X = xin**2
A = 0.5d0

IF(X.LT.1.5)THEN
IF(xin.lt.O. )THEN
GAMMP=O .
goto 3

ENDIF
AP=A
SUM=l.OdO/A
DEL=SUM
DO N=l,ITMAX

AP=AP+l.
DEL=DEL*X/AP
SUN=SUM+DEL
IF(ABS(DEL) .LT.ABS(SUM) *EPS

enddo
PAUSE ‘A too large, ITMAX too

1 GAMNP=SUM*EXP (-X+A*LOG(X)-GLN
ELSE

b=x+l.O-a
c=l.O/fpmin
d=l.O/b
h=d
do i=l,itmax

an=-i* (i-a)

b=b+2.OdO
d=an’d+b

GO TO 1

small ‘

if (abs(d).lt.fpmin) d=fpmin
c=b+an/c
if (abs(c).lt.fpmin) c=fpmin
d=l.O/d
del=d’c
h=h’del
if (abs(del–1.0) .lt.eps) goto 2

enddo
pause ‘a too large, ITMWM too small in gcf’

2 gammcf=exp (-x+a’log (x)-gin)’h
GAFIMP=l.O-GAMMCF

ENDIF

3 IF(xin.LT.O. )THEN
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ERF=-GAMMP
ELSE

ERF=GANMP
ENDIF

RETURN
END

*-------------------------------==....=========......=....==. .=.======.-------------------------------
------------

subroutine vat(c9, qx,qYtqz,Potout)
*----------------------------------------------.=.=.=.==.===...==.=====______________________________________________
.==== .
*
* Triple-dipole (Axilrod-Teller) potential
* Ref: Allen & Tildesley, Computer Simulation of Liquids, P. 334.
*
* Input: C9 Triple-dipole constant (au).
* qx,qy,qz(ncl+l) Rg, Halide cart. coordinates

(aO/10)
*
*
* output : potout Potential (hartree/100)
*
*

include ‘param.file’
double precision c9,potout
double precision qx(ncl+l), cly(ncl+l ),qz(ncl+l)

nhal = ncluster+l
potout = o.
do i = I,ncluster-1

xik = (qx(nhal)-qx(i))/10.
yik = (qy(nhal)-qy(i))/10.
zik = (qz(nhal)-qz(i))/10.
do j = i+l,ncluster

xij = (qx(j)-qx(i))/10.
xjk = (qx(nhal)-qx(j))/10.
yij = (qy(j)-qy(i))/10.
yjk = (qy(nhal)-qy(j))/10.
zij = (qz(j)-qz(i))/10.
zjk = (qz(nhal)-qz(j))/10.

dikdjk = xik’xjk + yik’yjk + zik’zjk
dikdij = xik*xij + yik*yij + zik*zij

dijdjk. = xij’xjk + yij’yjk + zij’zjk

rij2 = xij*xij+yij *yij+zij*zij
rik2 = xik*xik+yik*yik+zik*zik
rjk2 = xjk*xjk+yjk*yjk+zjk*zjk

pd = rij2*rjk2*rik2

potout = potout+(pd - 3.*dikdjk*dikdij*dijdjk)
& /(pd*pd*dsqrt (pal))

enddo
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C5.8.

*

enddo

potout = potout*c9*l.d2

return
end

File’’averages.f’l

subroutine averages (yO,nstep,h,potave,potsd,pmin,prgrg,
& prgx,pind,pexq, pex,pddis,pqdis ,pextot,pindi ,pcd,pcq,pinddq,
& prgdrgq,prgqq, prgqxd,piq, pexqd,prgxX, prgxI,prgxII ,ekinave,
& energy,yave ,rgx,rgrg,
& dip,qin,paxtel )

* Subroutine to find average parameters during a constant E MD run
*

include ‘param.file’

common /dipoles/dx(natmaxc) ,dy(natmaxc) ,dz(natmaxc) ,
& qind(natmaxc), dpol(natmaxc, 3),~ol(natmaxc,3,3)

DIMENSION Y(neqc), DIY(neqc), D2Y(neqc) ,D3Y(neqc),D4Y(neqc),
.ZY(neqc),YO(neqc) ,Yl(neqc),Y2 (neqc),Y3(neqc) ,YH(neqc) ,Y3P(neqc) ,
.FO(neqc),Fl(neqc) ,F2(neqc),F3(neqc),FH (neqc),ZF(neqc),
.fdum(neqc),yave (neqc),ysd(neqc),rgx(2,ncl) ,rgrg(2tncl,ncl) ,
&dip(natmaxc) ,dx(natmaxc) ,dy(natmaxc) ,dz(natmaxc) ,qin(natmaxc) ,
&qind(natmaxc )

L

c----------------------------------------------------------------------
---——---

C DATA FOR INTEG~TOR ALGORITHMS
c----------------------------------------------------------------------
---—----

c DATA FOR RUNGE KUTTA INTEGRATION
Bll= 1.ODO/3.ODO
B21=-l.0DO/3.0D0
B22= 1.ODO
B31= 1.ODO
B32=-1.ODO
B33= 1.ODO
WI= 1.oDo/8.oDo
w2= 3.ODO/8.ODO
w3= 3.ODO/8.ODO
W4= 1.oDo/8.oDo

c
c DATA FOR HYBRID GEAR ROUTINE

GA02= 153.ODO/128.ODO
GAO1= 25.ODO/16.ODO
GAOO=-225.0DO/128.0D0
GB02= 45.ODO/.28.ODO
GBO1= 75.0DO/32.0D0
GBOO= 225.0DO/128.0D0

c
c ALPHA1=-O.5 FOR STABILITY
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c
GA12= (15.0DO/16.0DO)-0.5DO*(29 .ODO/32.ODO)
GA1l= (-1.0DO)-0.5DO*(1. ODO)
GA1O= (17.ODO/16.ODO)-O.5DO*(-61 .ODO/32.ODO)
GB12= (5.ODO/16.ODO)-O.5DO*(43 .ODO/160.ODO)
GB1l= (11.ODO/12.ODO)-O.5DO*(41 .ODO/24.ODO)
GB1O= (-11.ODO/16.ODO)-O.5DO* (31.ODO/32.ODO)
GG1O= (4.ODO/3.ODO)-O.5DO*(-2 .ODO/15.ODO)

c
c ALPHA2=1.0, BETA=9/56
c

BETA= 9.ODO/56.ODO
GA22= l.5DO*(29.0DO/32.0DO)+BETA* (-45.0DO/4.0DO)
GA21= 1.5DO*(1. ODO)+BETA* (O.ODO)
GA20= 1.5DO*(-61.ODO/32.ODO)+BETA* (45.ODO/4.ODO)
GB22= 1.5DO*(43.ODO/160.ODO) +BETA*(-71.ODO/20.ODO)
GB21= 1.5DO*(41.ODO/24.ODO)+BETA* (-16.ODO)
GB20= 1.5DO*(31.ODO/32.ODO)+BETA* (-3.ODO/4.ODO)
GG20= l.5DO*(-2.0DO/15.0DO)+BETA* (-16.ODO/5.ODO)
GG21= BETA*l.ODO

c
call deriv(fO,yO)
call kinetic(yO,ekin)
energy = ekin + poten

*
* Zero averages
*

do jj=l,neq
yave(jj) = O.
ysd(jj) = O.

enddo
do ii=l,ncluster

rgx(l,ii) = O.
rgx(2,ii) = O.
do jj=l,ncluster

rgrg(l,ii,jj) = O.
rgrg(2,ii,jj) = O.

enddo
enddo

c
c----------------------------------------------------------------------
--------

c SIXTEEN STEP RUNGE KUTTA INTEGRATION TO START
c----------------------------------------------------------------------
--------

c
DH=H/8.oDo
ICOUNT=O
DO 99 I=l,NEQ
Y(I)=YO (I)

99 CONTINUE
c

CALL DERIV(FO,Y)
c

DO 1000 ISTEP=1,16



c

c

c

100
c

200
c

c

300
c

400
c

c

500
c

600
c

c

700
c

800
c

810

820

c
1000
c

ICOUNT=ICOUNT+l

CALL DERIV(ZF, Y)

DO 100 1=1,NEQ
DIY(I)=DH*ZF(I)
CONTINUE

DO 200 I=l,NEQ
ZY(I)=Y (I)+B1l*DIY(I)
CONTINUE

CALL DERIV(ZF,ZY)

DO 300 I=l,NEQ
D2Y(I)=DH*ZF(I)
CONTINUE

DO 400 I=l,NEQ
ZY(I)=Y (I)+B21*D1Y (I)+B22*D2Y (I)
CONTINUE

CALL DERIV(ZF,ZY)

DO 500 I=l,NEQ
D3Y(I)=DH*ZF(I)
CONTINUE

DO 600 I=l,NEQ
ZY(I)=Y (I)+B31*D1Y (I)+B32*D2Y (I)+B33*D3Y(I)
CONTINUE

CALL DERIV(ZF,ZY)

DO 700 I=l,NEQ
D4Y(I)=DH*ZF(I)
CONTINUE

DO 800 I=l,NEQ
Y(I)=Y(I)+W1*DIY (I)+W2*D2Y (I)+W3*D3Y (I)+W4*D4Y(I)
CONTINUE

IF(ICOUNT.EQ. 8)THEN
CALL DERIV(F1,Y)
DO 810 I=l,NEQ
Yl(I)=y(I)

CONTINUE
ELSE IF(ICOUNT.EQ. 16)THEN
CALL DERIV(F2,Y)
DO 820 I=l,NEQ
Y2(I)=Y(I)
CONTINUE
.ENDIF

CONTINUE
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c

c----------------------------------------------------------------------
--------

c ENTER MAIN INTEG~TION LOOP
c----------------------------------------------------------------------
--------

c

c

1100
c

c
c
c

1300
c

c
c
c

c

c

1500
*

ICOUNT=2
itime = 2
iave = O
ekinave = O.OdO
potave = O.OdO
potsd = O.

DO 2000 ISTEP=l,NSTEP
ICOUNT=ICOUNT+l
itime = itime + 1
iave = iave + 1

DO 1100 I=l,NEQ
J=I

YH(I)=GA02*Y0 (I)+GA01*Y1 (I)+GAOO*Y2(I)+
.H*(GB02*F0 (I)+GB01*F1(I)+GBOO*F2(I))
CONTINUE

CALL DERIV(FH,YH)

CALCULATE PREDICTED

DO 1300 I=l,NEQ

ARRAY Y3P

Y3P(I)=GA12*Y0 (I)+GA11*Y1 (I)+GA1O*Y2(I)+
.H*(GB12*F0 (I)+GB11*F1 (I)+GB10*F2 (I))+
.H*GG1O*FH(I)
CONTINUE

CALL DERIV(F3,Y3P)

CALCULATE CORRECTED ARRAY Y3
SET LOCAL TRUNCATION ERROR ERRLOC EQUAL TO ZERO
ERRLOC=O.ODO

DO 1500 I=l,NEQ
Q=GA22*Y0 (I)+GA21*Y1 (I)+GA20*Y2 (I)+
.H*(GB22*F0 (I)+GB21*F1 (I)+GB20*F2 (I))+
.H*(GG20*FH (I)+GG21*F3(I) )

Y3(I)=Y3P(I)+Q
CONTINUE

* call deriv again at corrected configuration to get
* correct potential and forces
*

call deriv(F3,Y3)
potave=potave+poten
potsd=potsd+poten**2

*
● Accumulate averages
* Average positions: yave(l-3) positions, yave(4-6) squares
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*
*
●

●

●

☛

●

☛

●

do jj = l,neq-5,6
yave(jj) = yave(jj) + y3(jj)
yave(jj+l) = yave(jj+l) + y3(jj+l)
yave(jj+2) = yave(jj+2) + y3(jj+2)
yave(jj+3) = yave(jj+3) + y3(jj)**2
yave(jj+4) = yave(jj+4) + y3(jj+l)**2
yave(jj+5) = yave(jj+5) + y3(jj+2)**2

enddo

Average RG – X distances
rgx(l,j) = sum of distances
rgx(2,j) = sum of squares

Average RG-RG distances
rgrg(l,i,j) = sum of distances
rgrg(2,i,j) = sum of squares

xhal = y3(neq-5)
yhal = y3(neq-4)
zhal = y3(neq-3)
iic = O

do ii = l,neq-11,6
iic = iic+l
rsq = (y3(ii)–xhal)**2 + (y3(ii+l)-yhal) **2

& + (y3(ii+2)-zhal) **2
rgx(l,iic) = rgx(l,iic) + sqrt(rsq)
rgx(2,iic) = rgx(2,iic) + rsq
jjc = iic - 1
do jj = ii,neq-11,6

jjc = jjc+l
rsq = (y3(ii)–y3(jj)) **2 + (y3(ii+l)–y3(jj+l) )**2

& +(y3(ii+2) -y3(jj+2) )**2
rgrg(l,iic,jjc) = rgrg(l,iic,jjc) + sqrt(rsq)
rgrg(2,iic,jjc) = rgrg(2,iic,jjc) + rsq

enddo
enddo

RESET ~YS FOR NEXT STEP

DO 1600 I=l,NEQ
YO(I)=Y1(I)
Y1(I)=Y2 (I)
Y2(I)=Y3 (I)
FO(I)=F1(I)
F1(I)=F2(I)
F2(I)=F3 (I)

1600 CONTINUE

call kinetic(y2,ekin)
ekinave = ekinave + ekin

c
2000 CONTINUE
*
* Calculate Averages and standard deviations
*

dstep = dble(nstep)
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ekinave = ekinave/dstep
potave = potave/dstep
potsd = dsqrt(dabs(potsd/dstep - potave**2))
do jj = l,neq-5,6

do nn=0,2
yave(jj+nn) = yave(jj+nn)/dstep
ysd(jj+nn) = dsqrt(dabs (yave(jj+nn+3)/dstep

& - yave(jj+nn)**2))
enddo

enddo
*
* calculate potential at average configuration
*

call deriv(fdum,yave)
pmin = poten
prgrg = rgrgpot
prgx = rgxpot
pind = cddpot
pexq = exqpot
pex = gexpot
pddis = ddispot
pqdis = qdispot
pextot = gextot
pindi = vindit
pcd = cdpot
pcq = Cqpot
pinddq = cdqpot
prgdrgq = rgdrgq
prgqq = rgqq
prgqxd = rgqxd
piq = viq
pexqd = vexqd
prgxx = rgxXpot
prgxI = rgxIpot
prgxII = rgxIIpot
paxtel = atpot

*
* Dipoles & Quadruples
*

if (indqi.eq.0) then
do iii = l,ncluster+l

dip
qin

enddo
else

do ii
dip

iii) = dsqrt(dx(iii) **2+dy(iii) **2+dz(iii)**2)
iii) = qind(iii)

= l,ncluster+l
ii)=O.

qin(ii)=O.
do jj = 1,3

dip(ii) = dip(ii) + dpol(ii,jj)**2
do kk= 1,3

qin(ii) = qin(ii) + qpol(ii,jj,kk)**2
enddo

enddo
dip(ii) = dsqrt(dip(ii))
qin(ii) = dsqrt(qin(ii))

enddo
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endif

*

jjc = O
do jj = l,neq-11,6

jjc = jjc+l
rgx(l, jjc) =“rgx(l, jjc)/dstep
rgx(2, jjc) = sqrt(dabs (rgx(2,jjc)/dstep-rgx (l,jjc)**2))

enddo

iic = O
do ii = l,neq-11,6

iic = iic + 1
jjc = iic -1
do jj = ii,neq-11,6

jjc = jjc + 1
rgrg(l,iic,jjc) = rgrg(l,iic,jjc)/nstep
rgrg(2,iic,jjc) = sqrt(dabs (rgrg(2,iic,jjc)/dstep

& - rgrg(l, iic,jjc)**2))
enddo

enddo

c
c

do i = 1, neq
yO(I)=Y2 (i)
end do

c
return
END

C5.9. File’’ch.f”17

c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

subroutine ch(nm,n,ar,ai,w,mztz, zr,zi,fvl,fv2,fml, ierr)

integer i,j,n,nm,ierr,matz
double precision ar(nm,n), ai(nm,n),w(n) ,zr(nm,n),zi(nm,n),

x fvl(n),fv2 (n),fml(2,n)

this subroutine calls the recommended sequence of
subroutines from the eigensystem subroutine package (eispack)
to find the eigenvalues and eigenvectors (if desired)
of a complex hermitian matrix.

on input

nm must be set to the row dimension of the two-dimensional
array parameters as declared in the calling program
dimension statement.

n is the order of the matrix a=(ar,ai) .

ar and ai contain the real and imaginary parts,
respectively, of the complex hermitian matrix.
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c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

on

matz is an integer variable set equal to zero if
only eigenvalues are desired. otherwise it is set to
any non-zero integer for both eigenvalues and eigenvectors.

output

w contains the eigenvalues in ascending order.

zr and zi contain the real and imaginary “parts,
respectively, of the eigenvectors if matz is not zero.

iefr is an integer output variable set equal to an error
completion code described in the documentation for tqlrat
and tq12. the normal completion code is zero.

fvl, fv2, and fml are temporary storage arrays.

questions and comments should be directed to burton s. garbow,
mathematics and computer science div, argonne national laboratory

this version dated august 1983.

C6. Documentation ofthe ’’normal” program for finding mro-point energies

The “normal” program is used in conjunction with the simulated annealing

program for finding the zero point energies of clusters. It accepts as input the cluster

minimum energy configuration files produced by the simulated annealing program and

calculates vibrational eigenvalues for each mode of the cluster as described in Section

4.4.3 (Chapter 4). The program also can be used for calculating higher vibrational

eigenvalues and Franck-Condon factors.

C6.1. Example: zero-point energy calculation for Arbl

C6.1.1. The input file
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The input file for the “normal” program for the global minimum configuration of

Ar61-found in section C4.3 is shown below. The line numbers in boldface are for

reference only and are not included in the actual input file. The name of the file is

“normal_in l_ar6i. ”

1: Comment line
2: 1 !* ndo (1 anion or neutral, 2 fcfs)

3: 1 !* nfm (I to calculate force mat, 2 to read from file)

4: 6 !● nrg
5: 1 I* nhalpot (1 for anion, 2 for neutral)
6: 1 ~● neimal (neutral 1 or 2 for X; 3,4 for I; 5,6 for II)
7: 0 !* indflag
8: 0 !* iexqflag
9: 0 !* iexqd (exchange dipoles)
10: 0 !* iexg (Gaussian exchange)
11: 0 !* indqi (iterated multiples)
12: 0 !* iaxtel
13: average_file4_6
14: neutral_file
15: ncl_l
16: normal_outl_6
17: zpel_6
18: wfl_6
19: dvrl_6
20: vsticks
21: fml_write
22: fml_read
23: 0.94268 !* I SO Const 0.94268 eV
24: 1.6419 !* polind (RG polarizability AngA3)
25: 11.08 !* polrg
26: 52.7 !* polx
27: 27.11. !* pqrg
28: 254. !* pqx
29: 0.936 T● betaexq (Exchange quadruple range parameter, ~g”-l)

30: 6.5 ~~ Cutexq (exchange quad cutoff distance, An9)

31: 2086. !* theta6
32: 0. !* c9anion
33: 0. !* c9neut
34: 35 !* ndvr
35: 2 !* nanshow
36: 8 !* nnshow
37: 40. !* vtemp
38: 0.0 !* origin (cm–1)
39: 0.001 !* 2nd deriv step Size (An9)

40: 126.9044 !* halogen mass (amu) Iodine

41: 39.96238 !* rare gas mass (amu) Argon
42: 0.0458, 4.07, 5.70, 4.45, 1.08, 1.62, 279.5, 3537. !* Anion MMSV
43: 0.0188, 3.95, 7.15, 6.18, 1.01, 1.62, 5234., 38032. !* x1/2 MMSV
44: 0.0139, 4.18, 7.25, 6.30, 1.04, 1.62, 7079., 51439. !* 13/2 MMSV
45: 0.0159, 4.11, 6.90, 6.40, 1.04, 1.64, 6189., 44969. !* 111/2 MMSV
46: 0.0123422,3.7565,10.77874743 ,l.8122004,2.26210716e5 ,1.10785136,

.56072459, .34602794,1.36 !* Ar-Ar HFD-B
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47: 0 !* How many lambdas to enter by hand

Line 1 isa comment linewhich k copied directlyto the output file. Line 2

determines the mode of running the program: when this line is set to 1, only the

calculation for either the anion or neutral eigenvalues is performed; when it is 2, the

eigenvalues for both anion and neutral are calculated as well as Franck-Condon factors

and a vibrational stick spectrum. The setting of line 3 determines whether the force

matrix is calculated from the atomic configuration and potential (line 3 = 1) or if a

previously calculated force matrix is read in from in from a file (line 3 = 2).

Lines 5-12, 23-33 and 42-46 describe the nature of the cluster and its potential

and are identical to the corresponding lines of the input file “in 1” to the simulated

annealing program (see Section C4. 1, above).

Lines 13 and 14 are the anion and neutral atomic configuration files generated by

the simulated annealing program used as input by “normal.” If the FCFS calculation is

not performed, only one of the files is read in, but the input file must nonetheless contain

both lines. In this example we are only interested in the zero point energies of the AI-bI-,

and so have placed the ArGI-global minimum configuration file “average_file4_6” in line

13 and a “dummy” file name in line 14. Line 15 is the name of a file to save the normal

coordinates, “which may be examined to ascertain the symmetry of each vibrational mode.

Line 16 is the name of the program output file, which lists the individual mode

vibrational frequencies and zero-point energies. If FCF mode is enabled, the FCFS are

also listed in this file. Line 17 is the name of a file to save the total zero point energy.

Line 18 is the name of a file to save the DVR eigenvalues and eigenvectors for each

mode. As when running the Morse DVR program (Section A5.2), the eigenvectors
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should be examined for convergence. The file named in line 191 ists the DVR points for

each vibrational mode. The file named in line 20 is the vibrational stick spectrum (if FCF

mode is enabled). Line 21 is the name of the file to save the calculated force matrix.

Line 22 is the name of the file from which to read in the force matrix if it is not to be

calculated.

The program uses a harmonic oscillator-based DVR methodlg for solving

Harniltonian along each normal coordinate. Line 34 is the number of harmonic oscillator

basis finctions to be used in the calculation. Lines 35 and 36 are the number of anion

and neutral eigenvalues, respectively, one wishes to calculate. Line 37 is the vibrational

temperature used to generate the vibrational stick spectrum. Line 38 is the origin, in

wavenumbers, of the vibrational stick spectrum. Line 39 is the step size in ~“ used in

calculating the second derivatives of the potential for the force matrix. Lines 40 and 41

are the halogen and rare gas masses in amu, respectively.

The frequency of the harmonic oscillator basis set for the DVR calculation is

chosen to be the same for each mode as the harmonic frequency calculated numerically

from the potential. In some cases, the DVR calculation does not converge well with this

choice of basis frequency. In such cases one can specify the basis frequency for one or

mode by setting line 47 of the input file to the number of basis frequencies to be set by

hand. The user is then prompted for the numbers of the normal modes (as listed in the

output file) and the basis frequencies.
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C6.1.2. Running the program

The program is run as in the following example, with user input shown in

boldface.

> normal < normal_inl_6

>

The output file “norrnal_out l_6° is then generated, and is excerpted here:

Anion potential at eq. (eV): -0.4003685069
Anion
Mode Lambda (s-2) Harm. freq (cm-1) ZPE DVR

-0.66040E+20 0.00
-0.63225E+20 0.00
-0.34854E+20 0.00
0.28304E+19 0.01
0.27080E+20 0.03
O.1O132E+21 0.05

1 0.12983E+26 19.13 9.75
2 0.12983E+26 19.13 9.75
3 0.16334E+26 21.46 10.78
4 0.16335E+26 21.46 10.78
5 0.17361E+26 22.12 11.32
6 0.26132E+26 27.14 13.88
7 0.26135E+26 27.14 13.89
8 0.46533E+26 36.21 17.94
9 0.54459E+26 39.18 19.48

10 0.54461E+26 39.18 19.48
11 0.55494E+26 39.55 19.20
12 0.55496E+26 39.55 19.21
13 O.8891OE+26 50.06 24.58
14 0.88912E+26 50.06 24.58
15 0.93776E+26 51.41 24.82

Harmonic zero point energy (cm-l): 251.43

v1-vO DVR

19.83
19.83
21.65
21.65
23.11
28.37
28.37
35.70
39.05
39.05
38.26
38.29
49.13
49.13
48.44

(eV): 0.0311728180

DVR zero point energy (cm-1): 249.43
(eV): 0.0309252277

The firstcolumn of thisfileisthe mode number, the second column isthe harmonic

mode frequencyin Hz, the thirdcolumn is the harmonic mode frequency, the fourth

column contains the zero point energies for each mode from the DVR calculation, and the

fifth column contains the mode frequencies from the DVRcalculation.
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C6.2. Outline of the program

The subroutines and functions used by the program “normal” are listed in Table

c2, sorted according the file in which they reside. Some of the functions and subroutines

are the same as those previously described for the simulated annealing program and

Morse DVR program, and these are noted in the “Description” column of the table.
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Table C2. Subroutines and fhnctions used by the program “normal”

File

param.file

normal.f

porb.f

poten2.f

ch.f

rs.f

rsb. f

Subroutine

or Function

normal

peval

apeval

pind

vexq

hopts

hokin

hoham

prinaxes

calcfcfs

veqd

vinddq

exg

erf

vat

porb

ch

rs

rsb

Description

See Table Cl

Main program

Evaluates neutral potential of cluster

Evaluate anion potential of cluster

Calculates three-body induction potential from Eq.

(Clo)

Calculates three-body “exchange quadruple”

potential from Eq. (C12)

Calculates DVR points using harmonic oscillator

basis for a given vibrational mode

Transforms kinetic energy matrix to DVR basis

Calculated DVR Hamiltonian

Transforms cluster coordinates to principal axis

system (used in FCF mode)

Calculates multi-mode Frank-Condon factors and

vibrational stick spectrum

Calculated exchange-quadrupole potential using the

distributed dipole model.

See Table Cl

See Table Cl

See Table Cl

See Table Cl

See Table Cl

See Table Al

See Table Cl

See Table Al

See Table Al
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C6.3. Source code for the program “normal”

The source code for the “normal” program is listed below. The files “rsb.f’,

“rs.f’, and “poten2.f’ are identical to those listed or described in Sections A6.3, A6.4 and

A6.5 and hence are omitted here, as is the file “ch.f’ which is identical to the EISPACK

subroutine described in Section C5 .9. Some of the subroutines and functions in the files

“normal.f’ and the subroutine in the file “porb.f’ are identical with those in the simulated

annealing program listing, and only the headers of these are reproduced below.

6.3.1. File “makenormal”

The program is recompiled with the command “make -f makenormal”. The

executable file “normal” is saved in the subdirectory “norm.” The makefile is listed

below.

LI
normal : normal .O porb.o poten2 .O ch.o rs .O rsb.o

f77 -C -o norm/normal normal .O porb.o poten2 .O ch.o rs .O rsb.o

normal .0: param. file normal .f
porb.o: porb. f
poten2 .0: poten2 .f
ch.o: ch.f
rs.o: rs.f
rsb.o: rs.o

6.3.2. File “.normal.f”

program normal
●

* Normal mode analysis
*

include ‘param.file ‘

parameter (ndm=150,nmmax=18)
character *30 infile,anfile,outfile,outfile2,outwf,outdvr,

& zfile,stkfile, fmout,fminfile
character *80 comment
double precision pa(lO),px(lO),pl(lO),p2(10),q(10)
integer iarr (3)
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integer nmode(natmaxc*3-6)
double precision amass (natmaxc*3),fmat(natmaxc*3 ,natmaxc*3),
& co(natmaxc*3 ),co2(natmaxc*3) ,co3(natmaxc*3),
& lambda (natmaxc*3),fvl(natmaxc*3) ,
& fv2(natmaxc*3 ),evec(natmaxc*3 ,natmaxc*3) ,col(natmaxc*3 ),
& cdis(natmaxc*3 ),qdis(natmaxc*3 ),zpedvr (natmaxc*3-6),
& frqdvr(natmaxc*3-6) ,alamhan(natmaxc*3-6)
double precision rdvr(ndm+l), tmat(ndm+l,ndm+l) ,

& akin(ndm+l,ndm+l),hamdvr (ndm+l,ndm+l),evalm(ndm+l) ,
& evalm2(ndnwl), evecm(ndm+l,ndm+l) ,evecm2(ndm+l,ndrn+l),
& fvlmlndm+l), fv2m(ndm+l),vdvr (ndm+l),vdvr2 (ndm+l)
double precision wfs(nmmax,ndm+l,ndm+l),wfs2 (nmmax,ndm+l,ndm+l),

& evs(nmmax, ndm+l),evs2 (nmmax,ndm+l)
double precision fcfs(nmmax,ndm+l,ndm+l), sticks(2,1000),

& totfcf(nmmax,ndm+l)
integer nmd(2,nmmax,1000)

common/anparams/polind, betaexq,cutexq ,soconst,
& pa,px,pl,p2, q,polrg,polx,pqrg,pqx, theta6,c9anion,
& c9neut,nrg

write(*,*) ‘Enter comment line’
read(*,80) comment

80 format(a80)
write(*,*) ‘Enter mode: 1 anion or neutral frequencies.’
write(*,*) ‘ 2 both, and fcfs (shifted normal coords) ‘
write(*, *) ‘ 3 “ “ (vertical normal

coords) ‘
read(*,*) ndo
write(*,* ) ‘Enter 1 to calculate force mat; 2 to read from file’
read(*,*) nfm
write(*,*) ‘Enter number of rare gas atoms: ‘
read (*,*) nrg
if ((ndo.gt .l).and. (nrg.gt.7)) then

pause ‘cant do fcfs for > 18 modes’
endif
write(*, *) ‘Enter 1 for anion, 2 for neutral (detrimines which’
write(*, *) ‘NCS used in fcf mode)’
read (*,*) nhalpot
write(*,*) ‘Enter neutral eigenvalue (1 or 2 x; 3,4 I; 5,6 II)’
read(*,*) neigval
write(*,*) ‘Enter 1 for 3~body induction (old), O for not’
read(*,*) indflag
write(*,*) ‘Enter 1 for exchange quadruple (old), O for not’
read(’,’) iexqflag
write(*, *) ‘Enter 1 for exchange dipoles, O for not’
read(*,*) iexqd
if (iexqd.eq.1) then

iexqflag = O
endi f
write(’,’) ‘Enter 1 for Gaussian exchange, O not’
read(*,*) iexg
if (iexg.eq.1) then

iexqflag = O
iexqd = O

endi f
write(*,*) ‘Enter 1 for iterated multiples (new), O for not’
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read (*,*)
if (indqi

indflag
endi f
write (*,*
read (*,*)
write (*,*
read (*,*)
write (*,●

read (*,*)
write (*,*
read (*,*)

indqi
eq.1) then
. 0

‘Axilrod-Teller, l=on, O=off:’
iaxtel
‘Enter name of anion coordinate file (aO/lO):’

anfile
‘Enter name of neutral coordinate file (aO/lO):’

infile
‘Enter name of normal coordinate output file:’

outfile
write(*,*) ‘Enter name of info output file: ‘
read(’,’) outfile2
write(*, *) ‘Enter name of zero point energy file: ‘
read(’,’) zfile
write(*, *) ‘Enter wavefunction outfile: ‘
read(*,*) outwf
write(’,’) ‘Enter dvr point outfile: ‘
read(”,’) outdvr
write(*,*) ‘Enter stick spectrum outfile:’
read(*, *) stkfile
write(*,*) ‘Force matrix save file name :‘
read(*,*) fmout
write(*,*) ‘Force matrix read file name : ‘
read(’,’) fminfile
write(*, *) ‘Enter atomic spin-orbit coupling constant (eV):‘
read(’,’) soconst
write(*, *) ‘Enter rare gas polarizability, for old model

(AngA3):’
read(*,*) polind
write(*, ‘) ‘Rg polarizability, for new model (aOA3)’
read(*, *) polrg
write(*, *) ‘Halide polarizability (aOA3)’
read(*, *)
write(*,*
read(*, *)
write(’, ●

read(*,*)
write(*,*
read(*, *)

polx
‘Rg quadruple polarizability (aOA5)’

pqrg
‘Halide quadruple polarizability (aOA5)‘

pqx
‘Enter exchange quadruple range parameter: ‘

betaexq
if ((iexqd.eq.l).or. (iexg.eq.1)) then

betaexq = betaexq*aO/10.
endif
write(’,’) ‘Enter exchange quadruple cotoff distance (tig):’
read(’,’) cutexq
write(*, ‘) ‘quadruple dispersion coefficient e*aO”8’
read(’,’) theta6
write(’,’) ‘c9 (Axilrod-Teller) for anion (eV*Ang”9):’
read(’,’) c9anion
write(*,*) ‘C9 for neutral:’
read(*,*) c9neut
c9anion = c9anion/harev/aO**9 !* convert to au
c9neut = c9neut/harev/aO**9
write(*, *) ‘Enter nmax for dvr basis: ‘
read(’,’) ndvr
write(*,*) ‘Enter number of anion eigenvalues to show :‘
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read(*, *) nanshow
write(*,*) ‘Enter number of neutral eigenvalues to show :‘
read(*,*) nnshow
if (nhalpot.eq.1) then
nshow = nanshow
nshow2 = nnshow

elseif (nhalpot.eq.2) then
nshow = nnshow
nshow2 = nanshow

endi f
write(*,*) ‘Enter vibrational temperature (K):’
read(*,*) vtemp
write(’,’) ‘Enter origin position (cm-l):’
read(*,*) origin
write(*, *) ‘Enter step size for 2nd derivatives (Ang):’
read(*, *) hs
hs = hs*10.OdO/aO
write(*, *) ‘Enter halide mass (amu):‘
read(*,*) halmass
write(*,*) ‘Enter rare gas mass (amu):‘
read(*,*) rgmass
write(*,*) ‘Enter Anion potential parameters (MMSV):’
read(*,*) (pa(i),i=l,8)
write(’,’) ‘Enter X1/2 state potential parameters (MMSV):’
read(*,*) (px(i),i=l,8)
write(*, *) ‘Enter 13/2 state parameters: ‘
read(*,*) (pl(i),i=l,8)
write(*,*) ‘Enter 111/2 state parameters: ‘
read(*,*) (p2(i),i=l,8)
write(*,*) ‘Enter RG-RG HFD-B Parameters: ‘
read(*,*) (q(i),i=l,9)
do i=l,nrg*3-6

alamhan(i) = O.dO
enddo
write(*, *) ‘Enter how many HO lambdas for dvr by hand?’
read(*, *) nlam
if (nlam.ne.0) then

do i=l,nlam
write(*,*) ‘enter lambda for which mode?’
read(*,*) nmode(i)
write(*,* ) ‘enter lambda in cm-1 for mode ‘,nmode(i)
read(’,’) alamhan(nmode(i))
alamhan(nmode(i) ) = (2.dO*pi*alamhan(nmode (i))/hztocm)**2

enddo
endi f

●

* Read in coordinates of minimum
*

if (nhalpot.eq.1) then
write(*,*) ‘Reading anion coordinates from ‘,anfile
open(l, file=anfile)
do n=l,nrg+l

read(l,*) junk,co(n*3-2), co(n*3-1) ,(.o(n*3)
enddo
close(1)

elseif (nhalpot.eq.2) then
write(*, *) ‘Reading neutral coordinates from ‘,infile
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*
*
*
*

x

●

*

*
*
*
*
*
*
*
*

open(l, file=infile)
do n=l,nrg+l

read(l, ”) junk,co(n*3-2), co(n*3-l ),co(n*3)
enddo
close(1)

endif
if (ndo.eq.2) “then

if (nhalpot.eq.1) then
write(*,* ) ‘Reading neutral coordinates from ‘,infile
open (l,file=infile)
do n=l,nrg+l

read(l,*) junk,co2(n*3-2),co2 (n*3-l),co2(n*3)
enddo
close(1)

elseif (nhalpot.eq.2) then
write(*, ●) ‘Reading anion coordinates fro= ‘,~~file
open(l, file=anfile)
do n=l,nrg+l

read(l,’) junk,co2(n*3-2) ,co2(n*3-1) ,co2(n*3)
enddo
close(1)

endi f
endif

If in fcf (2) mode orient both anion and neutral in p~incipal
axis frame

if (ndo.eq.2) then
call prinaxes (co,rgmass,halmass)
call prinaxes (co2,rgmass,halmass)

endif

Set up masses list, masses in kg

do i=l,nrg*3
amass(i) = rgmass’amutokg

enddo
do i=nrg*3+l, (nrg+l)*3

amass(i) = halmass*amutokg
enddo

Set up force matrix (inksunits)
using central difference approximation to force constants;
Diagonals:
d~2f/dxA2 = [f(x+h)-2f(x)+f(x-h)]/ hA2

Off diagonals:
dA2f/dxdy = [f(x+h,y+h)-f(x-h,y+h) -f(x+h,y-h) +f(x-h,y-h)]/(2h)A2

if (nfm.eq.1) then

if (nhalpot.eq.1) then !* kion

anp = apeval (co)
if (ndo.eq.2) then

anp2 = peval(co2)
elseif (ndo.eq.3) then
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anp2 = peval (co)
endif
write(*,*) ‘Setting up force matrix’
nelem = (nrg+l)*3 + ((nrg+l)*3-l)**2/2
write(*,*) nelern, ‘ elements to calculate’
neldone = O
do i = l,(nrg+l)*3 !* Diagonals

savei = co(i)
fmat(i,i) = -2.0dO*apeval (co)
co(i) = savei + hs
fmat(i,i) = fmat(i,i) + apeval(co)
co(i) = savei - hs
fmat(i,i) = (fmat(i,i) + apeval(co))’evtoj

& /(hs*aO/10.OdO*l.Od-10) **2/amass(i)
co(i) = savei
neldone = neldone+l
if (mod(neldone,20) .eq.0) then
write(*,7593) neldone*lOO/nelem

endi f
enddo

7593 format(i3,’% done’)

&

&

!* Off diagonals (lower triangle only)

+ hs
+ hs

do i=2, (nrg+l)*3
do j=l,i-1

savei = co(i)
savej = co(j)
co(i) = co(i)
co(j) = co(j)
fmat(i,j)=apeval (CO)

co(i) = savei - hs
fmat(i,j)=fmat (i,j)-aPeval (co)
co(i) = savei + hs
co(j) = savej - hs
fmat(i,j)=fmat (i,j)-apeval (co)
co(i) = savei - hs
fmat(i,j)=(fmat (i,j)+apeval (co))’evtoj

/(2.OdO*hs*aO/10.OdO*l .Od-10)**2
/dsqrt(amass(i)*amass(j) )

co(i).=savei
co(j)=savej
neldone = neldone+l
if (mod(neldone,20) .eq.0) then
write(*,7593) neldone*iOO/nelem

endif
enddo

enddo

elseif (nhalpot.eq.2) then !* Neutral

anp = peval(co)
if (ndo.eq.2) then

anp2 = apeval(co2)
elseif (ndo.eq.3) then

anp2 = apeval(co)
endi f
write(*,*) ‘Setting up force matrix’
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do i = l,(nrg+l)*3 !* Diagonals
savei = co(i)
fmat(i,i) = -2.OdO*peval (co)
co(i) = savei + hs
fmat(i,i) = fmat(i,i) + peval(co)
co(i) = savei - hs
fmat(i,i) = (fmat(i,i) + peval(co))’evtoj

& /(hs*aO/10.OdO*l.Od-10) **2/amass(i)
co(i) = savei

enddo

do i=2, (nrg+l)*3 !* Off diagonals (lower triangle onlY)

do j=l,i-1
savei = co(i)
savej = co(j)
co(i) = co(i) + hs
co(j) = co(j) + hs
fmat(i,j) = peval(co)
co(i) = savei - hs
fmat(i,j)=fmat(i, j)-peval (co
co(i) = savei + hs
co(j) = savej - hs
fmat(i,j)=fmat(i, j)-peval (co
co(i) = savei - hs
fmat(i,j)=(fmat (i,j)+peval (co))’evtoj

& /(2.0dO*hs*aO/10.0dO*l .Od-10)**2
& /dsqrt(amass(i) *amass(j))

co(i)=savei
co(j)=savej

enddo
enddo

endif

open(l, file=fmout) !* Save force matrix to file
do i = l,(nrg+l)*3

do j = l,i
write(l,*) fmat(i,j)

enddo
enddo
close(1)
write(*,*) ‘Force matrix saved to ‘,fmout

elseif (nfm.eq.2) then

if (nhalpot.eq.1) then !* Anion
anp = apeval(co)
if (ndo.eq.2) then

anp2 = peval(co2)
elseif (ndo.eq.3) then

anp2 = peval(co)
endif

elseif (nhalpot.eq.2) then !* Neutral
anp = peval(co)
if (ndo.eq.2) then

anp2 = apeval(co2)
elseif (ndo.eq.3) then
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anp2 = apeval(co)
endi f

endif

*
*
*

*
*
*
*
*

*

open(l, file=fminfile) !* Read force matrix from file

do i=l, (nrg+l)*3
do j = l,i

read(l,*) fmat(i,j)
enddo

enddo
close(1)
write(*,*) ‘Force matrix read from ‘,fminfile

endif

Diagonalize force matrix

write(*, *) ‘Diagonalizing force matrix. ..’
call rs(natmaxc*3, (nrg+l)*3,fmat,lambda, l,evec,fvl,fv2,ierr)
write(’,’) ‘Normal frequencies : ‘
do i=l, (nrg+l)*3

write(’,’) lambda(i)
enddo

If in fcf mode, determine the displacements of anion or neutral
from the one whose normal coordinates are being used, first in
cartesian displacements and then transform to normal coordinates

if (ndo.eq.2) then

do i=l, (nrg+l)*3 I* Loop over cartesian coordinates
cdis(i) = co2(i) - co(i)

enddo

do m=l,6
qdis(m) = O.OdO

enddo
do m=7, (nrg+l)’3 I* Transform to normal coordinates

qdis(m) = O.OdO
do i=l, (nrg+l)*3

qdis(m) = qdis(m) +.evec(i,m) ’cdis(i)’dsqrt (amass(i))
I* Units sqrt(kg)*aO/10

enddo
enddo

endif
*
* Set up dvr points and kinetic matrix, which are the same
* for all the normal modes neglecting the frequencies
*

call hopts(ndvr, rdvr,tmat)
call hokin(ndvr, tmat,akin)

*
* Evaluate potential at dvr points for each normal mode, and
* diagonalize dvr hamiltonian
*
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open(l, file=outwf)
open(2, file=outdvr)

do 2500 m = 7, (nrg+l)*3 !* Loop over normal modes

write(*, *) ‘Mode ‘,m-6
write(l, *) ‘Mode ‘,m-6
write(l, *)
write(2,*) ‘Mode ‘,m-6

if (ndo.eq.1) then
write(2,*) ‘Q [sqrt(amu)’Ang] V(Q) [eV]’

elseif (ndo.eq.2) then
write(2,9310)

9310 format(’QI’ ,15x, ‘V1(Q1)’,llX, ‘Q2’,15x,’v2(Q2) ‘)
elseif (ndo.eq.3) then

write(2,9320)
9320 format(’QI’ ,15x, ‘V1(Q1)’,15X,‘V2(Q1)’)

endi f

if (alamhan(m-6) .eq.O.dO) then
alambda = lambda(m)

else
alambda = alamhan(m-6)

endif

do i = l,ndvr+l !● Loop over dvr Points

w = rdvr(i)*dsqrt(hbar/(dsqrt (alambda)*2.OdO))
& *10.Od10/aO !* Normal coord units converted from

!* sqrt(kg)*m to sqrt(kg)*aO/10*

if (ndo.eq.2) then
qm2 = qm - qdis(m)

endif

do j=l, (nrg+l)*3 !* Loop over cartesian coordinates
col(j) = co(j) + evec(j,m)*qm/dsqrt(amass (j)) !* other

q’s=o
if (ndo.eq.2) then

co3(j) = co2(j) + evec(j,m)*qm2/dsqrt (amass(j))
endif

enddo

if (nhalpot.eq.1) then
vdvr(i) = apeval(col)

elseif (nhalpot.eq.2) then
vdvr(i) = peval(col)

endi f
if (ndo.eq.2) then !*

if (nhalpot.eq.1) then
vdvr2(i) = peval(co3)

elseif (nhalpot.eq.2) then
vdvr2 (i) = apeval(co3)

endi f
elseif (ndo.eq.3) then

if (nhalpot.eq.1) then !*
vdvr2 (i) = peval(col)
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elseif (nhalpot.eq.2) then
vdvr2 (i) = apeval(col)

endif
endif

if (ndo.eq.1) then
write(2,578) qm*aO/10./sqrt(amutokg) ,vdvr

elseif (ndo.eq.2) then
write(2,579) qm*aO/10./sqrt(amutokg) ,vdvr

& qm2’aO/10./sqrt (amutokg),vdvr2 (i)
e~seif (ndo.eq.3) then

write(2,579) qm*aO/lO./sqrt(amutokg) ,vdvr
endif

enddo !* End 100p over dvr points

write(2, *)
call hoham(akin,vdvr,ndvr, alambda,hamdvr)
if (nhalpot.eq.1) then

i)

i),

i),vdvr2(i)

write(*,*) ‘Diagonalizing Anion Hamiltonian’
elseif (nhalpot.eq.2) then

write(*, *) ‘Diagonalizing Neutral Hamiltonian’
endi f
call rs(ndm+l,ndvr+l,hamdvr, evalm,l,evecm,fvlm, fv2m,ierr)
do kk = l,nshow

do 11 = l,ndvr+l
wfs(m-6,11,kk) = evecm(ll,kk)

enddo
evs(m-6,kk) = evalm(kk) - anp

enddo

if (ndo.ge.2) then
call hoham(akin,vdvr2, ndvr,alambda,hamdvr)
call rs(ndm+l,ndvr+l, hamdvr,evalm2, 1,evecm2, fvlm,fv2m,ierr)
do kk = l,nshow2

do 11 = I,ndvr+l
wfs2(m-6,11,kk) = evecm2(ll,kk)

enddo
evs2(m-6,kk) = evalm2(kk) - anp2

enddo
endif

if (nhalpot.
write(l,*

else
write(l, *

endif

eq.1) then
I*********Anion***** *****8

,*********Neutra~* *********,

write(l,*) ‘Eigenvalues’
do i = l,nshow

write(l,*) (evalm(i)-anp)*evtocm
enddo
write(l,’)
zpedvr(m-6) = e’zalm(l) - anp
frqdvr(m-6) = evalm(2) - evalm(l)
write(l, *) ‘Wavefunctions ‘
call showarr4(l,ndm+l, evecm,ndvr+l,nshow)
write(l, *)
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if (ndo.ge.2) then
if (nhalpot.eq.1) then
write(l, *) o*********Ne~teal******* ***,

else
write(l, *) l*********~ion*** ********

endif “
write(l,*) ‘Eigenvalues ‘
do i = l,nshow2

write(l,*) (evalm2(i)-anp2)*evtocm
enddo
write(l,*)
write(l,*) ‘Wavefunctions ‘
call showarr4(l,ndm+l, evecm2 ,ndvr+l,nshow2)
write(l, *)

endi f

2500 continue !* End loop over normal modes

578 format (g16.8,1x,g16.8)
579 format (g16.8,3(lx,g16.8) )

close(1)
close(2)

*
* Calculate fcfs
*

if (ndo.ge.2) then
if (nhalpot.eq.1) then

call calcfcfs (ndvr,nanshow,nnshow,vtemp,origin, evs,wfs,
& evs2,wfs2, fcfsttotfcf,nsticks, nmd,sticks)

elseif (nhalpot.eq.2) then
call calcfcfs (ndvr,nanshow,nnshow, vtemp,origin,evs2 ,wfs2,

& evs,wfs, fcfs,totfcf,nsticks, nmd,sticks)
endif

endif
*
*
* Output to files
●

open(l, file=outfile2)
open(2, file=zfile)
write(l,*) ‘Normal Coordinate Program’
call idate(iarr)
write(l,300) iarr(2), iarr(l),iarr (3)
call itime(iarr)
write(l,301) iarr(l), iarr(2),iarr (3)

300 format( ’Date: ‘,i2,’/’,i2,lx,i4)
301 format( ’Time: ‘,i2,’:’,i2,’:’,i2)

write(l,*)
write(l,*) comment
write(l, *)
write(l,’) ‘Number of RGs: ‘,nrg
write(l,7356) anfile,infile

7356 format(’Eq POS files (an, neuc): ‘,
& a30,a30)
write(l,’) ‘Normal coordinate file: ‘,outfile
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write (l,’) ‘Output file: ‘,outfile2
write(l,*) ‘Zero point energy file: ‘,zfile
write(l,’) ‘Wavefunction save file: ‘,outwf
write(l,’) ‘DVR point save file: ‘,outdvr
if (nfm.eq.1) then
write(l, *) ‘Force matrix save file: ‘,fmout

elseif (nfm.eq.2) then
write(l,’) ‘Force matrix imput file: ‘,fminfile

endif
if (ndo.ge.2) then

if (nhalpot.eq.1) then
write(l,3023)

else
write(l,3024)

endif
if (ndo.eq.2) then
write(l,*) ‘ -- displaced coordinates for other’

elseif (ndo.eq.3) then
write(l,*) ‘ -- vertical coordinates for other’

endif
write(l, *) ‘vibrational stick file: ‘,stkfile
write (1,3030) vtemp,origin

endif
3023 format(/, ‘FCF mode -- Using ANION normal coordinates’,$)
3024 format(/, ‘FCF mode -- Using NEUTRAL normal coordinates’ ,$)
3030 format(’vtemp (K) : ‘,f10.3,5x, ’origin(cm-1) : ‘,f15.5)

write(l,*)
if ((nhalpot .eq.2).or. (nolo.ge.2)) then

if ((neigval .eq.1).or. (neigval.eq.2)) then
write(l,*) ‘X State’

elseif ((neigval.eq.3) or. (neigval.eq.4)) then
write(l,*) ‘I State’

elseif ((neigval.eq.5) or. (neigval.eq.6)) then
write(l, *) ‘II State’

endif
write(l,95) soconst

95 format( ’SO constant (eV) :’,f12.8)
endif
if ((nhalpot .eq.l).or. (nolo.ge.2)) then

if (indflag.eq.1) then
write(l,’) ‘Three body induction ON’
write(l,305) polind

305 format( ’Rare gas polarizability: ‘,f10.6,’ AA3’)
endif
if (iexqflag.eq.1) then
write(l,*) ‘Exchange quadruple ON’
write(l,307) betaexq,cutexq

307 format( ’Exchange quadruple beta (AA-1):’,f10.6,3x,
& ‘Cutoff (A):’,f10.6)

endif
if (indqi.eq.1) then
write(l,*) ‘Iterated multiples ON’
write(l,565) polrg,polx,pqrg,pqx

565 format( ’Dipole polarizabilities, aOA3: Rg = ‘,f10.6,3x,
& ‘Hal = ‘,f10.6,/, ‘Quad. polarizabilities, aOA5: Rg = ‘,
& f10.6,3x,’Hal = ‘,f10.6)

endif
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if (iexqd.eq.1) then
write(l,573) betaexq*10./a0,theta6

573 format( ’Exchange dipoles ON’,3X, ‘betaexq =’,flO.6,3x,
& ‘theta6 =’,f10.3)

endif
if (iexg.eq.1) then
write(l,689) betaexq,theta6

689 format( ’Gaussian exchange ON, ‘,3x,‘betaexq =’,f10.6,
& 3x, ’theta6 =’,f10.3)

endi f
endif
if (iaxtel.eq.1) then
write(l,695) c9anion*harev*aO**9, c9neut*harev*aO**9

695 format (’Axilrod-Teller ON, ‘,3x,’c9anion =’,f10.3,
& 3x, ‘c9neut = ‘,f10.3)
endif
write(l,400) ndvr,nanshow,nnshow, hs*aO/10.

400 format(’ndvr: ‘,i3t3x,‘nanshow: ‘,i2,‘nnshow:’,i3,
& 3x, ’Step size (Ang.): ‘,g10.4)
write(l,405) halmass,rgmass

405 format( ’Halogen mass (amu): ‘,f15.10,3x,’Rare gas mass: ‘,f15.10)
write(l,1099) aO,harev,evtocm
write(l,1100) evtoj,hztocm,amutokg

1099 format(’aO = ‘,g15.10,’ harev = ‘,g15.10,’evtocm = ‘,g15.~())
1100 format(’evtoj = ‘,g16.10,’ hztocm = ‘,g16.10,’ amutokg =
‘,g16.10)

if ((nhalpot.eq.1) or. (ndo.ge.2)) then
write(l,’) ‘Anion rg-x NMSV parameters: ‘
write(l,100) (pa(i),i=l,8)

endif
if ((nhalpot .eq.2).or. (nolo.ge.2)) then
write(l,*) ‘Neutral rg-x MMSV Parameters (X,1,11 diatom states) :‘

write(l,100) (px(i),i=l,8)
write(l,100) (pl(i),i=l,8)
write(l,100) (p2(i),i=l,8)

endif
write(l,’) ‘RG-RG HFD-B Parameters: ‘
write(l,100) (q(i),i=l,9)

100 format(2x,5g14.8,/,2x, 5g14.8)
write(l,’)
write(l,200)

200 format(80(’*’),/)
if (nhalpot.eq.1) then
write(l,340) anp

else
write(l,341) anp

endif
if (ndo.ge.2) then

if (nhalpot.eq.2) then
write(l,340) anp2

else
w-ite(l,341) anp2

endi f
endif

*
x Write zero point energies and vib frequencies to file in mode 1
*
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if (ndo.eq.1) then
if (nhalpot.eq.1) then
write(l,*) ‘Anion’

else
write(l,*) ‘Neutral’

endif
write(l,330)
zpe = O.OdO
do i=l, (nrg+l)*3

if (lambda(i) .lt.0) then
freq = O.

else
freq = dsqrt(lambda(i))/(2.OdO*pi)
zpe = zpe + freq/2.OdO

endif
if (i.le.6) then
write (l,320)lambda (i),freq*hztocm

elseif (alamhan (i-6).eq.0) then
write(l,322) i-6,1ambda(i) ,freq’hztocm, zpedvz (i-6)*evtocm,

& frqdvr(i-6) ‘evtocm
else

write(l,323) i-6,1ambda(i) ,freq*hztocm, zpedm (i-6)*evtocm,
& frqdvr(i-6) ‘evtocm,dsqrt (alamhan(i-6))/(2.=pi)*hztocm

endif
enddo
write(l,*)
write(l,325) zpe*hztocm
write(l,326) zpe*hztocm/evtocm
write(l,’)
zped = O.OdO
do i=l, (nrg+l)*3-6

zped = zped + zpedvr(i)
enddo
write(l,327) zped*evtocm
write(l,328) zped
write
write

340 format (
341 format (
330 format (

2,329) nrg,zped
l,*)

Anion potential at eq. ev) : ‘,fls.lo)
Neutral potential at eq (eV : ‘,f15.lo)
Mode’ ,1x, ‘Lambda (s-2) ,2x, Harm. freq(cm-l) ’,2x,

& ‘ZPE DVR’ ,4X,‘v1-v()DVR ‘)
320 forniat(5x,g13.5,3x,f7.2 )
322 format (i3,2xre13.5,3x, f7.2,7x,f7.2,5x,f7.2)
323 format (’*’,i2,2x,e13 .5,3x,f7.2,7x,f7.2, 5x,f7.2,1x,

& ‘(basis freq = ‘,f6.2,’)’)
325 format( ’Harmonic zero Point energy (cm-l): ‘,f7.2)
326 format (‘
327 format(’DVR zero point energy (cm-1):
328 format (‘ (eV):
329 format (i3,1x,g18.10)
*
* Write vibrational eigenvalues and.single
mode
*

elseif (ndo.ge.2) then

eV) : ‘,f15.lo)
‘,f7.2)
‘,fls.lo)

mode fcfs to file in fcf

do m=l, (nrg+l)*3-6 !* LOOp over modes
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write(l,605) m
if (ndo.eq.2) then
write(l,640) qdis(m+6)*aO/10./sqrt (amutokg)

endif
write(l,607)
if (nhalpot.eq.1) then
write(l,510)

else
write(l,515)

endif
write(l,610)
nshowm = max(nshow,nshow2)
do i=l,nshowm !● Loop over v

if (i.gt.1) then
elast = evs(m,i-1)
elast2 = evs2(m,i-1)

else
elast = O.dO
elast2 = O.dO

endif
if ((i.le.nshow).and. (i.le.nshow2)) then
write(l,615) i-l,evs(m,i)*evtocm, (evs(m,i)-elast)

*evtocm,i-l,evs2 (m,i)*evtocm,
(evs2(m,i)-elast2) ‘evtocm

elseif (i.le.nshow) then
write(l,620) i-l,evs(m,i)’evtocm, (evs(m,i)-elast)’evtocm

elseif (i.le.nshow2) then
write(l,625) i–l,evs2(m,i)*evtocm, (evs2(m,i)–elast2)

* evtocm
endif

enddo
write(l,630)
write(l,145)
write(l,150) (k, k = O,nanshow-1)
write(l, *)
do j=l,nnshow

write(l,155) j-1, (fcfs(m,k,j
enddo
write(l, *)
write(l,160) (totfcf(m,k), k=l
write(l,’)

enddo
nmde = 3*(nrg+l)-6

k = 1 nanshow)

nanshow

write(l,5000) !* Write vsticks

write(l,5005)
write(*, *) ‘nsticks’,nsticks
do i=l,nsticks

do m=l,nmde
write(l,5010) nmd(l,m,i)

enddo
if (nmde.lt.15) then

do n=nmde+l,15
write(l,5015)

enddo
endif
do m=l,nmde

write(l,5010) nmd(2,m,i)
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enddo
if (nmde.lt.15) then

do n=nmde+l,15
write(l,5015)

enddo
endi f
write(l,5020) sticks (l,i),sticks(2 ,i)

enddo

endif
close(1)
close(2)

605 format
607 format
610 format
615 format

/,35(’*’),’ Mode ‘,i2,1x,36(’*’),/)
‘Vibrational Eigenvalues :‘,/)
13X, ‘Total’, 6x, ‘Spacing’,20x, ‘Total’, 6x, ‘Spacing’)
lX,’V = ‘,i2,2x,f9.2,4x,f8.2 ,9x,’v = ‘,i2,2x,

& f9.2,4x, f8.2)
620 format(lx,’v = ‘,i2,2x,f9.2,4x,f8.2)
625 format(39x, ‘v = ‘,i2,2x,f9.2,4x,f8.2 )
630 format(/, ‘Single mode FCFS :’,/)
640 format (’Displacement [sqrt(amu)*Angl : ‘,g12.5)
510 format(15x, ‘Anion’,31x,‘Neutral’,/)
515 format(15x, ‘Neutral’,31x, ‘Anion’,/)
145 format(19x,’Anion v = ‘)
150 format(17x,20(i3,4x),/)
155 format( ’Neutral v = ‘,i3,2x,20(f6.4,1x), /)
160 format (‘ Total = ‘,5x,20(f6.4,1x),/)

5000 format(/, ‘Vibrational sticks’)
5005 format( ’Anion mode’ ,21x, ‘Neutral mode’ ,17x, ‘Pos(cm-1)’,

& 2X, ‘Inten’)
5010 format(i2,$)
5015 format(’ ‘,$)
5020 format (f9.3,2x,f8.6)
*
* Write out normal frequencies (lambdas) and coordinates
*

open(l, file=outfile)
do i=7, (nrg+l)’3-6

write(l,’) lambda(i)
enddo
do i“=l,(nr9+l)*3

write(l,*) (evec(i,j),j=7, (nr9+l)*3)
enddo
close(1)

*
* Write vibrational stick file if in mode 2 or 3
*

if (ndo.ge.2) then
open(l, file=stkfile)
do i=l,nsticks

write(l,4000) sticks (l,i),sticks(2 ,i)
enddo
close(1)

endi f
4000 format (f10.3, f10.6)
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end

● ====....=......==........=..=....=.==....==.....=.......====.=.....

double precision function peval(coord)
● .....=......=====.....=.==..===..=====.=.========...=.=.=======.==.
●

● Evaluate neutral potential -- coords in aO/10,
*

include ‘param.file’
double precision hfd_b
double precision rx(natmaxc), ry(natmaxc) ,rz

poten in eV

natmaxc) ,
& pa(lo),px (lo),pl(lo), pz (10),q(10),potnrgx(6)
double precision coord(natmaxc*3)

common/anparams /polind,betaexq ,cutexq,soconst,
& pa,px,pl,p2, q,polrg,polx,pqrg,pqx, theta6,c9anion,
& c9neut,nrg

*

ncluster = nrg

do i = l,nrg+l
rx(i) = coord
ry(i) = coord
rz(i) = coord

enddo

potat = O.

i*3-2)
i*3-1)
i*3)

if (iaxtel.eq.1) then
call vat(c9neut, rx,ry,rz,potat)
potat = potat*harev/lOO.

endif

do i = l,nrg+l
rx(i) = coord(i*3-2)*a0/10. OdO !* convert tO ~9

ry(i) = coord(i*3-l)*aO/10.OdO
rz(i) = coord(i*3)*a0/10.OdO

enddo

call porb(nrg, rx,ry,rz,px,pl,p2 ,soconst,potnrgx)

rgrg = O.
do i=2,nrg

do j=l,i-1
rt = dsqrt((rx (i)-rx(j))**2 + (ry

& + (rz(i)-rz(j))**2)
rgrg = rgrg + hfd_b(q(l), q(2),q(3

& q(5),q(6),q(7),q(8
enddo

enddo

i)–ry(j))**2

,q(4),
,q(9),rt)

peval = potnrgx(neigval) + rgrg + potat

return
end
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*.-------------- —----------- —————---—==. ===== =..=====.========.=.===------------------------------------

double precision function apeval(coord)
*--------------------------------------------------------------------------------------------------------------------------------------
*
* Evaluate anion potential, coord in aO/10, poten returned in eV
*

include ‘param.file’
double precision anmmsv,hfd_b
double precision rxin(natmaxc), ryin(natmaxc) ,rzin(natmaxc)t

& rx(natmaxc), ry(natmaxc) ,rz(natmaxc),coord(natmaxc*3 ),
& pa~lO),px(lO),pl (lO),p2(10),q(10),dp(natmaxc, 3),
& dhalpair (ncl),drgpair(ncl) ,qhalpair (ncl),qrgpair(ncl) ,
& qp(natmaxc,3,3)

common/anparams/polind, betaexq,cutexq, soconst,
& pa,px,pl,p2, q,polrg,polx,pqrgtpqx, theta6tc9anion~
& c9neut,nrg

&
&

ncluster = nrg
*

do i = l,nrg+l
rxin (i) = coord(i*3-2)
ryin(i) = coord(i*3-1)
rzin(i) = coord(i*3)

enddo
*
● Calculate three body terms
*

anpotind = O.dO
anpotexq = O.dO
anpotat = O.dO
if ((indflag.eq.1) or, (iexqflag.eq.1)) then

do i=2,nrg
do j=l,i-1

if (indflag.eq.1) then
call pind(polind, rxin(nrg+l) ,ryin(nrg+l) ,rzin(nrg+l) ,
rxin(i), ryin(i),rzin (i),rxin(j),ryin(j ),rzin(j),
dpind)

anpotind = anpotind + dpind
endi f
if (iexqflag.eq.1) then
call vexq(betaexq, cutexq,rxin(nrg+l) ,ryin(nrg+l) ,

& rzin(nrg+l), rxin(i) ,ryin(i),rzin(i),rxin (j),
& ~in(j), rzin(j),dpexq) “

anpotexq = anpotexq + dpexq
endi f

enddo
enddo

endif
anpotind = anpotind*harev/l.d2
anpotexq = anpotexq*harev/l.d2

*
* Calculate new induction & exchange dipole potentials
*

if (indqi.eq.1) then
call vinddq(polrg,polx,pqrg,pqx, rxin,ryin,rzin,dp, dhalpair,
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& drgpair,qhalpair, qrgpair,qp,vcd, vcq,anpotind)
anpotind = anpotind*harev/l.d2

endif
if (iexqd.eq.1) then

call veqd(betaexq, theta6,rxin,ryin,rzin,anpotexq)
anpotexq = anpotexq*harev/l.d2

elseif (iexg.eq.1) then
call exg(betaexq, theta6 ,rxin,ryin,rzin,anexx, anddisp,

& anqdisp,anpotexq )
anpotexq = anpotexq*harev/1.d2

endif
if (iaxtel.eq.1) then

call vat(c9anion, rxin,ryin, rzin,anpotat)
anpotat = anpotat*harev/l.d2

endif
*
● Convert from aO/10 to angstroms
*

do n=l,nrg+l
rx(n) = rxin(n) * aO/10.
ry(n) = ryin(n) ● aO/10.
rz(n) = rzin(n) * aO/10.

enddo
*
● Calculate anion potential
*

xhal = rx(nrg+l)
yhal = ry(nrg+l)
zhal = rz(nrg+l)

anpotrgx = O.
do i=l,nrg

rt = dsqrt((rx(i)–xhal) **2 + (ry(i)-yhal)**2
& + (rz(i)–zhal)**2)

anpotrgx = anpotrgx + anmmsv(pa (l),pa(2),pa (3),pa(4),
& pa(5),pa (6),pa(7),pa(8) ,rt)
enddo

anpotrgrg = O.
do i=2,nrg

do j=l,i-1
rt = dsqrt((rx(i) -rx(j))**2 + (ry

& + (rz(i)-rz(j))**2)
anpotrgrg = anpotrgrg + hfd_b(q(l

& q(5),q(6),q(7),q(8
enddo

enddo

i)-ry(j))**2

,q(2),q(3),q(4),
,q(9),rt)

apeval = anpotrgx+anpotrgrg+anpotind+anpotexq+anpotat

return
end

*______________________________________________________________________________________________________________________
subroutine pind(pol, xO,yO,zO,xl ,yl,zl,x2,y2,z2,potind)

*______________________________________________________________________________________________________________________
*

360



* Charge-Ind Dipole-Ind Dipole Three body potential
*
* Input: pol Rare gas polarizibility (AA3)
* Xo,yo,zo Halide cartesian coordinates (aO/IO)
* Xl,yl,zl, x2,y2,z2 Rare gas coordinates (aO/10)
*
* output : potind Potential (hartree/100)
*

implicit double precision(a-h, o-z)
parameter(pi=3 .14159265359d0,aO=0 .529177249d0,
& harev=27.2113961d0, evtocm=8065 .5410dO)

const = (pol/(aO**3)*l.d3)**2

rlOsqr = (x1-xO)**2+(Y1-YO) **2+(z1-zO)**2
r20sqr = (x2-xO)**2+(Y2-YO) **2+(z2-zO)**2
r12sqr = (xl-x2)**2+(yl-y2) **2+(z1-z2)**2

dot1020 = (xl-xO)*(X2-XO)+(Y1-YO)* (y2-yO)+(zl-zO
dot1012 = (xl-xO)*(X1-X2)+(Y1-YO)* (yl-y2)+(zl-zo
dot1220 = (x1-x2)*(x2-xO)+(Y1-Y2)* (y2-yO)+(zl-z2

tl = dsqrt(rlOsqr)
t2 = r10sqr**2
t6 = dsqrt(r12sqr)
t7 = r12sqr”2
t10 = dsqrt(r20sqr)
tll = r20sqr**2
potind = const*tl/t2’t6/t7*t10/tll* (dot1020-
& 3*dot1012*dot1220/r12sqr)
potind = potind*l.d3

return
end

*(Z2-ZO)
*(Z1-Z2)
*(Z2-ZO)

*--------------------------------------------------------------------------------------------------------------------------------

subroutine vexq(betain, cutoff,xOin,yOin,zOin,
& xlin,ylin, zlin,x2in,y2in, z2in,pexq)

*--------------------------------------------------------------------------------------------------------------------------------
*
* Charge-exchange quadruple interaction.
● Gaussian l-electron model
*
* Input: betain Gaussian range parameter (Ang”-1)
● cutoff RG-RG distance cutoff (Ang)
* xOin,yOin, ZO Halide cartesian coordinates (aO/10)
● Xl,yl,zl Rare gas 1 cart. coords. (aO/IO)
* x2,y2,z2 Rare gas 2 cart. coords. (aO/10)
*
* Returns: pexq potential in hartree/100
*

implicit double precision (a-h,o-z)
parameter(pi=3 .14159265359d0, aO=0 .529177249d0,
& harev=27. 2113961d0, evtocm=8065 .5410dO)
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i* Convert to usual atomic unitsXO = xOin/10.OdO .
yO = yOin/10.OdO
ZO = zOin/10.OdO
xl = xlin/10.OdO
yl = ylin/10.OdO
Z1 = zlin/10.OdO
x2 = x2in/10.OdO
y2 = y2in/10.OdO
Z2 = z2in/10.OdO

beta = betain*aO

r12sqr = (xl-x2)**2+(yl-y2) **2+(z1-z2)**2
if (r12sqr.gt. (cutoff/aO)**2) then
pexq = O.
return

endif
rcsqr = (xl/2.-xO+x2/2.)**2+ (yl/2.-yO+y2/2.)**2

& +(zl/2.–zo+z2/2.) ●*2
dotc12 = (xl/2-xO+x2/2)*(xl-x2)+ (yl/2-y0+y2/2)*(yl-y2)

& +(zl/2-zo+z2/2)*(zl-z2 )
ex = exp(-r12sqr*beta**2/2 .dO)
quad = -r12sqr*ex/(1.dO-ex)/2
rcthir = rcsqr**l.5d0
pexq = -(quad/rcthir)*(3.dO*dotc12**2/rcsqr/r12sqr-l .dO)/2.dO

*

* Result is now in atomic units, convert hartree/100
*

pexq = pexq*100.0dO
return
end

*
*________________________________________________-----————-——____-------—_---——__________________

subroutine hopts(nmax,r,tl)
*----------------------------------------------------—---_———--------———_---——___________________
*
● Calculate dvr points for harmonic oscillator eigenfunction
* basis
*
● Input: nmax
*
* output : ro dvr points (without hbar/2’sqrt(lafida) factor)
* tlo transformation matrix
●

*

include ‘param.file’

parameter (ndm=150)
integer nmax
double precision r(ndm+l), tl(ndm+l,ndm+l)
double precision u(ndm+l, ndm+l),fvl(ndm+l) ,
& fv2(ndm+l)

write(*, *) ‘hopts’
*
* Zero diagonal elements
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*

do 100 i=O,nmax
u(i+l,2)=0.

100 continue
*
* Off diagonal elements
*

u(l,l)=O.OdO
do 200 i=l,nmax

u(i+l, l)=sqrt(dble(i) )
200 continue

call rsb(ndm+l,nmax+l,2 ,u,r,l,tl,fvl,fv2,ierr)
write(*,*) ‘ierr=’,ierr

return
end

*------------------------------------------------------------------------------------------------------------

subroutine hokin(nmax,tl,ak)
*------------------------------------------------------------------------------------------------------------
* Find kinetic matrix in HO basis:
* <n’ I (-hbarn2/2)dA2/dQA2 In>, which has diagonal elements:
* 2n+l (n=O..nmax) and diagonal-2 elements sqrt[n(n-1)]
* (n=2..nmax) , then transform to dvr
*
● Input: nmax largest n in basis
* tl transformation matrix from hopts
*
* Output: ak kinetic matrix in dvr basis, without
* omega*hbar/4 factor (lower triangle)
* [omega = sqrt(lambda)]
*

include ‘param.file ‘

parameter(ndm=150 )
integer nmax
double precision tl(ndm+l,ndm+l),ak(ndm+l,ndm+l) ,

& adiag(ndm+l) ,adiag2(ndm-1) ,tlt(ndm+l,ndm+l) ,
& cmat(ndm+l,ndm+l)

write(*,*) ‘hokin”

do i=O,nmax
di = dble(i)
adiag(i+l) = 2*di+l
if (i.ge.2) then

adiag2(i+l) = -dsqrt(di’(di-1))
else
endi f

enddo
*
* Zero K matrix
*

do i=l,nmax+l
do j=l,nmax+l

ak(i,j) = O.OdO
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enddo
enddo

*
* Transform to dvr:
● K(dvr) = T(trans)K(fbr)T
●

do i=l,nmax+l
ak(i,i)=adiag(i)
if (i.gt.2) then

ak(i,i-2)=adiag2(i)
ak(i-2,i)=adiag2 (i)

endi f
enddo

call transpos (ndm+l,tl,nmax+l,nmax+l ,tlt)
call mms(ndm+l,nmax+l, tit,ak,cmat)
call mms(ndm+l,nmax+l, cmat,tl,ak)

return
end

*—---——-----——----——-----——---------—---==== ..===.===..=== =_____________________——--___-—--------

subroutine hoham(ak,vr,nmax, alambda,ham)
*------------------------------------------------==== .====__________________________—---------------------
*
* Set up hamiltonian in HO/dvr basis
●

* Input: ako kinetic energy matrix (without hbar*omega/4)
* vro potential evaluated at dvr points (eV)
* nmax
* alambda = (2*pi*nu)”2 in sA-2
*
* output : hamo hamiltonian in dvr basis (lower triangle)
*

include ‘param.file’

parameter(ndm=150 )

integer nmax
double precision ak(ndm+l,ndm+l),vr (ndii+l),alambda,

& ham(ndm+l,ndm+l)

do i=l,nmax+l !* Zero Ham matriX

do j=l,nmax+l
ham(i,j) = O.OdO

enddo
enddo

factor=hbarev’dsqrt (alambda)/4.OdO

do 200 n=l,nmax+l
do 100 m=l,n !* Lower triangle only needed by rs

ham(n,m) =factor’ak(n,m)
100 continue
200 continue

do 300 i=l,nmax+l
ham(i, i)=ham(i,i)+vr(i)



300 continue

return
end

*------------------------------------------------------------------------------------------------------------------------------

subroutine prinaxes (coordin,rgmass,halmass)
*===.===========================================================
*
* Transform input coordinates to principal axis system
*

include ‘param.file’
parameter (x=l,y=2,z=3,tiny=l.0d-2)
double precision coordin(natmaxc*3)
double precision rgmass,halmass
double precision rx(natmaxc), ry(natmaxc) ,rz(natmaxc),

& rh(natmaxc-l), th(natmaxc-1) ,ph(natmaxc-l), ti(3,3) ,
& prmoms(3),prcos (3,3),fvl (3),fv2(3)
double precision pa(lO),px(lO),pl (10),p2(lO),q(lO)

common/anparams/polind, betaexq,cutexq, soconst,
& pa,px,pl,p2, q,polrg,polx,pqrg,pqx, theta6,c9anion,
& c9neut,nrg

*

write(*,*) ‘prinaxes’
●

do i = l,nrg+l
rx(i) = coordin(i*3-2)
ry(i) = coordin(i*3-1)
rz(i) = coordin(i*3)

enddo
*
* Find CM coordiantes, reset origin to CM
*

cmx=O.OdO
cmy=O.OdO
cmz=O.OdO
do i=l,nrg

cm = cmx+rgmass’rx(i)
cmy = cmy+rgmass*ry(i)
cmz = cmz+rgmass*rz (i)

enddo
tmass = nrg*rgmass + halmass
cmx = (cmx + halmass*rx(nrg+l))/tmass
cmy = (cmy + halmass*ry(nrg+l) )/tmass
cmz = (cmz + halmass*rz(nrg+l) )/tmass

do i=l,nrg+l !* Set origin to CM

rx(i) = rx(i) - cmx
v(i) = W(i) - cmy

. rz(i) = rz(i) - cmz
enddo

●

* Set up inertia tensor
‘k’

do j=l,3
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do k=l,3
ti(j,k) = O.OdO

enddo
enddo

do i=l,nrg !* Rare gases (take rglllass= 1,

ti(x,x) = ti(x,x) + ry(i)**2 + rz(i) **2 !* Diagonal elements
ti(y,y) = ti(y,y) + rx(i)**2 + rz(i)**2
ti(z,z) = ti(z,z) + rx(i)**2 + ry(i)**2
ti(y,x) = ti(yrx) - rx(i)*ry(i) !* Below diagonals

ti(z,x) = ti(zrx) - rx(i)*rz(i)
ti(z,y) = ti(z,y) - ry(i)’rz(i)

enddo

i = nrg+l !* Halogen, mass weighted
rat = halmss/rgmass
ti (x,x) = ti(x,x) + rat* (ry(i)**2 + rz(i)**2) !* Diagonal

elements
ti(y,y) = ti(y,y) + rat* (rx(i)**2 + rz(i)**2)
ti(z,z) = ti(z,z) + rat* (rx(i)**2 + ry(i)**2)
ti (y,x) = ti(y,x) – rat*rx(i)*ry(i) !* Below diagonals

ti(z,x) = ti(z,x) – rat*rx(i)*rz(i)
ti(z,y) = ti(z,y) - rat*ry(i)*rz(i)

call rs(3,3, ti,prmoms, l,prcos, fvl,fv2,ierr)
*
* Transform to principal axis coordinates, using direction cosine
* matrix.
*

do i=l,nrg+l
xnew = prcos(x,x)*rx(i) + prcos(y,x)*ry(i) +

& prcos(z,x)’rz(i)
ynew = prcos(x,y)’rx(i) + prcos(y,y)’ry(i) +

& prcos(z,y)’rz(i)
znew = prcos(x,z)*rx(i) + prcos(y,z)*ry(i) +

& prcos(z,z)’rz(i)
rx(i) = xnew
ry(i) = ynew
rz(i) = znew

enddo

write(*, *)
write(*,* ) ‘coords wrt principal axes’
do i=l,nrg+l

write(*, *) rx(i),ry(i),rz(i)
enddo

●

● Reflect in each plane, so that sum of coordinates is positive
●

xsum=O.OdO
do i=l,nrg+l

xsum = xsum + rx(i)
ysum = ysum + ry(i)
zsum = zsum + rz(i)

enddo
if (xsum.lt.0) then

do i = l,nrg+l
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rx(i) = -rx(i)
enddo

endif
if (ysum.lt.0) then

do i = l,nrg+l
ry(i) = -rY(i)

enddo
endif
if (zsum.lt.0) then

do i = l,nrg+l
-rz(i) = -rz(i)

enddo
endif

*
*
* Calculate r,theta and phi of rgs wrt halide
*

j=nrg+l
do i=l,nrg

rh(i) = dsqrt((rx(i) -rx(j))●*2+ (ry(i)-ry(j))**2
& +(rz(i)-rz(j)) **2)

ph(i) = atan(dabs(ry(i)/rx(i) ))
if (((rx(i)-rx(j)).lt.0) .and.((ry(i)-ry(j)).ge .0)) then
ph(i) = pi - ph(i)

elseif (((rx(i)-rx(j)).lt.0).and.((ry(i)-ry(j)).lt.0)) then
ph(i) = pi + ph(i)

elseif (((rx(i)-rx(j)).ge. 0).and.((ry(i)-ry(j)).lt.0)) then
ph(i) = 2*pi - ph(i)
if (dabs(ph(i)-2’pi) .lt.tiny) then !* wraparound
ph(i) = O.

endif
endif
if (dabs(ph(i)-2*pi) .lt.tiny) then
ph(i) = O.

endif
th(i) = acos(rz(i)/rh(i))

enddo
*
* Sort rgs by theta and then phi
*

1000 nswitch = O
do i=l,nrg-1

do j=i,nrg
if (((th(i)-th(j)).gt.tiny) .or.((dabs(th(i)-th(j )).le.

& tiny) .and.((ph(i)-ph(j)).gt.tiny))) then
tl = rx(i)
t2 = ry(i)
t3 = rz(i)
t4 = rh(i)
t5 = th(i)
t6 = ph(i)
r::(i)= rx(j)

W(i) = ry(j)
rz(i) = rz(j)
rh(i) = rh(j)
th(i) = th(j)
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ph(i) = ph(j)
rx(j) = tl
ry(j) = t2
rz (j) = t3
rh (j) = t4
th(j) = t5
ph(j) = t6
nswitch = 1

endif
enddo

enddo
if (switch.ne.0) goto 1000

*
*
* If two axes are degenerate, rotate around the nondegenerate axis so
that
● the first rg atom not on the nondegenerate axis lies in the
direction of
* one of the degenerate axes
*
*

if (dabs(prmoms(x)-prmoms (y)).lt.tiny) then

write(’,’) ‘x and y are degenerate (oblate symmetric top)’

j=O
do i=l,nrg

if ((j.eq.0).and. ((dabs(rx(i)).gt.tiny) or.
& (dabs(ry(i)).gt.tiny))) then

j=i
endif

enddo

angle = atan(dabs(ry(j)/rx(j )))
if ((rx(j).lt.O).and. (ry(j).ge.0)) then

angle = pi - angle
elseif ((rx(j).lt.O).and. (ry(j).lt.0)) then

angle = pi + angle
elseif ((rx(j).ge.O).and. (ry(j).lt.0)) then

angle = 2*pi - angle
endif

do i = l,nrg+l
xnew = cos(angle)’rx(i) + sin(angle)’ry(i)
ynew = -sin(angle)’rx(i) + cos(angle)’ry(i)
rx(i) = xnew
ry(i) = ynew

enddo

elseif (dabs(prmoms (z)-prmoms(y)).lt.tiny) then

write(*,* ) ‘y and z are degenerate (prolate symmetric top)’

j=O
do i=l,nrg

if ((j.eq.O).and. ((dabs(rz(i)).gt.tiny).or.
& (dabs(ry(i)).gt.tiny))) then

368



j=i

endi f
enddo

angle = atan(dabs (ry(j)/rz (j)))
if ((rz(j).lt.O).and. (ry(j).ge.0)) then

angle = pi - angle
elseif ((rz(j).lt.0).and. (ry(j).lt.0)) then
angle = pi + angle

elseif ((rz(j).ge.O).and. (ry(j).lt.0)) then
angle = 2*pi - angle

endi f

do i = I,nrg+l
znew = cos(angle)’rz(i) + sin(angle)’ry(i)
ynew = -sin(angle)’rz(i) + cos(angle)’ry(i)
rz(i) = znew
ry(i) = ynew

enddo

endi f
*
* Calculate r,theta and phi of rgs wrt halide (AGAIN)
*

j=nrg+l
do i=l,nrg

rh(i) = dsqrt((rx (i)-rx(j))**2+ (ry(i)-ry(j))**2
& +(rz(i)-rz(j)) **2)

ph(i) = atan(dabs(ry(i)/rx(i)))
if (((rx(i)-rx(j)).lt. 0) .and.((ry(i)-ry(j)).ge.0)) then
ph(i) = pi - ph(i)

elseif (((rx(i)-rx (j)).lt.0).and.((ry(i)-ry(j)).lt.0)) then
ph(i) = pi + ph(i)

elseif (((rx(i)-rx(j)).ge. 0).and.((ry(i)-ry(j)).lt.0)) then
ph(i) = 2*pi - ph(i)
if (dabs(ph(i)-2*pi) .lt.tiny) then !* wraparound
ph(i) = O.

endif
endi f
if (dabs(ph(i)-2*pi) .lt.tiny) then

ph(i) = O.
endi f
th(i) = acos(rz(i)/rh(i))

enddo
●

* Sort rgs by theta and then phi (AGAIN)
*

1010 nswitch = O
do i=l,nrg-1

do j=i,nrg
if (((th(i)-th(j )).gt.tiny) .or.((dabs(th(i)-th(j )).le.

& tiny) .and.((ph(i)-ph(j )).gt.tiny))) then
tl = rx(i)
t2 = ry(i)
t3 = rz(i)
t4 = rh(i)
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t5 = th(i)
t6 = ph(i)
rx (i) = rx(j)
ry(i) = v(j)
rz (i) = rz (j)
rh (i) = rh (j)
th(i) = “th(j)
ph(i) = ph(j)
rx (j) = tl
ry(j) = t2
rz (j) = t3
rh (j) = t4
th(j) = t5
ph(j) = t6
nswitch = 1

endif
enddo

enddo
if (switch.ne.0) goto 1010

write(*, *)
write(*, *) ‘coords wrt principal axes x,y,z,r,theta,phi’
do i=l,nrg+l

write(*,150) rx(i),ry(i),rz(i),rh (i),th(i)*180./pi,
& ph(i)*180/pi
enddo

150 format(6f10.4)

do i = l,nrg+l
coordin(i*3-2) = rx(i)
coordin(i’3-1) = ry(i)
coordin(i*3) = rz(i)

enddo

return
end

*--------------------------------------------------------------------------------------------------------------------------------------------
subroutine calcfcfs (nmax,nanshow,nnshow,vtemp,origin, evs,wfs,

& evs2,wfs2, fcfs,totfcf,nsticks,nmode, sticks)
*--------------------------------------------------------------------------------------------------------------------------------------------
.
*
●

☛

☛

●

●

☛

☛

●

J.

●

*

*

●

Input nmax
nanshow

nnshow
vtemp

origin
evs(m,i)

wfs(m,i,j)
evs2 (m,i)

wfs2(m,i,j)

maximum n in basis (# dvr points = nmax+l)
number of anion eigenvalues to use

(same for all modes)
number of neutral eigenvalues

vibrational temperature
(in K, same for all modes)

position of O-O line (in cm-1)
anion eigenvalues, m=mode
(in eV, from well bo~tom)

anion dvr wavefunctions of modes m in columns j
neutral eigenvals of second state
(eV, from well bottom)

neutral wavefunctions of second state
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*
*
*
*
*
*
*
*
●

●

output fcfs(m,i,j) single mode fcfs: m=mode,
i=anion, j=neutral #quanta in mode

totfcf(m,i) Total fcfs in mode m from anion v=i
nsticks number of vib sticks generated
nmode([l,2],m,i) number of quanta in mode m of stick i

l=anion, 2=neutral
sticks([l or 2],i) stick spectrum I=>position (cm-1)

2->intensity (not normalized), i=index

include ‘param.file’
parameter (ndm=150,nmmax=18, evtokelv=l1604 .45,cut=0.01)

double precision wfs(nmmax,ndm+l,ndm+l) ,wfs2(nmmax,ndm+l,ndm+l) ,
& evs(nmmax,ndm+l), evs2(nmmax,ndm+l) ,fcfs(nnunax,ndm+l,ndm+l),
& totfcf(nmmax,ndm+l), sticks (2,1000)
double precision pa(lO),px(lO),pl (10),P2(lO),q(lO)
integer nmode(2, nmmax,1000) !* l=lower, 2=upper, nrnmax=mode

index
* !* 1000 stick index

integer ma(nmmax) ,mn(nmmax)
● !* anion, neutral mode indices (#quanta
* !* in mode)

logical carry,switch

common/anparams/polind, betaexq,cutexq, soconst,
& pa,px,pl,p2, q,polrg,polx,pqrg,pqx, theta6,c9anion,
& c9neut,nrg

*

write(*,*) ‘calcfcfs’
orgev = origin/evtocm

*
●

●

●

☛

☛

c

Calculate single mode fcfs

nmde = (nrg+l)*3-6
do m = l,nmde !* loop over modes

do i = I,nanshow !* loop over anion state

totfcf(m,i) = O.OdO
do j = l,nnshow !* loop over neutral state

fct = O.OdO
do k = l,nmax+l !* 100P over dvr points

fct = fct + wfs(m, k,i)’wfs2(m,k,j)
enddo
fcfs(m,i,j) = fct’fct .
totfcf(m,i) = totfcf(m,i)+fcfs(m,i, j)

enddo
enddo

enddo

Calculate vibrational sticks, Including combination bands

do m=l,nmde
ma[l.t)= O
inn(m) = O

enddo
nsticks = O
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c
Calc stick

write(*,*) ‘calculating vsticks’
100 if (true.) then

ncount = ncount+l
endif

aterm = O.OdO !* anion energy above v=O

bterm = O.OdO !* neutral
do m = I,nmde

aterm = aterm + evs(m,ma(m)+l) - evs(m,l)
bterm = bterm + evs2(m,mn(m)+l) - evs2(m,l)

enddo
stickl = orgev - aterm + bterm
boltz = exp(-aterm*evtokelv/vtemp)
stick2 = boltz
do m=l,nmde

stick2 = stick2 * fcfs(m,ma (m)+l,mn(m)+l )
enddo
if (stick2.ge.cut) then
nscicks = nsticks + 1
sticks(l,nsticks) = stickl*evtocm
sticks(2,nsticks) = stick2
do m = l,nmde

nmode(l,m,nsticks) = ma(m)
nmode(2,m,nsticks) = inn(m)

enddo
endif

carry = true. !* increment neutral mode indices
do m=l,nmde

if (carry) then
if (inn(m).lt.nnshow-1) then
inn(m) = inn(m) + 1
carry = false.

else
inn(m) = O

endif
endif

enddo
if (carry) then !* if neutral modes all zeroed, then inc

anion
do m=l,nmde

if (carry) then
if (ma(m).lt.nanshow-1) then
ma(m) = ma(m) + 1
carry = false.

else
ma(m) = O

endi f
endif

enddo
endif
if (carry) then

goto 200
endif
goto 100
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200 write (*,*) ncount
*
* Sort sticks
*

write(’,’) ‘sorting sticks’
500 switch = false.

do i=l,nsticks
do j=i+l,nsticks

if (sticks(l,i) .gt.sticks(l,j)) then
stempl = sticks(l,i)
stemp2 = sticks(2,i)
sticks(l,i) = sticks(l,j)
sticks(2,i) = sticks(2,j)
sticks(l,j) = stempl
sticks(2,j) = .StemP2
do m=l,nmde

mtempl = nmode(l,m,i)
mtemp2 = nmode(2,m,i)
nmode(l,m,i) = nmode(l,m,j)
nmode(2,m,i) = nmode(2,m,j)
nmode(l,m,j) = mtempl
nmode(2,m,j) = mtemp2

enddo
switch = true.

endif
enddo

enddo
if (switch) goto 500

return
end

*--------------------------------------------------------------------------------------------------------------------------------------

subroutine veqd(betain, theta6 ,qx,qy,qz,potout)
*--------------------------------------------------------------------------------------------------------------------------------------
*
* Exchange quadrupole-dipole & dispersion quadruple
* Ref: Ernesti & Hutson, Phys. Rev. A v.51,P.239
*
* Input: betain Exchange quadruple range parameter

(aO/lO)A-l
* theta6 quadruple dispersion coefficient
(e*aOA8)
* W.,qY,qz(nCl+l) Rg, halide coordinates (aO/10)
*
* output : potout potential (hartree/100)
●

include ‘param.file’
double precision betain,theta6
double precision qx(ncl+l),qy(ncl+l),qz (ncl+l),

& dx(ncl+l), dy(ncl+l),dz (ncl+l),
& rijx(ncl+l,ncl+l), rijy(ncl+l,ncl+l) ,rijz(ncl+l,ncl+l),
& rij2(ncl+l,ncl+l), rij3 (ncl+l,ncl+l),rijl(ncl+l ,ncl+l)

*
*

beta = betain*10.OdO
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nhal = ncluster+l
●

do i = l,ncluster !* Relative Rg–Rg and Rg-X Vectors
do j = i+l,ncluster+l !* (rij is VeCtOr from Rg j to Rg i)

rijx(i,j) = (qX(i) - qx(j))/10.Odo !* convert to aO
rijy(i,j) = (W(i) - qy(j))/10.OdO
rijz(i,j) = (qz(i) - qz(j))/10.OdO
rijx(j,i) = -rijx(i,j)
rijy(j,i) = -rijy(i,j)
rijz(j,i) = –rijz(i,j)
rij2(i,j) = rijx(i, j)**2+rijy(i ,j)**2+rijz (i,j)**2

rijl(i,j) = dsqrt(rij2(i,j))
rij3(i,j) = rijl(i,j)**3
rijl(j,i) = rijl(i,j)
rij2(j,i) = rij2(i,j)
rij3(j,i) = rij3(i,j)

enddo
enddo

*

* Zero out dipoles
*

do i = l,ncluster
dx(i) = O.OdO
dy(i) = O.OdO
dz(i) = O.OdO

enddo
●

* Add contribution to Rg dipoles from exchange quadruple and
● dispersion quadruple between each pair of Rgs
*

do i = l,ncluster-1
do j = i+l,ncluster

ex = exp(-(beta**2 )*rij2(i,j)/2.OdO)
exquad = -rij2(i,j)*ex/(1.OdO-ex) /2

& +theta6/(rij3(i,j) **2)
exdip = exquad/rij2(i,j)/2.0d0
dx(i) = dx(i)+exdip’rijx(i, j)
dy(i) = dy(i)+exdip”rijy(i, j)
dz(i) = dz(i)+exdip’rijz (i,j)
dx(j) = dx(j)+exdip*rijx(j, i)
dy(j) = dy(j)+exdip’rijy(j, i)
dz(j) = dz(j)+exdip’rijz (j,i)

enddo
enddo

●

☛

☛

● Compute charge-dipole interactions
*

vcd = O.OdO
do i = l,ncluster

dotprod = dx(i)’rijx (nhal,i)+dy(i)‘rijy(nhal,i)
& +dz(i)’rijz (nhal,i)

vcd = vcd - dotprod/rij3(nhal,i)
enddo

potout = vcd*l.0d2 !* convert to hartree/100
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return

end

*--------------------------------------------------------------------------------------------------------------------------------------------
subroutine vinddq(polrg,polx,pqrg,p~, qxt~tqz, dp,dhalpair,

& drgpair, qhalpair,qrgpair, qp,vcd,vcq,potout)
*--------------------------------------------------------------------------------------------------------------------------------------------

See Section-C5.7 (Ille ’’pforce.f’) for acomplete listing ofthis subroutine

* ----------------------------------------------------------------------______________________________________________________________________

subroutine exg(betain, th6,qx,qy, qz,vexx,vddisp,vqdisp,potout)
*================================.=================..=====...=====.====

See Section C5.7 (file ’’pforce.f’) for acomplete listing ofthis subroutine

* .=== =. . === === ==== =.=== == . .=. . . . ==. =. =. . . . . . . = .= . =. ======= =. . . . .

double precision FUNCTION ERF(xin)
*===============================================================

SeeSection C5.7(file “pforce.f’) for a complete listing of this subroutine

*--------------------------------------------------------------------------------------------------------------------------------------------

subroutine vat(c9,qxtW,qz,Potout)
*----------------------------------------------------------------------_______ ---------------------------------------------------------

SeeSection C5.7(file “pforce.f’) for a complete listing of this subroutine
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