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Abstract

Study of Pair and Many-Body Interactions in Rare-Gas Halide Atom Clusters Using
Negative Ion Zero Electron Kinetic Energy (ZEKE) and Threshold

Photodetachment Spectroscopy

by
Ivan Yourshaw
Doctor of Philosophy in Chemistry
University of California, Berkeley

Professor Daniel M. Neumark, Chair

The diatomic halogen atom-rare gas diatomic complexes KrBr~, XeBr’, and KrCl
are studied in this work by zero electron kinetic energy (ZEKE) spectroscopy in order to
characterize the weak intermolecular diatomic potentials of these species. Also, the
ZEKE and threshold photodetachment spectra of the polyatomic clusters Ar,Br (n = 2-9)
and Ar,I” (n = 2-19) are studied to obtain information about the non-additive effects on
the interactions among the atoms. This work is part of an ongoing effort to characterize
the pair and many-body potentials of the complete series of rare gas halide clusters. In
these studies we obtain information about both the anionic and neutral clusters.

In the spectra of the diatomic complex we observe well-resolved vibrational

structure which is used in conjunction with scattering results from the literature to
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construct accurate intermolecular potentials. We also obtain accurate electron affinities
for these species.

From the spectra of the polyatomic species we obtain accurate electron affinities
and electronic state term values. We observe some partially resolved vibrational
structure for ArpBr™ (n = 2-3) and Ar,I" (n = 2-3). The global minimum energy structures
of the clusters are found using a molecular-dynamics based simulated annealing
algorithm. The electron affinities calculated using these structures and the pair potentials
obtained from previous ZEKE studies of the ArBr™ and Arl" complexes are found to be
inconsistent with the experimentally observed electron affinities, indicating the
importance of non-additive effects in these clusters. Various non-additive interactions
are considered, and the most important are found to be non-additive induction effects and
the effect arising from the interaction of the halide charge with the multipole moments
due to the distortion of the rare-gas electron clouds. For the neutral clusters Ar,Br (n =
2-3) and Ar,l (n =2-7) we also observe many-body effects in the electronic structure due
to the presence of the open-shell halogen atom. These effects are successfully modeled
using a simple degenerate perturbation theory treatment of the open shell-closed shell

interaction.
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Chapter 1. Introduction

The spectroscopic study of weakly bound van der Waals clusters has experienced
an explosive period of growth in the past two decades, prompted mainly by innovations
in laser and molecular beam technology. At the same time, a tremendous amount of
complementary theoretical work has been done on these systems. This work is still
underway, and it is probably not an understatement to describe the current era ‘as a
“golden age" of cluster research. In this introductory chapter, we will summa_rize the
reasons for this outpouring of interest in this field, briefly review some highlights of what
has been learned so far, and review the results previous work in the Neumark group in
this field. In particular we will focus on recent advances in the understanding of "many-
body" interactions, i.e., interactions involving synergistic effects among three or more
atoms or molecules.

Here, and in the rest of this work, we will restrict our attention to weakly bound
clusters interacting by dispersion or induction forces, and leave aside discussion of
covalently bound or "metallic" clusters, a field of study which has also experienced a
massive amount of attention during this same time period, but is beyond the scope of the

present work.

1.1 Intermolecular forces: importance and brief historical review
"Since the end of the nineteenth century a considerable amount of work has been devoted to the
exact formulation of the connection between the properties of matter in bulk and intermolecular
forces. Such a formulation represents the ultimate aim of the molecular theory of matter since,

when a theory of this kind is established, a knowledge of the intermolecular forces is sufficient for
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the evaluation of all the properties of the bulk materials.” -G. C. Maitland, M. Rigby. E. B. Smith,

and W. A. Wakeham in Intermolecular Forces, p. 3.!

Interest in the weak interactions of atoms and molecules actually preceded these
recent spectroscopic and theoretical advances by many years. The importance of the
concept of intermolecular interactions with both attractive and repulsive components, and
their connection with the bulk properties of gases was first made clear by van der Waals
in 1873 with his formulation of the van der Waals equation of state. (See Ref.1, p. 2.)
Subsequently, the term "van der Waals forces"” was adopted as a blanket phrase for all of
these weak interactions. An understanding of van der Waals forces is necessary to
understand many bulk properties of matter, such of heats of sublimation and
evaporation,? and solvation. The existence of the inductive dipole-induced dipole and
dipole-dipole interactions were first proposed to explain these bulk properties by Debye
(1920), and Keesom (1921). However it was not until the work of London in 1930 that
dispersion forces were proposed to explain the bulk properties of atoms which do not
posses multipole moments, such as rare gas atoms. For reviews of this early work, see
the articles by Margenau3 and London.* For a very basic and readable introduction to
van der Waals forces, see Chapter 13 of Kauzmann? as well as Chapter 1 of Maitland er.
all

With the advent of the full development of quantum mechanics, the conceptual
framework to understand van der Waals forces was established. However, because of the
practical intractability of exact quantum mechanical solution of even the simplest
problem involving van der Waals interactions, it was necessary to take a more empirical

approach to the problem. And thus was born what Maitland et al. refer to as the




"Lennard-Jones era" in the study of intermolecular forces. (See Chapter 9 of Ref. 1.)
Under this paradigm, the Born-Oppenheimer approximation was assumed to separate
electronic from nuclear motions and simple analytic forms for the internuclear potential--
such as the familiar Lennard-Jones 12-6 potential--were used, with the Coulomb
interactions of the electrons implicitly included in this potential function. Also, pairwise
additivity of the potentials was usually assumed. The methodology under this paradigm
was then to attempt to reconcile these model potentials with the experimentally observed
properties of the bulk substances. For a comprehensive treatment of these early efforts to
understand the relation between intermolecular forces and bulk properties see
Hirschfelder, et. al., Molecular Theory of Gases and Liquids.>

During this time some theoretical work was done to advance knowledge about the
non-pairwise interactions among atoms and molecules which are essential to understand
if one is to bridge the gap between molecular and bulk properties. In 1943 Axilrod and
Teller® proposed a three-body dispersion force, which was long accepted, with little
direct experimental confirmation, as the primary many-body effect in bulk substances. In
the early 1960s Jansen’ proposed a model of many-body interactions based on exchange
effects, which seemed to account for discrepancies between pairwise additive potential
predictions and experimental measurements of the binding energies of alkali-halide
crystals. For a review and critique of this early work on many-body forces see Meath and
Aziz.8 For a recent, comprehensive review of experimental and theoretical research in

this field see Elrod and Saykally.®
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1.2. Early spectroscopic work on clusters

It became apparent that in order to gain a truly firm understanding of van der
Waals interactions one must begin by studying the potentials of small clusters, beginning
with diatomic complexes, in order to avoid the confounding factors involved with
extrapolating from the properties of bulk materials to fundamental intermolecular forces.
Such work began in earnest in the late sixties and early seventies. The earliest work in
this field did not involve the use of molecular beams to produce clusters, but relied on
spectroscopic probes of the high vibrational levels of molecules such as Mg, to determine
the (Rydberg-Klein-Rees) RKR potential at long range in order to characterize the van
der Waals interactions,!® and vacuum ultraviolet absorption spectroscopy of dilute rare
gases with very long absorption path lengths, such as the work of Tanaka et al. on the
rare-gas dimers such as Ar,.!! Klemperer and co-workers pioneered the use of
supersonic expansions to form molecular beams of clusters in conjunctions with electric
resonance spectroscopy, to study van der Waals systems with strong dipole moments,
such as Ar-HCL!2 For a review of this early spectroscopic work see Chapter 7 of
Maitland et al.!

The field of cluster research began its period of exponential growth in the late
seventies with the landmark LIF studies by Levy and co-workers on the 1,-Rg (Rg = rare
gas) complexes.!3 Since then the field of cluster research has expanded to such an extent
that it is not possible to begin a summary here. For a comprehensive treatment of recent

cluster research we refer the reader to the review by Castleman and Bowen.!4



1.3. ZEKE studies of simple van der Waals complexes

The focus of the present work in on anion ZEKE and threshold photodetachment
spectroscopy of halide and halogen atoms with rare gas atoms. This work is of
fundamental importance because we are able to study a very simple example of the
interaction of an open-shell species with a rare gas atom. We also gain important
information about the anionic interaction. In this section we review the basic nature of
the interaction of an open-shell (*P) halogen atom with a single rare gas atom or closed
shell molecule, and then review the results of previous anion ZEKE studies of these

systems.

1.3.1. The interaction of an open-shell (°P) halogen atom with a closed-shell species.

In this section we describe the electronic states that arise when an open-shell
(*P112.3n) halogen atom interacts with a 'S rare gas atom. First we consider the case when
the spin orbit coupling of the halogen is negligible. In this case we have two electronic
states, pictured schematically in Figure 1.1. When the p-orbital containing the "hole” is

aligned along the internuclear axis, we have a > state (A=0), and when this p-orbital is

oriented perpendicular to the internuclear axis we have two 1 states (A=1).



2 State

I'T States

Figure 1.1. The electronic states arising from the interaction of a *P halogen
atom and a 'S rare-gas neglecting spin-orbit effects.

When spin orbit coupling is included and is small relative to the electrostatic
interaction Hund's case (a) prevails, and the two states are split into the 1 1> and 11 3
states, which in the case of 255p atoms like the halogens would lie higher in energy than
the ground *Z,p, state. This situation is shown on the lefi-hand side of Figure 1.2 on the
following page. As the spin-orbit interaction increases--or as the internuclear nuclear
increases so that the electrostatic interaction is relatively smaller--the [T 3, and 2
states mix, and the complex is then described by Hund's coupling case (c) as A ceases to
be a good quantum number. This is shown on the right-hand side of Figure 1.2. The

1,, and X, states have mixed to form the lower X 1(j=2,Q2=1) state and the upper
115(j=7%,Q2=7) state, separated by an amount similar to the atomic spin orbit splitting.

The *IT5, state remains as a pure IT state, called the I 3(j=2,Q2=2) state in case (c)




notation, higher in energy than the X 1 state by an amount related to the electrostatic

interaction between the atoms.

o172 Figure 1.2.  Correlation
23y, \\_ 2p1p+1S  diagram of the coupling
32 cases arising from the

A— 2P3/2+ 1g interaction of a 2P halogen

X 12 atom and a closed shell
2y 12— species. Adapted from H.
case case Haberland, Z. Physik A, 307

() (©) 35 (1982).

>
Increasing internuclear separation 1
Decreasing electrostatic interaction

The Hund's case (c) limit applies to the well and long-range region of most of the rare-
gas halogens. The amount of 2-II mixing in the three electronic states is shown in

Figure 1.3 as a function of internuclear separation.

L1 Mz 372 Figure 1.3. Diagram
Q showing the relative II
< contribution in the
g 2 11/2 interaction between a P
= 3 halogen atom and a 'S
Q .
closed-shell species as a
= 1 X1/2 function of internuclear
g 3 separation.
£ 25, Adapted from V. Hoffmann
0 , and H. Morgner, J. Phys. B
Internuclear Separation 12,2837 (1979).

Again the situation on the right-hand side of this figure [case (c)] is the most pertinent to

the complexes studied in this work, where the X 7state has X character and 4

IT character, and the II ; state has § X and < IT character. As already mentioned the 732

state has pure II character.
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It should also be mentioned here that all three of the neutral electronic states can
in principle be observed by ZEKE spectroscopy, since the transitions involve removal of
a single electron from a p-orbital of the halide anion. A detailed derivation of the
rovibronic transition strengths for the anion — neutral transition can be found in
Appendix B. For more detailed information about the interaction between open-shell and

closed shell atoms see Refs. 15 and 16.

1.3.2. Review of previous anion ZEKE studies of halogen atom-closed shell systems

In this section we review previous applications of anion ZEKE spectroscopy to
study the complexes of halide/halogen atoms with closed shell species. The first such
study was the ZEKE spectrum observed in the Neumark group of the I'-CO, complex.!7
In this work it was found that the complex is "T"-shaped, with the CO, slightly bent.
However, the interaction between the I atom and the CO, molecule is sufficiently weak

(44.5 meV for the X + state) that the interaction resembles a van der Waals interaction

much more than a covalent bond (in contrast to FCO,, which is a covalently bound
molecule.!8) Low frequency vibrational progressions were observed in the van der Waals
stretching mode for each electronic state, and the spectra were fit to model one-
dimensional anion and neutral potentials. The binding energy of the anionic complex
was found to be 212.0 meV. Structure was also observed corresponding to the CO,
internal bending vibration. Also in this laboratory, the I'-CH;I complex was studied by
ZEKE spectroscopy.!?

Schlag and co-workers have studied the I-H.O complex by ZEKE

spectroscopy.20 They observed the three electronic states discussed above, as well as two



low frequency vibrational progressions. However, due to the uncertainty in the cluster
geometry and the possibility of observable rotational structure, they were not able to
conclusively assign the vibrational features or fit the spectrum to a model potential.

The work of most direct relevance here was our previous anion ZEKE study of
the Arl’, ArBr, and KrI' complexes.2! Because of the simple nature of the interaction
compared to the studies involving molecular solvents, we were able to observe well
resolved vibrational progressions in all three of the electronic states and fit the spectra to
model potentials, obtaining accurate vibrational frequencies, well depths ar;d bond
lengths for the anion as well as neutral states. The potential parameters for the Arl and
ArBr systems can be found in Chapter 4 (Table 4.3). The work described in Chapter 3 is

a continuation of this study.

1.4. Ar X and Ar,X clusters: many-body interactions

As mentioned above, the study of polyatomic clusters is ideal to directly observe
the many-body effects which are of importance in bulk phenomena, such as solvation in
liquids and the binding of crystals. In Chapter 4 we will delve in great depth into the
nature of the many-body interactions among a halide neutral or anion and a number of
rare gas atoms. In this introductory section, therefore, we will give a brief, more intuitive
overview of the nature of the most important of these interactions.

In the case of the neutral Rg,X clusters, the non-additivity of the potentials arises
because of the open-shell nature of the halogen atom. Consider again the spinless states
shown in Figure 1.1. The axis of symmetry is defined by the two nuclei. Because the

electronic structure of the halogen atom is not spherically symmetric, the potential
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functions differ according to the orientation of the singly occupied p-orbital. Now
consider the situation when a second rare-gas atom is brought near the Rg-X pair. The
symmetry of the diatomic complex is broken, and the p-orbital must reorient to
accommodate the presence of the second Rg atom. Considering this, it seems rather
unlikely that the potentials would add in a simple pairwise fashion. In this sense, that one
must consider the orientation of the orbitals involved, this type of open shell-closed shell
interaction may be considered something of an intermediate case between a "pure" van
der Waals interaction and a covalent bond. This is only meant to be an intuitive
discussion of the topic; for all the "gory details”" of how this calculation is accomplished,
we refer the reader to Chapter 4.

The many-body forces at work in Rg,X  anionic clusters are of fundamental
interest as models of the forces involved in solvation of ions. The two most important
non-additive interactions in these systems are the induction and “exchange charge"
forces.

The induction non-additivity is the dominant many body effect in the Rg,X’
clusters, and is quite easy to understand. In Figure 1.4 we show the induction interaction
between a halide anion and two rare gas atoms. The halide induces dipole moments in
both rare gas atoms. If the rare gases are next to each other, as shown, the induced
dipoles repel, reducing the net binding energy of the cluster from what it would be

without this effect.
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Figure 14. Simplified
X - * schematic drawing of the

origin of the inductive non-

additivity in a Rg, X cluster.

Again, we will wait until Chapter 4 to discuss a more complete model of the induction
non-additivity.

The other type of non-additive interaction we have found to be important arises
from the distortion of the electron clouds of two Rg atoms when fhey are brought close
together with a nearby halide anion. This effect is pictured in Figure 1.5. The exchange
repulsion between the Rg electron clouds causes a net positive charge, 8, to appear at
the midpoint along the Rg-Rg axis, and partial negative charges, each half the magnitude
of &, to appear at the Rg nuclei. Because the positive charge is closer to the halide than
the negative charges, the net effect is an attractive force, and an increase in the binding

energy over what it would be without this effect.

Rg
5
*3
- Figure 1.5. Simplified
3 representation of the nature of
) the "exchange charge" non-
.%_ additivity in an Rg,X" cluster
Rg
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We have found, from the experiments and calculations described in Chapter 4, that this
"exchange-charge" effect makes a quite significant contribution to the non-additive
energy of the cluster anions, being about half as large as the induction non-additivity with

opposite sign.

1.5. References

1 G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, Intermolecular Forces:

Their Origin and Determination (Oxford University Press, Oxford, 1981).

2 W. Kauzmann, Quantum Chemistry: An Introduction (Academic Press Inc., New

York, 1957).
3 H. Margenau, Revs. Mod. Pys. 11, 1 (1939).
4 F. London, Trans. Faraday Soc. 33, 8 (1937).

5 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and

Liquids (Wiley, New York, 1954).

6 B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943).
TL. Jansen, Adv. Quantum Chem. 2, 119 (1965).

8 W. J. Meath and R. A. Aziz, Mol. Phys. 52, 225 (1984).

9 M. J. Elrod and R. J. Saykally, Chem. Rev. 94, 1975 (1994).
10w, C. Stwalley, Chem. Phys. Lett. 7, 600 (1970).

11 ¥. Tanaka and K. Yoshino, J. Chem. Phys. 53, 2012 (1970).

125 E. Novick, K. C. Janda, S. L. Holmgren, M. Waldman, and W. Klemperer, J. Chem.
Phys. 65, 1114 (1976).

12



13 M. S. Kim, R. E. Smalley, L. Wharton, and D. H. Levy, ]. Chem. Phys. 65, 1216
(1976).
14 A, W. Castleman and K. H. Bowen, J. Phys. Chem. 100, 12911 (1996).

15y, Aquilanti, G. Liuti, F. Pirani, and F. Vecchiocattivi, J. Chem. Soc. Faraday Trans 2

85, 955 (1989).
16 v, Aquilanti and G. Grossi, J. Chem. Phys. 73, 1165 (1980).

17y, Zhao, C. C. Arnold, and D. M. Neumark, J. Chem. Soc. Faraday Trans. 89, 1449
(1993).

18p. w. Amold, S. E. Bradforth, E. H. Kim, and D. M. Neumark, J. Chem. Phys. 102,
3493 (1995).

19c. c. Armold, Ph.D. Thesis, University of California, 1994.

20, Bassmann, U. Boesl, D. Yang, G. Drechsler, and E. W. Schlag, International
Journal of Mass Spectrometry and Ion Processes 159, 153 (1996).
21y, Zhao, I. Yourshaw, G. Reiser, C. C. Amold, and D. M. Neumark, J. Of Chem.

Phys. 101, 6538 (1994).

13




Chapter 2. Experimental techniques and apparatus

In this chapter, we describe the experimental techniques used to study Rg,X
clusters, with an emphasis on recent improvements to the experimental apparatus. First
we briefly review the basic concepts of anion photoelectron spectroscopy (PES), then
describe the closely related techniques of threshold photodetachment and zero electron
kinetic energy (ZEKE) spectroscopy used in these studies. Finally we describe in some
detail recent improvements to the experimental apparatus which have enabled us to
increase production of large van der Waals clusters, as well as improve the signal-to-

noise properties of the ZEKE spectrometer.

2.1 Anion PES and ZEKE spectroscopy

Two related experimental techniques that have been used to great advantage for
the study of van der Waals clusters have been anion PES, and ZEKE spectroscopy. In
both of these techniques, one begins by producing an anion and photodetaching the
excess electron with a laser pulse. In this way one obtains information about both the
anion and neutral species. An advantage of anion studies over other types of
spectroscopic probes of clusters, is that because one begins with charged species, one can
mass select the species of interest. Another advantage is that because one starts from the
anion one can in most cases detach to the ground state of the corresponding neutral, and
thus obtain direct spectroscopic information about the ground neutral state. Information
about the ground states of neutral species is often difficult to gather from optical
spectroscopic studies of neutral clusters, such as laser induced fluorescence (LIF) or

resonance-enhanced multi-photon ionization (REMPI), which usually are more
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informative about the excited states than the ground states. Also, from the photoelectron
or ZEKE spectrum, one can directly determine the electron affinity (£A) of the neutral
species, which provides information about the relative binding energies of the anion and
neutral. Finally, both techniques provide valuable information about anionic clusters,
which in general are less well studied and understood than neutral systems--for which a
more extensive literature exists. (For a recent review of studies of small neutral clusters,

see Bacic and Miller.1)

2.1.1 Anion photoelectron spectroscopy

In anion PES, one produces a source of “cold" clusters using a supersonic
expansion anion source (described later in more detail), which are then mass-selected and
photodetached with a fixed frequency laser. By measuring the kinetic energy of the
photoelectrons, one can, knowing the energy of the detachment laser, infer the amount of
internal energy remaining in the neutral, and thus interpret the observed spectrum in
terms of spectroscopic transitions from the anion to the neutral. The concept of anion
PES is shown schematically in Figures 2.1 and 2.2. For an introduction to the literature
on anion photoelectron spectroscopy and a detailed description of the anion photoelectron
spectrometer used in the Neumark group, see the dissertation of A. Weaver.2 In general,
the resolution of conventional anion photoelectron spectroscopy is at best about 5-10
meV (40-80 cm™). This resolution is sufficient to resolve electronic transitions, and in
many cases vibrational transitions of covalently bound molecules, but is insufficient to

observe the much finer vibrational structure of weakly bound van der Waals clusters.
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Figure 2.2 The photoelectron spectrum

Figure 2.1. Schematic diagram of corresponding to Figure 2.1.

anion photoelectron spectroscopy

Anion PES has been used in several studies of weakly bound clusters. In the
Neumark group, X (CO,),, (X = C}, Br, I)3,4, and I'(N,0O),* clusters have been studied
with this technique. More recently, time-resolved PES has been performed in this group
on the I;(Ar),> and I,(CO,),0 clusters. Other groups have used anion PES to study
I'Xey, (COy) W8 OAr,? X(Hy0),10,1112 and X' (CH3CN),!3. From this PES work, one
can determine the EAs of the clusters, and from these make inferences about their binding
energies, but cannot study the details of the low-frequency van der Waals vibrational

structure.

2.1.2 Anion ZEKE and threshold photodetachment spectroscopy
Anion zero electron kinetic energy (ZEKE) spectroscopy, the primary focus of
this work, offers significant advantages over conventional PES for the study of clusters.

With ZEKE spectroscopy we are able to obtain a resolution of at best 1 cm’, but more
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typically 2-3 cm’ (or 0.1-04 meV), nearly two orders of magnitude better than
conventional PES. This resolution is sufficient to observe the vibrational structure of
small van der Waals clusters, as well as to determine very accurate EAs. In addition,
regardless of the resolution, one can have more confidence in the accuracy of EAs
determined from ZEKE (or threshold photodetachment) spectroscopy because the EAs
determined from PES are based on measurement of electron kinetic energies, which are
subject to various systematic errors (such as space charge effects), whereas in ZEKE and
threshold photodetachment the energy calibration depends only on the calibration of the
tunable lasers used in these techniques. The technique is not without its limitations,
however, as will be discussed below.

The basic concept of ZEKE spectroscopy was first applied to the photoionization
of neutral molecules by Miiller-Dethlefs, Schlag and co-workers.!4.!5  Since this time
ZEKE (also known and pulsed field ionization, or PFI) spectroscopy of neutrals has been
employed by many groups to study a wide variety of systems.1® There has also been
extensive theoretical work undertaken to understand the processes taking place in neutral
ZEKE-PFI experiments (see, for example, Ref. 17)

ZEKE spectroscopy was first applied to the photodetachment of anions by
Neumark and co-workers.!8 In contrast to the rapid growth in the field of neutral ZEKE-
PFI, subsequent work in the field of anion ZEKE spectroscopy has been confined to a
small number of other groups.!9-2! This is due for the most part to the fundamental
difference between ZEKE-PFI of neutrals, in which molecules are excited to long-lived
Rydberg states and then ionized by a pulsed electric field, and ZEKE of anions, in which

the electron is photodetached from the anion in the first step because anions do not
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posess long-lived Rydberg states. However, despite its difficulty, anion ZEKE
spectroscopy has proven to be a unique and invaluable tool for the study of clusters, and
we exepect it will continue to be in the future.

In anion ZEKE spectroscopy, as in anion PES, one begins by creating a mass-
selected packet of anions using pulsed molecular beam techniques, so that one may
isolate the species of interest. In ZEKE spectroscopy, one studies the photodetachment
process of the anions by scanning a tunable laser over the region of spectroscopic
interest, with the apparatus arranged so that only electrons detached with very nearly zero
kinetic energy are detected. Electrons ejected with excess kinetic energy are not
detected. In this way one obtains a spectrum with peaks corresponding to anion —
neutral transitions as a function of laser energy. This process is shown in schematic form

in Figures 2.3 and 2.4.
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Figure 2.3. Schematic of the process of anion Figure 2.4. The ZEKE spectrum
ZEKE spectroscopy. corresponding to Figure 2.3.

The key to the success of the ZEKE technique is the ability to discriminate against

the detection of electrons with excess kinetic energy. This is accomplished through a

combination of spatial and temporal filtering of the photoelectrons. These techniques
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will be described in Section 2.2. Here we comment on the asymmetric line shape
observed in ZEKE spectra and shown schematically in Figure 2.4. This lineshape
appears because the onset of the detachment threshold is much sharper than the
discrimination function of the ZEKE spectrometer, so that one tends to see peaks with
“tails" at high energy, due to incomplete discrimination against high energy electrons.
Refer to Chapter 3 for a discussion of the detailed form of the ZEKE lineshape. In the
next section we discuss the nature of the photodetachment cross-sections near threshold
and its ramifications for VZEKE spectroscopy, as well as the partially discriminated

threshold photodetachment (PDTP) experiments described in Chapter 4.

2.1.3. Wigner's Law

The problem of the total photodetachment cross section near threshold was first
addressed by Wigner,22 who proposed what has become known as "Wigner's Law.” If ¢
is the orbital angular momentum quantum number of the detached electron, then the
photodetachment cross section, o, according to Wigner's Law is

o< EXV? (2.1

where E is the kinetic energy of the detached electron, which is equal to hv—E,, where
hv is the photon energy and E, is the threshold energy. This relation places restrictions
on the systems that may be studied with anion ZEKE spectroscopy. Only those
thresholds with sharply rising cross sections can be observed with ZEKE spectroscopy.
For the cross section to rise sharply at the threshold, it is necessary to have £=0. This
occurs, for example, when an electron is detached from a p-orbital of an atom. In order

for angular momentum to be conserved when the a photon is absorbed, the orbital angular
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momentum of an electron must change according to the selection rule AZ=%1 when it is
ejected from an atom. Thus when an electron is photodetached from a p-orbital, it will
have ¢ =0 (s-wave detachment) or £ =2 (p-wave detachment). ZEKE spectroscopy is
only sensitive to s-wave electrons.

Wigner's law has been experimentally verified for a number of atoms,23-27
however the range of validity of the Wigner law has been open to question. A recent
study of the total photodetachment cross-section of Al" by Calabrese er. al.28 found good
agreement with Wigner's law up to 13 meV (105 cm™) above threshold. Above this,
however, these workers found that the experimental cross-section deviates significantly
from the prediction of Equation (2.1). They in fact found a léveling off and decrease in
the total cross-section, whereas Wigner's law predicts a monotically monotonically
increasing cross section. In Figure 2.5 we show the total cross-section of I measured in
this laboratory, and see that it is well fit by the Equation (2.1) up to 150 cm’ (19 meV)

above threshold.
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Figure 2.5. The total cross section for the photodetachment
process I ('S) + hv = 1 (Pap) + €

The total cross section was not measured at higher energies, so this result can only be
considered as a lower bound on the range of validity of Wigner's law for the case of I".
This result is of little significance for ZEKE spectroscopy, but is of some interest for the
"partially discriminated threshold photodetachment” (PDTP) experiments on Rg,X
clusters discussed in chapter 4.

Another question worth raising with regard to Wigner's law is whether its range of
validity changes as more solvent atoms are added to the halide chromophore of a cluster.
Theoretical work by O'Malley?? suggested a correction term to the Wigner law
proportional to the polarizability of the neutral left behind by the departing electron. For
s-wave detachment, O'Malley's formulation of the cross-section behavior is given in

atomic units by

o = EV[1-%a,EIn(2E)+O(E)] 2.2)
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where ¢, is the polarizability of the neutral after photodetachment. One might wonder
from this if adding polarizable solvent atoms to the halide would influence the observed
PDTP spectra. From our studies of ArpI” and Ar,Br clusters--to be discussed in Chapter
4--this appears not to be the case for Ar atoms. However, whether this effect may
influence the observed detachment spectra of halide atoms clustered with more
polarizable rare gases, such as the Xe,I™ clusters recently studied in this group30 remains
to be seen.

Wigner's law has been extended to understand the near-threshold behavior of
molecular systems.3! Because the systems studied in this work may be thought of
essentially as perturbed 'S halide atoms, we shall not concern ourselves with the details
of this work. For an interesting discussion of deviations from the Wigner law for
molecules with strong dipole moments, see the recent experimental results of Lineberger
and co-workers on photodetachment of the OH™ anion.32 This work is not of direct
relevance here, where we are concerned with non-polar rare-gas solvents, but may be of
some importance for the interpretation if the ZEKE spectra of clusters containing highly

polar solvent molecules.

2.2 The experimental apparatus

The details of the design and operation of the experimental apparatus have been
described previously,33:34 and specific experimental details are given in Chapters 3 and 4
of this work. Therefore here we briefly summarize the operation of the apparatus, and
then focus on recent improvements in its design.

The experimental apparatus is shown schematically in Figure 2.6.
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Figure 2.6 The experimental apparatus for ZEKE and threshold
photodetachment spectroscopy. DP = Diffusion pump, TMP =
Turbomolecular pump.

The cold anions are produced in a supersonic expansion from a pulsed valve crossed with
a 1 keV electron beam in the source chamber shown on the left-hand side of the diagram.
The expansion passes through two skimmers and enters the first differentially pumped
region, where the ions are accelerated to 1 keV. The second skimmer placed very close
to the pulsed valve was found to increase production of large clusters, and this "double
skimmer" setup is described in more detail in Section 2.2.1. The ions enter the second
differentially pumped region and are separated according to mass using a Bakker-type
(collinear) time-of-flight arrangement.35 Finally, the ions enter the detector region shown
on the right hand side of the diagram where the mass-selected ion packet of interest is
irradiated with a pulsed laser. The electrons are extracted by a weak electric field, and

deflected 90° upward to the microchannel plate electron detector. The ion signal is
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measured at the microchannel plate detector at the far end of the machine. Total cross
sections, such as that shown in Figure 2.5, may be measured by detaching the ions at a
point directly beneath the electron detector, so that effectively 100% of the detached
electrons are detected.

When operating in partially discriminated threshold photodetachment (PDTP)
mode, the electrons are intersected by the laser at a point approximately 0.5 m from the
electron detector, and immediately extracted with a weak electric field (ca. 1 to 3 V/cm)
applied to the extraction plates. In this mode, off-axis high-energy electrons are
discriminated against. This mode of operation is equivalent to the "steradiancy detector”
described by Spohr er al.36 When optimized for maximum electron signal, the resolution
in this mode of operation is about 150 cm™.37 However, we have found that by using
very low extraction voltages and carefully tuning the electron einzel lens--pictured to the
right of the electron extraction plates--to regulate the effective "aperture” size of the
steradiancy detector, resolution on the order of 10 cm™ may be achieved in PDTP mode.
This enhanced resolution, however, comes at the expense of dramatically decreased
electron signal.

To take the ZEKE spectrum of an anion, the anion is photodetached at the same
point used for PDTP, however rather than extracting immediately, the electron extraction
is delayed by 250-500 ns. During this "waiting period," the higher energy electrons
disperse. Thus the "steradiancy effect” for discriminating high energy electrons is greatly
enhanced. Furthermore, during the delay, the electrons that are scattered along the beam
axis have time to spread out, so that those with different kinetic energies experience

different acceleration because of the differing amounts of time they spend in the
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extraction field. When the electrons are detected, a 30-120 ns wide gate is used to isolate
those with initially zero kinetic energy in the ion beam frame of reference. This gated
detection is what is meant by "temporal discrimination,” however in the sense that the
differences in arrival times of the electrons at the detector are due to the initial spreading-
out of the on-axis scattered electrons, this may be also may be thought of as another form
of spatial discrimination. In the original design of the ZEKE spectrometer the electrons
experienced no electric field during the delay between photodetachment and extraction.
Recently, however, we have found that by applying a very small (ca. 10 mV/cm)
uniform constant electric field to the extraction plates, with polarity opposite to the that
of the extraction field, the ZEKE signal is greatly enhanced, with no loss of resolution.

The details of this "electron deceleration field" will be described in Section 2.2.2.

2.2.1 "Double skimmer'' setup for large cluster production

As mentioned above, it has been found that placing an additional skimmer very
close to the opening of the pulsed valve greatly enhances the production of large van der
Waals clusters. The skimmer used for this is manufactured by the Beam Dynamics
Company, and is contoured, with a 2 mm orifice. It is placed 1 mm from the opening of
the pulsed valve (General Valve Corp) which is used with a 0.5 mm or 0.8 mm orifice.
This second skimmer is contained within the source chamber; that is, there is no
differential pumping on either side of it. The opening of this skimmer is placed 2 cm
from the opening of the conical skimmer which separates the source chamber from the

first differentially pumped region. This setup is pictured in Figure 2.7.
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Figure 2.7 The "double-skimmer" setup for large cluster production.

An example of the increased cluster production using this source is shown in
Figure 2.8, which shows the mass spectrum of Ar,CI" clusters. The mass spectra with and
without the second skimmer in place are shown in Figures 2.8(a) and 2.8(b), respectively.
We see that without the second skimmer, the cluster with the greatest intensity is ArCl
and the ion signal of the larger clusters decreases, until it becomes very difficult to
observe clusters larger than Ar;CI. On the other hand, with the double skimmer setup,
we can easily observe clusters up to Arj;Cl. The ion signal for clusters with n larger than
12 drops suddenly, possibly due to a solvent shell closing at this point;3® however clusters

up to AryCl are still plainly visible in the mass spectrum. This same enhancement in
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large cluster production has also been observed in the mass spectra of other systems
studied in this laboratory, including Xe,I"30 and CI'(N;),3.

The reason for the success of this scheme for producing large anion clusters is not
certain. Relative to the knowledge about the formation of neutral clusters in supersonic
expansions,40:4! little is known about the clustering processes that take place in this type
of anion source. It is possible that the skimmer near the pulsed valve acts as a kind of
"clustering channel” allowing more collisions to take place between the halide anions

and rare-gas atoms in this confined space, so that larger clusters are formed.
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Figure 2.8. The mass spectra of Ar,Cl: (a) Without the second skimmer near the
pulsed valve. (b) With the double-skimmer setup shown in Figure 2.7. The impurity
peak at 53 amu is CI'(H;0).
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2.2.2 Electron deceleration field

We mentioned above our finding that the application of a weak, positive electric
field to the electron extraction plates results in enhancement of the observed ZEKE
signal. Here we describe the details of the implementation of this scheme.

The extraction field is applied to of a series of seven molybdenum plates spaced 1
cm apart. Photodetachment takes place between the first two plates. The field is applied
such that there is a potential gradient across the first four of the plates. The voltage for
electron deceleration is applied at the same place. A schematic diagram of the circuit

used to apply the deceleration voltage is shown in Figure 2.9.
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Figure 2.9. The circuit for the electron deceleration field.

This is a simple voltage divider circuit, but a few points should be borne in mind in its

use. The values shown for the resistances should not be changed too much, because if the
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impedance from the circuit it too high or low it will interfere with the pulsed extraction.
The values of the resistances shown were chosen empirically to minimize interference
with the extraction pulse. Also this circuit should have its own stable power supply. not
used by any other device in the apparatus, to ‘ensure stability and reproducibility of the
voltage. Finally, when testing the voltage at the indicated test point with a voltmeter or
oscilloscope, one should not leave the probe connected when the experiment is running,
because the probe will disrupt the extraction pulse. The DC voltage should be measured
with a high impedance probe, rather than with the 50£2 probe of an oscilloscope in order
not to alter the voltage from the voltage divider.

An example of the improvement in signal with the electron deceleration field is
shown in Figure 2.10. This figure shows the ZEKE spectrum of the CI” atom (detaching
to the ground 2P, state of Cl, without [Fig. 2.10(a)] and with [Fig 2.10(b)] the electron
deceleration field circuit in place. In both cases, the spectra are accumulated over 400
laser shots per point. The voltage measured at the test point with a high impedance probe
was, 8 mV, corresponding to an electric field of about 3 mV/cm. Both ordinates in the
figure are calibrated to the absolute number of electrons collected. The resolution in both
cases is 2 cm™ FWHM, but we see a nearly three-fold increase in ZEKE signal when the
electron deceleration circuit is used. It is found that with the deceleration field, much
longer delay times can be employed. For example, when detaching the Cl” atom it was
possible to see ZEKE signal at delay times of up to 1 ps. However, the resolution
seemed to deteriorate at delay times above 500 ns. We find that when using the
deceleration field, it is necessary to use higher deceleration voltages when shorter delays

are employed to achieve optimal results.

30



"WO/AW € "D JO P[31) UONBIFIIIP U092 ue YA (q) "pIoy
uoNeIa[29p uond39[2 ay) oy (e) (1D SmN 0] juawyoeIap)

1D jJo wnupads IHFZ 2y jo uosuedwod y gy andiy i
( TEov A31ou7 Jose ATE& A31auy 19587
0816¢ CcL16C v916C 9¢16¢ 8y16¢ 08167 CL16C ¥916¢ 9¢16¢ 141 Y4
[ T ] 0 ] | ] | ] g 0 ;M
51 st ° |
2 o
{oe & - og w
Q O i
= = .
Q Q
-1 G¥ m 1Sy © g
5 B |
7 7
q 109 ¢ 109 4.,
m
|



The reason for the improved ZEKE signal seen with this arrangement is not
known with certainty. One possibility is that the deceleration field separates the detached
electrons from the center of mass of the remaining undetached anions to a great enough
extent that they are less subject to dispersal by the space charge of the remaining anions.
It is also possible that the longer delay times are made possible by the deceleration of the
electrons, which--especially light atoms like Cl--would otherwise travel out of the
extraction field within a few hundred ns. The increased electron signal may also be due
to the fact that the decelerated electrons experience greater acceleration when the
extraction field is applied, because they begin further up on the extraction potential

gradient, and hence are better separated and collected with greater efficiency.
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Chapter 3. Zero electron kinetic energy (ZEKE) spectroscopy of the KrBr’, XeBr,

and KrCI anions*

Abstract

Three rare-gas halide (RgX") anions, KrBr', XeBr’, and KrCl', and the corresponding
neutral, open-shell van der Waals complexes are studied with anion zero electron kinetic
energy (ZEKE) spectroscopy. The spectra for each system reveal well-resolved
progressions in the low frequency vibrations of the anion and one or more of the three
neutral electronic states accessed by photodetachment, providing a detailed spectroscopic
probe of the Rg-X" and Rg-X interaction potentials. In the case of KrBr', transitions to all

three of the "covalent" neutral electronic states (the X+, 73, and /5 states) were
observed. For XeBr, transitions to the X 3 and /I § neutral states were observed. For

KrCr', only the X 1 state could be studied. From our data, we construct model potentials

for the anion and each observed neutral state, and these are compared with other

experimental and theoretical potentials.

" Submitted to J. Chem. Phys. in slightly different form with co-authors Thomas Lenzer,
Georg Reiser, and Daniel M. Neumark.
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3.1. Introduction

The characterization of the forces between weakly interacting species has
attracted a great deal of experimental and theoretical attention in recent years. The
interaction potentials between closed shell neutral species have been characterized in
considerable detail as a result of this effort.}:2 However, less is known about the
interactions between open and closed shell atoms, or about those between ions and
neutrals. In this work we describe new experimental results involving the latter two
types of interactions. We report the results of studies of the rare gas-halide atom
complexes KrBr, XeBr, and KrCl using anion zero electron kinetic energy (ZEKE)
spectroscopy. In these experiments we obtain spectroscopic information on both the
neutral and negatively charged complex and derive accurate potentials for both the anion
and neutral species. This work is a continuation of our earlier ZEKE studies of the ArBr,
KrI, and Arl complexes,34 and is part of an ongoing effort to obtain ZEKE spectra of
the complete series of rare gas halides.

The rare gas halide (RgX") species are of interest because the Rg-X" interaction
potentials determine the transport properties of halide ions in rare gases; these are
important in understanding plasmas and gas discharges. Prior to the work reported here,
the only previous experimental results on the KrBr,, XeBr™ and KrCl™ anions came from
ion mobility studies,>6 from which potentials can be obtained by iterative fitting or direct
inversion. Interaction potentials had also been derived within the framework of
theoretical”-® and semi-empirical®!! models. The work described here provides a direct
spectroscopic probe of these species.

The rare gas-halogen (RgX) complexes are important for their use in excimer
lasers, in which lasing takes place between electronically excited, strongly bound charge
transfer states and the repulsive wall of the weakly bound covalent ground states.!2
Excimer emission has also provided spectroscopic information on the charge-transfer and

covalent states. In the cases of KrBr and KrCl, emission from the RgX charge transfer
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states to the ground state (the B—X band) is broad and relatively unstructured,!? as is
typical of bound-free transitions. However, recent emission studies of the B—X band in
XeBr reveal extensive vibrational structure.!3.14 The covalent states of rare gas-halogen
neutrals have also been probed in a series of scattering experiments. Information on the
RgX species studied here comes from differential cross-section crossed molecular beam
experiments of Lee and coworkers,!> which yielded potentials for the KrBr and XeBr
complexes, and from integral cross section measurements by Aquilanti and co-workers!6
who have characterized the potential of KrCl.

The neutral interactions are of interest also because they are simple examples of
open shell-closed shell interactions. The two spin-orbit states of the °p halogen atom
interact with the rare gas to give rise to three molecular electronic states.!7.18 The lower
2P3,2 state is split by the electrostatic interaction into two components, corresponding to

Q =1/2 (the X 1 state, in the notation used here) and Q = 3/2 (the I3 state), where Q is

the projection of the total electronic angular momentum along the internuclear axis. The
upper 2Pm halogen state gives rise to the /71 (Q = 1/2) state in the complex.

Anion ZEKE spectroscopy of rare gas halides probes the van der Waals well
region of the covalent states; this complements earlier studies of emission from excimer
states. Our experiments also complement the scattering experiments because, whereas
the scattering cross-sections contain information about the absolute values of the bond
length and well depths of the complexes, the ZEKE spectra are sensitive only to the
relative differences between the anion and neutral potentials. However, in the ZEKE
spectra one can observe vibrationally-resolved photodetachment transitions to the various
neutral electronic states, whereas in the crossed beam experiments the contributions of

the X% and I3 states to the experimental signal are not clearly separated and must be

extracted by an appropriate data inversion procedure. Also, in the crossed beam

- . [ 2
experiments involving Br or I atoms, the II 1 electronic state arising from the upper P,

spin-orbit state of the halogen atom is generally not probed because the population of this
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state is negligible. In the ZEKE experiments, well-resolved spectra of the I states of

the KrBr and XeBr systems are seen, and accurate potentials can be derived for these
states for the first time.

The anion potentials derived here are a significant improvement over previously
available potentials. While our ground state potentials for KrBr and XeBr are essentially
the same as those derived from scattering and excimer emission experiments, our excited
states potentials represent improvements over previous work, particularly for the /I3
state. In the case of KrCl, our spectra confirm the neutral potentials previously deduced
from the scattering experiments.

This article is organized as follows: In Section 3.2 we describe the experimental
setup for anion production and ZEKE spectroscopy. In Section 3.3 we present the ZEKE
spectra of KrBr, XeBr and KrCl, and assign the observed electronic and vibrational
structure. Section 3.4 deals with the construction of model potentials for fitting the
vibrational structure and rotational contours of the ZEKE spectra. Finally, we compare

our potentials with other experimental and theoretical results in Section 3.5.

3.2. Experimental

ZEKE spectroscopy was originally developed by Miiller-Dethlefs er al. for
photoionization of neutrals.!9-2! It was first applied to the study of anions by Neumark
and co-workers.22 The anion ZEKE apparatus used here has been described in detail
elsewhere.23-25 A brief description follows.

KrBr and XeBr anions are produced by expanding a mixture of 0.2% CF,CIBr /
10-30% Kr (or Xe) / balance He into vacuum through a 0.5 mm aperture in a pulsed valve
(General Valve Corp.). The expansion is crossed near the pulsed valve with a 1 keV
electron beam produced with a thoria-coated iridium filament (Electron Technology).
Halide anions are produced by dissociative attachment and other secondary processes,

and clusters form as the supersonic expansion cools. KrCl anions are produced by
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passing the Kr/He mixture over a reservoir containing CCl; at room temperature.
Backing pressures were typically 20-80 psi.

The anions pass through a skimmer into a differentially pumped region and are
accelerated to 1 keV into a | m collinear time-of-flight mass spectrometer. The KrCI
results were obtained using an additional skimmer in the source chamber placed very
close to the beam valve.26 The clusters separate according to mass, and the species of
interest is irradiated with a pulse from an excimer-pumped dye laser (Lambda Physik)
operating at a repetition rate of 30 Hz. After a 200-500 ns delay, the electrons are
extracted coaxially with the ion beam using a pulsed electric field and detected
approximately 1 m away with a microchannel plate detector. The electrons are detected
in a 35-100 ns gate, so that as the laser wavelength is scanned, only electrons with nearly
zero kinetic energy relative to the anion packet are detected. The resulting spectral
resolution is about 1-2 cm-1 for atomic anions. The peaks observed in this work are
somewhat broader because of unresolved rotational structure.

In order to study the X1 and I3 states, DMQ laser dye was used for KrBr and
XeBr and PTP dye was used for KrCl. The laser pulse energy was about 20 mJ/pulse for
KrBr and XeBr, and about 3-10 mJ/pulse for KrCl. These spectra were averaged over
1000-2000 laser shots/point. For the II{ states of KrBr and XeBr, light from
Rhodamine 640 dye was frequency-doubled with a KDP crystal, yielding laser pulse
energies of ca. 2-4 mJ/pulse. The electron signal was normalized to the ion signal and to
the laser pulse energy. Spectra for the II 4 states were averaged over about 8000 laser
shots per point. When using DMQ and PTP dyes, the laser wavelength was calibrated
using a Fe-Ne hollow cathode lamp. An iodine cell was used to calibrate the fundamental
wavelength when Rhodamine 640 dye was frequency-doubled. The spectra were
smoothed with a 5-point, second order Savitzky-Golay algorithm,2” which had a

negligible effect on the relative peak intensities.
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3.3. Results

3.3.1. KrBr
The ZEKE spectra of KrBr are shown in Figure 3.1. We observe two band
systems, shown in Figures 3.1(a) and 3.1(b), separated by approximately the spin-orbit

constant of Br (3685 cm™). The lower energy band system in Figure 3.1(a) results from

transitions to the X 4 and I3 states, and the higher energy system in Figure 3.1(b) is due

to the II § state.

Assignment of the vibrational and electronic features in Figure 3.1 is facilitated
by our earlier studies of the Arl, ArBr and Krl spectra.3  Specifically, the anion
vibrational frequencies are expected to be considerably larger than the neutral
frequencies, and this enables one to distinguish among the three types of neutrale—anion
vibrational transitions (v’-v”) that contribute to the spectra: vibrational progressions in
the neutral originating from a single anion vibrational level v”, Av=0 sequence band
transitions from a series of vibrational levels of the anion, and Av=0 hot band transitions
from vibrationally excited anion levels.

Fig. 3.1(a) is dominated by one peak, labeled 1, with a set of smaller peaks, a;, by,
and cy, spaced by about 15 cm-l toward lower energy. A second, weaker progression is

seen at higher energies than peak 1 with a characteristic peak spacing of 20 cm™. We

assign peak 1 to the origin (0-0) transition from the anion to the X 1 state. Peaks ay, b,

and ¢, are assigned to Av=0 sequence band transitions from vibrationally excited anion

states, i.e. the 1-1, 2-2, and 3-3 transitions. The dominance of Av=0 transitions shows

that the anion geometry is very similar to the neutral X 4 state geometry.
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Figure 3.1. Experimental and simulated ZEKE spectra of KrBr’. The solid lines are the
experimental spectra, and the dotted lines are the spectra calculated from the model
potentials described in the text. (a) X 1 and [ % states (halogen atom 2P, asymptote).

(b) IIL state (halogen atom 2Py, asymptote).
2 p
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Peak 2, the lowest energy member of the second progression, is assigned to the 0-
O transition to the I state. This assignment is made in part because it gives the best fit
to a model potential (See Analysis section, below). Peaks a,, b, ¢,, and d; are assigned to

the (v’-0) vibrational progression with v’=1-4 originating from the anion v”=0 level.

The extent of this progression indicates that the 72 state bond length is significantly
shifted from the anion geometry. Peak e, is assigned to the 1-1 sequence band of the /2
state. Peak f;, 40 cm-l to the red of peak 2 is assigned to the 73 0-1 hot band transition,
plus several overlapping l?ands fromthe X £ state.

In the I % state spectrum, Fig. 3.1(b), we see the progression 3, as, b, c3, and dj,
with a characteristic spacing of about 20 cm!, and a smaller peak, €3, 37.2 cm™ below
peak 3. We assign peak 3 to the 0-0 transition to the II'1 state, and the series a3, bs, c3,
ds to the (v’-0) progression with v'=1-4. Peak e; corresponds to the 0-1 hot band
transition, and gives an accurate value for the anion vibrational frequency.

The complete set of peak positions and assignments is given in Table 3.1.
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Table 3.1. Peak Assignments (v’-0”) for KrBr ZEKE spectra
-1

(Figure 3.1). Energies are in cm .

State | Peak | Position Relative Assignment
Energy
1 27602.9 0 00
a 27588.4 -14.5 11
X172 b 27576.2 26.7 262
c 27561.0 41.9 3¢3
2 27657.0 0 00
a, 27678 .4 214 10
b, 27695.3 38.3 2¢0
C 27710.7 53.7 3¢0
B2 4 277230 66.0 40
e 27641.7 -15.3 11
f, 27619.0 -38.0 0«1
(shoulder)
3 31321.7 0 0¢-0
a; 31343.5 21.8 10
bs 31363.2 415 2¢0
mrz 31380.6 58.9 3¢0
ds 31398.3 76.6 4¢-0
es 31284.5 37.2 0«1
fy 31274.7 -47.0 12
3.3.2. XeBr

The ZEKE spectra of XeBr are shown in Figures 3.2(a) and 3.2(b).
assignment of the peaks proceeds in a fashion similar to the assignment of the KrBr
spectrum. Again there are two band systems separated approximately by the Br spin-
orbit constant. The lower energy system in Figure 3.2(a) is dominated by a single peak,
1, with a set of peaks cy, d; and e, spaced at ca. 17 cm™ intervals toward lower energy.
We also observe a pair of small peaks, a, and by, 26.5 cm.l and 50.2 cm’! to the blue of

peak 1, respectively. As above we assign peak 1 to the origin transition to the X 1 state,

and the peaks cy, d; and €, to the sequence bands 1-1, 2-2 and 3-3, respectively. Peaks a,
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and b, correspond to the 1-0 and 2-0 transitions, and are consistent within 2.5 cm™ with
the peak spacings calculated from the spectroscopic constants determined by
Tellinghuisen and coworkers in their excimer emission study.!* As above, the

dominance of the 0-0 transition shows that the anion bond length is apparently quite close

to that of the X 4 state. However, in contrast to the KrBr" spectrum, transitions to the
13 state are not seen in Figure 3.2(a).

The more congested I+ state spectrum in Figure 3.2(b) reveals two vibrational

progressions. Peaks 3, as, bs, ¢3, d3 and e3 are spaced by 20 cm.] toward higher energy,
peaks 3, f; and g3 are spaced by about 42 cm-] toward lower energy. Based on this
change in peak spacing, peaks 3-e; are assigned to a progression arising from the ground
anion vibrational state with the origin at peak 3. Peaks f; and g3 are assigned to the 0-1
and 0-2 hot band transitions, respectively. The XeBr peak positions and assignments are

given in Table 3.2.

Table 3.2. Peak assignments for XeBr ZEKE spectra (Figure 3.2).
-1
Energies are incm .

State Peak Position Relative Energy Assignment
1 27890.0 0 00
a 27916.5 265 10
b, 27940.2 502 7e 0

X1z —2 27873.0 17.0 T
d 27855.1 349 2¢2
e 27841.0 48.1 33
3 316236 0 00
» 31647.6 24.0 <0
bs 31667.1 435 20
cs 31687.5 63.0 30

Mz 3,71 317047 311 40
es 31719.8 96.2 50
f, 315832 404 01
= 31539.8 838 02
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Figure 3.2. Experimental and simulated ZEKE spectra of XeBr. The solid lines are the
experimental spectra, and the dotted lines are the spectra calculated from the model
potentials described in the text. (a) X % state (halogen atom 2P3,2 asymptote). The /2

state cannot be seen. (b) II'$ state (halogen atom 2Py asymptote).
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3.3.3. KrCl

The ZEKE spectrum of KrCl is shown in Figure 3.3. The largest peak, labeled 1.
is assigned to the origin transition to the X 1 state. Peaks 1, c), dj, e; and f; are spaced
approximately 26 crn'l toward lower energy. The latter four peaks are assigned to Av=0
sequence band transitions, with additional contributions from the hot band transitions
listed in Table 3.3. Also, peaks g; and h; can be assigned to the overlapping hot band

transitions given in Table 3.3. The partially resolved peaks a; and b, to the blue of 1 are

-1
assigned to the (v’-0) progression, yielding a frequency of 29 cm  for the X 1 state. We

were not able to observe the I2 state or the I state for this system. The peak

positions and assignments are shown in Table 3.3.

IlllllllIITTIIIIIIIIIlIIIIIIlllllllilllll]l

1

h g1f1 1

ZEKE Signal (Arb. Units)

.
A tadfee M 0,

7 [3 be .
1 lllllll]lllllllllllllll!llllllll!ll]l] 1

28500 29600 29700 29800 29900
Energy (cm-1)

Figure 3.3. Experimental and simulated ZEKE spectrum of the X 1 state (halogen atom

2Py, asymptote) of KrCI'. The solid line is the experimental spectrum, and the dotted line
is the spectrum calculated from the model potentials described in the text.
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Table 3. 3 Peak assignments for KrCl ZEKE spectrum (Figure 3.3). Energies

are in cm Assignments in parentheses contribute less than 20% of the total peak
intensity. The assignment listed first contributes the most peak intensity.

State | Peak Position Relative Assignment
Energy
1 29724.5 0 00
(2<1)
a 29753.3 28.8 1«0
31
by 29784.2 59.7 20
) 29698.1 -26.4 Te1
X172 (5¢3)
(3-2)
d, 29673.9 -50.6 22
(01
e 29645.4 -79.1 33
£ 29621.3 1032 ded
0«2
g 29601.6 -122.9 13
34
h; 29575.4 -149.1 2«4
45
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3.4. Analysis

For each of the three species, the energy of peak 1 yields an accurate electron
affinity: 27603(3) cm’ for KrBr, 27890(3) for XeBr, and 29725(5) cm’ for KrCl. These
values are larger than the corresponding electron affinities of Br and Cl, which are
27129.170 cm™ and 29138.3 cm™, respectively.28.29 The larger electron affinities for the
complexes show that the RgX" dissociation energies are greater than the RgX dissociation
energies, and that XeBr’ is more strongly bound than KrBr. Also, from the vibrational
assignments in Tables 3.1-3.3 we directly obtain vibrational frequencies for the anion and
neutral states.

To gain further insight into these complexes, we construct model potentials for
the anion and neutral RgX complexes to simulate the experimental ZEKE spectra. The
spectra are fit by choosing model anion and neutral potentials, and calculating the
Franck-Condon factors, which, assuming a Boltzmann distribution of anion vibrational
population, are used to produce a simulated spectrum to be compared with the
experimental spectrum. The potential parameters and vibrational temperature are then
adjusted in a trial-and-error fashion to produce the best agreement between the
experimental and simulated spectra. The vibrational eigenvalues are calculated from the
potentials using a discrete variable representation procedure30 based on a basis set of
Morse potential eigenfunctions.3! See Appendix A for the details of this calculation.

We use the flexible, piecewise Morse-Morse-switching function-van der Waals
(MMSYV) potential form. This is the same potential form used by Lee and co-workers for

the RgX neutral potentials!> and in our previous work.3 For the neutral, this potential has
the reduced form, with f(x) = V(R)/e and x = R/Rm:

£(x)=e?Alm5) _pphl=x), 0<x<],
A I, PLACS) =M, (x) l<x<x, a.1)
=SW(x)M2(x)+[l—SW(x)}/V(x), X, <x<X,, .
=—Co,x* —Cyxt=W(x), X, Sx<eoo,
49




where the switching function is given by

SW(x) = %[cos?—(g'—)-& 1},

X2 _xl) (32)
and
6r — 6 8r T 8
&R, &R (3.3)

Here, € is the potential well depth and R is the bond length. C_ is the induced dipole-

induced dipole dispersion coefficient, and C8 represents the induced dipole-induced

quadrupole dispersion coefficient. Higher dispersion terms are neglected, as is the small
S I
induction term, varying as R , arising from the halogen permanent quadrupole moment.

The anion potentials are of the same form, except that the dispersion terms are

replaced by
f(x)=-B, x™ =B, x* =W(x), X, $x<oo (3.4)
with
B, = ;2 . By = i} : (3:3)
and
B, =1q’q/®, By=3q'0,* +Cq (3.6)

Here, g is the halide charge and B, is the coefficient of the dominant term in the long

range RgX- potential, reflecting the dipole induced in the rare gas atom by the halide

R
charge. The Bs term arises from quadrupole induction and dipole dispersion terms. o y !

R
and o * are the dipole and quadrupole polarizabilities of the rare gas, respectively.

The dispersion coefficients Cs and Cs are estimated using the formulas of
Koutselos et al.32 These formulas involve the dipole and quadrupole polarizabilities of
each interacting atom, and an effective number of electrons, N, characteristic of each
atom. N is empirically determined from the like-atom Cs coefficients.33-35 In the case of

the halide atoms, the values of N are assumed to be the same as those of the isoelectronic
rare gas atoms.
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In calculating the dispersion coefficients for the neutral RgX complexes one must
account for the open shell nature of the halogen atoms which results in anisotropic
polarizabilities. The anisotropy of the dipole polarizability has been calculated for the Ci
atom, neglecting spin-orbit effects, to be 14% relative to the average over all M, states.36
The halogen in the X state of an RgX complex, with the unpaired electron oriented along
the internuclear axis, thus has a smaller polarizability and smaller dispersion interaction
than in the IT state, where the unpaired electron is perpendicular to the axis. Bartolotti et
al.37 have calculated the anisotropy of the quadrupole polarizability of the Cl atom.
However, in this calculation, the value given for the quadrupole polarizability of the Ar
atom is 18% higher than the accurate value of Thakkar et al.3® Therefore, the Cl

quadrupole polarizabilities have been scaled down by this amount. This gives an

anisotropy of 16% for o . Because the anisotropy of o of Br has not been calculated, it

was assumed to be the same as that of Cl. Likewise, because calculations of ¢ are not
q

available for Br, these were estimated using the “hydrogenic relationship” discussed by
Sastri et al:39

o, = 15700:3g 3.7)
The anisotropy of o was also assumed to be the same for Br as for Cl. To find the
dispersion coefficients for states including spin-orbit effects, we note that the 73 state

has pure IT character, while at long range the X 4 state is’a mixture of 2/3 Z and 1/3 T1

character, and the II1 state has 1/3 £ and 2/3 IT character.!¥ We assume that these

mixing coefficients are constant for all regions of the potential where dispersion is the
dominant interaction (i.e. x > x; in Eq. (1)).

The polarizabilities and effective numbers of electrons used here can be found in

Table 3.4. The C s and C ; coefficients for the various interactions are given with the other
potential parameters, discussed below, in Tables 3.5-3.7. The C6 values are fairly close
to those of Lee and co-workers,!3 but the C . coefficients are in general larger because

Lee and co-workers approximated C, with the values from the isoelectronic rare gas
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pairs. Because the ZEKE spectra are not sensitive to the very long range part of the
potential, B4, Bg, Cs and Cg were kept fixed at the calculated values during the fitting

procedures.

Table 3.4. Dipole and quadrupole polarizabilities and effective numbers of
electrons used to calculate dispersion and induction coefficients. In atomic units.

Atom Corresponding ay [ N
Neutral Spinless State
> 13.3° 72.0° 4.2¢
Cl II 15.3® 84.9° 4.%¢
3 18.7¢ 131° 6.2
Br I 21.54 154¢ 6.2¢
Cr 28.1¢ 5.404"
Br - 36.4¢ — 6.309f
Kr 16.798 | 99.296" | 6.309'
Xe -— 27.168 22329 | 7.253
References for Table 3.4
(a) Ref. 36.

(b) Values from Ref. 37, scaled by a factor of 0.822 as explained in the text.
(c) Ref. 33.

(d) Derived from the spherically averaged value given in Ref. 33, assuming the same
anisotropy for Br as for Cl.

(e) Calculated from oy of Br using the “hydrogenic relationship” o = 1.5700,*"? given in
Ref. 39.

(f) Calculated from the Cg values of the corresponding isoelectronic rare gases from Ref.
34, using the Slater-Kirkwood formula (see, for example, Ref. 35).

(g) Ref. 34.
(h) Ref. 38.

(1) Calculated from the Cg values from Ref. 34.
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Since the ZEKE spectra do not give information about the absolute values of ¢
and R,, we have used results .from previous experiments to guide our choice of these
parameters. For KrBr, we fix R and € of the X  state at the values determined in the
scattering experiments of Lee and co-workers.!3 For KrCl the values determined by
Aquilanti and co-workers for the X £ states are used.!® For XeBr, Ry and € are taken
from the X 1 state potential of Tellinghuisen and coworkers,!3:14 which they obtained

by combining their vibrationally resolved B+-» X i emission spectrum with the

repulsive wall of the potential of Lee and co-workers.1>  The emission spectrum
independently provides a more precise well depth £ than could be determined from the
scattering experiments alone: Clevinger and Tellinghuisen cite an uncertainty of 0.8%
for their value of £, significantly more precise than the uncertainty cited for the scattering
results (~5%). However the uncertainty in R, is essentially the same as in Lee’s potential
(~10%).

To determine ¢ for the anions and the remaining electronic states we then use the

relationships implied by Figure 3.4, on the following page, namely:

an X
— 1 - —
£ = voo(X >)+ W +E- @ EA (3.8)
b !
£=E, - Ax_l -0+ (3.9)
X /4
s”=ex+Am-AX_”- @ + o (3.10)

where v (X L) is the origin of the XL state, @, w*, etc. represent zero point
00 2 g 2 0 0 p p

energies, EA is the electron affinity of the halogen atom, A, is the X§-I4 state

splitting (between v=0 levels), and A,  isthe X 3-1I 1 state splitting.
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Figure 3.4. Schematic potential energy level diagram, showing the energetic relations
among the atomic and molecular anion and neutral electronic states.
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Once ¢ is fixed for the J$, /I and anion states, R is found for these potentials
by first adjusting R _ of the anion to best reproduce the observed peak intensities of the
X 1 state portion of the spectrum. When R is known for the anion, R for the X { and
11 § states can then also be found by means of the Franck-Condon simulation.

For KrBr the initial values of the X +and I3 state potential parameters §, ., x

e M
and x, were taken to be the same as Lee’s values.!5 The f; parameter was kept fixed at

the initial value because of the observation by Lee and co-workers that the slope of the
repulsive part of the potential, with this § values, agrees well with the slope determined

from analysis of the excimer emission.!> The remaining parameters, 8, x and x_ were

1

then adjusted to reproduce the peak spacings seen in the ZEKE spectra.

In the case of XeBr, the [31, [32, x and x parameters of the X { state were
adjusted to best fit the RKR turning points determined by Tellinghuisen and co-corkers.!4
With this potential form, it was possible to reproduce the RKR'turning point energies to
within 3.5 cm’. The vibrational spacings for the first nine levels of the resulting MMSV
potential are within 0.2 cm™” of those calculated from Tellinghuisen's spectroscopic
constants, with the exception of the =0 to V=1 spacing, which differed by 0.4 cm™.
This level of agreement was judged to be sufficient for the purposes of this work.

Because of the accuracy of the Tellinghuisen potential, no adjustments were made to the

X1 state MMSYV parameters during the fitting procedure.
For KrCl, the shape of the X { state potential was estimated by choosing the

MMSV parameters to reproduce the X 1 state potential of Aquilanti and co-workers,!6
who used a different representation of the potentials. This was not modified during the
fitting because of the absence of sufficient detail in the ZEKE spectrum. Therefore, in
the KrCl simulation only the anion parameters are adjusted.

Once the potentials are established by the Franck-Condon fitting procedure, a

rotational simulation is performed to fit the observed asymmetric peak shapes. In this
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procedure, a set of rotational lines are calculated for each vibrational band, and these are
convoluted with the asymmetric ZEKE instrumental line shape. The intensity of the

ZEKE electron signal, I(E), due to an individual line is represented by:

3
{2 {52
I1(E)= - - E2E, G
1+C(E—EO) +d(E—E0] .
r T

=0, E<E,

with a = 4.3, b = 0.19, c = 4.2, and d = 2.3, and where E-E; is the energy above the
threshold, E,, of the line in cm”, and T is the full width at half maximum (FWHM) in
cm’. The line shape parameters are obtained by a non-linear least squares fit to the ZEKE
spectra of Br. This form differs from that used previously3 and is a more accurate
representation of the true ZEKE line shape. Readers are referred to our previous work?3
and to Appendix B for further details of the rotational fitting procedure. As in previous
work, the rotational temperature was assumed to be 40 K.

The simulated spectra are shown as dotted lines superimposed on the
experimental spectra in Figures 3.1-3.3. For the KrBr" and XeBr spectra, the anion
vibrational temperature for the II5 state differs slightly from the lower energy state(s)
because the spectra were taken with different source conditions. The best-fit potential
parameters are given in Tables 3.5-3.7, and the potentials are plotted in Figure 3.5, on the
following pages.

Fitting the XeBr and KrCl spectra is fairly straightforward, because the peak
assignments are readily apparent by inspection of the spectra. However, for KiBr the
fitting procedure i1s used as an aid in assigning spectral features, since not all of the
assignments are obvious from the spectra. Specifically, although the assignments of the

X + state features are straightforward, the location of the origin of the /2 state is not

obvious upon initial inspection. As mentioned in Section 3.3.1, peak 2 of Figure 3.1(a) is

assigned to the 14 origin because this allows the best fit with the model potential. Also,
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-1
this assignment gives a value of the X §-73 state splitting, Ax.;, of 54.1 cm . This is

-1
somewhat larger than Ay.; for ArBr, 38.2 cm ,3 a result expected due to the stronger Kr-

Br interaction. On the other hand, if peak e, were chosen as the [/ % state origin, Ay,

would essentially be the same as in ArBr, contrary to expectation. This further
corroborates our choice of peak 2 as the I state origin.

The method for estimating the uncertainties of the potential parameters is
discussed at length in our earlier work.3 Here, we present these estimated uncertainties
along with the potential parameters in Tables 3.5-3.7. The anion and neutral potentials
are plotted in Figure 3.5. It should be remembered that the uncertainties in € and R,, are
expected to be fairly rigorous, whereas the uncertainties given for the other potential
parameters represent lower bounds on the true uncertainties, because a complete

multivariate analysis of the correlations amongst these parameters was not performed.
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Table 3.5. MMSYV potential parameters for KrBr and KrBr, and zero point energies (a)
and fundamental vibrational frequencies (Vy;) calculated from the potentials. Term values
Tp are referenced to anion ground vibrational state. Estimated uncertainties are given in

parentheses.

X1/2 1312 112 Anion
Tuis (K) of 68. (4.) 68. (4.) 45.(3.)
anion
To(cm™) | 27602.9 (2.0) | 27657.0 (4.0) | 31321.7 (2.0) 0
@y (cm™) 12.5 11.7 12.4 19.2
Vo (cm™) 23.8 21.4 22.8 37.2
£ (meV) 19.9 (1.0) 13.1(0.9) 15.7 (1.0) 79.5 (1.0)
R (A) 3.90 (0.30) | 4.15(0.30) 4.03 (0.30) 3.85(0.30)
B 5.70 (0.40) | 7.20 (0.50) 7.00 (0.50) 4.62 (0.30)
B, 6.72 (0.30) | 8.00 (0.30) 7.20 (0.30) 4.62 (0.20)
x, 1.02 (0.06) | 1.05(0.06) 1.05 (0.06) 1.04 (0.06)
x, 1.70 (0.20) | 1.65(0.10) 1.85 (0.20) 1.50 (0.10)
C, (eVe A | 86.6(13.0) | 927 (14.0) 89.7 (14.0)
C, (eVe A) | 740.(230) | 801.(250) 770. (240.)
B, (eV- A% 17.91 (2.70)
B (V- A)) - == 165. (41.)
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Table 3.6. MMSYV potential parameters for XeBr and XeBr, and zero point energies
(ap) and fundamental vibrational frequencies (vy;) calculated from the potentials. Term
values Ty are referenced to anion ground vibrational state. Estimated uncertainties are

given in parentheses.

X1/2 II1/2 Anion
Tus (K) of | 70. (4.) 90. (5.)
anion
To (cm™) 27890.0 (2.0) |[31623.6(4.0) |0
@y (cm™) 12.3 12.6 21.3
vor (cm™) | 24.1 23.1 42.1
£ (meV) 31.53(0.25) [25.52(0.74) | 126.92(0.50)
R _(A) 3.82(0.19) 4.00 (0.22) 3.81(0.21)
B, 4.35 (0.30) 6.42 (0.45) 3.50 (0.25)
B, 7.41 (0.30) 7.00 (0.28) 5.30 (0.21)
x| 1.01 (0.06) 1.03 (0.06) 1.03 (0.06)
x, 2.00 (0.24) 1.60 (0.19) 1.60 ( 0.19)
C, (eVe &%) | 128.(20) 133. (21.)
C, (eVe A’) | 1260.(400) | 1320.(410) |-
B (eVeA) |~ 28.98 (4.30)
B, (eVe A%y |- 271. (68.)
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Table 3.7. MMSYV potential parameters for KrCl and KrCl, and zero point energies ()
and fundamental vibrational frequencies (V) calculated from the potentials. Term values
Ty are referenced to anion ground vibrational state. Estimated uncertainties are given in
parentheses.

X1/2 Anion
wa (K) of 210. (10) —

To (cm™) 29724.5(2.0) [ 0

ay (cm™) 16.0 29.3

Vo (cm™) 29.9 55.5

€ (meV) 22.01 (1.00) |95.7(1.0)

R (A) 3.75(0.10) | 3.83(0.10)
B 5.49 (0.40) | 5.70 (0.50)
B, 570 (0.20) [ 4.40 (0.20)
x 1.30 (0.08) | 1.30 (0.06)
x 1.90 (0.20) | 2.50 (0.20)

C, ev-d) |6080D) |

C, (eVs A | 473-(71)
B (eV+A) |~ 17.91 (2.70)

B, (eV- Ay | 138.(35.)
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Figure 3.5. Plots of model potentials for the RgX anion and observed neutral states
determined from the ZEKE spectra, using the MMSYV potential parameters given in
Tables 3.5-3.7.
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3.5. Discussion
In this section we discuss our results for the neutral and anion RgX potentials and
compare them to previously published potentials. The neutral potentials presented here

do not differ greatly from earlier potentials. For the KrBr X 1 state, of course, € and Rn,

are the same as those from Lee’s study,!3 since these were not adjusted in our fitting

procedure. Our values of ﬁz, x, and x, differ somewhat from Lee’s values and result in an
improved match with the vibrational spacings in the ZEKE spectra. As mentioned above,
ﬂl was not adjusted, in order to retain agreement with the repulsive wall slopes from

emission studies. For the /2 state of KrBr, the bond length is somewhat longer and the

well depth a bit shallower than Lee’s values. The difference in R values is well within

the stated 10% uncertainty, but the difference in € is just outside this range at 12%.

Our XeBr X 1 state potential is more or less identical with that determined by
Clevenger and Tellinghuisen,!# differing only because of the limitations of the MMSV
potential form, and was not varied during the fit because of the much higher relative
accuracy of the emission results. The few features of the XeBr X 1 state observed in the
ZEKE spectrum (the progression v'=0, 1, 2 <~ v" =0, i.e., peaks 1, a, and b, in Figure
2) are consistent with the emission results within our experimental uncertainty.

Our X 1 state potential for KrCl is essentially identical to the integral cross-
section potential,!6 differing only in the choice of potential form. This is because the
ZEKE spectra do not contain enough information to significantly improve on the
potential obtained from the scattering experiments.

We obtain significantly more new information about the anion potentials. The
trends in anion binding energies are similar to those seen in our previous study.3 The
larger binding energy for XeBr compared to KrBr is due to the larger polarizability of
Xe, and the larger binding energy of KrCl™ vs. KrBr results from the smaller R, and

stronger charge-polarizability attraction in KrCI". For all three anions, the change in R,
upon photodetachment to the X 4 state is very small, even though the anion binding
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energy is considerably larger. Apparently the larger radius of the halide in the anions
compensates for the stronger binding energy.

In Table 3.8, on the following page, we compare the potential parameters R, and €
of the anions from the present study with other values from the literature, all of which
have been derived through less direct means. It can be seen that the literature values are
quite scattered. In comparing our results with the results of Kirkpatrick and Viehland,®
who obtained potentials via direct inversion of ion mobility data, we find our well depths
are systematically shallower and our bond lengths systematically longer. However,
except for the XeBr™ well depth, our values lie within or close to the 10% uncertainties
cited by those authors. Similar discrepancies with other ZEKE potentials were explored
in a recent paper by Kirkpatrick and Viehland, in which they used the ZEKE potentials3
of Arl and ArBr to simulate ion mobilities.40 They found that the ZEKE ArT potential
satisfactorily reproduced the mobility data, despite significant differences in R, and
€ from the potentials obtained by direct inversion of mobility data. However, the
agreement for ArBr was not as good. The authors cite the relative insensitivity of the
mobility data to well depth to explain these findings.

Potentials derived from the earlier mobility results of McDaniel and co-workers>
for KiBr and XeBr are slightly closer to ours, but show the same sign and order of
magnitude deviations in € and R.. The electron gas calculations of Waldman and
Gordon® again give systematically larger well depths than ours, although the bond

lengths are in reasonable agreement.
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Table 3.8. Comparison of ZEKE-determined anion potentials with literature potentials.
Uncertainties are given in parentheses as reported in each work cited, if available.

KrBr XeBr’ KrCI'

g(meV) | Rm (A) |e(meV) |Rm(A) |&(meV) |Rn (A)
present work | 79.5 3.85 126.92 3.81 95.7 3.83

(1.0) (0.30) (0.50) (0.21) (1.0) (0.10)
ion mobilities’ | 87.1 3.73 145 362 |-
ion 88.7 3.579 169 (17) |3.397 102 (10) | 3.448
mobilities® (8.9)
electron gas® | 93 3.76 159 3.64 - ---
electron gas® | --- - --- - 115 348
empirical® 98 3.99 142 4.10 105 3.85
e:mpiricalf 90.1 3.91 130 4.02 954 3.79
semi- 92.5 3.70 167 3.62 107 3.55
empirical®
semi- 75.1 3.87 99.9 4.05 - ---
empirical®
semi- 85 3.79 146 3.74 108 3.53
empirical’

References for Table 3.8

(a) Ref. 5.

(b) Ref. 6.

(c) Ref. 8.

(d) Ref. 7.

(e) Ref. 11.

(f) Empirical method of Ref. 11 modified as explained in the text. |
(g) Ref. 32.

(h) Ref.9.

(1) Ref. 10.




The results of Pirani and coworkers in Table 3.8 are obtained by very simple formulas
based on empirical polarizability correlations.!’ Comparison to the ZEKE potentials
show discrepancies greater than our experimental uncertainties, except for Rn of KrBr
and KrCl. Because of the simplicity of this method, and its usefulness for predicting
new potentials, it is of interest to “recalibrate” these polarizability correlation formulae
using the current and earlier ZEKE results. Fitting the € and R,, parameters of the current

study, and also those of the previous work on Krl, ArBr and Arl we obtain

%y o H
R,=1725— %1% (3.12)
[a,aB(H%)]
and
e=43801(:”4 (1+p) meV (3.13)
with
p= Qs . - (3.14)
[1 +(2a,/ ay) ’]aﬁ

Here the anion and neutral polarizabilities, ¢y and o, are in A* and R,, is in A. The
numerical coefficients in Egs. (3.12) and (3.13) differ somewhat from Pirani’s values,
1.767 and 5200,!! which were obtained using & and R, for the Li"-He and Li -Ne
interaction potentials as references. The results using our parameters are given in Table
VIIL; a significant improvement is obtained, although agreement is certainly not perfect.
Eqgs. (3.12) and (3.13) should be useful in predicting other halide-rare gas interactions;

this will be tested in ongoing studies of similar species.

Finally, we should remark on the apparent absence of the I3 state in the XeBr

and KrCl" ZEKE spectra, and the much lower intensity of this state relative to the X 1

state in the KrBr” ZEKE spectrum. Examination of these and our previous results on
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Arl, ArBr’, and KrI” shows an overall trend in which the [ % transition is weaker for

smaller halides and larger rare gas atoms. This may reflect variations in the transition
moments, or perhaps the explanation lies in the differences between the s-wave partial
detachment cross sections, since only those photoelectrons ejected with orbital angular

momentum /=0 contribute to the ZEKE signal.22

3.6. Concluding Remarks

In this article, we have presented the ZEKE spectra of the RgX- complexes KrBr,
XeBr, and KrCl. We have obtained accurate electron affinities for these systems.
Model anion and neutral potentials were constructed by Franck-Condon simulations of
the spectra. In cases where comparison is possible, the neutral potentials are in
reasonable agreement with the potentials from scattering experiments, with some minor
adjustments in the well region for KrBr and XeBr. The anion potentials constructed from
the data are, we believe, the most accurate experimental determinations available for
these systems so far.

We have recently obtained results for Ar,Cl" and Xe,I" clusters. Analysis of these
spectra will yield further insight into the pair potentials and many-body interactions that

govern bonding and structure in these species.
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Chapter 4. Observation of many body effects in the zero electron kinetic energy
(ZEKE) and threshold photodetachment spectra of Ar,Br (n=2-9) and Ar,I'

(n=2-19)*

Abstract

The anion zero electron kinetic energy (ZEKE) spectra of the van der Waals clusters
Ar,;Br and Ar,;I° have been measured, and  partially discriminated threshold
photodetachment (PDTP) experiments have been performed on ArsoBr and Arg.el.
Adiabatic electron affinities (EAs) have been determined from these results. The
separation of the halogen Pin asymptotic states was measured for the Ar,;3;Br and Araysl
neutral clusters, and the separations between the *Py, and %P, asymptotic states was
determined for Ar,3;Br and Ar,;I. Model potentials were constructed, using the pair
potentials determined from previous work on the diatomic rare gas-halide atom
complexes, as well as various non-additive terms, and the cluster minimum energy
structures were determined using a simulated annealing procedure. A simple first-order
degenerate perturbation theory model of the neutral cluster potentials was found to agree
well with the *Ps, asymptotic electronic state separations observed in the ZEKE spectra.
The halogen spin-orbit splittings in the Ar,3Br and Ar, .l clusters were found to be slightly
smaller than those of the free halogen atoms. The binding energies calculated from a
model additive potentials were found to be inconsistent with the experimental electron

affinities. Model potentials including many-body induction effects, three-body "exchange

* Originally published in slightly different form in J. Chem. Phys. 105, (1996), with co-
authors Yuexing Zhao and Daniel M. Neumark.
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quadrupole” effects and a triple-dipole dispersion term were found to agree well with the
experimental results. Many-body induction was found to be the dominant non-additive
effect. The exchange quadrupole effect--i.e., the interaction of the exchange induced
electron charge distribution distortion among argon atoms with the halide charge-- was

also found to be important.
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4.1. Introduction
In most studies of weakly interacting atoms or molecules, pairwise additivity of the
potentials is assumed. Given pair potentials, Vj;, between atoms i and j, the pairwise

additive approximation to the total potential of N interacting atoms is
N
Voir = 2 Vi (lri - D 4.1
i<j

Here r; and r; represent the positions of atoms i and j. If the atoms had closed valence
shells, and if no deformation of the atomic charge distributions were induced by the
interactions, then pairwise additivity would hold exactly.l However, if the deformation of
the charge distributions due to the interatomic interactions (e.g. dispersion, induction or
exchange) is considered, the assumption of pairwise additivity breaks down.' This
assumption can also break down if one of the atoms has an open valence shell. Then it is
necessary to consider the electronic states of the open-shell atom which arise from the
simultaneous presence of all the other atoms; the potential energy surfaces of these states
cannot, in general, be obtained by simply adding the pair potentials in the sense of
Equation (4.1). In either case it is necessary to extend Equation (4.1) to include non-

additive, or many-body, effects:

V’""")"'b"d)' = VPaif + Vnon-ad.d
3 . : 4.2)
= V”""' + wa"(ri’ri’rk) et 2 Vt"jk---:(ri’rj’rk"'r:)
i<j<k i<j<kez

Non-additive effects are believed to play a significant role in determining the
properties of bulk matter. For example, the binding energies of rare gas solids (Ne, Ar, Kr
and Xe) measured experimentally are about 7-10% smaller than the binding energies

calculated from accurate pair potentials. > However, there has been some controversy
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about the precise nature of the non-additive effects involved.>> Furthermore, it is in
general difficult to extract detailed information about non-additive effects from
measurements of bulk properties.’

Cluster studies represent an alternative approach to learning about non-additive
effects. By probing the spectroscopy and/or energetics of a cluster as a function of its
size, and comparing the results with predictions based on additive forces alone, one can
obtain considerable insight into the various non-additive components of the interaction
potential.” To this end, we present in this paper the anion zero electron kinetic energy
(ZEKE) spectra of the Ar,3Br and Ar;I° van der Waals clusters, and partially
discriminated threshold photodetachment (PDTP) spectra of Ars.sBr and Arg.;oI". We also
present the results of calculations with model potentials involving various non-additive
terms, in an effort to understand the experimentally observed electron affinities (EAs) and
electronic structure. Our results probe non-additive effects in both the cluster anion and
the open-shell neutral cluster resulting from photodetachment. This work is an extension
of our previous ZEKE study of the diatomic rare gas-halide atom complexes,’ and
previous ZEKE work on the I'CO, complex.’

In order to extract information on many-body effects from experimental studies of
clusters, the pair potentials must be known more accurately than the magnitude of the
many-body effect. Furthermore, the experiment must provide information about the "true”
potential that can be compared with the results of calculations with model additive and
non-additive potentials. This information may consist of spectroscopically measured
vibrational frequencies, rotational constants, etc. In this case, accurate dynamical
calculations are needed to extract this information from the model potentials for

72



comparison with experiment. Alternately, some experiments allow a more direct
measurement of the cluster binding energies, in which case comparison with model
potentials is much more straightforward.

Non-additive effects can affect the rotational, vibrational, and -electronic
spectroscopy of a cluster. Much of the recent interest in this field has focused on high
resolution spectroscopy of van der Waals clusters. For example, pure rotation spectra of
Ne,Kr and Ne,Xe have been observed using fourier transform microwave spectroscopy.®
The structural information and nuclear hyperfine coupling constants determined from these
spectra show evidence of non-additivity. There have also been a number of near and far
infrared studies of molecular chromophores in rare gas clusters.*” ® In many cases it is
difficult to extract meaningful information about many-body forces from spectroscopic
studies because the intermolecular pair poténtials are often not well enough characterized,
in that the uncertainty in the pair potentials is comparable to the magnitude of the many-
body effects. There has, however, been recent experimental and theoretical progress in
determining intermolecular pair potentials accurately enough to learn about three body
interactions in the Ar,HCL>** '® Ar,HF,”'* and Ar,DCP'® systems. In work more
closely related to the results presented here, the electronic spectroscopy of Ar, Hg has
been studied with multi-photon ionization,'' and Ar,Ba clusters have been studied by laser
induced fluorescence.'> Only the Ar,4Hg study was mass-selective. From this work,
progress has been made in identifying "non-additive" effects in the excited electronic state
of these clusters with open-shell chromophores.'''?

It is challenging to extract information on non-additive effects from direct

spectroscopic measurements such as those mentioned above. Even when mass selectivity
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can be obtained, non-trivial dynamical calculations are needed to extract the vibrational
and rotational structure information from a many-body model potential in order to
compare it with the experimental spectrum. It is desirable, therefore, to experimentally
measure the binding energies (BESs) of clusters, because BEs can be readily obtained from
many-body model potentials by simple methods. Moreover, there is generally an intuitive
connection between a particular non-additive term and the cluster binding energy, in the
sense that one can usually predict by inspection if the binding energy will increase or
decrease when a given many-body term is added to a model potential. However, in most
cases, BEs of clusters cannot be directly obtained from experimental spectra. Exceptions
include the pump-probe experiments of Janda and coworkers on Ar,;Cl'** and HeBr,,'®
and the stimulated emission pumping experiments on the carbazole-Ar system by
Leutwyler and coworkers."

Anion photoelectron spectroscopy (PES) of clusters has proved useful in providing
more direct information about the relative binding energies of anion and neutral clusters.
It also has the advantage of mass selectivity. Examples include the work of Markovich et
al. on X' (H:0), (X" = CI', Br" and I'),"” Bowen and coworkers on O"Ar,,'® and Arold et
al. on X(CO,), and X'(NZO),,.l7 The theoretical calculations of Berkowitz er al.'® in

conjunction with the PES spectra of Markovich er al.

have demonstrated the
importance of non-additive inductive effects in Br (H,O), clusters.

However, there are two problems with trying to extract information on non-
additive forces from these studies. First, the pair potentials for the relevant neutral and
ionic species are not in general known very accurately; this is particularly true for clusters

involving molecular solvents. Secondly, the resolution of conventional anion PES is
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typically in the range of 80 cm™” (Ref. 17)- 400 cm™ (Ref. 15), depending on the type of
energy analyzer used. Because of this limited resolution, anion PES experiments can only
be sensitive to the largest non-additive effects, such as inductive effects in the anion
clusters.

The anion ZEKE technique used in the present experiments on Ar,Br and Ar,[’
combines the advantage of mass-selectivity with much higher resolution (ca. 2-3 cm™ for
atomic systems) than PES experiments. This resolution allows accurate measurement of
electron affinities, as w-el] as spectroscopic observation of the electronic structure of the
neutral Ar, X clusters. The Ar-X" and Ar-X pair potentials are known accurately from our
previous work on the diatomic species.* Thus, by employing simulated annealing
procedures to determine the binding energies and neutral electronic structure from model
potentials, we can directly compare our experix%xenta] results with the pairwise additive
predictions, and explore the effects of various many-body corrections to the additive
potentials. From this comparison, we can obtain a detailed picture of non-additive effects
in Ar,X and Ar,X clusters.

This paper is organized as follows. In Section 4.2 we briefly describe the
experimental apparatus and techniques. In Section 4.3, we present the anion ZEKE and
PDTP spectra, determine the experimental EAs, assign the electronic structure observed in
the ZEKE spectra, and briefly discuss the observed vibrational structure. In Section 4.4,
we describe the methods and present the results of calculations of the cluster EAs and
neutral electronic structure from model additive and non-additive potentials, and compare

them with the experimental results. In Section 4.5, we summarize, considering what we

75

S e e —— T R % v S I SCRaEIE] S ATSENNREY - X AK N S




can and cannot conclude about many-body interactions on the basis of our results, and

suggest future avenues for experimental and theoretical research.

4.2. Experiment

Zero electron kinetic energy (ZEKE) spectroscopy was first developed for
photoionization of neutrals by Miiller-Dethlefs er al.'’ and applied to negative ion
photodetachment by Neumark and co-workers.”’ The experimental apparatus has been
described in detail elsewhere.® Briefly, Ar,X clusters are produced by expanding a
mixture of approximately 0.1-0.5% Freon (CF;I or CF,CIBr, PCR Co.) in a ca. 25%
argon/ 75% helium mixture through a pulsed valve (General Valve Series 9) with a 0.5
mm diameter orifice. Backing pressures are typically 60-80 psi. The expansion is crossed
with a 1 keV electron beam. Halide anions are formed by dissociative attachment of low
energy secondary electrons and undergo clustering in the continuum flow region of the
free expansion. The molecular beam is collimated with a skimmer, accelerated to 1 keV,
and mass-selected with a 1 m long collinear time-of-flight mass spectrometer.”*?' The
mass selected ions then enter a differentially pumped detection region, and are irradiated
with a pulse from an excimer pumped dye laser (Lambda Physik). For the ground states
of Ar,I, BBQ, PBBO, Exalite 398, QUI and DMQ laser dyes (Exciton) were used. For
the Ar,.;] excited state scans rhodamine 610 dye was frequency doubled with a KDP
crystal. For the Ar.Br clusters, DMQ and PTP dyes were used for the ground states;
rhodamine 640 was doubled with a KDP crystal for the excited state Ar,.3Br spectra. The
power of the undoubled light was typically 7-20 mJ per pulse at the interaction region.
The frequency doubled laser power was about 2 mJ per pulse. The laser wavelength was
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calibrated from 337-400 nm with the Ne lines observed by the optogalvanic effect in a Fe-
Ne hollow cathode lamp. The fundamental wavelength of the frequency doubled light was
calibrated in the region 600-640 nm with an iodine absorption cell.

Two modes of electron detection were used in the present studies: the high
resolution ZEKE mode, and the lower resolution partially discriminated threshold
photodetachment (PDTP) mode. In the ZEKE mode, the photodetached electrons are
extracted collinearly by a weak (2-5 V/cm) electric field after a 300-500 ns delay, and
deflected to an off-axis microchannel detector. Detection is gated to provide temporal
filtering. A series of apertures between the detachment point and detector provide spatial
discrimination. This combination of spatial and temporal filtering discriminates against
high energy electrons, so that as the laser wavelength is scanned, only photoelectrons
with nearly zero kinetic energy are detected. The resolution of the instrument is about 2-3
cm’ for atomic systems.”® However, in the spectra of molecules, the peaks are broadened
by unresolved rotational structure. For the systems studied in this paper, the observed
peaks were at least 8 cm’! wide (FWHM).

In the PDTP mode®®, there is no delay between the laser pulse and electron
extraction, retaining only spatial filtering as in the “steradiancy detector” first described by
Baer et al.** This results in some discrimination against electrons with energies greater
than about 150 cm’, and leads to peaks about 200 cm’ wide in the present case.
However, the thresholds, and hence the electron affinities, can be determined more
accurately than this, to within approximately 50 cm™. Because nearly all of the electrons
are collected, this mode of operation has the advantage of much higher sensitivity than the
ZEKE mode.
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The ZEKE spectra were averaged over several thousand laser shots per point
taken in several separate scans. The PDTP spectra were averaged over 300-1000 laser
shots per point. All spectra were normalized to the ion signal and laser power.

No obvious “magic numbers” were seen in the mass spectra. The ion signal
smoothly decreased in intensity with increasing cluster size in the mass spectra of both the

Ar,Br and Ar,l clusters.

4.3. Results
4.3.1. Ar:sl, ArBrr

The ZEKE spectra of Ar,Br” and Ar;Br are shown in Figure 4.1, along with the
spectrum of the diatomic ArBr’ complex, reproduced from Reference 4. ZEKE spectra of
Arl, Ar,I” and Arsl are displayed in Figure 4.2. All the spectra have two sets of features,
separated by approximately the spin orbit splitting of the halogen atoms: 3685 cm™ for Br
and 7603.15 cm™ for 1.2 We assign the lower energy set of features to electronic states
arising from the ground *Ps,, state of the halogen atom, and the higher energy features to
*Py» asymptotic states. The ground state manifolds of the Ara;I clusters are dominated by
two. sharp, intense peaks, labeled X and I, separated by about 40-65 cm™. In the Ar,.;Br
spectra, both features are also present, but peak / is less intense and distinct than in the

Ar,I spectra.
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Figure 4.1. Zero electron kinetic energy (ZEKE) spectra of (a) ArBr’, (b) Ar,Br, and (c)
ArBr’. The arrows indicate the neutral electronic state origins.

79




Y Y
X112 (a) /2
Y
I3/2
""l""l'"‘l"‘*"l’/‘//'L"l""l""l""l'r
24850 24900 24950 25000 32450 32500 32550 32600
7 Y
X I
= (b)
EQ I
a
=
o
!
Q
2
m J/
T i

N N R S T B B
25050 25100 25150 25200 32650 32700 32750 32800

7

L

TR e
32850 32900 32950 33000

e
™7

T
25250 25300 25350 25400

Laser Wavenumber (cm-1)
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In the previous work on the diatomic spe:cies4 the corresponding features were
assigned to the origins of the two electronic states that correlate to the halogen Pin
asymptote, referred to as the X+ (o=3,Q=4%)and I3 (. =3, Q =3) states, in Hund’s
case (c) notation.”* The feature labeled /7L in the diatomic spectra was assigned to the
origin of the II{ state (j, =3, Q =4), which correlates to the halogen *P, asymptote.

We expect an analogous set of three doubly degenerate electronic states to be present in
the polyatomic clusters. The lower ?P3p, halogen state is split into two doubly degenerate
states by the weak interaction with the argon atoms. We refer to these states as the X and
I states, by analogy with the diatomic case, dropping the €2 designation, as this is no
longer a good quantum number in the polyatomic case. Note that here the “X state”
always refers to the lowest energy state at the equilibrium geometry regardless of the
symmetry of the cluster.

The X and II state origins are blue shifted relative to the corresponding atomic
lines by several hundred cm™. The blue shift increases as the number of argon atoms
increases. This demonstrates that the anionic clusters are more strongly bound than the
neutral species.

In the Ar,Br” spectrum [Figure 4.1(b)] we see some partially resolved peaks to the
red and blue of the X state origin. There is also a long “tail” to the blue of the I state
origin. We attribute all these features to transitions to or from vibrationally excited states.
Based on our previous interpretation of the diatomic ArBr spectrum,® it is likely that the
features to the red of the X state origin are due to hot-band or sequence band transitions

from vibrationally excited anion states. Likewise, the features to the blue of the X state
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origin may be transitions to vibrationally excited neutral ground states and/or hot-band
transitions to the I state. The vibrational progressions are not as well resolved as in the
diatomic spectra. The observed structure is probably due to many overlapping transitions
involving more than one vibrational mode. This spectral congestion appears to be more
severe to the blue of the I state origin, possibly indicating a larger geometry change
between the [ state and the anion than between the X state and the anion, as was seen in
ArBr.* The peaks to the red and blue of the I/ state origin may similarly be understood as
sequence band or hot-band transitions, and transitions to vibrationally excited neutral
states, respectively.

The spectrum of ArsBr [Figure 4.1(c)] appears even more congested. There is a
distinct peak 20 cm™ to the blue of the X state origin, in addition to numerous poorly
resolved features. Again there appears to be an extended unresolved progression to the
blue of the I state origin. The I/ state has two prominent peaks, separated by 14 cm™, plus
some other indistinct peaks to the blue. It is not clear which of the two peaks is in fact the
II state origin.

In the case of Ar.I" [Figure 4.2(b)], the vibrational structure is somewhat less well
resolved than in Ar,Br. There is a clear feature 11 cm™ to the red of the X state origin, as
well as some poorly resolved structure between the origins of the X and / states. There is
a tail to the blue of the I state origin. The spectrum of the /I state is rather sparse, with
some peaks 10-30 cm™ to the red of the origin due to sequence or hot bands, and a slight
shoulder to the blue. The lack of any extended progression indicates that the anion-IJ

state transition is quite vertical.
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The spectrum of ArI” [Figure 4.2(c)] shows clearer vibrational resolution than
ArI'. There are two peaks spaced by 8 and 32 cm’ from the X state origin. However,
the sequence band structure to the red of the origin is not resolved. The II state of Ar;l
displays three distinct peaks 7, 17 and 24 cm™ to the blue of the origin, as well as some
less distinct sequence band structure to the red.

The partially resolved vibrational structure seen in these spectra is of considerble
interest and will be considered further in future publications. In this paper, we are
primarily concerned v./ith the accurate electron affinities and state splittings yielded by
these spectra.

4.3.2. Arg I

The ZEKE spectra of the Ary;I clusters are shown in Figure 3. For these clusters
we studied only the lower (°Ps, asymptotic) states. In the Ars] spectrum [Figure 4.3(a)]
the origins of the X and I electronic states are distinct. In the ArsI” spectrum [Figure
4.3(b)] the peak corresponding to the X state origin is quite broad, and the I state appears
as an unresolved shoulder. The I state also appears relatively less intense than in the Ar, 4]
spectra. Based on the profile of this shoulder, we can only estimate the position of the /

state origin to +20 cm’’.
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Figure 4.3. ZEKE spectra of (a) Arsl', (b) ArsI, (c) Arel’, and (d) ArsI. The arrows
indicate the neutral electronic state origins.
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The spectra of Arel and ArI [Figures 4.3(c) and 4.3(d)] are more congested. The
positions of the X and [ state origins can be estimated, as indicated by the arrows in the
figures, but it is not possible to discern any reproducible vibrational structure. As we go
from Arsl to Arsl, the separation between the X and I states appears to decrease.
Although the exact splitting is difficult to discern from the Arsl” spectrum, it appears in
this case that the X-I splitting again decreases somewhat from ArsI. However, the
splitting appears to increase again in the Ar;I spectrum, in which the two states are better
resolved than in the Argl spectrum.

We attempted to observe ZEKE spectra of Argl and larger clusters, but obtained

only unstructured spectra with no reproducible features.

4.3.3. Partially Dis.criminated Threshold Photodetachment Spectra

Because of the increasing spectral congestion with increasing cluster size and the
difficulty of producing sufficient quantities of large clusters with our source. it was not
possible to perform the ZEKE experiment on clusters with n>7 in the case of Ar,l’, and
n>3 for Ar,Br’. In the PDTP mode of operation it is possible to work with much smaller
quantities of anions, because nearly all of the photoelectrons near the detachment
threshold are collected. Therefore, only the PDTP experiment was performed for Ars¢Br’
and Arg.iol.

The PDTP spectra of Ars.oBr are shown in Figure 4.4, and those of Arg,l in

Figure 4.5 on the following pages.

85

R ST kegl
RN o




Electron Signal

Figure
Ar 4.9BI"

LARE RELRE LA

nlllnllulllnnlll11l||||J11nlnn!uulnulnnll

IR AR AR RN AR R R R AN R R NERA I AR AR AR RARE S AR RS R AN E SIS RRIESRAI
] T

I EEY NI AN ITIENININETY

28400 28800 29200
Laser Energy (cm™)

4.4. Partially discriminated threshold photodetachment

86

29600

(PDTP) spectra of



Electron Signal

e
1 1 1 l 5 ] 1 I 1 1 J ] -1 1 l

26500 27000 27500 28000
Laser Wavenumber (cm-1)

Figure 4.5. PDTP spectra of Arg. ol




The peaks are all about 200 cm™ wide (FWHM), with a rising edge of about 100 cm”. In
order to estimate the adiabatic EAs from these thresholds, we compared the PDTP and
ZEKE spectra of ArsI'. The adiabatic EA of ArsI” from the ZEKE spectrum corresponds to
the 25% point on the rising edge of the PDTP threshold. Because the shape of the PDTP
spectra is relatively unchanging for the larger clusters, we estimated the adiabatic EAs of
the larger Ar,Br” and Ar,I clusters from the 25% point of the partially discriminated cross
sections. A reasonable estimate of the uncertainties in the EAs determined in this way is
+50 cm’, corresponding approximately to the width of the rising edge of the PDTP
thresholds.

The adiabatic electron affinities determined from the ZEKE and PDTP spectra of
Ar,Br and Ar,l are shown in Tables 4.1 and 4.2, respectively. The origins of the / and I/
states, when observed, are also shown, as well as the neutral electronic state splittings Ay,
and Ax.;. The stated uncertainties in the results obtained from ZEKE spectra were
determined by considering the width and reproducibility of the peaks, as well as the scan

step size.
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Table 3.1. Experimental adiabatic electron affinities, excited state origins, and electronic

state splittings for Ar,Br. All energies are in cm’. Uncertainties are in parentheses.

n | EA (X State Origin) | I State Origin Ax.q II State Origin Ax.ar

0 27129.2° . - 30814 3685°

1 27429.6 (3.0) 27467.4 (1.6) | 37.8(2.3) | 31132.3 (1.6) | 3702.7 (3.4)

2 27722.4 (3.0) 27775.5 (5.0) | 53.1(5.5) | 31427.8 (2.2) | 3705.4 (3.7)

3 27994.6 (3.0) 28059.4 (1.6) | 64.8(2.3) | 31702.8 (2.2) | 3708.2 (3.7)

4 28266 (50) - - - -

5 28532 (50) - - - -

6 28778 (50) - - - -

7 29029 (50) - - - -

8 29258 (50) - - - -

9 29491 (50) - - - -
Table 4.2. Experimental adiabatic electronic affinities, excited state origins, and
electronic state splittings for Ar,l.

n EA (X State I State Origin Ax. II State Origin Ax.yy

Origin)

0 24673.3° - - 32276.5a,b 7603.15°

1 | 24888.3 (3.0) 24925.5 (1.5) 37.2(2.2) | 32512.6 (2.2) 7624.3
(3.7)

2 | 25100.9 (3.0) 25152.9 (3.0) 52.03.4) | 32731.2Q2.2) 7630.3
(3.7)

3 | 25303.0(3.0) 25368.0 (4.5) 65.0 (5.1) | 32936.4 (2.2) 7633.4
3.7)

4 | 25502.2 (3.0) 25571 (10) 69 (10) - -

5 25702 (10) 25762 (10) 60 (14) - -

6 25907 (15) 25950 (15) 43 (21) - -

7 26083 (15) 26163 (10) 60 (18) - -

8 26247 (50) - - - -

9 26413 (50) - - - -

10 26582 (50) - - - -

11 26753 (50) - - - -

12 26904 (50) - - - -

13 27079 (50) - - - -

14 27226 (50) - - - -

15 27375 (50) - - - -

16 27488 (50) - - - -

17 27617 (50) - - - -

18 27717 (50) - - - -

19 27794 (50) - - - -

* H. Hotop and W.C. Lineberger, J. Phys. Chem. Ref. Data 14, 731 (1985).
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PCE. Moore, Atomic Energy Levels, v. I, Circ. Natl. Bur. Std. 467 (1949).
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4.4. Analysis and Discussion

Our goal in this section is to compare the experimentally observed electron
affinities and electronic structure with predictions from model potentials. The schematic
energy level diagram shown in Figure 6.6 on the next page relates the experimental
observables, i.e. the adiabatic FAs and neutral electronic state splittings, to the model
anion and neutral potentials. The observed X-I state splitting is then calculated from the
model potential using

Ay lzex—m()){_el-*-m(')’ (4.3)

where €x and ¢ are the classical binding energies, and @, and ®/ are the zero point

energies of the X and I states, respectively. Similarly, the X-II state splitting is given by
Ay =Ex—@) —g,+0) +A, (4.4)
where A is the atomic spin-orbit splitting. Using similar notation for the anion binding
energy and zero point energy, the calculated adiabatic £A of a cluster is given by
EA(Ar Br)= EA(Br)+¢&, —wf —&, +0 , (4.5)
where EA(Br) is the electron affinity of a bare bromine atom (3.3636 eV®). An analogous
equation holds for Ar,l clusters, with EA(I) = 3.0591 eV.2
Notice from Equations (4.3) and (4.4) that a comparison of the neutral potentials
with the experimental electronic state splittings is possible without any knowledge of the
anion potential. Thus to some extent the neutral and anion potentials can be compared

with experiment independently of each other.
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Figure 4.6. Schematic energy level diagram of the Ar,X anion and Ar,X neutral
electronic states.
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" In order to use (4.3)-(4.5), we need model potential functions, and methods to
determine the minimum energy cluster geometries and to calculate the zero point energies.
These are described below. We demonstrate that the experimentally observed cluster
properties are not consistent with pairwise additive potentials, and then consider various

non-additive corrections to the potentials.

4.4.1. Pair Potentials
The pair potential of the ArBr neutral has been determined in scattering

1'27

experiments by Lee er al.”" The scattering experiments characterized only the neutral X3

and I3 state potentials. Our previous ZEKE results* on the ArBr complex provided
further refinement of Lee’s potential, as well as information on the neutral II'5 state and
anion potentials. In the case of Arl, scattering results are not available, so the ZEKE
spectrum is the onlye source of information on the Arl diatomic potentials.

The neutral Ar-X potentials are of the Morse-Morse-switching function-van der
Waals (MMSYV) form. The reduced form of this potential, with x = r/r,, and f(x) = V(r)/e
is

f(x):ezﬁ‘(]—x) ~2¢Pi0=%), 0<x<],

— ezﬁz(l-x) _2332(1’*‘) = M, (x), l<x<xg,

(4.6)
= SW(x)Mq(x)+[1-SW(x)[W(x), x <x<xj,

=—Cgrx 0 - Cg,x 8 =W(x), Xy S x < oo,

where ¢ is the well depth, r» is thé bond length, and the switching function is given by

_1f m(x-x)
SW(X) = E[COSW + 1:|, (47)
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The reduced dimensionless coefficients Cg, and Cg, are related to the usual dispersion

coefficients Cs and Cs by

C C
Cor=—2, Cgr=—%. (4.8)
Er, Erp

The anion potentials have the same form, except that the van der Waals portion is
replaced by a function including charge-induced dipole (+*), and charge-induced

quadrupole and dispersion (r°) terms:

F(3)==Ba,x™" = Beyx™® = W(), Xy Sx <o, (4.9)
with
By B
By, =—%, Bg=—%. (4.10)
Ery Eny

Further details about the construction of the Ar-Br and Ar-I pair potentials are given in
Reference 4. The MMSYV potential parameters used in this work are given in Table 4.3,

below.

Table 4.3. MMSYV pair potential parameters of argon halides.

Arl ArBr

X: 13 n Anion X4 13 ny Anion
e(meV) | 188 | 139 | 160 | 458 | 165 | 115 | 14.0 54.4
T (A) 395 | 4.18 | 411 | 407 | 3.73 | 394 | 389 3.78
B, 715 17251 690 | 570 | 6.80 | 7.72 | 6.70 5.10
B, 6.18 | 630 | 640 | 445 | 650 | 7.10 | 6.35 445
x 1.01 {104 | 1.04 | 108 | 1.02 | 1012 | 1.01 1.065
X2 162 | 1.62 ] 164 | 1.62 | 159 | 1.63 | 1.58 1.66

Cs (VA% | 984 | 984 | 984 - 652 | 702 | 68.8 -

Cs (eVeAy | 715 | 715 | 715 - 379 379 379 -
Bi(eVeAH | - - - 12.8 - - - 12.5
Bg (eVeAY - - - 162 - - - 120.5
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Some of the parameters used here have been modified slightly from those published
previously.! The reason for this is that in the previous work, the well depths of the three
neutral electronic states and the anion were related to each other using the relationships
implied by Figure 4.6, with the zero point energies used in these relations assumed to be
equal to half of the observed vibrational fundamental frequencies. A slightly more
accurate procedure, used to obtain the parameters in Table 4.3, is to calculate the actual
zero point energies from the model potentials. The well depth parameters are then
iteratively adjusted in order to satisfy Equations. (4.3)- (4.5), as well as to fit the observed
spectra. The well depths obtained in this way differ from those given previously by no
more than 2-3 cm’', which is within the uncertainties stated in Reference 4.

It is important here to consider the uncertainties in the pair potential parameters.
In the case of the ArBr potentials, the scattering experiments provide information on the

absolute values of the well depths and bond lengths for the X 1 state. On the other hand,

the ZEKE spectra, although quite sensitive to the relative bond lengths and well depths
between the anion and neutral states, are not very sensitive to the absolute values of these

parameters. Therefore, the r, and € parameters for the X % state of ArBr were fixed at

the values of Lee et al.”’

The parameters for the anion and remaining neutral states were
then adjusted to be consistent with the relations implied by Fig. 4.6, as well as to
reproduce the ZEKE spectrum. The uncertainties in rm‘ and € stated in Reference 27 are
40.2 A and 19 cm’, respectively, so the absolute uncertainties of r, and € for the anion

and the other neutral states are of about the same order. However, the relative

uncertainties in r, and € between the anion and neutral are significantly smaller than this.
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For example, because the uncertainty in the EA obtained from the ZEKE spectrum is +3
cm’', the difference €, - ¢ is known with about this same uncertainty. (See Equation 2).
Similarly, the relative uncertainties in r,, are found to be about 1-2% (0.04-0.08 A), based
on the fit to the ZEKE spectra.

For Arl, for which scattering experiments have not been performed, modified
28

versions of the polarizability correlation formulae of Pirani et al™ were used to estimate r,,

and € for the Il state of Arl, as described in Reference 4. Then the remaining neutral

and anion potentials were adjusted to fit the ZEKE spectrum. The estimated absolute
uncertainties in r, and & of Arl are +18 cm™ for €, and 0.2 A for .. However, the same
considerations about the relative uncertainties among the anion and neutral states also
apply for Arl. The relative uncertainties in € and r, are 3 cm’ and +0.04-0.08 A,
respectively.

To model the Ar-Ar pair interaction, the accurate Hartree-Fock Dispersion (HFD-
B2) potential of Aziz and Slaman® was used. For this potential r,, = 3.7565 A and € =
99.5465 cm™. For the detailed form and other parameters of this well-known potential,
see Reference 29.

The pairwise additive approximations to the Ar,Br” and Ar,I” binding energies were
found by minimizing the additive potentials, using the simulated annealing procedure to be

described below, from:

g, =min(Vy +V,,.), (4.11)

J

with Vy =Y Vo{r - x,]), and V,,,, =2V,.i(1r,. —r.D, where the sums run over the Ar

i<f

atoms, r; is an Ar atom position, and ro is the halide position. The calculation of the
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neutral potentials is more complex because of the open shell nature of the halogen atom,

and is discussed in Section 4.4.5, below.

4.4.2. Simulated Annealing Method

We use a simple molecular dynamics simulated annealing procedure to determine
the minimum energy cluster geometries. The simulated annealing program used here was
adapted from a molecular dynamics program written by Li and Martens.*® The procedure
used is as follows:

(1) Random initial atomic positions are generated. The initial positions lie within
a 6-15 A box, depending on the size of the cluster, and are subject to the constraint that
no two atoms may be closer than a certain cutoff distance, usually 3.5 A. The latter
condition ensures that the cluster starts out in an attractive region of the potential surface
so that dissociation does not occur.

(2) The classical equations of motion are solved for about 5 ps, using a Gear
predictor-corrector algorithm started with a 16 step Runge-Kutta algorithm®®, The step
size is 5 fs.

(3) Kinetic energy is removed by rescaling the atomic velocities. When starting
with random posit'ions, the kinetic energy is removed very quickly, so that the velocities
and kinetic energies are essentially reset to zero with each rescaling. This rapid quenching
was found to be necessary to prevent evaporation.

(4) Steps (2) and (3) are repeated until a minimum is found. This typically

requires 100-250 ps.
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(5) Beginning with the minimum configuration found by the above procedure,
kinetic energy is added, constrained so that the translational energy of the cluster center-
of-mass and its angular momentum are zero. To prevent evaporation, the initial kinetic
energy was usually set to not more than 25-33% of the total well depth. Then steps (2)

and (3) are repeated, but with kinetic energy removed much more gradually, by rescaling

be!
1+ Tscalc KE‘UE -1
’tcorul KEavg

every 5 ps. Here T.q. is the time between rescalings, T.n« i a time constant--typically 50

the velocities by a factor®'

or 100 ps--KEay, is the average kinetic energy, and KE,,, is a target kinetic energy, set to
a very small value in order to find a minimum. The entire procedure typically requires 5-
10 ns.

(5) Finally, the minimum energy configuration is located more precisely using a
simple gradient minimization routine.**

The entire annealing procedure was repeated 5-20 times for each cluster to ensure
that the global minimum was found. In this process, low-lying local minima were often
also found. In order to locate higher lying local minima, an interval of 250 fs or less
between rescaiing steps is used in steps (2)- (4), to prevent equilibration of the cluster as
kinetic energy is removed.

For further details about simulated annealing and the computer program used to

implement it, see Appendix C.
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4.4.3. Zero Point Energy Calculation

Once the minimum energy configurations and classical binding energies are found,
it is necessary to know the zero point energies in order to use Equations (4.3)- (4.5). The
model potentials are analytical functions of the nuclear Cartesian coordinates, allowing
the zero point energies to be estimated by the following procedure. The normal
coordinates of the clusters were found in terms of linear combinations of Cartesian
displacement coordinates, using standard techniques.”® Then each of the 3N-6 single-
mode vibrational Schrodinger equations was solved using a simple one-dimensional
discrete variable representation (DVR) proce:durc—:.s'”’:‘s‘36 In this way, the anharmonicity
of the potential is approximately accounted for, although interactions between normal
modes are neglected. The total zero point energy was then obtained by adding up the
single mode values. The zero point calculation was limited to the portion of the potential
in the vicinity of the minimum structure, so that any splittings due to tunneling are not
reproduced.

For details of the computer program used to calculate the zero point energies,

refer to Appendix C, Sections C5 and C6.

4.4.4. Anion Minimum Energy Geometries

The minimum energy geometries found using pairwise additive potentials for
Ar,. oI are shown in Figure 4.7. Similar structures were found for Ar.oBr. The
calculated anion binding energicé and zero point energies are given in Tables 4.4 and 4.5,

on the following pages.
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Table 4.4. Results of calculations with pairwise additive Ar,Br’ anion potentials, and

"matrix-additive" Ar,Br neutral potentials.

All energies are in cm’.

n| g €, £ & | of (Dg o) | o | Axs| Axu EA.u
0 0 0 0 0 0 0 0 0 0 3685 27129.2
1 438.8 133.1 92.8 1129 | 20.7 | 156 | 13.5 | 134 | 38.2 | 3703.0 274298
2 | 9771 349.4 2054 | 319.6 | 56.8 | 423 | 45.0 | 446 | 56.6 | 3717.1 277423
3 | 16149 | 662.6 599.9 | 628.7 | 1074 | 851 | 896 | 886 | 67.3 | 37224 28059.2
4 122600 | 977.3 916.6 | 945.0 | 157.8 | 127.6 | 1356.2 | 1329 | 684 | 3722.6 28382
5 | 2911.3 | 1293.6 | 1243.7 | 1267.3 1 207.5 | 168.7 | 181.1 | 176.4 | 62.3 | 3719.0 28708
6 13659.7 1 1696.2 | 1677.2 | 1686.0 | 267.5 | 211.7 | 248.5 | 230.0 { 55.8 | 3713.6 28037
7 |4318.6 | 2042.9 | 2001.2 | 2014.8 | 315.5 | 268.9 | 289.7 | 272.9 | 62.5 | 3717.1 29358
8 |5069.8 | 2465.0 | 2413.9 1 24324 | 371.1 | 315.8 | 337.1 | 323.6 | 724 | 37254 29679
9 |5815.2 | 2880.0 | 2807.1 | 2837.7 { 421.3 | 360.3 | 375.7 | 370.1 | 88.2 | 3737.1 30003

Table 4.5. Results of calculations with pairwise additive Ar,I" anion potentials, and
"matrix-additive" Ar,l neutral potentials. All energies are in cm™.

gy
T

n A & & en | @8 | 0f | o | ©f | Axr| Axu EAcua
0 0 0 0 0 0 0 0 0 0 7603.15 ] 24673.3
1 369.4 151.6 | 1121 | 129.0 | 173 | 146 | 123 | 132 | 37.2 | 76244 24888.3
2 8384 | 3854 | 3320 | 3555 | 51.0 | 41.2 | 424 | 424 | 545 | 76343 25118.5
3 | 14068 | 7181 | 6531 | 6825 | 98.4 | 832 | 858 | 854 | 67.6 | 76409 25346.8
4 | 1982.0 | 1051.5 | 986.0 | 1016.3 | 145.8 | 125.1 | 130.1 | 128.7 | 70.5 | 7642.0 25583
5 | 2562.3 | 1385.6 | 1328.5 | 1355.1 } 192.7 | 165.8 | 174.9 | 171.3 ] 66.2 | 7639.2 25823
6 | 3229.2 | 1799.2 | 1767.6 | 1782.7 | 249.4 | 208.3 | 233.9 | 222.5 | 57.3 | 7633.8 26062
7 1 3815.2 | 2151.3 | 21125 | 21269 | 295.3 | 257.8 | 279.6 | 264.3 |} 60.6 | 7634.0 26300
8 | 4469.2 | 2569.3 - - 343.5 | 300.4 - - - - 26530
9 | 5004.8 | 29632 - . 379.9 § 3347 - - - 26760
10 | 5731.8 | 3389.0 - - 436.9 | 390.0 - - - - 26990
11 | 6366.8 | 3764.8 - - 476.1 | 428.1 - - 27227
12 | 7044.3 | 4199.3 - - 539.6 | 483.9 - 27463
13 | 7796.7 | 4706.4 - - 586.8 | 530.4 - 27707
14 | 8519.3 | 5159.0 - - 645.1 | 572.8 - - - - 27961
15 | 9280.6 | 5686.6 . . 7105 | 6416 | - . . . 28198
16 | 9914.3 | 6143.3 - - 7775 | 693.7 - - - - 28360
17 1 10561.3 | 6589.0 - - 850.4 | 770.0 - - . 28565
18 | 11102.2 | 7061.3 - - 913.0 | 804.9 - - - . 28606
19 | 11648.0 | 7498.0 - - 979.3 | 880.8 - - - - 28725

e At o sl
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For Ar;3X (X = Br or I), there is only one minimum, in which all atoms are in
contact with each other. Linear (Ar;X") or planar (Ar;X’) geometries are not stable with
additive potentials. Furthermore, the X-I state splittings expected for linear and planar
geometries are not consistent with those observed experimentally.

In the minimum energy structures of larger clusters (Ar,I' 4<n<17, and Ar,Br
4<n<9), all the Ar atoms contact the central halide atom. This type of structure is
energetically favorable because each Ar-X" “bond” is about four times stronger than an
Ar-Ar "bond." For ArsX', one local minimum isomer is seen (C;, point group) which has
one Ar atom in contact with the other three argons but not with the halide. In Arsl, its
energy is about 200 cm’ higher than that of the global minimum. The analogous ArsBr’
isomer lies 256 cm” above the global minimum. These energy differences correspond
approximately to one Ar-X" “bond”. ArsX" has two local minima with approximately the
same separations from the global minimum as in the Ar,X" clusters.

The clusters with 6<n<17 show two types of local minima. In one type, the Ar
atoms are all in contact with the halide--as in the global minimum--but have fewer Ar-Ar
“bonds.” These typically differ in energy from the global minimum by approximately the
magnitude of an Ar-Ar “bond,” i.e. about 100 cm”. The other type, seen already for n<6,
are structures in which one or more Ar atoms are not in direct contact with the halide.
This type of isomer usually differs in energy from the global minimum by approximately
the energy of one or more Ar-X" “bonds.”

For Ar,I', rare gas atoms continue to fit around the halide without significant
crowding up to n=15. At n=16 there is some crowding, so that the Ar-I" contribution to

the potential is reduced. Ar;I” constitutes a “closed” solvent shell (at 0 K). It consists of a
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capped pentagonal bipyramid structure (Dsy), with the axial Ar atoms significantly further
from the halide than the others. Subsequent Ar atoms are added outside the first solvent
shell. In the case of Ar,Br’, we did not observe the closing of the solvent shell since we did

not perform calculations for n>9.

4.4.5. Neutral Open-Shell Potentials

Because of the anisotropy of the open-shell halogen atom in the neﬁtra] clusters,
the potentials cannot in general be obtained by simply adding the Ar-X pair potentials.
This is clear from the observed spectra. For example, in the diatomic Arl molecule an X-/
splitting of 37 cm™ is observed.* If the potentials were simply additive, one would predict
an X-I splitting of 74 cm™ for Ar,]. The observed Ay in Arl is 52 cm”. The simple
additive prediction is well outside experimental uncertainty.

This "non-additivity" of the open-shell potentials has been discussed by Lawrence
and Apkarian,”” whose explanation we follow here. The non-additivity can most easily be
understood if we momentarily ngglect the effect of spin-orbit coupling. In this case there
are two electronic states of the diatomic complex corresponding to the two possible
orientations of the singly occupied halogen p-orbital relative to the argon atom.**** A °%
state arises when the singly occupied p-orbital lies along the internuclear axis, and a
doubly degenerate ’IT state corresponds to the singly occupied p-orbital lying
perpendicular to the internuclear axis. However, if the cluster contains additional Ar
atoms, A is no longer a good quantum number if the polyatomic cluster is not linear.
Consider, for example, the case of Ar,I. The singly occupied halogen p-orbital will not, in

general, lie either parallel or perpendicular to either of the Ar-I internuclear axes.
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Therefore the Ar-I interaction potentials in Ar,I will not be the same as the potentials of
either the T or *I1 diatomic states, but--in the first approximation--may be considered to
be linear combinations of the diatomic potentials. Thus, in order to obtain the potentials
of Arl, and larger open-shell clusters, from the diatomic potentials, our concept of
pairwise additivity must be extended to include this mixing of the diatomic electronic
states. We describe how this is done in more detail below.

A simple first-order perturbation theory treatment of the interaction of an open-
shell atom with several closed-shell (rare gas) atoms in terms of the diatomic potentials
has been developed by various workers.***"**  These methods have been used to study
open-shell atoms in rare gas matrices, clusters, and on surfaces.'>*** Oyr
implementation here most closely resembles that of Lawrence and Apkarian,”” who studied
the emission spectra of I atoms in Xe and Kr matrices. The theory is briefly as follows.

The Ar,-X interaction is modeled by an effective potential depending on the rare

gas coordinates and on the coordinates of the “hole” in the singly occupied halogen p-

orbital in an arbitrary space-fixed frame:

H= 2 ex (LR )+ He, . (4.12)

Here, the sum is over the rare gas atoms, r is the coordinate of the “hole,” R, are the rare
gas coordinates relative to the halogen nucleus, and Hs, is the spin-orbit interaction

Hamiltonian.
The potential V,, , is then expanded in Legendre polynomials in f-R,. We are

ultimately interested in the matrix elements of H' in a p-orbital basis, and only the first two

even terms of the expansion contribute to these. Hence, we write
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H’=}’;[Vo(r, R)+Va(r R )Py Ry )]+ Hio (4.13)

In the diatomic case (one Ar atom), the expectation values of these two expansion
coefficients, Vo(R) and V(R), can be shown, using the relations given by Haberland™ and

Aquilanti et al.,*® to be related to the spectroscopic diatom potentials by

Vo(R) =4[ Vey (R)+ Vg (R)+ Y,y (R)] (4.14)

and Vy(R)=${Vyy (R)+ V,y (R) -2V (R)]. (4.15)

Here, the zero for each potential is set at the potential asymptote. (*P,n for Visn, and *Pin
for Vxin and V). In deriving these equations it is assumed that the spin-orbit constant,
A, is independent of R.

With some effort, one can show that for a cluster with many Ar atoms, the

perturbation Hamiltonian H' is given by a 6x6 matrix: 742

H‘:%VO(Rk)-1+V2(Rk)-M(Rk), (4.16)

where M(R:) is a 6x6 Hermitian matrix involving the argon atom coordinates. The

detailed form of the matrix H’ has been given, in the |J,m;) basis, by Lawrence and

Apkarian.”’ Diagonalization of H’ yields three doubly degenerate eigenvalues,
corresponding to the potentials of the X, I and I7 states.

In our implementation, an analytical form for the eigenvalues was found using the
Maple V program. This allowed the eigenvalues to be calculated approximately 10 times

faster than by numerical diagonalization and saved considerable computer time. The

potentials, V,, y, are then referred to their own asymptotes by adding %A to the X and /
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state potentials, and subtracting %A from the I7 state potential. The total potential of the

cluster is then obtained by adding the Ar-Ar potentials in a pairwise fashion. The well
depths are found by minimizing these potentials using the simulated annealing and gradient
minimization procedures described in Section 4.4.2. For the X state, for example,

ey =min(V,, x + Vi, ), (4.17)
with Vg, the same as in Equation (4.11).

There are several assumptions implicit in this treatment of the open shell potentials.
First, the basis set is limited to p-orbitals; excited orbitals of the halogen or rare gas atoms
are not included. Thus, many-body effects due to polarization of the halogen atom or
charge-transfer are neglected. Also, we assume that the spin-orbit constant, A, is
independent of the internuclear separations, as well as independent of the number of rare
gas atoms in the cluster. To verify the former assumption, A was calculated as a function
of R for ArBr and Arl, using the relations given by Haberland™ and Aquilanti et al.*®, and
the three diatomic potential energy curves determined from the ZEKE spectra. The
calculated A does not vary more than 1 meV (0.1%) for Arl and not by more than 5 meV
(1%) for ArBr for R greater than the zero crossing point. The assumption that A is
independent of the number of argon atoms is more questionable, as we will see below.

The above method of calculating the adiabatic potential surfaces was used directly
in the simulated annealing procedure for the smaller clusters (n<6). For the larger clusters,
the annealing was first performed using the anion potentials described above, and then the
system was allowed to relax (to optimize the geometry) on each of the neutral surfaces.

In most cases, the anion and neutral have approximately the same giobal minimum
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configurations. There are some exceptions. For instance, the global minimum isomer of
the ArsBr anion has all five of the Ar atoms in contact with the Br" atom, but this
geometry corresponds to a local minimum of the neutral X state surface. In such cases,
the neutral minimum corresponding to the anion global minimum was always used to
compute the “adiabatic” EAs and neutral electronic state splittings.

The results of the calculation of the neutral binding energies, zero point energies,
Ax.;, and Ax.y are presented in Tables 4.4 and 4.5, for Ar,4Br and Ar, o], respectively. It
is interesting to note that for all n>1, the zero point energy of the / state is greater than
that of the X state, contrary to intuition. This seems to be due to the steep repulsive wall

of the It diatomic state, which causes the antisymmetric modes to be more steeply

curved in the 7 than in the X state. The result is an increase in Ay.; over what would be
calculated if the zero point energies were neglected.

We can compare the X-I splittings calculated using Equation (4.3) with the
experimental results without reference to the anion potential. This comparison is shown in
Figure 4.8. In the cases where the two states are well resolved, the agreement with
experiment is quite satisfactory.

For n=2 and 3 the splitting between the X and /I states may also be compared with

experiment using Equation (4.4), as shown in Figure 4.9.
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Figure 4.8. Comparison of experimental and calculated X-/ state splittings for (a) Ar,Br
and (b) Ar,l. Solid circles: experimental. Open squares: calculated as described in
Section 4.4.5.
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For both Ar,3Br [Figure 4.9(a)] and Ar,3l [Figure 4.9(b)], the theoretical Ay is greater
than the experimental value by about 5-15 cm”. The agreement is somewhat worse for
Ar;3Br than for Ar,3I. This discrepancy could mean that the atomic spin-orbit splitting,
A, 1s not independent of the number of Ar atoms, as was assumed above. It is known that
the spin-orbit splitting of atoms in rare gas matrices is different from that of the free
atoms. For example, Lawrence and Apkarian found that the I atom spin-orbit splitting is
decreased by about 3% or 5% in Xe or Kr matrices, respectively.”’ We observe a smaller
decrease of A in the small clusters studied here: about 0.06%-0.1% in Ar..;l and 0.3%-
0.4% in Ar,.;Br.

Generally speaking, the open shell interactions described in this section are non-
additive, in the sense that they are of the form of the additional terms in Eq. 4.2.
However, they are not true many-body effects because they can be obtained directly from
the pair potentials, and do not introduce additional interactions between the Ar atoms in
contrast to the effects described in Section 4.4.7, below. As pointed out by Sando and
coworkers,*? the open-shell potentials in the n>1 clusters can be considered to be additive
as matrices rather than as scalars, and we will refer to these interactions as ‘“‘matrix

additive” effects in the rest of this discussion.

4.4.6. Electron Affinities Calculated from Additive Potentials

The adiabatic EAs calculated from Equation (4.5) using the additive anion
potentials [Equation (4.11)] and "matrix additive" neutral potentials [Equation (4.17)] are
given in Tables 4.4 and 4.5. These are compared with the experimental EAs in Figures

4.10 and 4.11.
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Figure 4.10. Comparison of experimental Ar.Br electron affinities (EAs) with those
calculated from the pairwise additive model. (a) EA as a function of n. Solid circles:
experimental EAs. Open squares: additive calculation. (b) Difference between calculated
and experimental EAs as a function of n. The shaded region represents the experimental
uncertainty. The error bars represent the uncertainty in the calculated EAs.
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Figure 4.11. Comparison of experimental Ar,] EAs with those calculated from the
pairwise additive model. (a) EA as a function of n. Solid circles: experimental EAs.
Open squares: additive calculation. (b) Difference between calculated and experimental
EAs plotted as a function of n. The shaded region represents the experimental uncertainty.
The error bars represent the uncertainties in the calculated EAs.
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First, notice that in both Ar,.¢Br and Ara.sl the calculated EAs are significantly
larger than the experimental results. For Arq.151, the calculated EAs are almost 1000 cm™
larger than the experimental values. Furthermore, the calculated EAs for n<17 are nearly
linear as a function of n. There is a slight positive curvature due to the nonadditivity of the
neutral X state, and for n>17 the plot becomes flat in the case of Ar,I". On the other hand,
the experimental EAs display a significant negative curvature when plotted versus n. In
Ar,], the flattening out at n=17 is not observed. Clearly the model potentials, as described
so far, are not consistent with experiment.

Before we consider many-body effects in the anion, let us first rule out other
possible explanations for this inconsistency. We first consider the propagation of the
uncertainties in the pair potentials. The theoretical error bars shown in Figures 4.10(b)
and 4.1 1(b) were estimated by assuming an uncertainty of #3 cm’™ in the quantity €,-gx for
the pair potentials, as discussed above, and multiplying this by the number of Ar-X nearest
neighbors. The uncertainty in the Ar-Ar potential, and that due to “relaxation” of the
geometry is neglected. The shaded areas in the Figures represent the experimental
uncertainties. The theoretical and experimental uncertainty regions show no overlap for
n>2. If a much more conservative estimate of the uncertainties is desired, we can consider
the individual uncertainties in the diatomic well depths, i.e. 9 cm™ for ArBr and ArBr’, and
18 cm™ for Arl and Arl. Even in this case, the experimental and theoretical error ranges
overlap only for Ar,Br and Ar,;1.

Furthermore, because the trends in the size dependence of the observed EAs are so

different from those of the calculated EAs, it does not seem possible to modify the pair
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potentials so as to simultaneously account for all the experimental EAs. Any modification
of the pair potentials would result in the same more or less linear trend in theoretical EAs.

One might also ask whether the population of local minima affects the trends in the
experimental EAs. We can rule t-his out for Ar,;X, for which there is only one possible
minimum geometry. For n=4 and 5 the only local minima give calculated EAs much lower
than the experimental result. For some of the larger clusters there may be local minima
that would be consistent with the experimental EAs. However, we know from the
diatomic spectra® that the vibrational temperatures in the beam are on the order of 50 K.
In light of this, a significant population of larger clusters occupying local minima several
hundred cm™ above the global minimum seems unlikely. For this reason, and because it is
not possible to account for the observed EAs of the small clusters with alternate minima, it
is very unlikely that population of local minima could be the sole explanation for the
observed trends in the EAs.

Next we consider various non-additive terms in the potentials.

4.4.7. Many-Body Interactions

Non-additive (or many-body) interactions fall into three categories: those present
in both the anion and the neutral, those unique to the neutral, and those unique to the
anion. Many-body interactions present in both anion and neutral include dispersion
(Axilrod-Teller) and exchange interactions. Interactions unique to the neutral include the
many-body effects due to the open shell nature of the halogen atom, which have already
been discussed in Section 4.4.5. Many-body effects unique to the anion are those

involving the charge on the halide atom. These include non-additive induction effects, and
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the interaction of the halide charge with multipole moments caused by exchange and
dispersion interactions between pairs of argon atoms.

Since the experimental observable, the EA, depends on the difference between the
anjon and neutral potentials [see Equation (4.5)], we expect the many-body effects unique
to the anion to be the most important in explaining the observed trends.

We will consider each non-additive effect in turn, incorporating it into our
simulated annealing procedure to test its effect on cluster energetics at the minimum

energy geometry.

4.4.7.1. Triple-Dipole Interaction
The leading term in the non-additive dispersion energy, the triple-dipole
interaction, was first derived by Axilrod and Teller*®, and independently by Muto.”” The

form of the triple-dipole potential is, for three atoms i, j and %,

(3cos€,-cosejcos€)k +1)
3p3 p3
Rinijik

Vada = Co , (4.18)

where ©; is the interior angle Zjik, R;; is the internuclear distance between atom i and

atom j, and Cg is a constant depending only on the identities of the three atoms. Cy can

be calculated using semi-empirical methods®®, or by fitting to ab initio calculations.*

However, because such results are not available for the Ar,X or Ar, X" systems considered

here, we use the approximation to Cgy discussed by various authors,****°

nMNe\N; +Nj +Ng
C9=%°‘i0‘j0‘k( £ (‘ ] ) (4.19)

n; + 1)y + )i+ )
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where a; and 7; are, respectively, the dipole polarizability and average excitation energy

of atom 7.

. . . .. . .. 50.51
A simple approximation to 1); is, in atomic units,

1
N 2
n,-=(—‘] . (4.20)

Here, N; is an effective number of electrons for a given atom. Substituting (4.20) into
(4.19) gives a three-body analogue of the Slater-Kirkwood formula® for the Ce
dispersion coefficient. In Koutselos and Mason’s treatment’™, which we follow here, N i
is treated as an empirical parameter determined from the corresponding Cg two-body
dispersion coefficient for like atoms. Furthermore, the values of N; for the halide anions
for which the Cg coefficients are not known are assumed to be the same as those of the

corresponding isoelectronic rare gases. Some theoretical and empirical justification of the
approximations involved in this approach is given by Koutselos and Mason, who estimate

an uncertainty of 5%-10% for Cgy coefficients determined in this way.® The parameters
N and a as well as the values of Cy calculated from (4.19) and (4.20) are given in Table

4.6. It should be noted that Equations (4.18) and (4.19) are, strictly speaking, valid only

for atoms in S-states.*®®** In extending their use to P-state halogens we are implicitly

neglecting the anisotropy of the halogen atom polarizability.
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Table 4.6. Atomic dipole and quadrupole polarizabilities, effective numbers of electrons,
and Cy coeffecients for Ar-Ar-X interactions.

Atom o (a0) C (a) N Co (eV-A))
Ar 11.08° 27.11° 5.90° -
Br 35.2° 164° 6.70° 127
Br 20.6° - 6.2° 83
I 52.7° 254° 7.79° 179
I 36.1° - 6.5° 129

References for Table 4.6

*R.R. Teachout and R.T. Pack, At. Data 3, 195 (1971).

® H. Coker, J. Phys. Chem. 80, 2078 (1976).

¢ Handbook of Chemistry and Physics, T4th ed. (CRC, Boca Raton, 1994), pp.10-198.

¢ M.V.K. Sastri, P.L. Narasimhulu and K.D. Sen, J. Chem. Phys. 80, 584 (1984). Note
that we use Buckingham’s definition [Adv. Chem. Phys. 12, 107 (1967)] of the
quadrupole polarizability, C, which is equal to half of the quadrupole polarizability, o,
used by Sastri et al. [See E.A. Gislason and M.S. Rajan, Chem. Phys. Lett. 50. 251 (1977)
and references therein for information on the various quadrupole polarizability
conventions.j

¢ E.A. Mason and E.W. McDaniel, Transport Properties of Ions in Gases (Wiley, New

York, 1988), pp. 533-4.
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The triple-dipole interaction is repulsive for near equilateral geometries. In the
case of ArI, V ,, at the equilibrium geometry is +8.1 cm’, and 6.3 cm” for A1, For
ArBr and Ar,Br, the results are 9.0 cm™ and 5.7 cm’, respectively. The larger values for
the anionic clusters are mainly due to their greater polarizabilities. The net result, then, is
a decrease in the calculated EA by about 2-3 em™ compared with the additive potentials.
This effect is of the same order as the experimental uncertainty, but may be more
significant for larger clusters. In the calculations below on clusters with n>3, only the
Ar-Ar-X triple-dipole interactions are included. The Ar-Ar-Ar interactions are neglected,
because we expect their energies to be nearly equal in the anion and neutral.

It has been shown that higher-multipole three-body dispersion terms, such as the

dipole-dipole-quadrupole ( V4, ) potential, may also contribute substantially to the three-

body dispersion energy.” To ascertain their importance here, we used the formulae of
Koutselos and Mason®® for the higher multipole coefficients, and the geometrical factors

given by Bell*” to estimate Vidq for Al and Arl. At the equilibrium geometries of the

clusters determined with additive potentials, we obtain approximately 4 cm™ for Ar-I” and
3 cm’ for Arl. The resulting 1 cm™ shift in the EA is smaller than the experimental

uncertainty. Therefore, V4, and all higher multipole three-body dispersion terms were

neglected in subsequent calculations.

4.4.7.2. Three-Body Exchange

The second type of three-body interaction that occurs in both anion and neutral

clusters is the three-body exchange interaction. This is caused by the exchange induced
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electron charge distortion on a pair of atoms, which alters the pair's exchange interaction
with a third atom. This effect is difficult to model without recourse to ab initio
calculations, and has been the subject of some controversy.z'3 As far as we are aware,
such calculations are not available for the Ar,Br/Ar,Br” or Ar,/Ar,I" systems studied here.
However, we can get an idea of the magnitude of this effect from an ab initio calculation
on Ar; by Chalasinski et al.** For equilateral Ar; at internuclear separations close to the
equilibrium Ar; bond length, they find the sum of first and second order exchange three-
body energies to be -1.5 cm’, or about 42% of the third order dispersion non-additive
energy (+3.6 cm™), and of opposite sign. If we assume the exchange nonadditivity is a
similar percentage of the dispersion nonadditivity in the Ar,Br/Ar,Br and Ar,J/Ar,l
systems, we would anticipate a 2-4 cm™ negative contribution to the binding energies, and
an approximately 1 cm’ difference between anion and neutral three-body exchange
energies. Because this effect is expected to be small compared with our experimental
uncertainties, and due to the practical difficulty of accurately modeling it, it will be

neglected here.

4.4.7.3. Induction Non-Additivity

The anion pair potentials are dominated by induction. Likewise, we expect a
rather large non-additive effect to arise from the interaction between multipole moments
induced in the rare gas atoms by the halide charge. In addition, there is non-additivity due

to the polarization of the halide atom itself. Because these effects are entirely absent in the

neutral clusters (if we neglect the relatively small inductive effects due to the permanent
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quadrupole moment of the neutral halogen), we expect the induction non-additivity to
have a large effect on the EA.

A model for treating non-additive effects in systems of polarizable particles, first
developed by Vesely™, has been extended and used extensively by various workers in
computer simulations of solvated jons®* and electrons,” polar liquids,”® and ionic
clusters.'®****” Qur adaptation of this model is as follows.

Each atom is characterized by a point charge (halide only) and point dipole and
quadrupole polarizabilities (halide and rare gases), located at the nucleus. We assume that
the induced dipole of an atom depends linearly on the electric field produced by the
charges and multipoles of the other atoms via the dipole polarizability, a. We neglect the
cubic dependence on the electric field due to the hyperpolarizability ¥, and all higher terms.
Likewise, we consider only quadrupoles induced by the field gradient due to the other
atoms, characterized by the quadrupole polarizability C, neglecting the smaller
contribution quadratic in the electric field via the dipole-quadrupole hyperpolarizability
B,”® and higher terms.

We also neglect the damping of the polarizabilities and charges at short range due
to exchange or charge-transfer. Such effects are believed to be significant in the case of
hydrogen bonding®® and in anions in ionic crystals.”” However, they are probably less
important in the weakly bound clusters considered here.

With these assumptions, the electric field at atom i is given by*

0 =3 (-70a,+ ) - 47404, €2

J#i
and the electric field gradient is®
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i) _ ij (&)
EQ = (-Ta; +14

) _ L 740) o)
G119 el). (4.22)

J#i
Here, following the notation of Buckingham, the subscripts a, B, ¥ and & stand for any

of the Cartesian components of a vector or tensor, and repeated Greek subscripts imply

summation over the three components. The permanent electric charge is represented by q,
(-1 for the halide and O for the rare gases), and ug) and @gg are components of the

induced dipole and quadrupole moments, respectively, at atom i. We use Buckingham's
definition of the quadrupole moment as a traceless tensor.** The multipole interaction

tensors are defined by Tég_)“v = VGVB-‘-VV(I/R,-J-), where R;; is the vector from atom to

atom i. The induced dipole at atom i is then given by®

pd =q EW, (4.23)
and the induced quadrupole is®

ey =CGEY, (4.24)
where o; and C; are the dipole and quadrupole polarizabilities, respectively, of atom i.
The values of o and C used here are given in Table 4.6.

At each time step in the simulated annealing procedure, the induced moments are
calculated iteratively from Equations (4.21)-(4.24). At the first time step, the field and
field gradient due to the halide permanent charge are initially calculated from (4.21) and
(4.22). Then the induced moments are found from (4.23) and (4.24), and substituted back
into (4.21) and (4.22). The process is repeated until the magnitudes of the induced

moments do not change by more than one part in 107! with successive iterations. It is

found that the moments converge about twice as fast if the individual moments are
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immediately substituted into (4.21) and (4.22) for subsequent calculations during a given
iteration, rather than "saved" until the next iteration. For subsequent MD time steps, the
algorithm is initiated with the induced moments saved from the previous MD step. This
saves some computer time.

The total induction energy is then given by

Vodiowt = Vo Vo t Vi + Vig + Voo + V., (4.25)

where the first five terms on the right hand side are the charge-dipole, charge-quadrupole,
dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interaction energies. The
final term is the energy required to create the induced dipoles and quadrupoles, given

by6 1.62

M, H g
u't! “‘(I + aﬁ uB , (426)

V., =

< ; { 2a,; 6C;
where the sum runs over all atoms. By using (4.21)-(4.24) for one of each of the dipoles
and quadrupoles in (4.26) and substituting the explicit expressions -for the interaction

e:ne:rgies60 and (4.26) into (4.25), one can show that (4.25) simplifies to

Vidsoat =3 Vou +3V,0 = 2 ¥ a,(-3 T +17002). 4.27)

i jei
This equation gives the total induction energy of the cluster. However, part of this energy
is already implicitly included in the Ar-X pair potential. In order to extract the non-
additive portion, we calculate the induction energy for each Ar-X pair, neglecting the
other Ar atoms in the cluster, using the same iterative method. The sum of the pair
induction energies is then subtracted from (4.27) to give the non-additive induction

energy:
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Vind = Vind.sotat = Yind, pair- (4.28)

In practice, due to the computational "expense" of this iterative calculation, a
simpler model was employed for the initial simulated annealing procedure. In the simpler
model, the interaction energy between dipoles directly induced in the rare gas atoms by the
halide charges is calculated.®® The minimum energy geometries found with the simpler
model were then optimized using the full iteratively calculated induction model described
above. This simple induction model is described in detail in Appendix C.

The results of the calculation for Ar,I' and Ar,Br show that the non-additive
induction effect is indeed quite large. For Ar,Br, for example, Vins is 35.3 cm™. The result
for Ar,I” is somewhat smaller, because of the larger Ar-X" internuclear distance. The non-
additive induction energy is always found to be positive, showing that it is dominated by
the repulsion between adjacent induced multipoles on the Ar atoms. The dipole term of
(4.27) contributes 32.7 cm’ to the total in Ar,Br’, and the quadrupole term contributes 2.6
cm'. Thus, it does appear necessary to include the induced quadrupole effect, usually
neglected in this type of simulation, for accurate calculation of the binding energies. The

results for the larger clusters are discussed below.

4.4.7.4. Exchange and Dispersion Multipoles

As first described by Dick and Overhauser, * the exchange repulsion between two
closed shell atoms produces a buildup of negative charge near the nuclei and a depletion of
electron density between the nuclei. At large distances from the pair of atoms this
distortion of the electron clouds is equivalent to a set of multipole moments, as discussed

by Jansen. ® If the atoms are identical, the first non-vanishing moment is a quadrupole.
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There is also a quadrupole, of opposite sign, arising from the dispersion interaction
between two atoms. At the usual van der Waals distances, the dispersion contribution is
somewhat smaller than the exchange contribution.®

In the case of Ar,Br and Ar,I, a three-body effect then arises from the interaction
of the halide charge with the Ar, exchange/dispersion multipoles. This is another type of
many-body interaction that is present in the anionic but not in the neutral clusters, and is
therefore expected to have a significant effect on the EA. As with induction, we expect
the interaction of the permanent quadrupole of the neutral halogen atom with the
exchange/dispersion moments to be negligible.

In their studies of the Ar,-HCI, -DCI, and -HF systems, Hutson and coworkers'®
have found that the interaction of the exchange/dispersion quadrupole of the Ar, unit with
the permanent multipoles of the HX molecule is quite important. This work was mainly
concerned with the interpretation of the vibration-rotation spectra’® of the clusters.
However they also found the contribution to the binding energy to be significant.
Chalasinski et al.*’ have found these conclusions about the importance of the exchange
quadrupole effect on the Ar,HX potential energy surfaces to be qualitatively consistent
with their ab initio calculations. In recent work more closely related to our own, Burcl et
al. have extracted information about the exchange multipole energy from ab initio
calculations on Ar,Cl.® These authors calculated this effect to be -12.8 cm” near the
equilibrium geometry of Ar,CI. In this light we expect the exchange/dispersion multipole
contribution to the non-additive binding energies of our Ar,Br and Ar,I" clusters also to

be quite significant.
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Jansen derived a simple expression for the exchange quadrupole using an effective
one electron model for the atomic charge distributions. ®* In this approach, the electronic

charge density of an atom is approximated by a single Gaussian function,

e

_ LB
pi(r)= 5

e FRT (4.29)

where B is the Gaussian range parameter, R; is the position of the nucleus of atom i, and

r is the position of the effective electron. Then the atomic wave function is defined as

p(r)*

e

9;(r)= (4.30)

The zero-order wavefunction of a pair of atoms, i and j, is taken to be the antisymmetrized

product of the two atomic wavefunctions (normalized to 2):

F2(r, 1) = —— [0,(0)0; (*) - 9, ()9, ()] (4.31)

i-5i)"
Here r and r' are the positions of the two electrons, and S; is the overlap integral,
which for like atoms with Gaussian wavefunctions (4.30) is given by

55 = exp(-B*£] [2).
where R;; is the internuclear separation between the atoms. Then, taking the expectation

value of the Qﬁadmpole moment operator with wavefunction (4.31), a simple expression

for the cylindrically symmetric exchange quadrupole is found:®*

|e|R,-12- S,-}’i
sz (ij) =- 2 1— S2 . 4.32)
y

In Jansen’s original treatment, the range parameter B was estimated from the long range

dispersion interactions, and assumed to be valid for short range exchange interactions.
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This method of estimating B is now believed to significantly overestimate the exchange
quadrupole.®® An approach that has been used to improve the accuracy of the model is
to fit the one-electron functional form for the quantity of interest to the results of accurate
ab initio calculations, to arrive at a more reasonable value of B.'*% Here, we shall use the
value B=0.936 A", derived in this way by Hutson and coworkers'® from an SCF
calculation of the quadrupole moment of Ar,.

The problem now arises of how to calculate the interaction energy of the exchange
quadrupole with the halide charge. The simplest way is to represent the exchange charge
distribution with a point quadrupole, calculated from (4.32), located at the midpoint
between the two Ar atoms. The energy is then obtained from the standard expression for
a charge-quadrupole interaction. However, because the typical halide-Ar, distances in
the clusters are on the same order as the Ar-Ar distance, the point quadrupole
representation overestimates the magnitude of the interaction. The point quadrupole
representation was used by Hutson et al. in their work on Ar,-HCI and -DCI, and was
found by them to somewhat overcorrect the pairwise additive potential.'®® In more
recent work on Ar,-HF, Emesti and Hutson'™ proposed a distributed dipole
representation: The Ar; exchange charge distribution is represented by opposed point
dipole moments at the two Ar nuclei, paralle]l to the internuclear axis, with magnitudes
chosen to give the same overall quadrupole moment as (4.32). Ernesti and Hutson found
the distributed dipole representation superior to ‘the point quadrupole representation for
Ar,-HF, but noted that it somewhat underestimated the electric field of the true charge

distribution'®
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The difficulty with both of these approaches arises from the use of a multipole
representation at short range. Therefore, it seems logical to attempt a more direct
calculation of the interaction of the exchange charge distribution with the halide charge.
To do this, we form an effective charge density--the part of the charge density that
contributes to the exchange quadrupole--by subtracting the atomic charge densities (4.29)

from the charge density of the antisymmetrized wavefunction (4.31):

Pg(r)= —|e[j|‘?o r,r') “ar - p;(r)—p;(r)

3 2 2 2

Here, R = %(R +R; ) is the midpoint between the two Ar nuclei. We see that the

(4.33)

effective charge density is the sum of two negative Gaussian charge distributions located
at the nuclei, and a positive Gaussian distribution, twice as large, at RC.64 If we
approximate the halide with a point charge at R, , the Coulomb interaction energy is then

found to be’!

Ve =Y e”Sj | erf(BRio) erf(BRjo) , & (BRco)

2 )
i1-Si| Rio R;o Reo

, (4.34)

where Rip, Rp and R are the distances of the halide from the Ar nuclei and the midpoint
between the nuclei, respectively, and / and j run over the Ar atoms. The error functions in

(4.34) can be easily evaluated using standard subroutines.””  In the limit

BR — o, erf(BR)— 1. So at long range, (4.34) is equivalent to the Coulomb interaction

of the halide charge with negative point charges & = —leIS,-jz- / (1 - S,f) at the Ar nuclei, and
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a positive point charge, +2|3|, at R.* In order to prevent non-physical behavior of

Equation (4.34) for small values of Reo (near linear geometries), V.. is cut off for Ar-Ar
separations greater then a certain value, typically 6.5 A

We should discuss the approximations implicit in (4.34). First, the nuclear charges
are, in effect, approximated by Gaussian distributions with the same 3 parameter as the
atomic electron densities. Thus, effects of nuclear de-shielding are not included in (4.34).
Second, the approximation of the halide by a point charge will underestimate the extent of
overlap effects and hence tend to slightly overestimate the magnitude of the interaction
energy. This deficiency could be corrected if more were known about the charge densities
of the halide atoms. Finally, and most importantly, we are still working within the
Gaussian one-electron approximation. A single Gaussian function is known to be a rather
poor approximation to the true electron density of an atom.”” This problem could be
overcome by using a more accurate model of the Ar, charge distribution, such as the result
of an ab initio calculation with Gaussian type basis functions. The method of Gaussian
multipoles developed by Wheatley’' could then be used to calculate the Coulomb energy.
Despite the limitations of the present model, we nonetheless expect (4.34) to give a more
accurate value of V.. than either the point quadrupole or distributed dipole
representations.

The three models of V,. are compared for Ar,X" in Figure 4.12. In the Figure, the

Ar-Ar distance is held constant at the equilibrium value of the Ar, molecule, and the Ar-Ar
axis is kept perpendicular to R, as the halide-Ar, distance is varied. It can be seen that

at large separations, the three models approach each other, as expected. However, at

separations near the equilibrium structures of Ar,I' and Ar,Br’, the differences among the
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three models are quite significant. For example, at Reo = 3.61 A, corresponding to ArI,

Equation (4.34) gives V.. =-15.0 cm’, compared with -18.0 cm’ for the point quadrupole

model, and -12.6 cm™ for the distributed dipole representation. The differences among the

three models at the equilibrium Ry of Ar,Br (3.28 A) are even more pronounced. We

conclude that at the interatomic distances considered here, it is important to use an

accurate representation of the exchange charge distribution to calculate V..

remainder of this work, we shall use (4.34) for V...
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Figure 4.12. Comparison
of three models for
exchange quadupole-charge
interaction in AnX" clusters.
The Gaussian range
parameter B is 0.936 A, and
the Ar-Ar distance is fixed
at 37565 A. R is the
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nucleus and the Ar-Ar
midpoint.  Dashed line:
point quadrupole model.
Dotted line: distributed
dipole model. Solid line:
calculated from Equation
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We also need to consider the multipole moments induced in the rare gas atoms by
dispersion. Hunt”? has developed a model for the dispersion induced dipole and
quadrupole moments in terms of atomic polarizabilities and dispersion coefficients. The
average dipole moment induced on atom i by the dispersion interaction with other like

atoms is given by:

C,B
(04

L R,
pie = cpz}—;’—, with C, = (4.35)
/]

Jj=i i

N w

where f{,—j is the unit vector pointing from atom j to atom i, Cs is the Ar -Ar dispersion

coefficient, o is the dipole polarizability, and B is the dipo]e:quadrupole

hyperpolarizability. The components of the dispersion induced quadrupole moment on

atom / are given by:

o T 1 C.B
@idr — _ % with C, =—=5 436
ob e;m; °® 4 « (4.36)

where To(lg) = VuVﬁ(l/R,-j). For example, in the special case of two atoms lying on the

Z-axis, the quadrupoles have cylindrical symmetry, with G)if“" =-Cq / R?, and

i
QL =0, =-10% . Following Emesti and Hutson'® the values of C, and Ce
were found using the Cg¢ constant from the Aziz HFDIDI potential,” and the ratio B/o

from the calculation of Maroulis and Bishop.”* We obtain C.=1252 eag and Ceg = 208.6

eag . The total dispersion induced dipoles and quadrupoles are calculated from (4.35) and
(4.36) for each Ar atom. Then the charge-dipole interaction energy, Vs, and the charge-

quadrupole energy, Vias, are computed from the standard electrostatic formulae.®® We

denote the total charge-dispersion multipole energy by Vs = Vyais + Vadis-
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We should note that this calculation is carried out independently of the non-
additive induction energy calculation described in the previous section (4.4.7.3).
Therefore, interactions between the electrostatically induced multipoles and the
exchange/dispersion induced multipoles have been neglected. This is reasonable because
the exchange/dispersion multipoles are about an order of magnitude smaller than the
charge induced multipoles, and, therefore, the interactions of the exchange/dispersion
multipoles with the charge are much larger than their interactions with the charge induced
multipoles.

The charge-dipole energy, Vuais, is generally positive and about 30% as large as V...
This proportion is qualitatively consistent with the calculations of Lacey and Byers
Brown® and with the results of Eresti and Hutson.'® V4 is negative, and only about
5% as large as Vai;. For example, in Ar,Br, the dispersion dipole energy is +6.0 cm’, and
the dispersion quadrupole energy is -0.3 cm’. This may be compared with the exchange
charge energy of -20.3 cm’. Thus we see that the dispersion dipole makes a non-
negligible contribution to the non-additive energy, whereas the dispersion quadrupole
could be neglected without any significant loss of accuracy.

Complete results for the larger clusters are discussed in the next section.

4.4.8. Electron Affinities Calculated with Many-Body Potentials

In order to assess the importance of the various many-body effects mentioned
above, we re-optimized the minimum energy geometries found from the simulated
annealing procedure with the additive potentials, successively adding the many-body
terms, in order of their relative magnitudes.
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The first non-additive term considered was the multipole induction energy; the
anion potential was then found from
g, =min(V,, + V.. + V) (4.37a)
where the right hand terms are the pairwise additive argon-halide and argon-argon
potentials, and the many-body multipole induction potential. The neutral potential was
identical to that used in the calculation in Section 4.4.6:
ey =min(V,, y + Vya, ) (4.38a)
where V,,  is the “matrix additive” X state potential described in Section 4.4.5. We refer
to the electron affinities calculated from (4.37a), (4.38a) and (4.5) as FA ;..
We next considered the effect of addition of the exchange-charge and multipole
dispersion energies. The anion binding energies are then
g, =min(Vyy + Vo +Vou + V. + V), (4.37b)
and the neutral binding energies still given by (4.38a). The electron affinities calculated
from (4.37b), (4.38a) and (4.5) are referred to as EAinsecimdis-
Finally, the Axilrod-Teller term was included in both the anion and neutral

potentials to give

Ea = m‘in(VArX + VArAr + de + Vcc + Vrndi: + Val:njan) s (437C)

£y =min(V,,  +V,,, + Vo). (4.38¢)
The EAs calculated from (4.37c), (4.38c) and (4.5) are referred t0 as EAingsecomdissar. The
binding energies calculated from (4.37c) and (4.38¢) and their components are shown

graphically in Figures 4.13 and 4.14. The anion and neutral binding energies calculated

from (4.37a), (4.37b) and (4.38a), and from (4.37c) and (4.38c) are given, along with the
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corresponding zero-point energies, in Tables 4.7 and 4.8. The theoretical electron
affinities EAing, EAindsccemdis and EAingiecsmdis+ar are given in Tables 4.9 and 4.10. The
deviations of the theoretical EAs from the experimental values are shown in Figures 4.15

and 4.16.
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Figure 4.13. Calculated contributions to the X state binding energies (BE) of (a) Ar,Br
and (b) Ar,l neutral clusters. Solid circles: total BE. Open squares: Ar-Br contribution.
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Figure 4.14. Calculated contributions to the binding energies of (a) Ar,Br and (b) Ar,I
anions. Solid circles: total BE. Open squares: Ar-Br contribution. Open circles: Ar-Ar
contribution. Open triangles: non-additive induction. Crosses: exchange charge and
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EA(Calc.) - EA(Exp.)

EA(Calc.) - EA(Exp.)

EA(Calc.) - EA(Exp.)

Figure 4.15. Differences between calculated and experimental EAs for Ar,Br, plotted as a
function of n, including various three body terms: (a) EAing - EA i, (b) EAindsecomdis -
EAei, (€) EAindreccemdisar - EAeq.  The shaded region represents the experimental
uncertainty. The error bars represent the uncertainty in the calculated EAs.
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Figure 4.16. Differences between calculated and experimental EAs for Ar,], plotted as a
function of n, including various three body terms: (a) EAig - EAcgr, (b) EAindsecemas -
EA.pi, () EAindsecsmdisar = EAeqr. The shaded region represents the experimental
uncertainty. The error bars represent the uncertainty in the calculated EAs.
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Table 4.7. Calculated Ar,Br anion and Ar,Br neutral X state binding energies and zero
point energies, including non-additive terms. IND: non-additive induction.  EC:
exchange charge. MDIS: dispersion multipole. AT: Axilrod-Teller triple-dipole
dispersion. Energies are in cm’’.

IND IND+EC+MDIS IND+EC+MDIS AT (neutral)
n +AT (anion)
€, g g, ) €, O Ex o
1 438.8 20.7 438.8 20.7 438.8 20.7 133.1 15.6
2 942.4 53.7 955.9 56.1 946.8 55.0 3437 41.7
3 1515.3 98.5 1555.7 105.1 1528.9 102.3 646.1 83.3
4 2081.3 142.6 2148.4 153.2 2103.9 148.8 950.0 124.7
5 2640.9 185.0 2734.3 199.0 2672.3 193.5 1255.5 164.7
6 3273.3 236.7 3402.4 255.2 3315.3 247.6 1643.6 207.8
7 3819.9 278.3 3974.4 300.4 3871.5 291.8 1978.7 262.0
8 4434 4 326.4 4620.2 351.6 4494 4 341.1 2385.1 3074
9 5029.0 367.2 5238.7 395.2 5091.0 381.9 2783.7 349.6

Table 4.8. Calculated Ar,I" anion and Ar,l neutral X state binding energies and zero point
energies, including non-additive terms. IND: non-additive induction. EC: exchange

charge. MDIS: dispersion multipole. AT: Axilrod-Teller triple-dipole dispersion.
Energies are in cm’'.
IND IND+EC+MDIS | IND+EC+MDIS AT (neutral)
+AT (anion)

n & g & o g, g Ex o)

l 369.4 17.3 369.4 17.3 369.4 17.3 151.6 14.6
2 814.6 484 825.2 50.4 817.0 49.2 379.0 40.6
3 1338.4 90.2 1369.9 96.0 1345.7 92.6 699.7 81.4
4 1859.9 132.3 1912.3 141.5 1871.5 136.4 1020.8 122.1
5 2378.0 171.8 | 2451.2 184.0 2393.7 177.1 1342.6 161.6
6 2967.4 | 2219 | 3066.3 2394 2985.9 229.2 1740.5 203.9
7 34764 | 261.5 | 3595.8 280.9 3499.6 270.5 2080.2 251.2
8 4040.0 | 3069 | 4179.8 330.7 4062.8 316.2 2482.0 292.6
9 4567.5 344.5 4721.2 366.2 4585.0 352.0 2859.1 325.1
10 5102.2 386.5 5285.1 415.0 5131.7 398.9 3246.9 378.1
i1 5623.9 | 423.4 | 5821.0 456.8 5647.2 436.2 3627.1 415.7
12 | 6197.5 | 4759 | 64278 | 5104 | 6233.0 | 488.9 | 4047.9 470.3
13 ] 6818.0 | 516.8 | 7068.8 554.8 6847.5 528.7 4533.9 5134
14 | 7363.8 5479 | 7625.0 593.4 7371.8 3574 4957.0 554.8
15 80214 [ 610.6 { 8322.8 649.3 8038.4 617.9 5465.2 619.4
16 | 8615.8 683.1 8973.2 725.1 8673.8 694.6 5908.9 667.5
17 | 92323 | 7639 | 9647.9 808.9 9336.7 781.2 6361.9 747.4
18 | 9737.0 | 818.1 | 10159.9 | 864.8 9840.0 836.3 6810.4 802.8
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[19 ] 10247.0 [ 872.0 | 106765 | 9212 | 10347.4 | 891.3 | 7254.8 | 8559 ]

Table 4.9. Ar,Br electron affinities calculated with various non-additive terms. EA,.q:
non-additive induction term only. EAindsec+mdiss Non-additive induction, exchange charge,
and multipole dispersion terms. EAindsec+mdis+ar: induction, exchange charge, multipole
dispersion, and triple-dipole dispersion terms. Energies are in cm’.

n EAing EAindsecomdis EAindsecomdis+ar
0 27129.2 27129.2 27129.2
1 27429.8 27429.8 27429.8
2 27710.8 27721.9 27718.9
3 27968.5 28002.2 27993.0
4 28218 28275 28259
5 28460 28540 28517
6 28681 28792 28761
7 28897 29029 28992
8 29088 29249 29205
9 29271 29453 29404
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Table 4.10. Ar,]l electron affinities calculated with various non-additive terms. EA,.4:
non-additive induction term only. EAj.g:ec+maiss DON-additive induction, exchange charge,
and multipole dispersion terms. FEAingsecsmdis+ar:  Induction, exchange charge, multipole
dispersion, and triple-dipole dispersion terms. Energies are in cm™.

n EAina EAind+ecemais EAindsecemdistar
0 24673.3 24673.3 24673.3
1 24888.3 24888.3 24888.3
2 25095.4 25103.9 25102.6
3 25286.6 25312.3 25308.1
4 25474 25518 25510
5 25660 25721 25708
6 25828 25909 25893
7 25995 26095 26073
8 26138 26254 26231
9 26268 26400 26372
10 26410 26565 26537
i1 26537 26701 26673
12 26680 26875 26840
13 26798 27011 26972
14 26903 27119 27086
15 27039 27302 27248
16 27156 27472 27411
17 27323 27693 27614
18 27336 27712 27669
19 27431 27811 27731
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It is important to note that the many-body terms Vi, Vee, Vimais, and V™" all

depend on the absolute values of the Ar-X' distances. Therefore, we must consider the
uncertainties in these terms due to the absolute uncertainty in R, in the pair potentials,
which, as mentioned in Section 4.4.1, is £0.2 A for both ArBr and Arl. In order to
estimate the uncertainties in the many-body terms, we calculated the changes in these
terms in the Ar,Br™ and Ar.I” systems with the Ar-Ar distance fixed at the Ar; equilibrium
value, as the Ar-X" distances were varied over 0.2 A about the ArX’ equilibrium values.
To estimate these uncertainties in the larger clusters, the Ar,X uncertainties were
multiplied by the number of nearest neighbor Ar-Ar pairs in contact with the halide. The
uncertainties introduced into the calculated EAs were found to be significantly larger than

those due to the uncertainty in £, —€, in the pair potentials. These uncertainties are

displayed as error bars in Figures 4.15 and 4.16.

The addition of the many-body induction term significantly decreases the EA
compared with the additive calculation. [Compare Figures 4.15(a) and 4.16(a) with
Figures 4.10 and 4.11.] EAi.s is closer to the experimental values than FA.s, but is
somewhat overcorrected. This is clearest in the Ar,l clusters, in which EA,.. lies well
below the experimental uncertainty region (shaded areas in Figures 4.15 and 4.16) for
n=6, 7 and 9-19. Thus, the Ar,I results clearly indicate the need for additional non-
additive terms. In the Ar,Br clusters, the experimental and theoretical EA uncertainty
regions overlap except for n=8 and 9, but the EA;.s values are all systematically lower than
the experimental EAs, again suggesting that induction effects alone decrease the electron

affinity by too much.

141

C v e e —— e e ramr e s s e el R vt P e aTE i e Ll s R i



Inclusion of V.. and V.4 in the calculation brings the theoretical EAs closer to the
experimental results. [See Figures 4.15(b) and 4.16(b).] In the case of Ar.Br,
EAind+ecsmais lies within the experimental error bars in all cases except for Ar;Br, which is
overcorrected by about 9 cm’. But even in this case, the model potential and
experimental uncertainty regions overlap. For the Arl clusters, EAungiccemas 1S
overcorrected by 3.8-20.1 cm™ for n=2-5, which is outside the experimental error bars
(the shaded region in Figures 4.15 and 4.16). For 6<n<19, EAigsecemdis lies within
experimental uncertainties except for n=13-15 and n=17. However, as in the Ar,Br
clusters, the theoretical and experimental uncertainty ranges overlap in all cases for Ar,l.

Inclusion of the Axilrod-Teller term brings the theoretical EAs closer to
experiment for the smaller clusters, but overcorrects somewhat for some of the larger
clusters. [See Figures 4.15(c) and 4.16(c).] Now for the Ar,Br clusters EA ngsecsmdissar li€s
within the experimental uncertainties for all cases except n=9. For Ar,.l, addition of the
Axilrod-Teller term brings the theoretical EA closer to the experimental result, but is still a
few wavenumbers above the experimental error bars. For n=5-10, 17 and 18, the
theoretical result is within experimental uncertainties, but lies below the uncertainty region
for n=11-16 and 19. But, again, the theoretical and experimental error bars overlap in all
cases. Thus, inclusion of the trip]e-dipg]e term appears to help somewhat for the smaller
clusters, but, because of the uncertainties in Ving and V+Vna,, it is not possible to draw

definite conclusions about the importance of the Axilrod-Teller term from the present

results. To do so would require more precise knowledge of r, in the pair potentials.

4.5. Conclusions
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We have obtained experimental electron affinities and electronic structure
information from the ZEKE and PDTP spectra of Ar,oBr and Ar.;sI. We have
compared these with electronic state splittings and EAs calculated from both pairwise
additive and non-additive model potentials. The following conclusions can be drawn from
this work.

(1) The furst-order degenerate perturbation theory treatment of the open-shell
neutral potentials described in Section 4.4.5 is accurate enough to account for the X-J
electronic state splittings observed in Ar,;Br and Ar, I, within experimental uncertainties.
(See Figure 4.8). However, this model somewhat overestimates the X-I7 state splittings
for Ar,;Br and Ar,sl, possibly indicating that the spin-orbit splitting decreases as Ar
atoms are added around the halogen. (See Figure 4.9).

(2) A pairwise additive model of the anion potentials is completely inadequate to
account for the experimentally measured EAs. (See Figures 4.10 and 4.11). Non-additive
effects in the anion are clearly very important.

(3) The many-body induction effect is the most important non-additive effect in
the anion potential. Inclusion of V.4 accounts for most of the discrepancy between the
additive and experimental EAs, but somewhat overcorrects, especially in the case of Aryl.
This result is consistent with the work of Berkowitz et ar.'®* who found a non-additive
inductive effect to be very important to model the experimental BEs of Br(H,O), clusters.
We also note that, although not explicitly discussed by Bowen and coworkers in their
paper on Ar,O" clusters,'® it seems likely that the non-additive induction effect may in
large part account for the non-linearity of the binding energies as a function of n observed

by them for n<12. (See Figure 4 of Reference 16.)
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(4) The exchange/dispersion multipole term also plays an important role. In both
the Ar,.9Br™ and Ar,. ol clusters inclusion of the V.. and V.4, terms in the EA calculation
brings the calculated EAs within the experimental error bars, when the uncertainty in the
size of the induction effect due to the uncertainty of the pair potential bond length is taken
into account.

(5) Inclusion of the triple-dipole dispersion effect in the anion and neutral
potentials appears to slightly improve the agreement with experiment for the smaller
clusters (Ar,sBr  and Ara.sI'), but makes the fit slightly worse for the larger clusters.
However, due to the uncertainties in r, in the Ar-X" pair potentials, nothing conclusive can
be said about the role of the triple-dipole dispersion effect in these clusters on the basis of
our results. Furthermore, we cannot draw any conclusions about the role of three-body
exchange effects or higher-order multipole dispersion terms from the present work.

Overall, this type of detailed energetic study of many-body effects is
complementary to studies of non-additive effects via high resolufion spectroscopy. In this
type of experiment we are able to directly measure the difference between anion and
neutral binding energies, allowing a direct comparison of experimental observables with
mode] potentials including non-additive effects. However, due to limited resolution and
uncertainties in the pair potentials this experiment is not sensitive to the most subtle non-
additive effects, such as the triple-dipole dispersion energy. This is in contrast to the high

resolution spectroscopic studies of the Ar,-HX systcms,”"o

which provide precise values
of molecular constants. Comparison of such results with non-additive model potentials is
more difficult, but can in principle provide more precise information on non-additive

effects.

144




et ontulibaiit 24 s +/En b I A At Al i M

Further theoretical work needs to be done to interpret the vibrational structure
observed in the smaller clusters (Ar,.3Br” and Ar,;I) studied here. These spectra present
an opportunity to test the various methods of dynamical calculations that have been
developed for weakly bound clusters,”” and such studies would be welcome.

In the future, we hope to observe the ZEKE spectrum of Ar,CI. This would allow
direct comparison with the recently published ab initio study of this system by Burcl et
al.®® Also, the Ar,Cl neutral cluster would present a more tractable problem for ab initio

theorists than the larger halogen containing clusters studied in the present work.
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Appendix A. Program for calculating vibrational states and Franck-Condon factors
for highly anharmonic one-dimensional potentials based on the eigenfunctions of the
Morse potential using the DVR method

In this Appendix we describe the computer program used to calculate the
vibrational eigenvalues, eigenfunctions and Franck-Condon factors for simulating the
rare-gas halide diatomic spectra described in Chapters 3 and 4. The program uses a
matrix method (the discrete variable representation, or DVR, method) to solve the
Hamiltonian, with the eigenfunctions of a Morse oscillator as a basis set. The use of a
Morse eigenfunction basis set has advantages over the more commonly used oscillator
basis set when one is dealing with highly anharmonic potentials, such as those of the van

der Waals complexes of interest here.

Al. Brief description of the DVR method
In the DVR method, or in any matrix method, one first sets up the Schrédinger
equation in a matrix representation
H-c=Ec, (A1)
where H=T+V is the Hamiltonian, T is the kinetic energy matrix and V is the
potential energy matrix. The problem then is to solve for the eigenvalues E, and

eigenvectors ¢j.

To this one chooses a set of basis functions d)n) which are solutions of

Hy|9o) = E,|,). (A2)
where H,=T+V,. (A3)
152A

A 0 Yol ' S s Rt SRCY SRR ¢ 220Dt el oot € 3 O TR A A T A T AN el & TR RGN v s vceb S et i b b 17 ¢AniCatnt i il ete b it



Vo is a reference potential, for which the eigenfunctions, ¢,,) , and the eigenvalues, E?,

are known.
Introducing the “difference potential," AV =V -V, which is the difference
between the potential of interest and the reference potential, the Hamiltonian becomes

H = H,+AV , and the matrix elements of H are

<¢n H|¢m> = (¢n HO|¢m>+<¢n AV|¢m>
o . (AS)
=E)+(¢,|aV|9,,)
The Schrédinger equation then becomes
(E°+AV)-c=Ec. (A6)

In order to calculate the matrix elements of the difference potential, we then use

the "transformation method" of Harris, Engerholm and Gwinn,! commonly known as the
HEG method. The first step in this method is to find the matrix elements, (¢, |X|9,.), of
the position operator, X, in our basis; i.e., we find the transformation matrix T such that
T X-T=diag(R) (A7)
The eigenvalues, R;, of X are the DVR points. It is then a simple matter to calculate the

AV in the DVR basis, because the potential (and difference potential) are diagonal in the

position representation, so that

AV(R,) 0

AV(R
AV = (&) . : (A)

0 AV(RN)
In order to solve Eq. (A6) , we must then transform E° into the DVR basis using the

transformation matrices from (A7)
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Elyg =T"E°-T. (A9)

It can be shown? that the errors introduced in this approach are minimized if the
matrix X is tridiagonal, as it is in the harmonic oscillator basis. For further details and
listing of computer code for implementing the DVR method using a harmonic oscillator
basis, see the dissertation of R. B. Metz.3

Once the eigenvectors ¢, and the eigenvalues E, are found by diagonalizing Eq.
(A6) it is a simple matter to simulate the vibrational stick spectrum. The anion and

neutral eigenvectors are calculated in the same basis, so the Franck-Condon factors

(FCFs) are found from

FCE(v" « v )=c'-c,,. (A10)

The peak spacings are found from the differences in the anion and neutral eigenvalues,
and then the FCFs are multiplied by a Boltzmann factor for an assumed anion vibrational
temperature.

Functions of R are quite easy to calculate in the DVR basis. For example we find

the rotational constant for a given vibrational level from

K? 1 K’ 1
B=— o ————— (Al1)

where R is the diagonal matrix of DVR points diag(R)).

A2. How to implement DVR using Morse basis functions

The implementation of the DVR method with a harmonic oscillator basis is
straightforward, because the matrix elements of the position operator have a simple

analytical form.3 The eigenfunctions of the Morse oscillator are more complicated, and
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no analytical form exists for (¢A IX |¢m>. However, because the eigenfunctions of the

Morse oscillator are a closer approximation to the eigenfunctions of the eigenfunctions of
a diatomic van der Waals molecule, it is worthwhile investigating the problem of using
the Morse eigenfunctions in the DVR scheme because faster convergence may be
expected. This problem was considered, and solved, by Greenawalt and Dickinson in
1969.4 Here we describe their approach to the problem, and our implementation.

The Morse potentiald is given by
V(R)=D,(1-exp(-a(R-R,))) (A12)
where D, is the well depth, R, is the bond length, and a is a parameter that determines
shape of the potential. Note that in this Appendix, we define the parameter a in the
Morse potential such that it has units of inverse length, whereas the 8 parameter of the
Morse portion of the MMSV potential [See Eq. (2.1)] is unitless. We also define the

quantity

V2
N (A13)
ha

where /1 is the reduced mass. The number of eigenvalues of the Morse potential is the
number of integers from zero to ¢ —4. The eigenfunctions of the Morse potential are then

given by
8.(y)= N,y exp(- 1) LT (), (A14)
with y =2texp(—a(R-R.)), (A15)

where the L7(y) are the Laguerre polynomials, and N, is a normalization factor given by
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_ T(n+1)I(2t=n)T(2r-2n-1) '

N =
" al'(2t—n)

(A16)

Because no analytical form exists for (¢,|X|¢,) in the Morse basis, we use a
generalization of the HEG transformation method,® as follows. First we choose a
function, u(R), such that the elements (¢, [u(R)|¢,,) constitute a tridiagonal matrix. Then
we diagonalize the matrix u to find the transformation matrix T such that
T -u-T=diag(A;). The DVR points are then found by inverting the function
A, =u(R), and the rest of the calcul'ation proceeds as above from Eq. (A8). Greenawalt

and Dickenson® showed that for the Morse basis, the function

1 1
Rl=—= Al7
«(R) y 2texp(-a(R-R,)) (AID
gives a tridiagonal matrix, with elements
12
(¢, |u(R)¢,)=5 t #8p| Do) nsm. (al8)
" "2t —n)t-n—-1) "'\ N,

Note that it is not necessary to calculate the Laguerre polynomials in Eq. (A14) in order
to find the matrix elements from Eq. (A18). Also note that the ratio of the two
normalization constants in (A18) can be simplified so that one need not evaluate the
gamma functions in Eq. (A16). Therefore computation of the matrix elements of X in the

Morse basis is not significantly more time-consuming than in the harmonic oscillator

basis.
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A3. Choosing the parameters for the Morse basis

In this section we describe general guidelines for choosing the optimal Morse
basis set parameters that we have found effective in our calculations with the RgX anion
and neutral MMSV potentials. Note that these are only guidelines, and some trial and
error may be necessary to find the best basis set parameters for other potential forms.

First, we set R, of the Morse potential equal to the bond length of the smaller of
the neutral or anion MMSV potentials. Next we choose the desired number of basis
functions, N. Twenty-five to 75 basis functions were found to be sufficient for most
purposes. We then choose the parameter ¢ [which is roughly equal to the total number of
bound vibrational states of the Morse potential; see Eq. (A13)] so that the shape of the
Morse eigenfunctions include functions with shapes similar to those expected for the
range of vibrational levels of the model potential we wish to calculate. To do this, we set

t _ Estimated total number of MMSYV eigenvalues (A19)
N Number of MMSV eigenvalues to calculate

The total number of MMSV eigenvalues is estimated by using (B, + 8,)/(2R,) in place

of a in Eq. (A13)--where By, B;, and R are the MMSV parameters as defined in Eq.
(2.1)-- along with the well depth of the MMSYV potential, and p calculated from R, of the

MMSYV potential. If one chooses ¢ by trial and error instead, as is sometimes necessary,

one must remember that the quantity r—+ must be larger than the number of basis

functions, N. Next one chooses the Morse potential force constant

d*V(R)

k=
dR?

=2aD, . (A20)
R

(4
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Finally, using these values for r and k, one calculates a and D, from Egs. (A13) and
(A20).

As written, the program automatically computes the Morse basis set parameters
based on the desired number of eigenvalues to calculate and the number of basis
functions used according to the above considerations if one uses the MMSV potential
form. If one uses a different potential form, one must provide the Morse parameters R,

a, and D, in the input file to the program.

A4. Comparison of Morse and harmonic oscillator basis set convergence for a
highly anharmonic potential

In this section we test the performance of the Morse DVR program by comparing
its convergence behavior with a harmonic oscillator based DVR program for the MMSV

potential for the I3 state of Krl. This potential has a well depth of 16.7 meV and

supports 18 bound vibrational states. See Ref. 7 for further details of the KrI potential.
The program was tested by calculating the eigenvalues using both the Morse and
harmonic basis sets, increasing the basis set size, N, by 5 with each calculation. The
calculation was performed wit The results for v=1, 5, 10 and 15 are shown in Figure Al
on the following page. The ordinate of each graph is the relative difference between the
eigenvalue calculated with a given number of basis functions, and that calculated with 5

fewer basis functions.
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This number gives an indication of the convergence of the program. Also, the exponent
of the ordinate is an approximation to the number of significant figures of the calculated
eigenvalues. We see that for v = 1, 5 and 10, the Morse program converges with 25-35
basis functions, whereas, the harmonic oscillator program requires 40-60 basis functions
to converge. In the case of v = 15, the Morse program converges with 50 basis functions,
but the harmonic oscillator program does not converge with up to 150 basis functions,
demonstrating the inadequacy of the harmonic oscillator model for treating high
vibrational levels of anharmonic oscillators.

In general, then, it is found that the Morse program requires nearly a factor of 2
fewer basis functions than the harmonic oscillator program for satisfactory performance
with anharmonic potentials. This is made more significant when one considers that the
speed of the "rate limiting step” in the calculation, solution for the eigenvalues and
eigenvectors of Eq. (A6), is proportional to the third power of the number of basis
functions.8 Therefore the use of the Morse basis offers an approximately eight fold

increase in computing speed over the harmonic oscillator basis.

AS. Documentation of the Morse DVR program "idvr'': example of the X 1 state of

XeBr
In this section we demonstrate the how to use the interactive Morse DVR program

"idvr" for fitting diatomic ZEKE spectra.
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AS.1. The input files
A sample input file for fitting the XeBr X 1 state spectrum is shown below. Note

that the line numbers in boldface are for reference only and are not included in the actual

input file. The file is named "xebr_x_dvrin."

1: xebr_x_dvrpar
2: xebr_x exp

3: xebr_x_wf

4: xebr_x_stx

5: xebr_x_bv

6: xXebr_x_gau

7: xebr_x_zke

8: 3. 1* FWHM in cm-1 for Gaussian convolution

9: 8.5 1* FWHM in cm-1 for ZEKE convolution

10: 45 1* number of basis functions

11: 10 !'* number of neutral eigenvalues to calculate

12: 6 t* number of anion eigenvalues to calculate

13: 27890. !* origin (cm-1)

14: 70. I* yibrational temp (K)

15: 0.00 i* baseline for ZEKE conv. (as fraction of highest peak)

The first 7 lines are the names of files used by the program. Lines 1 and 2 are input files
which are not modified by the program. Line 1 is the name of a file which contains the
potential and basis set parameters. (See below for a sample parameter file.) Line 2 is the
name of the file containing the experimental spectrum that is being fit. This file must be
in wavenumber format. It is used in order to calculate the chi-square goodness of fit
function for comparison with the model spectrum. Lines 3-7 list the names of the output
files. Line 3 names the file to save the DVR points and eigenvectors for the anion and
neutral. The eigenvectors should be examined to ensure proper convergence: for each
vibrational level, the eigenvector should be close to O at the smallest and largest DVR
points. If this is not the case, it is necessary to either adjust the basis set parameters or
use a larger number of basis functions. Line 4 is the name of the file to save the

vibrational stick spectrum in wavenumber format. Line S is the name of the file to save
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the rotational constants. The rotational constants are listed in this file in the same order
as the vibrational sticks, and correspond to the rotational constants for the neutral
vibrational level corresponding to each vibrational stick. Line 6 is the output file for a
spectrum consisting of the vibrational sticks convoluted a Gaussian function with the
FWHM (full width at half maximum) given in line 8. Line 7 is the output file for the
stick spectrum convoluted with the asymmetric ZEKE line shape, with the FWHM given
in line 9. See Eq. (4.11) of Chapter 4 for the form of the ZEKE line shape. Both of the
convoluted spectra are output in wavenumber format. Line 10 is the number of basis
functions to use in the calculation. Lines 11 and 12, respectively, are the number of
neutral and anion eigenvalues one wishes to calculate. Line 13 is the position of the
vibrational origin, in wavenumbers. Line 14 is the anion vibrational temperature. Line
15 is a baseline, expressed as a fraction of the maximum peak, which may be added to the
spectrum convoluted with the ZEKE line shape.

The parameter file "xebr_x_dvrpar” is listed below. Again, the boldface line

numbers to not appear in the actual file.

1: 131.30, 79.909

: 3.90, 1.3, 30.

3: 2, 2

4: 0.12692, 3.81, 3.50, 5.30, 1.03, 1.60, 228.3, 2135.2
5: 0.03153, 3.82, 4.35, 6.15, 1.01, 2.00, 4060., 39962.

Line 1 lists the atomic masses in amu. Line 2 lists the Morse basis parameters R,, a, and
1. If one uses the MMSYV potential form, these parameters are not used by the program,
but are calculated directly from the MMSYV potential parameters. See Section A3, above,
for a discussion of the choice of the basis parameters. Line 3 contains integers which

specify which potential form to use for the neutral and anion. See the source code listing
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of the subroutine "poten” in Section A6.6, below, for a listing of the available potential
forms, and their associated parameters. Lines 4 and 5 list the potential parameters of the
for the neutral and anion potentials, respectively. In this example the potentials are of the
MMSV form. The order and units of the MMSYV parameters in each line are:

e(eV)

Rn (A)

B (unitless)

B, (unitless)

X\

X2
Co/e (AS) or By/e (A%
Cy/e (A% or Bg/e (A%)

Note that the values of the dispersion coefficients input to the program are divided by the
well depth, so the numbers shown in the sample input file differ from the parameters
given in Table 3.4 of Chapter 4. Note also that because of this quirk in the program one
must change the dispersion inputs whenever one changes the well depth. Refer to the
source code listing in Section A6.6 for the order and units of the parameters for other

potential forms.

A5._2. Running the program

An example of running the Morse DVR program “idvr" using the input files
shown in the previous section is given below. Because this is an interactive program the
input and output files names are input in response to prompts from the program rather

than using pipes in the customary Unix style. The user input is shown in boldface.
> idvr

Interactive Morse DVR program - Version 1.01, Released March 1998
Copyright 1998, Anion ZEKE Group, Neumark Group,
Department of Chemistry, UC Berkeley
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Enter input filename

xebr_x_dvrin

Enter output filename

xebr x_ dvrout

Gaussian convolution 781 points saved to : xebr_x_gau

ZEKE convolution 275 points saved to : xebr_ x_zke

Anion, Neutral parameters

1 0.12692000000000 3.1530000000000D-02
2 3.8100000000000 3.8200000000000
3 3.5000000000000 4.3500000000000
4 5.3000000000000 6.1500000000000
5 1.0300000000000 1.0100000000000
6 1.6000000000000 2.0000000000000
7 : 228.30000000000 4060.0000000000
8 : 2135.2000000000 39962.000000000
Vibrational temperature : 70.000000000000
ZEKE FWHM (cm-1) : 8.5000000000000
Baseline for ZEKE conv. : 0.

Chi-square from ZEKE vibrational convolution : 0.860324E-01

Enter "a/A" to change/optimize an anion parameter

“n/N" to change/optimize a neutral parameter

“v/V" to change/optimize the vib. temperature

"f/F" to change/optimize the ZEKE FWHM

"b/B" to change/optimize the baseline

"g" to quit idvr
At this point, the user may examine the convoluted spectra, and the output file
"xebr_x_dvrout," which lists the eigenvalues and Franck-Condon factors. If the fit is not

satisfactory, one can modify the parameters as often as desired before exiting the

program. Note that the modified parameters are not saved in the parameter file.

AS5.3. Outline of the program
In the table below we list the subroutines aud functions that are used by the "idvr"

interactive Morse DVR fitting program sorted according to which file they reside in.
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Table A1l. Subroutines and functions used by the "idvr" program.

Source | Subroutine
File or Function Description
idvr.f idvr main program
umat sets up the u matrix using Eq. (A18)
rcalc calculates the DVR points R;
initpars reads in the potential parameters
diffpot calculates the difference potential matrix [Eq. (A8)]
morseig | calculates the matrix EY,, from Eq. (A9)
hcalc sets up the total Hamiltonian matrix H
setbasis chooses the Morse basis set parameters according to the
considerations of Section A3
calcfcf calculates the Franck-Condon factors
bvcalc calculates rotational constants for individual vibrational
levels from Eq. (A11)
rsb.f rsb EISPACK subroutine for computing the eigenvalues and
eigenvectors of a real (double-precision) symmetric band
matrix
rs.f IS EISPACK subroutine for computing the eigenvalues and
eigenvectors of a real (double-precision) symmetric
matrix
matrix.f showarr4 | subroutine to print out a matrix
poten2.f poten calculates the potential for a specified potential form
ms4 Maitland-Smith n-4 anion potential function
anmmsy anion MMSYV potential function
morse Morse potential function
bucky Buckingham exp-n potential function
anmmsvus | unscaled anion MMSYV potential function
ms6 Maitland-Smith n-6 neutral potential function
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neummsv | neutral MMSYV potential function
msv Morse-Spline-van der Waals potential function for neutral
agx Aquilanti potential® for the RgX X1 state
aqi Aquilanti potential® for the RgX 72 state
neummsvus | unscaled neutral MMSYV potential function
hfd_c Aziz HFD-C potential!0
hfd_b Aziz HFD-B2 potential!0
convol.f congauss subroutine for convolution with a Gaussian line shape
conzeke subroutine for convolution with the ZEKE line shape

A6. Source code for the Morse DVR program "idvr.f"

In this section we list the complete source code of the "idvr" program and relevant

subroutines and functions.

The "rsb" and "rs" subroutines are the standard EISPACK

functions for matrix diagonalization;!! hence the only the headers are listed for these.

A6.1. File "makeidvr"

The makefile used for recompiling the Morse DVR program is shown below. To

recompile the program one enters "make -f makeidvr".

idvr: idvri0l.o rsb.o rs.o matrix.o poten2.o convol.o
£77 -02 -o idvr idvril0l.o rsb.o rs.o matrix.o poten2.o convol.o -

c

idvrl0l.0: idvrlOl.f

£77 idvri0l1.f -c 02 -C

rsb.o: rsb.f

£77 rsb.f -¢ -02 -C

rs.o: rs.f

£77 rs.f -c -02 -C

matrix.o: matrix.f
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£77 matrix.f -c¢ -02 -C

poten2.o0: poten2.f
£77 poten2.f -c -02 -C

t+h

convol.o: convol.
£77 convol.

Hh

-¢c ~-02 -C

A6.2. File "idvr101.f"

program idvr

implicit undefined(a-z)

integer ndim,ndl,nd5

parameter (ndim=150,nd1=1000,nd5=5000)

double precision norm(ndim+1l),u(ndim+1,ndim+1),eigval (ndim+1}),
eigvec (ndim+1,ndim+1), fvl (ndim+1), fvl (ndim+1),r (ndim+1),
diagv(ndim+1) ,eigmdvr (ndim+1l,ndim+1) , ham(ndim+1, ndim+1},
peigval (ndim+1) ,peigvec (ndim+1,ndim+1),adiagv(ndim+1),
apeigval (ndim+1) ,bvan(ndim+1),bvneu(ndim+1),
apeigvec (ndim+1,ndim+1), fcf (ndim+1,ndim+l), totfcf (ndim+1),
ymxyl (ndl) , ymxy2 (ndl) , ymxy3 (ndl),
ymxy4 (ndl) , xgauss (nd5) ,ygauss (nd5) , xzeke (nd5) ,yzeke (nds),
xexp (nd5) , yexp (ndS) , xexp2 (ndS) , yexp2 (nd5) , ysim(nds)

integer ianxy(ndl), ineutxy(ndl),npot(2),iarr(3),

& mnmax,nfcf,nconv, i, j,ierr,nshow,nanshow,it, iabl, noconv,

& nexp,cint,ibad,cbad,notfirst

character*30 fn, feig, fvsticks, fbv, fgauss, fzeke, fexp, £fin, fout

character*l cit

double precision rmu,anbasis(3),neubasis(3),
anpot (10) ,neupot (10}, zero,chisqg, amassl,amass2,bline,
gfwhm, zfwhm, evtocm, €0, vibtemp, re, beta, t,
fv2,depthneu, poten, temp, temp2, depthan, depthm, anioncm, factor,
abl

RRRRRRRR

R R R

parameter (evtocm=8065.541)
notfirst = 0

if (notfirst.eqg.0) then
write(*,805)
11 write(*,*) ‘Enter input filename :°'

read(*,*) fin

write(*,*) 'Enter output filename :'

read(*, *) fout

endif

if (fout.eqg.fin) then
write(*,*) 'You do not really want to overwrite the input file,
write(*,*) ‘'Do you???'
goto 11

endif

1 open (8, file=fout)
open(7,file=£fin)
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write(8,805)
805 format (/, 'Interactive Morse DVR program - ',

& 'Version 1.01, Released March 1998',/,
& ‘Copyright 1998, Anion ZEKE Group, Neumark Group,',/,
& '‘Department of Chemistry, UC Berkeley',/)

call idate(iarr)
write(8,300) iarr(2),iarr(l),iarr(3)
call itime(iarr)
write(8,301) iarr(l),iarr(2),iarr(3)
300 format ('Date: ',1i2,'/',i2,1x,14,%)
301 format (£30, 'Time: ‘',3i2,':',1i2,':',i2,/)

read(7,*) fn
write(8,*) 'Parameter file : ', fn

if (notfirst.eq.0) then
call initpars{fn,rmu,amassl,amass2,anbasis,npot,anpot,neupot)
do i=1,3
neubasis(i)=anbasis (i)
enddo
endif

write(8,105) amassl, amass2

105 format ('Atomic masses : ',2f18.10)
write(8,106) npot(l),npot(2)
106 format (' Potential type Anion : ',i2,° Neutral : ',
& 1i2,7)
write(8,*) Anion, Neutral parameters'
do i=1,10
write{(8,*) i,' : ',anpot(i),neupot (i)
enddo

read(7,*) fexp
write(8,*) 'Experimental spectrum file (input) : ', fexp

open(1l0, file=fexp) !* Read in experimental data
do i=1,99999
read (10, *,end=303) xexp(i),yvexp(i)
enddo
303 nexp=i-1
write (8,*) nexp,' points read from ', fexp
write (8,309) xexp(l),xexp(nexp)
309 format ('Low, High experimental cm-1 : ',2f10.2)
if (xexp(nexp).lt.xexp(l)) then
write(8,*) 'Note that experimental file is backwards'
do j=1,nexp
xexp2(j) = xexp(nexp-j+1)
vexp2(j) = yexp(nexp-j+1)
enddo
do j=1,nexp
xexp(j) = xexp2(j)
yexp(J) yexp2 (j)
enddo
endif

if (notfirst.eq.0) then
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23

24

26

50

55

57

61

66

71

&

read(7,*) feig
read(7,*) fvsticks
read(7,*) fbv
read(7,*) fgauss
read(7,*) fzeke
read(7,*) gfwhm
read(7,*) zfwhm
read(7,*) nmax
nmax=nmax-1
read(7,*) nshow
nshow=nshow-1
read (7,*) nanshow
nanshow=nanshow-1
read(7,*) e0
read(7,*) vibtemp
read(7,*) bline
endif

write(8,*) ‘File to save DVR points and eigenvectors

write(8,*) 'File to save vib. sticks
write(8,*) 'File to save rotational constants
write(8,*) 'File to save Gaussian convolution

write(8,*) 'File to save ZEKE lineshape convolution

write(8,23) gfwhm

format (/, ‘FWHM for Gaussian convolution : *',£5.2,°

write(8,24) zfwhm

format ('FWHM for ZEKE convolution : ',£5.2,' cm-1')

write(8,26) nmax+l
format { 'Number of basis functions : ',i3)
write(8,*) 'Show ',nshow+l,' neutral eigenvalues’
write(8,*) 'Show ', nanshow+l,' anion eigenvalues’
write(8,50) e0
format ('Origin : ',£9.2,' cm-1"')
write(8,55) vibtemp
format ('Vibrational Temperature : ', £6.2,' K')
write(8,57) bline
format ('Baseline for ZEKE convolution : ',b£7.4,

' frac. of max peak')

call setbasis (nmax,nshow,nanshow, rmu, npot,
anpot,neupot,neubasis)

re=neubasis (1)

beta=neubasis(2)

t=neubasis(3)

depthm=(2.09008e-3) * ( (beta*t)**2) /rmu

write(8,*)
write(8,*) 'Basis paramaters:'
write(8,61) re

format (' Re = ', £7.4,' A')
write(8,66) beta

format (' beta = ',£7.4,' A-1"')
write(8,71) t

format (* £t = "',£7.2)

write(8,76) depthm
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76

345

400
350

245

250

*

*

format (' Depth = ',f10.6,' eV')
write(8, *)

call umat (nmax, t,ndim,norm,u)

call rsb(ndim+l,nmax+1l,2,u,eigval,l,eigvec, fvl, fv2,ierr)
if (ierr.ne.0) then

write(*,*)'*** jerr=',ierr,' from rsb'
endif

call rcalc(nmax,ndim,xre,t,beta,eigval,r)

call diffpot (ndim,nmax, rmu,neubasis, 2,npot (2),neupot,
& r,diagv,depthneu)

open(2,file=feig)
write(2,*)
write(2,*) 'DVR points (Angsroms, cm-1):'
write(2,*)
write(2,345)
format (2x, 'r(i)',.5x, 'anion’',4x, 'neutral’)
do 400 i=0,nmax
write(2,350) r(i+l), (poten(l,npot(l),anpot,r(i+1))+

& anpot (1)) *evtocm, (poten(2,npot(2),neupot,r(i+l))+
& depthneu) *evtocm
continue

format (£8.4,1x,£8.2,1x%x,£8.2)

call morseig(ndim,nmax, rmu, neubasis, eigvec, eigmdvr)

call hcalc(ndim,nmax,eigmdvr,diagv, ham)

call rs(ndim+1l,nmax+1,ham,peigval,l,peigvec, fvl, fv2,ierr)
call bvcalc(ndim,nmax,nshow, rmu, r,peigvec, bvneu)

write(8,*) ' Neutral vibrational eigenvalues and rotational’
write(8,*) ' constants (in cm-1) : °*
write(8,*) ' !
write(8,245)
format (15x, 'Total', 6x, 'Spacing', 6x, 'B(v)')
write(8,*) * °
temp2=0.
do i=0,nshow
zero= (peigval (1)) *8065.541
temp= (peigval (i+1))*8065.541
write(8,250) i,temp-zero,temp-temp2,bvneu(i+l)
temp2=temp
enddo

format (1x,'v = ',12,4x%,£9.2,4x%x,£8.2,4x%,£9.5)
write(2,*)

write(2,*) ‘Neutral eigenfunctions:'
call showarr4 (2,ndim+1,peigvec, nmax+l,nshow+1)

Anion calculation--using same basis

call diffpot (ndim, nmax, rmu, neubasis,1,npot(1l),anpot

'
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& r,adiagv,depthan)

call hcalc(ndim, nmax, eigmdvr,adiagv, ham)

call rs(ndim+l,nmax+1,ham,apeigval,l,apeigvec, fvl, fv2,
& ierr)

call bvcalc (ndim, nmax,nanshow, rmu, r,apeigvec, bvan)

write(8,*)
write(8,*) ' Anion vibrational eigenvalues and rotational'
write(8,*) ' constants (in cm-1) : '
write(8,*) ' '
write(8,245)
write(8,*) ' °
depthm=( (beta*t/21.87343)**2)/rmu
temp2=0.
do i=0,nanshow
zero= (apeigval (1)) *8065.541
temp=(apeigval (i+1))*8065.541
write(8,250) i,temp-zero,temp-temp2,bvan(i+l)
temp2=temp
enddo
write(2,*)
write(2,*) 'Anion eigenfunctions:'
call showarrd4(2,ndim+l, apeigvec,nmax+l, nanshow+1)
close(2)

call calcfcf (ndim, nmax,nshow,nanshow, apeigvec,peigvec, fcf,
&. totfct)

write(8,*)
write(8, *) 'Franck-Condon Factors :'
write(8,145)
145 format (19x, 'Anion v = ')
write(8,150) (i, i = 0,nanshow)
150 format (17x,20(i3,4x),/)
write(8,*)
do 900 j=0,nshow
write(8,155) j, (fcf(i+1,j+1), i = 0,nanshow)
900 continue
write (8, *)

155 format ('Neutral v = ',i3,2x,20(£f6.4,1x),/)
write(8,160) {(totfcf(i), i=1,nanshow+l)
160 format. (' Total = ',5x,20(f6.4,1x),/)

write(8,*)
Make vibrational sticks - NOT normalized
it=0

do i = 1, nanshow+l
do j = 1, nshow+l

it=it+l

ymxyl (it) = e0 + 8065.541*((peigval(j)-peigval(l)) -
& (apeigval (i) -apeigval (1) ))

ymxy2 (it) = fcf(i,3)

ymxy3 (it) = bvan(i)

yrxy4 (it) = bvneu(3j)

ianxy(it) = i-1

ineutxy(it) = j-1
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enddo

enddo

nfcf = (nshow+l)* (nanshow+1)

it=0
do i = 1, nanshow+l

anioncm = (apeigval(i)-apeigval{l))*evtocm
factor = exp(-anioncm/vibtemp/.6395)

do j = 1, nshow+l
it=it+1

yxy2 (it) = ymxy2(it)*factor

enddo
enddo

Sort vib sticks

* Save vib.

*

3030

do i

1, nfcf
do =

i, nfcf

abl = ymxyl(3j)

ymxyl(j) = ymxyl(i)
abl

ymxyl (1)

abl = ymxy2(3)

ymxy2 (j) = ymxy2(i)
ymxy2 (i) = abl

abl = ymxy3(j)
ymxy3 (3)
ymxy3 (1)

abl = ymxy4(3)
ymxy4 (3)

iabl = ianxy(3j)
ianxy (i)
iabl

ianxy (3)
ianxy (i)

iabl = ineutxy(j)

3
if (ymxyl(j).1lt.ymxyl(i))

= ymxy3 (1)
abl

= ymxy4 (i)
ymxyd (i) = abl

then

ineutxy(j) = ineutxy (i)

‘ ineutxy (i) = iabl

endif
enddo
enddo

write(8,*)

write(8,*) 'Vibrational stick spectrum :

write(8,3030)

format(/,' Pos./cm-1',5%x,'% Inten.',2x,'v neut.
open(4,file=fvsticks)

open (10, file=fbv)

sticks and rotational constants
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do i = 1, nfcf
if (ymxy2(i).ge..003) then
write(4,930) ymxyl(i), ymxy2(i)
write(10,935) ymxy3 (i), ymxy4 (i)

write(8,9030) ymxyl(i),ymxy2(i)=*1.0d42,ineutxy (i},
& ianxy (i)
endif
420 enddo
close(4)
close(10)
930 format (£10.2,£10.6)
935 format (2£12.8)
9030 format (£9.1,3x%x,£f8.2,8x,1i2,' -',1i2)
*
*Convolute vib sticks with Gaussian and save only those points that lie
* within the range of the experimental spectrum.
*
open(10, file=fgauss)
call congauss (gfwhm,nfcf, 1000, ymxyl, ymxy2,nconv, 5000,
& Xgauss,ygauss)
noconv = 0
do i = 1,nconv
if ((xgauss(i).ge.xexp(l)).and. (xgauss(i).le.xexp(nexp))) then
write(10,9050) xgauss(i),ygauss (i)
else
noconv = noconv+l
endif
enddo
close(10)
9050 format (£12.4,£f10.6)

write(8,892) nconv-noconv, fgauss
write(*,892) nconv-noconv, fgauss
92 format (/, 'Gaussian convolution ',i5,' points saved to : ',a30)

Convolute vib sticks with ZEKE lineshape and save convoluted points
that lie within the exp spectrum. Also calculate chi-square for ZEKE
convolution vs. experimental data (all taken care of in subroutine
conzeke ()

* % % * % * OO

open (10, file=£fzeke)

call conzeke(zfwhm,nfcf, 1000, ymxyl, ymxy2,nconv, 5000,
& xzeke,yzeke,nexp,xexp,yexp,ysim,bline,chisg)
noconv = 0

do i = 1,nconv

if ((xzeke(i).ge.xexp(l)).and. (xzeke(i).le.xexp(nexp))) then
write(10,9050) xzeke(i),yzeke (i)
else
noconv = noconv+l
endif
enddo
close(10)

write(8,891) nconv-noconv, fzeke
write(*,891) nconv-noconv, fzeke

891 format (/, 'ZEKE convolution ',i5,' points saved to : ',6a30)
write(8,898) chisg
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write(*, *)

898 format ('Chi-square from ZEKE vibrational convolution : ',gl2.6)
close(7)
close (8)

Begin the next iteration in the fitting process

notfirst = 1
write(*,*)

write(*,*) ° Anion, Neutral parameters’'
do i=1,10

if ((anpot(i).ne.0.).and. (neupot(i).ne.0.)) then

write(*,*) 1i,' : *',anpot(i),neupot (i)

endif
enddo
write(*,*) 'Vibrational temperature : ',vibtemp
write(*,*) 'ZEKE FWHM (cm-1) : ', zfwhm
write(*,*) 'Baseline for ZEKE conv. : ',kbline

write(*,898) chisg
write(*,1693)
1693 format(79('-'))
1695 cbad = 0
write(*,*) ‘'Enter "a/A" to change/optimize an anion parameter'

write(*,*) ° "n/N" to change/optimize a neutral parameter'
write(*,*) *v/V" to change/optimize the vib. temperature'’
write(*,*) ' “£/F" to change/optimize the ZEKE FWHM'
write(*,*) "b/B" to change/optimize the baseline’
write(*,*) "g" to quit idvr:

read(*,*) cit
if (cit.eqg.'a') then

1795 write(*,*) 'Change which anion parameter (integer 1-10)7?"'
read(*,*) cint
ibad = 0

if ((cint.le.10) .and. (cint.ge.1l)) then
write(*,*) 'Enter new value for anion parameter ',cint
read(*,*) anpot{cint)

else
ibad = 1

endif

if (ibad.eqg.l) goto 1795

elseif (cit.eg.'n') then

1796 write(*,*) 'Change which neutral parameter (integer 1-10)7?"'
read(*,*) cint
ibad = 0

if ((cint.le.10).and. (cint.ge.l)) then
write(*,*) 'Enter new value for neutral parameter ',cint
read(*, *) neupot (cint)
else
ibad = 1
endif
if (ibad.eq.l) goto 1796
elseif (cit.eq.'v') then
write(*,*) 'Enter new value for vibrational temperature'’
read(*,*) vibtemp
elseif (cit.eq.'f') then
write(*,*) 'Enter new value for ZEKE FWHM'
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read(*,*) zfwhm
elseif (cit.eqg.'b') then
write(*,9738)

9738 format ('Enter new baseline as a fraction of total intensity',
& /,'{i.e. a real number from O to 1)')
read(*,*) bline
elseif ((cit.eq.'q').or.{(cit.eq.'Q')) then
goto 9999
elseif ((cit.eq.'A').or.(cit.eq.'N').or.(cit.eqg.'V').or.
& (cit.eq.'F').or.(cit.eqg.'B'})) then
write(*,*) '"Optimize" feature not yet implemented'’
cbad=1
else
write(*,*) cit,' is not an option’
cbad=1
endif

if (cbad.eq.l) goto 1685

goto 1

Set up diagonal and diag-l of u(z) matrix elements, in
form suitable for input to rsb diagonalization routine

Input: nmax, largest n value to calc.
t, for Morse
ndim dimension of norm vector
norm vector containing ln(norm). constants

Output: u contains diag-1l in first column,
diag in 2nd, first row index is 1.

* % * % o X X X X * ¥

implicit double precision(a-h,o-z)
double precision t,norm(ndim+l),u{ndim+l,ndim+1)

* Diag-1 elements

u{l,1)=0.
do 100 i=1,nmax
w(i+l,)=sqgrt(i*(2*t-1)/({(2*£-2*i+1)*(2*t-2*1)**2
& *(2*%t-2*i-1)))
100 continue

* Diagonal elements
do 200 i=0,nmax
u(i+l,2)=t/(2*(t-1)*(t-i-1))

200 continue

return
end
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* Calculate points R(i) from diagonalized u(R) matrix

* elements.

*

* Input: vudiag, vector with eigenvalues of u(R)
* nmax, maximum n value (=# of evals -1)
* ndim dimension of udiag vector

* re, bond length of Morse

* t, for Morse

* beta, for Morse

*

*  Qutput: r, contains R(i)'s (in Angstroms if beta
* is in angst-1)

*

implicit double precision(a-h,o-z)
double precision udiag(ndim),r(ndim),re,t
integer nmax,ndim

do 100 i=0,nmax
r(i+l)=re+log(2*t*udiag(i+l)) /beta
100 continue
return
end

o) IR SRR REEEEREEE RS SRR R R R R R RS EER R R R R R R ER R ERSREEEREEEEEE R IR I I

subroutine initpars(fn,rmu,amassl, amass2,anbasis,npot,
& anpot,neupot)

c I E R R R R R R EE R R SRR R E R R R R SRR R SRR RS R RRERRESEEREESERERERZEZEEZERE R IE I I I G IR
c
c Read masses, potential parameters, etc from
C the file fname.
*
* Input: £n file name with parms
*
* Qutput: rmu Reduced mass (amu)
* anbasis(re, beta,t) Morse basis parms (used if basis
* parameters can't be calculated
* from the potential)
* amassl Atomic masses {amu) of each atom
amass?2 " " - "
npot (1) ,npot (2) Type of anion,neutral potential
* anpot (...} Anion potential parms
* neupot (...) Neutral potential parms’

implicit double precision(a-h,o0-z)

character*30 fn

double precision rmu,anbasis{3),anpot(10),neupot(10)
integer npot(2)

open(l,file = £fn)

read(l, *) amassl,amass?2
rmu=amassl*amass2/ (amassl+amass2)
read(l,*) anbasis{(l),anbasis(2),anbasis(2)
read(1l,*) npot(l), npot(2)
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if ((npot(l).eq.l).or.(npot{l).eq.4)) then
read(l,*) anpot(l),anpot(2),anpot(3),anpot(4)
else if ((npot(l).eq.2).or.(npot(l).eg.6)) then
read(1l,*) anpot(l),anpot(2),anpot(3),anpot(4),anpot(5),
& anpot (6) ,anpot (7),anpot (8)
elseif (npot(l).eq.3) then
read(1l,*) anpot(l),anpot(2),anpot(3)
else
pause 'Error in anion npot in paramater file'
endif

if ((npot(2).eq.l).or.(npot{2).eq.4)) then
read(l,*) neupot(l),neupot(2),neupot(3),neupot (4)
else if ((npot(2).eq.2).or.(npot(2).eqg.6)) then
read(l, *) neupot (1) ,neupot(2),neupot(3),neupot (4),
& neupot (5) ,neupot (6) ,neupot (7) ,neupot (8)
elseif (npot(2).eqg.3) then
read(l, *) neupot(l),neupot(2),neupot(3)
elseif (npot(2).eqg.5) then
read(l, *) neupot(l),neupot(2),neupot(3),neupot(4),
& neupot (5) ,neupot (6)
elseif ((npot{2).eqg.7).or.(npot(2).eg.8)) then
read(1l,*) neupot(l),neupot(2),neupot(3),neupot(4),
& neupot (5), neupot (6) ,neupot (7) ,neupot (8),
& neupot (9)
elseif ((npot(2).eq.9).or.(npot(2).eq.10)) then
read(1l,*) (neupot(i), i=1,10)
else
pause 'Error in neutral npot in paramater file®
endif

close (1)

return
end

subroutine diffpot (ndim, nmax, rmass,basis, numb, npot,parms,
& r,diagv,depthp)

Calculate difference potential matrix (delt-V = V - Vref)
in dvr by quadrature at points R(i), and transform to Morse fbr.
Zero energy is bottom of potential wells.

Inputs: ndim

nmax
rmass Reduced mass (amu)

basis(re,beta,t) Morse parms
numb 1 for anion, 2 for neutral
npot type of potential

parms () potential paramaters

xr() quadrature points

* % o % % % A % % * F ¥ ¥ ¥ * %

Output: diagv{() diff. potl. elements in dvr basis
deltav () difference potl matrix in Morse basis
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* depthp well depth of poten (needed for Ag poten)

implicit double precision{a-h,o-z)
parameter (evtocm=8065.541)

integer ndim, nmax,numb,npot
double precision basis(3),parms{(10),
& r(ndim+1l),diagv(ndim+1)
double precision poten,morse
re=basis (1)
beta=basis (2)
t=basis (3)
depthm=(2.09008e-3) = ( (beta*t)**2) /rmass
if ((npot.eq.8).or. (npot.eg.10)) then !* Need to find min. forAqg.

depthp = 1.d%89%

step = 0.001

rl = 3.0

r2 = 5.0

nstep = (r2-rl)/step
rt = rl

do i=1l,nstep
vtest = poten (numb, npot,parms,rt)
if (vtest.lt.depthp) then
depthp = vtest
rvmin = rt
endif
rt = rt+step
enddo
depthp = -depthp
write(*,5000) depthp
write(*,5002) depthp*evtocm
write(*,5001) rvmin

5000 format ('Neutral potential depth = *',f8.5,' eV')
5002 format ("' = ',£8.2,' cm-1")
5001 format ('At Rmin = ',f7.3,' Angstroms')
write (*,*)
else
depthp=parms (1)
endif

Fill diagonal delta-v with dvr matrix elements

do 100 i=1,nmax+1l
diagv (i) =poten (numb, npot,parms,r{i))+depthp
& -morse (depthm, re,beta,r (i) ) -depthm
100 continue

return
end

Calculates eigenvalues of the morse potential
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* Inputs: ndim

* nmax

* rmass

* basis(re,beta,t)

* tmat () Transformation matrix

*

* oQutput: eigmdver() Matrix with Morse eigenvalues

* in eV referred to asymptote,
* transformed to dvr basis.

*

implicit double precision(a-h,o-2z)
parameter (c1=0.0457176,c2=2.09010e-3)

integer ndim, nmax

double precision basis(3),eigmdvr(ndim+l,ndim+1),
& tmat (ndim+1,ndim+1)

double precision eigm(300)

re=basis (1)

beta=basis (2)

t=basis(3)
depthm=(2.09008e-3) * ( (beta*t})**2) /rmass

do 100 n=0,nmax
eigm(n+1l)=(-5.22519e-4) *beta*beta* ((t*2-1-2*n) **2)
& /rmass+depthm
100 continue

Transform EO(dvr) = T(transpose)*EO0(fbr)*T

do 400 n=1,nmax+1
do 300 m=1,n
temp=0.
do 200 j=1,nmax+1
temp=temp+tmat (j,n)*tmat (j,m) *eigm(j)

200 continue
eigmdvr (n,m)=temp
300 continue

400 continue

*

* Calculate total hamiltonian in the dvr basis by adding Morse
* eigenvalue (K) matrix to the potential difference matrix

*

* Input: ndim

* nmax

* eigmdvr () Morse eigenvalues transformed to dvr

* diagv () potl difference matrix in dvr

*
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Output: ham{) Total ham matrix(lower half)

implicit double precision{a-h,o-z)

integer ndim,nmax

double precision eigmdvr (ndim+l,ndim+1),diagv(ndim+1l},
& ham(ndim+1,ndim+1)

do 100 i=1,nmax+1
do 200 j=1,i-1
ham(i, j)=eigmdvr (i, j)
continue
continue
do 300 i=1,nmax+1
ham(i,i)=eigmdvr(i,i)+diagv(i)
continue
return
end

subroutine setbasis (nmax,nnshow,nanshow, rmass,
& npot, anparms, neuparms, basis)

Calculate Morse basis paramaters for a given number of basis
functions and potential paramaters. t is set to the same proportion
f the number of basis functions as the proportion of the approximate
total number of vibrational levels of the neutral potential to the
number of neutral levels to be calculated,

and then beta is chosen to match the

neutral potential second derivatives {(force constants=2*De*beta“2)
at Re, which also determines De. Re's are set equal to min Re of
anion and neut.

If it doesn't know force constants, basis read in is returned

Input: nmax +1 = number of basis functions
nnshow number of neutral eigvalues to show
nanshow " anion y
rmass
npot () potential types (l=an, 2=neu)
anparms () anion potential parameters
neuparms ()} neutral potential parameters
basis () read from file

Output: basis(re,beta,t)

implicit double precision{(a-h,o-z)

double precision anparms{10),neuparms(10),basis(3)
double precision k

integer npot(2),nmax,nnshow,nanshow

parameter( evtoj=1.60218e-19, amutokg=1.66054e-27,
& hbar=1.054573e-34, angsttom=l.e-10 )

rmu=rmass*amutokg

depthn=neuparms (1) *evtoj
deptha=anparms (1) *evtoj
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if (npot(l).eq.2) then
betala=anparms (3)/ (anparms (2) *angsttom)
ank=2.*deptha* (betala) **2

else
write(8,*) 'I dont know the anion second derivative'
write(8,*) 'Using neutral basis from parameter file:’
return

endif

if (npot(2).eq.2) then
betan= (neuparms (3) +neuparms (4)) / (2*neuparms (2) *angsttom)
aneuk=2.*depthn* (betan) **2
tneu=sqgrt (2*rmu*depthn) / (hbar*betan)

elseif ((npot(2).eq.7).or.(npot(2).eq.8)) then
betan=8./ (neuparms (2) *angsttom)
aneuk=2.*depthn* (betan) **2
tneu=sqrt (2*rmu*depthn) / (hbar*betan)

else
write(8,*) 'I dont know the neutral second derivative'
write(8,*) 'Using neutral basis from parameter file:'
return

endif

write(8,*) 't-neutral=', tneu
if (nnshow.gt.tneu) then
t=dble (nmax)+1.001
else
t=({tneu+l1l.5)* (nmax+1)/ (nnshow+1))
endif
k= (aneuk)

beta={k*rmu)**0.25/sqgrt (hbar*t)
basis(1l)=min (neuparms(2),anparms(2))
basis{2)=beta*angsttom

basis(3)=t

return
end

subroutine calcfcf (ndim, nmax,nnshow,nanshow, anwf, neuwf, fcf,
totfcf)

Calculate Franck-Condon factors

Input: ndim

nmax max n in basis

nnshow # neutral wf's shown

nanshow # anion wf's shown

anwf () anion eigenfunctions in columns

neuwt () neutral eigenfunctions (in same basis)
Output: fcf(anion n, neutral n)

totfcf (anion n) Total fcf from anion levels

181




300

200

100

* o % A %

implicit double precision{a-h,o-z)

integer ndim, nmax,nnshow, nanshow
double precision anwf (ndim+1l,ndim+1), neuwf (ndim+1,ndim+1),
& fef (ndim+1l,ndim+l), totfcf (ndim+1)

do 100 i=1,nanshow+l
ftot=0.
do 200 j=1,nnshow+l
ftemp=0.
do 300 n=1,nmax+1
ftemp=ftemp+anwf (n, i) *neuwt (n, j)
continue
fcf(i,j)=ftemp*ftemp
frtot=£ftot+fcf (i, 3)
continue
totfcf(i)=ftot
continue

return
end

Calculate rotational constants
B(v)={(hbar/4*pi*rmass*c) *<v| (1L/R"~2) |v>

Input: ndim

nmax # of basis fns-1

nshow # of r consts to calculate-1

rmass

r() DVR points, in angstroms

wf() matrix with wavefunctions in dvr
Output: bv(}) vector with B(v)s in wavenumbers

parameter ( evtoj=1.60218e-19, amutokg=1.66054e-27,
& hbar=1.054573e-34, angsttom=1l.e-10, c=2.99792458e8,
& evtocm=8065.541,pi=3.14159265359)

implicit double precision(a-h,o-2)
integer ndim, nmax,nshow
double precision wf(ndim+l,ndim+1l),bv{ndim+1),

& r(ndim+l), rmass

integer 1i,3j
double precision sum,rmu

rmu=rmass*amutokg

do 100 i=1,nshow+1
sum=0.
do 200 j=1,nmax+1l
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sum=sum+ (wf {j, 1) /r{j))**2

continue
sum=sum/angsttom**2
bv(i)=((hbar/{4*pi*rmu*c))*sum)/100.

continue

return
end

A6.3. File ""rsb.f'!!

(o]
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subroutine rsb(nm,n,mb,a,w,matz,z, fvl, fv2,ierr)

integer 'n,mb,nm, ierr,matz
double precision a(nm,mb),w(n),z(nm,n),fvi(n),£fv2(n)
logical tf

this subroutine calls the recommended sequence of
subroutines from the eigensystem subroutine package (eispack)

to
of

on

on

find the eigenvalues and eigenvectors (if desired)
a real symmetric band matrix.

input

nm must be set to the row dimension of the two-dimensional
array parameters as declared in the calling program
dimension statement.

n 4is the order of the matrix a.

mb is the half band width of the matrix, defined as the
number of adjacent diagonals, including the principal
diagonal, required to specify the non-zero portion of the
lower triangle of the matrix.

a contains the lower triangle of the real symmetric
band matrix. its lowest subdiagonal is stored in the
last n+l-mb positions of the first column, its next
subdiagonal in the last n+2-mb positions of the
second column, further subdiagonals similarly, and
finally its principal diagonal in the n positions
of the last column. contents of storages not part

of the matrix are arbitrary.

matz is an integer variable set egual to zero if

only eigenvalues are desired. otherwise it is set to

any non-zero integer for both eigenvalues and eigenvectors.
output

w contains the eigenvalues in ascending order.

2z contains the eigenvectors if matz is not zero.
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ierr is an integer output variable set equal to an error
completion code described in the documentation for tglrat
and tgl2. the normal completion code is zero.

fvl and £fv2 are temporary storage arrays.

questions and comments should be directed to burton s. garbow,
mathematics and computer science div, argonne national laboratory

this version dated august 1983.

A6.4. File "rs.f'11

NON000N0O0O00O0O00O00000O000N00O0000000000000000~0

subroutine rs{(nm,n,a,w,matz,z,fvl,fv2,ierr)

integer n,nm,ierr,matz
double precision a(nm,n),w(n),z(nm,n), fvl(n), fv2(n)

this subroutine calls the recommended sequence of
subroutines from the eigensystem subroutine package (eispack)
to find the eigenvalues and eigenvectors (if desired)
of a real symmetric matrix.
on input
nm must be set to the row dimension of the two-dimensional
array parameters as declared in the calling program
dimension statement.
n is the order of the matrix a.
a contains the real symmetric matrix.
matz 1is an integer variable set equal to zero if
only eigenvalues are desired. otherwise it is set to
any non-zero integer for both eigenvalues and eigenvectors.
on output
w contains the eigenvalues in ascending order.
z contains the eigenvectors if matz is not zero.
ierr is an integer output variable set equal to an error
completion code described in the documentation for tglrat
and tgl2. the normal completion code is zero.

fvl and fv2 aré temporary storage arrays.

questions and comments should be directed to burton s. garbow,
mathematics and computer science div, argonne national laboratory

this version dated august 1983.
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A6.5. File "matrix.f"'

C m e e e e e e e  — — — — — — — — —— — ———————_—— -
subroutine showarr4 (nfile,ndim, a,nra,nca)
c
c displays the matrix A
c
implicit double precision (a-h,o0-z)
dimension a(ndim,ndim)
do 10 ir = 1, nra
write(nfile,100) (a(ir,ic), ic = 1,nca)
100 format (20(£f6.4,1x),/)
10 continue
return
end

A6.6. File "poten2.f"

c L R E R R E SR A SRS E RS EEE SRS SRR EEEE RS EEREERRE R EEEERE S EEE R ETEREEE R
double precision function poten (numb,npot,p,rt)

c I ZEE A RS EEEEEE R EEEEEE RS S S AR EEEEE S SR EEREEREREEREEREEEEREIRI T T IR

*

*  Input: numb set to 1 for anion, 2 for neutral
* npot scalar specifies type of potential
p() potential parameter list
rt point in angstroms
c
c Returns: potential in eV
c
c npot = 1 for Maitland-Smith type potential;
c npot = 2 for scaled Lee (Morse-Morse-Switch-van der Waals)
c type potential;
c npot = 3 for Morse potential.
c npot = 4 for Buckingham potential (exp-n for neutral,
c or anion.)
c npot = 5 for Morse-Spline-van der Waals (for neutral only.)
c npot = 6 for unscaled Morse-Morse-Switch-vdw
C npot = 7 for HFD-C potential (neutral only)
* npot = 8 for HFD-B potential (neutral only)
* npot = 9 for Aquilanti X1/2 (neut only) MSV for V0, bucky for v2
* npot = 10 for Aquilanti I3/2, MSV for V0, bucky for v2
*
c
c (1.) when npot(numb) = 1, potentials are the Maitland-Smith form,
c n(r*)-6 type for the neutral and n{(r*)-4 type for the anion,
c respectively. There will be 4 parameters:
* (1) Well depth (eV)
* (2) Re (Angs)
* (3) b4
* (4) gamma
c
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(2.) when npot (numb) = 2, potentials are the Lee form, i.e., the

(4.

(6.

)

)

Morse-Morse-Switch-van der Waals form, there will be eight
parameters for each potential:

(1) .wWell depth (eV)

(2) Re (Angst.)

(3) Betal ({(unitless)

(4) Beta2 {(unitless)

(5) x1

(6) x2

(7) anion C4/well depth, or neutral C6/well depth
(8) anion C6/well depth, or neutral C8/well depth

{units Angs” (-n), n=4,6 or 8)

when npot (numb) = 3, potentials take on the Morse potential
form, there will be three parameters for each potential.
(1) depth (ev)

{(2) Re {(Angst)
(3) Beta (Angst-1)
npot (numb) = 4: Buckingham (exp-n) potential:
(1) Well depth
(2) Re
(3) beta
(4) Xm

npot (2)=5: Morse-Spline-van der Waals (Aquilanti)--Neutral
6 parameters
(1) Depth (eV)

(2) Rmin (Angst)

(3) Beta (Angst-1) -- Unscaled, different from Aqui.
(4) x1 (unitless)

(5) x2 (unitless)

(6) CO0 (eV*Angst"6)

npot (numb) = 6: Unscaled Morse-Morse-Switch-vdw
--Same parameters as scaled MMSV, but betas have
angst-1 units, and Cn have eV*Angs”~(-n) units
(Obtained from scaled beta and Cn by dividing
by Re or multiplying by well depth, respectively)

npot (2)=7: HFD-C potential

(1) Depth (eV)
(2) Re (Angst)
(3) Alpha

(4) gamma

(5) A

(6) C6 {unitless)
(7) Cc8 "

(8) Cl0 "

(9) D

(8.) npot{2)=8: HFD-B potential

(1) Depth (eV)
(2) Re (Angst)

(3) Alpha
(4) beta
(5) A
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(6) C6 (unitless)

(7) c8 "
(8) C10 "
(9) D

(9) npot(2)=9: Aquilanti X1/2 potential, V0=MSV, V2=Buckingham
(1) Depth of VO (eV) (Different from poten depth!)
(2) Rmin of V0 (Angst)

(3) Beta of V0 (Angst-1) -- Unscaled.
(4) x1 of V0 (unitless)

(5) x2 of VO (unitless)

(6) CO0 of VO (ev*Angst~6)

(7) A2 of V2 (eV)

(8)  alpha2 of V2 (Angst~-1)

(9) Cc2 of V2 (ev*Angst"6)

(10) halogen spin-orbit constant (eV)

(10) npot(2)=10: Aquilanti I3/2 potential, same parameters as 9

implicit double precision(a-h,o-z)

integer numb,npot

double precision p(10),rt

double precision ms4, anmmsv,morse, bucky, anmmsvus,
& ms6, neummsv, msv, neummsvus, hfd_c,hfd_b,
& agx,agi

if (numb.eqg.l) then
if (npot.eq.2) then
poten=anmmsv{p{(1l),p(2),p(3).,p(4),p(5),.p(6},p(7),p(8),rt)
elseif (npot.eq.l) then
poten=ms4 (p(1),p(2),p(3),p(4), . rt)
elseif (npot.eg.3) then
poten=morse (p(1).p(2).p(3),rt)
elseif (npot.eq.4) then
poten=bucky(p(1),p(2).p(3),p(4),rt)
elseif (npot.eqg.6) then
poten=anmmsvus (p (1) ,p(2),p(3).,p(4),p(5),p(6),p(7),p(8),rc)
else
pause 'Error in anion potential call’
endif
elseif (numb.eq.2) then
if (npot.eq.2) then
poten=neummsv(p(l),0(2),p(3),p(4),p(5),p(6),p(7).p(8),rt)
elseif (npot.eqg.8) then
poten=hfd_b(p(1),p(2),p(3).p(4).p(5),p(6).p(7).p(8),p(9),rL)
elseif (npot.eqg.7) then
poten=hfd_c(p(1l),p(2),p(3),p(4),p(5),p(6).p(7),p(8),p(9).rCL)
elseif (npot.eq.l) then
poten=ms6 (p(l),p(2),p(3).p(4},rt)
elseif (npot.eqg.3) then
poten=morse(p(l),p(2).p(3).,.rt)
elseif (npot.eq.4) then
poten=bucky(p(1),p(2),p(3),p(4),rt)
elseif (npot.eq.5) then
poten=msv(p(l),p(2),p(3).,p{4).,p(5),p(6),xt)
elseif (npot.eq.6) then
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poten=neummsvus (p(1),p(2),p(3),p(4),p(5),p{6),p(7),p(8),rt)
elseif (npot.eq.9) then
poten=agx(p(l),p(2),p(3),p(4),p(5),p(6),p(7),p(8),p(9),
& p{(10),rt)
elseif (npot.eq.10) then
poten=aqgi (p(1l),p(2),p(3),p{4),p(5),p(6),p(7).p(8).p(9),

& p{l0),rt)
else
pause 'Error in neutral potential call’
endif
endif
return
end

Maitland-Smith n-4

implicit double precision(a-h,o-2z)

xt = rt/rminl

rtn = xml+xlamdal* (xt-1.)

msd = depthl/(rtn-4.)*(4.*(1./xt)**rtn -
& rtn*(1./xt)**4)

return

end

double precision function anmmsv(depthl,rminl,pmbetalil,
& pmbeta2l,xrstarll,xrstar2l,cdvdwl,cévdwl, rt)

Scaled MMSV for anion

implicit double precision(a-h,o-z)
parameter (pi=3.14159265359)

Xt = rt/rminl
if (xt.le.l.) then
Tsum = depthl* (exp(2.*pmbetall*(1.-xt))-2.*exp/|
& pmbetall*(1.-xt)))
else if ((xt.gt.l).and. (xt.le.xrstarll)) then
Tsum = depthl* (exp(2.*pmbeta2l* (1.-xt))-2.*exp/(
& pmbeta2l* (1.-xt)}))
else if ((xt.gt.xrstarll).and. (xt.lt.xrstar2l)) then
swxt=0.5* (cos(pi* (xt-xrstarll)/(xrstar2l-xrstarll))+1.)
pmorsezZ=exp (2. *pmbeta2l* (1.-xt))-2.*exp(
& pmbeta2l* (1.-xt))
pvdw=-1.* (c4vAwl*rt** (-4)+cbvdwl*rt** (-6))
Tsum = depthl* (swxt*pmorse2+(1l.-swxt) *pvdw)
else
Tsum = -1.*depthl* (cdvdwl*rt** (-4)+cb6vawl*rt** (-6))
end if
anmmsv=Tsum
return
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Morse potential
implicit double precision({a-h,o-z)

Xt = rt/rmin :

morse = depth*(exp(2.*beta*rmin* (1.-xt))-2.*exp(
& beta*rmin* (1.-xt)))

return

end

Exp-n Potential

implicit double precision({a-h,o0-z)
Xt=rt/rmin

bucky = (depth/(beta*rmin-xm))*

& (xm*exp (-beta* (rt-rmin))

& -beta*rmin* ( (rmin/rt) **xm) )
return

end

double precision function anmmsvus(depthl,rminl,pmbetall,
& pmbetal2l,xrstarll,xrstar2l,cdvdwl,cévdwl,rt)

Unscaled MMSV

implicit double precision(a-h,o0-z)
parameter (pi=3.14159265359)

xt=rt/rminl
pmbetall = pmbetall * rminl
pmbeta2l = pmbeta2l * rminl
cdvdwl = cd4vdwl / depthl
c6vdwl = cévdwl / depthl
if (xt.le.l.) then
Tsum = depthl* (exp(2.*pmbetall* (1l.-xt))-2.*exp(
& prmbetall* (1.-xt)))
else if ((xt.gt.l).and. (xt.le.xrstarll)) then
Tsum = depthl* (exp(2.*pmbeta2l*(1.-xt))-2.*exp(
& pmbeta2l* (1.-xt)))
else if ((xt.gt.xrstarll).and. (xt.lt.xrstar2l)) then
swxt=0.5*{cos (pi* (xt-xrstarll)/(xrstar2l-xrstarll))+1.)
pmorse2=exp (2. *pmbeta2l*(1.-xt))-2.*exp(
& pmbeta2l* (1.-xt))
pvdw=-1.* (cdvdwl*rt** (-4) +cévdwl*rt**(-6))
Tsum = depthl* (swxt*pmorse2+(1l.-swxt) *pvdw)
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else

Tsum = -1.*depthl* (cdvdAwl*rt**(-4)+c6vdwl*rc** (-6))
end if

anmmsvus=Tsum

return

end

Maitland-Smith n-6

implicit double precision(a-h,o-2z)
xm2=rt/rmin2

rtn = xm2+xlamda2* (xt-1.)

ms6 = depth2/(rtn-6.)*(6.*(1./xt)**rtn -
& ren*(1./xt)**6)

return

end

double precision function neummsv(depth2,rmin2, pmbetal?,
& pmbetal2,xrstarl2,xrstar22,cé6vdw2, c8vdw2, rt)

Scaled MMSV

implicit double precision(a-h,o-2z)
parameter (pi=3.14159265359)

Xt=rt/rmin2
if (xt.le.l.) then
Tsum = depth2* (exp(2.*pmbetal2* (1.-xt))-2.*exp(
& pmbetal2* (1.-xt)))
elseif ((xt.gt.l).and.(xt.le.xrstarl2)) then
Tsum = depth2* (exp(2.*pmbeta22*(1.-xt))-2.*exp|
& prmbeta22* (1.-xt)})
elseif ((xt.gt.xrstarl2).and. (xt.lt.xrstar22)) then
swxt=0.5* (cos(pi* (xXt-xXrstarl2)/ (xrstar22-xrstarl2))+1.)
pmorse2=exp (2. *pmbetal22* (1.-xt))-2.*exp(
& pmbeta22* (1.-xt))
pvdw=-1.* (cbvAw2*rt** {-6) +cB8vdw2*rt** (-8))
Tsum = depth2* (swxt*pmorse2+ (1.-swxt) *pvdw)

else
Tsum = -1.*depth2* (cbvdw2*rt** (-6)+c8vdw2*rt** (-8))
endif

neummsv=Tsum

return

end

double precision function msv(depth2,rmin2,beta2,xlmsv,
& X2msv,cOmsv,rt)

MSV (Aquilanti)
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implicit double precision{a-h,o-z)

rimsv = xlmsv*rmin2
r2msv = xX2msv*rmin2
if (rt.le.rlmsv) then
Tsum = depth2* (exp(2.*betal2* (rmin2-rt))
& -2.*exp(beta2* (rmin2-rt)))
else if (rt.lt.r2msv) then
bls = exp(2.*betal2* (rmin2-rlmsv))
& -2.*exp(beta2* (rmin2-rimsv))

b2s = ~({cOmsv/(depth2*r2msv**6))+bls)/ (r2msv-rimsv)
b3s = (2.*beta2* (exp(beta2* (rmin2-rlmsv))
& -exp(2.*beta2* (rmin2-rlmsv)))-b2s)
& /{(rimsv-r2msv)
bds = ((6.*cOmsv/ (depth2*r2msv**7))-bl2s
& -b3s*(r2msv~rlmsv) )/ (r2msv-rlmsv) **2
Tsum = bls+(rt-rlmsv) * (b2s+(rt-r2msv)
& *{b3s+ (rt-rlmsv) *b4ds))
Tsum = Tsum*depth2
else
Tsum = -~cOmsv/rt**6
end if
msv=Tsum
Yeturn
end

double precision function agx(depth,rmin, beta,xl,x2,
& c¢0,a2,alpha2,c2,soconst,rt)

X1/2 State Aquilanti, JPC v.97, p.2063

implicit double precision(a-h,o0-z)
double precision msv

v0=msv (depth, rmin, beta, x1,x2,c0,rt)

v2 = ~a2*exp(~-alpha2*rt) + c2/{xrt**6)

tl = sqrt(9.*v2**2/25. + soconst**2 - 2. *v2*soconst/5.)
agx = v0 + v2/10. + soconst/2. - tl/2.

return

end

double precision function agi (depth, rmin,beta,xl,x2,
& «¢0,a2,alpha2,c2,soconst, rt)

I3/2 State Aquilanti

implicit double precision(a-h,o-z)
double precision msv

v0=msv (depth, rmin, beta,x1,x2,c0,rt)
v2 = -a2*exp(-alpha2*rt) + c2/(rt**6)
aqgqi = v0 - v2/5.
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return
end

double precision function neummsvus (depth2, rmin2, pmbetal2,
& pmbeta22,xrstarl2,xrstar22,cévdw2, c8vdw2, rt)

Unscaled MMSV

implicit double precision(a-h,o-z)
parameter (pi=3.14159265359)

xXt=rt/rmin2
pmbetal2 = pmbetal2 * rmin2
pmbeta22 = pmbeta22 * rmin2
cbvdw2 = cévdw2 / depth2
c8vdw2 = c8vdw2 / depth2
if (xt.le.l.) then
Tsum = depth2* (exp(2.*pmbetal2*({(1.-xt))-2.*exp/|
& pmbetal2* (1.-xt)))
else if ((xt.gt.l).and. (xt.le.xrstarl2)) then
Tsum = depth2*(exp (2. pmbeta22* (1.-xt))-2.*exp |
& pmbeta22* (1.-xt})))
else if ((xt.gt.xrstarl2).and. (xt.lt.xrstar22)) then
swxt=0.5% (cos (pi* (xt-Xrstarll)/(xrstar22-xrstarl2))+1.)
pmorsel=exp{2.*pmbeta22* (1.-xt))-2.*exp (
& pmbeta22* (1.-xt))
pvdw=-1.* (cbvdw2*rt** (-6)+c8vdw2*rt** (-8))
Tsum = depth2* (swxt*pmorse2+ (1.-swxt) *pvdw)

else
Tsum = -1.*depth2* (c6vdw2*rt**(-6)+cB8vdw2*rt**(-8))
end if

neummsvus=Tsum

return

end

double precision function hfd_c (depth2,rmin2,alpha2,gamma2,
& acoef2,c6vdw?,c8vdw2,clOvdw2,damp2,rt)

Hartree-Fock Dispersion-C
implicit double precision(a-h,o0-2)
Xt=rt/rmin2
Dispersion damping function
if (xt.lt.damp2) then
fdamp=exp (- (damp2/xt-1)**2)
else
fdamp=1.
endif

Repulsive part
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repul=acoef2* (xt**gammaz2) *exp (-alpha2*xt)
Dispersion terms
disp=cbvdw2*xt** (-6)+c8vdw2*xt** (~8) +clOvdw2*xt** (-10)

Tsum=repul -fdamp*disp
hfd_c=depth2*Tsum
return

end

double precision function hfd_b(depth2,rmin2, alpha2, beta2,
& acoef2,cévdw2,c8vdw2,clOvdw2,damp2,rt)

*

Hartree-Fock Dispersion-B Potential
Ref: Aziz & Slaman Mol. Phys. v.58, p.679

* % % %

implicit double precision(a-h,o-z)
Xt=rt/rmin2
Dispersion damping function
if (xt.lt.damp2) then
fdamp=exp (- (damp2/xt-1) **2)
else

fdamp=1.
endif

* Repulsive part
*
repul=acoef2*exp(-alpha2*xt+beta2*xt*xt)
Dispersion terms
disp=cbvdw2*xt** (-6)+cBvdw2*xt** (-8) +clOvdw2*xt** (-10)
Tsum=repul-fdamp*disp
hfd_b=depth2*Tsum

return
end

A6.7. File "convol.f"

subroutine congauss (fwhm,nsticks,nvec,xstk,ystk, nconv,nvecgau,
& Xgauss,ygauss)

Convolutes stick spectrum with Gaussian
Sticks are assumed to already be sorted from low to high cm-1.

* 4 % *
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Input: fwhm FWHM of Gaussian in cm-1

nsticks Number of sticks
nvec Dimension of xstk & ystk vectors
xstk() vector containing wavenumbers of sticks
ystk() vector containing intersities of sticks
nvecgau Dimension of xgauss & ygauss
Output: nconv Number of points in convoluted spectrum
xgauss () Wavenumbers of convoluted spectrum
ygauss () Intensities of convoluted spectrum (normalized)

implicit undefined(a-z)

integer nsticks,nvec,nconv,nvecgau

double precision fwhm

double precision xstk(nvec),ystk(nvec),xgauss (nvecgau),
& ygauss (nvecgau)

integer i,j
double precision wmin,wmax,step,wn, cmax,con, hwhm

wmin = xstk(1l)
wmax = xstk(nsticks)

hwhm = fwhm/2.d0

step = fwhm/10.d0

wmin = wmin-fwhm*5.30

wmax = wmax+fwhm*5.d0

nconv = nint ({wmax-wmin)/step)+2

cmax = 0.
do i=1,nconv !'* Loop over grid points
wn = wmin+dble(i-1) *step
xgauss (i) = wn
ygauss (i) = 0.
do j=1,nsticks '* Loop over sticks

if (((wn-xstk(j))/hwhm)**2.1t.100.) then
con = ystk(j)*

& exp (-0.5d0* ((wn-xstk(j))/ (fwhm/2.354))==2.)
else
con = 0.40
endif
ygauss (i) =ygauss (i) +con
enddo

if (ygauss(i).gt.cmax) then
cmax = ygauss (i)
endif
enddo

do i=1,nconv !'* Normalize
ygauss (i)=ygauss (i) /cmax

enddo

return
end
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subroutine conzeke(fwhm,nsticks,nvec, xstk,ystk,nconv,nveczek,
& xzeke,yzeke,nexp,xexp,yexp,ysim,bline,chisq)

Convolutes stick spectrum with ZEKE lineshape from fit to bromine
atomic data, form

y=(a*x+b*x"3) / (l+c*x"2+d*x"4)
Sticks are assumed to already be sorted from low to high cm-1.
Also calculates the chi-square between the convolouted andé
experimental spectra.

Input: fwhm FWHM cm-1
nsticks Number of sticks
nvec Dimension of xstk & ystk vectors
xstk () vector containing wavenumbers of sticks
ystk() vector containing intersities of sticks
nveczek Dimension of xzeke & yzeke

nexp number of experimental points

xexp wavenumbers of experimental points

vexp intensities of experimental points

bline Baseline for convolution (as fraction of
highest peak normalized to 1)

Output: nconv Number of points in convoluted spectrum
xzeke () Wavenumbers of convoluted spectrum
yzeke () Intensities of convoluted spectrum (normalized)
ysim() Intensities of ZEKE convoluted simulacion
at points of experimental spectrum
chisqg chi-square, weighted by square root (ie so

the peaks are weighted more than the valleys)

implicit undefined(a-z)

integer nsticks,nvec,nconv,nveczek, nexp

double precision fwhm,bline

double precision xstk(nvec),ystk(nvec), xzeke (nveczek),
& vyzeke(nveczek),b xexp (nexp),yexp (nexp),ysim(nexp)

integer 1i,3j

double precision wmin,wmax,step,wn,cmax,con, hwhm,a,b,c,d,cc,xl,
& wn2,x%x2,chisqg

parameter (a=1.334209176540,

& b=0.005950094740,
& c=0.4074221440,
& d=0.02232937340)

x1 = 0.4340*fwhm
cc = 3.240/fwhm

wnmin = xstk(1l)
wmax = xstk{nsticks)

hwhm = fwhm/2.d0
step = fwhm/10.40
wnin = wmin-fwhm*5.d40
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Do

wmax = wmax+fwhm*5.d0
nconv = nint ( (wmax-wmin)/step)+2
cmax = 0.

do i=1l,nconv !1* Loop over exp points
wn = wnmin+dble(i-1)*step
xzeke (i) = wn
wn2 = wn + x1
con = 0.0d40
yzeke (i) = 0.0d0
do j=1,nsticks '* Loop over sticks
if (xstk(j).lt.wn2) then
x2 = (wn2 - xstk(j))
con = ystk(j)*(a*(x2*cc)+b*(x2*cc)**3)/

(1.040+c* (cc*x2) **2+d* (cc*x2) **4)
yvzeke (i) = yzeke(i) + con
endif
enddo
if (yzeke(i).gt.cmax) then
cmax = yzeke(i)
endif
enddo
do i=1,nconv !'* Normalize (w/baseline)

yzeke(i)=(yzeke (i) /cmax)*(1.0d0-bline)+bline
enddo

the convolution again at the points of the exp specturm

cmax = 0.
chisg = 0.
do i=1,nexp 1'* Loop over exp points

wn = xexp (i)
wn2 = wn + x1
ysim{i) = 0.0d40
do j=1,nsticks t* Loop over sticks
if (xstk(j).lt.wn2) then
x2 = (wn2 - xstk{3j))
con = ystk(j)*(a*(x2*cc)+b*(x2*cc)**3)/
(1.0d0+c* (cc*x2) **2+d* (cc*x2) **4)
ysim{i) = ysim{i) + con
endif
enddo
if (ysim(i).gt.cmax) then
cmax = ysim{i)
endif
enddo

do i=1l,nexp !'* Normalize
vsim(i)=(ysim(i)/cmax}* (1.0d0-bline)+bline
enddo

chisg = 0.0d0
do i=1l,nexp
chisg = chisg + dabs(yexp(i))*(yexp(i)-ysim(i))**2
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enddo

return
end
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Appendix B. Program for fitting rovibronic transitions in RgX" photodetachment.
In this appendix we describe the computer program used to simulate the rotational
profiles of the line shapes observed in the ZEKE spectra of the diatomic RgX" complexes.
First we review the derivation of the selection rules and rotational line strength factors for
photoelectron transitions of Hund's case (c) molecules. We then describe in detail the use

of the rotational fitting program.

B1. Line strength factors for photodetachment of Hund's case (c) molecules.”

As mentioned in Chapter 3, the peak shapes of the ZEKE spectra are asymmetric
and change from band to band. In addition, the peak widths vary with source conditions.
We explain the peak shape and width in terms of the asymmetric ZEKE experimental
peak shape combined with the effect of the unresolved rotational structure associated
with each vibrational transition. Both effects are discussed in this section, with the main
focus on how one treats the rotational contribution to the peak widths.

The ejected electron has spin s = 1/2 and orbital angular momentum / = O (only s-
wave photodetachment is observed in anion ZEKE experiments, as discussed in Chapter

1). Hence, the anion—neutral rotational selection rules are AJ=+1+3  Since

individual rotational lines are not resolved in our spectra, several assumptions are
required to simulate these transitions. For calculating the energies of the rotational
transitions in each band, equilibrium rotational constants B, are assumed, using the R

values from the potentials obtained in the vibrational analysis described in chapter 2.

* Most of this section was originally published in slightly revised form in J. Chem. Phys. 101, 6538 (1994),
with co-authors Y. Zhao, G. Reiser, C. C. Amold, and D. M. Neumark.
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We now derive expressions for the relative intensities of the rotational transitions
in each band. Xie and Zarel-2 derived an expression for the photoionization probability
of a diatomic molecule conforming to Hund's case (b) in terms of a generalized rotational
line strength factor and the reduced multipole moments. Here, we adapt this approach to
a Hund's case (c) molecule. A diagram of the Hund's case (c) angular momentum scheme
is presented for reference in Figure B1. The results of this treatment are valid for
photodetachment as well as photoionization. Although we do not resolve individual
rotations in the spectra presented in this work, the results presented below should be
useful for future investigations in which rotational structure is resolved. Moreover, the
final expressions obtained are quite simple, and result in a very satisfactory fitting of the

peak shapes.

L

NSpace-fixed
Z-axis

Figure B1. Hund's case (c).
L and S are the orbital and
AN spip angular  momenta,

which are strongly coupled
to form the total electronic
angular momentum j. R is
the rotational angular
momentum, which adds to j
M to form the total angular
momentum J. The good
quantum numbers are J, M
(the projection of J on the
space fixed axis), and €2 (the
projection of J on the
molecule-fixed axis), which
defines the electronic state of
the molecule.

Molecule-
fixed Z-axis

The eigenstates of a case (c) molecule are represented by

|nJQMv) =| JQM )| nQ)v) (B1)
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where the angular momentum quantum numbers are defined in Table Bl; v is the

vibrational quantum number, and n represents the remaining quantum numbers.

Table B1. Quantum number nomenclature for rotational analysis.

Angular Molecule-Fixed Space-Fixed
Momentum Projection Projection Description

J Q M Total angular momentum of
neutral

J- Q M Total angular momentum of
anion

j W m Total photoelectron angular
momentum (orbital + spin)

1 7! U Angular momentum of photon

k q D Vector sum of photon and
photoelectron angular
momenta

On the right side of Equation Bl we have assumed the Born-Oppenheimer
approximation and independence of rotational from vibrational degrees of freedom to
separate the eigenstate into rotational, electronic, and vibrational parts. The detached
electron is assumed to be well approximated asymptotically by a partial wave expansion
in a spherically symmetric potential.3 The eigenstate of a given electron partial wave in
the coupled representation appropriate to case (c) is | jm), where j is the total (orbital and
spin) angular momentum of the electron partial wave, and m is its projection in the space-

fixed frame. The electronic dipole operator transforms as a spherical tensor, T(1,4,),

under rotation. The photodetachment probability for a given electron angular momentum
from rotational state J* of the anion to state J of the neutral is then (neglecting constants

and the vibrational eigenvectors)
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A1 I)=3 (72 [nQY jm|T (1 o)) T )

MM

(B2)

It is necessary to get the electron and photon wavefunctions into the molecule-
fixed frame, so that we can separate nuclear and electron coordinates. To do this we
transform the dipole operator and electron eigenstates to the molecule fixed frame using

the Wigner rotation matrices as defined by Zare# as follows:

T(Lte) =Y, Do, (R)T(1, 1) (photon),

(jm|= E[D;;(R)T(jwl (electron), ®

where R stands for the Euler angles ¢, 8, and y, and the angular momentum quantum
numbers are defined in Table B1.
The rotational eigenfunctions are
/2
o

|J'Q'M'>=(2é7;:lJ D™ (R),

(B4)

Substituting Equations B3 and B4 into Eq. B2 gives

(27+1)(277 +1)

5

(82°)

<Y, 3, ([ Dia(RIDL(RID,,, (R)DY,,. o (R)R)  (BS)

m MM |

x(nQ Kja)IT(l,,u)ln_Q" )l

P )

2
’

where all the dependence on angular nuclear coordinates is contained in the integral

over the four rotation matrices.
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To evaluate the integral over the four rotation matrices, we expand those from the

detached electron and dipole operator in a Clebsch-Gordon series*

RCEINUR S KA GRS R

with

k=1+j,-- 1= j,
p=Hy—m,
g=H-0.

In Equation (B6) we have coupled the electron and photon angular momenta, where k is
the vector sum of the photon electron angular momenta, and p and g are the space- and
molecule-fixed projections of this quantity, respectively (see Table B1). Substituting this

into Equation (B5) we obtain an integral over three rotation matrices*

] I ok I NI kU
ij,n(R)Df,,_q(R)D_’M__Q_(R)dR=87z2(M_ ) _M)(Q_ . _Q). (B7)

Using Eqgs. (B6) and (B7) in Eq. (B5) we obtain

P(J7, 7)< (27 +1)(2J7 +1)

i kYo ok I ok
2k +1
DPAIA k+)(m 1 p)(M’ p —MJ(Q Q-0 —Q) (B9

m MM~
2

<30 2, Healort.rer)

IR o0 -4 q

The condition g=Q-Q° (ie, u+Q =w+) determines the electronic selection
rules.
The M and M~ dependent terms in the square of the sum over k& for a given k' and

k" give rise to sums
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Tk T yJ kT
2 J ) =__1_5“_ (B9)
- \M~ p -M) M~ p -M) 2k'+]

so that the cross terms vanish, leaving

2

P, 0) e 38, (7, ) (k. q) (B10)

Here, following Xie and Zare,!-2 we have defined the rotational line strength factor’

Ik 7Y
QO 0-9 -0

which contains all the J and J~ dependence, and a generalized multipole transition

S )= +1)(277 +1) (B11)

moment

By

(kg = (26 +1)

2

s

. (B12)

(j ] ];J<nQ|(jw|T(l,u)ln'Q'>

w -U

The phrase "generalized multipole transition moment" refers to the fact that this term
involves both the incoming photon and ejected electron angular momenta, in contrast to
the familiar "dipole transition moment" in photo absorption processes which involves
only the photon.

In anion ZEKE spectroscopy, j=1 (because /=0 for the detached electrons that

are detected) and Eq. (B10) becomes

Pp(J77) o CpSya(I 7. T) + Sya(47,0) : (B13)

The expression for the rotational line strength factor may be compared with the
familiar expression for the Honl-London factors for the intensity of rotational transitions
in the photoabsortion process J“,K"—J', K" of a rigid rotor:#

S(J'K',J"K"):(2J'+1)(2J"+1)[_; K|_1K" 1‘2}
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with

For s-wave detachment, AJ=J —-J=

factors for transitions from 2 =0 to Q=

2

Cp=

.Ul/z('zLaQ)
#l/z(%"])

1 (X1 and IIL states) and to Q=12 (7

(B14)

+1 +3. Expressions for the line strength

1wl

state) for each of the allowed branches are given in Table B2. Note that S,/Z(J J )

vanishes for the AJ =% branches of the transitions to Q=

of transitions to the Q=% state.

1 states and for all branches

Table B2. Rotational line strengths for transitions to the three neutral states

Sy{J7.J) Sy2(J7.T)

A I2 Xlorlll I3 Xlorlll

it 0 J+1 3(77+1)(J7 +2) J (7 +1)

2 227 +3) 2(277+3)

1 0 J 37°(77-1) I+

? 227 -1) 227°-1)
L3 0 0 (77 +2)(J7 +3) 3(J7+1)(J +2)

2(2J7 +3) 2(277+3)

_3 0 0 (7 =11 -2) 377 (-

2 2(277-1) 20277 -1)

One can calculate a rotational stick spectrum by multiplying Eq. (B13) by a

Boltzmann factor, treating the coefficient C, (for the Q=

adjustable parameter.

1

2

neutral states) as an

To obtain realistic peak shapes, the rotational lines must be
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convoluted with the empirically determined ZEKE instrumental line shape. Refer back to

Chapter 3 [Eq. (3.11)] for the detailed form of the ZEKE line shape.

B2. Documentation of the rotational fitting program "'rfit"": example of the XeBr
I state
This section describes the computer program used to fit the rotational profiles of
the RgX" ZEKE spectra. The program as input uses the vibrational stick spectrum
generated by the fitting program "idvr" (described in Appendix A) to general the final
rotational spectrum convoluted with the ZEKE line shape. The available variable
parameters in the rotational fitting procedure are the rotational temperature, the ZEKE

FWHM (full width at half maximum), the parameter C,, discussed above [see Egs.

(B13) and (B14)], the baseline, an offset for the origin, and the maximum peak intensity.
Note that the input vibrational sticks are not modified in any way: the program "rfit" only
fits the above mentioned above. The program uses a simple gradient minimization

algorithm? to perform the optimization.

B2.1. The input files
An example of the input file for the X 1 state of XeBr is shown below. The line

numbers in boldface are only for reference, and are not included in the actual input file.
The file is named "xebr_x_rfin." The comments after the "!*" symbol may be included

after numerical input lines, but not after text (file name) input lines.

1: 1 !* Mode (1 fit & uncer, 2 fit only, 3 uncertainties only)
2: 2 '* OQutput type (1 long, 2 short)
3: xebr_x_exp
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4: 500. t* peak electron counts

5: 1 1* # of vib stick input files (1 or 2)
: Xxebr_x_stx
s 0 1* State for file 1 (0 X, 1 I, 2 II)
s 3.82 t* Neutral rmin file 1 (2ng)
: 3.81 1* anion rmin (Ang)

10: 131.30, 79.909 t* massl, mass2 (amu)

11: xebr_x_fit

12: y t* Log of C1/2 for file l-vary?

13: vy 1 * -Uncertainty?

14: -0. 1 * -Initial value

15: 0.05 L -Step size

i6: -2.0,2.0 I* -Min,max

i7: n 1* Relative intensity of file 1 - vary?

18: n I -Uncertainty?

19: 1. L * -Initial value

20: 0.01 1> -Step size

21: 0.1,1.5 !'* -Min, max

22: n I* Rot. Temp - vary?

23: n 1* -Uncertainty?

24: 40. L * -Initial value

25: 2. 1* -Step size

26: 1.0,200. t* -Min, max

27: vy t* ZEKE FWHM - vary?

28: ¥ I * -Uncertainty?

29: 3.0 [ -Initial value (cm-1)

30: 0.1 1* -Step size

31: 0.1,25. I* -Min, max

32: y 1* Origin shift - vary?

33: n b -Uncertainty?

34: -0.0 1 * -Initial value (cm-1)

35: 0.02 L * -Step size

36: -3., 3. !* -Min, max

37: vy !* Baseline - vary?

38: n I -Uncertainty?

39: 0.00 t* ~-Initial value (frac)

40: 0.01 1* -Step size

41: 0.,0.5 !'* -Min, max

The first line is an integer which tells the program whether to find uncertainties
(standard deviations) during the fit or not. If line 1 is set to 1 then both the fit is
performed and uncertainties are found. If line 2 is set to 2, only the fit is performed, and
if it is set to 3 only uncertainties are found, using the initial values given for the fitting
parameters. The program performs a full multivariate analysis of the parameters in
finding the uncertainties, so this can be quite time-consuming, and it is ofien desirable to

run in mode 2 when quick results are needed. Line 2 is an integer: 1 for long form
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output, ie. each step in the gradient minimization is shown, 2 for short form output,
where only the final result of the fit are shown, and the intermediate steps during the
process of finding the standard deviations.

Line 3 contains the name of the experimental spectrum, which must be in
wavenumber format. If uncertainties are to be calculated, line 4 should contain an
estimate of the number of electron counts at peak in the experimental spectrum. This
number is used in the calculation of the absolute value of x* (Ref. 5). When uncertainties
are to be calculated, the standard deviation is defined by a change in a given parameter,
with re-optimization of the other parameters, such that x* is increased by one.5 If
uncertainties are not calculated, the absolute value of %* is not important.

Line 5 indicates the number of vibrational stick spectra to be read in (either 1 or
2). Inthis example only one file is read in. However, one may read in, for example. both

the vibrational stick spectra for the X { and I3 electronic states for simultaneous fitting

with the same experimental spectrum. If two vibrational stick files were specified, the
input file would hz-lve to contain additional lines to specify fitting parameters for the
second electronic state; for details see the listing of the source code in Section B3 below.
Line 6 contains the file name of the vibrational stick spectrum for the first (and in this
example, only) electronic state. Line 7 is an integer which specifies the case (c)

electronic state: 1 for the X § state, 2 for the /3 state, or 3 for the /74 state. This input

determines the form of the rotational line strength factors, as shown in Table B2. Lines 8
and 9 specify the neutral and anion bond lengths, respectively, in A. Line 10 lists the

atomic masses in amu. This information is used to calculate B,.
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Line 11 specifies the name of the file to which the final rotational spectrum,
convoluted with the ZEKE line shape, is saved. This spectrum is in wavenumber format,
with the same number and spacing of points as the experimental spectrum.

The remaining line, 12-41, are grouped into sets of five lines for each parameter

in the fit. The first line of each set is set to "y" if the parameter is to be adjusted during

the fit, or to "n" if it is to be fixed at its initial value. The second line of the set is set to
"y" if one wishes to find the standard deviation of a _givcn parameter or “n" if not. Note
that line 1 of the input file must be set to 1 or 3 for any uncertainties to be computed. The
third line of each set specifies the initial value of the parameter. The fourth line specifies
the initial step size for the gradient minimization. The step size is adjusted as the fit
progresses. The fifth line lists the minimum and maximum allowable values of the

parameters. An explanation of each parameter and is given below:

Lines 12-16: base 10 log of C, [see Egs. (B13) and (B14)]

Lines 17-21: intensity of the highest peak of the convoluted spectrum relative to the
experimental spectrum. If two electronic states are included in the fit, the
intensity of one may be fixed and the other allowed to vary in order to
determine the relative transition strengths.

Lines 22-26: the rotational temperature of the anion in Kelvin. A Boltzmann
distribution of anion rotational states is assumed.

Lines 27-31: the ZEKE FWHM in cm’’

Lines 32-36: the shift in the rotational origin, in cm™

Lines 37-41: the baseline added to the convoluted spectrum, as a fraction of the

maximum peak height.
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B2.2. Running the program

One runs the program in the usual Unix fashion, by piping in the input file. If one
is calculating standard deviations as well as performing a fit it is usually desirable to run
the program in the background, as in the following example using the input file

"xebr_x_rfin" discussed above:

> pnice +19 xfit < xebr_x rfin > xebr x_rfout &

>

The output file “xebr_x_rfout" then contains the optimized parameters and standard
deviations, and the convoluted spectrum is saved to the file "xebr_x_fit" named in the

input file.

B2.3. Outline of the program
The program "rfit" is contained in only one file, "rfit.f." There is no makefile; the

program is recompiled with a command such as:
> £77 -0 -o rfit rfit.f -C

The subroutines and functions used by the program are listed in Table B3.
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Table B3. Subroutines and functions used by the rotational fitting program "rfit".

Subroutine or Description
Function
rfit main program
optchi general-purpose subroutine implementing the gradient
optimization method
chisquar calculates x? for a given set of fitting parameters
rsticks calculates a rotational stick spectrum given one or two
vibrational stick spectra, and the fitting parameters.
be function to calculate the rotational constant
boltz calculates the Boltzmann factor for a given rotational
temperature and anion rotational state
conzeke conyolutes the rotational stick spectrum with the ZEKE line
shape
cp2 compares the experimental and convoluted spectra and
calculates x°
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B3. Source code for the rotational fitting program ''rfit"

program rfit

implicit undefined(a-z)

real frac,evtocm

parameter (frac=0.1,evtocm=8065.541)

real vstk(2,2,100)

real temp,org,baseln

real beneu, bean,reneu(2), rean

real massl,mass2?,rmass

integer ninfil,i,j,k,state(2),j,nvstk(2),rct

integer mpts

character*25 infile(2), outfile,especfil

real relfcf(2),scoef(2)

real fwhmcm, fwhmev,delta,deltawn

real smooth(2,100000),espec(2,100000),espec2(2,100000),
& rstk(2,500000)

integer nspec

real dfwhmcm, dtemp,dscoef(2),drelfcf(2),dorg,dbaseln
real mfwhmem,mtemp,mscoef(2),mrelfcf(2),morg, mbaseln
real xfwhmcm, xtemp,xscoef(2),xrelfcf(2),xorg, xbaseln
real slfwhm,sltemp,slscoef(2),slrelfcf(2),slorg,slbaseln
real s2fwhm,s2temp,s2scoef(2),s2relfcf(2),s2o0rg,s2baseln
logical ufwhm,utemp,uscoef (2),urelfcf(2),uorg,ubaseln
real chisqg,xinc,chiopt

character*l ans

logical vscoef(2),vrelfcf(2),vtemp, viwhm, vorg, vbaseln
integer ncomp

real a(30),da{(30),ma{30),x%xa{30),aopt {30}, abest(30)

real sla(30),s2a(30)

logical va(30),ua(30),vl

integer nparm,mode, tout

logical pr

real ncounts,chilast,slast,slope

common /convl/ fwhmcm, fwhmev,delta,deltawn
common /conv2/ mpts

common /func/ bean, beneu

common /rvars/ massl,mass2,rmass,rean, temp,org,baseln
common /ivars/ rct,ninfil
common/arrays/reneu(2),state(2),nvstk(2),

& relfcf(2),scoef(2)

common /comp/ chisg,ncomp

common /comp2/ ncounts

common /opti/ nparm

common /optr/ a(30),abest (30)

common /sticks/ vstk(2,2,100),rstk(2,500000)
common /specl/ smooth(2,100000),espec(2,100000)
common /spec2/ nspec

common /prl/ pr,tout

* Read in constants and fitting parameters
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112

write (*,*) ‘Rotational Fitting Program’
write (*,*) '
write (*,*) ‘'Choose mode:'

write (*,*) ' 1) Fit and find uncertainties’
write (*,*}) ' 2} Fit only’
write (*,*) ' 3) Find uncertainties only’

read (*,*) mode

write(*,*) 'Type of output:'

write(*,*) * 1) Long -- show all steps.'

write(*,*) ' 2) Short -- show only optimized values'

read (*,*) tout

write (*,*) 'Enter name of file containing experimental spectrum'
write(*,*) 'in inverted cm-1 format:'

read (*,*; especfil

open (8,file=especfil)
do i=1,99999
read (8,*,end=112) espec(l,i),espec(2,i)
enddo
nspec=i-1
write(*,*)
write (*,*) nspec,' points read from ', especfil
write(*,*) 'ranging from',espec(l,1),' to',6espec(l,nspec)
if (espec{l,nspec).lt.espec(l,1)) then
write(*,*) ‘'Note that experimental file is backwards'
do j=1,nspec
espec2(l,3j)
espec2(2,3)

espec(l,nspec-j+1)
espec (2,nspec-j+1)

1}

enddo
do j=1,nspec
espec{l,j) = espec2(l,])
espec{2,j) = espec2(2,]j)
enddo
endif

write(*, *)

write(*,*) 'How many electron counts at peak (determines the'
write(*,*) ‘'uncertainty)?'

read(*,*) ncounts

write (*,*) 'How many vibrational stick input files? (1-2)°
read (*,*) ninfil
do i1 = 1,ninfil

write (*,*) 'Enter name of vib. stick file',ki
read (*,*) infile(i)

write (*,*) 'Enter neutral state for ', infile(i)
write (*,*) 0) X 1/2 State’

write (*,*) ' 1) I 3/2 State'

write (*,*) 2) II 1/2 State'

read (*,*) state(i)
write (*,*) 'Enter neutral rmin (angstroms) for ',infile(i)
read (*,*) reneu(i)

enddo

write (*,*) 'Enter rmin (angstroms) of anion : °
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read (*,*) rean
write (*,*) 'Enter masses of atoms (amu)
read (*,*) massl, mass?2

write (*,*) ‘Enter name of file to save fit spectrum:'

read (*,*) outfile

write (*,*)

write (*,*) 'Fitting Parameters:'

dscoef (1)=0.
dscoef (2)=0.

vscoef(l)=.false.
vscoef (2)=.false.
vrelfcf(l)=.false.
vrelfcf(2)=.false.

do i=1,ninfil
if (state(i
write(*,*
write(*,*
write(*, *
read(*, *)

).ne.l) then
)

) ' Log of coefficient of S1/2 for file

) ! Vary? (Y/N)
ans

vscoef(i)=(ans.eq.'y').or.(ans.eq.'Y")

write(*,*
read(*, *)

)y Find uncertainty? (Y/N)

ans

uscoef(i)=((ans.eq.'y').or.(ans.eq.'Y"))

write(*, *
read (*,*
write(*,*
read(*, *)

)y ! Initial value : '
)} scoef (i)

)y ! Step size : '
dscoef (i)

write(*,*) Min, max : '

read(*,*)
else

mscoef (i), xscoef (i)

scoef (i)=0.

endif

write(*, *)
write(*,*)
write(*,*)

Relative intensity of file
: Vary? (Y/N)

read(*,*) ans

vrelfcf(i)=
write(*,*)

(ans.eqg.'y').or.{ans.eq.'Y")
' Find uncertainty? (Y/N)

read(*,*) ans

urelfcf(i)=
write(*x,*)

(ans.eq.'y').or.(ans.eq.'Y")
! Initial value : '

read(*,*) relfcf (i)

write(*,*)

! Step size :

read(*,*) drelfcf (i)

write(*,*)

! Min, max :

read(*,*) mrelfcf(i),xrelfcf(i)

enddo
write(*,*)
write(*,*) °
write(*,*)
read(*,*) ans
vtemp= (ans.eq
write(*,*) !
read(*,*) ans
utemp=(ans.eq
write (*,*)

Rotational temperature (K):'
Vary? (Y/N) °

.'y').or.(ans.eq.'Y")
Find uncertainty? (Y/N) '

'y').or.(ans.eq.'Y")
Initial value :
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read (*,*) temp

write(*,*) Step size :
read(*,*) dtemp
write(*,*) Min, max : '

read(*,*) mtemp,xtemp

write(*,*)

write(*,*) ' ZEKE instrumental FWHM (cm-1):'
write(*,*) ' Vary? (Y/N) *

read(*,*) ans

viwhm=(ans.eq.'y').or. (ans.eq.'Y"')
write(*,*) Find uncertainty? (Y/N) °
read(*,*) ans
ufwhm=(ans.eq.'y') .or. (ans.eq.'Y")
write(*,*)" Initial value : °
read(*,*) fwhmcm

fwhmev = fwhmcm/evtocm

write(*,*) Step size :
read(*,*) dfwhmcm
write(*,*) ' Min, max : '

read(*, *) mfwhmcm, xfwhmcm

write(*, *)

write(*,*) ' Origin shift from given vibrational sticks (cm-1):°'
write(*,*) Vary? (Y/N) '

read(*,*) ans

vorg=(ans.eq.'y').or.(ans.eq.'Y"')

write(*,*) ° Find uncertainty? (Y/N) '

read(*,*) ans

uorg=(ans.eq.'y').or. (ans.edq.'Y")

write(*,*) Initial value : °*
read(*,*) org

write(*,*) ° Step size :
read(*,*) dorg

write(*,*) Min, max : '

read(*, *) morg,xorg

write(*,*)

write(*,*) ' Baseline (as fraction of intensity):"®
write(*,*) Vary? (¥Y/N)

read(*,*) ans
vbaseln=(ans.eq.'y').or.(ans.eq. ‘Y")
write(*,*) Find uncertainty? (Y/N) '
read(*,*) ans
ubaseln=(ans.eq.'y').or.(ans.eq.'Y"')
write(*,*) Initial value : °
read(*,*) baseln

write({*,*) Step size :

read(*,*) dbaseln

write(*,*) Min, max : °

read(*,*) mbaseln,xbaseln

do i = 1,ninfil
j=6+i
open (j, file = infile(i))
do k = 1,100
read (j,*,end=200) vstk(i,1l,k), vstk(i,2,k)
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enddo
200 nvstk(i)=k-1
close (3)
write (*,*)
write (*,*) nvstk(i),' vibrational sticks read from '
& ,infile (i)
enddo
write(*,*)

a(l)=fwhmcm
a(2)=temp
a(3)=org
a(4)=scoef (1)
a(5)=scoef (2)
a(6)=relfcf (1)
a(7)=relfcf(2)
a(8)=baseln

da (1) =dfwhmcm
da (2)=dtemp

da (3)=dorg
da(4)=dscoef(l)
da (5)=dscoef (2)
da(6)=drelfcf (1)
da (7)=drelfcf(2)
da (8)=dbaseln

ma (1) =mfwhmecm
ma (2 ) =mtemp

ma (3)=morg

ma (4)=mscoef (1)
ma (5) =mscoef (2)
ma(6)=mrelfcf (1)
ma(7)=mrelfcf(2)
ma (8) =mbaseln

xa (1) =xfwhmcm
xa (2)=xtemp

xa (3) =xorg

xa (4)=xscoef (1)
xa {5)=xscoef (2)
xa(6)=xrelfcf (1)
xa(7)=xrelfcf(2)
xa (8) =xbaseln

va (l)=viwhm
va(2)=vtemp
va(3)=vorg
va{4)=vscoef (1)
va (5)=vscoef (2)
va(6)=vrelfcf(l)
va({7)=vrelfcf(2)
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va (8)=vbaseln

ua (1)=ufwhm

ua (2)=utemp

ua (3)=uorg

ua (4)=uscoef (1)
ua (5) =uscoef (2}
ua (6)=urelfcf(l)
ua({7)=urelfcf(2)
ua (8) =ubaseln

write({*,1400) 'FWHM', 'R.Temp', 'Scoef(l)', 'Inten(l)"
& ,'Inten(2)','Org. Shft.', 'Baseln.',-'Chi-Sq."
1400 format (8 all)

if (mode.eqg.3) then
call chisquar
go to 403

endif

call optchi(a,da,ma,xa,va,nparm)
1700 open(l15,file=outfile)

do i = 1, nspec
write (15, 74) smooth(1l,i), smooth(2,i)

74 format (£10.2,£10.6)
enddo
close(15)
write(*,*)
write(*,*) nspec, ' points saved in ‘,outfile

write(*,*)

403 do i=1,nparm
aopt(i)=a(i)
enddo
chiopt=chisqg

K o e e et e o v - e — —— — — n = S . n — ———— — ——— = = = ————— ——— —— - = ———— -
* Find uncertainties by finding displacement in each parameter needed
* to increase chi-square by 1. Paramaters are displaced in steps of

* da(i), and linear interpolation is used to find delta-chi-square=1.
K s o o o o - - ———— > ———— T A= = = = - e - —————— = = = T = T v ——————— - —— —— a = ——— - — —

if (mode.eq.2) go to 1003
do i=1l,nparm

sla(i)=0.
s2a(i)=0.
enddo

do i=1,nparm
if (na(i)) then
write(*,*) 'Finding uncertainty in a(',i,*')’
write(*,1400) 'FWHM ', 'Rot.Temp', 'Scoef(l)’',

& 'Inten(1l)', 'Inten(2)', 'Org. Shift', 'Baseline’,
& ‘Chi-Sq.'
vli=va (i)

va(i)=.false.
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700

601

800

500

510

do j=1,nparm
a(j)=aopt(j)
enddo

chilast=chiopt

slast=0.0

xinc=a(i)+da(i)

if (xinc.ge.xa(i)) then
sla(i)=xa(i)-aopt (i)
go to 601

endif

a(i)=xinc

call optchi(a,da,ma,xa,va,nparm)

if ((chisg-chiopt).ge.l) then
sla(i)=a(i)-aopt (i)
go to 600

else
chilast=chisq
slast=a (i) -aopt (i)

endif

go to 700

slope=(chisg~chilast)/(sla(i)-slast)
sla(i)=((l-chilast+chiopt)/slope)+slast

chilast=chiopt

slast=0.0

do j=1,nparm
a(j)=aopt(3j)

enddo

xinc=a(i)-da(i)

if (xinc.le.ma(i)) then
s2a{i)=aopt{i)-ma(i)
go to 510

endif

a(i)=xinc

call optchi(a,da,ma,xa,va,nparm)

if ((chisg-chiopt).ge.l) then
s2a({i)=aopt(i)-a(i)
go to 500

else
chilast=chisqg
slast=aopt{i)-a(i)

endif

go to 800

slope={(chisg-chilast)/(s2a(i)-slast)
s2a(i)=((l-chilast+chiopt)/slope)+slast
va(i)=vl '
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endif
enddo

fwhmcm=aopt (1)
temp=aopt (2)
org=aopt(3)

scoef (1)=aopt (4)
scoef (2)=aopt (5)
relfcf(l)=aopt(6)
relfcf (2)=aopt(7)
baseln=aopt (8)

slfwhm=sla (1)
sltemp=sla(2)
slorg=sla(3)
slscoef(1)=sla(4)
slscoef (2)=sla(5)
slrelfcf(l)=sla(6)
slrelfcf(2)=sla(7)
slbaseln=sla(8)

s2fwhm=s2a (1)
s2temp=s2a{2)
s2org=s2a(3)
s2scoef (1)=s2a(4)
s2scoef(2)=s2a(5)
s2relfcf(l)=s2a(6)
s2relfcf(2)=s2a(7)
s2baseln=s2a(8)

*

*  Print Optimized parameters & uncertainties
*
1003 write(*,*)

write(*,*) 'Optimized Paramaters:'

write(*,*)

write(*,1005)' ',*' ', ‘'+sigma ', '-sigma '
1005 format(a22, 3 all)

do i=1,ninfil

if (state(i).ne.l) then
write(*,1011)'log(S1/2 Coef.) ',i,scoef(i},slscoef(i),

& s2scoef (i)
write(*,1011)'S1/2 Coef. ',i,1l0**scoef(i),

& 10** (scoef (i)+slscoef (i))~-10**scoef (i),
& -(10** (scoef (i) -s2scoef(i))-10**scoef (1))

endif

write(*,1011) 'Rel. Intensity ',i,relfcf(i),slrelfcf(i),
& s2relfcf (i)
enddo

write(*,1010) 'Rot. Temp. (K)', K temp,sltemp,s2temp
write(*,1010) 'ZEKE FWHM (cm-1)', fwhmcm, slfwhm, s2fwhm
write(*,1010) 'Origin Sshift',org,slorg,s2org
write(*,1010) ‘'Baseline',baseln,slbaseln, s2baseln
1010 format(a22, 3 £11.6)
1011 format(a21, il, 3 £11.6)
write(*,*)
write(*,1030) 'Chi-Square', chiopt
1030 format(a22,£11.6)
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write(*, *)
end

Subroutine to find optimal parameters, given starting parameter

*  values, a; parameters to vary, va; min and max parm values, ma,
*  xa.

subroutine optchi(a,da,ma, Xa,va,nparm)

parameter (frac=0.1,niter=20)

integer nparm,rct,ninfil

real a(30).,da(30),ma(30),xa(30)

real ga(30)

real abest (30)

logical va(30),vany,pr

real chisg,chibest, chinow, chiprev, gnorm, xinc
integer i,count,ncomp, tout

common /comp/ chisq,ncomp
common /ivars/ rct,ninfil
common /prl/ pr,tout
common /spec2/ nspec

* Find gradient of Chi-Square

pr = .true.

call chisquar

if (tout.eg.2) then
pr = .false.

endif

chinow=chisqg

chibest=chisqg

do i=1l,nparm
abest(i)=a(i)

enddo

count=1

vany=.false.

do i=1,nparm
if (va(i)) then

vany=. true.

endif

enddo

if (.not.vany) then
return

endif

1500 do i=l,nparm
ga(i)=0
enddo

pr = .false.
do i=1,nparm
if (.not.va(i)) go to 300
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a(i)=a(i)+frac*da(i)

call chisquar
al(i)=a(i)-frac*da(i)
ga(i)=(chisg-chinow)/frac

300 enddo
if (tout.ne.2) then
pr = .true.
endif

gnorm=0.

do i=1l,nparm
gnorm=gnorm+ga (i) **2

enddo

gnorm=sqrt (gnorm)

do i=1l,nparm
ga(i)=ga(i)/gnorm

enddo

Increment parameters in direction of -gradient & find
* chi-square
1600 do i=1,nparm
xinc=a(i)-ga(i)*da(i)
if (xinc.lt.ma(i)) then
a(i)=ma(i)
elseif (xinc.gt.xa(i)) then
a(i)=xa(i)
else
a(i)=xinc
endif

enddo

chiprev=chinow
call chisquar
chinow=chisg
count=count+1 -

if (chisqg.lt.chibest) then
count=1
do i=1,nparm
abest {(i)=a (i)
enddo
chibest=chisqg
endif
if (count.ge.niter) then
do i=1,nparm
a(i)=abest (i)
enddo
write(*,*) 'Chi-Square has not improved in', niter,
& ' iterations, search stopped.'
write(*,*) 'Best values:'
pr = .true.
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*

* o A #

call chisquar
return
endif
-Find gradient again if chi-square has increased, otherwise
continue to increment parameters along same gradient.
if (chinow.gt.chiprev) go to 1500
go to 1600
end

Subroutine to find chi-square from parameter list a{(nparm).
a(l)=fwhmcm, a(2)=rot. temp, a(3)= origin shift
a(d4)=scoef(l), a(S)=scoef(2), a(6)=rel inten(l),

a(7)=rel inten(2), a(8)=baseline.

subroutine chisquar

integer nparm
real a(30),abest (30)

parameter (evtocm=8065.541)

real vstk(2,2,100),rstk(2,500000)
real temp,org

real reneu(2)

integer state(2),nvstk(2),rct,ninfil
integer mpts

real relfcf(2),scoef(2)

real fwhmcm, fwhmev

real smooth(2,100000),espec(2,100000)
integer nspec

real chisg

integer ncomp

logical pr

common /convl/ fwhmcm, fwhmev,delta,deltawn
common /conv2/ mpts

common /func/ bean, beneu

common /rvars/ massl,mass2,rmass,rean, temp,org,baseln
common /ivars/ rct,ninfil
common/arrays/reneu(2),state(2),nvstk(2),
& relfcf(2),scoef(2)

common /comp/ chisqg,ncomp

common/opti/nparm

common/optr/a(30),abest (30)

common /sticks/ vstk(2,2,100),rstk{2,500000)
common /specl/ smooth(2,100000),espec(2,100000)
common /spec2/ nspec

common /prl/ pr, tout

fwhmcm=a (1)
fwhmev=fwhmcm/evtocn
temp=a(2)

org=a(3)
scoef(l)=a(4)

scoef (2)=a(5)
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relfcf(1l)=a(6)

relfcf(2)=a(7)

baseln=a(8)

call rsticks(vstk,rstk,NR)

call conzeke(rstk,rct,espec,nspec, fwhmcm, relfcf(1l), baseln,
& smooth,NR,NS) ’

call cp2{(espec,smooth,nspec)

if (pr) then

write(*,1405) fwhmcm, temp,scoef(l),relfcf(l),

& relfcf(2),o0rg,baseln,chisq

endif

1405 format (8 gl0.4)
return
end

Calculate rotational sticks--Note in this subroutine, scoef()
is assumed to actually be log(scoef()). And sc() is the real coef.
This is different from the rsticks.f program.

subroutine rsticks(vstk, rstk,NR)
Common variables

parameter (evtocm=8065.541)

common /func/ bean, beneu

common /rvars/ massl,mass2,rmass,rean, temp, org,baseln
common /ivars/ rct,ninfil
common/arrays/reneu(2),state(2),nvstk(2),
& relfcf(2),scoef(2)

real bean, beneu

real massl,mass2,rmass, rean, temp, baseln
integer rct,ninfil

real reneu(2),relfcf(2),scoef(2)
integer state(2),nvstk(2)

Variables local to rsticks subroutine:

real omneu,vorg,vicf,maxstk,jan, jneu,linstr,sc(2)
integer i,k,rc(2)
real vstk(2,2,100),rstk(2,500000),rstk2(2,500000)

do i=1,ninfil
sc({i)=10**scoef (i)
enddo
rmass = massl*mass2/ (massl+mass2)
bean = be(rean, rmass)
rct = 1

do i = 1, ninfil
beneu = be(reneu (i), rmass)

if (state(i).eq.l) then
omneu = 1.5
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else
omneu = 0.5
endif

do k = 1, nvstk(i)
maxstk = -1
Origin shift parameter 'org' added

vorg = vstk(i,1l,k)+org
vicf = vstk(i,2,k)
jan = 0

jneu = jan - 1.5
if (jneu.lt.omneu) then
go to 20
endif
rstk(1l,rct)=vorg+beneu*jneu* (jneu+l)-bean*jan* (jan+1)
if (state(i).eq.l) then
linstr=0.5*(jan-1)*(jan-2)/(2*jan-1)
else
linstr=1.5*jan* (jan-1)/{2*jan-1)
endif
rstk(2,rct)=vicf*boltz(jan, temp) *linstr
rct = rct + 1

jneu = jan - 0.5
if (jneu.lt.omneu) then

go to 30
endif
rstk(1l,rct)=vorg+beneu*jneu* (jneu+l)-bean*jan* (jan+1)
if (state(i).eq.l) then

linstr=1.5*jan* (jan-1)/(2*jan-1)
else

linstr=sc (i) *jan

+0.5*jan* (jan+l)/(2*jan-1)

endif
rstk(2,rct)=vicf*boltz(jan, temp)*linstr
rct = rct + 1

jneu = jan + 0.5
if (jneu.lt.omneu) then
go to 40
endif
rstk(l,rct)=vorg+beneu*jneu* {jneu+l)-bean*jan* (jan+1)
if (state(i).eqg.l) then
linstr=1.5*(jan+1)* (jan+2)/ (2*jan+3)
else
linstr=sc (i) *(jan+1l)
+0.5*jan* (jan+1l)/ (2*jan+3)
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50

500

endif
rstk(2,rct)=vfcf*boltz (jan, temp) *linstr
rct = rct + 1

jneu = jan + 1.5
if (jneu.lt.omneu} then
go to 50
endif
rstk(l,rct)=vorg+beneu*jneu* (jneu+l)-bean*jan* (jan+l)
if (state(i).eq.l) then
linstr=0.5*(jan+2) *(jan+3)/(2*jan+3)
else _
linstr=1.5*(jan+1)*(jan+2)/(2*jan+3)
endif
rstk(2,rct)=vicf*boltz(jan, temp) *linstr
if ((rstk(2,rct)/vicf).gt.maxstk) then
maxstk = rstk(2,rct)/vict
endif
rct = rct + 1

jan = jan + 1
if ((rstk(2,rct-1)/vfcf).lt. (maxstk*0.05)) then
go to 500
endif
go to 10
enddo
rc(i)=rct-1

enddo

rct = rct-1

Normalize sticks so that largest stick = relfcf (i)
Normalize electronic states separately.

maxstk = 0.
do i = 1,rc(l)
if (rstk(2,i).gt.maxstk) then
maxstk = rstk(2,1i)
endif
enddo

do i = 1,rc(l)
rstk(2,1) = rstk(2,i)*relfcf(l)/maxstk
enddo

if (ninfil.gt.l) then
maxstk = 0.
do 1 = rc(l)+1,rc(2)
if (rstk(2,i).gt.maxstk) then
maxstk = rstk(2,1i)
endif
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enddo

do i = rc(l)+1l,rc(2)
rstk(2,1i) = rstk(2,i)*relfcf(2)/maxstk
enddo
endif

write(*,*) rct,' rotational sticks generated'

Sort rsticks into bins

cmmax=0.e0

cmmin=99999.e0

do i=1,rct
1f (rstk(1,i).gt.cmmax) cmmax = rstk(l, i)
if (rstk(i,i).lt.cmmin) cmmin = rstk(l,i)

write(*,*) rstk(1l,1i),cmmax,cmmin
enddo
delt = 1.0e0 '* 1 cm-1 bin size
nbins = int((cmmax-cmmin)/delt)+1

write(*,*) cmmax,cmmin,nbins,’' cmax, cmin, nbins'
do i=1,nbins

rstk2(1,i) = real(i)*delt+cmmin
rstk2(2,1) = 0.e0
enddo

do i=1,rct
ibin = int((rstk(1l,i)-cmmin)/delt)+1
rstk2(2,1ibin) = rstk2(2,ibin)+rstk(2,i)
enddo
rct = nbins
do i=1,rct
rstk(l,i)=rstk2(1,1i)
rstk(2,i)=rstk2(2,1)
enddo

write(*,*) rct,' bins'

return
end

Function to calculate rotational constant, from Re in angstroms,
reduced mass in amu.

real function be(re, rmass)

real mi,re,rmass

Calc. moment of inertia in kg m"2
mi = 1.66054e-1 * rmass * (re**2)
be = 2.79928 / mi
end

Function to calulate anion Boltzmann distribution.
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Note that line strength already includes degeneracy.

real function boltz{(jan, temp)
Convert temp in K to cm-1

common /func/ bean, beneu
real jan, temp, tempk, er
real bean, beneu

tempk = 0.69504*temp

er = bean*jan* (jan+1l)
boltz=2.71828** (-er/tempk)
return

end

subroutine conzeke(rstk,nsticks, espec,nexp, fwhm,relfcf,bline,
& ospec)

Convolutes stick spectrum with ZEKE lineshape from fit to bromine
atomic data, form

y=(a*x+b*x"3})/ (1l+c*x"2+d*x"4)
Sticks are assumed to already be sorted from low to high cm-1.

Input: rstk() rotational sticks
nsticks number of rotational sticks
espec () experimental spectrum
nexp number of points in experimental spectrum
fwhm FWHM (cm-1) of ZEKE lineshape
relfcf intensity of largest peak (usu.=1)

bline baseline as fraction of relfctf
Output: ospec() output (convoluted) spectrum
(same number of pts as espec)
implicit undefined(a-z)

integer nsticks,nexp
real fwhm,bline

integer i,j

real wn,cmax,con,a,b,c,d,cc,xl,

& wn2,x2,chisq,relfcf,rstk(2,500000),espec(2,100000),
& ospec(2,nexp)

parameter (a=1.3342091765e0,

& b=0.0059500947e0,
& c=0.40742214e0,

& d=0.022329373e0)
x1 = 0.43e0*fwhm

1}

cc 3.2e0/fwhm
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cmax = 0.

chisg = 0.
do i=1,nexp '* Loop over exp points
wn = espec(i,i)
wn2 = wn + x1
ospec(2,i) = 0.0e0
ospec(l,i) = wn
do j=1,nsticks I* Loop over sticks
if (rstk(l,3j).lt.wn2) then
x2 = (wn2 - rstk(l,3j))
con = rstk(2,j)*(a*(x2*cc)+b*(x2*cc)**3)/

& (1.0d0+c* (cc*x2) **2+d* (cc*x2) **4)
ospec(2,i) = ospec(2,i) + con
endif
enddo

if (ospec(2,i).gt.cmax) then
cmax = ospec(2,i)
endif
enddo

do i=1l,nexp 1* Normalize “
ospec(2,1i)=relfcf* ((ospec(2,i)/cmax)*(1.0d0-bline)+bline)
enddo

return

end

* Compare experimental and simulated spectra, assuming they have the
* Same number of points and same X-components--no interpolation
* a() contains exp. spectrum. ncounts is number of electron counts.

subroutine cp2(a,b,n)
integer n

real a(2,n),b(2,n)
real chisqg

integer i,ncomp

real ncounts

common /comp/ chisqg,ncomp
common /comp2/ ncounts

ncomp=n
chisqg=0
asigma={(sqrt{ncounts))/ncounts

do i=1,ncomp
chisg=chisg+((a{2,i)-b{2,1i})/asigma)**2

enddo

end
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Appendix C. Simulated Annealing

C1. Introduction

One problem we face in trying to understand the energetics of a cluster containing
many atoms or molecules is determining the global minimum equilibrium geometry.
Especially in the case of the weakly bound clusters considered in this work, the number
of possible isomers increases dramatically as one adds more atoms. For example a
cluster of 13 identical Lennard-Jones atoms has 988 stable, distinct geometric isomers. !
It is also known that for large clusters the number of local minima increases
exponentially with the number of atoms.2 Often there are many local minima located
close in energy to the global minimum energy geometry, and this makes the problem of

finding the global minimum non-trivial.

C2. Brief survey of methods of finding global minima of clusters

If one had an arbitrarily fast computer, the problem of finding the global
minimum would simple. One could simply calculate the cluster potential at all points on
as small a grid as required to locate the minimum. In this "brute force" approach, it
would be necessary to calculate the potential points on a 3N-6 dimensional grid (N being
the number of atoms in a polyatomic cluster). If a 100 point grid were used, this would
amount to 10%, 10" and 10'® calculations of the potential for 3, 4 and 5 atom clusters,
respectively. Hence, we can see that with currently available computers, such a "brute

force" calculation is impractical for clusters with more than 3 or 4 atoms. In the case of

some small clusters, this approach could be speeded up by making assumptions about the
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symmetry of the equilibrium geometry. However this is not a generally used technique
for large clusters and will not be considered further.

Many algorithms are available for finding the minimum of a mathematical
function when initial values of the independent variables are assumed.3,4 These include
gradient minimization,* the simplex method,3 and conjugate gradient methods.3 If the
internuclear coordinates of the cluster are taken to be the independent variables and the
potential energy the function, then any of these methods may be used to efficiently find a
minimum on the potential energy surface. The problem with all of these techniques when
used by themselves, however, is that they cannot distinguish between local and global
minima. For a given initial configuration of atoms, the minimization algorithm may
become trapped in a local minimum.

One approach that may be used to try to locate the global minimum energy
structure is to apply the minimization algorithm repeatedly, with many different--possibly
randomly chosen--starting geometries, and with luck and persistence the global minimum
may be stumbled upon in this way. This is a viable approach, but it suffers from the
drawback that it is hard to determine if one has found the true global minimum. Also it is
not a very systematic approach, relying as it does on random or arbitrarily chosen points
on the potential energy surface.

Another quite elegant method for finding the global optimum of a system was
first developed and applied to problems in computer design by Kirkpartick et al.> This is
the method of simulated annealing, which was based on the Metropolis Monte-Carlo

algorithm® originally developed as a general-purpose tool for characterizing the
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properties of large collections of interacting molecules at a given temperature, i.e., a way
of simulating a canonical ensemble of particles at equilibrium.
The original Metropolis Monte Carlo method® may be outlined as follows:
(1)  An arbitrary initial configuration of the system is chosen.
(2) A random displacement is made in the system.

(3) The change in the energy, AE, of the system is calculated.

(4) If AE<Q, the move is accepted, the system is reset with the new configuration, and
the simulation continues again with step 2.

(5) If AE>0, the move is allowed with a probability of exp(-AE/kT), where k is the
Boltzmann constant and T is the temperature. In practice, this is implemented by
choosing a random number, &, between O and 1, and allowing the move if E<exp(-

AE/KT).

Metropolis er al. showed that this if one averages any property of interest over
each step in the simulation, one may calculate accurate values of thermodynamic
properties, the accuracy being limited only by the duration of the simulation (and of
course by the accuracy of the model interaction potential between the particles).

To illustrate how the Metropolis algorithm is applied to global optimization, we
begin by following the discussion in Press er al.3 of the simulated annealing method
applied to the "travelling salesperson” ;;roblem. In this problem, a salesperson must
travel to a large number of cities, visiting no city more than once, and the cost of
traveling between the cities is proportional to the distance between the cities. The

problem then consists of finding the order of cities that minimizes the cost. This is a
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problem in discrete combinatorial mathematics. According to Kirkpatrick er al.3 there is
no known algorithm for ﬁﬁding an exact solution to this problem for which computation
time does not scale exponentially with the number of cities visited. This is consistent
with our above discussion of the scaling of the 'brute force' approach for finding the
global rninirnurﬁ energy of a clﬁster. However, according to Press et al., "simulated
annealing has effectively 'solved' the famous traveling salesman problem..."3  The
difficulty in this problem lies in the fact that the-re are many possible near-solutions--
solutions close in cost to the optimal solution, as is the case in the cluster problem. The
simulated annealing algorithm for a discrete combinatorial problem such as this is:

(1) Choose an initial ordering (permutation) of the set of cities.

(2) Calculate the "cost function” or “objective function,” which we will also call E,
which in this case is the sum of the distances between the cities taken in order.

(3) Rearrange the ordering of the cities.

(4)  As in the Metropolis algorithm, evaluate E for the new permutation and keep the
move if E is reduced, or, if E is increased, keep the move with a probability
proportional to exp(-E/kT). In this specific example, of course, k no longer has
the same value as the Boltzmann constant, but may be considered a scaling factor
between the cost function E and an effective "temperature,” 7.

®)) Run the Metropolis algorithm for a large number of iterations, to allow the system
to "equilibrate.”

(6) Gradually reduce the effective temperature, 7, according to an "annealing
schedule,” umil the system becomes "frozen," i.e., there is no further change in

the arrangement of order of visiting the cities.
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Press et al.3 provide a computer program to explicitly treat the traveling
salesperson problem by simulated annealing, as well as an excellent introduction to the
concepts of simulated annealing and other optimization methods.

The beaut}; of the simulated annealing algorithm as shown in this example is that,
unlike the direct minimization procedures mentioned above the algorithm is much less
likely to become trapped in local minima. The reason for this is that the system of
interest is allowed to explore a portion of phase space at each stage in the annealing
schedule, and moreover, "uphill" moves are allowed, according to the Boltzmann
distribution. Thus, even if the system finds itself within a local optimum during the
procedure, it has a chance to "escape” to find the global optimum.

Kirkpatrick et al. confined their discussion to discrete systems, and simulated
annealing has since been used extensively in VLSI design and for other discrete
combinatorial problems. The implementation of a simulated annealing algorithm
becomes more complicated in the case of a problem involving continuous variables. A
large part of the problem lies in the optimal choice of step sizes and directions. This
problem has been discussed at length by Vanderbilt and Louie.”

The problem of finding the global minimum energy of a cluster is, of course, a
problem involving continuous variables. Monte Carlo approaches have been successfully
used to such problems; see, for example, Ref. 8. Another approach is also used for
physical systems, in which the molecular dynamics (MD) methods are used to simulate
the actual motions of the atoms and molecules in the system. Various methods are used

to adjust the system in order to produce a distribution kinetic energies corresponding to a
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certain temperature. These methods are described in more detail in the following
sections. Then, as in Monte Carlo methods, the temperature is reduced according to an
annealing schedule, until the system freezes at the global minimum configuration.

The molecular dynamics approach to simulated annealing has the advantage of
intuitive simplicity, and a closéf resemblance to the actual behavior of a physical system.
Thus it is the method of choice if one wishes to study such things as the dynamics of
cluster formation. However, if one wishes to simply find equilibrium geometries, the
molecular dynamics method would seem to be more computationally time-consuming
than the Monte-Carlo approach. This is because to perform a MD simulation one must
calculate forces as well as potentials in order to solve the equations of motion. The MD
approach was used for the current studies because easily-adapted pre-existing MD
programs were available, not because of considerations of computational efficiency. To
our knowledge no systematic study has been made of the relative computational

efficiency of the Monte Carlo and MD simulated annealing methods.

C3. Molecular dynamics simulated annealing

In this section we describe our approach to simulated annealing, which is based
on a molecular dynamics program obtained from Prof. C. C. Martens (UC Irvine). First
we review the basics of constant-energy (microcanonical) molecular dynamics simulation
methods. We then discuss how to implement constant-temperature molecular dynamics
(to simulate a canonical ensemble). Finally we discuss a modification of the latter

method for simulated annealing.

235

vt - mgerppe——. e i —
PRI TR TEEET T

i




C3.1 Microcanonical molecular dynamics

The basic problem that we will deal with here is how to simulate the motions of
atoms which interact according to potential energy functions. Our treatment is drawn
mainly from the book Computer Simulation of Liquids, by M. P. Allen and D. J.
Tildesley,? which discusses these issues in much more depth, and is an essential resource
for anyone interested in molecular dynamics simulations. We assume that the Born-
Oppenheimer approximation is valid, and treat the atoms as points interacting according
to classical mechanics. The problem then becomes how to solve the equations of motion
of a set of i atoms with masses m; and momenta p; at positions r; under the influence of
the potential V(r;) due to interactions with the other atoms. The equations of motion can

then be represented by:?

d p;

—I, == Cl
dr m (1)
ip =-VV(r,)=f1, (C2)
dt RO

where f, is the force on atom i.

Of the many algorithms available for solving the equations of motion, the most
commonly used methods in molecular dynamics computations are the Gear predictor-
corrector algorithm, which solves the set of first order differential equations given above,
and the Verlet algorithm, which treats the problem in terms of a single set of second
order differential equations. Both of these are finite difference methods, i.e. methods
which start from an initial configuration and propagate the equations forward in time.
For a discussion of the relative merits of these and other methods, see Allen and

Tildesley.9 Well-documented computer code to implement these algorithms as described
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in Allen and Tildesley's book may be obtained from the website:
http://toucan.phy.bris.ac.uk/AllenTildesley/home.html. The program used in this work
employs the Gear predictor—corrector algorithm. Hence we confine our discussion to a
brief description of this method.

As the name implies, the Gear algorithm takes place in two steps, a prediction
step, and a correction step. In the first step, the configuration of the atoms are estimated
from the previous configuration by a truncated Taylor expansion around the time, 7. The
program used in this work is a six-value Gear algorithm provided by the group of Prof. C.
C. Martens.!0 We show here the first step of this algorithm, using the notation of Allen

and Tildesley:

vP(t+8t) = v(t)+&ra(r) + 1 8t°b(r) + L 8c(r) + 2 0r'd(r)
a?(r+8t)=a(t)+b(r)+ 16 c(r)+ L 8d(r
b? (¢ +6t) =b(t) +bre(r) + 3 6d(r) (A3

Here, 1, v, and a stand for the set of positions, velocities and accelerations of all of the
atoms, b and c stand for the first and second time derivatives, respectively, of the
acceleration, and & stands for the time step. The superscript p indicates that these are
predicted values.

The equations of motion are introduced in the second, "corrector,” step. In this
step the forces are calculated from Egs. (C1) and (C2) from the predicted positions r at
time t+&. Then the "correct" accelerations a® are calculated from Equation (C3). The

error in the predicted accelerations are then estimated from
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Aa(t+8t)=a‘(r+&)—a’(1+&). (C4)
Finally, the initially predicted values are corrected using this estimated error in the

acceleration:

ré(t+8)=r0"(t+8&)+c,ha(r + &)

“(t+68)=vP(t+6)+cha(r+ &)

( af(1+&)+c,Aa(r + &)
(

)= (C5)
“(t+68)=b"(1+&)+c,Aa(r + &)

)=

)=

c?(t+8)+c,Aa(r+6t)
d?(t+6)+csha(t + &)
The coefficients co,...,c4 are chosen to optimize the stability and accuracy of the

algorithm, and suggested coefficients given by Gear.

C3.2. Constant temperature molecular dynamics

The method in the above section is used to simulate atoms in the microcanonical
ensemble, i.e., with total energy conserved. The temperature of a cluster simulated in this
way is not a well defined quantity, but follows a distribution, as the kinetic energy is not
constant during the simulation. One method that ha§ been used to simulate a canonical

ensemble of atoms is to periodically rescale the velocities of all the particles by a factor:

(C6)

where Tur is the desired temperature of the system and T, is the average kinetic

temperature of the system calculated from:

T, =——(KE). (C7)
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where N is the total number of atoms,  is Boltzmann's constant, and (KE) is the average

kinetic energy from the preceding time interval. This and other methods of constant

temperature MD are described by Allen and Tildesley.?.

C3.3. Using the rescaling of velocities for simulated annealing

Our implementation of simulated annealing using molecular dynamics was
suggested by modification of the above constant-temperature MD algorithms described
above in which the velocities are rescaled at each time step by a factor involving a time
constant that governs the relaxation rate towards the desired "constant" temperature.?
This suggested a method of setting the annealing schedule where the average kinetic

energy of the cluster is decreased by rescaling the velocities of the atoms by the factor

T
x=_ 1+ ar (ﬂ—lj, (C8)

t T

const avg

where #.,ns is the time constant, and Af is an interval of a number of time steps--in our
application about 100-1000 time steps were used for Az. The target temperature is then
set to a number very small number, and the cluster is allowed to relax to this temperature.

Whether or not this type of annealing schedule is optimal is open to debate, as many

other schedules are possible.

C4. Documentation of the simulated annealing program "amain.f"

In this section we discuss in detail our implementation of the simulated annealing

problem as applied to the Rg,X systems, including examples of how to run the program,
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as well as a discussion of the construction of the program for those who wish to modify

it.

C4.1 The input file

In order to run the simulated annealing program one must supply a parameter file
containing the pair potential parameters, flags to indicate which many body forces to
include, and so on. A sample parameter file is given below, followed by a discussion of
each of its components. This example is for the Ar¢l’ anion without any many-body

forces included, titled "inl

1: 7.28 t* argon mass (me*10000)

2: 23.13 I1* jodine atom mass (me*10000)

3: 0.03794 I'* ar-ar epsilon for Lennard-Jones

4: 0.05935 '* ar-I epsilon for LJ

5: 64.34 t* ar-ar sigma for LJ

6: 68.35 '* ar-I sigma for LJ

7: 10000 !'* nstep used in thermgen

8: 250 t* ngkip used in thermgen

9: 250 I* ntconst (time constant for thermgen, in steps of h)
10: 1000 '* nave (number of steps for averaging run)

11: 2. t* time step {(au*100)

12: 0.00000001 1* desired final temp. in kelvin used in thermgen
13: 526878 1* dseed (seed for random number generator)

14: 0.000 1* escale (Initial energy in eV)

i5: 7. '* boxsize (Ang.)

16: 3.5 t* cutoff (Ang.)

17: 6 1* ncluster (number of rare gas atoms)

18: 2 !'* nrgpot (Ar-Ar poten: 1 for LJ, 2 for Aziz)

19: 1 '* nhalpot (1 anion, 2 neut, 3 neut central diff, 4 anal neut)

20: 1 1* neigval (1, 2 for X; 3,4 for I; 5,6 for II)

21: 1.04-5 !* delta (for numerical derivatives, Ang)

22: 0.01 t* gstepin (initial step for gradient minimization, Ang)

23: 1.04-11 !'* gsmall (convergence criterion for gradient min, eV)

24: 0 1* indflag (3 body induction, o0ld model 1 on, 0 off)

25: 0 1* jexgflag (Charge-exchange quadrupole, Jansen model, 1 on,
0 off)

26: 0 '* indi (iterated induction--dipoles only, 1 on, 0 off)

27: 0 t* jexqgd (distributed dipole exchange quadrupole, 1 on, 0
off)

28: 0 '* indq (charge induced Rg quadrupoles--not iterated,
O=0ff, 1=on)

29: 0 1* jexg (Charge-Gaussian exchange, 0=off, 1l=on)

30: O '1* indgi(iterated dipoles & quadrupoles, 0=o0ff, 1=on)

31: 0 '* jaxtel (Axilrod-Teller, O=off, l=on)

32: 2 '* ninit (1 pos. from file, 2 rand. pos save to file, 3 to
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restart, 4 to restart with average, 5 pos from file avg
only, 6 grad min)

33: 1.6419 1* polind (RG polarizability Ang”3 for 3-body ind)

34: 11.08 !* polrg (RG polarizability, a073, for iterated induction)

35: 52.7 1* polx (halide polarizability, a073, for iterated
induction)

36: 27.11 !* pgrg (RG quadrupole polarizability,a0"5,= C Buckingham
defn.)

37: 254. t* pagx (halide quadrupole polarizability, a0”5) 254.

38: 0.936 !* betaexqg (Exchange quadrupole range parameter, Ang~-1)

39: 6.5 1* cutexqg (exchange quad cutoff distance, Ang)

40: 2086. !* theta6é (Rg quadrupole dispersion coeff, e*a0"8)

41: 179. !'* c9anion (eV*Ang~9)

42: 130. I'* c9neut (eV*Ang~"9) -

43: 0.94268 '* gsoconst (eV)

44: 0.0458, 4.07, 5.70, 4.45, 1.08, 1.62, 279.5, 3537. I* Anion MMSV

45: 0.0188, 3.95, 7.15, 6.18, 1.01, 1.62, 5234., 38032. !* X1/2 MMSV

46: 0.0139, 4.18, 7.25, 6.30, 1.04, 1.62, 7079., 51439. !* I3/2 MMSV

47: 0.0160, 4.11, 6.90, 6.40, 1.04, 1.64, 6150., 44688. !* II1/2 MMSV

48: 0.0123422,3.7565,10.77874743,1.8122004,2.26210716e5,1.107851356,

0.56072459,0.34602794,1.36 !* Argon HFD-B parameters
49: init_config_6
50: output_filel_6
51: restart_filel_6
52: average_filel_6
53: poten_filel_6

Note that the line numbers in boldface are not included in the actual file, but are
shown here for reference purposes. All 53 lines of the file must be present, regardless of
whether an anion or neutral simulation is being performed, or which many-body potential
options are in use. The comments after the "!*" symbols are ignored by the program; in
some cases the variable name used in the program is given in this comment field, as well
as a brief explanation of its meaning. Note that comments are not allowed after lines
containing file names (lines 49-53), and will cause the program to crash.

Lines 1 and 2 are the masses of the rare gas and halide, respectively, in units of
10000m,, where m, is the atomic unit of mass (i.e., the electron mass). Lines 3-4 are
Lennard Jones parameters, which were not used in the present application. One does
have the option to use the Lennard Jones parameters for the Ar-Ar potential, however one
may not use the many-body forces with this option.
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Lines 7-14 provide information about the timescale of the simulation and the
annealing schedule. The basic time step of the simulation is set by Line 8, in 10071,
(where Ty is the atomic unit of time, equal to approximately 0.024 fs). Thus the value of
2 in the sample input file corresponds to a time step of about 5 fs. Line 7, nstep is the
total number of MD steps in the simulation. Line 8, nskip is the number of MD time
steps between energy rescalings. Line 9, ntconst, is the time constant, in units of
number of MD steps, that determines the factor by which the energies are rescaled after

each nskip number of time steps, by the equation (See Chapter 4, Section 4.4.2):

_oskip [ Tap

fac= _[1+ (C9)

ntconst{ T

avg

Typically, when starting with a random configuration of atoms, we set ntconst equal to
nskip, so that the rescaling factor is close to O (because for SA we normally set
KE;<<KEavg) and energy is removed as fast as possible from the cluster. When the
simulated annealing run, the cluster is allowed to run, and the average positions of the
atoms are determined during this "averaging run.” Line 10, nave, indicates the number
of time steps to perform this averaging. Line 12 is sets the desired final temperature for
the simulation, which is used to directly calculate KE,, in the above equation. When the
program is used for simulated annealing this line should be set as arbitrarily close to 0 as
possible.  In other applications, ie., MD simulation of a system at a non-zero
temperatures, this could be set to higher temperatures, or one could modify the program
so that this variable could be used to set the annealing schedule. Line 13, dseed, is the
seed for the random number generator, and may be any integer. Note that the sequence of

"random" numbers produced by the program is entirely determined by the initial choice
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of seed. Thus if one does not change dseed one will produce identical initial
configurations of atoms, and if all the other parameters for the anneal are the same, one
will arrive at identical final configurations. Therefore it is essential to change dseed
every time one wishes to start with a "fresh" initial configuration. Line 14, escale, is the
initial total kinetic energy, in eV, given to the atoms. This energy is distributed randomly
among all the atoms. In general, for the first step when the atom positions are randomly
chosen with a box, escale is set to 0, so that the initial kinetic energy of the atoms is
determined only by the potential of the other atoms. If escale is set to a larger value, the
atoms tend to evaporate out of the box.

Lines 15-17 determine the initial placement of the atoms in a box when the flag
ninit (line 32) is set to 2. When this flag is set, the atoms are placed randomly within a
cubic box with the side dimension boxsize (line 15) given in Angstroms. The initial
configuration of the atoms is not allowed to contain any pairs closer together than cutof£
(line 16). The value shown, 3.5 A, was found to be useful so that the initial configuration
does not contain atoms in highly repulsive regions of the potential surface, which would
lead to rapid evaporation. Line 17 gives the number of rare gas atoms (the number of
halide atoms is always assumed to be one). This initial configuration is saved to the file
named in line 49, here called “init_config_6." The format of this file is explained in
detail below.

Lines 18-21 are integer inputs that tell the program what kinds of pair potentials
to use. Line 18 nrgpot may be set to 1 to use the Lennard-Jones form for the Rg-Rg
interaction, or to 2 to use the more accurate Hartree-Fock Dispersion (HFD-B2) form.!!

The parameters for the Ar-Ar HFD-B2 potential are given in line 48, listed in the same
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order as in Ref, 11, In all of the simulations in this work, the HFD-B2 form was used for
the Ar-Ar pair potential. Line 19, nhalpot, indicates whether to calculate the anion or
neutral potential. If nhalpot is set to 1, the anion Rg,X" potential is used, with the anion
MMSV parameters given in line 44 and many body terms as described below. If
nhalpot is set to 2, 3 or 4, the neutral Rg,X potential is calculated according to the
method outlined in Chapter 4. If nhalpot is set to 2 or 3, the neutral eigenvalues are
calculated by numerical diagonalization of the 6x6 matrix Eqn. (4.16) of Chapter 4. Line
21 specifies the displacement, delta, in A, to be used for calculation of the forces from
the potentials. For nhalpot equal to 2, the forces are calculated by finite difference,
whereas if nhalpot=3, the forces are calculated by central difference, which in principle
should give more accurate values of the forces.3 However the calculation runs somewhat
slower with nhalpot=3, and the precise values of the forces are not extremely significant
for simulated annealing applications, so it is not recommended to run in the mode. When
nhalpot Is set to 4, the neutral eigenvalues are found analytically, resulting in an
approximate tenfold increase in speed. Therefore, this is the recommended mode of
operation for calculation of neutral potentials. The numerical mode of calculation may
be used as a check on the analytical calculation.
Line 32, ninit, specifies the mode of operation of the program. These modes are
explained below. When ninit is equal to:
1. The initial positions and momenta of the atoms are read in from the file named in
line 49, here called "init_config_6," the final configuration is save in the file

named in line 51, here "restart_file!_6" the configuration after the annealing run

244



is save in the file named in line 52, here "average_filel_6," and the final total
potential is saved in the file on line 53, here named "poten_file1_6;"

The atoms are placed at random in a box, and if escale is non-zero, are given
initial kinetic energies totaling escale. This initial configuration is save in the
file named in line 49, and the output files are saved as described above for
ninit=l;

The program is run with the initial configuration taken from the file named in line
51 ("restart_filel_6"), and the final configuration is saved to this same file; the
"average" and "poten" files are also updated after running in this mode, but the
"init_config" file is not modified; this mode of operation is used if one wishes to
“restart" the simulation from the point where the previous simulation ended.;

The program is run as if ninit=3, above, except that the initial configuration is
read in from line 52, here "average_filel_6;" this mode is useful for rapid cooling
of a cluster when it is near a minimum configuration;

In this mode, the initial positions and momenta are read in from the file named in
line 49 ("init_config_6"), and only the averaging run is performed, the results of
which are saved in "average_filel_6" (line 52); the simulated annealing
procedure is not performed in this mode; this mode is useful to get an idea of the
standard deviations in atomic positions and potential energy of a given
configuration;

In this mode, the initial positions are read in from the file specified in line 49, and

a gradient minimization procedure is performed; the final potential is saved in the
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file named in line 53, but the final configuration is not saved. This mode is used
to quickly optimize the potential when one is very near the minimum.
In all modes of operation, an output file, named in line S0 is produced, which contains
information about the cluster geometry, potential, etc., and is described in detail below.
Lines 24-31 are flags which tum on or off various many-body interactions.
Except for the Axilrod-Teller interaction (line 31), these flags are only applicable to the
anionic clusters and are ignored by the program when a neutral cluster is being simulated.
Lines 24, 26, 28 and 30 specify various modes of implementation of the induction
effects described in Chapter 4. When line 30, indqi, is set to 1, the full iterative
procedure including induced dipoles and quadrupoles is performed for finding the non-
additive energy. This mode was used to obtain the results presented in Chapter 4. The
other flags may be set to implement simpler (and faster running) models of the non-
additive induction energy. If line 26, indi, is set to I, the iterated induction procedure is
performed neglecting the quadrupole moments of the atoms. The inclusion of quadrupole
induction effects is an extension of the method as originally introduced!? and as usually
implemented for simulations of polar solvents, as for example by Jedlovzky et al.,!3
which normally stop at the dipole term. However, it seems that the quadrupole non-
additive portion contributes significantly to the non-additive energy in the case of highly
polarizable anions and moderately polarizable rare gases such as Ar. It is probable that
simulations involving highly polarizable rare gases, such as those of the Xe,I" clusters
that are currently underway in the Neumark group, the quadrupole induction effect

should be quite significant.
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When indflag is set (line 24) a simpler model of the many body interaction is
used. In this case, we only consider the dipoles induced in the rare gases by the halide
charge, and the pair interactions between these induced dipoles. Then for an Rg,X

cluster, the non-additive induction energy is approximated by

i'Ri' i'Ri'
Vindzg;,Rig u.-'u,-—3(u ;Z),Jz(u J) (C10)

where Rj; is the vector from rare gas atom i to rare gas atom j, |; is the dipole moment
induced by the halide charge on rare gas atom i, and the sum runs over all pairs of rare

gas atoms. The induced dipole moments are found from

Q;
K =i'§"Ri

R (C11)
where g is the halide charge, ¢; is the rare gas dipole polarizability, and R; is the vector
from the rare gas to the halide. This induction model may be considered a first order
approximation to the full iterative solution of Eqn. (4.23) of Chapter 4. For an example
of the application of this model with simulated annealing see the work of Asher er al.!4
on metal-argon clusters.

When indgq, line 28, is set to 1 the non-additive energy due to induced quadrupole
moments is included in a non-iterative manner similar to the dipole induction mode!
described above. When indq is set, the quadrupole moments induced in each rare gas
atom by the halide charge are calculated, and the pair interactions of these quadrupoles
are calculated, as well as the interactions of the quadrupoles with the dipoles calculated

iteratively. ~ For the formulas for the quadrupole-quadrupole and dipole-dipole

interactions see Buckingham.!5 In order for this to function properly, indi (line 26)
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must also be set to 1. If indi is not set, the dipole-quadrupole interactions will not be
included and the overall effect of the quadrupole will be severely underestimated.

The flags 25, 27 and 29 control which of the three models described in Chapter 4
for the "exchange quadrupole” effect is used. If iexqflag (line 25) is set to 1, the non-
additive exchange quadrupole energy is calculated from the interaction of the halide

charge with the cylindrically symmetric quadrupole moments located at the midpoints
between the nuclei of two rare gas atoms, ©?, calculated from Equation 32 of Chapter

4. The total charge-exchange quadrupole energy for the cluster is then given by:

V..(point quadrupole) = %(; cos® ¢ — %) (C12)
where R is the vector from the Rg-Rg midpoint to the halide nucleus, ¢ is the angle
between the quadrupole and Rep. When line 27 (iexqd) is set to 1, the distributed dipole
model of the exchange quadrupole introduced by Hutson et al.16 is used. When line 29
(iexg), the "Gaussian exchange-charge,"” model developed in Chapter 4 is employed, and
the non-additive energy is found from Equation 34 of Chapter 4.

Line 31, iaxtel, is set to 1 to turn on the Axilrod-Teller three body dispersion
interaction [see Eqn. (4.18) of Chapter 4]. This interaction may be used for both the
anion or neutral calculation.

Lines 33-43 of the input file contain atomic data and interaction constants used in the
calculation of the many-body potentials. These ar= listed below in the same notation as

Chapter 4:

Line 33 polind a(Rg) Dipole polarizability of the rare gas atom in

A3
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Line 34 polrg o (Rg) Dipole polarizability of the rare gas atom in a,

Line 35 polx a(X) Dipole polarizability of the halide anion in a,’
Line 36 parg C (Rg)’ Quadrupole polarizability of the rare gas in ag’.
Line 37 pax C (X-),. Quadrupo_le polarizability of the halide anion in a.
Line 38 betaexq B Gaussian range parameter in Al for

exchange

quadrupole

Line 39 cutexq A distance in A which is used as the cutoff point for
the

exchange-charge calculation, to prevent non-physical
behavior of Equation 34 of Chapter 4.

Line 40 theta6 Ce  Coefficient for calculating the dispersion
induced

quadrupole moment on a rare gas atom [see Eqn.
(4.36), Chapter 4]

Line 41 c9anion Co(X-Rg-Rg) Axilrod-Teller coefficient for halide
anion-

rare gas three-body dispersion interaction in eV-A°.

Line 42 c9neut Co(X-Rg-Rg) Axilrod-Teller coefficient for
halogen

neutral-rare gas three-body dispersion interaction in eV-A®,

Line 43 soconst A Halogen spin-orbit constant in eV.

* Note that the definition of the quadrupole polarizability here is that of Buckingham,!3
which differs from other definitions (e.g. this is not the same ¢ used in Chapter 3: see
the footnote to Table VI of Chapter 4).
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The MMSYV pair potential parameters for the RgX" anion are given in line
44, and the MMSYV parameters for the neutral X1/2, 13/2, and I71/2 states are given in
lines 45, 46 and 47 respectively. The order and units of the MMSYV parameters in each
line the same as those in the input file for the Morse DVR program described in

Appendix A (See Section AS.1).

C4.2 The atomic configuration files
This section describes the format of the files which describe the configurations of
atoms, which are named in lines 49, 51 and 52 of the input file. A configuration of N rare

gas atomns and one halogen atom would be represented in the following format:

1 X ho oz P’ BY B
N Xv Y~ Zn M pt pim
N+1 Xhal Yhal Zhal P)Shal) P)’(MI) Pz(hal)

The first N lines of the file give the rare gas configuration, and the final line is the halide

configuration. The first column is an integer index. Xy , Yv and Zy are the Cartesian
coordinates in units of ay/10. P{", etc. are the corresponding components of the

momentum vector, with units 1000meay/Ty.

C4.3 Running the program: example of Argl’
To show how the simulated program is used we will show how to run the program
using the input file "inl" shown in section C4.1. This input file is set up to find a

minimum energy configuration of a Ar¢l’ cluster with no many body interaction, starting
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from a random configuration of atoms. Below, we present the actual computer session.

The user input is shown in boldface:

> amain

File name for parameters

inl

Parameter file name : inl

initial poten = -0.21661377022324 eV

initial energy = -0.21661377022324 eV

Time (ps) fac~2 Temp. (K) Target Temp. Avg. Poten (eV)
1.21898128 0.00000000 46.81750652 0.00000001 -0.25897768
2.42828811 0.00000000 50.57195025 0.00000001 ~-0.30302060
3.63759493 0.00000000 27.21838795 0.00000001 -0.33263926
4.84690176 0.00000000 18.96968172 0.00000001 -0.36209274
6.05620858 0.00000000 9.81563601 0.00000001 -0.37959737
7.26551541 0.00000000 3.20781834 0.00000001 -0.38662604
8.47482223 0.00000001 0.92424026 0.00000001 -0.38892251
44.75402699 0.00000011 0.08753625 0.00000001 -0.38971920
45.96333382 (0.00000012 0.08580413 0.00000001 -0.38972086
47.17264064 0.00000012 0.08425250 0.00000001 -0.38972236
48.38194747 0.00000012 0.08268986 0.00000001 -0.38972385

>
Here we see that because the factor for rescaling the velocities is practically zero the
cluster cools quite rapidly. We can then examine the Rg-X and Rg-Rg bond distances
given in the output file "output_filel_6," to ascertain the structure of this cluster.
Alternately, one could plot the data from the averaged configuration file
"average_filel_6," with a three-dimensional plotting program. We find that this
configuration has the six argons all about 4 A from the iodine ion, and arranged in a

warped trapezoid-like arrangement, as shown in figure C1.
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Figure C1. A local minimum)
energy geometry of Argl.

C4.3.1 Gradient minimization when near a local minimum

To illustrate the use of the gradient minimization procedure for optimizing the

binding energy, we modify the input "in1" to "in2," showing below only the lines of "in2"

that are different from "inl1:"

32:

49:
50:
51:
52:
53:

6 !'* ninit (1 pos. from file, 2 rand. pos save to file, 3
to restart, 4 to restart with average, 5 for pos from file,
averaging only, 6 grad min)

average_filel_6
output_file2 6
restart_file2_6
average_file2_6
poten_file2_6

Here we have changed the file name in line 49 to "average_filel_6," which contains

the configuration output from the first run of the program, and set the flag ninit to 6 for

gradient minimization. We perform the minimization as follows:

> amain
File name for parameters

in2

Parameter file name : in2
Initial potential:

ev cm-1
Total potential = -0.38979933606317 -3143.943
RG-X Contribution = -0.27479441639689 ~2216.366
RG-RG Contribution = -0.11500491966628 ~8927.577
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Potential after gradient minimization:

eV cm-1
Total potential = -0.38980032561780 -3143.951
RG-X Contribution = -0.27479155778784 -2216.343
RG-RG Contribution = -0.11500876782996 -927.608

We see that because the cluster is already quite cold, the gradient minimization in this

case refines the minimum energy only by about 0.03 cm’,

C4.3.2 Reheating and annealing
Now that we have minimum energy configuration of the Ar¢l’, we must perform
the simulated annealing procedure to try to determine if this is this is the global

minimum. To do this we make the following changes to the input file, and rename it

"in3:"

7: 75000 1* nstep used in thermgen

8: 500 t* ngkip used in thermgen

9: 5000 I* ntconst (time constant for thermgen, in steps of h)
14: 0.200 1* escale (Initial energy eV)

32: 1 '* ninit (1 pos. from file, 2 rand. pos save to file, 3

to restart, 4 to restart with average, 5 for pos from file,
averaging only, 6 grad min)

49: average_file3_6
50: output_file4_6
51: restart_filed_6
52: average_filed_6
53: poten_£filed_6
Here we have changed nstep so that the total duration of the SA run will be
about 360 ps, and increased nskip by a factor of 2, so that the cluster will have more time

to equilibrate between rescalings. Most importantly, the time constant ntconst has been

set to be 10 times as large as nskip, so that the kinetic energies will be rescaled by a
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factor of 0.9 and that the cooling will take place slowly. The cluster is heated initially by
changing escale, the initial kinetic energy, to 200 meV, which will be distributed
randomly to the atoms in the cluster. Experience has shown that in general one should
not set escale to more than about one half of the potential of the minimum energy of the
cluster (here ca. 400 meV), in order to prevent evaporation of atoms. The starting point
is the configuration output from the gradient minimization in the file "average_file3_6,"
which file name is no place in line 49 of the input file. The flag ninit is changed to 1 to
start the program with this initial configuration (plus the added kinetic energy). We now

do the anneal:

> amain
File name for parameters
in3

Parameter fi

initial poten =
initial energy =

le name

in3
~-0.38979933606317 eV
-0.18979933606317 eV

Time (ps) fac~2 Temp. (K) Target Temp. Avg. Poten (eV)
2.42828811 0.90000000 104.01207847 0.00000001 -0.28391709
4.84690176 0.90000000 57.03555081 0.00000001 -0.24823823
7.26551541 0.90000000 53.54463990 0.00000001 -0.25235669
9.68412906 0.90000000 67.22189146 0.00000001 -0.27198294
12.10274271 0.90000000 51.55501604 0.00000001 -0.26514639
55.63778842 0.90000000 41.73466731 0.00000001 -0.33538076
58.05640207 0.90000000 43.29693083 0.00000001 -0.34037302
60.47501572 0.90000000 37.04248189 0.00000001 -0.33744994
106.42867508 0.90000000 21.10488494 0.000000012 -0.37646628
108.84728873 0.90000000 20.05677511 0.00000001 ~-0.37843554
111.26590238 0.90000000 19.26204642 0.00000001 -0.38014508
357.96449475 0.90000001 0.16330365 0.00000001 -0.40021528
360.38310840 0.90000001 0.15893369 0.00000001 ~-0.40022694
362.80172205 0.%0000001 0.14923592 0.00000001 -0.40023536

>

We see that at the end of the annealing procedure, the potential energy is lower

than that of the previously located minimum, indicating that we have found a different
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minimum on the potential energy surface. Examining the output files we find that this is

indeed a different isomer of Arel” with the structure pictured in Figure C2.

Figure C2. The global minimum
energy geometry of Arpl.

This is the configuration that we recognize as the global minimum energy geometry from
Figure 7 of Chapter 4. In this structure, as in the previously located minimurm, all of the
Ar atoms are in "contact” with the I atom. However, we see that in this structure, the
number of Ar-Ar nearest neighbor "bonds" is 10, compared to 9 for the isomer pictured in
Figure Cl. Furthermore, the energies of these structures differ by 85 cm’!, which is
reasonably close to the Ar-Ar diﬁer bond energy (about 100 cm’).

We know from previous experience that this is the global minimum of Arel.
However, with an unknown system, a greater number of annealing runs must be
performed to ensure that the global minimum has been found. It is not possible to give an
exact answer to the question of how many times one must repeat the annealing process,
because, as noted above, simulated annealing is not an exact method. The number of
runs necessary will increase with the complexity of the system studied. In general, one
should perform the process enough times to gain an understanding of the various

categories of local minima for a given system and their relative energies.
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C4.4. Outline of the program
The subroutines and functions used by the simulated annealing program are

presented in Table C1 organized according to which file they reside in.

Table C1. Files, subroutines and functions used by the simulated annealing program

File Subroutine Description
or Function
param.file Contains constants and common blocks used by the
program
amain.f Main program; reads input and writes output file
aderiv.f deriv Function to calculate the forces on each atom and

potential of the cluster for a given atomic configuration

initzandiat.f initpos Generates random initial positions for the atoms

initzangdiat | Removes CM translation and sets overall angular

momentum of cluster to zero

ggubs Random number generator

thermgen.f thermgen | Propagates the MD equations of motion according to

the scheme described above.

pforce.f anmmsv | Function for anion MMSV pair potential and force

hfd_b Function for HFD-B2 (Rg-Rg) pair potential and force

pfind Calculates three-body induction potential and forces

from Eq. (C10)

pfexq Calculates the three-body "exchange-quadrupole”

potential and forces from Eq. (C12)
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porb Calculates neutral many-body eigenfunctions
numerically.
meummsv | Calculates neutral MMSYV pair potential
porba Calculates neutral many-body eigenvalues analytically
veqd Calculated exchange charge effect using distributed
dipole model
vindi Calculates many-bod;f dipole induction potential using
the iterative method.
vindg Calculates induced quadrupole-induced quadrupole and
induced quadrupole-induced dipole potential; for use in
conjunction with the subroutine "vindi"
vinddq Calculates many-body dipole and quadrupole potential,
using the iterative method described in Chapter 4.
exg Charge exchange calculation of three body potential
from Eq. (4.34)
erf Error function adapted from Ref. 3
vat Calculates three-body Axilrod-Teller potential
averages.f averages | Calculates average parameters during a constant energy
MD run
ch.f ch EISPACK subroutine for finding the eigenvalues and

eigenvectors of a complex Hermitian matrix

TN Y Y AT A
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CS. Source code for the simulated annealing program.

CS.1. File "Makefile"

The makefile used for recompiling the simulated annealing program is
shown below. To recompile the program one enters simply "make” because the makefile
has the default name. The executable code will be save in the subdirectory "RUN" with

the makefile as shown.

OBJ = amain.o aderiv.o initzangdiat.o thermgen.o pforce.o averages.o
ch.o gmin.o

LIB = -1lgl_s -1lm -lmpc
OPT = -0
OPT3 = -g

main : $(0OBJ)
£77 $S{(OPT) ${(OBJ) -o RUN/amain

£77 $(OPT) -c $<

.cc $(OPT) -c $§$<

C5.2. File "param.file"

C
IMPLICIT double precision (A-H,0-2)
c PARAMETER (ncluster=19,nmolec=1,natmax = ncluster+nmolec)
C PARAMETER (NQ=6,NDIM=NQ*Natmax, NEQM=NDIM, NEQ=NDIM)
parameter (ncl=25,nmolec=1,natmaxc = ncl+nmolec)
parameter (NQ=6, NDIMC=NQ*natmaxc, NEQMC=NDIMC, NEQC=NDIMC)
PARAMETER (ECONV=2186.40, DCONV=0.052940)
parameter (pi=3.1415926535898d0,a0=0.52917724940,
& harev=27.2113961d0,evtocm=8065.541040)
parameter (evtoj=1.60217733d-19, amutokg=1.66054024-27,
& hztocm=3.335640952d-11,hbarev=6.58212204-16,
& hbar=1.054572664-34)

common /nc/ncluster,natmax,NDIM,NEQM, NEQ

common /param/rmc,rml, eec,eeint,sigc, sigint,nrgpot

common /param2/nhalpot,neigval,delta

common /atoms/poten,rgrgpot, rgxpot,cddpot, exgpot,vindit, vexad,
& 1rgdrgq,rgqq, rgaxd, vig, cdpot, cgpot, cdgpot, gexpot, ddispot,

& qdispot,gextot,atpot
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common /atomsl/rgxXpot,rgxIpot,rgxIIpot

common /atoms2/potfin,tempfin

common /threeb/indflag, iexgflag, indi, iexqd, indg, indqi, iexqg,
& ilaxtel

ncluster = number of rare gas atoms

nmolec = number of halide atoms

Constants from Cohen & Taylor, Rev. Mod. Phys. Vol. 59, No. 4
hbarev units eV*s

hbar units J*s

00000

C5.3. File "amain.f"

*

* Simulated annealing program by zZhiming Li and Prof. CC Martens (UC
Irvine)
* Modified and extended by Ivan Yourshaw
*

include 'param.file’

common /anion/ p(10),q(10)

common /neutral/ px(10),pl(10),p2(10), soconst

common /nonadpar/ polind, betaexq, cutexq,polrg,polx, thetas,

& pqrg,pgx,clat

common/box/boxsize,cutoff

DIMENSION YO0 (negmc),dx(ncl),dy(ncl),dz(ncl),dist(ncl),

& ang(ncl,ncl),yave(neqgc),rgx(2,ncl),rgrg(2,ncl,ncl),
& dip (natmaxc),gin(natmaxc)

double precision p(10),qg(10),px{(10),p1(10),p2(10)

character*30 aparam, initcond, outcond, restart,avrestart,potfile
character*80 commentl, comment?2

integer iarr(3)

c OPEN FILES

write(*,*) 'File name for parameters'
read(*,*) aparam

write(*,*) 'Parameter file name : ', aparam
open(7, file=aparam)

read (7, *)rmc

read(7, *)rml

read (7, *)eec

read (7, *)eeint

read (7, *)sigc

read(7, *)sigint

READ (7, *)nstepT

READ(7, *)nskipT

read (7, *)ntconst

read (7, *)nave !'* Number of steps for averaging
READ(7,*)h

READ (7, *)ekelvin

READ(7, *)dseed
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dseedint=dseed

READ (7, *)escale 1* Initial kinetic energy, in eV

escale = (escale/harev)*100.d40 !'* Convert to hartree/100

read (7, *)boxsize '* In ang, for initpos

boxsize = (boxsize/al)*10.d0

read (7, *)cutoff '* In Ang, for initpot

cutoff = (cutoff/al)*10.40

read (7, *)ncluster !'* Number of rare gas atoms

read (7, *)nrgpot '* 1 for RG-RG LJ poten, 2 for Aziz

read (7, *)nhalpot t* 1 for anion, 2 for neutral (num.
forces)
* 3 for neutral (forces by central
differences)

read (7, *)neigval '* eigenvalue # for neutral potential
* 1 or 2 for X, 3 or 4 for I, 5 or 6 for II

if (nhalpot.eg.4) then
if ((neigval.eq.l).or. (neigval.eqg.2)) then
naval = 1
elseif ((neigval.eqg.3).or.(neigval.eq.4)) then
naval = 2
elseif ((neigval.eq.5).or.(neigval.eq.6)) then
naval = 3

endif
neigval = naval
endif
read(7,*) delta !1* delta-r for numerical derivatives
(Ang)
delta = delta*10.0d40/a0 '* convert to a0/10
read(7,*) gstepin !'* initial step for gradient
minimization(a)
gstepin = gstepin*10.0d0/a0 !'* convert to a0/10
read(7,*) gsmall !'* convergence test for gradient min (eV)
gsmall = gsmall*100. /harev !'* convert to hart/100
read(7,*) indflag '* Three-body induction, 0O=off, 1l=on
read(7,*) iexgflag !* Charge-Exchange Quadrupole, 0=off,
i=on
read(7,*) indi !* Iterated many-body (dipole) induction
* 1* O0=0ff,1l=0on
if (indi.eg.l) then
indflag = 0
endif
read(7,*) iexqgd i* Distributed dipole exchange quadrupole
1=on

if (iexgd.eq.l) then
iexgflag = 0

endif .
read(7,*) indg '* Charge Induced Rg quadrupoles, 0=off,
l=on
if (indg.eq.l) then
indflag = 0
indi =1 !* Need dipole calculation to do cuadrupoles
endif
read(7,*) iexg !* Charge-Gaussian exchange, 0=off, 1l=on

if (iexg.eq.l) then
iexgflag = 0
iexgd = 0

endif
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read(7,*) indgi t* Tterated dipole and quadrupole
induction
if (indgi.eq.l1l) then '* turns off other induction options
indflag = 0
indi = 0
indg = 0
endif
read(7,*) iaxtel 1* Axilrod-Teller, O0=off, 1l=on
read(7,*) ninit 1* 1 to use initial positions from file
initcond,
* 2 to generate random initial positions and save to
initcond,
* 3 to restart from previous run
* 4 to restart with averages from prev run
* 5 to do averaging run only starting with initcond file
* 6 to> do gradient potential minimization (pos saved to avg)
* 7 for Powell search
read(7,*) polind !* Rare gas polarizibility for 3-bod ind
* units Angstrom”3
read(7,*) polrg I* Rare gas polarizability for iterated
ind
* units a0"3
read(7,*) polx t* Halide polarizability for iterated ind
* units a0"3
read(7,*) pgrg I* Rare gas quadrupole polarizability
(a0"5)
read(7,*) pax 1* Halide quadrupole polarizabilic
(a0"5)
read(7,*) betaexqg !* Range parameter for exchange
quadrupole
* units Angstrom”-1
betaexg = betaexg*a0/10.4d0 !'* Converted to (a0/10)~-1
read(7,*) cutexqg 1* Cutoff distance for exchange quad.
{ang)
cutexqg = (cutexg/a0)*10.40 1* Converted to (a0/10)"-1
read(7,*) thetab !'* Quadrupole dispersion coeff. (e*a0"8)
read(7,*) c9anion 1* Ax-Tel C9 for anion (eV*Ang~"9)
read(7,*) c9neut 1* Ax-Tel C9 for neutral (eV*Ang"9)
if (nhalpot.eg.l) then
c9at = c9anion/harev/al**9 !* convert to au
else
c9at = c9neut/harev/al**9
endif
read(7,*) soconst '* Atomic spin-orbit const. in eV
soconst = (soconst/harev)*100.40 {* convert to hartree/i00
read(7,*) (p(i), i=1,8) !* RG-X anion MMSV parameters
read(7,*) (px(i}, i=1,8) 1* RG-X neutral X1/2 MMSV
parameters
read(7,*) (pl(i), i=1,8) !'* RG-X neut I3/2 MMSV parameters
read(7,*) (p2(i), i=1,8) 1* RG-x neut II1l/2 MMSV parameters
read(7,*) (g(i), i=1,9) !* RG-RG HFD-B parameters
read(7,*) initcond '* ITnitial condition file name
read(7,*) outcond 1* output file name
read(7,*) restart 1* restart file name
read(7,*) avrestart 1* average restart file name
read(7,*) potfile 1* potential save file name
read(7,101) commentl
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read(7,101) comment2
101 format (a80)

C
natmax = ncluster+nmolec
NDIM=NQ*Natmax
NEQM=NDIM
NEQ=NDIM

c
close(7)

c

if ((ninit.eq.l).or.(ninit.eq.5).or.(ninit.eq.6).or.
&(ninit.eq.7)) then
open (7, file = initcond)
do 123 n = 1,neq-5,6
read(7,*)junk,y0(n),y0(n+1),y0(n+2),y0(n+3),
. y0(n+4),y0(n+5)
123 continue
close (7)
elseif (ninit.eq.2) then
call initpos(y0,dseed)
open(7,file=initcond)
icount = 0
do n = 1,neqg-5,6

icount = icount+l
write(7,*) icount,y0(n),y0(n+l),y0(n+2),y0(n+3),
& yO(n+4),y0{n+5)
enddo

elseif (ninit.eqg.3) then
open (7, file = restart)
do n = 1,neqg-5,6
read (7, *)junk,y0(n),y0(n+l),y0(n+2),y0(n+3),
y0(n+4),y0(n+5)
enddo
close (7)
elseif (ninit.eq.4) then
open (7, file = avrestart)
do n = 1,neg-5,6
read (7, *)junk,y0(n),y0(n+l),y0(n+2),y0 (n+3),
yO0(n+4),vy0(n+5)

enddo
close (7)
endif
c
if ((ninit.eq.2).or.(ninit.eqg.1).or.(ninit.eqg.5)) then
call initzangdiat (y0,dseed,escale)
endif
if (ninit.lt.5) then
call thermgen(y0,nstepT,nskipT,ntconst,h,ekelvin)
endif
iframe = 1
call writeframe(y0,iframe)
c
c write out the final positions
*  (and pos. and momenta to restart file)
c

open (8, file = outcond)

262



300
301

981

991

1001

1011

1085

gl

write(8,*) 'RGX Simulated Annealing Program'’
write(8,*)

write(8,*) commentl

write(8,*) comment2

write(8,*)

write(8,*) 'init cond file: ',6initcond
write(8,*) ‘output file: ', outcond

write(8,*) 'restart file: ', restart
write(8,*) ‘'average config. file: ',avrestart
write(8,*) ‘'potential file: ',potfile

write(8,*)

call idate(iarr)

write(8,300) iarr(2),iarr(l),iarr(3)
call itime(iarr)

write(8,301) iarr(l),iarr(2),iarr(3)
format ('Date: ',i2,'/',12,1x,14)

format ('Time: ',i2,°*:',i2,':',i2)

write(8,*)

Write(a, *) l*******************Paranleters******************t )
write(8,*) ‘'nstep = ',nstepT, ' nskip = ', nskipT
write(8,*) ‘'ntconst = ', ntconst,' nave = ',nave
write(8,*) 'h = ',h

write(8,*) 'initial dseed = ', dseedint

write(8,*) ‘'escale (eV) = ',escale*harev/100.40
write(8,*) 'boxsize = ',boxsize*a0/10.,' Ang'

write(8,*) ‘'cutoff = ',cutoff*a0/10.,' Ang’

write(8,*) ‘'nrgpot = ‘',nrgpot,' nhalpot = ',nhalpot

if {(nhalpot.eq.2).or.(nhalpot.eq.3).or. (nhalpot.eg.4)) then

write(8,*) 'neigval = ', neigval
write(8,*) 'soconst = ',soconst*harev/100.
write(8,*) 'delta = ',delta*a0/10.0d40
endif
if (nhalpot.eg.l) then
if (indflag.eqg.l) then
write(8,981) polind
format ('Dipole induction ON', 3x, 'polind =',f10.6,3x, 'Ang"3")

endif
if (iexgflag.eg.l) then
write(8,991) betaexqg/a0*10.d40,cutexg*al/10.4d0
format ('ExQ ON',3x, 'betaexq =',£10.6,3x,
‘cutexqg =',£10.6)
endif
if (indi.eq.l) then
write(8,1001) polrg,polx
format ('Iter dipole Ind ON',3x, 'Rg pol = ',£10.6,3x,
‘Hal pol = ',£10.6,3x, 'a0"3")
endif
if (indg.eq.l)} then
write(8,1011) pgrg
format ('Rg charge induced quadrupole ON',3x,'Rg Quad. pol =',

& £10.6,3x,'a0"5")

endif
if (indgi.eqg.1l) then
write(8,1085) polrg,polx,pqarg,pax
format ('Dipole-Quadrupole iter. Induction ON',/,
*Dipole polarizabilities, a0”3: Rg = ', f10.6,3x,'Hal = ',

& £f10.6,/, 'Quad. polarizabilities, a0”5: Rg = ',£f10.6,3x,
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1003

1057

1083

173

1051

124

C

& ‘Hal = ',£10.6)
endif
if (iexqgd.eq.l) then
write(8,1003) betaexq*10./a0,thetaé

format ('Dist. Dip. ExQ ON',3x, 'betaexqg =',£f10.6,3x,
& ‘theta6é = ',£15.3)
endif

if (iexg.eq.l) then
write(8,1057) betaexqg*10./a0, thetaé

format ('Gaussian Ex. Chg. ON',63x, 'beta = ',f10.6,3x,
& ‘thetaé = ',£15.3)
endif

write(8,*) 'Anion rg-x MMSV parameters:'
write(8,173) (p(i),i=1,8)
else
write(8,*) 'Neutral rg-x MMSV Parameters (X,I,II diatom states):’
write(8,173) (px(i),i=1,8)
write(8,173) (pl(i),i=1,8)
write(8,173) (p2(i),i=1,8)
endif
if (iaxtel.eg.l) then
write(8,1083) c9at*harev*al**9
format ('Axilrod-Teller ON',3x,'C9 (eV*Ang~"9) = ',b£f10.6)
endif
if (nrgpot.eqg.2) then
write(8,*) 'RG-RG HFD-B Parameters:'
write(8,173) (g(i),i=1,9)
endif
format (2x,5g14.8,/,2x%,5g14.8)
write(8,1051) a0, harev,evtocm
format('a0 = ',gl8.12,1x, 'harev = ',gl8.12,1x, 'evtocm = ',gl8.12)

if (ninit.ge.5) goto 5000

write(8,*) ‘'***x*xxx¥xConfiguration After Annealing********xx*:
write (8, *)
open (1, file =restart)
icount = 0
write(8,*) ' Atom coordinates (a0/10)'
do 124 n = 1,neqg-5,6
icount=icount+1l
write (8, *)icount,y0(n),y0(n+l),y0 (n+2)
write(l,*)icount,y0(n),y0(n+l),y0(n+2),y0(n+3),y0(n+4),
& y0(n+5)
continue
close (1)
write(8,*)
icount = 0
do n=1,neqg-11,6
icount=icount+1
dx(icount) = y0(n)-y0{neg-5)

dy (icount) = y0(n+l)-y0(neg-4)

dz (icount) = y0(n+2)-y0(neqg-3)

dist(icount) = (y0(n)-y0(neqg-5))**2 + (y0(n+l)-y0{neg-4))**2
& + (y0(n+2)-y0(neqg-3))**2

dist(icount) = sgrt(dist(icount))
enddo
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do i=1l,ncluster
do j=1,ncluster
dot = Aax(i)*dx(j)+dy(i)*dy(j)+dz(i)*dz(J)
if (i.eq.j) then
ang (i, 3j) 0.
else
ang (i, Jj) acos (dot/ (dist (i) *dist(3)))
ang(i,j) = ang(i,j)*180/pi
endif
enddo
enddo
write(8,*)
write(8,*) ' RG-RG Angles (deg.)'
do n=1,ncluster
write(8,201) n, (ang(n,i),i=1,ncluster)-
if (mod(ncluster,10).ne.0) then
write(8,*)
endif
enddo
200 format (i3, 3x, £8.4)
201 format (i2, 10£7.2,/,2x,10£7.2)

write(8,*)
write(8,*) 'Final temp. (K):', tempfin
write(8,*)
c
c
5000 if (ninit.lt.6) then
call averages(y0,nave, h,potave,potsd,pmin,prgrg, prgx,
pind, pexq, pex,pddis, pqgdis, pextot,pindi, pcd, pcq, pinddg,
prgdrgq, prgqq, prgaxd, piq,
pexad, prgxX,prgxl,prgxII, ekinave, energy,yave, rgx, rgrg,
dip,qin, paxtel)
elseif (ninit.eq.6) then
call gmin(y0,gstepin,gsmall,pmin,prgrg, prgx,pind, pcd, pcq,
& pinddqg, pexq, pex,pddis, pgdis, pextot,pindi, prgdrgq, prgqq,
& prgaxd, piq, pexqd, prgxX,
& prgxI,prgxII,rgx,rgrg,dip,qin,paxtel)
elseif (ninit.eq.7) then
call pwmin(y0,gstepin,gsmall, pmin,prgrg,prgx,pind, pcd, pcq,
& pinddq, pexq, pex,pddis, padis, pextot,pindi, prgdrgq, prgqq,
& prgagxd, piq, pexqd, prgxX,
& proxI,prgxII,rgx,rgrg,dip,qin,paxtel)
endif
open(9, file=potfile)
if (indi.eg.l) then
pind = pindi
endif
if (indgi.eq.l) then
pind = pinddq
prgdrgq = pcd
prgqq = pcq
endif
if (iexqd.eq.l) then
pexq = pexqgd
endif
if (iexg.eg.l) then

R R R R
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pexqg = pextot
endif

write(9,501) ncluster,pmin*harev/100.,prgx*harev/100.,
& prgrg*harev/100.,pind*harev/100.,pexg*harev/100.,
& prgdrgg*harev/100.,prggq*harev/100.,pddis*harev/100.,
& pqgdis*harev/100.,pex*harev/100.,paxtel*harev/100.
close(9)

501 format (i3, 1x,11gl6.8)

*

* Fill in lower triangles
*
if (ninit.lt.6) then
do i=2,ncluster
do j=1,i-1
rgrg(l,i,j)=rgrg(l,j.i)
rgrg(2,i,3)=rgrg(2,3,1i)
enddo
enddo

write (8, *)
write(8,*) '***************Averaging Run’******************* '
write(8, *)
write(8,*) 'Avg. Potential (eV) = ', potave*harev/100.
write(8,*) 'Std. Dev. of poten (eV) = ', potsd*harev/100.
write (8, *)
write(8,*) 'Potential at avg. configuration (ev) : '

else
write(8, *)
write(8’ *) l***********Gradient Minimization***************l
write(8, *)
write(8,*) ‘'gstep final
write(8,*) r'Convergence
write(8,*)

endif

write(8,7000) pmin*harev/100.,pmin*harev/100. *evtocm

7000 format(33x,'eV',24x,'cm-1',/,

& ' Total potential = ',g21.14,3x%x,£f14.3)

if (nhalpot.eqg.l) then
write(8,7005) prgx*harev/100.,prgx*harev/100.*evtocm

7005 format (' RG-X Contribution = ',g921.14,3%,£f14.3)

elseif (nhalpot.lt.4) then

if (neigval.le.2) then
write (8,7010)prgx*harev/100.,prgx*harev/100.*evtocm,

',gstepin*al/10.,' Ang'
',gsmall*harev/100.,' ev'

& prgxI*harev/100.,prgxI*harev/100. *evtocm,
& prgxII*harev/100.,prgxII*harev/100. *evtocm
7010 format (' RG-X X State Contrib = ',g21.14,3x,f14.3,/,
& ' (Vertical I contrib = ',g21.14,3x,f14.3,"')"',/,

& * {Vertical II contrib
elseif (neigval.le.4) then
write (8,7015)prgx*harev/100.,prgx*harev/100.*evtocn,

',921.14,3%,£14.3,')")

& prgxX*harev/100.,prgxX*harev/100. *evtocm,
& prgxII*harev/100.,prgxII*harev/100.*evtocm
7015 format (* RG-X I State Contrib = ',g21.14,3x,f14.3,/,
& ' (Vertical X contrib = ',g21.14,3x%x,f14.3,")',/,
& ' (Vertical II contrib = ',g21.14,3x,£f14.3,"')")
else
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write (8,7020)prgx*harev/100.,prgx*harev/100.*evtocm,

& prgxX*harev/100.,prgxX*harev/100. *evtocm,
& prgxl*harev/100.,prgxI*harev/100.*evtocm
7020 format(* RG-X II State Contrib = ',g21.14,3x,£14.3,/,
& ' (Vertical X contrib = ',g21.14,3x,£f14.3,")',/,
& ' (Vertical I contrib = ',¢21.14,3x,£14.3,"')")
endif

elseif (nhalpot.eq.4) then
if (neigval.eq.l) then
write (8,7010)prgx*harev/100.,prgx*harev/100.*evtocn,
& prgxI*harev/100.,prgxI*harev/100. *evtocm,
prgxII*harev/100.,prgxII*harev/100.*evtocm
elseif (neigval.eg.2) then
write (8,7015)prgx*harev/100.,prgx*harev/100.*evtocm,
& prgxX*harev/100.,prgxX*harev/100. *evtocm,
prgxIl*harev/100.,prgxII*harev/100. *evtocm
elseif (neigval.eq.3) then
write (8,7020)prgx*harev/100.,prgx*harev/100.*evtocm,
& prgxX*harev/100. ,prgxX*harev/100. *evtocm,
& prgxI*harev/100.,prgxI*harev/100. *evtocm
endif
endif
write(8,7025)prgrg*harev/100.,prgrg*harev/100.*evtocm
7025 format{' RG-RG Contribution = ',g21.14,3x,£14.3)
if (indflag.eq.l) then
write(8,7030) pind*harev/100., pind*harev/100.*evtocm
7030 format(* Charge-dipole-dipole = *,g21.14,3x,£14.3)
endif
if (iexgflag.eg.l) then
write(8,7035) pexg*harev/100., pexg*harev/100.*evtocm
7035 format (* Charge-Ex. Quadrupole = ',g21.14,3x,£14.3)
endif
if (indi.eq.l) then
write(8,7040) pindi*harev/100.,pindi*harev/100.*evtocm
7040 format (' Dipole Induction = ',g921.14,3x,£f14.3)
endif
if (indg.eqg.l) then
write(8,7045)prgdrgg*harev/100.,prgdrgg*harev/100. *evtocm,

R

Lyl

& prgqgg*harev/100.,prgag*harev/100. *evtocm,
& prggxd*harev/100.,prggxd*harev/100. *evtocm,
& pig*harev/100.,pig*harev/100. *evtocm

7045 format(' Rg Ind Qp - Rg Ind Dip = ',g21.14,3x%,£f14.3,/,
& ' RgInd Qp - Rg Ind Qp = ',921.14,3x,£14.3,/,
& ‘' RgInd Qp - X Ind Dip = ',g21.14,3x%,£f14.3,/,
& ' (Total Ind. Qp. = ',g21.14,3x%x,£14.3,')")
endif

if (indgi.eqg.l) then
write(8,7050)pcd*harev/100.,pcd*harev/100. *evtocnm,

& pcqg*harev/100.,pcg*harev/100. *evtocm,

& pinddg*harev/100.,pinddg*harev/100. *evtocm

7050 format (' Dipole Induction = ',g921.14,3x%x,£14.3,/,
& *  Quadrupole Induction = ',g21.14,3x,f14.3,/,
& ' {Total Induction = ',g21.14,3x,£14.3,')")
endif

if (iexgd.eg.l) then
write(8,7055) pexgd*harev/100.,pexgd*harev/100. *evtocm
7055 format(* Ex. Quad. (dist dip) = ',g21.14,3x,£f14.3)
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endif
if (iexg.eq.l) then
write(8,7060)pex*harev/100.,pex*harev/100. *evtocm,

pddis*harev/100.,pddis*harev/100.*evtocm,
padis*harev/100.,pgdis*harev/100. *evtocm,
pextot*harev/100.,pextot*harev/100. *evtocm
format (' Ex. Gaussian Charge = ',g21.14,3x,f14.3,7/,

' Disp. Dipole = ',921.14,3x%x,£14.3,/,

' Disp. Quadrupole = ',g21.14,3x,f14.3,7/,

' (Total Ex. + Disp. MP = ',g21.14,3x,£14.3,"')'}

endif

if (iaxtel.eq.l) then
write(8,7065)paxtel*harev/100.,paxtel*harev/100.*evtocm
format (' Axilrod-Teller = ',g21.14,3x%x,£f14.3)

endif

if (ninit.ne.6) then
write(8,*)

write(8,*) 'Avg. Kinetic energy (eV) = ', ekinave*harev/100.
write(8,*) 'Total Energy (eV) = ',energy*harev/100.
write (8, *)

endif

open(9, file=avrestart)
icount = 0
do i = 1,neq-5,6
icount = icount +1
if (ninit.lt.6) then
write(9,*) icount,yave(i),yave(i+l),yave(i+2),0.,0.,0.
else
write(9,*) icount,y0(i),y0(i+l),y0(i+2),0.,0.,0.
endif
enddo

if (ninit.lt.6) then
write(8,*) 'Average / Std. Dev. of RG-X distances (Angst):'
write(8, *)
do n=1,ncluster
write(8,350) n,rgx(1l,n)*a0/10.,rgx(2,n)*a0/10.
enddo
format(i3,3x,f8.4,g12.4)

write(8, *)
write(8,*) 'Average of RG-RG distances (Angst.):'
write(8,*)

do i=l1,ncluster
write(8,351) i, (rgrg(i,i,j)*a0/10.,3j=1,ncluster)
if (mod(ncluster,5).ne.0) then
write(8, *)
endif
enddo
endif

format (i3,3x,5£f8.4,/,6x,5£8.4,/,6x,5f8.4,/,6x,5f8.4)
format (i3,3x,5g912.4,/,6x,5g12.4,/,6%,5912.4,/,6x%,5g12.4)

if (ninit.ge.6) then
icount = 0
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do n=1,neqg-11,6
icount=icount+l
dx (icount) v0({n)-y0(neg-5)
dy (icount) y0 (n+1) -y0 (neg-4)
dz (icount) y0 (n+2)-y0 (neqg-3)
dist (icount) = (y0(n)-y0(neg-5))**2 +

& (y0 (n+1) -y0 (neg-4))**2 + (y0(n+2)-y0(neg-3))**2

dist(icount) = sqgrt{dist(icount))
enddo
do i=1l,ncluster

do j=1,ncluster

dot = dx(i)*dx(j)+dy(i)*dy(j)+dz(i)*dz(J)

if (i.eqg.j) then
ang(i,Jj) 0.
else
ang(i.j)
ang(.,3)
endif
enddo
enddo
write(8, *)
write(8,*) ' RG-X (angs)'
do n=1,ncluster
write(8,200) n,dist(n)*a0/10.
enddo
write (8, *)
write(8,*) ° RG-RG Angles (deg.)'’
do n=1,ncluster
write(8,201) n, (ang(n,i),i=1,ncluster)
if (mod(ncluster,10).ne.0) then
write(8,*)
endif
enddo
endif

ang(i,j)*180/pi

if (ninit.le.6) then
if ((indi.eq.l).or.(indgi.eq.1)) then
write(8,*) 'Rg Dipole Moments, e*al :'
write (8, *)
write(8,2005) (dip(i),i=1,ncluster)
2005 format (8(2x,£8.6))
write(8, *)
write(8,2010) dip(ncluster+1l)
2010 format ('Halide dipole moment : ',£12.10)
© endif

if ((indg.eq.l).or.{(indgi.eg.1l)) then
write(8, *)

write(8,*) 'Rg Quadrupole Moments, e*a0”"2

write(8,*)

write(8,2005) (gin(i),i=1,ncluster)
endif
if (indgi.eqg.l) then

write(8,*)

write(8,2045) gin(ncluster+1)

acos (dot/ (dist (i) *dist(j)))

2045 format ('Halide quadrupole moment : ‘',£12.10)
endif
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endif
close(8)

stop
end

CS5.4. File "aderiv.f"

c Written by Zhiming Li
* Changed by IY to use anion MMSV potential, and Aziz potential
* for RG-RG & open shell neutral potential
c subroutine that calculates forces in a rare cluster
c with a halogen anion or neutral impurity
c
subroutine deriv(force,y)
include ‘'param.file’
common /anion/ p(10),q(10)
common /neutral/ px(10),pl(10),p2(10),soconst
common /nonadpar/ polind, betaexq, cutexq,polrg,polx, thetast,
& pdgrg,pdx,c9at
common /dipoles/dx(natmaxc),dy{natmaxc),dz(natmaxc),
& gind(natmaxc),dpol (natmaxc,3),gpol (natmaxc, 3, 3)
c

double precision p(10) !* anion MMSV parameters
double precision g(10)
double precision eval(6),evala(3)
dimension px(10),pl(10),p2(10)
dimension force(neqgc),y(neqgc)
dimension RX(ncl+nmolec), RY(ncl+nmolec),
.RZ (ncl+nmolec),
.FX(ncl+nmolec), FY(ncl+nmolec),
.FZ (ncl+nmolec)
double precision
dx (natmaxc) ,dy (natmaxc),dz (natmaxc) ,dx2 (natmaxc),
& dy2 (natmaxc),dz2(natmaxc),dhalpair(ncl),drgpair(ncl),
& ghalpair(ncl),grgpair(ncl)

c
C
***************************************************************t***
c
c write(*,*) ‘'aderiv'
DO 100 I = 1, ncluster+nmolec

c

FX(I) = 0.0do0

FY(I) = 0.040

F2(I) = 0.040
100 CONTINUE
c

icount = 0

c

do 10 n = 1,neqg-5,6
icount = icount + 1
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rx(icount) = y(n)
ry(icount) = y(n+1)
rz(icount) = y(n+2)
o]
10 continue
c
poten = 0.040 I* Total potential
rgxpot = 0.040 I* RG-X contribution
rgrgpot = 0.040 I* RG-RG contribution
cddpot = 0.0d40 t* induction (3-body) contribution
exgpot = 0.040 ! * Charge- exchange quadrupole
contribution
c
c calculate cluster-cluster (RG-RG) pairwise interactions
c
if (nrgpot.eqg.l) then 1* Lennard-Jones
DO 200 I = 1, ncluster-1l
c
RXI = RX(I)
RYI = RY(I)
RZI = RZ(I)
FXI = FX(I)
FYI = FY(I)
FZI = FZ(I)
c
c
DO 199 J = I + 1, ncluster
c
RXIJ = RXI - RX(J)
RYIJ = RYI - RY(J)
RZIJ = RZI - RZI(J)
c
RIJSQ = RXIJ ** 2 + RYIJ ** 2 + RZIJ ** 2
c
SR2 = sigc*sigc / RIJSQ
SR6 = SR2 * SR2 * SR2
SR12 = SR6 ** 2
vVIiJ = 4.0d0*eec* (SR12 - SR6)
rgrgpot = rgrgpot + VIJ
WIJ = 24.0d0*eec*(2.0d0*sxrl2 - sr6)/(sigc**2)
FIJ = WIJ * sxr2
FXIJ = FIJ * RXIJ
FYIJ = FIJ * RYIJ
FZIJ = FIJ * RZIJ
FXI = FXI + FXIJ
FYI = FYI + FYIJ
FZI = FZI + FZIJ
FX(J) = FX(J) - FXIJ
FY(J) = FY(J) - FYIJ
FZ(J) = FZ(J) - FZ1J
c
c
199 CONTINUE
c
C » ** TNNER LOOP ENDS **
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200

250

FX(I) = FXI

FY(I) = FYI

FZ(I) = FZI
CONTINUE

** OUTER LOOP ENDS **

elseif (nrgpot.eq.2) then !* Aziz potential (Ar-Ar)
DO 250 I = 1, ncluster-1
RXI = RX(I)
RYI = RY(I)
RZI = RZ(I)
FXI = FX(I)
FYI = FY(I)
FZI = FZ(I)
DO 159 J = I + 1, ncluster
RXIJ = RXI - RX(J)
RYIJ = RYI - RY(J)
RZ2IJ = RZI - RZ(J)}
RIJ = sqQrt(RXIJ ** 2 + RYIJ ** 2 + RZIJ ** 2)
call hfd _b(qg(l),q(2),q(3),a(4),q(5),qa(6).,q(7),
a(8),qgq(9),R1J,VIJ,FIJ)
rgrgpot = rgrgpot + VIJ
FIJ = FIJ/RIJ
FXIJ = FIJ * RXIJ
FYIJ = FIJ * RYIJ
FZIJ = FIJ * RZIJ
FXTI = FXI + FXIJ
FYI = FYI + FYIJ
FZI = FZI + FZI1IJ
FX(J) = FX(J) - FXIJ
FY(J) = FY(J) - FYIJ
FZ(J) = FZ(J) - FZ1J
CONTINUE

** INNER LOOP ENDS **

FX(I) = FXI ‘
FY(I) = FYI
FZ (1) = FZI
CONTINUE
** QUTER LOOP ENDS **
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else
pause 'Error in deriv'
endif

poten = poten + rgrgpot

c
c calculate RG-Halogen pairwise interaction
c
if (nhalpot.eq.l) then !* Anion
i=ncluster+l
c
RXI = RX(I)
RYI = RY(I) -
RZI = RZ(I)
FXI = FX(I)
FYI = FY(I)
FZI = FZ(I)
c
do 299 j=1,ncluster
c
RXIJ = RXI - RX(J)
RYIJ = RYI - RY(J)
RZ2IJ = RZI - RZ(J)
c
RIJ = sqQrt(RXIJ ** 2 + RYIJ ** 2 + R2IJ ** 2)
c
call anmmsv{p{(l),p{(2).,p(3).p(4),p(5),p(6),
& p(7),p(8) ,RIJ,VIJ, F1J)
rgxpot = rgxpot + VIJ
FIJ = FIJ / RIJ
FXIJ = FIJ * RXIJ
FYIJ = FIJ * RYIJ
FZIJ = FIJ * RZIJ
FXI = FXI + FXIJd
FYI = FYI + FYIJ
FZ1I = FZI + FZIJd
FX(J) = FX(J) - FXIJd
FY(J) = FY(J) - FYIJ
FZ(J) = FZ(J) - Fz21d
c
299 continue
poten = poten + rgxpot
FX(I) = FXI
FY(I) = FYI
FZ(I) = FZI
c

¢ Calculate Three body interactions involving halide & 2 RGs

if ((indflag+iexqgflag).gt.0) then
x0 = rx(ncluster+l)

y0 = ry{(ncluster+1l)
z0 = rz(ncluster+l)
do i = 2 , ncluster

do j = 1,i-1
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if (indflag.eq.l) then
call pfind(polind,x0,y0,20,rx (i), ry(i),rz(1),
& rx(j),ry(3),rz(3),vedd, £0x, £0y,
& £f0z,fl1x,fl1ly,f1z, £2x,f2y, £22)
cddpot = cddpot + vcdd
fx(ncluster+l) fx(ncluster+1l) + fO0x

fy (ncluster+1) fy (ncluster+l) + f0y
fz(ncluster+l) = fz(ncluster+l) + f0z
fx(i) = £x(i) + flx
fy (i) = fy (i) + fly
fz(i) = fz(i) + flz
£x(j) = £x(3j) + £f2x
fy(j) = fy(j) + f2y
fz(j) = fz(j) + f2z
endif

if (iexgflag.eq.l) then

call pfexg{betaexqg, cutexq,x0,y0,20,rx(i),ry(i),
& rz(i), rx(Jj),ry(j).rz(j),vexq, £0x, f0y,
& £f0z,£fl1x,fly,flz, f2x, f2y, £22)

exqgpot = exgpot + vexqg

fx(ncluster+l) fx(ncluster+l) + fOx

fy (ncluster+1) fy(ncluster+l) + fO0y

fz (ncluster+l) fz (ncluster+l) + £f0z

fx(i) = £x(i) + flx
fy(i) = fy(i) + fly
fz(i) = €£z(i) + fiz
fx(j) = f£x(3j) + f2x
fy(3) = fy(3) + f2y
fz(j) = £z(j) + f2z
endif
enddo
enddo
poten = poten + cddpot + exgpot
endif

*

*

* Many body induction (by iteration) and new exchange quadrupole
model,
* & quadrupole induction
*

if (({(indi.eq.l).or. (iexqgd.eq.l).or. (indg.eq.1)) .and.

& (indgi.eqg.0)) then
if (indi.eq.l) then
call vindi (polrg,polx,rx,ry,rz,dx,dy,dz,dhalpair,

& drgpair,vindit)

c write(*,1001) dsqgrt(dx(l)**2+dy(1)**2+dz(1)**2),
c & dsqgrt (dx(2)**2+dy(2) **2+dz (2) **2),
c & dsqrt (dx(3) **2+Ay (3)**2+d3z (2) **2)
cl001 format (3(£15.12,1x))

else

vindit = 0.0d40
endif

if (indg.eqg.l) then
call vindq(pqgrg,pax,rx,ry,rz,dx,dy,dz,dhalpair,drgpair,

& qind, rgdrgq, rgqq, rggxd, viq)
else
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xdrgg = 0.040
rgqgqq = 0.040
rggxd = 0.0d40
vig = 0.040

endif
if (iexqd.eq.l) then

call veqd(betaexqg,theta6,rx,ry,rz,dx,dy,dz,dx2,dy2,dz2,
vexqd)

else

vexgd = 0.040

endif

vindexgd = vindit + vexqd + vig

do i'= 1,ncluster+l !{* Forces calculated numerically
rxi = rx(1i)
ryi = ry(i)
rzi = rz(i)
rx(i) = rxi + delta

if (indi.eq.l) then
call vindi (polrg,polx,rx,ry,rz,dx,dy,dz,dhalpair,
drgpair,vinditx)
else
vinditx = 0.040
endif

if (indg.eq.l) then
call vindg(pqgrg,pax,rx,ry,rz,dx,dy,dz,dhalpair,drgpair,
qind, rgdrgqgdum, rgggdum, rggxddum, vigx)
else
vigx = 0.0d40
endif

if (iexgd.eqg.l) then
call veqd(betaexq, thetab,rx,ry,rz,dx,dy,dz,dx2,dy2,dz2,

vexgdx)
else
vexgdx = 0.0d0
endif
rx(i) = rxi
ry(i) = ryi + delta

if (indi.eq.l) then
call vindi(polrg,polx,rx,ry,rz,dx,dy,dz,dhalpair,
drgpair,vindity)
else
vindity = 0.0d0
endif

if (indg.eq.l) then
call vindg(pgrg,pgx.,rx,ry,rz,dx,dy,dz,dhalpair,drgpair,
qind, rgdrggdum, rgggdum, rggxddum, viqy)
else
vigy = 0.0d0
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endif

if (iexqd.eg.l) then
call veqd(betaexq, theta6,rx,ry,rz,dx,dy,dz,dx2,dy2,dz22,

& vexqgdy)
else
vexgdy = 0.0d40
endif
ry (i) ryi

non

rz (i) rzi + delta

if (indi.eq.1) then
call vindi (polrg,polx,rx,ry,rz,dx,dy,dz,dhalpair,

& drgpair,vinditz)
else
vinditz = 0.0d40
endif

if (indg.eq.l) then
call vindq(pgrg,pgx,rx,ry,rz,dx,dy,dz,dhalpair,drgpair,

& qind, rgdrggdum, rgggdum, rggxddum, vigz)
else
vigz = 0.040
endif

if (iexgd.eq.l) then
call veqd(betaexqg, thetaé,rx,ry,rz,dx,dy,dz,dx2,dy2,dz2,

& vexqgdz)
else
vexqgdz = 0.0d40

endif

rz(i) = rzi

fx(i) = fx(i) - (vinditx+vexgdx+vigx-vindexqd)/delta
fy(i) = fy(i) - (vindity+vexgdy+viqy-vindexqd)/delta
fz(i) = fz(i) - (vinditz+vexqdz+vigz-vindexqgd)/delta

enddo

poten = poten + vindexqd
endif
Iterated dipoles and quadrupoles, Gaussian Exchange & Axilrod-Teller
if ((indgi.eq.l).or.(iexg.eq.l).or. (iaxtel.eqg.1l)) then

if (indgi.eq.l1l) then
call vinddq(polrg,polx,pqrg,pqx,rx,ry,rz,dpol,dhalpair,

& drgpair, ghalpair, grgpair, gpol, cdpot, cqpot, cdgpot)
else
cdpot = 0.
cgpot = 0.
cdgpot = 0.
endif
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if (iexqgd.eqg.l) then
call veqd(betaexq, theta6,rx,ry,rz,dx,dy,dz,dx2,dy2,d4z2,
& vexqd)
elseif (iexg.eq.l) then
call exg(betaexq, thetab,rx,ry,rz,gexpot,ddispot,gdispot,
& gextot)
vexgd = 0.0d0
else
vexgd = 0.
gexpot = 0.
ddispot 0.
qdispot 0.
gextot = 0.
endif

I}

if (iaxtel.eq.l) then

call vat(c9at,rx,ry,rz,atpot)
else

atpot = 0.
endif

vindexqgd = cdgpot + vexgd + gextot + atpot

do i = 1,ncluster+l !* Forces calculated numerically
rxi = rx(i)
ryi = ry(i)
rzi = rz(i)
rx(i) = rxi + delta

if (indgi.eq.1l) then
call vinddq(polrg,polx,pgrg,pgx,rX,ry,rz,dpol,dhalpair,

& drgpair, ghalpair, grgpair, gpol, cddum, cqdum, cdgpotx)
else
cdgpotx = 0.
endif

if (iexgd.eq.l) then
call veqd(betaexq, theta6,rx,ry,rz,dx,dy,dz,dx2,dy2,dz2,
& vexqdx)
elseif (iexg.eq.l) then
call exg(betaexq,theta6,rx,ry,rz,gexdum,ddisdum, gdisdumn,
& gextotx)
vexqgdx = 0.0d0
else
gextotx = 0.
vexgdx = 0.0d40
endif

if (iaxtel.eq.l) then
call vat(cSat,rx,ry,rz,atpotx)

else
atpotx = 0.
endif
rx(i) = rxi
ry(i) = ryi + delta
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if (indgi.eqg.1l) then
call vinddqg(polrg,polx,pqrg,pax,rx,ry,rz,dpol,dhalpair,
drgpair, ghalpair, grgpair, gool, cddum, cgqdum, cdgpoty)

else
cdgpoty = 0.

endif

if (iexgd.eq.l) then
call veqd(betaexqg, thetab,rx,ry,rz,dx,dy,dz,dx2,dy2,dz2,
vexqdy)
elseif (iexg.eq.l) then
call exg(betaexq, theta6,rx,ry, rz,gexdum,ddisdum, gdisdum,
gextoty)
vexqgqdy = 0.0d40
else
gextoty = 0.
vexgdy = 0.0d40
endif

if (iaxtel.eq.l) then
call vat(c9at,rx,ry,rz,atpoty)

else
atpoty = 0.
endif
ry(i) = ryi
rz{i) = rzi + delta

if (indgi.eqg.l) then
call vinddg(polrg,polx,pqrg,pax,rX,ry,.xrz,dpol,dhalpair,
drgpair,ghalpair,grgpair, gpol, cddum, cgdum, cdgpotz)

else
cdgpotz = 0.

endif

if (iexgd.eq.l) then
call veqd (betaexqg, theta6,rx,ry,rz,dx,dy,dz,dx2,dy2,4z2,
vexqgdz)
elseif (iexg.eq.l) then
call exg(betaexqg, thetab,rx, ry,rz,gexdum, ddisdum, gdisdum,
gextotz)
vexqgdz = 0.040
else
gextotz = 0.
vexqgdz = 0.0d40
endif

if (iaxtel.eq.l) then
call vat(c9at,rx,ry,rz,atpotz)

else
atpotz = 0.
endif
rz(i) = rzi
fx(i) = £x(i) - (cdgpotx+vexgdx+gextotx+atpotx

-vindexqgd) /delta
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fy (i) = fy(i) - (cdgpoty+vexqgdy+gextoty+atpoty
-vindexqd) /delta
fz(i) = fz({i) - (cdgpotz+vexgdz+gextotz+atpotz
-vindexqd) /delta
enddo

poten = poten + vindexqd

endif

elseif (nhalpot.eqg.2) then t* Neutral

if (iaxtel.eq.l) then
pause 'Ax-Tel not implemented for numerical neutral'
endif

call porb(rx,ry,rz,eval)
rgxpot = eval (neigval)
rgxXpot eval (1)
rgxIpot eval (3)
rgxIIpot = eval(5)

[

Forces calculated numerically

do i = 1,ncluster+l !* Forces on rare gases and halogen
rxi = rx(i)
ryi = ry(i)
rzi = rz(i)
rx(i) = rxi + delta
call porb(rx,ry,rz,eval)
fx(i) = £x(i) - (eval(neigval)-rgxpot)/delta
rx{(i) = rxi
ry(i) = ryi + delta
call porb(rx,ry,rz,eval)
fy(i) = fy(i) - (eval(neigval)-rgxpot)/delta
ry(i) = ryi
rz(i) = rzi + delta
call porb(rx,ry,rz,eval)
fz(i) = fz(i) - (eval(neigval)-rgxpot)/delta
rz(i) = rzi
enddo

poten = poten + rgxpot
elseif (nhalpot.eg.3) then !'* Neutral, Central Difference

if (iaxtel.eqg.l) then
pause ‘Ax-Tel not implemented for numerical neutral'
endif

call porb(rx,ry,rz,eval)
rgxpot = eval (neigval)
rgxXpot eval (1)
rgxIpot eval(3)
rgxIlpot = eval(5)
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do i = 1,ncluster+l !'* Forces on rare gases and halogen
Using Central difference approximation

rxi = rx(i)
ryi = ry(i)
rzi = rz(i)
rx{i) = rxi + delta/2.0d0

call porb(rx,ry,rz,eval)
evalplus = eval (neigval)

rx{i) = rxi - delta/2.0d40

call porb(rx,ry,rz,eval)

fx(i) = £x(i) - (evalplus-eval (neigval))/delta
rx(i) = rxi

ry(i) = ryi + delta/2.0d40

call porb(rx,ry,rz,eval)
evalplus = eval (neigval)

ry(i) = ryi - delta/2.0d0

call porb(rx,ry,rz,eval)

fy(i) = fy(i) - (evalplus-eval(neigval))/delta
ry(i) = ryi
rz(i) = rzi + delta/2.0d40

call porb(rx,ry,rz,eval)
evalplus = eval (neigval)

rz(i) = rzi - delta/2.0d40

call porb(rx,ry,rz,eval)

fz (i) = fz(i) - (evalplus-eval(neigval))/delta
rz(i) = rzi
enddo

poten = poten + rgxpot

elseif (nhalpot.eqg.4) then

call porba(rx,ry,rz,evala)

rgxpot = evala(neigval)
rgxXpot = evala(l)
rgxIpot = evala(2)
rgxIipot = evala(3)

if (iaxtel.eq.l) then

!* Neutral, calculated analytically

call vat(c9at,rx,ry,rz,atpot)

else
atpot = 0.
endif

Forces calculated numerically

do i = 1,ncluster+l t* Forces on rare gases and halogen

rxi = rx(i)
ryi = ry(i)
rzi = rz(i)
rx(i) = rxi + delta

call porba(rx,ry,rz,evala)

if (iaxtel.eq.l) then
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call vat(cSat,rx,ry,rz,atpotx)

else
atpotx = 0.
endif
fx(i) = fx(i) - (evala(neigval) +atpotx-rgxpot
& -atpot) /delta
rx{i) = rxi
ry(i) = ryi + delta
call porba(rx,ry.rz,evala)
if (iaxtel.eqg.l) then
call vat(c9at,rx,ry,rz,atpoty)
else
atpoty = 0.
endif
fy (i) = fy(i) - (evala(neigval)+atpoty-rgxpot
& -atpot) /delta
ry(i) = ryi
rz{i) = rzi + delta
call porba{rx,ry,rz,evala)
if (iaxtel.eq.l) then
call vat{c9at,rx,ry,rz,atpotz)
else
atpotz = 0.
endif
fz(i) = fz(i) - (evala(neigval)+atpotz-rgxpot
& -atpot) /delta
rz(i) = rzi
enddo
poten = poten + rgxpot + atpot
endif
c
c
icount = 0
c
do 1000 n = 1,6*ncluster-5,6
c
icount = icount + 1
force(n) = y(n+3)/rmc
force(n+l) = y(n+4)/rmc
force(n+2) = y(n+5)/rmc
force(n+3) = fx(icount)
force(n+4) = fy(icount)
force(n+5) = fz(icount)
c
1000 continue
c
icount = icount + 1
c
n = 6*{(ncluster+l) - 5
c
force(n) = y(n+3)/rml
force(n+l) = y(n+4)/rml
force(n+2) = y{(n+5)/rml
force(n+3) = fx(icount)
force(n+4) = fy(icount)
force(n+5) = fz(icount)

281

LA R st v, Xeon )

R RPN g N NTPTTIAY S rae: i s s il
TRV EROY S, TR T MR T SR R T RS

7



RETURN
END
c
subroutine kinetic(y,ekin)
include ‘'param.file’
c
dimension y(neqgmc)
ekin = 0.040
c

do 100 n = 1,6*ncluster-5,6
ekin = ekin
+ (y(n+3)**2 + y(n+4)**2 + y(n+5)**2)/(2.0d40*rmc)
100 continue

n = 6*(ncluster+l) - 5
ekin = ekin
+ (y(n+3)**2 + y(n+4)**2 + y(n+5)**2)/(2.040*rml)

return
end

CS5.5. File "initzangdiat.f"

Generate random initial positions

include 'param.file’

common/box/boxsize, cutoff

dimension yO0{neqc),x(ncl+nmolec),y{ncl+nmolec),z(ncl+nmolec),
& dist(ncl+l,ncl+1)

logical tooclose

10 do n=1,ncluster+l
call ggubs(dseed,l,r)
x(n)=boxsize*r
call ggubs(dseed,1,r)
v (n)=boxsize*r
call ggubs(dseed,1,r)
z (n)=boxsize*r

enddo

Check that no atoms are too close together

tooclose=, false.
do n=1,ncluster+l
do m=n+l,ncluster+l
dist (n,m)=sqrt ((x(n)-x(m))**2+ (y(n)-y(m))**2+(z(n)-z(m)) **2)
if (dist(n,m).lt.cutoff) then
tooclose=.true.
endif
enddo
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enddo
if (tooclose) go to 10

do n=1,ncluster+1l
i = 6*(n-1)
y0(i+l)=x(n)
y0(i+2)=y(n)
y0(i+3)=z(n)
enddo

return
end

150

Q

11
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subroutine initzangdiat (y0,dseed, escale)
include 'param.file’

dimension y0 (negc)

dimension px(3000),py(3000),pz(3000)
dimension x(3000),y(3000),2z(3000)
dimension rmass(3000)

dimension r (1)

dimension rmom(3,3),rinv(3,3)

rmtot = rmc*ncluster + rml

do 150 n = 1,ncluster
rmass(n) = rmc
continue

rmass (ncluster+l) = rml
zero out moment of inertia tensor

do 10 i=1,3

do 11 j=1,3
rmom(i,3j) = 0.0d40
continue

continue

read in initial configuration and calculate the momemt of
inertia tensor

xcm = 0.040
ycm = 0.0d40
zcm = 0.040

do 20 n = 1,ncluster + 1

i = 6*(n-1)

x(n) = y0(i+1)
y(n) = y0(i+2)
z(n) = y0(i+3)

Xcm = Xcm + rmass(n)*x(n)
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21
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no0Oonan

50

55

0

ycm = ycm + rmass(n)*y(n)
zcm = zcm + rmass(n)*z(n)

continue

Xcm = Xcm/rmtot
ycm ycm/rmtot
zcm = zcm/rmtot

do 21 n = 1,ncluster + 1

x(n) = x(n) - xcm
y(n) = y{(n) - ycm
z{n) = z{(n) - zcm
rmom(l,1) = rmom(1l,1)
rmom(il,2) = rmom{l,2)
rmom(l,3) = rmom(1l,3)
rmom(2,2) = rmom(2,2)
rmom{2,3) = rmom(2,3)
rmom(3,3) = rmom(3, 3)
continue

rmom(2,1) = rmom(l,2)
rmom{3,1) = rmom(l, 3)
rmom(3,2) = rmom(2,3)

invert the moment of

call invert (rmom,rinv)

+ rmass(n)*(y(n)**2 + z(n)**2)
- rmass (n)*x(n) *y(n)
- rmass(n)*x(n)*z(n)
+ rmass(n)*(x(n)**2 + z(n)**2)
- rmass{n) *y(n)*z{(n)
+ rmass(n)*(x(n)**2 + y(n)**2)

inertia tensor

calculate random momenta and subtract CM momentum

pxtot = 0.0d40
pytot = 0.0d0
pztot = 0.0d40

do 50 n = 1,ncluster + 1

call ggubs(dseed,l,r)
px(n) = 2.040*(r(1) -
call ggubs(dseed,l,r)
py(n) = 2.040*(r (1) -
call ggubs(dseed,l1,r)
pz(n) = 2.040*(x (1) -
pxtot = pxtot + px(n)
pytot pytot + py(n)
pztot = pztot + pz(n)
continue

0.54d0)

0.540)

0.5d0)

do 55 n = 1,ncluster + 1

px(n) = px(n) - rmass(n)*pxtot/rmtot
py(n) = py(n) - rmass(n)*pytot/rmtot
pz(n) = pz(n) - rmass(n)*pztot/rmtot
continue

calculate angular momenta and angular velocity
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angx 0.0d0
angy 0.0d0
angz = 0.0d0

[

do 57 n = 1,ncluster + 1

angx = angXx + y(n)*pz(n}) - z(n)*py(n)

angy = angy + z(n)*px(n) - x{(n)*pz(n)

angz = angz + x(n)*py(n) - y(n)*px(n)

continue

wx = rinv(l,1)*angx + rinv(l,2)*angy + rinv{l,3)*angz
wy = rinv(2,1)*angx + rinv(2,2)*angy + rinv(2,3)*angz
wz = rinv(3,1)*angx + rinv(3,2)*angy + rinv(3,3)*angz

adjust parcicle momenta to remove overall angular momentum
also, calculate the total kinetic energy

ekin = 0.0d40

do 60 n = 1,ncluster + 1

dpx = rmass(n)*(wy*z(n) - wz*y(n))
dpy = rmass(n)}*(wz*x(n) - wx*z(n))
dpz = rmass(n)* (wx*y(n) - wy*x(n))
px(n} = px(n) - dpx
py(n) = py(n) - dpy
pz(n) = pz(n) - dpz

ekin = ekin + (px(n)**2 + py(n)**2
+ pz{n)**2)/(2.0d0*rmass (n))

continue
angx = 0.0d40
angy = 0.0d40
angz = 0.0d40
pxtot = 0.0d40
pytot = 0.040

pztot = 0.0d0

do 75 n 1,ncluster + 1

pxtot = pxtot + px(n)
pytot = pytot + py(n)
pztot = pztot + pz(n)

angx = angx + y(n)*pz(n) - z(n)*py(n)
angy = angy + z(n)*px{(n}) - x{(n)*pz(n)
angz = angz + x(n)*py(n) - y{n)*px(n)
continue

fac = dsgrt(escale/ekin)
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pxf = 0.040
pyf = 0.0d0
pzf = 0.040

do 70 n = 1,ncluster + 1
px(n) px(n) *fac
py (n) = py(n)*fac
pz{n) = pz(n)*fac
pxf = pxf + px(n)
pyf = pyf + py(n)
pzf = pzf + pz(n)

n

continue

do 100 n = 1,ncluster + 1
i = 6*(n-1)
y0(i+l) = x(n)
y0(i+2) = y(n)
y0(i+3) = z(n)
y0(i+4) = px(n)
y0(i+5) = py(n)
y0(i+6) = pz(n)
continue
return

end

subroutine invert (rmom, rinv)
implicit real*8(a-h,o-z)
dimension rmom(3,3), rinv(3,3),cf(3,3),rident (3, 3)

inverts the three by three rmom matrix must be symmetric!

cf(1,1) =rmmM2J)HmmM33)-nmmw,ﬂ*nmmﬂ,m
cf(1,2) = rmom(2,1)*rmom(3,3) - rmom (2, 3) *rmom(3,1)
cf(1,3) =rmmM2J)HmmM3J)-nme,ﬂ*nmmB,U
cf(2,1) = cf(1,2)

cf(2,2) = rmom(l,1)*rmom(3,3) - rmom(1,3) *rmom (3, 1)
cf(2,3) = rmom(1,1)*rmom(3,2) - rmom (1, 2) *rmom (3, 1)

cf(3,1) = cf(1,3)
cf(3,2) = cf(2,3)
cf(3,3) = rmom(1,1)*rmom(2,2) - rmom(l, 2) *rmom(2, 1)

det = rmom(1l,1)*cf(1,1) - rmom(1,2)*cf(1,2) + rmom(1,3)*cf(1,3)

do 10 i
do 20 j=
ifac = (
rinv(i,j)
continue
continue

:ll
i,
1) ** (i+3)

dfloat(ifac)*cf(j,i)/det

I~ W w

check if this is the inverse

do 30 i

1/
do 40 j 1

3
.3
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40
30

non

000000 NO0N0ONDONNNO0N0DN0ONO0N0ON0O0O00O00N0O0O0NONO

rident (i, j} 0.0d40
do 50 k = 1,
rident (i, 3j)
continue
continue .
continue

do 60 i = 1,3

write(*,*) (rident(i,j),j=1,3)

n wn

REQD. IMSL ROUTINES

1

NONE REQUIRED

rident(i,j) + rmom{i,k)*rinv(k,Jj)

continue
return
end
IMSL, ROUTINE NAME - GGUBS
COMPUTER - IBM77/SINGLE
LATEST REVISION - JUNE 1, 1980
PURPOSE - BASIC UNIFORM (0,1) PSEUDO-RANDOM NUMBER
GENERATOR
USAGE - CALL GGUBS (DSEED,NR,R)
ARGUMENTS DSEED - INPUT/OUTPUT DOUBLE PRECISION VARIABLE
ASSIGNED AN INTEGER VALUE IN THE
EXCLUSIVE RANGE (1.D0, 2147483647.D0).
DSEED IS REPLACED BY A NEW VALUE TO BE
USED IN A SUBSEQUENT CALL.
NR - INPUT NUMBER OF DEVIATES TO BE GENERATED.
R - OUTPUT VECTOR OF LENGTH NR CONTAINING THE
PSEUDO-RANDOM UNIFORM (0,1) DEVIATES
PRECISION/HARDWARE - SINGLE/ALL

NOTATION - INFORMATION ON SPECIAL NOTATION AND
CONVENTIONS IS AVAILABLE IN THE MANUAL
INTRODUCTION OR THROUGH IMSL ROUTINE UHELP
COPYRIGHT - 1980 BY IMSL, INC. ALL RIGHTS RESERVED.
WARRANTY - IMSL WARRANTS ONLY THAT

APPLIED TO THIS CODE.
EXPRESSED OR IMPLIED,

SUBROUTINE GGUBS (DSEED,NR,R)

C SPECIFICATIONS
c note...I have changed this to be real*8 for
1/28/90

INTEGER NR

REAL*8 r (NR) ,dseed
C SPECIFICATIONS
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real*8 D2P31M,D2P31

C D2P31M=(2**31) - 1

C D2P31 =(2**31) (OR AN ADJUSTED VALUE)
DATA D2P31M/2147483647.D0/
DATA D2P31/2147483648.D0/

Cc FIRST EXECUTABLE STATEMENT

DO 5 I=1,NR

" DSEED = DMOD(16807.D0*DSEED, D2P31M)
S R(I) = DSEED / D2P31

RETURN

END

C5.6. File ""thermgen.f"

subroutine thermgen(yO,nstep,nskip,ntconst,h,ekintarget)
include ‘'param.file’

DIMENSION Y(neqc),DlY(neqc),DZY(neqc),D3Y(neqc),D4Y(neqc),
.ZY(neqc),YO(neqc),Yl(neqc),Y2(neqc),Y3(neqc),YH(neqc),YBP(neqc),
.FO(neqc),Fl(neqc),F2(neqc),F3(neqc),FH(neqc),ZF(neqc)

C
Cmmm e e
C DATA FOR INTEGRATOR ALGORITHMS
G m e e
C DATA FOR RUNGE KUTTA INTEGRATION
Bll= 1.0D0/3.0D0
B21=-1.0D0/3.0DO0
B22= 1.0D0
B31i= 1.0DO
B32=-1.0DO
B33= 1.0DO
Wl= 1.0D0/8.0DO0
W2= 3.0D0/8.0DO0
W3= 3.0D0/8.0D0
W4= 1.0D0/8.0D0
cC
Cc DATA FOR HYBRID GEAR ROUTINE
GA02= 153.0D0/128.0DO
GAOl= 25.0D0/16.0D0
GA00=-225.0D0/128.0D0
GB02= 45.0D0/128.0D0
GBOl= 75.0D0/32.0D0
GB0O= 225.0D0/128.0D0
c
C ALPHA1=-0.5 FOR STABILITY
Cc

GAl2= (15.0D0/16.0D0)-0.5D0*(29.0D0/32.0D0)

GAll= (-1.0D0)-0.5D0*(1.0D0)

GAl10= (17.0D0/16.0D0)-0.5D0* (-61.0D0/32.0D0)
GB12= (5.0D0/16.0D0)-0.5D0* (43.0D0/160.0D0)

GBll= (11.0D0/12.0D0)-0.5D0*(41.0D0/24.0D0)

GB10= (-11.0D0/16.0D0)-0.5D0* (31.0D0/32.0D0)
GG1l0= (4.0D0/3.0D0)-0.5D0*(-2.0D0/15.0D0)
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ALPHA2=1.0, BETA=9/56

a0

GB20= 1.5D0*(31.0D0/32.0D0)+BETA*(-3.0D0/4.0D0)

BETA= 9.0D0/56.0D0
GA22= 1.5D0*(29.0D0/32.0D0)+BETA*(-45.0D0/4.0D0)
GA21= 1.5D0*(1.0D0)+BETA*(0.0D0O)
GA20= 1.5D0*(-61.0D0/32.0D0)+BETA* (45.0D0/4.0D0)
GB22= 1.5D0*(43.0D0/160.0D0)+BETA* (-71.0D0/20.0D0)
GB21= 1.5D0*(41.0D0/24.0D0)+BETA* (-16.0D0)
1
GG20= 1.5D0*(-2.0D0/15.0D0)+BETA* (~16.0D0/5.0D0)
GG21= BETA*1.0D0
C
open(7, file='therm.out', status='unknown')
c .
call deriv(£0,y0)
c

call kinetic(y0,ekin)
energy = ekin + poten
write(*,*)'initial poten = ', poten*harev/100.,' eV'
WRITE(*,*)'initial energy =',energy*harev/100.,' eV’
write(*,*)
write(*,667)
667 format (5%, 'Time (ps)',8x, 'fac”2',10x, 'Temp. (K)',6 7%, 'Target
Temp. ',
& 3x,'Avg. Poten (eV)')
therm = 2.0d0*ekin/(3.040* (ncluster+nmolec))
therm = therm/0.000316740
write(7,*)0.040, therm

C
G e e
C SIXTEEN STEP RUNGE KUTTA INTEGRATION TO START
Cmmmrm e e e e e mm e m e
c
DH=H/8.0D0
ICOUNT=0
DO 98 I=1,NEQ
Y(I)=Y0(I)
99 CONTINUE
C
CALL DERIV(FO0,Y)
C
DO 1000 ISTEP=1,16
C
ICOUNT=ICOUNT+1
C
CALL DERIV(ZF,Y)
C

DO 100 I=1,NEQ
D1Y(I)=DH*ZF(I)
100 CONTINUE

DO 200 I=1,NEQ
ZY(I)=Y(I)+B11*D1lY(I)
200 CONTINUE

289

e o R I N S TR el i LRRSETIIIVETN L TG T - LSS T ST T




CALL DERIV(ZF,ZY)

DO 300 I=1,NEQ
D2Y(I)=DH*ZF(I)
300 CONTINUE

DO 400 I=1,NEQ
ZY(I)=Y(I)+B21*D1Y(I)+B22*D2Y(I)
400 CONTINUE

CALL DERIV(ZF,2Y)

DO 500 I=1,NEQ
D3Y(I)=DH*ZF(I)
500 CONTINUE

DO 600 I=1,NEQ
ZY(I)=Y(I)+B31*D1Y(I)+B32*D2Y(I)+B33*D3Y(I)
600 CONTINUE

CALL DERIV(ZF,Z2Y)

DO 700 I=1,NEQ
D4Y(I)=DH*ZF(I)
700 CONTINUE

DO 800 I=1,NEQ
Y(I)=Y(I)+W1*D1Y(I)+W2*D2Y (I)+W3*D3Y(I)+W4*D4Y(I)
800 CONTINUE

IF (ICOUNT.EQ.8) THEN
CALL DERIV(F1,Y)
DO 810 I=1,NEQ
Y1(I)=Y(I)
810  CONTINUE
ELSE IF(ICOUNT.EQ.16)THEN
CALL DERIV(F2,Y)
DO 820 I=1,NEQ

Y2(I)=Y(I)
820 CONTINUE
END IF
C
1000 CONTINUE
C
C
C ______________________________________________________________________
C ENTER MAIN INTEGRATION LOOP
C ——————————————————————————————————————————————————————————————————————
ICOUNT=2
itime = 2
iave = 0
ekinave = 0.0d0
potave = 0.0d40
c
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DO 2000 ISTEP=1,NSTEP
ICOUNT=ICOUNT+1

itime = itime + 1
iave = iave + 1

DO 1100 I=1,NEQ
J=I
YH(I)=GA02*YO(I)+GAOL*Y1(I)+GAOO*Y2(I)+

.H* (GBO2*FO0 (I)+GBO1*F1(I)+GBOG*F2(I))

CONTINUE
CALL DERIV(FH, YH)
CALCULATE PREDICTED ARRAY Y3P

DO 1300 I=1,NEQ
Y3P(I)=GALl2*YO0 (I)+GA11*Y1l(I)+GAl0*Y2(I)+

.H* (GB12*FO(I})+GB11*F1(I)+GB10*F2(I))+
.H*GG10*FH(I)

CONTINUE
CALL DERIV(F3,Y3P)

CALCULATE CORRECTED ARRAY Y3

SET LOCAL TRUNCATION ERROR ERRLOC EQUAL TO ZERO

ERRLOC=0.0D0

DO 1500 I=1,NEQ
Q=GA22*Y0 (I)+GA21*Y1(I)+GA20*Y2(I)+

JH* (GB22*F0 (I)+GB21*F1 (I)+GB20*F2(I) )+
.H* (GG20*FH(I)+GG21*F3(I))

Y3 (I)=Y3P(I)+Q
CONTINUE

Recalculate F3 with corrected array Y3

call deriv(F3,Y3)
potave = potave + poten

RESET ARRAYS FOR NEXT STEP

DO 1600 I=1,NEQ

YO (I)=Y1(I)
Y1(I)=Y2(I)
Y2(I)=Y3(I)
FO(I)=F1(I1)
F1(I)=F2(I)
F2(I)=F3(I)

CONTINUE

call kinetic(y2,ekin)

ekinave = ekinave + ekin

if (iave.eqg.nskip) then

ekinave = ekinave/ (1.0d0*nskip)
potave = potave/(1l.0d40*nskip)

291




therm = 2.0d0*ekinave/ (3.040* (nmolec+ncluster))
therm = therm/0.0003167d0
write(7,*)h*itime/413.47, thexrm

fac = dsgrt(l.+(dble(nskip)/dble(ntconst))
& * (ekintarget/therm-1.))

ptave=potave*harev/100.
write(*,2100)h*itime/413.46, fac**2, therm, ekintarget,ptave
do 1601 n = 1,ncluster+nmolec
do 1602 1=4,6
yO(6*(n-1)+1)
y1i(6*(n-1)+1)
v2(6*(n-1)+1)
1602 continue
1601 continue

fac*y0(6* (n-1)+1)
fac*yl (6*(n-1)+1)
fac*y2(6* (n-1)+1)

c
iave = 0
ekinave = 0.0d40
potfin = potave
tempfin = therm
potave = 0.0d0
endif

C

2000 CONTINUE
2100 format(5£16.8)

C

3000 <close(7)

C
do i = 1, neq
YO (I)=y2 (1)
end do

c
return
END

C5.7. File "pforce.f"

subroutine anmmsv(depth, rmin,betal,
& beta2,xl1,x2,c4,c6,rtin,pot, force)

Cm e o o

c Scaled MMSV for anion

* In: rtin R in a0/10 units

* Out: pot potential (hartree/100)

* force (hartree/100)/(a0/10), negative when attractive
c

implicit double precision(a-h,o-z)
parameter (pi=3.14159265359d0,a0=0.529177249d0,
& harev=27.211396140)

rt
Xt

a0*rtin/10. I*  Convert to Angstroms
rt/rmin

if (xt.le.l.) then
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* % A % * A o %

e2 exp(2.*betal*(1l.-xt))

el exp(betal*(1.-xt))

pot = depth*(e2-2.*el)

force = -(depth/rmin)*2.*betal* (el-e2)

else if ((xt.gt.1l).and. (xt.le.xl1l)) then

e2 exp(2.*beta2*(1.-xt))

el exp (beta2* (1.-xt))

pot = depth*(e2-2.*el)

force = -(depth/rmin)*2.*beta2* (el-e2)

else if ((xt.gt.x1l).and.(xt.lt.x2)) then

p2l=pi/ (x2-x1)

pt=p21* (:t-x1)

swxt=0.5* (cos(pt)+1.)
dswxt=-0.5*p2l*sin(pt) /rmin

e2 = exp(2.*beta2*(1.-xt))

el = exp(beta2*(1l.-xt))

pmorse2 = e2-2.*el

dmorse2 = 2.*beta2*(el-e2)/rmin

pvdw
dvdw

-{c4*rt** (-4) +cb*re**(-6))
4. *cd*rt** (-5)+6.*cb*rt**(-7)

pot = depth* (swxt*pmorse2+ (1. -swxt) *pvdw)

force = -depth* (dswxt* (pmorse2-pvdw) +swxt *dmorse?2
& +(1.-swxt)*dvdw)
else
pot = -depth*(cd*rc** (-4)+cb*rt**(-6))
force = -depth* (4.*cd*rt**(-5)+6.*cb*r**(-7))
end if

pot = 100.*pot/harev

force = 10.*force*al/harev
return
end

subroutine hfd_b(depth,rmin,alpha, beta,
& acoef,c6,c8,cl0,damp, rtin, pot, force)

Hartree-Fock Dispersion-B Potential
Ref: Aziz & Slaman Mol. Phys. v.58, p.679
Input: 9 potential parameters
rtin R in a0/10 units
Output: pot potential in hartree/100
force force in (hartree/100)/(a0/10)
implicit double precision{a-h,o-z)
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parameter (a0=0.529177249d0,harev=27.211396140)

rt = a0*rtin/10. I* Convert to Angstroms
Xt=rt/rmin

Dispersion damping function

if (xt.lt.damp) then
fdamp=exp (- (damp/xt-1)**2)
ddamp= (2. *damp/xt**2) * (damp/xt-1.) *fdamp
else
fdamp=1.
ddamp=0.
endif

Repulsive part

repul=acoef*exp (-alpha*xt+beta*xt*xt)
drepul=(-alpha+2.*beta*xt) *repul

Dispersion terms

disp=c6*xt** (-6)+CB8*Xt** (-8)+clO*xt** (-10)
ddisp=-6.*c6*xt** (-7)-8.*c8*xt**(-9)-10.~cl0*xt**(-11)

pot=depth* (repul-fdamp*disp)
force=-depth* (drepul-fdamp*ddisp-ddamp*disp) /rmin

pot = 100.*pot/harev
force = 10.*force*alO/harev

return
end

subroutine pfind(pol,x0,y0,20,x1,vy1l,z1l,x2,y2,z22,poten,
& £fO0x,£f0y,f0z,f1x,fly,flz, £f2x,£2y,f2z)

Charge-Ind Dipole-Ind Dipole Three body potential & force

Input: pol Rare gas polarizibility (A~"3)
x0,y0,z0 Halide cartesian coordinates (a0/10)
x1l,yl,z1, x2,y2,z2 Rare gas coordinates (a0/10)
Output: poten Potential (hartree/100)
fO0x,y.2 Force on halide (hartree/100)/(a0/10)
fix,y.z;f2x,y,z Force on rare gases

implicit double precision(a-h,o-z)
parameter (pi=3.1415926535940,a0=0.52917724940,
& harev=27.2113961d0)

const = (pol/(a0**3)*1.d43)**2

riOsgr = (x1-x0)**2+(yl-y0)**2+(21-20)**2
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*

r20sqr

(x2-%0)**2+ (y2-y0) **2+ (z2-20) **2

rl2sqr = (xX1-x2)**2+(yl-y2)**2+(2z1-22)**2

dotl1020 = (x1-x0)*(x2-x0)+(yl-y0)*(y2-y0)+(z1-20)*(z2-20)
dotl012 = (x1-x0)*(x1-x2)+(yl-y0)*(yl-y2)+(z1l-20)*(z1-22)
dotl1220 = (x1-x2)*(x2-x0)+(yl-y2)*(y2-yv0)+(z1l-22)*(z2-2z0)
tl = dsqgrt(rlOsqr)

t2
té
t7
t10
tll

poten

1}

rl0sqr**2
dsqgrt(rl2sqr)

= rl2sqr**2

dsqrt (r20sqr)
r20sqr**2
= const*tl/t2*t6/t7*cl0/t1ll* (dot1020-

& 3*dotl1012*dot1220/rl2sqgr)

poten

* dv/dxo0

*

3.

*

DO/

tl
t2
t7
t8
£10
tl2
tl3
tl5
t20
£22
t29
t39
t47

n

I

1]

nn

oo n

[{}

= poten*1.d3

dsqrt (rl0sqr)
rl0sqgr**2
dsqgrt(rl2sqr)
rl2sqr**2
t7/t8
dsqgrt (r20sqr)
r20sgr**2
t12/t13
1/rl2sqgr
dotl1020-3*dot1012*dot1220*t20
const*tl/t2
-x1+x2

~3.D0/2.D0*const*tl/t2/rl0sqgr*tl0*£15*t22* (-2*x1+2*x0) -

#2.DO*£29*c10*t12/t13/r20sqr*t22* (-2*x2+2*x0)+t29*£10*t1S5* (-
x2+2*x0
#-x1-3*£39*dotl220*t20-3*dot1012*£39*£20)

£0x

* dv/dy0

*

3.

L

DO/

dv/

.DO/

£t26 =
t28 =
= const*tl/t2

£35
t45
t£53

-£47*1.43

1/rl2sqr
dot1020-3*dot1012*dot1220*t26

-yl+y2

-3.D0/2.D0*const*t1/t2/r10sqr*tl0*tl5*t28* (-2*y1+2=y0) -

#2.D0*£35*£10*€12/t13/r20sqr*t28* (-2*y2+42*y0) +£35*£10*£15* (-
y2+2*y0
#-y1-3*£45*dot1220*t26-3*dot1012*t45*t26)

foy
dzo

t45
t53

-£53*1.43

-z1+22

-3.D0/2.D0*const*tl/t2/r10sqgr*t10*t15*t28* (-2*21+2*20) -
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#2.D0*t35*£10*t12/t13/r20sqr*t28* (-2*22+2*20) +£35*t10*t15* (-

z2+2*z0

#-2z1-3*t45*dot1220*t26~-3*dot1012*t45*t26)

f0z

*

* dv/dxl

*
t9
tl1o0
tl7
£25
£29
t40
t54

3.D0/2.D0

*

-t53*1.d43

1/t8
t7*t9
x2-x0

= dotl012*dot1220

£15* ((x1-x0)*t17+ (y1-y0) *(y2-y0)+(z1-20)*(22~-20)-3*t25*t26)
2*x1-2*x2
-3.D0/2.D0*const*t1/t2/r10sgr*t10*c29* (2*x1-2*x0) -

#L35*%t7/¢8/rl2sgr*£29*t40+t35*t10*c15* (x2-x0-3* (2*x1-x2~
x0)*dot1220
#*£26-3*Aot1012*£17*t26+3*t25*t9*t40)

fix

*

*  dv/dyl
*
t20
t29
t40
t54
3.D0/2.D0

x*

-t54*1.43

y2-y0

= £15* ((x1-x0)*(x2-%x0)+(yl-y0)*t20+(z1-20)*(z2-20)-3*c25*£26)

2*yl-2*y2
-3.D0/2.D0*const*tl/t2/r1i0sqgr*tl10*t29* (2*yl-2*y0) -

#L35*t7/€8/ri2sqr*t29*t40+£35*t10*t15* (y2-y0-3* (2*yl-y2-
y0) *dot1220
#*£26-3*dotl1012*£20*t26+3*t25*t9*t40)

fiy

*

* dv/dzl
€23
t29
£40
t54

3.D0/2.D0

*

-t54*1.d43

z2-z0

£15* ((x1-x0)* (x2-x0)+ (y1l-y0)*(y2-y0)+(21-20)*t£23-3*c25*t26)
2*z1-2*z2
-3.D0/2.D0*const*tl/t2/ri0sqgr*t10*t29* (2*21-2*20) -

#£35*c7/t8/rl2sgr*t29*t40+t35*t10*t15*% (22-20-3*(2*z1-22-
z0) *dot1220
#*£26-3*dot1012*L23*t26+3*t25*£9*t40)

flz

*

*  dv/dx2
t5
t6
t7
t28
t30
£33
t34
t55

-t54*1.4d3

const*tl/t2
dsqrt(ri2sqgr)
ri2sqr**2
dotl1020-3*t25*t26
-2*x1+2*x2
1/c7

= t6*t33

-3.D0/2.D0*t5*t6/t7/r12sqr*tl15*t28*t30-

3.D0/2.D0*t5*£34*t12/
#£13/r20sqr*t28* (2*x2-2*x0) +t5*t34*t15* (x1-x0-3* (-
x1+x0)*dot1220*t2
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3

#6-3*dot1012* (-2*x2+x0+x1) *£26+3*£25*t33*t30)
f2x = -t55*1.43

dv/dy2

t£30 =2*y1+2*y2
£55 = -3.D0/2.DO0*t5*t6/t7/rl2sqr*ti5*t28*t30-
.D0/2.DO*t5*t34*¢c12/
#£13/r20sqr*t28* (2*y2-2*y0) +t5*t34*tl15* (yl-y0-3* (-

yl+y0)*dotl1220*t2

3

#6-3*dot1012* (-2*y2+y0+yl) *£26+3*£25*£33*t30)
f2y = -t55%1.43

dv/dz2

£30 = -2*2z1+2*2z2

t55 = -3.D0/2.D0*t5*t6/t7/rl2sqr*tl5*t£28*t30-
.D0/2.D0*£S*£34*t12/

#t13/r20sqQr*t28*(2*22-2*20) +£5*t34*t15* (z1-20-3* (-

z1+20) *dotl1220*t2

* % * % % % o 2 A * * A

#6-3*dotl1012* (~2*2z2+2z0+2z1) *£26+3*t25*£33*t30)
f2z = -t55*1.43

return
end

subroutine pfexq(beta,cutoff,x0,y0,20,x1,y1l,z1,x2,y2,22,p0zen,
& f0x,f0y,f0z,f1x,fly,fl1z,£2x,f2y,£22)

Exchange Quadrupole, potential & forces
Input: beta range parameter ((a0/10)7°-1)
cutoff (a0/10)
x0,y0,2z0 Halide coords (a0/10)
xl,... RG 1 coords
X2,... RG 2 coords
Output: poten potential (hartree/100)
fox, ... Forces (hartree/100) (a0/10)

implicit double precision(a-h,o-z)
parameter (pi=3.14159265359d0,a0=0.52917724940,
& harev=27.2113961d0,evtocm=8065.54104d0)

rl2sqr = (x1-x2)**2+(yl-y2)**2+(zl~-z2)**2
if (rl2sqgr.gt.cutoff**2) then
poten = 0.
fox
foy
£f0z
fix
fly
flz
f2x =

nou

imonon
[N eNalolNoeNo Nl
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f2y = 0.

f2z = 0.
return
endif
resqQr = (X1/2.-x0+x2/2.)**2+(y1/2.-y0+y2/2.)**2
& +(z1/2.-20+22/2.)**2
dotcl2 = (x1/2-x0+x2/2)*(x1-x2)+(yl/2-y0+y2/2)*(yl-y2)
& +{(21/2-20+22/2)*(21-22)

ex = exp(-rl2sgr*beta**2/2.d0)

quad = -rl2sqgr*ex/(1.d0-ex)/2

rcthir = rcsqgr**1.5d0

vexq = - (quad/rcthir)*(3.d0*dotcl2**2/rcsqr/rl2sqgr-1.d40)/2.40

poten = vexg*1l.d3

FOx

tl = beta**2

t3 = dexp(-rlZ2sqgr*tl/2.0d0)
t4 = rl2sqgr*t3

té = 1/(1-t3)

t8 = dsqgrt(rcsqgr)

t9 = rcsqr**2

ti3 = dotcl2**2

tld = 1l/rcsqr

tl6 = 1/rl2sqr

£20 = -x1+2*x0-x2
t23 = 1/t9
t36 = -3.D0/4.D0*t4*t6*t8/t9/rcsqgr*(3.D0/2.D0*£13*cl4*c16-

.D0/2.D
#0)*£20+t4*£6*£8*t23* (3*dotcl2*cld*tl6* (-x1+x2) -
.D0/2.D0*t13*c23*t
#16*t20)/2
fOx = -t36*1.043

FOy
£20 = -yl+2*y0-y2
€36 = -3.D0/4.D0*t4*c6*t8/t9/rcsgr*(3.D0/2.D0*t13*t14*t16-
.D0/2.D

#0)*£20+£4*£6*£8*L23* (3*dotcl2*tld*tl6* (-yi+y2) -
.D0/2.D0O*t13*t23*t
#16*t£20) /2
fO0y = -t36*1.0d43

FOz
£t20 = -z1+42*20-22
t36 = -3.D0/4.D0*t4*t6*t8/t9/rcsqgr*(3.D0/2.D0*t13*t14*t16-
.D0/2.D

#0) *£20+t4*£6*t8*t23* (3*dotcl2*t14*tl6* (-2z1+22) -
.D0/2.D0*£13*£23*¢t
#16*t£20)/2
f0z = -t36*1.0d43

Flx
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tl = 2*x1-2*x2

t2 = beta**2

td = dexp(-rl2sqr*t2/2)

t6 = 1-t4

t7 = 1/té6

t8 = dsgrt{rcsqgr)

t9 = rcsqgr**2

tl0 = 1/t9

tll = t£8*tl0

tl2 = t7*tll

tl3 = dotcl2**2

tl4 = 1l/rcsqr

tl5 = ti3*tl4

tl6 = 1/rl2sqgr

tl8 = 3.D0/2.D0*t15*t16-1.D0/2.D0

t24 = t11*tl8

£t27 = t4**2

£t29 = t6**2

t35 = rl2sqgr*t4d

tdl = x1/2-x0+x2/2

£51 = rl2sqgr**2

£58 = tl*t4*tl12*tl18/2-rl2sqgr*tl*t2*t4*t7*t24/4-
rl2sqr*t27/t29*t24~*

#tl*c2/4-

3.D0/4.D0*tc35*t7*t8/t9/rcsqr*tl18*td4l+e35*tl2* (3*dotcl2*tld
#*£l6*(x1-x0)-3.D0/2.D0*t13*£10*t16*t41-3.D0/2.D0*c15/t51>*c1)/2
filx = -t58*1.0d3

* Fly

tl = 2*yl-2*y2

tdl = yl1/2-y0+y2/2

£58 = tl*td*tl2*tl8/2-rl2sqgr*tl*c2*td*t7*£24/4-
rl2sqr*t27/£29*£24*

#tl*t2/4-
3.D0/4.D0*t35*t7*t8/t9/rcsqr*tl8*td1l+t35*t12*(3*dotcl2*tld
#*t16* (yl-y0)-3.D0/2.D0*t13*¢10*£16*t41-3.D0/2.D0*t15/t51~c1)/2
fly = -£58*1.0d43

Flz

tl = 2*z1-2*z2

tdl = z1/2-2z0+22/2

£58 = tl*td*cl2*tl8/2-rl2sqgr*tl*c2*cd*t7*t24/4-
rl2sqr*t27/c29*t24*

#ci*t2/4-
3.D0/4.D0*t35*t7*t8/t9/rcsqr*tl8*£41+t35*t12* (3*dotcl2*tld

#*£16*(z1-2z0)-3.D0/2.D0*£13*c10*£16*£41-3.D0/2.D0*tl15/t51~¢cl) /2

flz = -t£58*1.043

*
*  F2x%
*
tl = -2*x1+2%x%2
tdl = x1/2-x0+x2/2
£58 = tl1*t4*tl12*tl18/2-rl2sqr*tl*t2*t4*t7*t24/4-
rl2sqgr*t27/t£29*t24~*
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#rl*g2/4-
3.D0/4.D0*t35*c7*t8/t9/rcsqgr*tl8*td4l+t35*tl12* (3*dotcli2*tld
#*cl6* (-x2+x0)-3.D0/2.DO*£13*£10*£16*£41-3.D0/2.D0*c15/t51*tl) /2
f2x = -£58*1.043

F2y

tl = -2*yl+2*y2
tdl y1/2-y0+y2/2
€58 = tl1*t4*tl12*tl18/2-rl2sqQr*tli*t2*td*t7*t24/4-
rl2sqr*t27/£29*t24~*
#tl*t2/4-
3.D0/4.DO*E35*c7*t8/t9/rcsqr*£18*td41+t35*£12* (3*dotci2*t14
#*L16* (-y2+y0)~-3.D0/2.D0*t13*£10*t16*t41-3.D0/2.D0*c15/t51*tl) /2
f2y = -t58*1.043

*x

* F2z
tl = -2*z1+2*2z2
t4l = 21/2-20+22/2
£58 = tl*td*tl12*cl8/2-rl2sqr*tl*t2*td*t7*t24/4-
ri2sqQr*t27/t29*£24~*
#Li*t2/4-
3.D0/4.DO*t35*t7*t8/t9/rcsqgr*tl18*t41+t35*t12* (3*dotcl2*cld
#*£l6*(-2z2+20)-3.D0/2.D0*t13*t10*t16*t41-3.D0/2.D0~£15/£51*¢c1) /2
f2z = -£58*1.043

return
end

* Calculate p-orbital splitting, including SO coupling.

* Ref.: Lawrence & Apkarian, JCP v.101, p.1820.

" Note the matrix element <1/2,-1/2]|V]|3/2,1/2> is incorrect
* in the paper.

*  Input: ax(1l..nrg+l) l..nrg x positions of rare gas atoms
* nrg+l x pos of halogen atom (a0/10)

* ay ( ) Yy positions

= qz( ) z positions

* Qutput: eval(l..6) Eigenvalues (hartree/100)
* Uses: poten2.f: poten

include 'param.file’

parameter (nb=2,np=2,x=1,y=2,2z=3)

common /neutral/ px(10),p1(10),p2(10),soconst

* Note soconst must be in hartree/100
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integer ncluster,i,j,k,ierr

double precision gx(ncl+l),gy(ncl+l),qgz(ncl+l),

& px(10),pl(10),p2(10)

double precision vr(-1:1,-1:1),vi(-1:1,-1:1),

& vir(6,6),vji(6,6),eval(6),evecr(6,6),eveci(6,6),£fvi(6),
& fv2(6),fml(2,6)

double precision rneummsv,rt,soconst

double precision sr2,sr3,xhal,yhal,zhal,
& xk,yk,zk,v0k,v2k,cl,rsq,vx0,vi0,vii0

sr2 = dsqrt(2.040)

sr3 = dsqgrt(3.040)

xhal = gx(ncluster+1) !'* Halogen atom coordinates
vhal = gy{ncluster+1)

zhal = gz (ncluster+l)

Calculate matrix elements in spinless basis |[lm>

do i=-1,1
do j=-1,1
vr(i,j)=0.
vi(i,j)=0.
enddo
enddo

do k=1l,ncluster

xk = gx(k) - xhal
vk = gy(k) - vhal
zk = gz(k) - zhal

rsgq=xk**2+yk**2+zk**2
rt = sqrt{rsq)

vx0=rneummsv (px (1) ,px(2) ,px(3),px(4),0x{(5) ,px(6),px(7),
& px(8),rt)

viO=rneummsv(pl (1) ,p1(2).,pl(3).p1(4).p1(5).p1(6),p1l(7),
& pl(8),rt)

viiO=rneummsv(p2(1),p2(2),p2(3),p2(4),p2(5),p2(6),p2(7),
& p2(8),rt)

v0k = (vx0+viiO+vi0) /3.

v2k = 5.*(vx0+vii0-2.*vi0) /3. 1* Assuming constant soconst
cl = (3.*zk**2-rsq)*v2k/rsg

vr(0,0) = vr(0,0) + vOk + (1./5.)*cl

vr(l,1) = vr(i,1) + vOk -~ (1./10.)*cl

vr{l,0) = vr(l1,0) -3.*zk*xk*v2k/(5.*sr2*rsq)

vi(l1,0) = vi(1,0) +3.*zk*yk*v2k/(5.*sr2*rsq)

vr(l,-1) = vr(l,-1)-3.*(xk**2-yk**2)*v2k/ (10.*rsq)

vi(l,-1) = vi(l,-1)y+3.*xk*yk*v2k/(5.*rsq)
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enddo

vr{(-1,-1) = vr(l,1)

vr(-1,1) = vr(l,-1)
vi(-1,1) = -vi(1,-1)
vr(0,1) = vr(1,0)
vi(0,1) = -vi(1,0)
vr(0,-1) = -vr(1,0)
vi(0,-1) = -vi(1,0)
vr(-1,0) = -vr(1,0)
vi(-1,0) = vi(1,0)

* Calculate matrix elements in coupled basis |JM>

*

vir(l,1) = 2.*vr(1,1)/3.+vr(0,0)/3.+2.*soconst/3.
vji(l1,1) = O.
vir(i,2) = 0.

vii(1,2) = 0.

vir(1,3) = (sr2/3.)*(vr(1,1)-vr(0,0))
vji(i,3) = 0.

vijr(l,4) = (2.*vr(1,0)-vr(0,-1))/3.
vji(l,4) = (2.*vi(1,0)-vi(0,-1))/3.
vijr(l,5) = -vr(0,1)/sr3

vji(1,5) = -vi(0,1)/sx3

vjr{l,6) = vr(l,-1)*sr2/sr3
vjii(i,6) = vi(l,-1)*sr2/sr3

vir(2,1) = 0.

vji(2,1) = 0.

vir(2,2) = vir(i,1)

vji(2,2) = 0.

vir(2,3) = (vr(0,1)-2.*vr(-1,0))/3. t* Incorrect in Apkarian's
paper

vii(2,3) = (vi(0,1)-2.*vi(-1,0))/3. I

vijr(2,4) = (vr(0,0)~-vr(-1,-1))*sx2/3.
vji(2,4) = 0.

vjr(2,5) = -vr(-1,1)*sr2/sr3
vji(2,5) = -vi(-1,1)*sr2/sr3
vir(2,6) = vr(0,-1)/sxr3

vii(2,6) = vi(0,-1)/sx3
vir(3,1) = vir(i,3)
vji(3,1) = 0.
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vir(3,2)
vii(3,2)

vir(3,3)
vii(3,3)

vir(3,4)
vii{(3,4)

vir(3,5)
vii{3,5)
vir(3,6)
vii(3,6)

vir(4,1)
vii(4,1)

vir(4,2)
vii(4,2)

vir(4,3)
vii(4,3)

vir(4,4)
vii(4,4)

vir(4,5)
viji(4,5)

vir(4,6)
vii(4,6)

vir(5,1)
vji(5,1)

vir(5,2)
vii(5,2)

vir(5,3)
vji(s,3)
vir(5,4)
vii(5,4)

vir(5,5)
vji(5,5)

vir(5,6)
vii(5,6)

vir(6,1)
vii(6,1)

vir(6,2)
vii(6,2)

= 2.*%vr(0,0)/3.+vr(1l,1)/3.-soconst/3.

vir(2,3)
-vii(2,3)

= 0.

[[]

0.
0.

vr(0,1)*sr2/sr3

= vi(0,1)*sr2/sr3

vr(l,-1)/sr3
vi(l,-1)/sx3

= vir(l,4)

non non 1mn i n inn 1]

i

won

- e = g PECEETT

-viji(1,4)

vir(2,4)
0.

0.
0.

vir(3,3)
0.

vr(-1,1)/sx3
vi(-1,1)/sxr3

vr(0,-1)*sr2/sr3
vi(0,-1)*sr2/sr3

vir(1,5)
-vii(1,5s)

vir(2,5)
-v3ji(2,5)

vijr(3,5)
-vji(3,5)

vir(4,5)
-vji(4,5)

vr(l,1l)-soconst/3.
0.

0.
0.

vir(l,6)
-vji(1,6)

vir(2,6)
-vji(2,6)
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vir(6,3) = vjr(3,6)
vii(6,3) = -vji(3,6)
vir(6,4) = vjr(4,6)
vji(6,4) -vji(4,6)
vir(6,5) 0.
vji(6,5) 0.
vir(6,6) vir(s,5)
vji(6,6) = 0.
*
*
* Pind eigenvalues (complex hermitian routine from Eispack)
*
call ch(6,6,vjr,vji,eval,l,evecr,eveci, fvl, fv2, fml, ierr)
if (ierr.ne.0) then
write (*,*) 'Error in Eispack ch.f subroutine!’
write (*,*) 'ierr=',ierr
endif
eval(l) = eval(l) + soconst/3.
eval(2) = eval(2) + soconst/3.
eval(3) = eval(3) + soconst/3.
eval(4) = eval(4) + soconst/3.
eval(5) = eval(5) - 2.*soconst/3.
eval(6) = eval(6) - 2.*soconst/3.
return
end
C ————————————————————————————————————————————————————————————————
subroutine showarr3 (ndim,a,nra,nca)
le:
c displays the matrix A
c
implicit double precision (a-h,o-2z)
dimension a(ndim,ndim)
do 10 ir = 1, nra
write(*,100) (a(ir,ic), ic = 1,nca)
100 format (20(£15.8,1x),/)
10 continue
return
end
double precision function rneummsv(depth2,rmin2,pmbetall,
& pmbeta22,xrstarl2,xrstar22,cévdw2,c8vdw2, rtin)
C ——————————————————————————————————————————————————————————————
c Scaled MMSV
c R in a0/10
c Poten in hartree/100
c

implicit double precision(a-h,o-z)
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e -

parameter (pi=3.14159265359d0,a0=0.5291772494d0,

&

rc
Xt

rn

re
en

harev=27.211396140)

=rtin*a0/10.d0 !* Convert a0/10 to Ang.
=rt/rmin2
if (xt.le.l.) then
- Tsum = depth2* (exp(2.*pmbetall2* (1.-xt))-2.*exp(
pmbetal2* (1.-xt)))
elseif ((xt.gt.l).and. (xt.le.xrstarl2)) then
Tsum = depth2* (exp (2. *pmbeta22*(1l.-xt))-2.*exp(
pmbeta22* (1.-xt)))
elseif ((xt.gt.xrstarl2).and.(xt.lt.xrstar22)) then
swxt=0.5*(cos(pi* (xt-xXrstarl2)/(xrstar22-xrstarl2))+1.)
pmorseZ=exp (2. *pmbeta22* (1.-xt)}-2.*exp(
pmbeta22* (1.-xt))
pvdw=-1.* (c6vdw2*rt** (-6)+c8vaw2*rt** (-8))
Tsum = depth2* (swxt*pmorseZ+ (1l.-swxt) *pvdw)
else
Tsum = -1.*depth2* (covadw2*rt** (-6)+c8vAw2*rt** (~-8))
endif
eummsv={Tsum/harev) *100.4d0 !* Convert eV to hartree/100

turn
d

*
* Calculate p-orbital states analytically
*
* Input: ax,qy.qz(nrg+l) coordinates of rgs & halogen
(a0/10)
*  Qutput: eval(l..3) eigenvalues X, I, II (hartree/100)
*
include 'param.file’
common /neutral/ px(10),pl(10),p2(10), soconst
*
*

Note soconst must be in hartree/100

double precision av,so,v0,kv,gv, fv, hv

double precision gx(ncl+l),aqy(ncl+l),qgz(ncl+i),

& px(10),p1(10),p2(10),eval(3)

double precision soconst

double complex t60,t100,t124,t148,¢t151,¢t152,t153,t157,

&

ST

xh

vh
zh

av
kv

t158,t159,t160

2=dsqgrt (2.40)

H

al gx (ncluster+1) !1* Haloaen atom coordinates
al = gy(ncluster+1l)
al = gz (ncluster+1)

= 0.d40
.do

"
o
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gv = 0.40
fv = 0.40
hv = 0.40
v0 = 0.40

do k=1,ncluster
xk = gx(k) - xhal
vk = gv(k) -~ vhal
zk = gz (k) - zhal
rsg=xk**2+yk**2+zk**2

rt = sqgrt(rsq)

vx0=rneummsv (px (1) ,px(2),px(3),px(4),px(5),px{6),px(7),
& px(8),rt)

vilO=rneummsv(pl{(1l),pl(2),pl1(3),pl(4),p1(5),pl(6),.p1(7),
& pl(8),xrt)

viiO=rneummsv (p2(1),p2(2),p2(3),p2{4),02(5),p2(6),p2(7),
& p2(8),rt)

vOok = (vx0+viiO+viQ) /3.
v0 = v0 + v0k
v2k = 5.* (vx0+vii0-2.*viQ) /3. !'* Assuming constant soconst

av = av + (3.*zk**2-rsq)*v2k/rsg
fv = fv - 3.*zk*xk*v2k/(5.*sr2*rsq)
gv = gv + 3.*zk*yk*v2k/(S.*sr2*rsq)
hv = hv - 3% (xk**2-yk**2)*v2k/ (10.*rsq)
kv = kv + 3.*xk*yk*v2k/(5.*rsq)
enddo

so = soconst
Maple generated code

fortran(ev{l],optimized);

tl = av**2
t2 = so**2
t3 = kv**2
td = gv**2
tS = fv**2
té6 = hv**2
t7 = v0**2

£10 = tl*av
tll = t2*so
tld = hv*td
tle = t6*av
tl9 = td*av
t20 = t3*av
£21l = tS5*av
t27 = £3*té6
£31 = t£1*t3
t33 = tl*té6

36 = £2**2
£38 = t5*té6
td2 = t5*fv
td5 = £5*t3
£t51 = t5**2

t55 = av*hv
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t60 = -360000*t27*t5-1620*hv*t10*t5-1800*t31*t2-1800*t33*t2~
27000*

#t£33*t4-300*t36*£1-2340000*t38*t4-
360000*t27*t4+32400600*hv*gv*kv*td

#2+2520000*£45*£4+60*t10*£11-5400*£5*£4*t1-27000*£38*t1~
162000*t51*

#hv*av-27000*t£45*t1+162000*t55*£45+1620*t10*t4*hv-2700*t51*tl

£t65 = tl**2
t67 = fv*kv
t68 = td*gv
t71 = £3**2
t75 = av*gv
t82 = t6*hv
£95 = t2*t3
t98 = td**2

t100 = 450000*t6*t51-120000*fv*gv*tll*kv-27*£2*£65~
324000*t67*t68*

#av+5400*t1*t71+324000*£v*t3*kv*t75-3240000*fv*hv*t68*kv-3240*£67*

#£10*gv+162000*£21*t82~324000*t£42*gv*kv*av-180000*t71*£4-243*c65*¢

$#6-3600*t1*t4*£2-3600*t1*£5*£2-20000*t36*£4-20000*t36*t5~
120000*t95

#*£4-30000*£2*£71-120000*£2*t98

£102 = t6**2

tll6 = t2*té6
tl24 = -30000*t£2*t102-10000*t36*t3+324000*t67*L75*t6-
120000*t2*t51

#-180000*t£4*t102-360000*t3*t98+162000*t55*£98-90000*t71*¢c6-
90000*t3

#*£102-180000*£71*c5-30000*t71*t3-243*t65*t3~
60000*t116*t3+6000*t19

#*£11-180000*t5*£102-720000*t98*t5-720000*t4*t51-360000*t3*t51~
1200

#00*tlle*t4

£148 = -240000*t£2*t£5*t4-10000*t36*t6-120000*t95*t5-
120000*t£116*t5-

#162000*£20*£14-162000*av*t82*t4-30000*¢c102*t6-240000*t51*t5+45000

#0*£98*£6-240000*t98*£4+10800*t33*t3+6000*£21*t11-27000*t31*t4~
6000

#0*t5*t1ll1*hv+5400*t1*t102-2700*t98*t1+60000*td4*c1li*hv-
6000*tl6*cll-

#6000*t£20*t11
£151 = sqrt(t60+t100+t124+t148)
t152 = -(-3.D0/100.D0*tc1-£2/3-£3~-2*t4-2*t5-t6+3*t7)*v0/2+c10/1000

$#+£11/27-v0*t5-3.D0/200.D0*v0O*t1+t14~-t6*v0/2-t16/10-t3*v0/2~-t4>*
#v0+t£19/10-t20/10+t21/10-hv*t5-2*gv*kv*£fv-v0*t2/6+3.D0/2.D0*t7*v0
#+£151/900

t153 = t152**(1.D0/3.D0)
£158=(-t1/100-t£2/9-t3/3-2.D0/3.D0*t4-2.D0/3.D0*t5-t6/3)/t153
t157 = t153-t158+v0

c write(*,*)'evl',h tl57
c write(*,*)'evl',dble(tl57)-2.*soconst/3.

evall = dble(tl57)

* hand generated code
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t158=(-t1/100-t2/9-t3/3-2.D0/3.D0*t4-2.D0/3.D0*t5-t6/3)/t153
£l1l59 = cmplx(0.d0,1.d40)*sqgrt(3.40)* (£153+t158)

£1l60 -£153/2.40+t158/2.40+v0

eval2 = dble(t160+t159/2.40)

evall = dble(t160-t159/2.d0)

Sort eigenvalues in order X,I,II

eval(l) = dminl(evall,eval2,eval3) + soconst/3.d0

eval (3) = dmaxl(evall,eval2,eval3) - 2.d0*soconst/3.d4d0
eval(2) = evall+eval2+evalld-eval(l)-eval (3)

return

end

subroutine veqd(betain, theta6,gx,qy,qgz,dxin,dyin,dzin, dxout,
& dyout,dzout, potout)

*

* Exchange quadrupole-dipole & dispersion quadrupole

* Ref: Ernesti & Hutson, Phys. Rev. A v.51,p.239

*

* Input: betain Exchange quadrupole range parameter
(a0/10)~-1

* thetaé quadrupole dispersion coefficient
(e*a0"8)

* ax,qy,gz(ncl+l) Rg, halide coordinates (a0/10)

* dxin,dyin,dzin(ncl+1l) Dipoles input

*

*  Qutput: potout potential (hartree/100)

* dxout, dyout,dzout Dipoles with exchange & disp

* contribution added

include 'param.file’

double precision betain, thetaé

double precision gx(ncl+l),qy(ncl+l),gz(ncl+l),dxin(ncl+1),
dyin(ncl+l),dzin(ncl+1l),dxout (ncl+1l) ,dyout (ncl+1),dzout (ncl+1),
dx(ncl+l),dy(ncl+l),dz(ncl+l),
rijx(ncl+l,ncl+l),rijy({ncl+l,ncl+l),rijz(ncl+l,ncl+1),

rij2 (ncl+l,ncl+l),rij3 (ncl+l,ncl+l),rijl(ncl+l,ncl+1)

R R R

beta = betain*10.0d40
nhal = ncluster+1
*
do i = 1,ncluster !* Relative Rg-Rg and Rg-X vectors
do j = i+l,ncluster+l !* (rij is vector from Rg j to Rg i)

rijx(i,j) = (gx(i) - gx(3j))/10.040 1* Convert to a0
rijy(i,3) = (qy(i) - ay(3j))/10.040
rijz(i,3j) = {(gz(i) - gz(j))/10.040
rijx(j,i) = -rijx(i,3j)
rijy(j.i) = -rijy(i,3)
rijz(j,i) = ~-rijz(i,3)
rij2(i,3) = rijx(i,j)**2+rijy(i,j)**2+rijz(i,j)**2

riji(i,j) = dsqgrt(rij2(i,j))
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rijil(i,j)=**3

rij3(i,J)

rijl(j,i) = riji(i,3)
rij2(j,i) = rij2(i,j)
rij3(j,i) = rij3(i,3)
enddo
enddo

* Zero out dipoles

* % %

L B R

do i = 1,ncluster
dx(i) = 0.040

dy (i) = 0.0d0
dz (i) = 0.0do
enddo

Add contribution to Rg dipoles from exchange quadrupole and
dispersion quadrupole between each pair of Rgs

do i = 1,ncluster-1
do j = i+l,ncluster
ex exp (- (beta**2)*rij2(i,j)/2.0d40)
exquad = -rij2(i,j)*ex/(1.040-ex)/2
& +theta6/ (rij3(i,j)**2)
exdip = exquad/rij2(i,j)/2.040
dx (i) = ax(i)+exdip*rijx(i,Jj)

dy(i) = dy(i)+exdip*rijy(i,])
dz (i) = dz(i)+exdip*rijz(i,3j)
dx(j) = dx(j)+exdip*rijx(j,i)
dy(j) = dy(j)+exdip*rijy(j,i)
dz(j) = dz(j)+exdip*rijz(j,i)
enddo
enddo

Add to input dipoles

do i = 1l,ncluster
dxout (i) = dxin(i)+dx(i)

dyout (i) = dyin(i)+dy (i)
dzout (i) = dzin(i)+dz (i)
enddo

Compute charge-dipole interactions

ved = 0.0d40
do i = 1l,ncluster

dotprod = dx(i)*rijx(nhal,i)+dy(i)*rijy(nhal,i)

& +dz (i) *rijz (nhal, i)
ved = ved - dotprod/rij3(nhal,i)
enddo
potout = vcd*1.0d42 !* Convert to hartree/100
return
end
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B2.2. Running the program

One runs the program in the usual Unix fashion, by piping in the input file. If one
is calculating standard deviations as well as performing a fit it is usually desirable to run
the program in the background, as in the following example using the input file

"xebr_x_rfin" discussed above:

> nice +19 xfit < xebr_x_rfin > xebr_x_rfout &

>
The output file "xebr_x_rfout” then contains the optimized parameters and standard
deviations, and the convoluted spectrum is saved to the file "xebr_x_fit" named in the

input file.

B2.3. Outline of the program
The program "rfit" is contained in only one file, "rfit.f." There is no makefile; the

program is recompiled with a command such as:
> £77 -0 -o rfit rfit.f -C

The subroutines and functions used by the program are listed in Table B3.
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Table B3. Subroutines and functions used by the rotational fitting program "rfit".

Subroutine or Description
Function
rfit main program
optchi general-purpose subroutine implementing the gradient
optimization method
chisquar calculates x* for a given set of fitting parameters
rsticks calculates a rotational stick spectrum given one or two
vibrational stick spectra, and the fitting parameters.
be function to calculate the rotational constant
boltz calculates the Boltzmann factor for a given rotational
temperature and anion rotational state
conzeke conyolutes the rotational stick spectrum with the ZEKE line
shape
cp2 compares the experimental and convoluted spectra and
calculates y?
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B3. Source code for the rotational fitting program "'rfit"

program rfit

implicit undefined(a-z)

real frac,evtocm
. parameter (frac=0.1,evtocm=8065.541)
real vstk(2,2,100)
real temp,org,baseln
real beneu,bean,reneu(2),rean
real massl,mass2,rmass
integer ninfil,i,j,k,state(2),3,nvstk{(2), rct
integer mpts
character*25 infile(2), outfile,especfil
real relfcf(2),scoef(2)
real fwhmcm, fwhmev,delta,deltawn
real smooth(2,100000),espec(2,100000),espec2(2,100000),
& rstk(2,500000)
integer nspec
real dfwhmcm,dtemp,dscoef(2),drelfcf(2),dorg,dbaseln
real mfwhmcm,mtemp,mscoef(2),mrelfcf (2),morg, mbaseln
real xfwhmem, xtemp, xscoef(2),xrelfcf(2),xoryg,xbaseln
real slfwhm,sltemp,slscoef(2),slrelfcf(2),slorg,slbaseln
real s2fwhm,s2temp,s2scoef(2),s2relfcf(2),s2o0rg,s2baseln
logical ufwhm,utemp,uscoef(2),urelfcf{2),vorg, ubaseln
real chisq,xinc,chiopt
character*l ans
logical vscoef(2),vrelfcf(2),vtemp, vfwhm, vorg, vbaseln
integer ncomp
real a(30),da(30),ma(30),xa(30),acpt(30),abest (30)
real s1a(30),s2a(30)
logical va(30),ua(30),vl
integer nparm,mode, tout
logical pr
real ncounts,chilast,slast,slope

common /convl/ fwhmcm, fwhmev,delta,deltawn
common /conv2/ mpts

common /func/ bean, beneu

common /rvars/ massl,mass2,rmass,rean, temp,org,baseln
common /ivars/ rct,ninfil
common/arrays/reneu(2),state(2) ,nvstk(2),
& relfcf(2),scoef(2)

common /comp/ chisqg,ncomp

common /comp2/ ncounts

common /opti/ nparm

common /optxr/ a(30),abest (30)

common /sticks/ vstk(2,2,100),rstk(2,500000)}
common /specl/ smooth(2,100000),espec(2,100000)
common /spec2/ nspec

common /prl/ pr,tout

* Read in constants and fitting parameters
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vpair = vpair + drg2/(2*rij2(nhal,i))
enddo
potout = (vpol-vpair)*1.0d42 !* Convert to hartree/100
return

end

subroutine vindq(pqrg,pqx,gx,qay.qz,dx,dy,dz,dhalpair,
& drgpair,qind,viqrgd,vigqg,vigxd, potout)

Calculate induced quadrupole-induced dipole & ind quad-ind quad
potentials

Input: parg, pax Rare gas, halide quadrupole
polarizabilities (a0”5)
ax,qy.,qz(ncl+1) Rg, halide coordinates (a0/10)
dx,dy,dz (ncl+1) Induced dipoles from vindi (au)
dhalpair(ncl) Induced halogen dipole in pair potens
drgpair(ncl) Induced Rg dipole in pair potens

Output: vigrgd Ind Rg Q - Ind Rg dip poten (hart/100)
vigq Ind Rg Q - Ind Rg Q (hart/100)
vigxd Ind X dip - Ind Rg Q (3-body
ontrib.) (hart/100)
potout Total Potential (hartree/100)
gind(ncl+1l) Quadrupoles on Rgs & halide (e*a0"2)

* % % o ok o % F * ¥ * ¥

* % * 0

include 'param.file'

common /distances/ rijx(ncl+l,ncl+l),rijy(ncl+l,ncl+1),
& rijz(ncl+l,ncl+l),rij2(ncl+l,ncl+1),rij3 (ncl+l,ncl+1),
& rijl(ncl+l,ncl+1),dip(ncl+1)

double precision pqrg,pgx,potout

double precision gx(ncl+1l),qgy(ncl+l),gz(ncl+l),dx(ncl+1),

& dy(ncl+l),dz(ncl+l),rijl(ncl+l,ncl+1),

& rijx(ncl+l,ncl+l),rijy(ncl+l,ncl+l),rijz(ncl+l,ncl+l),

& rij2(ncl+l,ncl+l),rij3 (ncl+l,ncl+1),gind(ncl+1),dip(ncl+l}),
& dhalpair(ncl),drgpair(ncl)

nhal = ncluster+l
Compute quadrupoles on Rgs due to halide charge
do i = 1,ncluster
gind(i) = 2.0d0*pgrg/rij3(i,nhal)

enddo

Compute ind quadrupole-ind Rg dipole energy, and ind g-ind q.
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vigrgd = 0.040
vigg = 0.0d40
do i = 1,ncluster !'* Quadrupole at i
do j = 1,ncluster '* Dipole at j
if (i.ne.j) then '* 0-dip: double counted

dotq = rijx(nhal,i)*rijx(j,i) + rijy(nhal,i)*rijy(j,i)
& + rijz(nhal,i)*rijz(j,1i)
cthetag = dotqg/(rijl(nhal,i)*rijl(j,i))
if (cthetaqg.gt.1.0d0) then
cthetaq = 1.0d40
elseif (cthetag.lt.-1.0d40) then
cthetag = -1.0d40
endif
thetag = acos(cthetaq) !'* angle between Q (Rg-X), Rg-Rg

dotd = dx(3j)*rijx(i,j)+dy(3)*rijy(i,j)+dz(3)*rijz(i,])
cthetad = dotd/ (rijl(i,3j)*dip(j))
if (cthetad.gt.1.0d0) then
cthetad = 1.040
elseif (cthetad.lt.-1.0d40) then
cthetad = -1.0d0
endif
thetad = acos(cthetad) !* angle between dip, Rg-Rg

dothjij = rijx(i,j)*rijx(nhal,j) + rijy(i,j)*rijy(nhal,j)
& + rijz(i,j)*rijz(nhal, j)

cchi = dothjij/(rijl(i,j)*rijl(nhal,j))

rpar = cchi*rijl (nhal, j)

rparx = rpar*rijx(i,j)/riji(i,j)

rpary = rpar*rijy(i,j)/riji(i,j)

rparz = rpar*rijz(i,j)/riji(i,j)

ux = rijx(nhal,j) - rparx !* u=vector in Rhj,Rij
plane

uy = rijy(nhal,j) - rpary !* perpendicular to Rij

uz = rijz(nhal,j) - rparz

dpar = dip(j) *cthetad

dparx = dpar*rijx(i,j)/riji(i,3j)

dpary = dpar*rijy(i,j)/rijl(i,3)

dparz = dpar*rijz(i,j)/rijl(i,3j)

vx = dx(j) - dparx '* y=vector in
dipole,Rij plane

vy = dy(j) - dpary '* perpendicular to Rij

vz = dz(j) - dparz

dotuv = ux*vx+uy*vy+uz*vz

cphi = dotuv/dsqgrt ((ux**2+uy**2+uz**2)

& *UX**24vy**24vz**2) )

* !* angle between dipole,Rij and Rhi,Rij planes

if (cphi.gt.1.0d40) then
cphi = 1.0d40 .
elseif (cphi.lt.-1.040) then
cphi = -1.0d40
endif
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vigrgd = vigrgd + 1.540*dip(j)*gind(i)

* (cthetad* (3.0d0*cthetag**2-1.0d40)+2.0d0*sin (thetad)
*sin (thetaq) *cthetaq*cphi) / (rij2 (i, ) **2)

endif

if (i.1t.j) then i* 0-0 not double counted

dotg2 = rijx{(nhal,j)*rijx(i,j) + rijy(nhal,j)*rijy(i,j)

+ rijz(nhal,j)*rijz(i,3j)

cthetaq2 = dotq2/(rijl(nhal,j)*riji(i,3))
if (cthetaq2.gt.1.0d40) then

cthetag2 = 1.0d40

elseif (cthetaqg2.1lt.-1.040) then

cthetag2 = -1.0d40

endif
thetag2 = acos(cthetag2)

phigg = 0.0d40

cphiqqg = cos{phiqq)

viqq = vigg + 0.75d0*gind (i) *gind(j)*(1.040

- 5.0d0*cthetag**2 - 5.0d0*cthetag2**2

+ 17.040* (cthetag**2) * (cthetag2**2)

+ 2.040* (sin(thetaq)**2) * (sin(thetag2) **2) *cphigg**2

+ 16.0d0*sin(thetaq) *cthetag*sin(thetag2) *cthetaq2
*cphigg) /{rij3 (i,3)*rij2(4i,3))

endif

enddo

enddo

Compute halogen dipole - Rg quadrupole energy Total (pair+3B)
minus pair contrib = 3B part

vigxd = 0.0d40
vpair = 0.0d0
do i = 1,ncluster

. ey ey v

thetaq

= 0.0d0

cthetaqg = cos(thetaq)

dotd

rijx(i,nhal)*dx(nhal) + rijy(i,nhal)*dy(nhal)
+ rijz (i,nhal)*dz(nhal)

cthetad = dotd/(rijl(i,nhal)*dip(nhal))
if (cthetad.gt.1.0d40) then
cthetad = 1.040
elseif (cthetad.lt.-1.0d40) then
cthetad = -1.0d40

endif

thetad = acos(cthetad)

phi =

cphi

vigxd

0.0do

= cos(phi)

= vigxd + 1.5d0*dip(nhal)*gind (i)

* (cthetad* (3.0d0*cthetag**2-1.0d40)+2.0d40*sin (thetad)
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!* both Qs in same plane, pointing at X



& *sin(thetaq) *cthetag*cphi)/ (rij2(nhal,i)**2)
* t* Pair contribution

vpair = vpair + 3.040*dhalpair(i)*qgind(i)
& /(rij2(nhal,i)**2)

enddo
vigxd = vigxd - vpair

vigrgd = vigrgd*1.042

vigg = vigg*1l.0d42

vigxd = vigxd*1.0d42

vpair = vpair*1.0d42

potout = viqgrgd + vigg + vigxd
return

end

subroutine vinddg(polrg,polx,pqrg,pax, X, ay.qz,dp,dhalpair,
& drgpair,ghalpair,grgpair, gqp,ved,vcg, potout)

*
* Iterative dipoles & quadrupoles
* Using egns from Buckingham, Adv Chem Phys.
*
*  Input: polrg,polx RG, halide polarizabilities, a0"3
* parg, pax RG, halide quadrupole polarizabilities, a0~5
* ="C" as defined by Buckingham for sph. symm.
* ax,qy,qz(ncl+1) RG, halide coordinates (a0/10)
* dp(ncl+1,3) Initial dipoles (e*a0)
dhalpair(ncl) Induced halide dipole in pair potens
drgpair(ncl) Induced Rg dipole in pair potens
* ghalpair(ncl) Induced halide quadrupole in pair
potens,initial
* {scalar = Qzz = -2Qxx = -2Qvyy, units e*a0~2)
* grgpair (ncl) Induced Rg quadrupole in pair potens,
initial
* ap(ncl+1,3,3) Initial quadrupoles
*
*  Qutput: vcd Charge-Induced, iterated dipole
poten(hart/100),
* three-body part
* vcq Charge-Induced, iterated quadrupole
poten(ht/100)
* ,three body part
* potout Total potential, three body part
(hart/100)
* dp(ncl+l,3) Iterated dipole vectors (e*a0)
* agp(ncl+l,3,3) Iterated quadrupole tensors (e*a0”2, 3x3)

include 'param.file’

implicit undefined(a-z)

double precision conv,small,small2,catas,catas2
parameter (conv=1.04-10,small = 1.0d4-6,

316




& small2=small*small,catas = 10.,catas2=catas*catas)

double precision rmc,eec,eeint,sigc,sigint,delta,poten,

& rgrgpot,rgxpot,cddpot,exgpot,vindit, vexqgd, rgqaq, rggxd,

& vig,rgxxpot,rgxipot,rgxiipot,potfin, tempfin, exgpot,rml,

& rgdrgq, cdpot, cgpot, cdgpot, gexpot, ddispot, gqdispot, gextot,

& atpot

double precision dab,dag,dbg,dad,dbd, dgd, fgrg, ferg, vedt,

& vegt, fex, fgx,vedpair,vegpair,drgold, dhalold, grgold, ghalold

double precision polrg,polx,pqrg,pax,vcd,vcg, potout
double precision gx(ncl+l),qv(ncl+l),gz(ncl+l),dp(ncl+l, 3},
dhalpair(ncl),drgpair(ncl),ghalpair(ncl),qrgpair({ncl},
ap(ncl+1,3,3),rij(ncl+l,ncl+1,3),rijl(ncl+1,ncl+l),
rij2{(ncl+l,ncl+l),rij3 (ncl+l,ncl+1l),rijS5(ncl+1,ncl+1),
rij7(ncl+l,ncl+1l),rij9 (ncl+l,ncl+1},tl (ncl+l,ncl+1,3),
t2(ncl+l,ncl+1,3,3),t3(ncl+l,ncl+1,3,3,3),rijd4(ncl+l,ncl+1),
t4(ncl+1,ncl+1,3,3,3,3),fe(ncl+l,3),£fg(ncl+1,3,3),

dmag (ncl+l),gmag(ncl+l),dmagp(ncl+1l),gmagp(ncl+1)

R RRRRRR

integer ncluster,natmax,ndim,negm,neq,nrgpot,nhalpot,neigval,
&indflag, iexqgflag, indi, iexqd, indq, indgi, iexg, iaxtel
integer nhal,i,j,k,iexit,niter,alp,bet,gam,del, iexsave

nhal = ncluster+l
niter = 0

Calc initial dipole and quadrupole magnitudes

do i = 1,ncluster+l

dmagp (i) = dp(i,1)**2+dp(i,2)**2+dp(i,3)**2
gmagp(i) = 0.0d40
do alp = 1,3
do bet = 1,3
gmagp (i) = gmagp(i) + gp(i,alp,bet)**2
enddo
enddo
enddo

* Set up position vectors and distances
*

do i = 1,ncluster '* Relative Rg-Rg and Rg-X coords
do j = i+l,ncluster+l !* (rij is vector from atom j to atom i)
rij(i,3,1) = (gx(i) - @x(j))/10.040 1* Convert to a0
rij{(i,j,2) = (qv(i) - qv(j))/10.0d40

rij(j,i,1) = -rij(i,j,1)

rij(j,i,2) = -rij(i,j.2)

rij(j,i,3) = -rij(i,j,3)

rij2{(i,j) = rij(i,3,1)**2+xrij(i,3,2)**24rij(i,j,3)**2
rijil(i,3j) = dsart(rij2(i,3j))

rij3(i,3j) = rij2(i,j)*rii1(i,3)

rijd(i,j) = rij2(i,jr**2
rij5(i,3j) = rij3(i,3j)*rij2(i, 3
rij7(i,j) = rijs5(i,3)*rij2(4i,3)
rij9(i,j) = rij7(i,j)*rij2(i,3j)
riji(j,i) = riji(i,3)
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rij2(j,i) = rij2(i.3J)
rij3(j,i) = rij3(i,3)
rijd4(3,i) = rija(i,3)
rij5(j,i) = rijs{(i,3J)
rij7(3.1i) = rij7(i,3)
rijo(j,i) = rijo(i,3J)
enddo
enddo

Set up interaction tensors (gradients of 1/R)

do i = 1,ncluster 1* To atom i

do j = i+l,ncluster+l 1* from atom j
do alp = 1,3 !'* Alpha
ti(i,j.,alp) = -rij(i,j.alp)/rij3(i,3j)
tl(j,i,alp) = -t1(i,j,alp)
do bet = 1,3 1* Beta

if (alp.eg.bet) then

dab = 1.0d40 t* Delta function
else

dab = 0.040
endif
t2(i,j,alp.bet) = (3.040*rij(i,j,alp)*rij(i,j, bet)

rij2(i,3j)*dab)/rijs (i, j)

t2(j,i,alp,bet) = t2(i,j,alp,bet)
do gam = 1,3 1* Gamma
if (alp.eg.gam) then
dag = 1.0d0
else
dag = 0.0d0
endif
if (bet.eg.gam) then
dbg = 1.0d0
else
dbg = 0.0d0
endif
t3{(i,j,alp,bet,gam) = -3.040*
(5.040*rij(i,j,alp)*rij(i,j.bet)*rij(i,j,gam)

rij2(i,3)*(rij(i,j,alp)*dbg + rij(i,Jj,bet)*dag

+ rij(i,j,gam)*dab))/rij7(i,3)
t3(j,i,alp,bet,gam) = -t3(i,j,alp,bet,gam)
do del = 1,3 1* Delta

if (alp.eg.del) then.
dad = 1.0d40

else
dad = 0.0d0

endif

if (bet.eg.del) then
dbd = 1.0d0

else
dbd = 0.0d0

endif

if (gam.eq.del) then

dgd = 1.0d0

else

dgd = 0.040
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endif
t4(i,j,alp,bet,gam,del) = 3.040*

& (((rij2(i,3)*dab-5.040*rij({i,3j,alp)*rij(i,J,bet))*dgd
& +(rij2(i,j)*dag-5.0d40*rij(i,j,alp)*rij(i,j,gam)) *dbd
& +(rij2(i,j)*dad-5.040*rij(i,j,alp)*rij(i,j,del)) *dbg
& ) /rij7(i,3j) - 5.0d40*
& ({ rij(i,j,gam)*rij(i,j,del)*dab
& +rij(i,j,bet)*rij(i,j,del)*dag
& +rij(i,j,bet)*rij (i, j,gam)*dad
& Y*rij2(i,j) - 7.040*
& . rij(i,j,alp)*rij(i,j,bet)*rij(i,j,gam)
& *rij(i,j,del) }/rijo(i,j) )
t4(j,i,alp,bet,gam,del) = t4(i,j,alp,bet,gam,del)
enddo
enddo
enddo
enddo
enddo
enddo

* Compute electric field, fe, & field gradient, fg, at atoms from
other atoms
*
500 do alp = 1,3
fe(nhal,alp) = 0.0d0
do bet = 1,3
fg(nhal,alp,bet) = 0.040

enddo
enddo
do i = 1,ncluster 1* Contribution from halide charge to Rgs
do alp = 1,3
fe(i,alp) = tl(i,nhal,alp) '*x g = -1
fg(i,alp,alp) = t2(i,nhal,alp,alp)
enddo

do alp = 1,2
do bet = alp,3
fg(i,alp,bet)
fg(i,bet,alp)
enddo
enddo
enddo

t2(i,nhal,alp,bet) !* g = -1
fg(i,alp,bet)

do i = 1,ncluster+l 1* Field produced by atom j at atom i
do j = 1,ncluster+1l
if (i.ne.j) then

do alp = 1,3

do bet = 1,3 1* field from dipoles
fe(i,alp) = fe(i,alp)
& + t2(i,j.alp,bet)*dp(j,bet)
do gam = 1,3 t* field froa quadrupoles
fe(i,alp) = fe(i,alp)
& - t£3(i,j,alp,bet,gam)*gp(j,bet,gam)/3.0d40
enddo
enddo
319
PRI IS 1 O Y o - SOPREH 2> My CNI X 3 SR v K B st T RS 1 S AT TSI swemem e e o




enddo

do alp = 1,2
do gam = 1,3 '* Gradient from dipoles
fg(i,alp,alp) = fg(i,alp.,alp)
+ t3(i,j,alp,alp,gam)*dp(j,gam)
do del = 1,3 1* Gradient from quadrupoles
fg(i,alp,alp) = fg(i,alp,alp)
- td4(i,j,alp,alp,gam,del) *qp(j,gam,del) /3.04C

enddo
enddo
do bet = alp+l,3
do gam = 1,3 '* Gradient from dipoles

fg(i,alp,bet) = fg(i,alp,bet)

+ t3(i,j,alp,bet,gam)*dp(j,gam)

do del = 1,3 t* Gradient from quacrupoles
fg(i,alp,bet) = fg(i,alp, bet)
- t4(i,j,alp.bet,gam,del) *gp(j,gam,del)/3.240

enddo
enddo
fg(i,bet,alp) = fg(i,alp, bet)
enddo
enddo
fg(i,3,3) = -fg(i,1,1)-£fg(i,2,2)
endif
enddo 1x J

Compute new induced dipoles & quadrupoles for atom i from E-
& field gradient "on the fly"

if (i.eq.nhal) then

dp({nhal,l) = polx*fe(nhal,l)
dp(nhal,2) = polx*fe(nhal,?2)
dp(nhal,3) = polx*fe(nhal, 3)

gp(nhal,1,1) = fg(nhal,1,1)*pax
agp (nhal, 2,2) fg(nhal, 2,2) *pgx
ap (nhal, 3, 3) fg(nhal, 3,3) *pax
do alp = 1,2
do bet = alp+1l,3
gp (nhal, alp, bet)
qp (nhal, bet,alp)

fg(nhal, alp, bet) *pax
gp (nhal,alp, bet)

enddo
enddo
else
dp(i,1l) = polrg*fe(i,1l)
dp(i,2) = polrg*fe(i,?2)

dp(i,3) = polrg*fe(i,3)
ap(i,1,1) = f£g(i,1,1)*parg
ap(i,2,2) = fg(i,2,2)*pgrg
ap(i,3,3) = £g(i,3,3)*parg
do alp = 1,2
do bet = alp+l,3
gp(i,alp,bet)
agp (i,bet,alp)

fg(i,alp,bet)*pgrg
ap (i,alp, bet)
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enddo
enddo
endif

enddo

*
* Check D-dot-D and Q-double dot-Q for convergence
iexit = 1
do i = 1,ncluster+l
quag(i) = qp(i,1,1)**2+gp(i,2,2)**2+gp(i,3,3)**2
& +2.%qp(i,1,2)**2+2.*qp(i,1,3)**2+2.*qgp{i,2,3)**2
dmag(i) = dp{i,1)**2+dp(i,2)**2+dp(i,3)**2
if (dmag(i).gt.0.) then
if ((dabs((dmag(i)-dmagp(i))/dmag(i)).gt.conv).and.
& (dmag (i) .gt.small2)) then
iexit = 0
endif
endif
if (gmag(i).gt.0.) then
if ((dabs{(gmag(i)-gmagp(i))/amag(i)).gt.conv).and.
& (gmag (i) .gt.small2)) then
iexit = 0
endif
endif
if (niter.eq.0) then
iexit = 0
endif
* Check for polarization catastrophe

if ((dmag(i).gt.catas2).or.(gmag(i).gt.catas2)) iexit=2
enddo

if (iexit.eq.2) then
write(*,*) ‘'dipoles : '
write(*,1000) (dmag(i), i=1,ncluster+1)
write(*,*) 'quadrupoles : '
write(*,1000) (gmag(i), i=1l,ncluster+l)
endif
1000 format(7(£10.6,1x))

niter = niter + 1
I1f converged or catastrophe, skip out of loop

if (iexit.ne.0) goto 2000

* %

Otherwise reset dipole & quadrupole magnitudes & loop back

do i = 1,nhal
gmagp (i) = gmag(i)
dmagp (i) = dmag (i)
enddo
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goto 500

*
*
2000 k=0
*
* Converged, now calculate pair RG-X quadrupole and
* dipole interaction energy. Note this is the total induction energy
* including charge-dipole, charge-quadrupole, dipole-dipole,
* dipole-quadrupole, quadrupole-gquadrupole, and dipole and quadrupole
* gelf energies. However, the latter 5 terms cancel out.
* (See Ahlstrom et at, Mol. Phys. v.68, p.563.)
*
vedt = 0.
vegt = 0.
do j = 1,ncluster !'* Loop over Rgs
do alp = 1,3
vedt = vedt - tl(j,nhal,alp)*dp(j,alp) !'* Charge-dipole
do bet = 1,3
vegt = veqgt - t2(nhal,j,alp,bet)*gp(j,alp,bet) '* Chg-
Quad.
enddo
enddo
enddo
vedt = vedt/2.
vcgt = vegt/6.

* Calculate pair induced dipoles and quadrupoles, iteratively.
ferg= electric field (z) at Rg, fgrg = field gradient (zz) at Rg,
fex, fgx are those at halide

iexsave = iexit
vedpair = 0.
vegeair = 0.
do i=1,ncluster !'* Loop over Rgs
5000 ferg = -1./rij2(nhal,i)+2.*dhalpair(i)/rij3 (nhal, i)
& +3.*qghalpair(i)/rijd4 (nhal, i)
fgrg = 2./rij3(nhal,i)-6.*dhalpair(i)/rij4 (nhal,i)
& -12.*ghalpair(i)/rijS5(nhal, i)
drgold = drgpair (i)
drgpair(i) = polrg*ferg
qrgold = grgpair(i)
qgrgpair (i) = pgrg*fgrg

fex = 2.*drgpair(i)/rij3(nhal,i)-3.*qrgpair(i)/rij4(nhal,i)
fgx = 6.*drgpair(i)/rij4(nhal,i)-12.*qrgpair(i)/rij5(nhal, i)
dhalold = dhalpair(i)

dhalpair (i) = polx*fex
ghalold = ghalpair(i)

ghalpair (i) = pgx*fgx

iexit = 1

if (drgpair(i).ne.0.) then
if ((dabs((drgold-drgpair(i))/drgpair(i)).gt.conv).and.
& (dabs (drgpair(i)).gt.small)) iexit=0
endif
if (dhalpair(i).ne.0.) then
if ((dabs((dhalold-dhalpair(i))/dhalpair(i)).gt.conv).and.
& (dabs{dhalpair(i)).gt.small))iexit=0
endif
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if (grgpair(i).ne.0.) then
if ((dabs((grgold-grgpair(i))/grgpair(i)).gt.conv).and.
& (dabs {grgpair(i)) .gt.small))iexit=0
endif
if (ghalpair{i).ne.0.) then
if ((dabs((ghalold-ghalpair(i))/ghalpair(i)).gt.conv).and.

& (dabs (ghalpair(i)).gt.small))iexit=0
endif
if ((drgpair{i).gt.catas).or. (dhalpair(i).gt.catas).or.
& (grgpair (i) .gt.catas) .or. (ghalpair(i).gt.catas)) then
iexit = 2
endif

if (iexit.eq.0) goto 5000
vedpair = vedpair + drgpair(i)/(2.*rij2(nhal,i))
vegpair = vegpair - grgpair(i)/(2.*rij3(nhal,i))
enddo
if (iexsave.eq.2) iexit = 2

* Subtract pair from total to get nonadditive parts
*

ved = (vecdt - vedpair)*1.0d2
veqg = (veqt - vegpair) *1.042
potout = vcd+vcqg

if (iexit.eq.2) then t* Reset multipoles if catastrophe has
happened
write(*,*) ‘'****** pPolarization catastrophe ****xxx*x:
do i=1l,ncluster
write(*,*) 'pair dipoles rg, x',drgpair(i),dhalpair(i)
drgpair(i) = O.
dhalpair(i) = O.
write(*,*) 'pair quadrupoles rg,x',qrgpair(i),qghalpair(i)
qrgpair(i) = 0.
ghalpair(i) = 0.
do alp = 1,3
dp(j,alp) = 0.
do bet = 1,3
ap(j,alp,bet) = 0.
enddo
enddo
enddo
endif

return
end

*
* Exchange quadrupole-charge energy calculated exactly from Gaussian
*  overlaps

*

*

Input: betain Gaussian range parameter (a0/10)"-1
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* %

thé

Output: potout

Uses: erf

Dispersion quadrupole coeff (e*a0”8)
aX, QY. gz (ncl+l) Rg, halide coordinates (a0/10)

potential (hart/100)

error function

include 'param.file’
parameter (toosmall = 1.0d-1)
double precision betain, thé,potout,erf

double precision gx(ncl+l),qy(ncl+l),qz(ncl+l),
& rxi(ncl),rxix(ncl),rxiy({ncl),rxiz(ncl),coef{ncl),
& disd(ncl,3),disg(ncl,3,3),t2(3,3)
integer alp, bet

beta = betain*10.0d0
beta2 = beta**2

thq = -th6/10.
thd = 3.*th6/5.

t'* quadrupole coeff

nhal = ncluster+l
0.

potout
vexx =
vddisp
vgdisp

i on

0.
0.

do i = 1,ncluster

{(gx(i)-gx(nhal))/10.
(qv (i) -qv(nhal))}/10.
(gz(i)-gz({nhal}))/10.
rXix (i) **2+rxiy (1) **2+rxiz (i) **2
dsgrt(rij2)

rxix (i)
rxiy (i)
rxiz (i)
rij2 =
rxi (i)
coef (i)

0.

do alp=1,3
disd(i,alp)=0.

do bet=1,3

disqg(i,alp,bet)=0.

enddo
enddo
enddo

do i1 = 1,ncluster-1
i+l1,ncluster

do j =
rijx
rijy
rijz
rij2

£2(1,1)
t2(2,2)
t2(3,3)
£2(1,2)
£2(1,3)
£2(2,3)
t2(2,1)
£2(3,1)
£2(3,2)

rij6

(ax(i)-agx(3))/10.

(ay(i)-qvy(j))/10.
(az(i)-aqz(3))/10.
rijx**2+rijy**2+rijz**2

(3.*rijx**2/rij2 - 1)
(3.*rijy**2/rij2 - 1)
(3.*rijz**2/rij2 - 1)
3.*rijx*rijy/rij2
3.*rijx*rijz/rij2

= 3.*rijy*rijz/rij2

t2(1,2)
£2(1,3)

= t2(2,3)
rij2*=*3
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i1* dipole coeff

'* RG-X distances

1 *. Rg-Rg distances

!* Quadrupole int tensor



rij8 = rij6*rij2

gco = thqg/rijé/2.

dco = thd/rij8

disd(i,1) = disd(i,1)+dco*rijx
disd(i,2) = disd(i,2)+dco*rijy
disd(i,3) = disd(i,3)+dco*rijz
disd(j,1l) = disd(j,1)-dco*rijx
disd(j,2) = disd(j,2)-dco*rijy
disd(j,3) = disd(j,3)-dco*rijz

do alp = 1,3
do bet = 1,3

!* Dispersion dipoles

1* Dispersion quadrupoles

disg(i,alp,bet)=disq(i,alp,bet)+qgco*t2 (alp, bet)
disqg(j,alp,bet)=disq(j,alp,bet)+qco*t2 (alp, bet)

enddo
enddo
sov2 = exp(-beta2*rij2/2.)
fac = sov2/(l-sov2)
rex = (rxix(i)+rxix(3j))/2.
rcy = (rxiy(i)+rxiy(j)})/2.
rcz = (rxiz(i)+rxiz(j))/2.
rc = dsqgrt({rcx**2+rcy**2+rcz**2)

if (rc.gt.toosmall) then

vexx = vexx-2.*fac*erf(beta*rc)/rc

coef (i) = coef(i) + fac
coef(j) = coef(j) + fac
endif
enddo
enddo
do i = 1,ncluster

!'* X-(Rg-Rg center) distances

!'* Contrib from + chg
!'* at Rg-Rg center

!'* Contribs from - charges at Rg nuclei

vexx = vexx + coef(i)*erf(beta*rxi(i))/rxi(i)

rij2 = rxi(i)**2
£t2(1,1) = (3.*rxix(i)**2/rij2 - 1) '* Quadrupole int
tensor
£2(2,2) = (3.*rxiy(i)*=*2/rij2 - 1)
£2(3,3) = (3.*rxiz(i)**2/rij2 - 1)
£2(1,2) = 3.*rxix(i)*rxiy(i)/rij2
£t2(1,3) = 3.*rxix(i)*rxiz(i)/rij2
£2(2,3) = 3.*rxiy(i)*rxiz(i)/rij2
t2(2,1) = t2(1,2)
t2(3,1) = t£2(1,3)
t2(3,2) = t2(2,3)
vddisp = vddisp + (rxix(i)*disd(i,l)+rxiy(i)*disd(i,2)
& +rxiz (i) *disd(i,3))/(rxi(i)**3)
gsum2 = 0.
trace = 0.
do alp = 1,3
do bet = 1,3
vadisp = vgdisp
& - t2(alp,bet)*disqg(i,alp,bet)/(rxi(i)=**3)/3.
enddo
enddo
enddo

vexx = vexx*1.0d2
vddisp = vddisp*1.d2
vgdisp = vqgdisp*1.d2
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potout = vexx+vddisp+vgdisp

return
end

Error function. Adapted from Numerical Recipies.

implicit double precision (a-h,o-z)
PARAMETER (ITMAX=500,EPS=5.d-14,GLN=0.57236494292470d40,
& fpmin = 1.4-30)

X
A

xin**2
0.5d0

IF(X.LT.1.5)THEN
IF(xin.1t.0.)THEN
GAMMP=0.
goto 3
ENDIF
AP=A
SUM=1.0d0/A
DEL=SUM
DO N=1, ITMAX
AP=AP+1.
DEL=DEL*X/AP
SUM=SUM+DEL
IF(ABS(DEL) .LT.ABS(SUM) *EPS)GO TO 1
enddo
PAUSE 'A too large, ITMAX too small'’
GAMMP=SUM*EXP (-X+A*LOG (X) -GLN)
ELSE
b=x+1.0-a
c=1.0/fpmin
d=1.0/b
h=4
do i=1l,itmax
an=-i*(i-a)
b=b+2.0d40
d=an*d+b
if (abs(d).lt.fpmin) d=fpmin
c=b+an/c
if (abs(c).lt.fpmin) c=fpmin
d=1.0/4
del=d*c
h=h*del
if (abs(del-1.0).1lt.eps) goto 2
enddo .
pause 'a too large, ITMAX too small in gcf'
gammcf=exp (-x+a*log(x)-gln)*h
GAMMP=1 . 0-GAMMCF ’
ENDIF

IF(xin.LT.0.)THEN
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ERF=-GAMMP
ELSE

ERF=GAMMP
ENDIF

*

* Triple-dipole (Axilrod-Teller) potential

* Ref: Allen & Tildesley, Computer Simulation of Liquids, p. 334.
*

* Input: c9 Triple-dipole constant (au)

* ax, qy.qgz (ncl+1) Rg, Halide cart. coordinates
(a0/10)

*

*

*  Qutput: potout Potential (hartree/100)

*

*

include 'param.file’
double precision c9,potout
double precision gx(ncl+l),qy(ncl+l),gz(ncl+1)

nhal = ncluster+1l

potout = 0.

do i = 1l,ncluster-1
xik = (gx{(nhal)-gx(i))/10.
yik = (qgy(nhal)-gy(i))/10.
zik = (gz(nhal)-gz(i))/10.

do j = i+l,ncluster
xij = (gx{(3j)-gx(i))/10.
xjk = (gx(nhal)-gx(j))/10.
vij = (ay(j)-av(i))/10.
yik = (qy{nhal)-aqy(j))/10.
zij = (gz(j)-qz(i))/10.
zjk = (qz(nhal)-gz(j))/10.
dikdjk = xik*xjk + yik*yjk + zik*zjk
dikdij = xik*xij + yik*yij + zik*zij
dijdijk = xij*xjk + yij*yjik + zij*zjk
rij2 = xij*xij+yij*yij+zij*zij
rik2 = xik*xik+yik*yik+zik*zik

rjk2 = xjk*xjk+yjk*yjk+zik*zjk
pd = rij2*rjk2*rik2
potout = potout+(pd - 3.*dikdjk*dikdij*dijdjk)

& / (pd*pd*dsgrt (pd))
enddo
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enddo
potout = potout*c9*1.d2

return
end

C5.8. File "averages.f’'

subroutine averages(y0,nstep,h,potave,potsd,pnin, prgrg,
prgx,pind, pexq, pex,pddis, padis, pextot,pindi, pcd, pcqg, pinddqg,
prgdrgdq, prgqdq, prgaxd, piq, pexqd, prgxX, prgxI, prgxII, ekinave,
energy,yave, rgx,rgrg,
dip,gin, paxtel)

R R R R

= gsubroutine to find average parameters during a constant E MD run

include ‘'param.file’

common /dipoles/dx(natmaxc),dy(natmaxc),dz(natmaxc),
& gind(natmaxc),bdpol (natmaxc, 3),gpol (natmaxc, 3, 3)

DIMENSION Y (neqc),DlY(neqc),D2Y(neqgc),D3Y (neqc),D4Y (neqgc),

.ZY (negc), Y0 (neqgc) , Y1l {(negc), Y2 (neqgc),¥3 (neqgc),YH(neqgc),¥Y3P(neqc),
.F0 (neqc) ,Fl (neqc),F2(neqgc), F3 (neqc), FH(negc), ZF (neqgc) ,

. fdum (neqgc) ,yave (neqc) ,ysd{(neqc),rgx(2,ncl),rgrg(2,ncl,ncl),

&dip (natmaxc),dx (natmaxc), dy (natmaxc) ,dz (natmaxc),gin(natmaxc),

&gind (natmaxc)
c
Cmm e e e e e e e e e e e e e e -
C DATA FOR INTEGRATOR ALGORITHMS
C ——————————————————————————————————————————————————————————————————————
C DATA FOR RUNGE KUTTA INTEGRATION
Bll= 1.0D0/3.0DO
B21=-1.0D0/3.0DO0
B22= 1.0DO
B31= 1.0DO
B32=-1.0D0
B33= 1.0D0O
Wl= 1.0D0/8.0DO0
W2= 3.0D0/8.0D0
W3= 3.0D0/8.0D0
W4= 1.0D0/8.0DO0
(o
C DATA FOR HYBRID GEAR ROUTINE
GAO2= 153.0D0/128.0D0
GAO1= 25.0D0/16.0D0
GAQ0=-225.0D0/128.0D0
GB02= 45.0D0/.28.0D0
GBO1l= 75.0D0/32.0D0
GB0O= 225.0D0/128.0D0
C
C ALPHAl1=-0.5 FOR STABILITY
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GAl12= (15.0D0/16.0D0)-0.5D0*(25.0D0/32.0D0)
GAll= (-1.0D0)-0.5D0*(1.0D0)

GAl0= (17.0D0/16.0D0)-0.5D0*(-61.0D0/32.0D0)
GB12= (5.0D0/16.0D0}-0.5D0*(43.0D0/160.0D0)
GB11l= (11.0D0/12.0D0)-0.5D0*(41.0D0/24.0D0)
GB10= (-11.0D0/16.0D0)-0.5D0*(31.0D0/32.0D0)
GG10= (4.0D0/3.0D0)-0.5D0*(-2.0D0/15.0D0)

ALPHA2=1.0, BETA=9/56

BETA= 9.0D0/56.0D0

GA22= 1.5D0*(29.0D0/32.0D0)+BETA*(-45.0D0/4.0D0)
GA21= 1.5D0*(1.0D0)+BETA* (0.0D0)

GA20= 1.5D0*(-61.0D0/32.0D0)+BETA* (45.0D0/4.0D0)
GB22= 1.5D0* (43.0D0/160.0D0)+BETA*(-71.0D0/20.0D0)
GB21= 1.5D0*(41.0D0/24.0D0)+BETA* (-16.0D0)

GB20= 1.5D0*(31.0D0/32.0D0)+BETA*(-3.0D0/4.0D0)
GG20= 1.5D0*(-2.0D0/15.0D0)+BETA* (-16.0D0/5.0D0)

GG21= BETA*1.0DO

call dexiv(£0,vy0)
call kinetic(y0,ekin)
energy = ekin + poten

Zero averages

do jj=1,neq
vave(jj) = 0.
ysd(jj) = 0.

enddo

do ii=1l,ncluster
rgx(l,ii) = 0.
rgx(2,ii) = 0.
do jj=1,ncluster

rgrg(l,ii,jj) = 0.
rgrg(2,ii,jj) = 0.
enddo
enddo

DH=H/8.0D0
ICOUNT=0

DO 99 I=1,NEQ
Y(I)=YO0(I)
CONTINUE

CALL DERIV(FO,Y)

DO 1000 ISTEP=1,16
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100

200

300

400

500

600

700

800

810

820

1000

ICOUNT=ICOUNT+1
CALL DERIV(ZF,Y)

DO 100 I=1,NEQ
D1Y (I)=DH*ZF(I)
CONTINUE

DO 200 I=1,NEQ
ZY(I)=Y(I)+B11*D1Y(I)
CONTINUE

CALL DERIV(ZF,2Y)

DO 300 I=1,NEQ
D2Y (I)=DH*ZF(I)
CONTINUE

DO 400 I=1,NEQ
2Y(I)=Y(I)+B21*D1lY(I)+B22*D2Y (I}
CONTINUE

CALL DERIV(ZF, ZY)

DO 500 I=1,NEQ
D3Y(I)=DH*ZF(I)
CONTINUE

DO 600 I=1,NEQ
ZY(I)=Y(I)+B31*D1lY(I)+B32*D2Y(I)+B33*D3Y(I)
CONTINUE

CALL DERIV(ZF,2Y)

DO 700 I=1,NEQ
D4Y (I)=DH*ZF(I)
CONTINUE

DO 800 I=1,NEQ
Y(I)=Y(I)+W1*D1Y(I)+W2*D2Y(I)+W3*D3Y (I)+W4A*DA4Y(I)
CONTINUE

IF (ICOUNT.EQ.8)THEN
CALL DERIV(F1,Y)

DO 810 I=1,NEQ
Yi(I)=Y(I)

CONTINUE

ELSE IF(ICOUNT.EQ.16)THEN
CALL DERIV(F2,Y)

DO 820 I=1,NEQ
Y2(I)=Y(I)

CONTINUE

END IF

CONTINUE
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[ ENTER MAIN INTEGRATION LOOP
C ______________________________________________________________________
ICOUNT=2
itime = 2
iave = 0
ekinave = 0.040
potave = 0.0d40
potsd = 0.
c
DO 2000 ISTEP=1,NSTEP
ICOUNT=ICOUNT+1
itime = itime + 1
iave = iave + 1
C

DO 1100 I=1,NEQ

J=I

YH (I)=GA02*Y0(I)+GA01*Y1l (I)+GA00*Y2(I)+

JH* (GBO2*F0 (I)+GBO1*F1 (I)+GBO0*F2(I))
1100 CONTINUE

C
CALL DERIV(FH, YH)

C

C CALCULATE PREDICTED ARRAY Y3P

C
DO 1300 I=1,NEQ
Y3P(I)=GA12*Y0(I)+GAll*Y1(I)+GALl0*Y2(I)+
.H* (GB12*F0(I)+GB11*F1(I)+GB10*F2(I))+
.H*GG10*FH(I)

1300 CONTINUE

C
CALL DERIV(F3,Y3P)

C

C CALCULATE CORRECTED ARRAY Y3

C SET LOCAL TRUNCATION ERROR ERRLOC EQUAL TO ZERO
ERRLOC=0.0D0

C
DO 1500 I=1,NEQ
Q=GA22*YO0 (I)+GA21*Y1(I)+GA20*Y2(I)+
.H* (GB22*F0 (I)+GB21*F1(I)+GB20*F2(I))+
H* (GG20*FH(I)+GG21*F3(I))

C

Y3(I)=Y3P(I)+Q
1500 CONTINUE

* o

call deriv again at corrected configuration to get
correct potential and forces

*

*

call deriv(F3,Y3)
potave=potave+poten
potsd=potsd+poten**2

* Accumulate averages
*  Average positions: yave(l-3) positions, yave(4-6) squares
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*

1600

c
2000

*

Average RG
rgx(1l,3)
rgx(2,3)

enddo

Average RG-RG
rgrg(l,i,3)
rgrg(2,1i,3)

xhal = y3(neqg-5)
vhal = y3(neq-4)
zhal = y3(neqg-3)
iic = 0
do ii = 1,neqg-11,6
iic = iic+l
rsqg = (y3(ii)-xhal)**2 +

- X distances
sum of distances
sum of squares

distances
sum of distances
sum of squares

do jj = 1,neq-5,6
vyave(jj) = yave(ij) + y3(3jj)
yvave{jj+l) = yave(jj+l) + y3(jj+1)
vave(jj+2) = yave(jj+2) + y3(jj+2)
vave(jj+3) = yave(jj+3) + y3(jj)**2
vave(jj+4) = yvave(jj+4) + y3(jj+l)**2
vave (jj+5) = yave(jj+5) + y3(jj+2)**2

(y3(ii+l)-yhal)**2

+ {y3(ii+2)-zhal)**2
rgx(l,iic)
rgx(2,iic)

jijc =
do j3j =
jjc
rsqg

iic - 1
ii,neq-11,6
jjc+l
(y3(ii)-y3(3j))r**2 +

rgx(l,iic)
rgx(2,iic)

+ sqQrt(rsaq)
+ rsq

(y3{ii+1)-y3(jj+1))=*=*2

+{y3(1i+2)-y3(jj+2))**2

rgrg{i,iic,jjc)
rgrg(2,iic,jjc)

enddo
enddo

RESET ARRAYS FOR NEXT STEP

DO 1600 I=1,NEQ

YO (I)=Y1(I)
Y1(I)=Y2(I)
Y2(I)=Y3(I)
FO(I)=F1(I)
F1(I)=F2(I)
F2(I)=F3(1)
CONTINUE

call kinetic(y2,ekin)

ekinave =

CONTINUE

ekinave + ekin

= rgrg(l,iic,jje)
= rgrg(2,iic,jjc)

+ sqrt(rsq)
+ rsqg

* Calculate Averages and standard deviations

*

dstep =

dble(nstep)
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ekinave = ekinave/dstep

potave = potave/dstep

potsd = dsqgrt(dabs(potsd/dstep - potave**2))
do jj = 1,neqg-5,6

do nn=0,2
vave(jj+nn) = yave(jj+nn)/dstep
ysd(jj+nn) = dsqrt(dabs(yave(jj+nn+3)/dstep
& - yvave(jj+nn)**2))
enddo
enddo

* calculate potential at average configuration
*

call deriv(fdum,yave)
pmin = poten
prgrg = rgrgpot
prgx = rgxpot
pind cddpot
pexq exgpot
pex = gexpot
pddis = ddispot
padis = gdispot
pextot = gextot
pindi = vindit
pcd = cdpot

pcg = cgpot
pinddg = cdgpot
prgdrgq = rgdrgq
prgqq = rgqq
prggxd = rggxd
plg = vig

pexqd = vexqgd
prgxX = rgxXpot
prgxIl rgxIpot
prgxII rgxIIpot
paxtel = atpot

Bon

Dipoles & Quadrupoles

if (indgi.eq.0) then
do iii = 1,ncluster+l

dip(iii) = dsqgrt(dx(iii)**2+dy(iii)**2+dz(iii)**2)
gin(iii) = gind(iii)
enddo
else
do ii = 1,ncluster+l
dip(ii)=0.
gin(ii)=0.
do jj = 1,3
dip(ii) = dip(ii) + dpol(ii,jj)=**2
do kk = 1,3
qgin(ii) = gin(ii) + gpol(ii,jj,kk)**2
enddo
enddo
dip(ii) = dsgrt{dip(ii))
gin(ii) = dsgrt(gin(ii))
enddo
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endif

jje = 0
do jj = 1,neg-11,6
jje = jjc+l
rgx(1l,jjc) = rgx(l,jjc)/dstep
rgx(2,jjc) = sagrt(dabs(rgx(2,jjc)/dstep-rgx(1l,jjc)**2))
enddo
iic =0
do ii = 1,neg-11,6
iic = iic + 1

jjc = iic -1
do jj = ii,neg-11,6
jjc = jjc + 1

rgrg(l,iic,jjec) = rgrg(l,iic,jjc)/nstep
rgrg(2,iic,jjc) = sart{dabs(rgrg(2,iic,jjc)/dstep
& - rgrg(l,iic,3jjc)**2))
enddo
enddo

do i = 1, neg
yO{I)=y2 (i)
eqd do

return
END

C5.9. File "ch.f'17

noo0o0n0Do0oQN00OaQa00000:0

subroutine ch(nm,n,ar,ai,w,matz,zr,zi, fvl, fv2,fml, ierr)
integer i,j,n,nm,ierr,matz
double precision ar(nm,n),ai(nm,n),w(n),zr(nm,n),zi(nm,n),

b fvli(n),fv2(n),fml{2,n)

this subroutine calls the recommended sequence of

subroutines from the eigensystem subroutine package (eispack)

to find the eigenvalues and eigenvectors (if desired)
of a complex hermitian matrix.

on input

nm must be set to the row dimension of the two-dimensional

array parameters as declared in the calling program
dimension statement.

n is the order of the matrix a=(ar,ai).

ar and ai contain the real and imaginary parts,
respectively, of the complex hermitian matrix.
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matz 1is an integer variable set equal to zexo if

only eigenvalues are desired. otherwise it is set to

any non-zero integer for both eigenvalues and eigenvectors.
on output

w contains the eigenvalues in ascending order.

zr and zi contain the real and imaginary.parts,
respectively, of the eigenvectors if matz is not zero.

ierr 1is an integer output variable set equal to an error
completion code described in the documentation for tglrat
and tgl2. the normal completion code is zero.

fvi, fv2, and fml are temporary storage arrays.

questions and comments should be directed to burton s. garbow,
mathematics and computer science div, argonne national laboratory

this version dated august 1983.

NO0OO000O0NDO0DO00O000000n00O0~0

C6. Documentation of the ""normal' program for finding zero-point energies

The "normal” program is used in conjunction with the simulated annealing
program for finding the zero point energies of clusters. It accepts as input the cluster
minimum energy configuration files produced by the simulated annealing program and
calculates vibrational eigenvalues for each mode of the cluster as described in Section
4.4.3 (Chapter 4). The program also can be used for calculating higher vibrational

eigenvalues and Franck-Condon factors.

C6.1. Example: Zero-point energy calculation for Arel’

C6.1.1. The input file
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The input file for the "normal" program for the global minimum configuration of
Argl” found in section C4.3 is shown below. The line numbers in boldface are for
reference only and are not included in the actual input file. The name of the file is

"normal_inl_ar6i."

1: Comment line

2: 1 '* ndo (1 anion or neutral, 2 fcfs)

3: 1 '* nfm (1 to calculate force mat, 2 to read from file)
4: 6 '* nrg

5: 1 '* nhalpot (1 for anion, 2 for neutral)

6: 1 1* neigval (neutral 1 or 2 for X; 3,4 for I; 5,6 for II)
7: 0 t* indflag

8: 0 t* jexqflag

9: 0 1* jexqgd (exchange dipoles)

10: 0 1* jiexg (Gaussian exchange)

11: 0 '* indqgi (iterated multipoles)

12: 0 1* jaxtel

13: average_filed_6
14: neutral_file
15: ncl_ 1

16: normal_outl_6
17: zpel_6

18: wfl_6

19: dvrl_6

20: vsticks

21: fml_write

22: fml_read

23: 0.94268 !* 1T SO Const 0.94268 ev

24: 1.6419 '* polind (RG polarizability Ang~3)

25: 11.08 1* polrg

26: 52.7 '* polx

27: 27.11 ., '* pgrg

28: 254. I* pax

29: 0.936 1* betaexqg (Exchange guadrupole range parameter, Ang”~-1)
30: 6.5 !'* cutexq (exchange quad cutoff distance, Ang)

31: 2086. '* thetab

32: 0. 1* c9anion

33: 0. !'* c9neut

34: 35 '* ndvr

35: 2 !'* nanshow

36: 8 1* nnshow

37: 40. I* vtemp

38: 0.0 '* origin (cm-1)

39: 0.001 1* 2nd deriv step size (Ang)

40: 126.9044 '* halogen mass (amu) Iodine

41: 39.96238 !* rare gas mass (amu) Argon

42: 0.0458, 4.07, 5.70, 4.45, 1.08, 1.62, 279.5, 3537. !* Anion MMSV
43: 0.0188, 3.95, 7.15, 6.18, 1.01, 1.62, 5234., 38032. 1!* X1/2 MMSV
44: 0.0139, 4.18, 7.25, 6.30, 1.04, 1.62, 7079., 51439. '* 1I3/2 MMSV
45: 0.0159, 4.11, 6.90, 6.40, 1.04, 1.64, 6189., 44969. '* ITI1/2 MMSV
46: 0.0123422,3.7565,10.77874743,1.8122004,2.26210716e5,1.10785136,

.56072459, .34602794,1.36 !* Ar-Ar HFD-B
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47: 0O !'* How many lambdas to enter by hand

Line 1 is a comment line which is copied directly to the output file. Line 2
determines the mode of running the program: when this line is set to 1, only the
calculation for either the anion or neutral eigenvalues is performed; when it is 2, the
eigenvalues for both anion and neutral are calculated as well as Franck-Condon factors
and a vibrational stick spectrum. The setting of line 3 determines whether the force
matrix is calculated from the atomic configuration and potential (line 3 = 1) or if a
previously calculated force matrix is read in from in from a file (line 3 = 2).

Lines 5-12, 23-33 and 42-46 describe the nature of the cluster and its potential
and are identical to the corresponding lines of the input file “in1" to the simulated
annealing program (see Section C4.1, above).

Lines 13 and 14 are the anion and neutral atomic configuration files generated by
the simulated annealing program used as input by "normal.” If the FCFs calculation is
not performed, only one of the files is read in, but the input file must nonetheless contain
both lines. In this example we are only interested in the zero point energies of the Argl’,
and so have placed the Ar¢l” global minimum configuration file "average_file4_6" in line
13 and a "dummy" file name in line 14. Line 15 is the name of a file to save the normal
coordinates, which may be examined to ascertain the symmetry of each vibrational mode.
Line 16 is the name of the program output file, which lists the individual mode
vibrational frequencies and zero-point energies. If FCF mode is enabled, the FCFs are
also listed in this file. Line 17 is the name of a file to save the total zero point energy.
Line 18 is the name of a file to save the DVR eigenvalues and eigenvectors for each

mode. As when running the Morse DVR program (Section AS.2), the eigenvectors
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should be examined for convergence. The file named in line 19 lists the DVR points for
each vibrational mode. The file named in line 20 is the vibrational stick spectrum (if FCF
mode is enabled). Line 21 is the name of the file to save the calculated force matrix.
Line 22 is the name of the file from which to read in the force matrix if it is not to be
calculated.

The program uses a harmonic oscillator-based DVR method!8 for solving
Hamiltonian along each normal coordinate. Line 34 is the number of harmonic oscillator
basis functions to be used in the calculation. Lines 35 and 36 are the number of anion
and neutral eigenvalues, respectively, one wishes to calculate. Line 37 is the vibrational
temperature used to generate the vibrational stick spectrum. Line 38 is the origin, in
wavenumbers, of the vibrational stick spectrum. Line 39 is the step size in A used in
calculating the second derivatives of the potential for the force matrix. Lines 40 and 41
are the halogen and rare gas masses in amu, respectively.

The frequency of the harmonic oscillator basis set for the DVR calculation is
chosen to be the same for each mode as the harmonic frequency calculated numerically
from the potential. In some cases, the DVR calculation does not converge well with this
choice of basis frequency. In such cases one can specify the basis frequency for one or
mode by setting line 47 of the input file to the number of basis frequencies to be set by
hand. The user is then prompted for the numbers of the normal modes (as listed in the

output file) and the basis frequencies.
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C6.1.2. Running the program
The program is run as in the following example, with user input shown in

boldface.

> normal < normal_inl_6

>
The output file "normal_out1_6" is then generated, and is excerpted here:
Anion potential at eg. (eV): -0.4003685069

Anion
Mode Lambda (s-2) Harm.freg(cm-1) ZPE DVR vli-v0 DVR

-0.66040E+20 0.00
-0.63225E+20 0.00
~0.34854E+20 0.00
0.28304E+19 0.01
0.27080E+20 0.03
0.10132E+21 0.05
1 0.12983E+26 19.13 9.75 19.83
2 0.12983E+26 19.13 9.75 19.83
3 0.16334E+26 21.46 10.78 21.65
4 0.16335E+26 21.46 10.78 21.65
5 0.17361E+26 22.12 11.32 23.11
6 0.26132E+26 27.14 13.88 28.37
7 0.26135E+26 27.14 13.89 28.37
8 0.46533E+26 36.21 17.94 35.70
9 0.54459E+26 39.18 19.48 39.05
10 0.54461E+26 39.18 19.48 39.05
11 0.55494E+26 39.55 19.20 38.26
12 0.55496E+26 39.55 19.21 38.29
13 0.88910E+26 50.06 24.58 49.13
14 0.88912E+26 50.06 24.58 49.13
15 0.93776E+26 51.41 24.82 48.44
Harmonic zero point energy (cm-1): 251.43
(eV): 0.0311728180

DVR zero point energy (cm-1): 249.43
(eV): 0.0308252277

The first column of this file is the mode number, the second column is the harmonic
mode frequency in Hz, the third column is the harmonic mode frequency, the fourth
column contains the zero point energies for each mode from the DVR calculation, and the

fifth column contains the mode frequencies from the DVR calculation.
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C6.2. Outline of the program

The subroutines and functions used by the program "normal” are listed in Table
C2, sorted according the file in which they reside. Some of the functions and subroutines
are the same as those previously described for the simulated annealing program and

Morse DVR program, and these are noted in the "Description” column of the table.
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Table C2. Subroutines and functions used by the program "normal"'

File Subroutine Description
or Function
param.file See Table C1
normal.f normal Main program
peval Evaluates neutral potential of cluster
apeval Evaluate anion potential of cluster
pind Calculates three-body induction potential from Eq.
(C10)
vexq Calculates three-body ‘“"exchange quadrupole”
potential from Eq. (C12)
hopts Calculates DVR points using harmonic oscillator
basis for a given vibrational mode
hokin Transforms kinetic energy matrix to DVR basis
hoham Calculated DVR Hamiltonian
prinaxes Transforms cluster coordinates to principal axis
system (used in FCF mode)
calcfcfs Calculates multi-mode Frank-Condon factors and
vibrational stick spectrum
veqd Calculated exchange-quadrupole potential using the
distributed dipole model.
vinddq See Table C1
exg See Table Cl
erf See Table C1
vat See Table C1
porb.f porb See Table C1
poten2.f See Table Al
ch.f ch See Table C1
rs.f IS See Table Al
rsb.f rsb See Table Al
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C6.3. Source code for the program '"'normal"’

The source code for the "normal” program is listed below. The files "rsb.f",
“rs.f", and "poten2.f" are identical to those listed or described in Sections A6.3, A6.4 and
A6.5 and hence are omitted here, as is the file "ch.f" which is identical to the EISPACK
subroutine described in Section C5.9. Some of the subroutines and functions in the files
"normal.f" and the subroutine in the file "porb.f" are identical with those in the simulated

annealing program listing, and only the headers of these are reproduced below.

6.3.1. File "makenormal"
The program is recompiled with the command "make -f makenormal”. The
executable file "normal” is saved in the subdirectory “norm.” The makefile is listed

below.

normal: normal.o porb.o poten2.o0 ch.o rs.o rsb.o
£77 -C -o norm/normal normal.o porb.o poten2.o ch.o rs.o rsb.o

normal.o: param.file normal.f
porb.o: porb.f

poten2.o: poten2.f

ch.o: ch.f

rs.o: rs.f

rsb.o: rs.o

6.3.2. File "normal.f™

program normal
Normal mode analysis
include ‘'param.file’

parameter (ndm=150, nmmax=18)

character*30 infile,anfile,outfile,outfile2, outwf, outdvr,
& zfile,stkfile, fmout, fminfile

character*80 comment

double precision pa(1l0),px(10),p1(10),p2(10),g(10)
integer iarr(3)
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integer nmode {(natmaxc*3-6)

double precision amass(natmaxc*3), fmat (natmaxc*3,natmaxc*3},
& co{natmaxc*3),co2(natmaxc*3),co3 (natmaxc*3),
& lambda (natmaxc*3), fvl (natmaxc*3),

& fv2{natmaxc*3),evec(natmaxc*3,natmaxc*3),col (natmaxc*3),
& cdis(natmaxc*3),qdis(natmaxc*3), zpedvr (natmaxc*3-6),

& frgdvr(natmaxc*3-6),alamhan(natmaxc*3-6)
double precision rdvr(ndm+l),tmat (ndm+l,ndm+1l),
& akin(ndm+l,ndm+l),hamdvr (ndm+l,ndm+l),evalm(ndm+1),

& evalm2 (ndm+l),evecm(ndm+l,ndm+1), evecnm2 (ndm+1,ndm+1),
& fvimi{ndm+l), fv2m{ndm+l),vdvr (ndm+l), vdvr2 (ndm+1)
double precision wfs(nmmax,ndm+l,ndm+1),wfs2 (nmmax, ndm+1,ndm+1},
& evs{nmmax,ndm+l),evs2 (nmmax,ndm+1)
double precision fcfs(nmmax,ndm+l,ndm+1),sticks(2,1000),

& totfcf (nmmax,ndm+1)

integer nmd (2, nmmax,1000)

common/anparams/polind, betaexq, cutexq, soconst,
& pa,px,pl,p2,q,polrg,polx,parg, pgx, theta6,cY%anion,

& cY9neut,nrg

write(*,*)
read(*,80) comment

‘Enter comment line’

80 format (a80)
write(*,*) 'Enter mode: 1 anion or neutral frequencies.'
write(*,*) 2 both, and fcfs (shifted normal coords)"
write(*,*) 3 " " (vertical normal
coords) "’
read(*,*) ndo
write(*,*) 'Enter 1 to calculate force mat; 2 to read from file'
read(*,*) nfm
write(*,*) 'Enter number of rare gas atoms:'
read (*,*) nrg
if ((ndo.gt.l).and. (nrg.gt.7)) then
pause 'cant do fcfs for > 18 modes’
endif
write(*,*) ‘'Enter 1 for anion, 2 for neutral (detrimines which'
write(*,*}) 'NCs used in fcf mode)*
read (*,*) nhalpot
write(*,*) 'Enter neutral eigenvalue (1 or 2 X; 3,4 I; 5,6 II)"®
read(*,*) neigval
write(*,*) 'Enter 1 for 3-body induction (old), 0 for not’
read(*,*) indflag
write(*,*) ‘'Enter 1 for exchange quadrupole (o0ld), 0 for not'
read(*,*) iexgflag
write(*,*) 'Enter 1 for exchange dipoles, 0 for not'
read(*,*) iexqd
if (iexgd.eq.l) then
iexgflag = 0
endif
write(*,*) ‘'Enter 1 for Gaussian exchange, 0 not'
read(*,*) iexg
if (iexg.eq.l) then
iexgflag = 0
iexgqd = 0
endif
write(*,*) 'Enter 1 for iterated multipoles (new), 0 for not'
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read(*,*) indqgi
if (indgi.eq.l) then
indflag = 0
endif
write(*,*) 'Axilrod-Teller, l=on, O=off:'
read(*,*) iaxtel
write(*,*) 'Enter name of anion coordinate file (a0/10):°
read(*,*) anfile
write(*,*) 'Enter name of neutral coordinate file (a0/10):°
read(*,*) infile
write(*,*) 'Enter name of normal coordinate output file:'
read(*,*) outfile
write(*,*) 'Enter name of info output file:’
read(*,*) outfile2
write(*,*) 'Enter name of zero point energy file:'
read(*,*) zfile
write(*,*) ‘Enter wavefunction outfile:’
read(*,*) outwf
write(*,*) 'Enter dvr point outfile:'
read(*,*) outdvr

write(*,*) 'Enter stick spectrum outfile:'
read(*,*) stkfile
write(*,*) 'Force matrix save file name :°'

read(*,*) fmout
write(*,*) 'Force matrix read file name : '
read(*,*) fminfile

write(*,*) 'Enter atomic spin-orbit coupling constant (eV):'

read(*,*) soconst

write(*,*) 'Enter rare gas polarizability, for old model
(Ang”~3) '

read(*,*) polind
write(*,*) 'Rg polarizability, for new model (a0"3)’
read(*, *) polrg
write(*,*) 'Halide polarizability (a073)'
read(*,*) polx
write(*,*) 'Rg quadrupole polarizability (a0"5)°
read(*,*) pgrg
write(*,*) 'Halide quadrupole polarizability (a0~5)’
read(*,*) pgx
write(*,*) 'Enter exchange quadrupole range parameter:'
read(*,*) betaexq
if ((iexgd.eq.l).or.{iexg.eqg.l)) then

betaexqg = betaexg*al/10.
endif
write(*,*) ‘'Enter exchange quadrupole cotoff distance (Ang):'
read(*,*) cutexqg
write(*,*). 'quadrupole dispersion coefficient e*a0"8’
read(*,*) thetaéb
write(*,*) 'C9 (Axilrod-Teller) for anion (eV*Ang~9):'
read(*,*) c9anion
write(*,*) 'C9 for neutral:'
read(*,*) cSneut
c9anion = c9anion/harev/al**9 !* convert to au
c9neut = cY9neut/harev/a0**9

write(*,*) 'Enter nmax for dvr basis:’
read(*,*) ndvr
write(*,*) 'Enter number of anion eigenvalues to show :°
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read(*,*) nanshow
write(*,*) 'Enter number of neutral eigenvalues to show :°'
read(*,*) nnshow
if (nhalpot.eq.l) then

nshow = nanshow

nshow2 = nnshow
elseif (nhalpot.eq.2) then

nshow = nnshow

nshow2 = nanshow
endif
write(*,*) 'Enter vibrational temperature (K):'
read(*,*) vtemp
write(*,*) 'Enter origin position (cm-1):°
read(*,*) origin
write(*,*) 'Enter step size for 2nd derivatives (Ang):'
read(*,*) hs
hs = hs*10.040/a0
write(*,*) 'Enter halide mass (amu):'
read(*,*) halmass
write(*,*) 'Enter rare gas mass (amu):’
read(*,*) rgmass
write(*,*) 'Enter Anion potential parameters (MMSV):'
read(*,*) (pa(i),i=1,8)
write(*,*) ‘Enter X1/2 state potential parameters {(MMSV):'
read(*,*) (px(i),i=1,8)
write(*,*) ‘'Enter I3/2 state parameters:'
read(*,*) (pl(i),i=1,8)
write(*,*) 'Enter IIl/2 state parameters:'
read(*,*) (p2(i),i=1,8)
write(*,*) ‘'Enter RG-RG HFD-B Parameteres:'
read(*,*) (g(i),i=1,9)
do i=1,nrg*3-6

alamhan(i) = 0.40
enddo
write(*,*) 'Enter how many HO lambdas for dvr by hand?‘
read(*,*) nlam
if (nlam.ne.0) then

do i=1l,nlam

write(*,*) ‘'enter lambda for which mode?’
read(*,*) nmode (i)

write(*,*) 'enter lambda in cm-1 for mode ', nmode (i)
read(*,*) alamhan(nmode(i))
alamhan (nmode(i)) = (2.d0*pi*alamhan{(nmode(i))/hztocm)**2
enddo
endif

Read in coordinates of minimum

if (nhalpot.eqg.l) then
write(*,*) 'Reading anion coordinates from ',anfile
open(l,file=anfile)
do n=1,nrg+l
read(1l,*) junk,co{(n*3-2),co(n*3-1),co(n*3)

enddo
) close(l)
elseif (nhalpot.eq.2) then
write(*,*) ‘Reading neutral coordinates from ',infile
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* ok k%

* % ok ok X A A %

open(l,file=infile)
do n=1,nrg+l
read(l,*) junk,co(n*3-2),co(n*3-1),co(n*3)
enddo
close (1)
endif
if (ndo.eq.2) then
if (nhalpot.eqg.l) then
write(*,*) 'Reading neutral coordinates from ', infile
open(l, file=infile)
do n=1,nrg+l
read(1,*) junk,co2(n*3-2),co2(n*3-1),co2(n*3)
enddo
close (1)
elseif (nhalpot.eqg.2) then
write(*,*) 'Reading anion coordinates from ',anfile
open(l, file=anfile)
do n=1,nrg+1l
read(l,*) junk,co2(n*3-2),co2(n*3-1),co2(n*3)
enddo
close(l)
endif
endif

If in fcf (2) mode orient both anion and neutral in principal
axis frame
if (ndo.eqg.2) then
call prinaxes(co,rgmass,halmass)
call prinaxes(co2,rgmass, halmass)
endif

Set up masses list, masses in kg

do i=1l,nrg*3

amass (i) = rgmass*amutokg
enddo
do i=nrg*3+1, (nrg+1l)*3
amass{i) = halmass*amutokg
enddo

Set up force matrix (mks units)
using central difference approximation to force constants;
Diagonals:
d~2f/dx~2 = [f£(x+h)-2f(x)+f(x-h)]/ h"2
0ff diagonals:

d~2f/dxdy = [f(x+h,y+h)-£f(x-h,y+h)-£f(x+h,y-h)+i(x-h,y~h)]/(2h)"2

if (nfm.eq.l) then
if (nhalpot.eq.l) then '* Anion

anp = apeval (co)

if (ndo.eq.2) then
anp?2 = peval (co2)

elseif (ndo.eqg.3) then
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anp2 = peval(co)
endif
write(*,*) 'Setting up force matrix'
nelem = {(nrg+l)*3 + ((nrg+l)*3-1)**2/2
write(*,*) nelem,' elements to calculate'
neldone = 0
do i = 1, (nrg+l)*3 !* Diagonals
savel = co(i)
fmat(i,i) = -2.0d0*apeval (co)
co(i) = savei + hs
fmat(i,i) = fmat(i,i) + apeval(co)
co(i) = savei - hs
fmat(i,i) = (fmat(i,i) + apeval(co))*evtoj
& /(hs*a0/10.040*1.0d-10)**2/amass (i)
co(i) = savei
neldone = neldone+1
if (mod(neldone,20).eqg.0) then
write(*,7593) neldone*100/nelem

endif
enddo
7593 format (i3, '$ done’')
do i=2, (nrg+1)*3 1* Off diagonals {lower triangle only)
do j=1,1i-1
savei = co(i)
savej = co(3j)
co(i) = co(i) + hs
co(j) = co(j) + hs
fmat (i, j)=apeval (co)
co(i) = savei - hs
fmat (i,j)=fmat (i, j)-apeval (co)
co(i) = savei + hs
co(j) = savej - hs
fmat (i, j)=£fmat (i, j)-apeval (co)
co(i) = savei - hs
fmat (i,3j)=(fmat (i, j)+apeval (co)) *evtoj
& /(2.0d0*hs*a0/10.040*1.04-10)**2
& /dsqrt (amass (i) *amass (j))

co{i)=savei
co(j)=savej
neldone = neldone+l
if (mod(neldone,20).eq.0) then
write(*,7593) neldone*100/nelem
endif
enddo
enddo

elseif (nhalpot.eqg.2) then !* Neutral

anp = peval{co)
if (ndo.eq.2) then
anp2 = apeval (co2)
elseif (ndo.eqg.3) then
anp2 = apeval (co)
endif
write(*,*) 'Setting up force matrix'
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do i =1, (nrg+l)*3 !* Diagonals

saveil = co(i)
fmat(i,i) = -2.0d40*peval (co)
co(i) = savei + hs
fmat(i,i) = fmat(i,i) + peval{co)
co(i) = savei - hs
fmat(i,i) = (fmat(i,i) + peval(co))*evtoj
/(hs*a0/10.0d0*1.04-10)**2/amass (1)
co(i) = savei
enddo
do i=2, (nrg+l)*3 '* 0ff diagonals (lower triangle only)
do j=1,i-1
savei = co(i)
savej = co(j)
co (i) co(i) + hs

i n

co(3j) co(j) + hs

fmat(i,j) = peval (co)

co(i) = savei - hs

fmat (i, j)=fmat (i, j)-peval (co)
co{(i) = savei + hs

co(j) = savej - hs

fmat (i, j)=fmat (i, j)-peval (co)
co(i}) = savei - hs

fmat (i,3j)=(fmat (i, j)+peval (co)) *evtoj
/(2.0d0*hs*a0/10.040*1.0d-10) **2
/dsgrt (amass{i) *amass(3j))
co(i)=savei
co(j)=savej
enddo
enddo

endif

open{(l, file=£fmout) 1* Save force matrix to file
do i = 1, (nrg+l)*3

do j = 1,1

write(1l,*) fmat(i,j)

enddo
enddo
close(l)
write(*,*) 'Force matrix saved to ', fmout

elseif (nfm.eq.2) then

if (nhalpot.eg.l) then '* Anion
anp = apeval (co)
if (ndo.eq.2) then
anp2 = peval (co2)
elseif (ndo.eg.3) then
anp2 = peval (co)
endif
elseif (nhalpot.eq.2) then !* Neutral
anp = peval (co)
if (ndo.eqg.2) then
anp2 = apeval (co2)
elseif (ndo.eqg.3) then
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anp2 = apeval (co)

endif
endif
open(l, file=fminfile) !'* Read force matrix from file
do i=1, (nrg+1)*3

do j = 1,1

read(1l,*) fmat(i,3)

enddo
enddo
close (1)

write(*,*) 'Force matrix read from ', fminfile

endif

*

Diagonalize force matrix

write(*,*) 'Diagonalizing force matrix...'
call rs{(natmaxc*3, (nrg+1l)*3, fmat, lambda,l,evec, fvl, fv2,ierr)
write(*,*) ‘'Normal frequencies : '
do i=1, (nxrg+1)*3
write(*,*) lambda (i)
enddo

If in fcf mode, determine the displacements of anion or neutral
from the one whose normal coordinates are being used, first in
cartesian displacedments and then transform to normal coordinates

*

if (ndo.eqg.2) then

do i=1, (nrg+1)*3 !'* Loop over cartesian coordinates
cdis(i) = co2(i) - co(i)

enddo

do m=1,6
gdis(m) = 0.040

enddo

do m=7, (nrg+1)*3 t* Transform to normal coordinates

gdis{(m) = 0.0d0
do i=1l, (nrg+l)*3

qdis(m) = gdis(m) + .evec(i,m)*cdis(i)*dsqrt (amass(i))
* t*  Units sgrt(kg)*ald/10
enddo
enddo

endif
*
*  Set up dvr points and kinetic matrix, which are the same
*  for all the normal modes neglecting the frequencies
*

call hopts(ndvr,rdvr, tmat)

call hokin{ndvr, tmat,akin)
*
* Evaluate potential at dvr points for each normal mode, and
* diagonalize dvr hamiltonian
*
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9310

9320

open(l, file=outwf)
open(2, file=outdvr)

do 2500 m = 7, (nrg+1)*3 !* Loop over normal modes

write(*,*) 'Mode ',m-6
write(l,*) 'Mode ',m-6
write(1l, *)

write(2,*) 'Mode ',m-6

if (ndo.eqg.1l) then

write(2,*) 'Q [sgrt(amu)*Ang] v(Q) [eV]'
elseif (ndo.eqg.2) then

write(2,9310)

format ('Q1l',15x, 'V1(Ql)',11x, 'Q2"',15x%, 'V2(Q2)"')
elseif (ndo.eg.3) then

write(2,9320)

format ('Q1',15x, 'V1(Q1)',15x%, 'V2(Q1)"')
endif

if (alamhan(m-6).eq.0.d0) then
alambda = lambda (m)

else
alambda = alamhan(m-6)
endif
do i = 1,ndvr+l !* Loop over dvr points
gn = rdvr (i) *dsqgrt (hbar/ (dsqrt(alambda)*2.0d40))
*10.0d10/a0 !'* Normal coord units converted from

'* sqgrt(kg)*m to sqrt(kg)*ad/10

if (ndo.eq.2) then
an2 = gm - qdls (m)

endif
do j=1, (nrg+l)*3 !* Loop over cartesian coordinates
col(j) = co(j) + evec(j,m)*gm/dsgrt (amass(j)) !* other

if (ndo.eg.2) then
co3(j) = co2(j) + evec(j,m)*agm2/dsqrt (amass(j))
endif
enddo

if (nhalpot.eq.l) then
vdvr (i) = apeval(col)
elseif (nhalpot.eqg.2) then
vdvr(i) = peval (col)
endif
if (ndo.eqg.2) then !'* Displaced
if (nhalpot.eq.l) then
vdvr2 (i) = peval(co3)
elseif (nhalpot.eq.2) then
vdvr2 (i) = apeval(co3)
endif
elseif (ndo.eg.3) then
if (nhalpot.eq.l) then !'* Vertical
vdvr2 (i) = peval (col)
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elseif (nhalpot.eq.2) then
vadvr2 (i) = apeval(col)
endif
endif

if (ndo.eqg.l) then
write(2,578) am*a0/10./sqrt (amutokg),vdvr(i)
elseif (ndo.eqg.2) then
write(2,579) gm*a0/10./sqrt(amutokg),vdvr(i),
am2*a0/10./sqrt (amutokg) ,vdvr2 (i)
elseif (ndo.eq.3) then
“write(2,579) qm*a0/10./sqrt (amutokg),vdvr{i),vdvr2 (i)
endif

enddo t* End loop over dvr points

write(2,*)
call hoham(akin,vdvr,ndvr,alambda, hamdvr)
if (nhalpot.eqg.l) then

write(*,*) 'Diagonalizing Anion Hamiltonian'
elseif (nhalpot.eqg.2) then

write(*,*) 'Diagonalizing Neutral Hamiltonian'
endif
call rs(ndm+l,ndvr+l, hamdvr,evalm,l,evecm, fvim, fv2m, ierr)
do kk = 1,nshow

do 11 = 1,ndvr+l

wfs (m-6,11,kk) = evecm(1ll, kk)

enddo

evs (m-6,kk) = evalm(kk) - anp
enddo

if {(ndo.ge.2) then
call hoham(akin,vdvr2,ndvr,alambda, hamdvr)
call rs(ndm+l,ndvr+l,hamdvr,evalm2,1l,evecm2, fvim, fv2m, ierr)
do kk = 1,nshow?2 ’
do 11 = 1,ndvr+l
wis2 (m-6,11,kk) = evecm2(1ll, kk)
enddo
evs2 (m-6,kk) = evalm2(kk) - anp2
enddo
endif

if (nhalpot.eg.l) then

write(l,*) I*********Anion**********l
else

write(l,*) I*********Neutral**********I
endif
write(l,*) 'Eigenvalues’
do i = 1,nshow

write(l,*) (evalm(i)-anp)*evtocnm
enddo
write(1l,*)
zpedvr (m-6) = evalm(l) - anp
frgdvr (m-6} = evalm(2) - evalm(l)
write(l,*) 'Wavefunctions®
call showarréd (1l,ndm+l, evecm,ndvr+l,nshow)
write(l,*)
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if (ndo.ge.2) then
if (nhalpot.eqg.l) then
write(l,*) EEEEEEE RSN b ar- N i A A
else
write(l,*) '*********Anion**********'
endif ’
write(l,*) 'Eigenvalues'
do i = 1,nshow2
write(l,*) (evalm2{i)-anp2)*evtocm
enddo
write(l,*)
write(l,*) 'Wavefunctions'
call showarrd (l,ndm+l,evecm2,ndvr+1l,nshow2)
write(1l, *)
endif

2500 continue 1* End loop over normal modes

578 format(gl6.8,1x,g16.8)
579 format (gl6.8,3(1x,gl6.8))
close(1l)
close(2)

* Calculate fcfs

if (ndo.ge.2) then
if (nhalpot.eq.l) then
call calcfcfs(ndvr,nanshow, nnshow, vtemp, origin, evs,wfs,
& evs2,wfs2, fcfs, totfcf,nsticks,nmd, sticks)
elseif (nhalpot.eqg.2) then
call calcfcfs(ndvr,nanshow,nnshow, vtemp, origin, evs2,wfs2,
& evs,wfs, fcfs, totfct,nsticks,nmd, sticks)
endif
endif

* Qutput to files

open{(l, file=outfile2)
open(2,file=zfile)
write(l,*) 'Normal Coordinate Program'’
call idate(iarr)
write(1,300) iarr(2),iarr(l),iarr(3)
call itime(iarr)
write(1,301) iarr(l),iarr(2),iarr(3)
300 format ('Date: ',i2,'/',1i2,1x,14)
301 format('Time: ',i2,':',1i2,':',1i2)
write(l,*)
write(l,*) comment
write(1,*)
write(1l,*) 'Number of RGs: ',6nrg
write(l,7356) anfile,infile
7356 format('Eqg pos files (an, neut): ',
& a30,a30)
write(1l,*) 'Normal coordinate file: ',outfile
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write(l,*) 'Output file: ',outfile2

write(l,*) 'Zero point energy file: ',zfile
write(l,*) 'Wavefunction save file: ', outwf
write(l,*) 'DVR point save file: ',outdvr
if (nfm.eq.l) then

write(l,*) 'Force matrix save file: ', fmout

elseif (nfm.eqg.2) then
write(1l,*) ‘Force matrix imput file: ',fminfile
endif
if (ndo.ge.2) then
if (nhalpot.eqg.l) then
write(1,3023)

else
write(1,3024)
endif
if (ndo.eq.2) then
write(1l,*) * -- displaced coordinates for other’
elseif (ndo.eqg.3) then
write(l,*) ' -- vertical coordinates for other'
endif
write(l,*) 'vibrational stick file: ', stkfile
write (1,3030) vtemp,origin
endif
format(/, 'FCF mode -- Using ANION normal coordinates',S$)
format(/, 'FCF mode -- Using NEUTRAL normal coordinates',$)
format (‘vtemp (K) : ',£10.3,5x,'origin{cm-1) : *',£15.5)

write(l,*)
if ((nhalpot.eqg.2).or.(ndo.ge.2)) then
if ((neigval.eq.l).or.(neigval.eqg.2)) then
write(l,*) 'X State’
elseif ((neigval.eq.3).or.(neigval.eq.4)) then
write(l,*) 'I State'
elseif ((neigval.eq.5).or.(neigval.eq.6)) then
write(l,*) 'II State’

endif

write(l,95) soconst

format ('SO constant (eV) :',£12.8)
endif

if ((nhalpot.eqg.l).or.(ndo.ge.2)) then
if (indflag.eqg.l) then
write(1l,*) 'Three body induction ON'
write(1,305) polind
format ('Rare gas peclarizability: ',£10.6,' A"3')
endif -
if (iexgflag.eqg.l) then
write(l,*) 'Exchange quadrupole ON'
write(1l,307) betaexq,cutexqg
format (' Exchange quadrupole beta (A~-1):',6£f10.6,3x,
‘Cutoff (a):',£10.6)
endif
if (indgi.eqg.l) then
write(l,*) 'Iterated multipoles ON'
write(1,565) polrg,polx,pqrg,pgx

format ('Dipole polarizabilities, a0”~3: Rg = ', £f10.6,3x,
'Hal = ',£10.6,/,'Quad. polarizabilities, a0"5: Rg =
£f10.6,3x,'Hal = ',£10.6)
endif
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if (iexgd.eqg.l) then
write(1l,573) betaexg*10./a0,thetat

573 format ('Exchange dipoles ON', 3x, 'betaexqg =',£10.6, 3x,
& 'thetaé =',£10.3)
endif

if (iexg.eqg.l) then
write(1l,689) betaexq, thetab

689 format ('Gaussian exchange ON, ', 3x, 'betaexqg =',f10.6,
& 3x, 'thetaé =',£10.3)
endif
endif

if (iaxtel.eqg.l) then
write(l,695) c9anion*harev*al0**9,c9neut*harev*a0**9

695 format ('Axilrod-Teller ON, ',3x, 'c%9anion =',f10.3,
& 3x,'cSneut = ',£10.3)
endif
write(1l,400) ndvr,nanshow,nnshow,hs*a0/10.
400 format('ndvr: ',i3,3x, 'nanshow: ',i2, 'nnshow:’,i3,
& 3x,'Step size (Ang.): ',gl0.4)
write(1,405) halmass, rgmass
405 format ('Halogen mass (amu): ',£f15.10,3x, 'Rare gas mass: ',f15.10)

write(1,1099) a0,harev,evtocm
write(1,1100) evtoj,hztocm,amutokg

1099 format('a0 = ',gl15.10,' harev = ',gl5.10, 'evtocm = ',gl5.10)
1100 format('evtoj = ',gl6.10,' hztocm = ',gl6.10,' amutokg =
‘,g16.10)

if ((nhalpot.eq.l).or.(ndo.ge.2)) then
write(l,*) 'Anion rg-x MMSV parameters:'
write(1,100) (pa(i),i=1,8)
endif
if ((nhalpot.eqg.2).or.(ndo.ge.2)) then
write(l,*) 'Neutral rg-x MMSV Parameters (X,I,II diatom states):'
write(1,100) (px(i),i=1,8)
write(1,100) (pi(i),i=1,8)
write(1,100) (p2(i),i=1,8)
endif
write(l,*) 'RG-RG HFD-B Parameters:'
write(1,100) (g(i),i=1,9)
100 format (2x,5g14.8,/,2x%x,5g14.8)
write(1,*)
write(1,200)
200 format(80('*'),/)
if (nhalpot.eq.l) then
write(1l,340) anp
else
write(l,341) anp
endif
if (ndo.ge.2) then
if (nhalpot.eq.2) then
write(1l,340) anp2
else
write(l,341) anp2
endif
endif

Write zero point energies and vib frequencies to file in mode 1
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if (ndo.eq.l) then
if (nhalpot.eqg.l) then
write(l,*) ‘'Anion'
else
write(1l,*) 'Neutral’
endif
write(l,330)
zpe = 0.0d40
do i=1, (nrg+1)*3
if (lambda(i).lt.0) then
freq = 0.
else
freq = dsgrt(lambda(i))/(2.040*pi)
zpe = zpe + freq/2.0d0
endif
if (i.le.6) then
write(1l,320)lambda (i), freg*hztocm
elseif {(alamhan(i-6).eq.0) then
write(1,322) i-6,lambda(i), freq*hztocm, zpedvr (i-6) *evtocm,

& frgdvr (i-6) *evtocm
else
write(1,323) i-6,lambda(i), freg*hztocm, zpedvr (i-6) *evtocm,
& fragdvr (i-6) *evtocm,dsqrt (alamhan(i-6)) /(2. pi) *hztocm
endif
enddo

write(l,*)
write(1,325) zpe*hztocm
write(l,326) zpe*hztocm/evtocm
write(l,*)
zped = 0.0d40
do i=1, (nrg+l1l)*3-6

zped = zped + zpedvr(i)
enddo
write(1l,327) zped*evtocm
write(1l,328) zped
write(2,329) nrg,zped
write(1l,*)

340 format (*Anion potential at eqg. (ev): ',£15.10)

341 format (‘Neutral potential at eqg. (ev): ',£15.10)

330 format (' Mode',1x, 'Lambda (s-2)',2x, ‘Harm.freg(cm-1)"', 2x,
& 'ZPE DVR',4dx,'vl-v0 DVR *)

320 format (5x,g913.5,3x,£7.2)

322 format (i3,2x,e13.5,3x,£7.2,7x,£7.2,5x,£7.2)

323 format (*'*',i2,2x,e13.5,3%,£7.2,7x,£7.2,5x%,£7.2,1x,

& '(basis freq = *',£6.2,')")
325 format ('Harmonic zero point energy (cm-1): ',£7.2)
326 format (° (ev): *',£15.10)
327 format ('DVR zero point energy (cm-1): ',£7.2)
328 format (' (ev): ',£15.10)

329 format (i3,1x,g18.10)
*

* Write vibrational eigenvalues and single mode fcfs to file in fcf

mode
*

elseif (ndo.ge.2) then
do m=1, (nrg+l)*3-6 I * Loop over modes
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write(l,605) m
if (ndo.eq.2) then
write(1l,640) gdis(m+6)*a0/10./sqgrt (amutokyg)
endif
write(l,607)
if (nhalpot.eq.l) then
write(1,510)
else
write(1,515)
endif
write(1l,610)
nshowm = max (nshow,nshow2)
do i=1,nshowm '* Loop over v
if (i.gt.1l) then
elast = evs(m,i-1)
elast2 = evs2{m,i-1)
else
elast = 0.40
elast2 = 0.40
endif
if ((i.le.nshow).and. (i.le.nshow2)) then
write(l,615) i-1,evs(m, i) *evtocm, (evs(m,i)~-elast)
*evtocm,i-1,evs2(m, i) *evtocm,
(evs2{m,i)-elast2) *evtocm
elseif (i.le.nshow) then
write(l,620) i-1l,evs(m,i)*evtocm, (evs(m,i)-elast)*evtocm
elseif (i.le.nshow2) then
write(1,625) i-1,evs2(m,i)*evtocm, (evs2{m,i)-elast2)
*evtocm
endif
enddo
write(1l,630)
write(1l,145)
write(l,150) (k, k = 0,nanshow-1)
write(1l,*)
do j=1,nnshow
write(1,155) j-1, (fcfs(m,k,j), k = 1,nanshow)
enddo
write(1l,*)
write(1l,160) (totfcf(m,k), k=1,nanshow)
write(1,*)

enddo
nmde = 3* (nrg+l)-6
write(1,5000) '* Write vsticks

write(1l,5005)
write(*,*) 'nsticks',nsticks
do i=1,nsticks
do m=1,nmde
write(1,5010) nmd(1l,m,1)
enddo
if (nmde.lt.15) then
do n=nmde+1,15
write(1,5015)
enddo
endif
do m=1,nmde
write(1,5010) nmd(2,m,1i)
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enddo

if (nmde.lt.1l5) then

do n=nmde+l,15
write(1l,5015)

enddo
endif
write(l,5020) sticks{l,i),sticks(2,1i)
enddo
endif
close(l)
close(2)
605 format (/,35('*'),' Mode ',1i2,1x,36('*'),/)
607 format ('Vibrational Eigenvalues :',/)
610 format (13x, ‘'Total', 6x, 'Spacing',20x, ‘Total', 6x,
615 format (1x,'v = ',12,2x%x,£9.2,4x%,£8.2,9%,'v = ',i2,2x,
& £9.2,4x,£8.2)
620 format (1x,'v = ',12,2x,£9.2,4x%,£8.2)
625 format (39x,'v = ',i2,2x,£9.2,4x,£8.2)
630 format(/, 'Single mode FCFs :',/)
640 format ('Displacement (sgrt(amu)*Angl] : ',gl2.5)

510 format (15x%, 'Anion', 31x, 'Neutral', /)
515 format (15x, 'Neutral',b31x, 'Anion’', /)
145 format (19x, 'Anion v =
150 format (17x,20(1i3,4x),/)
155 format ('Neutral v = ',1i3,2x,20(£6.4,1x),/)
160 format (' Total = ',5x%x,20(£f6.4,1x),/)

")

5000 format(/,'Vibrational sticks')

5005 format('Anion mode',21x, 'Neutral mode',17x, 'Pos(cm-1)"',
& 2x,'Inten')

5010 format(i2,$)

5015 format(' ',8)

5020 format(£9.3,2x,£8.6)

* Write out normal frequencies (lambdas) and coordinates

*

open(l, file=outfile)
do i=7, (nxrg+l)*3-6

write(l,*) lambda(i)

enddo

do i=1, (nrg+1)*3
write(l,*) (evec(i,j),3j=7, (nrg+l)*3)
enddo
close (1)

L

if (ndo.ge.2) then

open(l, file=stkfile)
do i=1,nsticks

Write vibrational stick file if in mode 2 or 3

write(1,4000) sticks(1l,1i),sticks(2,1)

enddo
close(l)

endif
4000 format(£10.3,£10.6)

357

'Spacing')



end

Evaluate neutral potential -- coords in a0/10, poten in eV

include 'param.file’

double precision hfd_b

double precision rx{(natmaxc),ry(natmaxc),rz(natmaxc),
& pa(l0),px(10),pl(10),p2(10),g(10),potnrgx(6)

double precision coord(natmaxc*3)

common/anparams/polind, betaexqg, cutexg, soconst,
& pa,px,pl,p2,q,polrg,polx,pqryg, pgx, thetaé,c%anion,
& cY9neut,nrg

ncluster = nrg

do i = 1,nrg+l

rx(i) = coord(i*3-2)
ry(i) = coord(i*3-1)
rz(i) = coord(i*3)
enddo
potat = 0.

if (iaxtel.eqg.l) then
call vat(c9neut,rx,ry,xrz,potat)
potat = potat*harev/100.

endif

do i = 1,nrg+l

rx(i) = coord(i*3-2)*a0/10.0d0 !'* Convert to Ang
ry(i) = coord(i*3-1)*a0/10.0d0
rz(i) = coord(i*3)*a0/10.040

enddo

call porb(nrg,rx,ry,rz,px,pl,p2,soconst,potnrgx)

rgrg = 0.
do i=2,nxrg
do j=1,i-1
rt = dsgrt({rx(i)-rx(3))**2 + (ry(i)-ry(3))**2
& + (rz(i)-rz(j))**2)
rgrg = rgrg + hfd_b(a(l),q(2),q(3),q{4),
& a(S),q(6),q(7),q(8),q(9),rt)
enddo
enddo

peval = potnrgx(neigval) + rgrg + potat

return
end
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Evaluate anion potential, coord in a0/10, poten returned in eV

include 'param.file’

double precision anmmsv,hfd_b

double precision rxin(natmaxc),ryin(natmaxc),rzin(natmaxc),
& rx{natmaxc),ry(natmaxc),rz(natmaxc),coord(natmaxc*3),
& pa(10),px(10),p1(10),p2(10),q(10),dp(natmaxc,3),
& dhalpair(ncl),drgpair(ncl),ghalpair(ncl),qrgpair(ncl},
& ap{natmaxc,3,3)

common/anparams/polind, betaexq, cutexq, soconst,
& pa,px,pl,p2,q,polrg,polx,pgrg, pax, thetaé,clanion,
& c9neut,nrg

ncluster = nrg

do i = 1,nrg+l
rxin(i) = coord(i*3-2)

ryin(i) = coord{(i*3-1)
rzin(i) = coord(i*3)
enddo

Calculate three body terms

1

anpotind 0.40
anpotexqg = 0.d0
anpotat = 0.40
if ((indflag.eq.l).or. (iexgflag.eq.1l)) then
do i=2,nrg
do j=1,i-1
if (indflag.eg.l) then
call pind(polind, rxin(nrg+1l),ryin(nrg+l),rzin(nrg+l),

& rxin(i),ryin(i),rzin(i),rxin(j).ryin(j).rzin(j),
& dpind)

anpotind = anpotind + dpind

endif

if (iexgflag.eqg.l) then

call vexqg(betaexq, cutexq,rxin(nrg+l),ryin(nrg+l),
& rzin(nrg+l) ,rxin(i),ryin(i),rzin(i),xrxin(j),
& ryin(j),rzin(j),dpexq)

anpotexqg = anpotexq + dpexq

endif

enddo
enddo

endif
anpotind anpotind*harev/1.d2
anpotexq = anpotexg*harev/1.d2

Calculate new induction & exchange dipole potentials

if (indgi.eq.l) then
call vinddq(polrg,polx,pqrg,pgx,rxin,ryin,rzin,dp,dhalpair,

359

«
Y
X




& drgpair,ghalpair, grgpair, gp,ved, vcq, anpotind)
anpotind = anpotind*harev/1.42

endif

if (iexqgd.eq.l) then
call veqgd(betaexqg, theta6,rxin,ryin,rzin, anpotexq)
anpotexqg = anpotexdg*harev/1.d2

elseif (iexg.eq.l) then
call exg(betaexq, thetaé,rxin,ryin,rzin, anexx, anddisp,

& angdisp, anpotexq)
anpotexq = anpotexg*harev/1.d2

endif

if (iaxtel.eq.l) then
call vat(cSanion,rxin,ryin,rzin, anpotat)
anpotat = anpotat*harev/1.d2

endif

Convert from a0/10 to angstroms

do n=1,nrg+l

rx{n) = rxin(n) * a0/10.

ry(n) = ryin(n) * a0/10.

rz{n) = rzin(n) * a0/10.
enddo

Calculate anion potential

xhal = rx(nrg+l)
vhal = ry(nrg+1)
zhal = rz(nrg+l)

anpotrgx = 0.

do i=1,nrg
rt = dsgrt{(rx(i)-xhal)**2 + (ry{(i)-yhal)*=*2
& + (rz(i)-zhal)**2)
anpotrgx = anpotrgx + anmmsvipa(l),pa(2),pa{3),pa(4),
& pa(5),pa(6),pa(7),pa(8),rt)
enddo

anpotrgrg = 0.

do i=2,nrg
do j=1,i-1
rt = dsqgrt((rx(i)-rx(3))**2 + (ry(i)-ry(j))**2
& + (rz(i)-rz(j))**2)
anpotrgrg = anpotrgrg + hfd_b{(g(l),q(2),q(3),q(4),
& a(5),q(6),q(7),q(8),q(9),rt)
enddo
enddo
apeval = anpotrgx+anpotrgrg+anpotind+anpotexg+anpotat
return
end
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Charge-Ind Dipole-Ind Dipole Three body potential

Input: pol Rare gas pblarizibility (A~3)
x0,y0,2z0 Halide cartesian coordinates (a0/10)
x1l,yl,z1, x2,y2,22 Rare gas coordinates (a0/10)
Output: potind Potential (hartree/100)

implicit double precision(a-h,o-z)
parameter (pi=3.14159265359d0,a0=0.52917724940,
& harev=27.2113961d40,evtocm=8065.541040)

const = (pol/(a0**3)*1.d43)**2

rl0sqgr
r20sqr
rl2sqr

(x1-%0) **2+ (y1-y0) **2+(21-20) **2
(x2-x0) **2+ (y2-y0) **2+(z2-20) **2
(x1-%2) **2+ (yl-y2)**2+(z1-22)**2

1}

dot1020
dot1012
dot1220

(x1-%x0) * (x2-x0) + (yl-y0)*(y2-y0)+(21-20)*(z2-20)
(x1-x0) * (x1-x2) + (yl-y0)* (yl-y2)+(z1-20)*(z1-22)
(x1-%x2) * (x2-x0) +(yl-y2)*(y2-y0)+(z1-22)* (22-20)

tl
t2
t6

1t

dsqgrt(rl0sqgr)

rl0sqgr**2
dsgrt(rl2sqr)

t7 rl2sqr**2

tio0 dsqgrt (r20sqr)

tll = r20sqr**2

potind = const*tl/t2*t6/t7*t10/t11* (dotl1020-
& 3*dotl1012*dotl220/rl2sqgr)

potind = potind*1.d3

return
end

subroutine vexg{betain,cutoff,x0in,y0in,z0in,
& xlin,ylin,zlin,x2in,y2in, z2in, pexq)

Charge-exchange quadrupole interaction.
Gaussian l-electron model

Input: betain Gaussian range parameter (Ang~-1)
cutoff RG-RG distance cutoff (Ang)
x0in,y0in, z0 Halide cartesian coordinates (a0/10)
x1,¥1,zl Rare gas 1 cart. coords. (a0/10)
x2,v2,22 Rare gas 2 cart. coords. (a0/10)

Returns: pexg potential in hartree/100

implicit double precision(a-h,o-z)
parameter (pi=3.14159265359d0,a0=0.52917724940,
& harev=27.2113961d0,evtocm=8065.5410d40)
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* A

* % A

x

x

x0 = x0in/10.040 !'* Convert to usual atomic units
y0 = y0in/10.040
z0 = z0in/10.040
x1l = x1in/10.0d40
vyl = y1lin/10.0d40
zl = z1in/10.0d40
x2 = x2in/10.040
v2in/10.040
z2 = 22in/10.040

%9
o
I

beta = betain*al

ri2sqgr = (x1-xX2)**2+(yl-y2)**2+(z1l-22)**2
if (rl2sqr.gt. (cutoff/al0)**2) then
pexqg = 0.
return
endif
rcsqr = (X1/2.-x0+x2/2.)**2+(yl/2.-y0+y2/2.)**2
+(z1l/2.-20+22/2.)**2
dotcl2 = (x1/2-x0+x2/2)*(x1-x2)+(y1l/2-y0+y2/2)* (yl-y2)
+(21/2-20+22/2)*(z1-22)
ex = exp(-rl2sgr*beta**2/2.d40)
quad = ~-rl2sqgr*ex/(1.d0-ex)/2
rcthir = rcsqgr**1.5d0
pexqg = -(quad/rcthir)*(3.d0*dotcl2**2/recsqr/rl2sqgr-1.40)/2.40

Result is now in atomic units, convert hartree/100

pexq = pexg*100.040
return
end

Calculate dvr points for harmonic oscillator eigenfunction
basis

Input: nmax

Output: r{() dvr points (without hbar/2*sqgrt(lambda) factor)

tl() transformation matrix

include ‘param.file’

parameter (ndm=150)

integer nmax

double precision r(ndm+l),tl (ndm+1,ndm+1)

double precision u{(ndm+l,ndm+l), fvl(ndm+1),
fv2 (ndm+1)

write(*,*) 'hopts'

Zero diagonal elements
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do 100 i=0,nmax
u(i+l,2)=0.
00 continue

Off diagonal elements

u(l,1)=0.0d40
do 200 i=1,nmax
u(i+l,1l)=sqgrt(dble(i))
00 continue

call rsb(ndm+l,nmax+1,2,u,r,1,tl,fvl,fv2,ierr)
write(*,*) 'ierr=',6ierr

Find kinetic matrix in HO basis:

<n'| (-hbar~2/2)d~2/dQ~2|{n>, which has diagonal elements:
2n+l (n=0..nmax) and diagonal-2 elements sgrt{n(n-1)]
(n=2..nmax), then transform to dvr

Input: nmax largest n in basis
tl transformation matrix from hopts
Output: ak kinetic matrix in dvr basis, without

omega*hbar/4 factor (lower triangle)
[omega = sqrt({lambda)]

include 'param.file’

parameter (ndm=150)

integer nmax

double precision tl (ndm+l,ndm+1),ak(ndm+1,ndm+1),
& adiag(ndm+l),adiag2(ndm-1),tlt(ndm+1,ndm+1),
& cmat (ndm+1,ndm+1)

write(*,*) 'hokin'

do i=0,nmax
di = dble(i)
adiag(i+l) = 2*di+l
if (i.ge.2) then
adiag2(i+l) = -dsqrt(di*(di-1))
else
endif
enddo

Zero K matrix
do i=1,nmax+1l

do j=1,nmax+1l
ak(i,j) = 0.0d40
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enddo
enddo

Transform to dvr:
K(dvr) = T{trans)K(fbr)T

* %

do i=1,nmax+1l ’
ak(i,i)=adiag(i)
if (i.gt.2) then
ak(i,i-2)=adiag2(i)
ak(i-2,1i)=adiag2(i)
endif
enddo

call transpos{ndm+l,tl,nmax+l,nmax+1,tlt)
call mms (ndm+1,nmax+1,tlt,ak,cmat)

call mms (ndm+1,nmax+1,cmat, tl,ak)

return
end

* Set up hamiltonian in HO/dvr basis

* Input: ak{) kinetic energy matrix {(without hbar*omega/4)
* vr() potential evaluated at dvr points (eV)
* nmax
* alambda = (2*pi*nu)”~2 in s°-2
*
*  Output: ham() hamiltonian in dvr basis (lower triangle)
*
include ‘'param.file’
parameter (ndm=150)
integer nmax
double precision ak(ndm+l,ndm+l),vr{ndm+1l),alambda,
& ham(ndm+1l,ndm+1)
do i=1,nmax+1 1* Zero Ham matrix
do j=1,nmax+1l
ham(i,j) = 0.0d40
enddo
enddo
factor=hbarev*dsqrt (alambda) /4.0d0
do 200 n=1,nmax+1
do 100 m=1,n '* Lower triangle only needed by rs
ham(n,m)=factor*ak(n,m)
100 continue

200 continue

do 300 i=1,nmax+1
ham(i,i)=ham(i,i)+vr(i)
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300 continue

return
end

Transform input coordinates to principal axis system

include 'param.file’

parameter (x=1,y=2,z=3,tiny=1.0d-2)

double precision coordin(natmaxc*3)

double precision rgmass,halmass

double precision rx(natmaxc),ry(natmaxc),rz(natmaxc),
& rh(natmaxc-1),th(natmaxc-1),ph(natmaxc-1),ti(3,3),
& prmoms (3),prcos(3,3),£v1i(3),£v2(3)

double precision pa{l10),px(10),p1(10),p2(10)},q(10)

common/anparams/polind, betaexq, cutexq, soconst,

& pa,px,pl,p2,q,polryg,polx, parg, pax, thetaé, c9anion,
& c9neut,nrg

write(*,*) ‘'prinaxes’

do i = 1,nrg+l

rx(i) = coordin(i*3-2)

ry(i) = coordin(i*3-1)

rz (i) = coordin(i*3)
enddo

* Find CM coordiantes, reset origin to CM

cmx=0.0d0
cmy=0.040
cmz=0.0d40
do i=1l,nrg
cmx = cmX+rgmass*rx(i)

cmy = cmy+rgmass*ry (i)
cmz = cmz+rgmass*rz (i)
enddo
tmass = nrg*rgmass + halmass )
cmx = (cmx + halmass*rx(nrg+l))/tmass
cmy = (cmy + halmass*ry(nrg+l))/tmass
cmz = (cmz + halmass*rz(nrg+l))/tmass
do i=1l,nrg+l '* Set origin to CM
rx(i) = rx(i) - cmx
ry(i) = ry(i) - cmy
. rz(i) = rz(i) - cmz
enddo

* Set up inertia tensor

x

do j=1,3
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do k=1,
til(j,
enddo
enddo

3
k) = 0.040

do i=1l,nrg

ti(x,x)
ti(y.,y)
ti(z,z)
ti(y,x)
ti(z,x)
ti(z,vy)
enddo

i = nrg+l

rat = halmass/rgmass

ti(x,x) =
elements
ti(y,y) =
ti(z,z)
ti(y,x)
ti(z,x)
ti(z,y) =

= ti(x,x)
= tily,y)
= ti(z,z)
= ti(y,x)
= ti(z,x)
= ti{(z.,y)

ti{x,x) +

ti(y,y) +
ti(z,z) +
ti(y,x) -
ti(z,x) -
ti(z,y) -

! *
ry (i)**2 +
rx(i)**2 +
rx(i)**2 +
- rx(i)*ry (i)
- rx(i)*rz (i)
- ry(i)*rz(i)

+ o+ o+

Rare gases (take rgmass = 1)
rz(i)**2 !* Diagonal elements
rz(i)**2
ry(i)**2

!* Below diagonals

!'* Halogen, mass weighted

rat* (ry (1) **2 + rz(i)**2) !'* Diagonal

rat* (rx(1)**2 + rz(i)**2)

rat* (rx{(i)**2 + ry(i)**2)

rat*rx (i) *ry (i) '* Below diagonals
rat*rx(i)*rz (i)

rat*ry(i)*rz (i)

call rs(3,3,ti,prmoms,1l,prcos, fvl, fv2,ierr)

* Transform to principal axis coordinates, using direction cosine

*  matrix.

do i=1,nrg+l
prcos (x,x)*rx (i) + prcos(y,x)*ry(i) +

Xnew =
&

ynew =
&

znew =

rx (i)

ry (i)

rz(i) =
enddo

write(*,*
write(*,*

enddo

prcos(z,x)*

rz (i)

prcos(x,y)*rx(i) + prcos(y,y)*ry(i) +
prcos(z,y) *rz (i)

prcos(x,z) *rx(i)
prcos(z,z)*

xnew

ynew
znew

)

rz(i)

+ prcos(y,z)*ry(i) +

) 'coords wrt principal axes'
do i=1l,nrg+l
write(*,*) rx(i),ry(i),rz (i)

xsum=0.0d0

do i=1,nrg+l
xsum + rx(i)
ysum + ry (i)
zsum + rz (i)

Xsum =
ysum =
zsum =

enddo

if (xsum.
do i =

1t.0) then

1,nrg+l
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rx(i) = -rx(i)
enddo
endif
if (ysum.lt.0) then
do i = 1,nrg+l
ry(i) = ~ry(i)
enddo
endif
if (zsum.lt.0) then
do i = 1,nrg+l
rz(i) = -rz(i)
enddo
endif

LR

Calculate r,theta and phi of rgs wrt halide

j=nrg+l
do i=1,nrg
rh(i) = dsqgrt((rx(i)-rx(j))**2+(ry(i)-ry(j))**2
& +{rz(i)-rz(j))**2)
ph(i) = atan{dabs(ry(i)/rx(i)))
1f (((rx(i)-rx(j)).1lt.0).and. ((xy(i)-rv(j)).ge.0)) then
ph(i) = pi - ph(i)
elseif (((rx(i)-xrx(j)).1lt.0).and. ({(ry(i)-ry(3j)).1t.0)) then
ph(i) = pi + ph(i)
elseif (({(rx(i)-rx(j)).ge.0).and. ((ry(i)-ry(j)).1lt.0)) then
ph(i) = 2*pi - ph(i)

if (dabs(ph(i)-2*pi).lt.tiny) then '* wraparound
ph(i) = 0.
endif
endif
if (dabs(ph(i)-2*pi).lt.tiny) then
ph(i) = 0.
endif
th(i) = acos(rz(i)/rh(i))
enddo

*

* Sort rgs by theta and then phi
1000 nswitch = 0
do i=1,nrg-1
do j=i,nrg
if (((th(i)-th(j)).gt.tiny).or. ({dabs(th(i)-th(j)).1le.
& tiny).and. ((ph(i)-ph(j)).gt.tiny))) then
tl rx(i)
t2 ry (i)
t3 rz(i)
t4 rh(i)
t5 th(i)
t6 ph(i)
ra(i) rx{j)
ry (i) ry(j)
rz(i) rz(j)
rh(i) rh(j)
th(i) th(j)

W o n uw nu
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ph(i) = ph(j)

rx{j) = tl1
ry(j) = t2
rz(j) = t3
rh(j) = t4
th(j) = t5
ph(j) = t6é6
nswitch = 1
endif
enddo

enddo
if (switch.ne.0) goto 1000

*

*
* If two axes are degenerate, rotate around the nondegenerate axis so
that

* the first rg atom not on the nondegenerate axis lies in the
direction of

* one of the degenerate axes

*

*

if (dabs(prmoms (x)-prmoms(y)).lt.tiny) then

write(*,*) 'x and y are degenerate (oblate symmetric top)'

j=20
do i=1,nrg
if ((j.eq.0).and. ((dabs(rx(i)).gt.tiny) .or.
& (dabs(ry(i)).gt.tiny))) then
j= i
endif
enddo

angle = atan{(dabs(ry(j)/rx(j)))

if ((rx(j).1lt.0).and.(ry(j).ge.0)) then
angle = pi - angle

elseif ((rx(j).lt.0).and.(ry(j).1t.0)) then
angle = pi + angle

elseif ((rx(j).ge.0).and.(ry(j).1lt.0)) then
angle = 2*pi - angle

endif

do i = 1,nrg+l

xnew cos (angle) *rx (i) + sin(angle)*ry (i)
ynew = -sin(angle)*rx(i) + cos(angle)*ry(i)
rx (i) = xnew
ry{i) = ynew

enddo

elseif (dabs(prmoms(z)-prmoms(y)).lt.tiny) then

write(*,*) 'y and z are degenerate (prolate symmetric top)'

j =0
do i=1,nrg
if ((j.eqg.0).and. ((dabs(rz(i)).gt.tiny).or.
& (dabs{ry(i)) .gt.tiny))) then
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jo= i
endif
enddo

angle = atan{dabs(xry(j)/xrz(3j)))

if ((rz(j).lt.0).and.(xry(3j).ge.0)) then
angle = pi - angle

elseif ((rz(j).lt.0).and. (ry(j).1lt.0)) then
-angle = pi + angle

elseif ({rz(j).ge.0).and.(ry(j).1t.0)) then
angle = 2*pi - angle

endif

do i = 1,nrg+l
znew = cos({angle)*rz(i) + sin{angle)*ry(i)

o

ynew -sin({angle) *rz (i) + cos(angle)*ry(i)
rz{(i) = znew
ry(i) = ynew
enddo
endif
*
* Calculate r,theta and phi of rgs wrt halide (AGAIN)
*
j=nrg+l
do i=1,nrg
rh(i) = dsqgrt({rx(i)-rx(j))**2+(ry(i)-ry(j))=**2
& +(rz(i)-rz(j))**2)
ph(i) = atan(dabs(ry(i)/rx(i)))

if (((rx(i)-rx(3j)).1lt.0).and. ({ry(i)-ry(j)).ge.0)) then
ph(i) = pi - ph(i)

elseif (((rx(i)-rx(j)).1lt.0).and. ((ry(i)-xry(j)).1t.0)) then
ph(i) = pi + ph(i)

elseif (((rx(i)-rx(j)).ge.0).and. ((ry(i)-ry(j)).1lt.0)) then
ph{(i) = 2*pi - ph(i)
if (dabs(ph(i)-2*pi).lt.tiny) then !'* wraparound

ph(i) = 0.

endif

endif

if (dabs(ph(i)-2*pi).lt.tiny) then
ph(i) = 0.

endif

th(i) = acos(rz(i)/rh(i))

enddo
*

* Sort rgs by theta and then phi (AGAIN)
*
1010 nswitch = 0
do i=1l,nrg-1
do j=i,nrg

if (((th{(i)-th(j)).gt.tiny).or. ({dabs(th(i)-th(j)).le.

& tiny) .and. ((ph(i)-ph(j)).gt.tiny)}) then
tl = rx(i)
t2 = ry(i)
t3 = rz(i)
td = rh(i)
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* % 4l

*

* o %

t5 = th(i)

t6 = ph(i)
rx(i) = rx(3)
ry(i) = ry(3)
rz(i) = rz(3j)
rh(i) = rh(3j)
th(i) = th(j)
ph(i) = ph(j)
rx(j) = til
ry(3) = t2
rz(j) = t3
rh(j) = t4
th(j) = t5
ph(j) = t6
nswitch = 1

endif
enddo

enddo

if (switch.ne.

write(*, *)

0) goto 1010

write(*,*) ‘'coords wrt principal axes X,y.,z,r,theta,phi’

do i=1l,nrg+1

write(*,150) rx(i),ry(i),rz(i),rh(i),th(i)*180./pi,
ph(i)*180/pi

&
enddo

50 format (6£10.4)

do i = 1,nrg+l
coordin(i*3-2)
coordin(i*3-1)
coordin(i*3)

enddo

return
end

rx(i)
ry (i)
= rz(i)

& evs2,wis2, fcfs, totfcf,nsticks,nmode, sticks)

Input nmax

nanshow

nnshow
vtemp

origin

evs(m,1)

wistm, 1,3)
evs2(m, i)

wis2(m,1i,3)

maximum n in basis (# dvr points = nmax+1l)

number of anion eigenvalues to use

(same for all modes)

number of neutral eigenvalues

vibrational temperature
(in K, same for all modes)

anion

position of 0-0 line (in cm-1)
eigenvalues, m=mode

(in eV, from well bottom)

(ev,

from well bottom)

neutral wavefunctions of second state
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Output fcfs(m,i,3) single mode fcfs: m=mode,
i=anion, j=neutral #quanta in mode
totfcf(m,1i) Total fcfs in mode m from anion v=i
nsticks number of vib sticks generated

nmode ((1,2],m,i) number of quanta in mode m of stick i
l=anion, 2=neutral

* o+ A F F ¥ ¥

* sticks((1 or 2},1i) stick spectrum l->position (cm-1)
* 2->intensity (not normalized), i=index
include 'param.file’
parameter (ndm=150, nmmax=18, evtokelv=11604.45,cut=0.01)
double precision wfs(nmmax,ndm+l,ndm+l),wfs2 (nmmax,ndm+1,ndm+1),
& evs(nmmax,ndm+l),evs2 (nmmax,ndm+l), fcfs (nmmax,ndm+1,ndm+l),
& totfcf(nmmax,ndm+l),sticks(2,1000)
double precision pa(l10),px(10),pl1(10),p2(10),q(10)
integer nmode (2, nmmax, 1000) 1* 1=lower, 2=upper, nmmax=mode
index
* 1* 1000 stick index
integer ma (nmmax) ,mn {nmmax)
!'* anion, neutral mode indices (#quanta
'* in mode)
logical carry,switch
common/anparams/polind, betaexq, cutexq, soconst,
& pa,px,pl,p2,q,polrg,polx,pqryg, pax, thetaé, c9anion,
& c9neut,nrg
*
write(*,*) 'calcfcfs’
orgev = origin/evtocm
%
* Calculate single mode fcfs
*
nmde = (nrg+l)*3-6
do m = 1,nmde '* loop over modes
do i = 1,nanshow '* loop over anion state
totfcf(m,i) = 0.0d40
do j = 1,nnshow '* loop over neutral state
fct = 0.040
do k = 1,nmax+1l t* loop over dvr points
fct = fct + wis(m,k,1i)*wEs2 (m, k,J)
enddo
fcfs(m,i,j) = fct*fct
totfcf(m,i) = totfcf(m,i)+fcfs(m,1i,3)
enddo
enddo
enddo
Calculate vibrational sticks, Including combination bands
do m=1,nmde
ma(u) = 0
mn(m) = 0
enddo
nsticks = 0
c
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c
Calc stick
write(*,*) ‘'calculating vsticks’
100 if (.true.) then
ncount = ncount+l

endif
aterm = 0.0d40 '* anion energy above v=0
bterm = 0.040 t* neutral
do m = 1,nmde
aterm = aterm + evs{m,ma{m)+l) - evs{m,1l)
bterm = bterm + evs2(m,mn{m)+1) - evs2(m,1)
enddo

stickl = orgev - aterm + bterm
boltz = exp(-aterm*evtokelv/vtemp)
stick2 = boltz
do m=1,nmde
stick2 = stick2 * fcfs(m,ma(m)+1,mn(m)+1)
enddo
if (stick2.ge.cut) then
nsticks = nsticks + 1
sticks(l,nsticks) = stickl*evtocm
sticks(2,nsticks) = stick2
do m = 1,nmde

nmode (1, m,nsticks) = ma(m)
nmode (2,m,nsticks) = mn(m)
enddo
endif
carry = .true. 1* increment neutral mode indices

do m=1,nmde
if (carry) then
if {(mn{m).lt.nnshow-1) then
mn(m) = mn{m) + 1
carry .false.
else
mn {(m)
endif
endif
enddo

if (carry) then '* if neutral modes all zeroed, then inc

0

anion
do m=1,nmde
if (carry) then
if (ma{m).lt.nanshow-1l) then
ma(m) = ma(m) + 1
carry = .false.
else
ma (m)
endif
endif
enddo
endif
if (carry) then
goto 200
endif
goto 100

0
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200 write(*,*) ncount
*

* Sort sticks
*

write(*,*) 'sorting sticks'

500 switch = .false.
do i=1,nsticks
do j=i+l,nsticks

if (sticks(l,i).gt.sticks(l,j)) then
stempl = sticks(1,1i)
stemp2 = sticks(2,1i)
sticks(1,3)
sticks(2,3)
stempl
stemp?2

sticks(l,1i) =
sticks(2,1i)
sticks(1,3)
sticks(2,3)
do m=1,nmde

1

"

mtempl = nmode(l,m,1i)
mtemp2 = nmode(2,m,1)

nmode (1,m, i)

nmode (2,m, i)

nmode (1,m, j)

nmode (2,m, j)
enddo

switch = .true.

endif
enddo
enddo
if (switch) goto 500

return
end

Ref: Ernesti & Hutson,

* % %

Input: betain
(a0/10)~-1

* thetaé6
(e*a0"8)

nmode (1,m, j)
nmode (2,m, j)
mtempl
mtemp2

Exchange quadrupole-dipole & dispersion quadrupole

Phys. Rev. A v.51,p.239

Exchange quadrupole range parameter

quadrupole dispersion coefficient

* ax,ay,qz(ncl+l) Rg, halide coordinates (a0/10)

*  Qutput: potout
*

include 'param.file’

potential (hartree/100)

double precision betain, thetaé

double precision gx(ncl+l),qgy(ncl+l),gz(ncl+l),

& dx(ncl+l),dy(ncl+l),dz(ncl+1}),

& rijx(ncl+l,ncl+l),rijy(nci+1,ncl+l),rijz(ncl+l,ncl+1),
& rij2(ncl+l,ncl+l),rij3 (ncl+l,ncl+ly,rijl(ncl+i,ncl+1)

beta = betain*10.0d0
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* % A A F

nhal = ncluster+l

do i = 1,ncluster !'* Relative Rg-Rg and Rg-X vectors
do j = i+l,ncluster+l !* (rij is vector from Rg j to Rg i)
rijx(i,J) = (@x(i) - gx(j))/10.040 !* Convert to a0

rijy(i,j) = (qv(i) - qy(j))/10.040
rijz(i,j) = (qz{i) - gz(3j))/10.040

rijx(j,i) = -rijx(i,Jj)
rijy{j.i) = -rijy(i,3)
rljZ(j,i) = —rijZ(i,j)
rij2(i,Jj) = rijx(i,j)**2+rijy(i,j)**2+rijz(i,F)**2

rijl(i,j) = dsqgrt(rij2(i,j))
rij3(i,j) = riji(i,j)**3
riji(j,i) = riji(i,j)
rij2(j.i) = rij2(i,J)
rij3(j,i) = rij3(i,3j)
enddo
enddo

Zero out dipoles

do i = 1,ncluster

dx(i) = 0.0do0

dy (i) = 0.0do0

dz(i) = 0.0d0
enddo

Add contribution to Rg dipoles from exchange quadrupole and
dispersion quadrupole between each pair of Rgs

do i = 1,ncluster-1
do j = i+l,ncluster

ex = exp(-(beta**2)*rij2(i,3j)/2.0d40)
exquad = -rij2(i,j)*ex/(1.0d40-ex) /2
& +thetab6/ (rij3 (i, j)**2)
exdip = exquad/rij2(i,j)/2.0d40
dx(i) = dx(i)+exdip*rijx(i,3j)
dy (i) = dy(i)+exdip*rijy(i,j)
dz (i) = dz(i)+exdip*rijz(i,j)
dx(j) = dx(j)+exdip*rijx(j, i)
dy(3j) = dy(j)+exd@ip*rijy(3j,1i)
dz(j) = dz(j)+exdip*rijz(j,i)
enddo
enddo

Compute charge-dipole interactions

ved = 0.040
do i = 1l,ncluster
dotprod = dx(i)*rijx(nhal,i)+dy{i)*rijy(nhal,i)

& +dz (i) *rijz (nhal, i)
ved = ved - dotprod/rij3(nhal,i)
enddo
potout = vcd*1.0d2 !'* Convert to hartree/100
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return

end
A ommoo=oo—-o oSS EECCS ST ES ST CSSSSCSSSS =SS SSESSSSSSESSssSs=====ss
subroutine vinddg(polrg,polx,pqrg, pax, X, qy.gz,dp,dhalpair,
& drgpair,ghalpair,qrgpair, gp,vcd,veq,potout)
*============================================================

See Section C5.7 (file "pforce.f") for a complete listing of this subroutine
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