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Abstract 

Orbits that are chaotic will tend to phase-mix 
exponentially through their accessible phase space.  This 
phenomenon, commonly called “chaotic mixing”, stands 
in marked contrast to phase mixing of regular orbits.  It is 
inherently irreversible, and thus its associated e-folding 
time scale sets a condition on any process envisioned for 
emittance compensation.  Accordingly, two questions 
arise.  First, under what conditions does chaotic mixing 
manifest itself in beams?  Second, when it is active, over 
what time scale does it operate?  The work described here 
is part of an ongoing effort to answer these questions. 

1 INTRODUCTION 
We adopt the viewpoint that, under the influence of 

space charge, the evolution of beams, and of confined 
nonneutral plasmas in general, may be understood in 
terms of phase mixing of the constituent particle orbits.  
For example, linear Landau damping is merely phase 
mixing of regular orbits [1], a process by which initially 
neighboring orbits diverge secularly, i.e., as a power law 
in time [2].  A given space-charge potential may or may 
not support a population of globally chaotic orbits, i.e., 
orbits that wander over a large portion of their accessible 
phase space.  Initially neighboring globally chaotic orbits 
fill their accessible phase space exponentially, a process 
known as "chaotic mixing" that was initially conceived in 
the astrophysical context of galactic dynamics [3,4].  
When a substantial population of globally chaotic orbits 
exists, it irreversibly dissipates correlations.  In beams the 
consequence is an irreversible emittance growth [5]. 

Inasmuch as chaotic mixing is irreversible and acts 
exponentially, it is essential to identify conditions for its 
presence in beams, and to quantify the time scale of the 
associated dynamics.  In connection with coherent 
synchrotron radiation, the subject of this Workshop, one 
needs to bracket the conditions for compensating against 
the correlated emittance growth it can generate.  This 
paper constitutes a status report on a collaborative 
investigation oriented toward deciphering conditions that 
support chaotic orbits, and time scales for chaotic mixing. 

2 RESULTS OF THEORY 
A semianalytic theory exists that relies on assumptions 

of ergodicity and a microcanonical distribution to 
estimate the largest Lyapunov exponents, i.e., the chaotic-

mixing rates, in lower-dimensional, e.g., fully coarse-
grained, time-independent Hamiltonian systems [5].  
Chaos arises generically from a parametric instability that 
can be modeled by a stochastic-oscillator equation; 
linearized perturbations of a chaotic orbit satisfy a 
harmonic-oscillator equation with a randomly varying 
frequency.  The underlying assumptions are, strictly 
speaking, invalid, yet the theory commonly yields 
estimates that are good to within a factor ~2 [6]. 

Applied to space-charge potentials, the theory yields an 
estimate of the chaotic-mixing rate  as: 
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focusing frequency and the plasma frequency measured at 
the system's centroid, respectively,  is the density 
normalized to the centroid density, and "〈q〉" denotes a 
phase-space average of quantity q weighted by the 
microcanonical ensemble.  In a system that is moderately 
out of equilibrium, one would expect to have  ~ 1 
typically, for which /f ~ 0.82, with f  1/2��� � 
representing the "dynamical frequency", i.e., the average 
orbital frequency.  Thus, in such systems, the chaotic-
mixing time scale is roughly one dynamical time. 

This result, combined with concerns about regular 
phase mixing of large correlations as well as the 
impracticality of knowing the detailed phase-space 
structure of a beam at every point along an accelerator, 
leads to a conservative criterion for successful emittance 
compensation.  Specifically, for one to be reasonably sure 
of its efficacy, a process of emittance compensation, i.e., 
removal of correlations within the beam, should be 
completed within a plasma period as measured from the 
source of the correlations.  Expressed in terms of beam 
parameters, this criterion is [5] 

K(MeV) > 2.5{Q(nC)[H(m)]2/[X(mm)Y(mm)Z(mm)]}1/3, 

in which K is the beam’s kinetic energy, Q is the bunch 
charge, H is the beamline length occupied by the 
emittance-compensation hardware, and (X,Y,Z) are the 
root-mean-square (x,y,z)-dimensions of the bunch, 
respectively.  Let us hypothesize that the hardware 
occupies H = 5 m.  Then, for example, given beam 
parameters of Jefferson Lab’s IRFEL Demo [7] (Q ~ 0.1 

___________________________________________  

*Research supported by U.S. DOE contracts DE-FG02-94ER40855, DE-
FG02-92ER54178, DE-AC02-76CH00300, and NSF AST-0070809. 
†clbohn@fnal.gov 



nC, rms beam dimensions ~ 1 mm), compensation should 
succeed at T > 3 MeV, i.e., anywhere after the injector.  
And for beam parameters of a TESLA FEL (Q ~ 1 nC, 
rms beam dimensions ~ 0.1 mm), compensation should 
succeed at T > 70 MeV.  The injector envisioned for the 
TESLA FEL will deliver ~140 MeV beam [8], so 
emittance compensation downstream from the injector 
would appear to be viable. 

3 NUMERICAL EXPERIMENTS 
3.1 Equipartitioning 

In a recent computational study using the 2-1/2 D 
version of the particle-in-cell code WARP, we discovered 
strong evidence that chaotic mixing is intimately 
connected with equipartitioning in beams [9].  This work 
concerned a highly space-charge-dominated, direct-
current, cylindrical beam in which the initial momentum 
space reflected an anisotropic pressure such that pxx=2pyy.  
As the beam evolved, the pressure became increasingly 
isotropic on a rapid time scale.  Though the relaxation 
time for two-body collisions in this beam corresponds to a 
propagation distance ~1 km, the beam equipartitioned in 
only ~5 m, followed by anisotropic pressure oscillations 
that largely damped by ~50 m.  The underlying dynamics 
is manifestly collisionless.  The equipartitioning time 
scales were seen to correlate with the evolution of initially 
localized ensembles of particles.  As indicated in Fig. 1 on 
the next page, these ensembles expanded exponentially 
with an e-folding "time" ~2 m, which is about two plasma 
periods, and filled their accessible phase spaces in ~50 m.  
Moreover, plots of individual orbits appeared to reflect 
globally chaotic behaviour in keeping with the 
exponential dynamics.  The beam parameters for this 
experiment were a plasma period of 1.14 m and x and y 
betatron focusing periods without space charge of 1.63 m.  
Inserting these numbers, along with =1 and 〈 〉=1, into 
Eq. (1) yields an estimated e-folding (mixing) time ~2.0 
m, in fortuitous agreement with the simulation. 

This first study comprises a form of "symmetry 
breaking", wherein the broken symmetry is in momentum 
space rather than configuration space.  The beam thus 
begins in a nonequilibrium state, and it evolves toward a 
metaequilibrium in which the particle orbits have filled an 
invariant measure of phase space.  The transient dynamics 
reflects an intricate, evolving network of space-charge 
waves that set up a complicated potential in which a 
substantial population of particle orbits becomes globally 
chaotic.  By contrast, the symmetric, isotropic system 
establishes a potential that is integrable, in which the 
orbits are accordingly regular. 

3.2 Five Beamlets in Smooth Transport Channel 
A well-known experiment in accelerator physics is that 

of M. Reiser and collaborators [10] concerning the 
propagation of five beamlets in a periodic solenoidal 
transport channel.  The beam is nonrelativistic and subject 
to considerable space-charge forces. The relaxation time 

via two-body collisions in this beam corresponds to a 
propagation distance ~1 km.  Yet, regardless how well the 
beam was root-mean-square (rms) matched to the 
transport channel, the beamlets were seen to reappear 
only once, at a point ~1 m from the source.  Their failure 
to reappear again would seem to reflect a collisionless 
process that, in effect, causes the particle orbits to lose 
memory of their initial conditions.  As discussed in Ref. 
[10], simulations with a particle-in-cell code well 
reproduced the measurements. 

To explore how chaotic mixing influences the dynamics 
of such a manifestly nonequilibrium beam, we simulated 
the experiment using WARP.  Our simulation differed 
from the experiment only in that we took the transport 
channel to impart a constant, linear external focusing 
force, whereas in the experiment the channel comprised a 
periodic solenoidal focusing lattice.  Nonetheless, our 
simulation results correlate well with the measurements. 

The strongly time-dependent space-charge potential 
drives a large population of globally chaotic orbits.  
Figure 2 on the next page illustrates how orbits of 
representative test particles evolve. The test particles 
interact with the potential but not with each other.  One 
sees that typical ensembles that are initially localized in 
phase space grow exponentially to fill much of their 
respective accessible regions of phase space.  Meanwhile 
the five beamlets lose their identity. 

In this experiment, though chaotic orbits are easily 
found, it is difficult to separate the macroscopic influence 
of chaotic mixing from that of linear phase mixing of the 
five beamlets.  Because the beamlets are large, they span 
a broad band of orbital frequencies in the initial potential.  
Accordingly, they smear through large regions of phase 
space and quickly overlap.  One can be sure, however, 
that chaotic mixing is active over the bulk of phase space. 

Analogous behaviour is seen in simulations of a rms-
mismatched five-beamlet system, except now there is an 
additional phenomenon, namely, the formation of a 
prominent halo.  Indications from the simulation are that 
the halo forms via parametric resonance with oscillations 
of the global potential as envisioned by Gluckstern [11].  
Yet microscopic processes can stochastically convert core 
orbits to halo orbits and vice versa, thereby providing a 
mechanism for the production of "new halo" [12]. 

3.3 Chaos in Time-Independent Potentials 
In the spirit of trying to decipher conditions that lead to 

chaos in beams, we now explore time-independent 
potentials in thermal equilibrium [13].  The corresponding 
density profiles for beams in which space charge is strong 
are constant near the bunch centroid, and at larger radii 
they decay over a Debye length to a low-density tail.  In 
the Debye fall-off, the net force on a particle is nonlinear, 
and it is of interest to determine whether this force can 
support a substantial population of chaotic orbits.  Of 
course, all spherically symmetric systems are integrable 
and support only regular orbits.  In general, however, a 
system will be aspherical because the external focusing  is 



  

 

  

 

Figure 2: Evolution of five representative ensembles of test particles in the five-beamlet simulation.  Beam parameters
are: 5 keV energy, 44 mA current, 4.6 mm radius, and 64.8 m full (90%) emittance.  The left panel shows snapshots of
the ensembles at (top-to-bottom left column) 0 m, 0.98 m, 2.88 m and (top-to-bottom right column) 5.24 m, 11.52 m,
31.68 m.  The right panel shows the evolution of the natural logarithm of the x and y "emittance" moments of the
ensembles.  Note that the cyan ensemble is "artificial" in that it begins outside of the real beam.  With the exception of
the cyan ensemble, the early-time evolution of all of the ensembles is exponential. 

Generally clear exponential 
growth, indicating chaotic mixing 

is active. 

Figure 1.  Equipartitioning in a cylindrical beam matched to a uniform transport channel.  Beam parameters are 10 keV
energy, 100 mA dc current, 1 cm radius, and 0.13 space-charge tune.  The left panel shows x and y emittances versus
position from source.  The right panel shows the evolution of the natural logarithm of the "emittance" moment of
representative ensembles, reflecting exponential growth and saturation over global portions of phase space. 
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generally anisotropic in a reference frame comoving with 
the beam.  We are working toward quantifying the 
relationship between the anisotropy of the beam and the 
population of chaotic orbits. 

The methodology for exploring these systems 
computationally is to integrate orbits that start form a very 
close distance in phase space, i.e., by placing them with 
zero initial velocity at nearby points in configuration 
space.  Because the coarse-grained net force in these 
systems is conservative, the total particle energies E are 
conserved.  The integration proceeds for about one 
dynamical time, at which point the Lyapunov exponent is 
calculated from the particle separations.   The integration 
is then "renormalized" to bring the orbits close again, and 
the process is repeated until the Lyapunov exponents 
converge, which typically corresponds to a duration of 
~200 dynamical times. 

One example is provided in Fig. 3 above.  Upon 
expressing all lengths in units of the Debye length as 
measured at the bunch centroid, and all times as the 
product of po with the real time t, one obtains the 
dimensionless potential-density pair 

 

(x) = ( 2/2)[(b/a)2 x2 + y2 + (b/c)2 z2] + sc(x), (2) 
n(x) = exp[- (x)];    
 
wherein  and (a,b,c) denote the strength and scale 
lengths, respectively, of the external focusing field, and 

sc(x) is the space-charge potential. Fig. 3 pertains to a 
triaxial configuration corresponding to  2 = 1.0002/3; 
(a/b)2 = 0.75, (c/b)2 = 1.25.  The results reflect statistics 
from large, ~2000-particle, samplings of orbits that were 
started at zero velocity at various points in configuration 
space (corresponding to various total particle energies E).  
Plotted in Fig. 3c is the largest Lyapunov exponent, i.e., 
the chaotic-mixing rate of these orbits, normalized to the 
dynamical frequency.  The theoretical result of Eq. (1) 
well matches the numerical result. Though this particular 
potential does admit chaotic orbits, they constitute only a 
modest 5% of all of the sampled orbits.  However, of all 
orbits that reach into the density drop-off (9 < r < 14; cf. 
Fig. 3b), about 9.5% are chaotic, defined as having 
mixing rates in excess of 0.1 dynamical frequency.  As 
the configuration is shaped to be more and more 
axisymmetric, the percentage of chaotic orbits decreases 
as shown in Fig. 3d.  The converse turns out also to be 

Figure 3.  Results of a study of orbits in an example thermal-equilibrium bunch.  (a) A representation and parameters of 
the coarse-grained configuration.  (b) Plot of density along the y-axis showing the near-uniform central region and the 
Debye fall-off.  (c) Plot of largest Lyapunov exponent, normalized to the average orbital frequency, versus total particle 
energy E.  (d) Plot of the percentage of orbits that are chaotic for fixed (c/b)2 = 1.25, out of all orbits that start at zero 
velocity within 11 < r < 25 (corresponding to 0.5 < E < 60), versus the square of the scale-length ratio a/b. 
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true.  However, even in a cylindrically symmetric (a = b) 
but more prolate configuration for which, e.g., (c/b)2 = 2, 
25% of the orbits that reach into the density fall-off are 
chaotic.  This is a significant result, in that density 
perturbations arising from irregularities in the external 
force will tend to appear in the Debye tail, and the 
sizeable percentage of chaotic orbits will work toward 
irreversibly mixing these perturbations away.  Work is in 
progress to quantify the entire parameter space of the 
potential in Eq. (2), as well as to look at the impact of 
closely related nonequilibrium configurations on the 
population of chaotic orbits. 

4 SUMMARY AND FUTURE WORK 
We have been probing the microscopic, i.e., orbital, 

dynamics in space-charge potentials.  Specifically, we 
have presented a study of phase mixing, and have paid 
special attention to phase mixing of chaotic orbits for 
which the associated macroscopic dynamics is both 
irreversible and typically rapid.  For emittance 
compensation to succeed, it needs to be completed before 
irreversible phase mixing has evolved substantially. 

The question we have posed is: What conditions lead to 
a significant population of chaotic orbits in a space-
charge potential?  By "chaotic", we mean orbits that 
exponentially fill their accessible phase space -- they are 
"globally" chaotic, or "wildly" chaotic.  We have sought 
to answer this question by studying both nonequilibrium 
beams and beams that are in thermal equilibrium.  Our 
results thus far suggest the notion that chaotic orbits are 
common in space-charge configurations that are out of 
equilibrium, and they are present in both nonequilibrium 
and equilibrium configurations to a degree that tends to 
increase with increasing asymmetry. 

What has been described herein is work in progress.  
Other aspects of the question that we intend to consider 
involve the influence of "noise", both white noise and 
colored noise, on the population of chaotic orbits.  The 
motivation is simple: If there is a significant population of 
chaotic orbits, then it will be responsible for washing out 
irregularities in a fast, irreversible fashion. 

A few words are in order to contrast our work with 
more conventional approaches based on modal analysis. 
When doing a mode decomposition of an inherently 
granular many-particle system, one is in effect imposing a 
prescription for coarse-graining the distribution, and is 
thereby focusing on macroscopic properties of the system.  
In a fully self-consistent paradigm, the modes will evolve 
according to how the particle orbits behave.  If one or 

more modes are unstable, the instability manifests itself in 
the migration of particles through phase space.  In the 
modal analysis the migration is "smoothed out" because 
the distribution is coarse-grained.  By contrast, chaotic 
mixing (more generally, phase mixing) is linked directly 
to the behaviour of the particle orbits themselves.  So a 
study of phase mixing enables one to pinpoint how the 
particles migrate -- the qualitative behaviour, time scales, 
etc. -- something one cannot do with a mode 
decomposition that describes only macroscopic behaviour 
of the coarse-grained system.  As concerns the evolution 
of the overall phase space, one will get the same answer 
with either approach provided the modal coarse-graining 
is sufficiently accurate to represent the essential details 
(and this is the key question that confronts all modelers in 
that some form of coarse-graining is necessarily inherent 
to all simulation tools). 

In summary, the phenomena of "instabilities" and phase 
mixing must be inextricably linked.  Mode evolution tells 
us what is going on macroscopically, whereas mixing tells 
us what is going on microscopically.  If one were to 
concentrate on the evolution of the Klimontovich 
distribution, which is the only valid distribution in 
principle, then one would be directly studying the 
dynamics of mixing rather than modes. 
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