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Crystallographic Groups, Groupoids, and Orbifolds 
Carroll K. Johnson, Chemical and Analytical Sciences Division, Oak Ridge 

National Laboratoryi Oak Ridge, Tennessee 37831, USA; johnsonck@loml.gov. 

Outline In this note, We first discuss the relationship among cryst&ogrnptic 
lattice groups, space groups, and point groups by using a short exact sequence, 
then in footnotes indicate the ciassification of those groups. We then intro- 
duce screw and glide gtoupoids as an extension of point groups in a new exact 
sequence, and list the one-translational-dimension screw and glide groupoids, 
which require torus and truncated cylinder projection representations in ad&- 
tion to the spherical projection used for point groups. We then briefIy discuss the 
two and three translational dimension groupoids associated with the remaining 
point groups. 

Examples of space groups and their groupoid based nomenclature, which is 
mainly the extended Hermana-Mauguin international crystallographic nomen- 
clature system plus a ape&c type of coset decomposition, are then given. Next 
the crystallographic orbifolds are defined and some application problems as 
sociated with orbifolds discussed. F’maily, ‘the derivation of might be called 
“orbifoldoids” is suggested as future research. 

Introduction The International Tables for Crystallography, Volume A, Space 
Group Symmetry (ITCrA), T. Hahn ed is the standard reference for the crys- 

2 tallographic groups. Much of that information can be reformulated in terms 
of screw and glide groupoids as used by M.A. Jaswon and M.A. Rose% their 
concise rederivation of the 230 space groups and 1191 color spaces. The crys- 
tallographic groups can also be given a geometric topology interpretation using 
orbifolds, as described on our website on crystallographic topolog~.~ The present 
note attempts to compare and combine these diverse approaches, and was pre 
pared as lecture material for an “Orbifolds, Groupoids, and their Applications” 
workshops held in Bangor, Wales, UK, September ll-15,2009. 

Crystallographic Groupo The crystailographic groups are related through 
the group extension exact sequence 

O+B+G(3)+Q+l. 

Bravaia lattices B is the set of 14 Bravais lattices” with five centering 
typea (primitive P, body I, face F, side A/B/C, and rhombohedral R). For 

IOak Ridge Natioael Laboratory ie mauaged and operated by UT-Batelle, LLC, for the 
U.S. Departmeat of Energy under contract DEACOSlOOR2a723. 

‘A u&W wehelte for oo line space group transfo~tioo algebra Caculatione in the Bilbao 
CrytWlogrephic Serwr a: http://wsnr.cryst.ehu.e8/cryet 

%f.A. Jasmw~ sod M.A. Row ‘Qystal Symmety: Thwry of Colour CryataUography, 
“E& 198%, 

‘cqwwog&hic Topology 101. http://~.ornl.gav/ort~p/tapolo~.~~ 
8httpz//xmw.~.ac.uk/majuewe /orbifold/welcome.html 
eBravaia lattice6 (symmetry point group in parentheeee) for the 230 epace group are 

distributed M follow acrcae the eeveo cryetal &wee: triclinic (i) 2 P; monoclinic (2/m) 8 P, 
5 C; orthorhotic (2/m 2/m 2/m) 39 P, 15 C, 9 I, 5 F; tetragonal (4/m 2/m 2/q) 49 P, 19 
I; trigonel (3 12/m) 18 P, 7 R; hexqotml(6/m 2/m 2/m) 27 P; and cubic (4/m 3, 2/m) 15 
P, llF,91. 
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the body-centered case (B = I), the in&&e translation group is {Z3, Zs + 
(l/2,1/2,1/2)) with Z3 the triplet of all integers. 

Point Groups The set Q contains t& 32 gxw&rir, cqstakka~ @n% 
groups7 which are a s&ret of the classical iinite special orthogoneJ groups 
SO(3), except that the groups with 5-fold symmetry elements have been omit- 
ted. The point groups are usually visualized using projection onto the a-sphere 
S2 from its center point. The point groups have no translation components. 

Space Groups G(3) is the set of 230 geometric space group types, each 
an infinite group. There are an infinite~number of space groups, but the space ..l,ll_ 
group types are those with minimum volume unit celi. 

Symmorphic Space Groups Of the 230 space group types, 66 are sym- 
morphic (i.e., with no screw or glide operators, thus leaving one common origin 
point fixed). For the symmorphic cases, we have Q = G(3)/B, allowing the use 
of the direct product G(3) = Q @ B, but this equality does not hold for the 
remaining 164 cases. To alleviate this problem Jaswon and Rose introduced the 
screw and glide groupoids described below. 

Groupoid A groupoide has group-like properties but ia less restrictive. A 
groupoid allows any number of origins. A group is a groupoid with one origin. 
We can have several groups with different origins as components of a groupoid. 
We can even cut out a piece of an infinite group and define it as a groupoid, and 
that is what we do for infinite screws and glides by using a module(1) function 
for translations so that a lattice translation cannot occurs within a groupoid 
set. Consequently, the groupoids are disjoint from the Bravais lattice. 

Screw and Glide Groupoids Deviating slightly from the procedure of 
Jaswon and Rose, we include the point groups in our definition of a aet of 186 
screw and glide groupoids, Q*, as Q’ = G(3)/B for all 230 space group types. 
Thus, we may write 

0 + B -+ G(3) -+ Q’ + 1, 
Crystal classes are character&d by the point group symmetry (in parenthesis) of all lattice 

points surrounding an arbitrary origin lattice point. The Bravais lattice flock of 14 is obtained 
by combining the trigonal and hexagonal entries. 

‘The distribution of the number of space groups, in parentheses, for each point groups 
in each crystal classes follows. ‘Ikiclinic: (1) 1, (1) i; Monoclinic (3) 2, (4) m, (6) 2/m; 
Orthorhombic: (9) Z&!, (23) mm2, (28) 2/m 2/m 2/m; Tetregonab (614, (2) 4, (6) 4/m, 
(10) 422, (12) 4mm, (12) JZrn, (20) 4/m 2/m 2/m; Trignal: (4)’ 3,12) 3, (7) 312, (6) 3m1, 
(6) 312/m; Hexagonal: (6) _S, (1) 6, (2) 6&n, (6) 622, (4) 6mm, (4) 6m2, (6) 6/m 2/m 2/m; 
and Cubic: (6) 23, (7) 2/m 3, (8) 432, (6) 43m, (10) 4/m 3 2/m. 

In these 32 ditkent point groupe, the integers n = 2,3,4,6 are n-fold rotation axes, and 
the symbol n/m has a mirror perpendicular to the n-fold rotation axes. A simple m denotes 
a mirror perpendicular to an implied axis, such as a unit cell axis, which is a function of its 
position in the &$nt group symbol. The identity operator is 1 and the center of inversion i. 
The symbols 3 and 3 represent Wereion axes (a line rotation followed by a point inversion), 
but the 3 symbol is meaningful only with the line segments of orbifolds. 3 is a superposition 
of 2 and 2 (i.e., a has subgroup 2). The 8 symbol is an legacy oddity which means 3/m. 
Point group notation examples are discussed later in, the broader context of screw and glide 
groupoids, which include the point groups. 

%. Brown, ‘Ram groups to groupoids: a brief survey’, Bull. London Math. Sot., 19 
(1987) 115134. 
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and use the direct product G(3) = Q’ @ B to define aI1 space groups in terms 
of groupoids and Bravais lattices. Both Q’ and B-may have certain rational 
translation components j/k in their coordinate triplet based on unit-cell axes. 
For the f&x&e groupoid Q’, the translatkn components are restrkted tz+ b\ < 
k(k = 2,3,4,6) !ay .&be uwz of the zndd.@~ - rcdti&im %a a qecific origin 
in Euclidean bspace, @, which as stated previously is the reason why &* is a 
groupoid rather than a group). 

Q” for a specific space group of G(3) is. exactly the finite set of coordinate 
operators listed in the general Wyckoff site of ITCrA, except that the Rravais 
lattice centering operations are not included. 

To Groupoide’ The T” groupoids are the 32 point groups. They produce 
the 66 symmorphic space groups. 

T1 Groupoids and Their Subgroupoids We define an n-foId cyck 
group as the set of crystallographic operators 

(n) = {I, K, K2, . . . . Knwl}; K” = I, 

and an nj fold screw as the set 

{nj} = (~,T~~“K,T2~f”K2,...,T(“~‘)~~“Kn~’}~ K* = I, 

with the pth operator T(pjfl”Kp, p = 0, 1, . . . . n - 1. To form the screw groupoid 
we change ail operators to T(fpjln))modu(o(l) KP, p = 0, 1, . . . . n - 1, with 2’ the 
vector translation of unit length from the origin. An example groupoid set is 

63 = {I,T”26,62,T”263,64,T”a6b), 

which has subgroupoids 21 = {I, T’/a63) and 3 = (I,65 S4). 
The screw groupoids listed below, with their parent point groups in square 

brackets and all subgroupoids in parentheses, were derived from ITCrA Table 
Ud, which defines the graphical symbols. A single glide (g) without a screw 
normal to the glide plane will also have translation dimension one in the glide 
direction. 

1. [2] 21 
‘2. [3] 31,32 
3. [4(S)] 41(21),%@h4&1) 
4. [6(3,2)] 61(31,21),6a(~,2),63(3,21),64(31,2),65(32,21) 
5. [WGI w74T) 
6. [3/7d 
7. [4/4,2/m, 2,T)I 4/m@, 2/m 2, Q, 
8. [6/m(3/m,z, 3,2/m, 2, T)] 63/m(3/m, %3,2/m, 21, T) 
9. [n/m:n=l,2,3,4,6]n/g:n=l,2,3,4,6 
The vecter~line segments T of unit length one in the above entries l-8 may 

be considered l-dimensional groupoids with a cylindrical surrounding. The two 
ends of the line segment are the same point due to the module(1) operation. 
Thus screw entries on lines l-4 may be considered circies, and those on lines 
5-8 may be considered [O:l] intervals with half mirror points at the two end 
boundaries reflecting the line back into itself. 
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Planes (m mirror and g glide) in the denominator of lines 5-9 are normal 
to the axis in the numerator. The translation vector T for line 9 is in the 
plane pointing in the glide direction. In space groups, glides denoted by g in 
line 9 will be relabeled a, b, or c if the translation is along a unit cell axis, n 
ifalongadiagona~as~a1O~,gdiE~gLideB~io~i9 
parallel to an alternating series of primitive and centered Bravais lattice points .“,- _,.. 
in orthorhombic-F, tetragonal-I, cubic- F, and cubic-I Bravais lattices. Glide 
translation imcrements are l/2 except for &glides (called diamond glides) which 
have a translation increment of l/4. 

Ta Groupoida Y’s groupoids have two orthogonal translation vectors, one 
along a screw axis (lines l-4 in the previous listing) and one along the glide 
direction in the glide plane (line 9 of the previous listing. The origin is at the 
intersection of the two vectors. The two dimensional topological structure is a 
circle along the screw axis intersecting an orthogonal circle along a glide line 
which at this moment is beyond the author’s visualization capability. 

T3 Groupoida The groupoids that have three orthogonal translation vec- 
tors involve the dihedral, tetrahedral, and octahedral point groups. They also 
require translation vectors between non-intersecting screw tram&ion axes, such 
as the three screw axes -in the groupoid 212121. The 186 screw and glide 
groupoids which include the point groups are listed in Jaswon and Rose, but 
they are only concerned with the algebraic properties. 

Nomenclature Fortunately, screw and glide groupoids are implicit in the 
extended Hermann-Mauguin international crystallographic space group nomen- 
clature system. We first examine the point group nomenclature since point 
groups are the basis for the groupoids. 

Cubic Point Group Example The ITCrA nomenclature system uses 
the unit cell axes (Q, b, c) as a base for the space group symbols in the tricliic, 
monoclinic, and orthorhombic crystal classes. However, if certain unit cell axes 
are related by symmetry, as in the tetragonal, trigonal, hexagonal, and cubic 
crystal classes, the nomenclature uses subgroups oriented along the three direc- 
tions of highest but different symmetry celled primary, secondary, and tertiary. 
In all crystal classes, point group can be generated through a direct product 
of properly oriented subgroups indicated by the three symbols in the interna- 
tional notation (assuming the positions of all elements are known). The tertiary 
element is sometimes redundant in the group generation. 

In the cubic case, the primary, secondary, and tertiary subgroups are oriented 
along (L, o + b + c, and o + b, but since all three axes are equivalent, coordinates 
along those directions are ,qressed as P, 0,O; x, 2,~; and z, z,O. The Bravais 
lattice point group for the cubic crystal class is {4/m 3 2/m). A geometrical 
interpretation of this point-group (groupoid) symbol is 

(1) 4/m- 4fold axes along z, with mirror in zy plane; 
(2) 3- 3-fold inversion axes along 2,2, z; 
(3) 2/m- 2/m axe3 along z, z, 0. 
The 3 axis along z,z, 2, positions 4/m axes along the a, b, c, -a, -b, and -c . 

vectors which also generates an inversion center at the origin. The 4/m axes 
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then places 3 axes along alI four sign permutations of the (1, 1,l) axis, and 
mirrors 45 degrees apart around each axis. A general position z, y, z for point 
group {4/m f 2/m} has multiplicity 48. 

Orthorhombic Space Group Ibam @hart sydxd Ibam, extended sym- 
bol 12/b 2/a 2/m, groupoid extended symbol G(3) = 121/b 21/a 2/m) 

This space group is in the orthorhombic crystai system (with unit cell axes 
a,b,c all different but orthogonal), with body centered Bravais lattice B = I, 
and point group Q = 2/m 2/m 2/m. The screw and glide groupoid -01 
Q* = G(3)/J3 = {2i/b 21/a 2/m) has the following interpretation: 

(a) 21/b - a-fold screw aJds parahel to a with b-glide plane normal to u, 
(b) 21/a - Zfold screw axis parallel to b with u-glide pIane normal to b, and 
(4 2/m - Zfold axis parallel to c with mirror plane normal to c; 
which does not specify the relative positions of the axes and planes. This 

groupoid combines with primitive (P) and body-centered (I) Bravais lattices $,o 
form space groups Pbam and Ibam which have identical entries for their general 
Wyckoff site coordinates in ITCrA (omitting Bravais lattice translations). How- 
ever, the different Bravais lattices produce quite different orbit spaces as shown 
by their special Wyckoff (isometry) sites and space group symmetry drawings 
in ITCrA. 

This groupoid set containing eight operators is expressed in ITCrA matrix 
notation as, 

{x,y,%; z,iJ,?z; Jfl/2,y+l/2,* z+l/2,j7+1/2,F 

z,jy,q x,y,z z+l/2,@+1/2,a; 2+1/2,y+l/2,%} 

relative to origin 2/m at c, c, 2/m. It also may be written using cosets involving 
subgroupoid {21212) which has four operators, as 

{2r212) = {I, A1/2B1’s(100) lip, A11aB1/2(010)1/2, (001)1/2}, 

{21/b 21/02/m} = {21212} + J(21212}, 

where J is the inversion operator (Z, v, Z), Al/l denotes translation along a of 
l/2, and (100) denotes rotation about a by l/2 cycle, etc. These equations 
describe the sequential origin shifts and rotation operations of the subgroupoid 
origin, screws and rotation in the fitst coeet, and the inversion, glides and mirror 
in the second. A coeet decomposition could have been carried out around any 
index-two normal subgroupoid such as {l 12/m} or {2/b 2/a 2}, ‘but the above 
choice of Jaswon and Roee seems m”ore appropriate. 

The ITCrA extended symbols for the space groups are {P21/b 21/a 2/m} 
and (12/b 2/a 2/m} because I222 is a subgroup of Ibam but P222 ia not a sub- 
group of Pbam. Consequently, {222} is not a subgroupoid of {21/b 21/a 2/m) 
This problem arises because space-group subgroups are a function of the Bravais 
lattice but subgroupoide are not. The short symbols P&m and Ibam properly 
depict the glide subgroupoids isomorphism. 

Additional Orthorhombic Groupoids The other groupoids with sub- 
groupoid {2r2r2) as given by Jaswon and Rose are: 

{2& 21/c 2/n) = (21212) + A112B1/2C’12 J{21212}, 



(21/b 21/c 2/m} = {21212) + A’/‘J{21212}, 

{21/n 21/n 2/m} = {21212) + C’/2J{21212}, 

{zl/m 21/m 2/n) = 121212) +A’/2B1/2 J{212~2), 

~21/b2r~~2~~9=~~~*2P)~fCij2A~ja~.2t21)~ 

which combine only with the primitive Bravais lattice P to form space groups 
numbered 56 through 60. However, the resulting space groups do not often have 
the same origin as those listed in ITCrA, where an inversion center is usually 
positioned at the origin point. 

Orbifolds Orbifolds have received considerable attention in the low-dimen$or+l 
geometric topology literature and are surveyed in a recent preprint9 Orbifolds 
provide closed space, non-redundant, pictorial and analytic portrayal of crys- 
tallographic group symmetry based on orbit space isometries (listed as special 
Wyckoff sites in ITCrA) which arise from fixed point, rotation axis, and mirror 
symmetry operators. Orbifolds for point group, 4, plane group, G(2), and space 
group, G(3), (spherical, Euclidean 2-, and Euclidean Sorbiiolds, r>espectively), 
are defined as P/Q, @/G(2), and E3/G(3), respectively, with S2 the a-sphere 
and E” Euclidean n-space. Literature references and orbifold drawings of the 
orbifolds for all point groups, plane groups, and cubic space groups are shown 
in Figures 2.3, 2.6, 2.8 and A.1 of Johnson, Burnett, and Dunbar.‘* A new 
nomenclature system for space groups based on orbifolds has been developed 
recently by John Conway and coworkers.” 

If there are no inversion points, rotation axes, or mirrors in a specific G(3), 
the quotient E3/G(3) produces an Euclidean bmanifold (rather than an Eu- 
clidean 3-orbifold), with no orbits and thus no orbiiold drawing, since screw and 
glide operators are not explicitly shown in an orbiiold drawing. Other Euclidean 
3-orbifolds have a sparse singular set which often contains relatively little infor- 
mation. This uneven treatment of the space groups is the reason we are trying 
to incorporate groupoids. 

Orbifoldoids To incorporate screw and glide operators as an enhancement of 
the point-group’s spherical Zorbifold, we suggest use of the term “orbifoldoid”, 
since there will be sign&ant changes. 

Screw and Glide Orbitoldoids The module(1) nature of the screw trans- 
lation along a screw groupoid axis implies that a screw axis parallel to a co- 
ordinate axis is a line segment of unit length looped into a circle. For screw 
symbol k, .with k = 2,3,4,6; n < k, one (+) transversal of the circle produces 
a right-handed screw rotation, except when Ic > n > k/2, when it becomes 

OF. Bonahon, Geometric Structures on S-manifolds, survey to appear in the Handbook of 
Geometric Topology, Il.. Dawnnan, R Sher eds., Elsevier. 
bttpz//math.usc.~&u/ fbonahon/Researeh/Preprints/Preprints.ht 

‘OC.K. Johnson, M.N. Burnett, and W.D. Dunbar, Crystallographic Topology and its Appli- 
cations, in Crystallographic Computing 7, eds. P.E. Bourne,and K.D. Watenpaugh, Oxford, 
In Press, 2000. 

“J.H. Convey, 0. Delgado FYiedrichs, D.H. Huson, sod W. Thurstoo, ThreeDimeosionai 
Orbifoids and Space Groups http://www.mathematik.uni-bielefeld.de/ huson/papers.htmI 
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left handed. If the screw is ‘L-fold the circle is antipodal which often leads to a 
projective plane underlying topological space. 

For symbol k,Jm, the line segment is the interval [O:l] with reversal of 
direction of tr& at each mirror end point. We might cab this as3 a&,pod& 
interval. 

The next step is to characterize the groupoid quotients @/Q*(l), E2/Q’(2), 
and B3/Q’(3), where Q*(n) denotes those groupoids which have, l-, 2-, or 3- 
dimensional screw and glide groupoid translation subspaces. However, more 
complex spaces than En seem to be required. 

Orbifold Nomenclature The added orbifoldoid information must in some 
sense be related to the coupling invariants in the John Conway et al. preprint 
on an orbifold based space group nomenclature system in which they rederive 
the space groups by fibration over the 17 base Euclidean 2-orbiiolds. However, 
because of the large quantity of crystallographic results currently available, we 
prefer to enhanced and clarify the present crystallographically familiar nomen- 
clature system by expanding about the screw and glide groupoids or their orb- 
ifoldoids. 
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