
Approved forpublic release;
distribution is unlimited

Title:

Author(s):

Submitted to:

~EcElvm
C&pPf7099

@Yrl

96286

A self-consistent multiscale theory of internal wave, mean-flow
interactions

Darryl D. Helm* (T-7), Alejandro Aceves (U New Mexico) John S.
Allen (Oregon State U), Mmk Alber (Northwestern U), Roberto
Camassa (T-7/U North Carolina), H. Cendra (Universidad National
del Sur, Bahia Blanca, Argentina), Shiyi Chen (CNLS LANL),
Jinqiao Duan (Clemson), Bruce Fabijonas (U Illinois Chicago),
Ciprian Foias (U Indiana), Oliver Fringer (Stanford), Peter R. Gent
(NCAR), Richard Jordan (CNLS/T-7), Shinar Kouranbaeva (UC
Santa Cruz), Gregor Kovacic (RPI), C. David Levermore (U
Arizona), Grant Lythe (CNLS/T-7), Alexander Lifschitz (Lipton) (U
Illinois Chicago), Jerrold E. Marsden (Caltech), Len Margolin (X-HM
LANL), Priscilla Newberger (Oregon State U), Eric Olson (U
Indiana), Tudor Ratiu (UC Santa Cruz/EPFL Lausanne), Steve
Shkoller (CNLWT-7), Ilya Timofeyev (RPI) Edriss S. Titi (UC
Irvine), Shannon Wynne (UC Irvine)

DOE Office of Scientific and Technical Information (OSTI)

Los Alamoa National Laboratory, an affirmative actiotiequal opportunity employer, is operated by the University of California for the U.S. Department of
Energy under contract W-7405 -ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-
free license to publish or reproduce the published form of this contribution, or to allow others to do so, for US. Government purposes. Los Alamos National
Laboratory requests that the publisher identify ttis article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Form S36 (10/96)
ST 2629



DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.



96286

A Self-Consistent Multiscale Theory of Internal- Wave
Mean-Flow Interactions in the Ocean

Darryl D. Helm* (T-7), Alejandro Aceves (U New Mexico)
John S. Allen (Oregon State U), Mark Alber (Northwestern U)

Roberto Carnassa (T-7/U North Carolina),
H. Cendra (Universidad National del Sur, Bahia Blanca, Argentina),

Shiyi Chen (CNLS LANL), Jinqiao Duan (Clemson),
Bruce Fabijonas (U Illinois Chicago), Ciprian Foias (U Indiana),

Oliver Fringer (Stanford), Peter R. Gent (NCAR),
Richard Jordan (CNLS/T-7), Shinar Kouranbaeva (UC Santa Cruz),

Gregor Kovacic (RPI), C. David Levermore (U Arizona),
Grant Lythe (CNLS/T-7), Alexander Lifschitz (Lipton) (U Illinois Chicago),

Jerrold E. Marsden (Caltech), Len Margolin (X-HM LANL),
Priscilla Newberger (Oregon State U), Eric Olson (U Indiana),

Tudor Ratiu (UC Santa Cruz/EPFL Lausanne), Steve Shkoller (CNLS/T-7),
Ilya Timofeyev (RPI) Edriss S. Titi (UC Irvine),

Shannon Wynne (UC Irvine)
Vladimir Zeitlin (U P. et M. Curie, Paris), Raoyang Zhang (CNLS LANL)

Abstract

This is the final report of a three-year, Laboratory Directed Research and
Development (LDRD) project at Los Alamos National Laboratory (LANL).
The research reported here produced new effective ways to solve mukiscale
problems in nonlinem fluid dynamics, such as turbulent flows and global
ocean circulation. This was accomplished by first developing new methods
for averaging over random or rapidly varying phases in nonlinear systems at
multiple scales. We then used these methods to derive new equations for
analyzing the mean behavior of fluctuation processes coupled self
consistently to nonlinear fluid dynamics. This project extends a technology
base relevant to a variety of multiscale problems in fluid dynamics of
interest to the Laboratory and applies this technology to those problems.
The project’s theoretical and mathematical developments also help advance
our understanding of the scientific principles underlying the control of
complex behavior in fluid dynamical systems with strong spatial and
temporal internal variability.

Background and Research Objectives

Multiscale problems span an enormous range of physical phenomena and

applications, including many that are central to the Laboratory’s mission. Our main

research objective was to produce effective new ways to solve multiscale problems in

nonlinear fluid dynamics, such as turbulent flows and global ocean circulation. This was

accomplished by developing new methods for averaging over random, or rapidly v~ing,
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phases in nonlinear systems at multiple scales, and using these methods to derive new

equations for analyzing the mean behavior of fluctuation processes coupled self

consistently to nonlinear fluid dynamics.

For this purpose, we began by studying internal-wave mean-flow (WMF)

interaction in ocean models. In our approach, fine scale descriptions of physical

phenomena were replaced by effective average, or statistical, descriptions of the

phenomena at the coarser and slower scales that make numerical computations feasible.

Internal waves in the ocean were a good starting point for a variety of reasons.

First, they account for a significant amount of the observed high frequency variability of

the ocean. Second, internal waves transfer momentum and hence exert a stress on larger

scale motions. Third, internal waves cause mixing and redistribution of buoyancy by

sporadic overturning and breaking -- the process of convective adjustment. Thus, the full

understanding of these transfer and mixing processes and their proper parameterization is

essential in modeling the variability of the ocean’s general circulation.

Internal waves tie a high-frequency phenomenon, compared to the mean oceanic

flow. The spatial scales of ocean internal waves, however, lie in the entire range between

the planetary scales where variability of the velocity and density fields is generated by

atmospheric forcing, and the microscales where these contrasts are dissipated by molecular

processes. It is a central problem in ocean modeling to model how energy and entrophy are

cascaded from the large generation scales to the small scales at which dissipation occurs.

Internal waves provide an important link in this energy cascade, since they have the unique

ability to convert two-dimensional motions that are prevalent at large scales to three-

dimensional motions that are prevalent at small scales.

In interactions between internal waves and the mean flow there is a separation of

time scales and a resonant interaction. In principle, capturing this type of wave mean-flow

interaction requires subgrid modeling and parameterization.

We approached this problem by first treating the resolved scales using spatial

averaging, as well as time averaging, in order to capture the dynamics of an internal wave

packet whose slowly varying envelope interacts self consistently with the mean flow at the

resolved scales.

In the first year of this project, we derived new WMF equations (for the rectified

effects of a modulated single frequency wave) as self-consistent dynamical equations for

the wave action density and wave vector fields, coupled to the mean fluid motion at the

resolved space and time scales. These self-consistent equations showed, for example, that

a steady wave train with nonzero vorticity can exert stress on the mean flow without
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dissipation, in contrast with the classical Charney-Drazin nonacceleration theorem for

potential disturbances without vorticity.

During the subsequent two years of the project, we followed the implications of

these new WMF equations for more general fluctuations in fluids. In particular, we

generalized our theory to apply to: (1) mesoscale eddies in ocean circulation; and (2)

turbulent fluctuations.

Thus, our LDRD project addressed fundamental research in establishing

“mesoscopic bridges” between microscopic and macroscopic modeling and determining

statistically predictive scientific principles underlying the nonlinear, nonequilibrium

dynamics of mesoscale complexity. There is a growing need to understand strong spatial

and temporal internal variability, which typically appears at mesoscopic scales, a need

shared by many other disciplines including biology, fluids, and geophysics.

Experimental advances in remote sensing for geophysics now enable us to image

increasingly detailed structures and even begin following their dynamics in some cases,

such as in the TOPEX-POSEIDON satellite imaging of the ocean’s variable surface height

on Earth. However, the majority of these problems are characterized by measurements

producing only sparse data sets. Consequently, interpretative frameworks are urgently

needed for statistical predictions of phenomena that we may observe only on sparse data

sets.

The results of our LDRD project forma technological base for some of the future

needs in this area. The scientific needs that will dictate technology in the next decade are:

(i)

(ii)

(iii)

Understanding the roles of nonlinearity and stochastic processes in controlling

internal variability of nonequilibrium physical phenomen~ i.e., the nonlinear

interrelation of system and environmental degrees of freedom, and its effects

on the statistical properties of internal variability. Ultimately, this must

determine the limits of predictability in nonlinear systems.

Assessing predictability -- learning how to quantify sparse measurements in

ways that are relevant to specific macroscopic properties; and

Understanding “upscaling,” i.e., how specific types of sparse measurements

of complex systems can be used to predict statistical macroscopic properties.

An understanding of upscaling will provide constructive schemes for including

effects of microstructure in; e.g., kinetic coefficients such as an eddy viscosity

coefficient due to interaction of the mean flow with the internal wave field

viewed as a “thermodynamic” reservoir.
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Importance to LANL’s Science and Technology Base and National R&D Needs

Multiscale problems area common thread in all of the grand challenge problems of

modern science and technology. Progress in any of these grand challenge problems has the

potential for immediate payoffs in many applications. The classical multiscale problems

include turbulence, flow through porous and fractured media, and wave propagation in

heterogeneous domains. Progress in any of these classical problems can stimulate related

progress in many applications, such as climate modeling, oil recovery, or remote seismic

sensing.

The research reported here has both specific impact in the field of ocean modeling

and more general impact in computational physics. Specifically, we have created

parameterizations for turbulent fluctuations which when incorporated into numerical

simulation codes will improve the predictability of global ocean models, especially in the

long time limit appropriate to climate simulations. More generally, our theory of the

coupling of temporally unresolved internal waves to the resolved mean flow will be

applicable to other problems of physical modeling in which there are multiple time scales,

especially in fluid turbulence problems.

For example, modeling turbulence is central in many of the Laboratory’s research

efforts, particularly the US DOE programs CHAMMP (Computer Hardware Advanced

Mathematics and Modeling Physics), CCPP (Climate Change Prediction Program) and

impending ACPI (Advanced Climate Prediction Initiative). These programs address global

ocean circulation, coupled to the atmosphere for the purpose of long time climate modeling

and prediction. Future applications may also involve, for example, mix parameterizations

in weapons codes that are designed to assure responsibility for stockpile stewardship.

Scientific Approach and Accomplishments

The separation in frequencies between internal gravity waves and the resolved

mean-flow dynamics of the ocean (and atmosphere) suggested to us an approach involving

the “two-timing” and averaging methods of modern applied mathematics. With

applications in mind to oceanic (and atmospheric) dynamics characterized by multiple time

and space scales, we used this approach to develop a new set of wave mean-flow (WMF)

equations during the first year of the project. These equations describe the slow-time

dynamics of the slowly modulated envelope of an internal wave packet interacting with a

mean flow. Our strategy in deriving the WMF equations was based on a decomposition of

the displacement of a Lagrangian fluid parcel into a slowly varying component due to the

mean flow and a rapidly varying component due to the gravity wave. We inserted this

decomposition of the fluid trajectory into Hamilton’s principle for the combined motion of
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mean flow and internal wave variations in a continuously stratified incompressible fluid

moving in a three-dimensional rotating domain. We formulated an asymptotic expansion of

Hamilton’s principle in two small parameters: the ratio of time scales and the wave

amplitude. We then averaged over the rapidly varying phase of the slowly modulated wave

train, before taking constrained variations and using our Euler-Poincar4 theory to obtain the

resulting self-consistent mean flow equations.

The new WMF equations derived by this approach describe the rectified nonlinear

effects of the interactions of a modulated wave train with the mean flow of the fluid. Many

examples appear in nature in which rapid oscillations produce organized motion -- two

familiar examples are parametric resonance -- as in the inverted pendulum -- and viscous

streaming, the organized flows driven by sound waves discussed by Kelvin and by

Lighthill. In previous theories of these effects, the rapid displacement due to the wave

driving had to be prescribed. An example is the theory of Craik and Leibovich [1], which

is designed to describe Langmuir circulations (wind generated longitudinal vortices) in the

mix layer of the ocean.

The advantage of the theory we created by using this approach lies in its self

consistency. The forces due to the rapidly oscillating waves in our initial theory are not

prescribed, as in other theories. Instead, the wave modulations have their own dynamics,

which are coupled to the dynamics of the mean flow self consistently at the slow time scale,

and the evolution of these modulations leaves invariant the original decomposition of the

Lagrangian fluid trajectory into its slowly and rapidly varying components. No previous

theory of mix-layer dynamics had possessed this self consistency. We also generalized our

initial WMF equations to describe the interactions of the mean flow with a spectral

distribution of waves.

As described above, the theory we created and report on here incorporates the

rectified mean effects of the unresolved waves. However the time-averaged theory cannot

describe the effects of instantaneous rapidly varying fluctuations. These fluctuations may

have importance in long-term ocean modeling, being the mechanism for precipitating

transitions from one equilibrium state to another. In the future we plan to extend our

rectified mean theory by deriving fluctuation-dissipation relations for the WMF interactions

based on assuming that the wave-wave interactions enforce a certain type of statistical

equilibrium. This will form the basis for representing the statistical effects of the wave

fluctuations in computer simulations in terms of kinetic coefficients, such as an eddy

viscosity coefficient due to interaction with the internal wave field viewed as a

thermodynamic reservoir.

,
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Scientific and Technical Results

The main results of this project were:

●

●

●

●

●

A self consistent continuum theory of internal-wave mean-flow interactions.

New equations for self-consistent mix-layer dynamics for the interaction of the

mean ocean flow with rapidly fluctuating surface waves.

New Euler-Poincar6 formulations of ideal continuum dynamics.

New dynamically self-consistent turbulence-closure equations describing the

interaction dynamics of the mean and fluctuating components of a turbulent

flow at the mean time scale.

The comparisons of the solutions of these new turbulence closure equations

with experimental data and numerical simulations.

These results are reported in detail in 25 journal publications (see Publications

list). Here we give a chronological summary of our progress. ,

The project’s first year -- New Wave, Mean-Flow Interaction
(WMFZ) Equtiions. (Darryl D. Helm, T-7; Ivan Gjaja, CNLS/T-8)
In the first year of this project, we derived a hierarchy of approximate models of

wave, mean-flow interaction (WMFI) for modeling ocean dynamics by using asymptotic

expansions. One small parameter for these expansions is the ratio of time scales between

internal waves at most wavenumbers and the mesoscale mean flow of an inviscid stratified

rotating fluid. This “adiabatic ratio” is small and is comparable to the ratio of space scales

for the class of initial conditions that support internal waves. Another small parameter

available in these expansions is the ratio of the internal wave amplitude to its wavelength.

The new self-consistent WMFI equations were derived in two ways: first, by requiring

Euler’s equations to preserve the wave, mean-flow decomposition to linear order in the

wave amplitude; and second, by substituting this decomposition into Hamilton’s principle

for the Euler’s equations and applying asymptotic expansions and phase averaging. The

derivation from Hamilton’s principle showed that the resulting equations possess a Kelvin

circulation theorem, conserve a potential vorticity, and are Lie-Poisson Hamiltonian

dynamical systems in the Eulerian variables. The derivation from Euler’s equations

confirms the validity of the derivation from Hamilton’s principle. Passage to the Lie-

Poisson Hamiltonian formulation brought the WMFI theory into a framework in which

formal and nonlinear stability analysis may be applied as in [2]. We also found the

relations of these results to the non-acceleration theorem [3], averaging [4,5], WKB

6

stability theory [6], and Lagrangian-mean fluid equations for prescribed wave

displacements such as those of [7].
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The project’s second year -- New Euler-Poincar6 Formulations of

Ideal Continuum Dynamics. (Darryl D. Helm, T-7; Jerrold E. Marsden,

Caltech; and Tudor Ratiu, UC Santa Cruz)

In the project’s second year, we studied the general theory of reduction of

variational principles with respect to their invariance groups. These group-reduced

variational principles are mathematically interesting since they involve constraints on the

allowed variations analogous to what one finds in the theory of nonholonomic systems

with the Lagrange dAlembert principle. These equations generalize earlier work by

Poincm6 for dynamics on a Lie algebra, in that they depend on a parameter and this

parameter in fluid dynamics applications has the interpretation of being advected, or Lie

dragged, as with the density in compressible fluid flow. In addition, we derived the basic

abstract theorem about fluid circulation for these variational equations, which we call the

Kelvin-Noether theorem. We also derived a series of approximate models of ocean

circulation dynamics by using asymptotic expansions of Hamilton’s principle for the most

accurate theory in the small dimensionless parameters that typically appear in the large-

scale, rapidly rotating situations that commonly occur in oceanographic applications. Our

approach in deriving these approximate models preserves the invariance properties of the

action principle that are responsible for the Kelvin-Noether theorem. Thus, the

approximate model equations we derived for internal wave, mean-flow interactions in the

ocean each possesses its own circulation theorem and its own attendant conservation law

for potential vorticity. This conservation law is an important and useful central concept in

geophysical fluid dynamics at every level of approximation.

Hamiltonian reduction of classical mechanics on Lie groups reduces the phase space

to the corresponding Lie algebra. In our previous work, we developed a theory of

Hamiltonian reduction for semidirect product groups. This theory applies to ideal

(nondissipative) fluid dynamical systems that me governed by Lie-Poisson type equations,

such as compressible fluids, magnetohydrodynamics, and some ocean circulation models.

In this previous work, we also used the Hamiltonian setting to develop a powerful method

of establishing explicit nonlinear stability conditions for ideal fluid and plasma equlibria.

We applied this method to obtain explicit basic nonlinear stability results for a number of

fundamental theories of fluid and plasma dynamics in, for example, Refs. [2] and [8].

In support of the theoretical base for our project, during the second year we studied

Lagrangian reduction; that is, the reduction of variational principles with respect to their

invariance groups. These group-reduced variational principles are mathematically

interesting in their own right since they involve constraints on the allowed variations,

analogous to what one finds in the theory of nonholonomic systems with the Lagrange
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d’Alembert principle. We call the resulting variational equations the Euler-Poincar6

equations, since Poincar6 [9] came rather close to this general picture in his work in 1901.

These equations generalize Poincak’s version of the Euler-Poincar6 equations on a Lie

algebra in that they depend on a parameter, and this parameter in examples has the

interpretation of being advected, or Lie dragged, as with the densit y in compressible fluid

flow.

In addition, we derived the basic abstract theorem about fluid circulation for these

variational equations, which we call the Kelvin-Noether theorem. We also derived a series

of approximate models of ocean circulation dynamics by using asymptotic expansions of

Hamilton’s principle for the most accurate theory in the small dimensionless parameters,

which typically appear in the large-scale rapidly rotating situations that commonly occur in

oceanographic applications. Our approach in deriving these approximate models preserves

the invariance properties of the action principle that are responsible for the Kelvin-Noether

theorem. Thus, the approximate model equations we derived for internal-wave mean-flow

interactions in the ocean each possesses its own circulation theorem and its own attendant

conservation law for potential vorticity. This conservation law is an important and useful

central concept in geophysical fluid dynamics at every level of approximation.

We also studied Euler-Poincar6 systems (i.e., the Lagrangian analog of Lie-Poisson

Harniltonian systems) defined on semidirect product Lie algebras. We first gave a

derivation of the Euler-Poincar6 equations for a parameter-dependent Lagrangian by using a

variational principle of Lagrange d’Alembert type. Then we derived an abstract Kelvin-

Noether theorem for these equations and determined how to apply them to the analysis of

continuum mechanics and fluid dynamics. We used our Euler-Poincar6 theory to rederive

various known, ideal continuum models including our new closure model for WMFI. This

was done by using asymptotic expansions, two-timing, and averaging in Hamilton’s

principle for an ideal incompressible fluid, then introducing viscosity semi-empirically as

diffusion of an appropriate momentum. This work prepared us for our derivation of new

turbulence models during the project’s third year.

The project’s third year -- New Turbulence Models. (Darryl D. Helm, T-

7; Shiyi Chen, CNLS; Ciprian Foias, U Indiana; Eric Olson, U Indiana; Edriss Titi,

UC Irvine; and Shannon Wynne, UC Irvine)

The energy in a turbulent fluid cascades to ever smaller scales. That is, the fluid

energy in the large “integral” scales that are resolvable in a computational simulation

transfers “ballistically” to the smaller “dissipation” scales that eventually become

unresolvable in a computational simulation at low dissipation (high Reynolds number).

Turbulence modeling describes the nonlinear interplay between the resolved and unresolved

8



.
. .

96286

scales (or subgrid scales, abbreviated as SGS). The need for modeling the effects of the

small scales upon the larger ones in the presence of this turbulent energy cascade introduces

a statistical and probabilistic element into the prediction and simulation of turbulent fluid

motion. Characterizing this element is called the “parameterization” of turbulence.

Historical or traditional approaches to turbulence modeling introduced an ensemble mean

description. The derivation of this description involved ensemble averaging the fluid

motion equation after first introducing the “Reynolds decomposition” of the fluid velocity

into its ensemble mean and fluctuating parts. Substituting this decomposition into the

motion equation and taking the ensemble mean produces “Reynolds stress” terms whose

dynamics cannot be expressed in closed form without introducing further approximations.

Modeling the dynamics of the Reynolds stress terms is called the “turbulence closure

problem” and it is the outstanding problem of classical physics. Analytical methods for the

development of Reynolds stress closures for turbulence are reviewed in Speziale [10] and

references therein.

Based on our work on WMF, in the project’s third year we took a nontraditional

approach to the turbulence modeling problem that yielded different, but related dynamical

closure equations for turbulence. Our approach was developed in response to the

Laboratory’s need in modeling the ocean circulation component of the Earth’s climate.

Instead of wave trains, in global ocean circulation dynamics the fluctuations are identified

physically as “mesoscale eddies.” These are confined patches of potential vorticity that

move with the mean flow and also act back upon it. The nonlinearity in this interaction

between resolvable and unresolvable scales in global ocean circulation dynamics raises the

issue of self consistency between the dynamics of the mean and fluctuating components of

the flow at the mean time scale. In our approach, as with our WMP work, dynamical self

consistency of the turbulence closure (or mesoscale eddy parameterization, as it is called in

geophysical fluid dynamics) is established by applying decompositions of Reynolds type

not in the fluid motion equations, but instead in Hamilton’s principle for these motion

equations. Our approach may be applied at any level of fluid description, from the

equations for the incompressible motion of a homogeneous fluid, to the equations of global

ocean circulation dynamics. Thus, our earlier work on wave mean-flow interaction in [11],

followed by our mathematical development of the Euler-Poincar6 equations of continuum

dynamics in [12], provided the technological basis needed for developing new and effective

turbulence closure models.

We also applied our approach to the modeling of turbulent flows in pipes and

channels at high Reynolds numbers in Chen et al. [13-16]. Our approach to the turbulence

closure problem began by substituting the Reynolds decomposition into the Lagrangian for

9
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Hamilton’s principle for ideal fluid motion. We also invoked Taylor’s hypothesis [17] to

relate the space and time derivatives of the fluctuating quantities. We then averaged the

fluid Lagrangian over the short time scale of the small rapid fluctuations, before taking

variations of resulting mean quantities to obtain the equations of motion for these mean

quantities as Euler-Poincar6 equations. Because they arise from Hamilton’s principle, our

motion equations for these mean quantities are dynamically self consistent.

The mean variables in these equations are defined by taking averages over fast time

in the Lagrangian, either at fixed position in space or at fixed fluid parcel label. The first

type of average is called the Eulerian mean. The second type is called the Lagrangian

mean. (The explicit form of the Taylor’s hypothesis we employ in Hamilton’s principle

depends on whether we take the Eulerian mean or the Lagrangian mean.)

In summary, after understanding the mathematical structure of the first motivating

example of WMFI, in the third year of this project we extended its methodology to derive

new dynamical equations for incompressible turbulence in three dimensions. The steady

solutions of this model compared well with experimental data for mean fluid velocity

profiles in pipes and channels at high Reynolds numbers. We also interpreted the resulting

equations as either a Large Eddy Simulation (LES) model, or equivalently a one-point

turbulence closure model. Finally, we used the same Euler-Poincari5 method to develop a

new second-moment closure model for three-dimensional incompressible turbulence. This

model acts like an adaptive LES model and gives a dynamical equation for how the Taylor

diffusivity tensor responds to shear forcing. We also used this approach in formulating a

new second-moment closure model ‘of three-dimensional oceanic turbulence for the

Laboratory’s climate modeling efforts.
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