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1. Introduction

In stellar models, the equation of state and opacity are, together with nu-
clear reaction rates, the fundamental material properties. They have to be
smooth, consistent, valid over a large range of temperatures and densities,
and must incorporate the most important astrophysically relevant chemical
elements. The equation of state appears as a necessary part of stellar mod-
eling as well as of any opacity calculation. For the latter, it has to provide
ionization equilibrium concentrations and level populations. However, the
interest in the stellar equation of state is not merely motivated by astro-
physics. It has turned out that one star - the Sun - is very special in two
respects. First, the methods of helioseismology allow us to infer conditions
in the solar interior very accurately (in particular, sound speed and density).
Second, in the solar convection zone, helioseismology presents an opportu-
nity to isolate the question of the equation of state from opacity and nuclear
reaction rates, since the stratification is essentially adiabatic and thus deter-
mined by thermodynamics (Christensen-Dalsgaard & Déappen 1992). Thus
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the Sun has become an astrophysical laboratory to study thermodynamic
properties of a Coulomb system under conditions that cannot be achieved
on Earth. Indirectly thus, the solar experiment also addresses a broader
range of plasmas. In astrophysics, results for denser plasmas will have im-
pact on models of Jupiter, Saturn, and probably brown and white dwarfs
(Cauble et al. 1998), as well as of low-mass stars.

One of the major recent equation-of-state and opacity efforts is the in-
ternational “Opacity Project” (OP; see the comprehensive books by Seaton
1995 and Berrington 1997). A necessary part of OP is the so-called Mihalas-
Hummer-Déappen (MHD) equation of state (c¢f. Section 2.3.3; Hummer &
Mihalas 1988; Mihalas et al. 1988; Déppen et al. 1987, 1988). However, the
core of OP is a tremendous atomic data base, comprising state-of-the-art
theoretical and experimental data. The MHD equation of state provides the
ionization degrees of all astrophysically relevant chemical elements. The ba-
sic concept of the MHD equation of state was built on the heuristic idea of
perturbed states of atomic, ionic, and molecular species. The usual ioniza-
tion and dissociation reaction between these species are assumed; for this
reason we speak of the so-called “chemical picture”. At very high densities,
when many-body effects become dominant, the concept of perturbed atoms
loses its sense. For that reason, the MHD equation of state was originally
restricted to the plasma of stellar envelopes, where density is sufficiently low
that the concept of atoms makes sense. It turned out, however, that for the
purpose of thermodynamic calculations at least, the aforementioned density
domain was much too conservative. For instance, Christensen-Dalsgaard et
al. (1988) applied the MHD equation of state to model the entire structure
of the Sun and to predict solar oscillation frequencies. MHD remains a reli-
able tool down to the solar center, where density is about 150 g ecm™3. The
reason is that under those conditions, the plasma becomes virtually fully
ionized. Therefore, in MHD, the limitations on the validity of the particular
perturbation mechanism for bound species (Hummer & Mihalas 1988) have
little influence, simply because there are no bound species.

The other major recent equation-of-state and opacity approach, referred
to as OPAL, is based on the so-called “physical picture” and provides a sys-
tematic method for including density effects. This effort is being pursued
at Lawrence Livermore National Laboratory and is described by Iglesias &
Rogers (1991, 1993, 1995, 1996), Iglesias et al. (1987, 1992), Rogers & Igle-
sias (1992, 1994), and Rogers et al. (1988). Its underlying equation of state
is based on a sophisticated systematic method for including density effects.
It starts out from the grand-canonical ensemble of a system of electrons
and nuclei, which interact through the Coulomb potential (see Section 2.4
and Rogers 1977 1981, 1986, 1991, 1994, 1998; Rogers et al. 1996). Con-
figurations corresponding to bound clusters of ions, atoms, and molecules
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appear at the appropriate stage of expansion in this ensemble (note that
the grand-canonical involves a sum over all possible particle numbers). Any
effects of the plasma environment on the internal states are obtained di-
rectly from the statistical mechanical analysis, rather than by assertion. In
particular, the OPAL approach avoids the traditional ad hoc cutoff proce-
dures of internal partition functions. The method employed in OPAL also
provides a systematic procedure for including plasma effects on the photon
absorption coefficients. So, for mixtures, OPAL does not follow an ideal-gas-
mixing procedure for combining the various photon absorption coefficients
from the different elements. Instead, coupled equations for the full mixture
are solved at each density and temperature point, removing thus a potential
source of error.

Since the equation of state is a logical part of any opacity calculation, we
begin with an introduction to equation of state issues, with emphasis on re-
cent efforts to model fine details in order to match astrophysical challenges.
Then, we present a review on the opacity of stellar matter. We show how
new efforts have significantly improved the quality of stellar models. Appli-
cations to the particular case of the Sun are presented elsewhere in these
proceedings [Christensen-Dalsgaard ef al. 1999 (hereinafter Chapter II); see
especially Sections I1.4.3-11.4.5]. The relevance of the equation of state and
opacity for stellar modeling in general is also discussed in these proceedings
(Christensen-Dalsgaard & Dziembowski 1999; hereinafter Chapter I). Since
the equation of state is more basic, we will discuss it in considerable detail,
while remaining more descriptive and summarizing in the opacity part.

The principal purpose of this chapter is to show what goes into equation-
of-state and opacity calculations. We believe that our information will help
the user in choosing a specific equation of state and opacity. For this pur-
pose we give at the end practical recommendations regarding the currently
available equation of state and opacity data, including information about
how to obtain them.

2. The equation of state

The simplest model is a mixture of nuclei and electrons, assumed fully
ionized and obeying the classical perfect gas law. However, an ideal-gas
equation of state can be more general. It may include deviations from the
perfect gas law, namely ionization or dissociation reactions, radiation and
degeneracy of electrons, as long as the underlying microphysics of these
additional effects is still ideal, that is, does not contain interactions. The
“particles”, however, can be be classical or quantum, material or photonic.
In such an ideal framework, bound systems (molecules, atoms, ions) are
allowed to have internal degrees of freedom (excited states, spin). All such
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ideal effects can be calculated as exactly as desired.

One measure of nonideality in plasmas is the so-called coupling pa-
rameter [ [astrophysicists should note that I' has nothing to do with the
adiabatic gradient I'; introduced in Chapter I, Eq. (14)]. In a plasma of
temperature T and density such that particles of charge e have an average
distance < r > from each other, we can define I" as the ratio of aver-
age potential binding energy over mean kinetic energy kT (kp being the
Boltzmann constant)

T = (e?/ <r>)/ksT . (1)

In this expression we have for simplicity restricted ourselves to the case of
hydrogen; generalizations to other elements are straightforward. Plasmas
with T' > 1 are strongly coupled, those with I' « 1 weakly coupled. A
famous example of a strongly coupled plasma is the electron gas in the
interior of white dwarfs, where the coupling can become strong enough
to force crystallization. Another example is given by the electrons in the
conduction band of a metal at room temperature. Weakly coupled plasmas
are, for instance, the interiors of stars with masses ranging from the slightly
sub-solar ones to the largest.

2.1. BASIC CONCEPTS AND DIMENSIONAL PARAMETERS

There are two basic approaches to realize nonideal equations of state: the
so-called chemical and physical pictures. In the chemical picture one as-
sumes that the notion of atoms and ions still makes sense, and ionization
is treated like a chemical reaction. Typically, as in the MHD equation of
state, modifications of atomic states are expressed in a heuristic and intu-
itive way, by the probability that the state is occupied as a function of the
parameters of the surrounding plasma.

In contrast, the physical picture provides a systematic method to in-
clude nonideal effects. It models an ensemble of a system of the basic con-
stituents (electrons and nuclei), interacting through the Coulomb potential.
Typically, as in the OPAL equation of state, the grand-canonical partition
function is computed. Configurations corresponding to bound combinations
. of electrons and nuclei, such as ions, atoms, and molecules, arise naturally
as terms in cluster expansions. Any effects of the plasma environment on
the internal states are then obtained directly from the statistical-mechanical
analysis, rather than by assertion as in the chemical picture.

To describe a degree of “nonideality” or “degeneracy” of the plasma, it
is convenient to introduce a few dimensionless parameters to express the
relative strength of the particular effects, such as the Coulomb interaction
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or quantum degeneracy. These parameters are defined as combinations of
various “characteristic lengths” resulting from simple physical estimates.

The strength of the Coulomb interaction is given by the density-indepen-
dent Landau length g

_ Gi& .
=T (2

Although the Coulomb potential has infinite range, the Landau length rep-
resents an effective radius of the interaction between particles 7 and j, i.e.
for distances >> [ the potential energy is negligible compared to the ther-
mal energy kgT.

The Landau length clearly reflects a degree of nonideality of the plasma
and the case of an “ideal” plasma corresponds to Iy, = 0.

Another purely classical characteristic length is the mean distance be-
tween two particles of the same species k (k = {e,})

a= ()" (3

Here, ny is the particle density Ni/V of species k. Note that dj is the
generalization of the quantity < r > in Eq (1). It does not depend on
temperature.

The most evident quantum mechanical characteristic length is the ther-
mal de-Broglie wavelength

h
V2rmiksT

The limits of applicability of various theoretical models of the equation
of state are usually described by different dimensionless parameters. The
degeneracy of species k

M = (4)

ngAk (5)

is very closely related to the well-known degeneracy parameter 7 (sometimes
also denoted ) by

AN,
Fyjaln) = Y2 ©)
where F; is the Fermi integral
oo, )
Fi(y) =/ z'(1 +exp(y +2))" " dz . (7)
0
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- In the case of a stellar plasma with heavy nuclei and light electrons, the
heavy particles become degenerate only at much higher densities than elec-
trons.

2.2. SCREENING AND THE DEBYE-HUCKEL APPROXIMATION

All characteristic lengths defined so far demonstrate either purely density-
or purely temperature-dependent behaviour. No collective behaviour of par-
ticles has been considered. Here we discuss screening, which for normal stars
is the most important deviation from ideality.

The seminal study of collective behavior in a plasma was the Debye &
Hiickel (1923) theory of electrolytical solutions. Despite its phenomenolog-
ical approach this theory proved to be immensely successful not just for
electrolytes, but also for plasma calculations.

Basically, one mixes two ideas. First, assuming nondegenerate electrons,
and considering one particular ion being fixed, the mean electron distribu-
tion around that ion is given by the Boltzmann factor

+ep(r
ne(r) = neexp [ k:ﬂ(“ )} . (8)
The mean ion density around the same ion is similarly given by
ni(r) = n;exp [—;Z)g)] . ‘ (9)

Second, one assumes applicability of Poisson’s equation for mean charge
distributions (instead of point charges)

Ad(r) = —4me[n;(r) — ne(r)] . (10)
The resulting system of Egs. (8) to (10) is complicated and nonlinear; how-
ever, if the system is only slightly nonideal, that is, if e¢(r)/kpT < 1,

the linearized system has the well-known solution of the static-screened
Coulomb potential (SSCP)

B(r) = Ze™ (11)
where « is the reciprocal of the Debye-length rp '
kgT .
= . 12
D \/47r (nee? + nie?) (12)

Having established the Debye radius, we can introduce a further dimen-
sionless quantity, the diffraction parameter of species k

A
==, (13)
D .
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where A is again the thermal de-Broglie wavelength. The diffraction pa-
rameter refers to the relatively small quantum corrections to screening
(cf. Briiggen & Gough 1999, who have performed a nonlinear quantum me-
chanical screening calculation in the context of screened nuclear reaction
rates). And yet, helioseismology has attained such a degree of precision
that such small corrections to sound speed have become observationally
accessible (see Chapter II, Section 4.3.2)

2.3. CHEMICAL PICTURE. FREE-ENERGY-MINIMIZATION METHOD

2.3.1. Theory

The development of specific methods in the chemical picture was strongly
stimulated by needs for “engineering-type” equations of state, especially
for stellar evolution, where data for a wide range of parameters are needed.
The free energy minimization method, pioneered by G. Harris (Harris 1959,
1962; Harris et al. 1960) and especially its modern versions (e.g., Graboske
et al. 1969; Dappen 1980) were very successful as a tool for practical equa-
tions of state.

The idea behind this method is simple and elegant. Given a mathemat-
ical model for the Helmholtz free energy F(T,V, {N;}), where {IV;} is a set
of particle numbers for all species ¢ present in a plasma, one minimizes F
subject to the stoichiometric relations governing possible reactions among
the particle species in the plasma. The underlying principle is that nature
adjusts the reaction equilibrium such that entropy is maximum (for given
energy) or the free energy is minimum (for given temperature).

One starts from the canonical partition function. Consider a physical
system (with Hamiltonian H) confined in a box of volume V in contact with
a heat reservoir at temperature T". Then the canonical partition function is
a trace (denoted by Tr)

2 =Tr (e7H/keT) (14)
From that, the free energy is obtained by the formula

F(T,V,{N}) = ~ksTIn(Z) . (15)

Here, the volume V is implicitly contained in the Hamiltonian operator.
The free energy is calculated for all {N} which are allowed by the stoi-
chiometric relations and a given initial composition. Equilibrium concen-
trations are those { N} that minimize F(T,V,{N}) for given T, V under the
stoichiometric constraints. This gives ionization and dissociation equilibria.
Numerically, this will be a task of finding a minimum of a nonlinear function
F(T,V,{N}) in the {N}-space under the stoichiometric constraints.
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The major assumption in any practicel realization of the free-energy
minimization method is that the total partition function Z = Zia fac-
torizes, that is,

Ziotal = Zeztranszconfzint 3 ] (16)

where Z, here stands for the electronic contribution, Zi.4ns is the result of
the integration over momentum space for the heavy particles, Z5,5 comes
from the integral over configuration space, and Z;,; finally is

N . w
Ziny = T2, z8 =" gijexp(=Eyj/keT) , (17)
| =

where E;; and g;; denote energy and degeneracy of the state j of species 1,
respectively.

When going from the partition function to the free energy, the conse-
quence of the assumed factorizability of the partition function is additivity,
or modularity, of the free energy. This modularity accounts for the great ap-
peal of the chemical approach from both a modelistic and a computational
point of view. Modularity basically tells us that all the interactions can be
split into separate parts with clear physical meaning. And if, for example,
one part needs to be modified to implement a higher order correction, it can
be done without having to worry about consistency with the other parts.
Terms can be introduced simply by adding or changing subroutines in a
computer program, without a major overhaul of the previous work. That
is why sometimes for the sake of modularity even relatively crude approxi-
mations are maintained, because a rigorous treatment, in the framework of
the exact nonfactorizing partition function, would be entirely prohibitive.

2.3.2. A simple application: The Saha equation

By retaining only ideal terms, the free-energy-minimization method falls
back to the time-honored Saha equation. To illustrate, consider the simplest
case, hydrogen ionization (H <> H* +e™). A neutral mixture of H-atoms,
protons and electrons with particle numbers of Ny, N, and N,, respectively,
has only one degree of freedom, because of the two relations (N§ being the
total number of protons, bound and free)

Ny + N, = N{ = const , (18)

No=N, . (19)

The degree of freedom is the ionization degree. Its equilibrium value is the
one for which the free energy is minimum. The minimum condition is then
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(with E; and g; denoting the negative energy states of hydrogen and their -
orbital - statistical weight, respectively). This is the well-known Saha egua-
tion in astrophysics (known as the law of mass-action in physical chemistry).
The infinity of the partition function in Eq. (20) is notorious; it has plagued
statistical mechanics of plasmas in the last 70 years. The usual argument
goes that excited states of hydrogen atoms become infinitely big with in-
creasing quantum number j. Because of this, Eq. (20} would only be valid
for a single atom in the whole infinite universe. Remedies of the infinity
have been involving more-or-less sophisticated truncations of Eq. (20) at
some level; a judicious choice allows to model real, interacting plasmas (see
the specific expressions employed by the MHD equation of state [(25), (27)).

We note in passing that even the most radical truncation to the ground
state of hydrogen (whose orbital statistical weight is one)

Ny A ( E, )
=t . 21

is not devoid of problems, because as one sees easily it leads to spurious re-
combinations at high densities and relatively low temperatures. Specifically,
in the center of the Sun, Eq. (21) would predict about 30% neutral hydro-
gen, which is clearly nonsensical for the prevailing density of 150 g cm~3.
The reason of this pathology is that the Saha equation does not contain
information about the size of the hydrogen atom. Bringing in correction
terms that do contain atomic radii amounts to modeling so-called “pres-
sure ionization”. One way of doing so is by modifying the internal partition
function, a technique realized, e.g., in the occupation probabilities of the
MHD equation of state [cf. (25), (27)).

2.3.3. Nonideal effects in the free-energy-minimization method
Re-deriving the Saha equation (20) with a new method is no gain though.
However, the power of the free-energy-minimization method is precisely
that it allows to include nonideal effects consistently. The reason is that
any modification to the thermodynamics is only made at one single place
(the free energy). Since the ionization degree and all thermodynamic quan-
tities follow from the free energy by purely mathematical steps, all these
quantities are consistent with each other. For instance, they automatically
obey all Maxwell relations. The corresponding shifts in the ionization equi-
libria are correct.
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Achieving such consistency would be difficult in an approach where one
considers the Saha equation and the corresponding thermodynamic quan-
tities separately, all to be modified individually. There would be no gen-
eral systematic procedure. The free-energy-minimization method, however,
achieves it nicely and simply. It is therefore the natural nonideal extension
of equations of state that are based on the Saha equation.

As an example, to include screening at the level of the Debye-Hiickel
approximation, it suffices to add to the total free energy the “module”
for the Debye-Hiickel free energy (which can be found in many books on
statistical mechanics, e.g. , in Reichl 1980)

FDH _ _ksTV (22)

F = .
conf 12773,

If the analysis of the free energy minimization method for a hydrogen
plasma is repeated with this new Feons added, the final result can still
be written in the form of equation (20), provided that Z;,; is replaced by

Zint = Y g5 €xp |-B(E; + ¢*/rp)] . (23)
i

The effect of the Coulomb correlations can be interpreted as a lowering
of the continuum by the amount e?/rp and, consequently, the ionization
balance is shifted toward increased ionization (see also Baturin et al. 1996).

One way of introducing a possibility to treat pressure ionization is to
assign “weights” or “occupation probabilities” to all the bound states of all
the species. The internal partition function then becomes

Z3% = > wijk gijkexp (—BEyx) . (24)
.

Here w;j is the probability that a state ¢ of ion j of species k still ex-
ists despite the plasma environment, and gijx exp (—BEi;x) remains the
probability that this state is actually occupied.

The occupation probability formalism has several advantages:

— The w;jz decrease continuously and monotonically as the strength of
the relevant interaction increases.

— States fade out now continuously with decreasing w;;; and thus as-
sure continuity not only of the internal partition function but also
of all material properties (pressure, internal energy, etc.) In contrast,
truncations of the sum in Eq. (20) that depend on the continuous pa-
rameters T and V have the unpleasant consequence that the partition
function is subject to finite jumps for infinitesimal variations of the pa-
rameters. In other words, it is discontinuous. Thermodynamic deriva-
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tives would be thus cluttered with Dirac §-functions. Equation (24)
avoids this problem,
~ The wjj;; can be made analytically differentiable, which permits use of

a second-order convergent numerical scheme in the free-energy mini-
mization.

For neutral perturbing species, Hummer & Mihalas (1988) started out
from a widely studied hard-sphere model (Fowler 1936) with each state in
principle having its own diameter. However, the simple binary interaction
model is computationally prohibitive because it accounts for perturbations
from all ions of all chemical species in all possible excited states. That
implies thousands of the individual occupation numbers N;;; as indepen-
dent variables in the free energy minimization. In addition, in this case the
function f is nonlinear.

As an obvious first approxxmatxon, MHD considered the low-ezcitation
limit (Hummer & Mihalas 1988) in which it is assumed that essentially all
perturbers encountered by an atom in an exited state reside in the ground
state.

(Wijk) peutras = XD | —(47/3V) 3 Nyjg (rije + rigue)®| . (25)
j’,kl

One sees that in this approximation only the total occupation numbers
(summed over the states i) enter, that is, N;; = }_; Ny for all species j of
chemical element k.

In the case of charged perturbing particles, MHD defines the wgj; di-
rectly, arguing that the presence of a plasma microfield destroys high-lying
states by means of a series of Stark level mixing with higher lying states
leading to the continuum.

The basic idea is that for each bound state ¢ of every unperturbed ion j
of element k, there is a critical value of the electric field Fj;; such that the
state in question cannot exist if the field exceeds the critical value. Then
probability that a given state does exist is simply the probability that the
field strength is less than Fyj, i.e.

Fijk
(Wiik)argea = [ | PF)IF, (26)
where P(F) is the microfield distribution function (i.e., the distribution
of electrical field strength in the plasma). The choice of an appropriate
plasma microfield P(F) is not straightforward. Hummer & Mihalas (1988)
have made the following choice
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ir (Zip + 1)12e2
(Wisk) chargeq = €XP —( ) * [-JTT"_“ > NywZili s (27
. 3V K@]/k X?,jk I k’

where Z;; denotes the charge of ion j of chemical species k (thus, zero for
neutral particles) and the sum runs over all levels ¢ of ions j of species k,
and Kjj) is the quantum correction factor of those levels (see eq.(4.70)
of Hummer & Mihalas 1988). We will show below (Section 3.2) that the
approximations entering (27) (a simplified form of the Holtsmark 1919 mi-
crofield distribution) are a source of concern for OP opacities. For this
reason, very recently an upgraded version of the MHD equation of state
with more realistic distribution functions has been developed (Nayfonov et
al. 1999). '

2.4. PHYSICAL PICTURE. ACTIVITY EXPANSION

It is clear from the preceding sections that the advantages of the free-
energy-minimization method and the chemical picture lie in the possibil-
ity to model complicated plasmas, and to obtain numerically smooth and
consistent thermodynamical quantities. Nevertheless, the heuristic method
of the separation of the atomic-physics problem from that of statistical
mechanics is not satisfactory, and attempts have been made to avoid the
concept of a perturbed atom in a plasma altogether. This has suggested
an alternative description, the physical picture. In such an approach one
expects that no assumptions about energy-level shifts or the convergence
of internal partition functions have to be made. On the contrary, proper-
ties of energy levels and the partition functions should come out from the
formalism.

There is an impressive body of literature on the physical picture. Impor-
tant sources of information with many references are the books by Ebeling
et al. (1976), Kraeft et al. (1986), and Ebeling et al. (1991). However, the
majority of work on the physical picture was not dedicated to the problem
of obtaining a high-precision equation of state for stellar interiors. Such an
attempt was made for the first time by the OPAL group at Livermore as
part of their opacity project (see Section 1 and references therein).

To explain the advantages of this approach for partially ionized plasmas,
it is instructive to discuss the activity expansion for gaseous hydrogen. The
interactions in this case are all short ranged and pressure is determined
from a self-consistent solution of the equations {Rogers 1981)

D

T =27+ 22by + 2%b3 + ..., (28)
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-2 (%

where z= A7 3exp(u/kpT) is the activity {with A, being the thermal de-
Broglie wavelength of electrons, see Eq. (4)], and p is the chemical potential.
The by, are cluster coefficients such that by includes all two particle states,
b3 includes all three particle states, etc.

In contrast to the chemical picture, which is plagued by divergent parti-
tion functions, the physical picture has the power to avoid them altogether.
An important example of such a fictitious divergence is that associated with
the atomic partition function. This divergence is fictitious in the sense that
the bound-state part of by is divergent but the scattering state part, which
is omitted in the Saha approach, has a compensating divergence. Conse-
quently the total b2 does not contain a divergence of this type (Ebeling et
al. 1976; Rogers 1977). A major advantage of the physical picture is that it
incorporates this compensation at the outset. A further advantage is that
no assumptions about energy-level shifts have to be made; it follows from
the formalism that there are none.

As a result, the Boltzmann sum appearing in the atomic free energy
for atoms and compound ions is replaced with the so-called Planck-Larkin
partition function (PLPF), given by e.g. Ebeling et al. (1976), Kraeft et al.
(1986), or Rogers (1986)

(30)

— _Enl _ Enl]
PLPF—§(21+1) [exp( T 1+kBT .

The PLPF is convergent without additional cut-off criteria as are required
in the chemical picture. We stress, however, that despite its name the PLPF
is not a partition function, but merely an auxiliary term in a virial coeffi-
cient (see, for example, Dappen et al. 1987).

An alternative approach based on the physical picture is the path-
integral based Feynman-Kac (FK) formalism of Alastuey & Perez (1992,
1996), Alastuey et al. (1994, 1995). It allows to compute exact coefficients
of density (virial) expansions. The application of this formalism to solar
physics is in progress (Perez & Déappen 1999).

3. Opacity

Opacity has long been an issue in understanding stars. As long ago as
1926, Eddington identified opacity as one of two clouds obscuring stellar
model calculations (the other being the source of stellar energy). At that
time it was thought that bound-bound absorption was not a significant
source of opacity. It was another 40 years before Cox & Stewart (1962;
1965; 1970a,b) included bound-bound transitions and obtained increases
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in the Rosseland mean opacity exceeding a factor of three in some cases.
The Cox-Stewart opacities greatly improved the quality of stellar models
and remained the standard for more than a quarter century. This work
continued to be modified and improved by Cox and others at Los Alamos
((Cox & Tabor 1976); (Huebner et al. 1977)). A detailed description of this
first generation Los Alamos opacity (LAOL) is given by Huebner (1986).

Even though the LAOL opacities helped elucidate many features of
stars, a number of observations continued to resist explanation. For exam-
ple, period ratios in classical Cepheid models were too low, the mechanism
for pulsation in B-Cephei stars could not be identified, the calculated Li
abundance in dwarf stars of the Hyades cluster was much less than observed,
and simulations underestimated wind-driven mass loss in classical novae.
A number of studies found that these problems are sensitive to changes
in opacity (Fricke et al. 1971; Petersen 1974; Stellingwerf 1978). However,
the opacity increases needed seemed unrealistically large, as much as 300%
in the case of the classical Cepheids and the 8-Cephei stars. Simon (1982)
determined that increasing the opacity for temperatures above 1 x 10° K
would be sufficient to resolve the Cepheid and 3-Cephei problems. He spec-
. ulated that problems with heavy element opacities could be responsible and
issued a plea for their reinvestigation. A group at Los Alamos (Magee et
al. 1984) was the first to respond. They concluded that such large increases
in opacity were inconsistent with atomic physics. Nevertheless, two other
groups started completely new efforts to calculate opacity.

As mentioned in the introduction, one of these is the Opacity Project
(OP), led by M. Seaton at University College, London; the other is OPAL,
an effort pursued at Lawrence Livermore National Laboratory. These ef-
forts have obtained large increases in the opacity (Iglesias et al. 1987; 1992;
Iglesias & Rogers 1991; 1996; Rogers & Iglesias 1992; Seaton et al. 1994)
which helped resolve a number of long-standing puzzles (Rogers & Igle-
sias 1994). The differences between OP and OPAL opacities are generally
small compared with the differences between either OPAL or OP and the
older LAO1. An important exception is with solar interior opacities where
OPAL obtained modest increases over LAOL, while OP is 40% lower. The
decrease seems incompatible with helioseismology (Bahcall & Glasner 1994;
Tripathy et al. 1997) and has been attributed to approximations in the OP
calculations (Iglesias & Rogers 1995). As we will show below (Section 4.3.2),
a second generation of Los Alamos opacities (LEDCOP) have recently been
released (Magee et al. 1998). And, as we will will further address in Sec-
tion 4.4, there have been several new efforts to calculate surface opacities
in addition to the new stellar interior opacity calculations.
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3.1. GENERAL FEATURES OF OPACITY CALCULATIONS

In the solar interior the photon mean-free-path is sufficiently small so that
radiation transport occurs via diffusion. When the diffusion approzimation

is valid, the Rosseland mean xp over the monochromatic opacity &, defined
by

1 s ® 1 (0B
| e (55“'>ud” ! By
guarantees the correct integrated flux transport. Here, ¢ denotes the Stefan-
Boltzmann constant and B(T,v) the Planck function.

3.1.1. Atomic Models and Categories of Approzimations

The atomic data relevant for opacity calculations are in general influenced
by the plasma interactions which modify the interatomic potential and
wavefunctions, and therefore energy levels, level widths, transition mo-
ments, spectral line shapes, etc. In the most general formulation, the system
is the atom (or ion) and the plasma. This is a very complicated many-body
problem, but for low densities, one can resort to a perturbative approach,
in which an isolated atom (or ion) is modified with plasma “corrections” to
energy levels, widths, etc. It is important to note that these plasma correc-
tions effectively limit the number of bound states which would otherwise
exist.

Energy levels of atomic configurations are characterized according to
the level of approximations. In the central field approzimation, the pair of
indices n! completely specifies the electron configuration in the absence of
electrostatic effects between electrons. Inclusion of the electrostatic effects
and the spin-orbit interaction splits the energy levels into a number of
sublevels. When the electrostatic interaction dominates over spin-orbit, we
have the familiar case of LS coupling. In the opposite case, we have the case
of j7 coupling. Although the spin-orbit interaction increases in importance
with increasing atomic charge Z, the occurrence of pure jj coupling is
relatively rare, with the intermediate case (intermediate coupling) being
more common, Highly excited states in noble gas atoms often experience
intermediate coupling. However, in many analyses LS coupling is assumed
because of its historical importance in the analysis of light-element spectra.

The atomic models may be divided into two broad categories: average-
atom models and detailed configuration-accounting models. In the average-
atom model, a mean-field approximation is used to calculate the (fictitious)
fractional occupancy of the respective one-electron energy levels. This pro-
vides an immediate gross indication of plasma ionization and excitation. An
application of first-order perturbation theory allows a deconvolution to the
detailed ionic species and excited configurations. Historically, this method
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has been used at high temperatures (kgT > 100 eV). The method of de-
tailed configuration accounting uses either experimental data or ab initio
data (or a mixture of both) for the individual energy levels for all ions. A
more extended discussion of these approaches can be found in Cox (1965)
and Huebner (1986).

Contributions to the opacity arise from several distinct physical pro-
cesses: bound-bound transitions, bound-free (that is, photoionization), free-
free (that is, bremsstrahlung), and scattering. For sufficiently large densi-
ties, electron conduction can also contribute. The following subsections only
serve to review the principal methods and results. More details can be found
in the references cited.

3.1.2. Bound-Bound Transitions
The spectrum arising from the totality of all spectral-line absorptions has a
profound effect on the radiative opacity. Since the Rosseland mean opacity
is a harmonic mean, it is especially sensitive to the windows arising from
the distribution of transition arrays (the totality of transitions between two
configurations), and to the windows arising within the transition arrays.
While the distribution of transition arrays and line patterns within the
arrays is determined by the atomic model, the line-profile functions are
also crucial in determining the overall intensity distribution.

In addition to the natural broadening that arises from the finite lifetime
of a radiating atom with a Lorentz profile

&
(%)2 + (v =)

and to Doppler broadening that arises from the thermal ensemble of radi-
ating atoms which has a Gaussian distribution

o (v) = m _ mv?
therm v)= 2kBT exp 2kBT ]

there is also collision broadening, whose nature depends explicitly on the
nature of target and perturber.

Further line broadening occurs through electron impacts on compound
objects (atoms or ions), which result in shifted Lorentz profiles, approxi-
mately evaluated classically (Lindholm 1946; Foley 1946). Quantum effects
(linear and quadratic Stark effect; excited states) are important (Griem et
al. 1962). Assuming that natural and electron-impact broadening are un-
correlated, their Lorentzians can be convoluted to yield a Lorentzian whose
damping width is the sum of the individual damping widths. A subsequent

Ppat (V) V0)2 = (32)
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convolution with the thermal Gaussian yields the so-called “Voigt profile”,
which can be rather time consuming to evaluate in the case of absorption
spectra involving millions of lines (Hui et al. 1978).

3.1.3. Bound-Free Absorptions

In a partially ionized gas, photoionization is an important component of
the absorption. The earliest result for photoionization is the semi-classical
result by Kramers

2671'4(2*)4771610

s & ] (33)

Opf =

(Z* being an effective charge), with its characteristic frequency dependence,
and to which quantum mechanical corrections, the so-called “Gaunt fac-
tors” are incorporated in the form of the factor gpr (detailed references can
be found in Déppen et al. 1991, p. 132).

Nowadays, atomic models, based on e.g. Hartree-Fock or close-coupling
methods, are nowadays being used to calculate energy levels and oscillator
strengths. They allow us to calculate the photoionization spectra directly,
assuring continuity in the absorption strength across the Rydberg series
into the continuum.

3.1.4. Free-Free Absorptions

A free electron in the field of an atom or ion can absorb a photon (inverse
bremsstrahlung) or emit one bremsstrahlung. A frequently used form is again
that of a product of the Kramers cross section og with a Gaunt factor (gg)

=g _ 2471'2(Z*)266 N, g8
f = oKIR = 3v/3hc(2mm)3/2 /kgT V3

As for the case of bound-free absorptions, modern atomic-structure cal-
culations permit a direct calculation of og. Excitation effects during the
scattering processes can give relevant corrections, but they have not yet
received much attention. In partially ionized plasmas, the free-free part is
seldom dominant in the Rosseland mean, although it dominates the low-
frequency monochromatic absorption. At very high temperatures (above
about 1 keV), where the gas is dense and nearly fully ionized, the free-free
process with hydrogen ions is important, but the aforementioned treatment
of equation (34) should be accurate.

[cm?] . (34)

3.1.5. Scattering
The Thompson formula
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describes the behavior of photons scattering off both bound and free elec-
trons. For conditions of the solar center, high-energy effects (Compton
regime) can be incorporated using the Klein-Nishina formula. Since this
formulation is based on the rest frame of the fast electrons, a correc-
tion must take into account the observer’s (laboratory) frame (for ref-
erences see Dappen ef al. 1991, p. 133). Finally, electron correlation ef-
fects [Diesendorf & Ninham 1969; Watson 1969; Huebner 1986 (especially
Eq. 85)] are important if the product of the photon wavenumber and the
Debye radius is approximately equal to or less than unity. For a discussion
of further nuances in the scattering process, see Boercker (1987).

3.2. SPECIFIC FEATURES OF THE OPAL AND OP CALCULATIONS

As we have seen in the previous subsection, the calculation of opacity in-
volves four distinct disciplines: equation of state, atomic physics, spectral
line broadening, and plasma collective effects. The older LAOL opacities
were calculated with an ad hoc model of the equation of state and mostly
hydrogenic approximations to the atomic physics. The new OP and OPAL
opacity efforts are based on improved theoretical methods in all four of
the disciplines mentioned above. In the following the improved physics and
its impact on opacity are briefly described. More detailed accounts can be
found in Rogers & Iglesias (1992), Iglesias & Rogers (1996), Rogers (1998),
and in the books by the OP team (Seaton 1995; Berrington 1997).

Although differences in equation of state models have in general not
significantly affected astrophysical opacities, differences in bound state oc-
cupation numbers are a primary reason for OPAL opacity enhancements
near the base of the solar convection zone (Iglesias & Rogers 1991). It
is also one of the reasons OP obtains a smaller opacity than LAOL and
OPAL in this region (Iglesias & Rogers 1995). For this reason, the MHD
equation of state has been upgraded to include more realistic distribution
functions (Nayfonov et al. 1999).

By far the most significant effect on opacity has come from improved
calculations of bound-bound absorption that include much more detailed
atomic data. The OPAL and OP groups chose different approaches for this
part of the calculation. The goal of OPAL was solely to calculate opacity,
whereas OP had the additional aim to produce a general purpose atomic
database. A continuation of that effort known as the Iron Project is still
in progress (Bautista & Pradhan 1997). For the required atomic data the
OPAL group developed a parametric potential method that is fast enough
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to allow on-line calculations, while achieving accuracy comparable to sin-
gle configuration Dirac-Fock self-consistent field calculations (Rogers et al.
1988). This on-line capability provides flexibility to study easily the ef-
fects of atomic physics approximations; e.g. angular momentum coupling
or data averaging methods. By contrast, the OP group uses first principle
(nonrelativistic) methods to construct detailed atomic databases (Seaton
1987; Seaton et al. 1994). The large increase in the iron opacity obtained
with the LS coupling scheme compared to calculations that neglect term
splitting suggested that fine structure is also important ( Rogers & Igle-
sias 1992). OPAL opacities calculated since 1992 include spin-orbit effects
in full intermediate coupling (Iglesias et al. 1992), while OP (Seaton et
- al. 1994) uses an approximate method that does not include spin chang-
ing transitions (see Fig. 1 of Rogers & Iglesias 1994). On the other hand,
the OPAL calculation assumes single configurations, while OP includes
configuration-interaction effects in both the bound-bound and bound-free
calculations. Configuration-interaction is most important for atoms and
near neutral ions.

The OPAL calculations include degeneracy and plasma collective effects
in the free-free absorption using a screened form of the parametric poten-
tials, whereas these effects are neglected in OP, Both OPAL and OP include
collective effects in Thomson scattering (Boercker 1987). The OPAL spec-
tral line broadening for one, two, and three electron ions is computed with
a suite of codes provided by Lee (1988) that include linear Stark theory.
For all other transitions the OPAL calculations use Voigt profiles where
the Gaussian width is due to Doppler broadening and the Lorentz width
is due to natural plus electron impact collision broadening (Dimitrievic
& Konjevic 1980). The OP approach is similar (Seaton 1987) except that
for spectral lines not subject to linear Stark effect OP uses widths from
quantum-mechanical close coupling calculations (Seaton 1988), which are
similar to those used by OPAL.

The improved line broadening has in general had a small effect on opac-
ity. One important exception is Stark broadening of hydrogen. LAOL used
the theory of Griem (1960) which gives lines that are much too broad com-
pared to experiment (Wiese et al. 1972). The OP and OPAL hydrogenic
lines agree well with the data and result in an opacity reduction for Pop-
ulation II compositions around logT = 4.8. Cox (1991) showed that this
reduction in opacity in conjunction with a modest increase in opacity for
logT ~ 5.3 removes several long-standing puzzles in models of RR-Lyrae
stars.

An important source of discrepancy between OP and OPAL has been

traced to an approximation in OP affecting the occupation numbers. Hum-
mer & Mihalas (1988) assumed that the Holtsmark electric microfield, valid
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for randomly distributed ions, determines the probability a state is local-
ized. Furthermore, in order to reduce computational expense they adopted
an approximate form of the Holtsmark function. In a real plasma however,
the Coulomb interaction modifies the ion distribution and causes the mi-
crofield distribution to peak at lower values of the field strength relative to
Holtsmark. Consequently, the probability that a state is dissolved by the
electric microfield fluctuations is reduced. Iglesias & Rogers (1995) show:
1) the OP approximation to Holtsmark is poor; 2) using the more realistic
APEX microfield (Iglesias et al. 1985) significantly increases the OP occu-
pation numbers (as defined in Rogers 1986) for high lying states, bringing
them closer to OPAL. The recently upgraded MHD equation of state in-
cludes post-Holtsmark distribution functions (Nayfonov et al. 1999), and it
should lead to higher OP values. Since the Hummer & Mihalas procedure
and OPAL are based on different physical assumptions, the two calculations
can of course not be expected to agree exactly.

4. Practical Recommendations

4.1. INTRODUCTION

When constructing a stellar evolution or pulsation code, opacity and equa-
tion of state formulations are necessary. These may be in the form of an-
alytical or in-line routines that calculate the desired opacities or thermo-
dynamic quantities, given as input the temperature, density, and chemical
composition. Pre-calculated opacity or equation of state (hereafter EOS) ta-
bles may also be used, with appropriate look-up and interpolation routines.
Sometimes several tables or analytical fits covering different regions of T,
p, and composition space must be smoothly joined. The hydrostatic struc-
ture calculation may require fewer thermodynamic quantities or derivatives
than a pulsation calculation; for example, in pulsation calculations, smooth
derivatives of opacity with respect to temperature and density, as well as
additional derivatives of thermodynamic quantities are required.

There are advantages and disadvantages of using tables versus in-line
analytical formulations. Tables are often limited in coverage of T, p and
composition space, and so may not be useful for stellar models over a wide
range of masses, compositions, and evolutionary states. Tables do not al-
ways include all of the thermodynamic quantities needed for a calculation,
and these quantities cannot always be constructed from the information
provided. Interpolation within and between tables, or extrapolation off the
edges of tables can be difficult and risky, and introduces significant un-
certainty into the calculations (see, e.g., Christensen-Dalsgaard & Dappen
1992 and Houdek & Rogl 1993). The grids of table entries are not always
fine enough for good interpolation, or for construction of derivatives using
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differences between table quantities. On the other hand, tables often in-
clude superior physics compared to simple analytical schemes, and can be
less computationally expensive than a sophisticated analytical routine.

Analytical procedures can be more flexible, for example in taking into
account variations in element mixtures and composition, or in providing
smooth derivatives. They also may be modified easily to generate addi-
tional thermodynamic quantities. Analytical procedures can also be useful
to explore the importance of various physical processes, since these pro-
cesses can easily be turned on and off, exaggerated with multipliers, etc.

Below we summarize some commonly used and available analytical and
table opacities and equations of state. We also list a few papers in which
these equations of state and opacities have been tested and compared
against the stringent constraints of helioseismology, or in application to
other types of stars, e.g. low-mass stars and white dwarfs.

4.2. EQUATION OF STATE

Well into convection zones, where convection is very efficient and carrying
nearly all of the stellar luminosity, as long as the opacity is realistic, opac-
ity plays no role in stellar structure. An example is in the solar envelope
convection zone, where helium is ionizing. In these regions, the EOS alone
determines the sound speed and the hydrostatic structure. For this reason,
helioseismology can be a sensitive test of equation of state treatments, and
also can be used to determine abundances of elements such as He ionizing
in the solar envelope.

Note that some table-based and analytical equations of state return the
pressure and energy only for the gas. The user should check this point,
and self-consistently include the radiation pressure (1/3aT*) and energy to
obtain total pressure and energy. Care should also be taken to include the
radiation pressure and energy in the derivative quantities.

4.2.1. Analytical Equations of State
a) lonizing Perfect Gas Mixture

See Cox & Giuli (1968), section 9.18. Cox & Giuli describe a basic
EOS formulation for stellar applications, giving thermodynamic quantities
for a mixture of perfect gases, ignoring relativistic and degenerate effects,
but including radiation pressure, using the simple Saha ionization equa-
tion. Stellingwerf (1975a) describes his implementation whereby, given T
and p, he solves iteratively for the mean molecular weight per free electron,
from which all other necessary thermodynamic quantities follow. Stelling-
werf assumes that all elements heavier than helium ionize when helium
does.
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b) EFF

The Eggleton, Faulkner & Flannery (1973) EOS is relatively simple
and easy to program. EFF is thermodynamically consistent, and includes
a pressure ionization treatment that is ad hoc but qualitatively correct.
EFF should not be used for low-mass stars, as it introduces pseudo phase
transitions and multivalued state functions. However, this EOS does in-
clude relativistic effects, which were omitted by the more modern MHD
and OPAL tables. EFF does not include excited states, H molecule for-
mation, or Coulomb corrections, and treats heavy elements as fully-ionized
(see also Table 1 below). Iben (1975) adopted this equation of state as an
option for stellar interiors where the assumption of complete ionization is
reasonably valid.

c¢) Vardya EOS

Vardya (1964) developed a simple analytical procedure for including
the effects of partial ionization. He includes ionization of H and He, plus one
electron from a representative heavier ionic species with electron potential
of 7.5 eV. Despite its crudeness, this EOS does a surprisingly good job, as
evidenced by solar model comparisons with the modern MHD EOS (Guzik
& Cox 1991), because heavy elements of a solar mixture contribute less than
1% of the free electrons that generate the pressure. Iben (1975) adopted
this equation of state for stellar envelope calculations.

d) CEFF

CEFF (Christensen-Dalsgaard & Dappen 1992) is the EFF EOS with
the addition of a thermodynamically consistent treatment of Coulomb cor-
rections. Christensen-Dalsgaard & Dappen introduced the Coulomb term in
the Debye-Hickel approximation taken from the MHD EOS. This analyti-
cal EOS has been popular for helioseismic applications. CEFF is available
from J. Christensen-Dalsgaard (e-mail: jcdQobs.aau.dk).

e) SIREFF

The Swenson, Irwin, Rogers, Eggleton, Faulkner & Flannery (Guzik &
Swenson 1997) in-line equation of state is based on the EFF EOS, but in-
cludes many additional refinements (See Table 1 below). Like MHD, this
EOS is derived in the chemical picture (see 2.3). It has nearly all of the
physics (even some additional) that are contained in the most modern tab-
ular equations of state (MHD and OPAL). However, it also has the advan-
tages of an analytical EOS, such as the flexibility to allow variable element
abundances and mixtures that may develop within a stellar model due to
element diffusion, radiative levitation or nuclear processing. Another ad-
vantage of SIREFF is that it accounts for H, molecules, and so gives better
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results in principle than OPAL for temperatures < 6000K. Like EFF, SIR-
EFF includes relativistic effects, which turn out to be non-negligible in the
solar core (Elliot & Kosovichev 1998).

SIREFF is more computationally intensive than EFF, but not so in-
tensive as directly calculating new MHD or OPAL table points for many
new mixtures. This EOS includes a new generalized pressure ionization
treatment that is still ad hoc, but is a function of ion density in addition
to electron density. The adjustable parameters in the pressure ionization
treatment have been calibrated by detailed comparison to the OPAL EOS
for the run of interior T, p of a solar model and a 0.3Mg model. SIREFF is
written in FORTRAN, and is available from J. A. Guzik or F. J. Swenson
(e-mail: joy@lanl.gov). Note also that (Irwin et al. 1999) are developing
an in-line EOS including excited states, more molecules, and an improved
Coulomb treatment that is available for testing as of this writing.

4.2.2. FEguation of State Tables
a) MHD EOS

The MHD EOS (Hummer & Mihalas 1988; Mihalas et al. 1988; Déppen
et al. 1987, 1988). was developed as part of the OP project, and is based
on the chemical picture. See Table 1 below for a summary of the physical
refinements included.

One advantage of the MHD tables over the OPAL set is that they
include hydrogen molecules (Hp, HJ, and H™), and so they are avail-
able and, in principle, valid to temperatures lower than the OPAL tables
(< 6000K). The MHD tables have been validated for stellar masses as low
as 0.4Mg (Charbonnel et al. 1999), whereas the OPAL tables claim validity
for M > 0.8Mg.

The first MHD tables computed for solar applications included the ele-
ments H, He, C, N, O, and Fe. Eight tables were provided: Three “ZAMS
tables” with X=0.69, 0.72, 0.75, and five “interior tables” with X=0.31,
0.42, 0.53, 0.64, and 0.75. In those early versions of the MHD tables, the
element composition was chosen to be Z=0.02, and the heavy-element dis-
tribution was based on the Ross & Aller (1976) solar mixture (with iron
representing all elements not included in the mixture). More recent MHD
tables are based on the Grevesse & Noels (1991) mixture. They contain the
elements H, He, C, N, O, and Ne, with Ne representing all other elements.
This is precisely the mixture used for current OPAL equation-of-state ta-
bles. These newer tables are therefore specifically adequate for equation-of-
state comparisons. Recently, Z=0.001 tables have been computed for use
in the Geneva-group low-mass stellar models (Charbonnel et al. 1999).

A simple MHD table that contains a sample of ionization fractions and
thermodynamic quantities can be found at the OP web site
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TABLE 1. Fine effects included in EFF, MHD, OPAL, and SIREFF EOS

Effect _ EFF MHD OPAL SIREFF
Coulomb Correction  No Yes® Yes Yes®
Pressure Ionization  Yes® Yes Yes Yes®
Partial Ionization Yes Yes Yes Yes
Molecules No H, Hi H- No¢ H,
Classical lons Yes Yes Yes Yes
Electron Degeneracy relativistic —nonrelativistic nonrelativistic relativistic
Excited States No Yes Yes No
Electron Exchange No No Yes Yes
Quantum Diffraction No No Yes No

“Debye Hiickel approximation

bad hoc

®ad hoc, but more general than in EFF
“Molecules will be included in future OPAL tables

(http://visier.u~strasbg.fr/0P.html). MHD tables adequate for solar
and stellar modeling can be directly obtained from W. Déppen (e-mail:
dappenfusc.edu).

b) OPAL EOS

The OPAL (Rogers et al. 1996) EOS is based on the physical picture.
See Table 1 below for a summary of the physics included. Although OPAL
EOS can include molecules in principle, the OPAL tables commonly used
do not include molecules, and extend to T' > 6000K. These tables must
then be supplemented to calculate, for example conditions near the solar
photosphere. Like MHD, OPAL does not include relativistic effects. These
EOS tables are valid for stars of mass > 0.8Mg on or above main sequence.
The tables are available for fixed Z between 0.0 and 0.04, and X=0 to
0.8. The element mixture includes H, He, C, N, O, and Ne, derived from
the Grevesse & Noels (1991) solar abundances.

See the web site http://www-phys.11lnl.gov/V.Div/0PAL/ for tables,
interpolation routines and additional information.

4.3. RADIATIVE OPACITIES: MID- TO HIGH TEMPERATURES

4.3.1. Analytical Fits to Tables

Analytical fits to opacity tables were popular in the 1960s through 1980s,
but unfortunately no new analytical fits have been published since the
advent of the OPAL and OP opacity tables in the early 1990s. Analytical
fits can be very useful, for reasons described in the introduction, such as




EQUATION OF STATE AND OPACITY 25

smooth derivatives, avoiding interpolation and extrapolation, applicability
to a larger range of stellar conditions, more flexibility in modifications, etc.
and it would be worthwhile to derive new fits to the modern tables. For
some applications, old analytical fits have been re-calibrated using selective

multipliers to agree approximately with new table values (see, e.g., Guzik
& Cox 1995).

a) Iben and Christy analytical fits

Iben (1975) developed an analytical fit to the Cox & Stewart (1970a,b)
opacity tables for his general stellar evolution code. For temperatures less
than 1 million K, Iben applied the Christy (1966) analytical fit.

b) Stellingwerf analytical fit

Stellingwerf (1975a) describes his analytical fit to Los Alamos opacity
tables King Ia (X, Z = 0.7, 0.001) and King ITa (X, Z=0.8, 0.001) generated
by Cox et al. (1973). An erratum to this opacity fit appears as a footnote
in Stellingwerf (1975b).

4.3.2. Tables
a) LAOL

The opacity tables of the Los Alamos Opacity Library (Huebner et al.
1977) were the standard for many years, but proved to be inadequate, es-
pecially for Cepheids and other variables, and the solar interior (see Rogers
& Iglesias 1994). The OPAL and OP projects found opacity increases over
the LAOL values by as much as a factor of three for stellar envelope con-
ditions near a few hundred thousand K with Pop. I abundances. The main
contributors to higher opacities were bound-bound absorptions in Fe. The
OPAL opacities are also about 20% higher in the 2 to 5 million K region
below the solar convection zone. This opacity increase deepened the solar
convection zone, improving agreement with its helioseismically-determined
depth (see, e.g., Guzik & Cox 1991).

b) OPAL

The OPAL tables (Iglesias & Rogers 1996; Rogers & Iglesias 1992; Igle-
sias et al. 1992) are based on the Grevesse & Noels (1991) solar element
mixture, collapsed to 14 elements. The updated tables of Iglesias & Rogers
(1996) are based on the Grevesse & Noels (1993) mixture, incorporating
21 elements, and in addition are calculated using an improved EOS treat-
ment. The tables span the range 3.75 < logT < 8.7, and -8 <log R < +1,
where R = Tg/p and T = 1078T. Tables are also available for enhanced
a-element mixtures, and enhanced CO mixtures. Opacity tables may also
be requested for any desired element mixture.
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These opacities and interpolation routines are available on the web site
http://www-phys.llnl.gov/V.Div/0OPAL/

¢) LEDCOP

Los Alamos has generated new opacities, using the so-called LEDCOP
(Los Alamos Light Element Detailed Configuration Opacity) code (Magee
et al. 1995). The new Los Alamos Astrophysical Opacity database contains
elements from Hydrogen to Zinc (atomic number Z=1-30). One can use
the so-called TOPS code (Abdallah & Clark) (1985) to manipulate the
individual element data to generate Rosseland or Planck mean opacities
for any desired mixture. The user can choose the p grid, but the T grid is
fixed. The ranges of validity in T and p are 0.5 eV < T < 100 keV, and
10719 < p < 10° g cm™3. The EOS for these opacities is based on the Saha
equation, including degeneracy and other refinements. The Saha equation
is solved iteratively to obtain a consistent set of ion abundances, bound
state occupancies, and free electrons.

These codes and tables are available on the web site
http://t4.lanl.gov. Tables for the GN93 solar mixture and other mix-
tures of interest will be available on the web site shortly. These new Los
Alamos opacities have not been extensively tested for astrophysical appli-
cations, but direct comparisons with OPAL opacities shows that the agree-
ment is much closer than between OPAL and the older LAOL opacities.

d) OP

The Opacity Project (see the comprehensive books by Seaton 1995
and Berrington 1997) provides monochromatic opacities for 17 elements
up through Ni, on grids of 7' and N, (electron density). Tables of Rosse-
land and Planck mean opacities for 213 fixed X, Z compositions using the
element mixtures listed in Seaton et al. (1994) are also available. Codes are
provided to interpolate to any value of density and temperature, and also to
interpolate in X and Z. These opacities are generated using the MHD EOS.
The web site (see below) advertises that data will be available shortly for
calculating radiative forces, which would be useful for calculating radiative
levitation of elements to compare with surface abundances of peculiar A
and F stars. Monochromatic opacities for each element are done, so tables
can be requested for any desired mixture. The drawback of these tables is
the limited range of validity compared to OPAL: -7 < log R < —1, and
3.5 < log T < 7.0. However, for densities less than 0.01 g cm™ care should
be taken, since dense plasma effects not included in OP may become im-
portant. Codes are available to fit, smooth, and interpolate between both
OP and OPAL opacity tables (Seaton 1993, 1996).

Codes and tables are available on the web site of the Opacity Project
http://visier.u-strasbg.fr/0OP.html. For more information, contact
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Anil Pradhan (e-mail: pradhanQastronomy.ohio-state.edu) He reports
that his group and other members of the Iron Project are recalculating
radiative data for Fe, which should greatly improve accuracy over OPAL
and OP results.

e) Comparison of OPAL, LEDCOP, and OP opacities

Figure 1 compares the OPAL (LLNL), LEDCOP (latest LANL), and OP
opacities for stellar interior conditions. These modern tables agree quite well
with each other, but small differences remain. For example, for conditions
at the base of the solar convection zone, which determine the convection
zone depth, the LEDCOP opacities are 1 to 5% less than OPAL, and about
30% larger than OP.

{ L {

X=0.70 Z=0.02

~— LLNL
coo LANL r

4.0

3.0

2.0

1

1.0

log Rosseland Mean Opacity [cm2/gm]
0.0
1

-1.0

Ll T i
36 40 46 50 55 60 65 7.0
fog T K]

Figure 1. OPAL (LLNL), LEDCOP (latest LANL), and OP Rosseland mean opacities
versus temperature for X=0.7 and Z=0.02, for several log R values, where R = p/T¢.
Figure provided by J. J. Keady (LANL).

4.4. RADIATIVE OPACITIES: LOW TEMPERATURES

Note that neither the OPAL nor OP opacities extend to low temperatures
or include molecules. Also, it may be more correct to use Planck mean opac-
ities for optically thin layers. For this reason, modelers of the Sun and low-
mass stars must supplement the OPAL or OP tables with low-temperature
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opacities. Some of the more recent and popular low-temperature tables and
fits are listed below.

4.4.1. Kurucz

Kurucz (1992) provides Rosseland mean opacities including 58 million lines
and diatomic molecules for 1 > log{Z] > —3 relative to solar, based on
the Anders & Grevesse (1989) mixture. These tables include 56 tempera-
tures ranging from 2000 to 20,000 K, 21 log P values from -2 to 8, and at
least two Y compositions 0.25 and 0.31. Tables are also available for several
different microturbulent velocities 0, 1, 2, 4 and 8 km/sec. More informa-
tion and tables are available at the web site
http://cfakub.harvard.edu/0PACITIES.

4.4.2. Alexander & Ferguson

Alexander & Ferguson (1994 (Grevesse & Noels 1991 solar mixture); 1995,
(Grevesse & Noels 1993 solar mixture)] provide Rosseland and Planck mean

. opacity tables valid for T = 700 — 12, 500K including atomic and molecular

line absorption, grain absorption and scattering by silicates, iron, carbon,
and SiC. Alexander & Ferguson (1994) find that including molecules be-
comes necessary for T < 5000K, tri-atomic molecules for T' < 3200K, and
grains for T < 1700K. These opacities are available from Alexander (e-mail:
dra@twsuvm.uc.twsu.edu)

4.4.3. Neuforge

Neuforge (1993) generated Rosseland mean opacity tables using the Anders
& Grevesse (1989) solar mixture. These are valid for T’ = 3000 — 15,000 K
and ~0.383 < Q < 4.605, where Q = In(p'/3/T%), and Ty = T/107. These
opacities include a subset of H, CI, Mgl, All, Sil, bound-bound and free-
free transitions, and line absorption for some neutral atoms and molecules.
The tables are produced for X=0, 0.2, 0.5, 0.7, 0.9 and Z=0.0001, 0.001,
0.005, 0.02, 0.04. Even though Kurucz (1992) includes millions of lines, these
opacities are within 13% of Kurucz values. The tables are available from
Neuforge (e-mail: neuforge@lanl.gov, neuforge@astro.ulg.ac.be).

4.44. Sharp

Sharp (1992) produced Planck and Rosseland mean molecular opacity ta-
bles for a solar (Cameron 1973) mixture, and for enhanced CNO abun-
dances. Sharp generated the enhanced CNO opacities for application to
accretion disks of cataclysmic binaries due to nova eruption of the white
dwarf, and finds a significant opacity increase between 3000 and 6000 K over
the normal CNO tables. The range of applicability is kg7 = 0.2 — 1 eV
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and 10710 < p < 103 g cm™3. Sharp assumes a turbulent broadening of 1
km/s.

44.5. Bell

Bell (1993) calculated Rosseland mean opacities, including atomic lines and
12 molecules.

4.4.6. Another option

A final option, if an analytical opacity is desired, is to use the Stellingwerf
(1975a,b) or Iben (1975) analytical opacities, and modify some of the terms
or add multipliers to calibrate the fit to the low-temperature tables (see,
e.g., Guzik & Cox 1991, 1995).

4.5. CONDUCTIVE OPACITIES

Electron heat conduction is important when free electron densities are high,
and electrons begin to become degenerate. This heat conduction can be in-
corporated into the radiative transfer solution as a “conductive opacity”
and added in reciprocal to the radiative opacity. This opacity is normally
very high, so that it modifies the radiative opacity by only a few percent in
the core of the sun and main-sequence stars. However, conductive opacities
must not be neglected, even for solar interior calculations. Electron con-
duction becomes increasingly important as the star evolves, and dominates
energy transport for stars with significant degeneracy, e.g. in white dwarfs
and the deep interior of some red supergiants.

4.5.1. Canuto

The Canuto et al. (1970) conductive opacities are used by Iben (1975) in
his general stellar evolution code for densities greater than 2 x 108 g em™3.

4.5.2. Hubbard & Lampe

The Hubbard & Lampe (1969) conductive opacities are used by Iben (1975)
in his general stellar evolution code for densities less than 10 g cm™3. For
6 < logp < 6.3, Iben (1975) adopts a weighted average of these conductive
opacities and the Canuto conductive opacities.

4.5.3. Itoh et al.

The Itoh & Kohyama (1993) and Itoh et al. (1983, 1984, 1993, 1994) con-
ductive opacities are more recent, and have been popular for white dwarf
evolution and pulsation calculations.




30 DAPPEN & GUZIK

4.6. EQUATION OF STATE AND OPACITY FOR DEGENERATE MATTER

Finally, the above list of radiative opacities and equations of state is in-
adequate for objects with significantly degenerate matter, such as white
dwarfs, brown dwarfs, and giant planets. For white dwarfs, OPAL opacities
are available for for appropriate CO mixtures for interiors, and H and He for
envelopes (Iglesias & Rogers 1993). These tables need to be supplemented
by other opacities, e.g. the LAOL opacities, at the highest temperatures
and densities.

For white dwarfs, the Fontaine, Graboske & Van Horn (1977) EOS for
H, He, and CO mixtures is commonly used at moderate densities, and is .
supplemented by the Lamb (1974) tables for high density and CO mixtures
(see also Lamb 1975). The Saumon, Chabrier & Van Horn (1995) EOS
tables are popular for low-mass stars and giant planets.

4.7. OPACITY AND EOS COMPARISONS AND EVALUATIONS

Below we list some papers that compare results for solar and stellar models
using different EOS or opacity treatments, or evaluate opacity or EOS
treatments in light of helioseismic or other observations. This list is by no
means exhaustive.

4.7.1. EOS

— Comparison of solar models using the Ezer versus MHD EOS (Yildiz
& Kiziloglu 1997)

— Effect of relativistic corrections on adiabatic exponent I'y and solar

- core structure (Elliot & Kosovichev 1998)

— EFF EOS results shown to be inferior to modern EOSs for solar sound-
speed inversions (Basu & Christensen-Dalsgaard 1997)

— EFF versus CEFF versus MHD EOS for solar models (Christensen-
Dalsgaard & Dappen 1992; Christensen-Dalsgaard 1991)

— Validation of MHD EOS for low-mass stars 0.4 — 1M (Charbonnel et
al. 1999

- Compar)ison of solar models using MHD versus older equations of state
(Guzik & Cox 1991)

— MHD versus OPAL versus SIREFF for solar models (Guzik & Swenson
1997)

— MHD versus OPAL for solar models (Guenther et al. 1996)

— Inclusion of excited states in hydrogen internal partition function, and
signature in solar oscillations inversions (Nayfonov & Déappen 1998)

— Effects of electron exchange correction on solar oscillations (Guzik &
Swenson 1997)
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— Effect of including Z variation due to diffusion in EOS on solar struc-
ture (Guzik & Swenson 1997)

— MHD EOS preferred over OPAL EOS for outer 2% of solar radius
(Basu et al. 1999)

4.7.2. Opacities

— Comparison of solar models using Cox & Stewart versus OPAL opaci-
ties (Yildiz & Kiziloglu 1997)

— Advantages of OPAL over LAOL opacities (Rogers & Iglesias 1994)

— Comparison of OPAL to OP and Alexander & Ferguson (1994) opaci-
ties (Iglesias & Rogers 1996)

— Discrepancies between OPAL and OP at high densities and tempera-
tures (Iglesias & Rogers 1995)

— Comparison of several low-temperature opacity sets (Neuforge 1993)

— Effect of low-temperature opacities on solar models and p-mode fre-
quencies (Gong & Déppen 1998)

— Comparison of 1991 versus 1993 OPAL opacities for solar oscillations
(Guzik & Swenson 1997)

— OPAL versus OP opacities for solar models (Gong et al. 1998; Gong
& Li 1998)

— Effect on solar models of localized interior opacity changes (Brun et
al. 1998; Gabriel 1997) ,

— Comparison of evolutionary tracks for OPAL and LAOL opacities for
stars of 1 to 7 Mg (Cassisi et al. 1994)

— Fitting, smoothing, and interpolating between tables of opacity data
(Seaton 1993, 1996)

— Testing of opacity interpolation schemes using a similar analytical for-
mula (Christensen-Dalsgaard & Déppen 1992)

— Note on a new interpolation scheme for opacity tables (Houdek & Rogl
1993)

5. Conclusion

As far as the equation of state is concerned there has not only been sub-
stantial theoretical progress in the last decades, but the spectacular ob-
servational accuracy of helioseismology has constrained the plasma of the
solar interior so strongly that rather fine deviations from the simple gas
models are now observationally well established. For instance, the Debye-
Hiickel Coulomb pressure correction is now routinely seen in helioseismic
data. However, even finer effects are becoming accessible. They are the tar-
gets of new ground and space missions, dedicated to helioseismology, which
have begun to improve the already good observational situation.




32 DAPPEN & GUZIK

As far as the opacity is concerned, the new data of the last few years has
had a very favorable impact on the astrophysical explanation of a broad
range of stellar properties. This success provides a strong motivation to
extend the calculations to cover a broader range of applications. For ex-
ample, the temperature and density range of white dwarfs or other dense
stellar objects are partly beyond the range of the current tables, the el-
emental composition is not adequate to model s-process stars that have
significant amounts of elements heavier than Fe, and there are many ap-
plications requiring frequency dependent opacity data such as radiative
levitation (Seaton 1997; Richer et al. 1997).

In the specific case of the Sun, current opacity tables only allow for
changes in the total Z. To facilitate the process of adding diffusion to the
best standard solar models (SSM) (see Christensen-Dalsgaard 1998) it will
be necessary to provide opacity tables that allow for variation of individual
element abundances. Due to the stringent requirements set by helioseismol-
ogy, and with likely progress in the helioseismic abundance determinations,
even small sources of opacity not included in the current calculations will
need to be considered. Ultimately, this will make the Sun a formidable
opacity experiment.
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