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MULTIPHASE SATURATION EQUATIONS, CHANGE

OF TYPE AND INACCESSIBLE REGIONS

Barbara Lee Keyfitz*

Abstract. We identify a class of flux functions which give rise to conservation laws
which are hyperbolic except along a codimension one subspace of state space. We show
that a numberof systemsmodellingporous mediumflow can be regardedas perturbations
of such systems,and describe the phenomenon of change of type for these perturbations.
We alao discuss a property of solutions of such systems, the existence of inaccessible
regions - subsets of state space which appear to be avoided by solutions.

1. INTRODUCTION

Equations that change type appear in some models for multiphase flow, where they
cause a certain amount of controversy. The context is as follows. In a fluid consisting
of several phases, components or both, in a flow regime where dissipative, cliffusive
or dispersive effects should be negligible, one ends up with a system of quasilinear
first-order partial differential equations, in space and time, which are expected to be of
hyperbolic type. Details of the modelling depend on the specific problem — Darcy’s
law for porous medium flow, the usual conservation of mass and momentum for com-
pressible two-phase flow, other models for transport of solutes or sediments — but
the same disconcerting behavior occurs: not only do the characteristic speeds depend
on the state variables (as is usual) but also there is a region of state space where
some characteristics are complex conjugates. In the simplest case, where there are
two equations only and a single space variable, this means that the equation changes
type from hyperbolic to elliptic. Recall that steady transonic flow also contains both
supersonic (hyperbolic) and subsonic (elliptic) regimes. However, it turns out that the
two sorts of problems — steady and unsteady models — have different mathematical
structure; see Keyfitz [8]. In addition, issues that are important for applications —
such as well-posedness of the initial-value problem — are different in the two cases.
In this paper, ‘change of type’ refers to systems of first-order quasilinear equations,
modelling unsteady problems, in which some characteristic speeds change from real to
complex in a region of state space. We shall generally assume that the equations are
in conservation form.

More background on change of type in porous medium flow can be found in the
review article by Keyfitz [10].

In the next section, we describe some models where the phenomenon appears. Based
on these examples, we identify a class of nonlinear flux functions with the property that
the associated conservation laws are hyperbolic everywhere, but nonstrictly hyperbolic
on a codimension one submanifold of phase space. For systems of two equations, we
write down some explicit criteria for membership in this class.
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In $3 what happens when an equation in this class is subjected to a general per-
turbation is discussed: change of type may occur. In the case of two equations, for
example, elliptic regions arise near the original curve of nonstrict hyperbolicity. Other
phenomena affecting the structure of solutions of conservation laws, such as curves of
linear degeneracy, are also associated with the perturbations.

The next section, $4, contains an informal discussion of one aspect of the ill-
posedness associated with change of type: the existence of so-called inaccessible re-
gions in the flow. Difficulties associated with this are mentioned in Allen et al. [1].
We show that this behavior is similar to strictly hyperbolic systems which admit linear
degeneracies.

2. MULTICOMPONENT SATURATION EQUATIONS

The general form of the

Here P= (pi,...,p~) is
of corresponding fluxes,

equations we study is

8~pi + 8z(piVi(F”)) =0, 1< i < n. (2.1)

the vector of states, and we define F = (.fl, ..., .fn), the vector
The particular form fi = pi~i(.P) is appropriate when each pi

is the density or relative saturation of a component or phase. Then (2.1) is the set of
continuity equations for n species, and ~]i, the velocity of the ith species, depends on
the state vector.

A system of kinematic equations like (2.1) is part of a more complete model of a fluid
syst em. Momentum and energy equations have been omitted and the system has been
closed by the assumption that velocities depend on densities or concentrations alone.
Rarely is this completely realistic. However, it is an approximation which is often taken
seriously. For example, it is used to describe the so-called miscible disp~acement problem
in enhanced oil recovery, in which one component of P represents the sat urat ion of a
solvent in a fluid whose concentration is given by the other component. In this case it
is often assumed that all the vi are identical (see, for example, Johansen and Winther
[5]). Another example arises in three-phase immiscible porous medium flow, where the
momentum equation is replaced by Darcy’s law and it is further assumed, for a single
space dimension, that the pressure equation can be solved explicitly. In this case, the vi
are complicated functions of the phase fractions, P, involving the three-phase relative
permeabilitia, which are usually determined by interpolation (see Allen et al. [1]).
One classic example of a kinematic equation is a continuum model for traffic flow; the
adaptation of this model to a system purportedly describing two-directional traffic flow
leads to change of type, (Bick and Newell [2]).

Standard models for two-phase compressible, nonreacting flow consist of a pair of
equations which represent conservation of each phase, coupled with momentum and
energy transfer equations; see Stewart and Wendroff [18]. These equations reduce
asymptotically to a pair of continuity equations of the form (2.1) when the faster-
moving waves are ignored; see Keyiltz [9].

Finally, kinematic equations like (2.1) are important in some chemically reacting
systems, such as chromatography and other adsorption processes; see Rhee et al. [15]
and Temple [20]. Change of type and fa,ilure of strict hyperbolicity occur in some but
not all of these systems,
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We examine systems with the property that a single pair of eigenvalues coincides
for some values of P, while remaining real everywhere. For concreteness, consider a
pair of equations,

Pt+fz = 0,
%+9. = 0,

(2.2)

with Jacobian matrix

dF =
()

f, f,
9p 9q “

The eigenvalues of dF, which are the characteristic speeds, are real or complex accord-
ing to the sign of the discriminant

()

f, – 9q 2 + fqgp
~(P, !7) = 2

System (2.2) is strictly hyperbolic when D is positive, and,

(2.3)

since this is an open con-

dition, (2.2) has this property on an open subset of R2. For the same reason, if (2.2)
is strictly hyperbolic for a flux vector F. in the entire region of physical interest (the
positive quadrant or unit square, say), then it remains strictly hyperbolic in this entire
region for all perturbations of F. in a sufficiently small Cl-open set about Fo.

However, it may happen that D is simply nonnegative everywhere. In this case,
the system (2.1) or (2.2) is called nonstrz”ctly hyperbolic. The condition D >0 is not
open: if there are no other constraints on F there will be points (p, q) with D < 0 in
any neighborhood of a point where D = O. Let us introduce a terminology for flux
functions which satisfy a constraint which prevents this.

Definition 2.1 We say ihat F is a nonstrictly hyperbolic (NSH) flux function for
system (2.2) in a subset R C R* if the disc~”minant D defined in (’2.3) is nonnegative
for all (p, q) G R and D = Ofor at least one point in the interior of R. The coincidence
locus, )2, is the set of points (p, q) where D = O.

The definition excludes strictly hyperbolic systems and also systems, such as the gas
dynamics equations, which lose strict hyperbolicit y at the vacuum state, on the bound-
ary of the physically interesting region.

One well-known class of NSH flux functions consists of gradients of a potential; if
F’ = V@ then dF = #@ is symmetric and hence its eigenvalues are real. In this case,

and the system is NSH if there is a point (p, q) where the two equations @Pp– il~~ = O
and @p* = O are satisfied. If @ is an arbitrary C2 function of two variabl~-i then-these
equations constitute two independent conditions, and X consists of isolated points (p, q)
— usually called umbiiic points. Nonstrictly hyperbolic fluxes with umbilic points have
been studied extensively, beginning with Schaefer and Shearer [16].

However, many examples that arise in modelling have a different structure: they
are nonstrictly hyperbolic, but the condition D = O reduces to a single equation whose
solution space Z is a curve contained in R. An example is the class of separated
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potentials: a flux F = (f(P)> 9(~)) corr=Pond@ to an uncouPled sYstem has this
structure, as does the flux that results in a triangular Jacobian:

~ = (f(P> !7),!?(~)). (2.4)

In this example, eigenvalue coincidence occurs where

G(p, q) = fp(P> q) – 9’(!?)= 01

and if this equation is satisfied at a point (po,qo)thenjby the implicitfunction theorem,
it is satisfied on a curve through that point provided

VG(PO, gO)#0. (2.5)

A two-component flow with a flux of the form (2.4) has the propert y that the velocit y
of the q-component is independent of the density of the p-component: the sys tern is
at least partially uncoupled. This may not be a realistic approximation for multiphase
flows; though the two-way traffic equations, (Bick and Newell [2]), have this property
when there is no interaction between the two directions of flow.

A more interesting example of a NSH flux is given by the two-component miscible
displacement saturation equations. These can be written with a flux vector of the form

F’(p, q) = (p4(P, ~), @xP? ~)) (2.6)

(see Johansen and Winther [5]); in this case

and the system is nonstrictly hyperbolic if the equation G = pq$p+q~q = Ohas a solution

(Po>~o); ei%nvalue coincidence Occurs along a curve under the nondw-rw condition
(2.5). A two-fluid model for gas chromatography, (Temple [20]), has a structure similar
to (2.6), except that the second component of F is multiplied by a constant; however, in
the standard model (using the Langmuir isotherm), there is no eigenvalue coincidence:
D >0 everywhere in the physical region..

The two NSH models above — a flow in which the velocities of both components
are the same, and a flow in which one is independent of the other — seem to represent
extrem- in kinematic modelling. However, they have similar mathematical properties.
Furthermore, general perturbations of either model, which take them out of the class
of NSH systems, also have much in common, as we shall explore in the next section.

In the remainder of this section, we give a brief description of models with the
property that X is a curve. This is motivated by the observation that special multiphase
kinematic flows, as in the examples given above, appear to have this structure, rather
than the umbilic structure of a NSH flux which deriv~ from a potential. We shall refer
to this class of NSH fluxes as coincidence-line fluxes.

In some multiphase saturation models, such as three-phase porous medium flow,
the flux vectors must either be NSH or show change of type (Shearer and Trangenstein
[17]), and this has motivated studying perturbations of umbilic points. Given a model
with an elliptic region, one can embed it in a family of models in which the elliptic
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region is shrunk to a point or to a line, and it is to some extent a matter of taste
which one chooses to do. For example, in Vinod [21], the elliptic region occurring in
a quadratic model for the two-way traffic equations is shrunk to a line — the limit
of zero interaction — while in Holden and Holden [3] an equivalent quadratic model
is considered as a perturbation of an umbilic. Nonstrictly hyperbolic systems whose
eigenvalues coincide along a line have simpler solutions than hyperbolic systems with
an umbilic point. It would be interesting to be able to show that the constraints which
force a NSH flux to be of coincidence line type have some physical basis.

We make the following obvious remark.

Proposition 2.1 Let F G C2 be a NSH flux vector in the sense of Definition 2.1 and
let D be the corresponding discriminant. Then at any point where D = O we also have
VD = O.

The converse holds as well under some additional conditions on F; e. g., F c C3 and
nondegeneracy conditions on d2D. Informally, we might say that D needs to be a
perfect square if the flux is to be NSH, and Proposition 2.1 shows that this condition
is not likely to be met by an arbitrary pair of functions ~ and g. Furthermore, in order
for a NSH flux vector to be a coincidence-line flux (rather than umbilic), the three
equations D = VD = O must be equivalent to a single equation in the two variables p
and q, to yield a curve X.

The proposition does not suggest any useful way of characterizing these fluxes. But
looking at the geometry of conservation laws in the plane gives some insight. The
Jacobian matrix, d~, of a NSH flux vector has one real eigenvector at every point in
R. Denote the eigenvector by <(U), where U = (p, q), and suppose it can be chosen
to depend smoothly on U. The integral curves of the line field generated by [ give
a foliation of 1?; if the curves are written in the form x(U) = c then x is a Riemann
invariant.

Nowj F is a mapping from R to a subset of R2, and by translating F by a constant’
vector (which does not affect the conservation law system) and possibly scaling by a
constant factor, we can assume that F(R) c l?. (For our purposes, we may assume
R has compact closure, and then the additional assumption made here is that F is
bounded.) In this case, the equation

(W(u))((u) = A(u)qu) (2.7)

has the interpretation that F maps each Riemann invariant curve to a translate of
that curve. (This follows from differentiating along the curve. At corresponding points
U and F(U), the tangent vectors, ~, to the curve are parallel, as a consequence of
equation (2.7). ) Let us consider the special case that F respects the foliation: that is,
the image of a Riemann invariant curve is a Riemann invariant curve. (This does not
seem a particularly natural assumption, but it holds for a number of physical models,
including the ones mentioned above.) Now, either F maps every curve to itself, or
F maps each curve to a different curve. The condition on tangents implies that a
Riernarm invariant curve that is mapped to itself must be a straight line segment. On
the other hand, if curves are mapped into each other by F, then the tangency condition
means that all the curves are, effectively, translates of each other, so that x is of the
form q – r(p), at least locally.

Thus we state
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Proposition 2.2 Let R be a bounded subset ojR2, and let < be asmoothlinejield
defined on Rsatisfying oneofihe two constraints: iheintegra! curvesof~ are straight
lines, or the integral curves are translates of a single curve. Then there is a smooth
$ux function, F, defined on R, with eigenvector ((U) at each point U.

Proofi Temple [20] has shown how to construct a flux F corresponding to any line
field with straight-line integral curves. Writing ~ = (1, h,(U)), the condition that < have
straight-line integral curves is

Vh<=O,

so h is any smooth solution of hP + hhg Z=O; given h, Temple shows that the form of
F is (up to unessential normalizations)

( 1)+(4JF(U) = ~(u) h,(v) (2.8)

Here ~ is an arbitrary function of U and H an arbitrary function of h. Temple’s
construct ion begins with the fixed solution h(U); however, it is clear that from any
foliation of R by straight Iines, one can construct ~ (up to the condition that the
first component be nonzero), and F. This generalizes the flux of (2.6), for which [ is
just the field of radial lines: J = (1, q/p) with Temple’s choice of normalization. The
eigenvalue corresponding to ( is J(U) = @P+ hq$~= V#” ~ = tl(q$. The other eigenvalue
is tr(dF) – A = q5hg+ Hq = (~+ 11’(h))h~.

When X=q– r(p), then C = (1, r’(p)); it is easy to verify that

(2.9)

is a flux vector which gives rise to this eigenvector as long as b, a and r are related by
b’ = r’(a’ + r’). The corresponding eigenvalue is A = a’ — r’, and the other eigenvalue
is r’. Notice that there is no condition imposed on r other than sufficient smoothness.
The region R will, of course, depend on r. m

So far, we have not required that the fluxes be NSH. However, for both the families
we have constructed, it is straightforwa,rd to impose the condition that eigenvalues
coincide on a subset of 1?; under suitable nondegeneracy conditions, this occurs along
a curve for both types of models.

Proposition 2.3 Let a flux function F be defined by (2.8) or (2.9) on a domain 1?.
Then F is a nonstrictly hyperbolic flux vector if there is a point (po, qo) where, in the
first case,

G(p, q) s q$P+ h$q – g$h~– Hq = o)

and, in the second,
G(p) a a’(p)+ 2r’(p) = O.

Furthermore, U. = (poj qo) lies on a nondegenerate curve, X, of coincident eigenvalues
in the first case if VG(UO) # O. In the second case, E includes the line p = po, and
this is an isolated coincidence line if G’(po #o.
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Proofi This is a straightforward calculation using the expressions for the eigenvalues
given in Proposition 2.2. The existence and nondegeneracy of X follow from the implicit

function theorem applied to G. ■

Another interpretation of equation (2.7) is as follows. The flux corresponding to
(2.4) produces a nondegenerate curve as a line of coincident eigenvalues as long as
(2.5) holds. Again suppose that F maps the domain R into R, and take any smooth
coordinate transformation, T, from R to itse~ then the composition

i’=To FoT-l (2.10)

defines a new flux function on R. (It is not particularly natural, on the basis of the
physical problems, to regard F as a mapping of R to itselfi however, it is a reasonable
approach if one wants to study the structure of eigenvalues of dF.) Defining V = T(U),
one has another system

8,V+ az(i’(v)) = o. (2.11)

There need not be any relation between the eigenvalues of dX’ and those of cl~. In
fact, defining S = T-l as an abbreviation,

c@V) = (dT)Fos{v)(~F)s( V)(@v (2.12)

where the subscripts on the right indicate where the Jacobians are to be evaluated. By
contrast, if one begins with the original conservation law (2.1) and applies the change
of coordinates to U, one obtains the quasilinear system

dtv + [(dT)v(dF)u(dS’)v] &V = O (2.13)

which cannot, in general, be put in conservation form. Comparing the Jacobian in
(2.12) with the matrix in (2.13), we see that they are the same only if

(dT)rOS(V) = (dT)v. (2.14)

In this case, (2.11) is the same as the original system, but written in new coordinates.
(The two systems are not equivalent when it comes to weak solutions or shock struc-
ture, but they have the same characteristic speeds, and the corresponding eigenvectors
transform to each other under T.) However, (2.14) is a very restrictive condition.

Nonetheless, one can generate conservation laws (2.1 1) with a structure that is
qualitatively like a given one, as follows. Suppose that, with U = (p, q), F is of the
form (2.4), and so dF is upper triangular. In that case, so is C(dF), where

C=(; $1)

is an upper triangular matrix. If now we replace (2.14) by

(dT)Fos(v) = (~~)vc’ (2.15)

then (2.1 1) is a conservation law whose eigenvalues are those of C(CZF) — that is $P
and cg~. In particular, they are real everywhere in R and coincide along the curve Z

where ~P(lY) = c(u)gq (U). Thus we have proved
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Proposition 2.4 Let F be any smooth flux of the form (Z.d) which maps a subset R of
R2 to itself. Let T(U) = V be a nonsingular coordinate change in R and C any smooth
upper triangular matrix. Then, provided the compatibility condition (2. 15) is satisfied,
the system (2. 11), with flux defined by (2.10), is hyperbolic in R, with eigenvalues fP

and cg~. Equation (2.11) has a IVSH flux vector ~ if there is a point, Uo, where

G(U) = fp(u) – c(~)g’(q) =0>

and this equation is satisfied on a curve E if VG(Uo) # O.

This proposition relates several of the examples above — for example, the transfor-
mation from Cartesian to polar coordinates turns the triangular flux function, (2.4),
into the flux vector for the miscible displacement problem, (2.6). In [11], we show that
a flux generated this way produces a discriminant D which is a perfect square, as in
Proposition 2.1. One class of such fluxes is given by

i(u, v) = y(u, v) ($3)+($0 (2.16)

where y is any function of V = (u, v); t, r, s and a are arbitrary functions satisfying
the constraint that

u = pt(q) + s(q),

v = PT(~) + a(q),

is a locally invertible change of coordinates, and Q(u, v) is the solution of

w-(Q) — vt(Q) = b(Q) s r(Q)s(Q) — t(Q)a(Q). (2.17)

Since any smooth solution of the quasilinear equation

-t(b’ – ur’)QU -I- r(b’ + vi’)QV = O

with b(Q(O, O)) = O satisfies (2.17) and so generates a flux of the form (2.16), this

generalizes (2.8). Finally, we have expressions for the eigenvalues of the Jacobian df
(from Proposition 2.4):

Al = fp = ~Ut + qur

and
~(r’t –

A2=cgq=—
rt’) + a’t — s’r

ur” — vi’ — (rs + at)’ ‘

which yield a nondegenerate coincidence line when Q is nonconstant. Derivation of
(2.16) will be found in [II].

3. PERTURBATIONS OF NONSTRICTLY HYPERBOLIC FLUXES

Suppose F is a NSH flux with eigenvalue coincidence along E, a nondegenerate curve
given by

~(P>9) = o
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where 62 = D and V6 # O. (Here D is given by (2.3).) We consider a one-parameter
family of perturbed fluxes

()

p= f+@
g+e+ “

In general, the new flux will not be NSH; in fact (tildes denote the perturbed quantities),
the discriminant of ~ is

ad = WLq) + @Lq,e) = f52+ w

where

P(p,q,6) = ‘f’; ‘g)(4’ – ‘),)+ 4,9’+ i+lf, + ~[(4’;+’)2+44

Proposition 3.1 Let ? be a smooth perturbation of a smooth coincidence-line NSH
flux wii!h Z = {(p, q) I 6[p, q) = O}. Suppose that P(p, q, O) >0 on X. Then, for
suflcienily small c > 0, F is stn”ctly hyperbolic near X, while for e < 0 there will be
a nonhpperbolic strip near 22 whose width is of order Jc. On the other hand, if P
changes sign on .X, let

P(p(7), q(T), o) = TF(p(T),q(T)) (3.1)

where r parameteriz.es Z and ~ > 0 there. Then, d~ has nonreal eigenvatues inside a
region whose boundary is, to a first app~ozimation, a narrow parabola with iis vertex

near UO = (p(0), q(0)), opening toward T >0 or T <0 as e <0 ore >0, respectively.

Proofi The result when P # O on Z follows immediately from applying the implicit
function theorem to th~ two equations J + ~ = O: if c <0, there are two solution
curves for small c and D is negative between them.

If P changes sign along Z, then equation (3.1) implies that the change of sign is
nondegenerate. One can now solve

for each fixed ~, again using the implicit function theorem, since V6 # O. The geometry
of the nonhyperbolic region follows. ■

Perturbations of this type also have a connection with genuine nonlinearity y. Curves
of linear degeneracy (corresponding to isolated local extrema of the characteristic
speeds along the eigenvectors of dF) appear when certain nonstrictly hyperbolic sys-
tems are perturbed so that they become strictly hyperbolic [6]. For these systems, the
solution of the Riemann problem for the nonstrictly hyperbolic equation is qualitatively
like the solution of the perturbed, strictly hyperbolic problem, which approaches it in
the limit as c ~ O.

Curves of linear degeneracy also bifurcate from distinguished points on the boundary
between an elliptic and a hyperbolic region in state space [7]. This bifurcation may
occur generically at points like U. in Proposition 3.1. As we shall discuss in the
next section, there is also some resemblance between
corresponding to e >0 and E<0 of Proposition 3.1.

the solutions in the two cases
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4. INACCESSIBLE REGIONS

A disturbing feature of change of type in saturation equations like (2.1) is that there
appear to be open sets in phase space, corresponding to physically feasible satura-
tion vectors, which are nevertheless inaccessible because the Jacobian is nonhyperbolic
there, (Allen et al. [1]). There are two related questions here. The first is whether
some indefensible assumption in the physical model has resulted in a saturation vector
which is linearly unstable, Unlike simplistic models for phase transitions which change
type and are nonhyperbolic precisely for the physically unstable range of the order
parameter (see Pego and Serre [14] for an example), the flows discussed in this paper
are not expected to contain unstable states,

The second point is a mathematical one. The nonhyperbolic region has some spe-
cial properties. Specifically, solutions to the Riemann problem, when the data are in
the hyperbolic region, avoid the nonhyperbolic states. This has been demonstrated
analytically for some systems and is believed on the basis of numerical experience for
others (see Allen et al. [1] and Pego and Serre [14]); there are no counterexamples, to
the best of my knowledge. On the other hand, for more general initial data (Cauchy
data) the hyperbolic region is not invariant: data in the hyperbolic region for which
the solution enters the nonhyperbolic region are given in Holden ez! al. [4] and Pego
and Serre [14]. The fact that Riemann data and Cauchy data behave so differently
raises additional questions, which we leave aside.

In this section, we try to shed a bit of light on the second, mathematical, question
by calling attention to an analogous phenomenon in strictly hyperbolic systems which
contain hypersurfaces (curves, in the case of two equations) of linear degeneracy in state
space. We shall concentrate on Riemann problems, since this is where the behavior is
seen in flows which change type. There are some implications about the modelling of
flows, because the analogy, even if only in Riemann problems, with a strictly hyperbolic
system, suggests strongly that the appearance of inaccessible regions is linked more to
wrinkles in the nonlinear dependence of the fluxes than it is to change of type in the
equations. The fact that both examples occur as perturbations of coincidence-line
fluxes suggests that there may be a relationship between them.

Riemann solutions for conservation laws without convexity (genuine nonlinearity)
assumptions were first given by Liu [12] by constructing a solution separately in each
wave family and superimposing waves from different families. We formulate a result
for a scalar equation, where we can give an explicit description, and then indicate the
generalization.

Definition 4.1 Let Ut+ f(u). = O be a scalar conservation law. We say the Riemann
problem with data {a, b} avoids states in a nonempty subset Z c (a, b) if neither the
solution to the Riemann problem

nor the solution to

takes values in X.

{

X<o,
U(z, o)= ;: Z>o

— >

{

b, z<O,U(Z,O)= a, ~>.— ?

(4.1)

(4.2)
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We have the following result.

Proposition 4.1 Let f E Cl, and let f’ besh-ictly monotone on open intervals with
no accumulation point. If f is strictly convex (or concave) on [a, b], then no states
in (a, b) are avoided. However, any interval on which f~ is not weakly monotone will
contain at least one subinterval of avoided states.

Proof: Osher [13] presents a formula which gives a closed-form solution to the Riemann
problem. It is equivalent to the following construction.

The lower convez hull off on [a, b] is

{

f(d) - f(C)
~(u; a,b) = inf ~(c)+ (u – c) d_ c 1

where the inf is taken over c and d with a < c ~ u ~ d ~ b. Similarly the upper convez
hull of f on [a, b] is

T(u; a, b)
{

f(d) - f(C)
= sup j(c) + (u – c)

d–c 1
with the sup taken over the same domain. Write the Riemann problem as

{

UL, X < 0,
?J(Z, o) =

UR, x>o. “

For problem (4.1), where uL < u~, solve the Riemann problem for Ut + ~(u). = O.

For problem (4.2), with uL > uR, use u~ + ~(u)= = O. The Riemann problem for
a (nonstrictly) convex function ~ is solved as follows. The centered solution U([),
~ = x/t, satisfies

[-c + f’(u(())] J(() = o

in the sense of distributions, and can be written

u(() = g-q<), (4.3)

where g = f’ is monotone. If g is constant on an interval 1, then g-l is discontinuous
and the interior of 1 is not in its range. If g is increasing then (4.3) provides a solution
fOr uL < ~R; if g iS decreasing, then (4.3) iS a SOIUtiOnwith uL > ~R.

If f is strictly convex on (a, b), then ~ = f on (a, b) and g is strictly increasing.
Then (4.3) yields a continuous solution (rarefaction wave) if uL < uR, and the range
of g is the entire interval [uL, UR]. (In this case, ~ is a straight line segment

f(~) – f(a) ~ f(a)+ (u – a)s,
~(u) =f(a)+(u–a) ~_a

and ~ = ~ = s in (a, b). The solution to the Riemann problem with uL = b and uR = a
is u(<) = ~1 (~): u is piecewise constant with a discontinuity y at ~ = s. The range of
~1 is the two values {uL, uR}.)

If f is strictly concave, then ~ = f and f is a line segment, and the result is the
same: this time ~’ = g is strictly decreasing a~d has a continuous inverse, and no states
are avoided.
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FinalIy, if ~ is neither convex nor concave, then both ~ and ~ differ from ~, and both
contain line segments. In fact, let there be a point c in (a, it) such that f‘ is strictly
increasing on (c — e, c) and strictly decreasing on (c, c + c) for some c > 0. Then f is
strictly convex on the first interval and strictly concave on the second, so if a < c — c
and ZJ> C+C then there is an open interval (c–6, c+6), O <6< c, on which~ < f < ~.
From the construction of the convex hulls, j and ~ are affine functions on (c – 6, c + 6),
and hence this interval is not in the range zither of 71 or of g–l. m

For a system of conservation laws, Liu [12] constructs a curve -y(UL) in state space
which is locally a shock (part of the Hugoniot locus) or a rarefaction. This provides
a higher-dimensional analogue to ~ and ‘~ and a solution like the scalar one can be—
constructed. The construction works whenever F has isolated hypersurfaces of linear
degeneracy (which play the same role as the isolated extrema of ~’) and the eigenvalues
of OT are separated. If UM G ~1(U~) for a l-wave curve, say, then some subintervals
of that curve will not be in the range of the Riemann solution. Further, for UR in a
neighborhood of such a UM, there will continue to be open sets of the interval that
are missed in solving the Riemann problem for { UL, UR}. It is no longer the case that
UM c 71(U~) * U~ E 71(VM). However, for small-amplitude wave, UL will be near
~(UM), and a generalization of the idea of avoided states can be given in severaI ways.
One formulation is to fix a left state U~ and consider right states in an open ball 23of
radius r centered at a point UO. For each UR c B, let ~(UR) C l?” be the range of the
Riemann solution with data {U~, UR}, and define

S(B) = u S(UR).
uRE~

If F is genuinely nonlinear, S(23) has at most n + 1 connected components. Also, if U.
is sufficiently close to U~ and F is genuinely nonlinear at UL, then S(23) has at most
n + 1 components. For a system with linear degeneracies, as IU. – U~I grows, S(23) will
develop more than n + 1 components at some Uo. The introduction of new components
into S(2?) corresponds to production of additional discontinuities in g-l in the scalar
case. Thus it is associated with avoided states. The qualitative change in S (23) also
suggests a lack of continuous dependence of the solution on the data.

Avoided states differ from the inaccessible regions in systems that change type,
as they are not precisely the complements of invariant regions. Similar behavior is
observed in the two cases, since sampling data repeatedly in the exterior of a convex
set, E, produces a solution which never enters a convex set C contained in ./3. The
difference is that for Riemann data in sy,tems which change type, one can apparently
take E to be the elliptic region and C to coincide with E. For hyperbolic equations
with linear degeneracies, C is strictly smaller than E. Nonetheless, the similarities are
striking.

In a recent paper, Temple [19] contrasts Riemann problems (their relation to stabilit y
and asymptotic) in genuinely nonlinear strictly hyperbolic problems to their role in
a model NSH system with a coincidence-line flux. The results (summarized in the
title of the paper) are unexpected. We conjecture that NSH coincidence-line models
may provide good prototypes for mat hernatical properties and qualitative behavior of
a larger class of problems, including some models for porous media flow.
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