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Abstract 

We focus on the integration of radiation diffusion including flux-limited 
diffusion coefficients. The nonlinear integration is accomplished with a 
Newton-Krylov method preconditioned with a multigrid Picard lineariza- 
tion of the governing equations. We investigate the efficiency of the linear 
and nonlinear iterative techniques. 

1 Overview and Motivation 

Radiation diffusion is a highly nonlinear phenomena. Despite this the integra- 
tion of the governing equation numerically is accomplished with linearized PDEs 
where no attempt is made to converge the nonlinearities. In addition to the sim- 
plicity of this approach there is a perception that effectively dealing with the 
nonlinearities with Newton’s method is intractable. Even with methods with 
preport to deal with some nonlinearities, there the flux-limiters are dealt with 
linearly. 

Radiation diffusion can be posed in many guises. For instance, both the 
material temperature and the radiation energy density can be considered as 
unknowns (the 2-T approximation considered elsewhere at this meeting [3]). 
Here, we focus on the simpler setting where the material temperature is in 
equilibrium with the radiation energy density and the governing equation is 

8E 
- at = V - D (E) VE , 

with E being the radiation energy density. and D is diffusion coefficient which 
is generally a nonlinear function of E [6, 4, 11. Additionally we have used a grey 
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approximation where the energy density has been integrated in frequency. The 
energy dependence of D is found through the dependence of the opacity of the 
medium, D = c/3a1 as a function of temperature, T4 = E .  Here, we normalize 
c, the speed of light, to unity for convenience. For instance, a common form for 
the temperature dependence of the opacity is D a l/T3 -+ D o< T3.  

Flux-limited diffusion was introduced to prevent transport faster than the 
maximumspeed in the medium (the speed of light here). With flux-limited diffu- 
sion coefficients, the functional form of D will include the gradient of the energy 
density. The earliest form is due to Wilson and contains the correct asymptotic 
behavior. Therefore as the gradients become small diffusion is recovered, while 
steep gradients recover the transport form of the equation. Wilson's form is 

- 1 
D =  

1 IVEI' 
D ( T ) + E  

Further complications are imposed by multimaterial problems where the ef- 
fective diffusion coefficient is a cubic function of the mass number of the medium. 
This issue was addressed in a non-flux limited context in our earlier paper [5] 
where the multigrid preconditioning was shown to be quite effective. Below, we 
discuss our nonlinear integration technique and the multigrid/picard precondi- 
tioning. Lastly, we show results that indicate that flux limited diffusion poses 
no significant new challenges to our methodology. 

2 Multigrid Newton-Krylov Methods 

Our goal is to execute an inexact Newton iteration within a time step. In order 
to calculate the updates to the dependent variables by approximately solving, 

J (x") 6~ = -F (x") (3) 

and 
X"+l = x" + asx (4) 

to solve F (x) = 0. The under-relaxation factor a is defined by or = min(l ,1/  IlST/TII). 
We can do this in a matrix-free manner [2] without forming the full Jacobian 
via a finite difference approximation, 

F(X+EV)--((X) 
Jv M 

E 
(5) 

where v is a Krylov vector and E = p ( 1  + llvll) and p = 
The properties of GMRES make it advantageous for use as the Krylov 

method here (conversely the properties of other methods such as CGS, BiCGStab, 
and other similar methods are problematic). Additionally, GMRES has the 
property of finite termination and is more robust as a consequence. This is off- 
set to  some degree by the increased storage and work requirements imposed by 

here. 
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GMRES. As noted before preconditioning the linear problem is essential for ef- 
ficiency. Standard ILU(n) preconditioning becomes less efficient as the problem 
size grows and the corresponding growth in the number of GMRES iterations 
creates storage (and work) needs that limit problem size. We will employ a 
multigrid algorithm developed below to overcome this difficulty. 

Our multigrid method was developed to both be simple, but robust for mul- 
timaterial problems. In keeping with these principles, we use simple piecewise 
constant interlevel transfer operators. Coarse grid equations are found through 
using control volume concepts to compute effective coarse grid diffusion coef- 
ficients from the previous fine grid. While this multigrid is simple its saving 
grace is that it is used to precondition a Krylov method. Previously, we have 
highlighted the degree to which the Krylov method returns this method to suit- 
able robustness and scalability under the most severe circumstances. In a very 
real sense the multigrid algorithm is a vast improvement over more traditional 
methods for solving the linearized system of equations. 

Perhaps one of the most important, but subtle aspects of our method is the 
nonlinear preconditioning. It is this traditional linearization which if applied 
iteratively to the same time step constitutes a Picard nonlinear solver that 
forms the basis of the nonlinear preconditioning. In other words, a convergent 
nonlinear Picard iteration preconditions Newton’s method. Certainly another 
way to look at the process is that the Newton-Krylov method accelerates the 
convergence of the multigrid Picard solver. In sum, each piece of the algorithm 
provides an efficient coherent algorithm. 

3 Results 

Our principle objective in this paper is to describe how our approach handles 
the complication posed by flux-limited diffusion coefficients. This additional 
nonlinearity changes the character of both the linear and nonlinear iteration. 
Below, we address each issue separately. In keeping with our previous results, 
all of OUT results will use multigrid to precondition the Krylov method. 

For a sample problem we compute the propagation of a Marshak wave 
through a multimaterial medium where two materials are present one with a 
mass number ten times the other. This provides the problem with a challenging 
multidimensional nature. A flux boundary condition is applied to the domain 
which is initialized to a uniform temperature. The asymptotic state of the 
boundary is a temperature ten times as large as the initial temperature. The 
small time step corresponds to  a time step size of approximately 100 times the 
explicit stability limit while the large time step size is approximately 1000 times 
that limit. 

First, we investigate the issue of multigrid/Krlov iterations (there is one V- 
cycle per Krylov iteration) where the time step size is relatively small (imbuing 
the linear problem with greater stability). This will provide evidence of the algo- 

3 



Rider, Knoll, and Olson 

Table 1: Average number of multigrid/Krylov iterations as a function of grid 
size and diffusion coefficient form. The time step size is small. Note that the 
notation D means the diffusion coefficient has been flux limited. 

Grid 

32’ 

64’ 

128’ 

2562 

512’ 

2.0 2.9 

2.0 2.9 

D cc To 

2.0 

2.0 

2.0 

2.0 

2.0 

D cc T3 

3.2 

Table 2: Average number of multigrid/Krylov iterations as a function of grid 
size and diffusion coefficient form. The time step size is large. 

Grid DccTO DccT3 DccTo D x T 3  

32’ 

64’ 

128’ 

256’ 

5122 

4.3 5.6 

4.0 4.9 

4.0 4.8 

4.0 4.8 

4.0 4.0 

5.0 

5.8 

5.8 

5.8 

5.8 

11.5 

11.0 

10.9 

11.4 

12.9 

rithm’s behavior in a relatively benign case. As shown in Table 1 the efficiency of 
the multigrid-Krylov algorithm is quite good in all cases. The method exhibits 
rough linear scalability with modest sensativity to the increasing nonlinearity 
of the diffusion coefficient. 

Now the time step size will be much larger with the linear system more 
closely approximating a singular problem. Here again the scaling is roughly 
linear although the nonlinearity in both the temperature dependence and the 
flux limiting is more damaging to the performance of the algorithm. At worst 
the method becomes approximately two and half times as expensive per time 
step (which is amortized by the ten times larger time step size). 
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3.1 Closing Remarks 

We have demonstrated that the overall algorithm we propose while effected by 
the presence of flux limited diffusion is nevertheless robust. The multigrid- 
Krylov algorithm provides an effective means of solving both the linear and 
nonlinear problems in a scalable fashion. 
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