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Abstract 

This paper outlines some recent advances towards improving the accuracy of neutron transport 
calculations using the Arbitrarily High Order Transport-Nodal (AHOT-N) Method. These advances 
consist of several contributions: (a) A formula for the spatial weights that allows for the polynomial 
order to be raised arbitrarily high without suffering from pollution from round-off error; (b) A 
reconstruction technique for the angular flux, based upon a recursive formula, that reduces the 
pointwise error by one order; (c) An a posteriori error indicator that estimates the true error and its 
distribution throughout the domain, so that it can be used for adaptively refining the approximation. 
Present results are mainly for lD, extension to 2D-3D is in progress. 

Introduction 

The Arbitrarily High-Order Nodal (MOT-N) method in the final form proposed by Azmy, (Azmy, 
1988) was shown to be a computationally efficient way of obtaining highly accurate approximations 
to neutron transport problems. In the last few years, some progress has been made towards 
improving the accuracy of this method. The final goal, not yet accomplished, is a rigorously-based 
numerical methodology capable of achieving arbitrary accuracy with automatic error control. This 
paper presents our overviews of recent advances from the viewpoint of this god. 

The MOT-N method is based on an exp.ansion of the external source and the scattering term inside 
each cell in polynomials of degree lower than or equal to some user-defined valueA . A brief review 
of MOT-N is presented in Section 2. The numerical solution, which we denote by y, consists 
within each cell of a polynomial part of order11 , denoted by p , plus a correction that is usually 
computed only at cell interfaces. The a priori convergence properties of the MOT-N method in 1D 
result from the analysis of so-called exact moment methods by Victory and Ganguly (Victory, 1986) 
(see also (Nelson, 1987) and (Keller, 1988), and references cited therein). It is shown that ty 

converges to the exact solution as hh+' , with superconvergence (as h2"+' ) at cell interfaces, where h 
is the cell size. On the other hand, pconverges as hA+'. To our knowledge, the higher accuracy of 
y to get pointwise values of the flux has not been exploited, perhaps because it was considered 
expensive to evaluate. In Section 3 we present a recursive formula for ty that renders its evaluation 
inexpensive, and illustrate the gain in accuracy obtained. 

- 
- 

- 

- 
- 

- 

mailto:yya@oml.gov


This improvement in accuracy, however, can be hindered by round-off errors when A is high. To 
tackle this difficulty, asymptotic limits for the method's coefficients are needed. These were first 
derived in (Azmy, 1998) and are briefly recalled in Section 4. With this improvement, no restriction 
is left on A ,  which can in fact be chosen arbitrarily for each calculation cell. Of course, in practical 
situations such choice is better handled by an automatic adaptive scheme guided by cellwise error 
indicators. 

Rigorous adaptive schemes are based on a posteriori error estimators. The first such estimator for 
the 1D AHOT-N method has been recently derived by the authors in (Zamonsky, 1999). The basic 
result is that the difference in scattering sources arising from y and 1)7 estimates the true error 
distribution. The estimator is recalled in Section 5 ,  which also reports on a further validation of the 
estimator in a stringent S4 heterogeneous problem. 

- - 

The results reviewed in this paper are encouraging. Extracting full accuracy with optimal cost in 
neutron transport calculations is certainly needed to achieve reliable predictions in complex 3D 
configurations. 

2 The AHOT-N Method 

2.1 Preliminaries 

The discrete-ordinates approximation to the neutron transport equation is given by 

with boundary conditions ~"(0) = 0, pi > 0, and w,'(L) = 0, pj e 0, where k , ( x )  is the scattering 
kernel. Each direction is defined by the quadrature points Pi, (pi # 0), i = 1 ,. . . ,N, with associated 
weights wi; y,"(x) are the exact angular fluxes and qi ( x )  the external source. 
Defining the following NxN matrices 

and the vectors ye(x)=r:], - q ( x ) =  

Yf; (X) 

equation (1) can be written in the following form: 

(3) 



Let us now briefly describe the numerical methodology. Assume that the domain [O,L] is 
decomposed into a finite number of non-overlapping cells {Ck,k = 1, ..., IC). If we assume that o and 
- S are constants in each cell, Eq. (4) can be easily solved whenever the right hand side is a 
polynomial within each cell. Based upon this idea, the AHOT-N method defines a numerical solution 
y as the (unique) function that satisfies - 

with the same boundary conditions as y e .  - 

In Eq. (3, y depends on the position and on A because Q - and - are defined as the truncated 
Legendre polynomial expansions of y - and - 4 ,  respectively, up to order A within each cell Ck. Let us 
c l a ra  this definition for, e.g., the case of y . Let x be arbitrary and let c k  be the cell containing x. If 
h k  is the length of c k  and x k  its midpoint, the normalized Legendre polynomial of degree h in Ck is 
given by 

(6) 
where pk is the Legendre polynomial of degree h defined in the interval [ - 1 , 1 ] .  Now, as the i' 
component of y at x can be represented by 

- 

- 

P k , k  (x> = Pa ( 2 / h k ( x  - x k  >) 9 

- 

where are the moments given by 

1 xk+h I 2  - 
y i , ( a , k )  -- (vi ) P A . , k  )&' 

hk x,-hk12 

we obtain as definition of vi ,  

Notice that Eq. (5) defines y as the angular fluxes that, upon application of the streaming 

operator p - + 0, coincides with the truncated scattering + external sources. Except for the 

truncation operation, the exact solution ye satisfies the same equality (streaming = scattering + 
external source). This makes y as obtained from the AHOT-N method, extremely accurate as will 
be illustrated later on. 

- 
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2.2 The Weighted-Diamond Difference (WDD) form of the AHOT-N method 

Azmy (Azmy, 1988) proposed a WDD equation that relates the values of v at the extreme points of 
Ckr I , K ( X ~ * ~ / ~ )  = y(xk f hk /2)  to the moments I&,), = 1, ... ¶ A  in a way that depends on a single 

spatial weight coefficient per discrete ordinate i = l,**.¶ N . This formulation implies no additional 
approximation, so that Eq. (5) remains valid, but greatly alleviates the computational burden so that 
N, K and A can be given large values, improving the approximation, at affordable memory and CPU 
cost. The interested reader may consult (Azmy, 1988) for the derivation, the final form being: 

- 

- - 

A A 1 + ah O r , k  ) - (tr,k [ )I. (xk+1/2) -k [ )I (xk-1/2) = x(2n -k ')yt,(A,k) + x(2n + (tt,k ) W i . ( A . k )  ,(lo) 
A=O ?.=I 
even odd 

where t,,k = o,h, / 2 p i  is the optical thickness. The spatial weights are given by 

Equation (10) is supplemented with the moments balance equations, 

+ ok~i , (A,k ,  = = Q - A i  = 1,...5N 
where is the ( A , k )  moment of the source for component i. 

3. Evaluation and Accuracy Assessment of v - 
3.1 Pointwise evaluation of y at an arbitrary point x - 

As can be seen from the final equations that implement the method (Eqs. 10-12), the computational 
unknowns are the values of ty at cell interfaces and the moments of ty up to order A .  When 
evaluating the numerical solution at some point x, it is thus immediate to compute Q(x) but some 
extra coding is required to compute y(x)  unless x coincides with a cell interface. However, it can be 
shown [Victory&Ganguly] that v ( x 7  converges to the exact solution with an asymptotic order of 
hA+', one power of h greater than that of q ( x ) ,  whose asymptotic order is h''+l. Moreover, ~ ( x )  - 
is superconvergent as h2A+2 at cell interfaces. 

- - 
- 

The previous considerations stress the importance of calculating ~ ( x )  - any time a pointwise 
estimation of the angular fluxes is required. Notice that this is a post-processing step, i.e., Eqs. 10-12 
are assumed solved by the main code for the computational unknowns. There are mainly two ways of 
performing this evaluation: (a) The moments of order A > A can be calculated by taking moments of 
Eq. 5, or, (b) the pointwise value y (x )  - can be obtained by exactly solving Eq. 5 from the adjacent 



cell interface, where w is available, up to point x. Though further research is in progress, alternative 
(a) worked far worse than alternative (b) in some preluninary tests. We give below the final 
expressions used for the evaluation of ~ ( x ) .  Defining 

the exact solution of Eq. 5 for p, > 0, integrated from the adjacent interface to x is 
Qi(x) '*(XI b(x)p (XI],+ ;i,<x> 9 

After some algebra, one arrives at 

where I = 0, 1 * indicates that 1 = 0 if 1 is odd, I = 1 if A is even, and that the increment in the index 
of the sum is equal to two. This is a recursive expression that allows the evaluation of 
zi(a,kl(x),A = (),...,A, which inserted into Eq. 15 gives the values of y i (x )  for p i  > 0.  The expression 
for pi < 0 is obtained analogously. 

3.2 Numerical assessment 

We implemented the lD, AHOT-N method in a discrete-ordinates steady-state code for solving 
monoenergetic, fixed source, isotropic scattering problems. We use the algorithm described in 
Section 2, executed on a Silicon Graphics computer using 64-bit arithmetic with a relative 
convergence tolerance of for all spatial moments. 

The test problem considered here consists of an heterogeneous slab of width L= 0.1 meters. The left 
half has macroscopic total cross section CT = 100 m-' , c=0.5, with unit external source. The right 
half has CT = 200 m-',  ~ 0 . 0 5 ,  and no source. It is solved using an S4 Gaussian quadrature. We 
consider several uniform partitions, with h ranging from W 2  to W128, and expansion orders A from 
zero to ten. In Fig. 1 we compare the first exact angular flux yf to its approximations w1 and I& 
calculated with h=L/4 (K=4) and A = 2. Part (a) of the figure shows the three fluxes, while Part (b) 
depicts the differences between the approximate fluxes and the exact solution. It is clear from the 
figure that v/ is significantly more accurate. - 

A quantitative assessment of accuracy can be obtained evaluating the L2-norm of the error, 

0 



In Fig. 2 (a) we plot E and E as functions of h for A = 5. The predicted asymptotic convergence 
orders are verified. Notice that the error in is three orders of magnitude lower than that of tj7 as 
soon as K is greater than 32. For coarser meFhes, the difference is smaller, but for the full range; is 
at least 20 times smaller than E .  Of most interest for the MOT-N method is the capability of 
improving the accuracy by increasing the expansion order. Fig. 2 (b) plots E and E as functions of 
A for h= 15/16. Note that as A is increased by one the error decreases by a factor of ten. Also, E is 
seen to be smaller than F by a factor that ranges from 10 (for A =0) to 200 (for A > 4). The error 
indicator, , plotted in Fig. 2 will be presented in Sec 5 below. 
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Figure 1. Relation between approximate fluxes and the exact solution for the K=4 case, A =2. 
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4. Robust Form of the Spatial Weights Expression 

The previous computations suffer from round-off instability when A is large. This is a consequence 
of Eq. 11, which can be rewritten as 

From Eq. 19 it is clear that in the case of small cell optical thickness, t j , k ,  or high A, both the 
numerator and the denominator in Eq. 11 tend to zero. To tackle this difficulty, asymptotic formulae 
were introduced (Azmy, 1998) which must be applied whenever the optical thickness is small. These 
formulae are incorporated into the code and the results employ them when necessary. They are 

t 4 2 A  + 3) ,  A = 0,2,4 ,... 
( 2 A + 3 ) l t ,  A = 1,3,5 ,... 

This allows for the expansion order to be arbitrarily increased without suffering from pollution from 
finite-precision arithmetics. 

5. A Posteriori Error Estimation 

5.1 Error estimator and local error indicators 

A posteriori error estimation is useful to estimate the accuracy of the solution for a given, completed, 
computation, and is most effective when used to refine the approximation to get maximal accuracy 
gain with minimal computing cost. Therefore an a posteriori error estimator must be an expression 
than can be easily evaluated using only the information obtained from the results of the numerical 
method. Let E be defined as before, Le., the true error of y measured in the L2-norm. In Ref. 
(Zamonsky, 1999) it is shown that 

- 

I 

where h.0.t. stands for "higher order terms". It is also shown that q preserves the order of E ,  

O(h*+'). The crucial points are that q is computable, since it only depends on quantities that are 
known after the transport code is run, and that estimates the true error (as it bounds it from above 
and converges to zero with the same order). This qualifies 77 as an error estimator. 

Equation (21) estimates the global error throughout the computational domain. A natural question is 
how to refine the approximation so as to get maximal accuracy gain. The answer can be obtained via 
local a posteriori error indicators, which serve to indicate where the approximation should be 
refined to improve global accuracy at minimum expense. Let qIk denote an error indicator for 
component i in cell Ck. By direct inspection, Eq. (21) can be rewritten as 

N K  

q2 = F1Y,77i2, 9 

i=l k=l 

where 



(23) 
x k - l I Z  

so that, essentially, the estimator is the difference in scattering sources for direction i in Ck due to 
and w plus G - q .  This is natural in the sense that the truncation operation that defines the 
approximation acts only on the source (cf. Section 2). Consider the case in which the external source 
is exactly represented by ij , the error indicator for a non-scattering cell thus automatically vanishes. 
This should not be interpreted as the cell having zero error, which is false. The correct interpretation 
is that increasing the accuracy in the cell, by either splitting it into two or raising the order of the 
polynomial expansion, will not improve the solution accuracy. 

- 
- - -  

- 

For the case of isotropic scattering and if ij = q , Eq. (23) further simplifies to - -  

where 7 and 9 are the scalar fluxes associated with I+? and y ,  respectively, that, in the SN 
approximation, are given by 

N N ; = c w i q i ,  $=cwiyi .  
i=l i=l 

Of most interest is an error indicator per cell, as it allows the identification of the cells in which large 
numerical errors are obtained. This is defined as 

N 

77; +?i:. 7 

i=l 

which for isotropic scattering reduces to 

5.2 Numerical tests 

Numerical tests of a posteriori error estimators are aimed at showing that it behaves like the true 
error. In this case we address three types of behavior: The first, most classical, one, concerns the 
evolution of as compared to E as functions of h for fixed A .  This is shown in Fig. 2 (a). The 
estimator correctly follows the error, showing that the higher order terms in Eq. 21 can in fact be 
disregarded. A second, less classical assessment, concerns the evolution of with increasing A for 
fixed h. This is shown in Fig. 2 (b). The close resemblance of the curves corresponding to the 
estimator and the true error is remarkable. In fact, the theoretical analysis leading to Eq. 21 considers 
the limit h + 0, so that the resemblance could not be predicted beforehand. To summarize, the 
results in Fig. 2 give us confidence that, when the approximation is refined by dividing cells or 
increasing the order, if the estimator decreases by some factor, the true error has also decreased by 
approximately the same factor. 

For adaptivity purposes a third behavior is important, namely, for fured h and A ,  the distribution of 
the estimated error over the various cells. This would allow improving the approximation only where 
it is most needed. In Fig. 3 (a) the true error and the local indicators are plotted for the same 



numerical experiment as before, computed using 16 cells and an expansion order of 4. The same is 
done in Fig. 3 (b) for 64 cells and A = 6. Both graphs show that the local indicators follow closely 
the distribution of the true error over the domain. The most critical cell is identified as the one 
adjacent to x=L/2 from the right, and adaptive procedures using the proposed indicator would refine 
this region. By comparing Figs. 3 (a) and 3 (b), notice the already high accuracy of the computation 
with h=W16 and A = 4, which is improved by about six orders of magnitude when h=W64 and 
A = 6, though the number of computational unknowns has just increased by a factor of 6. 
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Figure 3. Behavior of the true error and indicator as function of the position. 

6. Conclusions 

Several numerical techniques aimed at improving and capitalizing the accuracy of the MOT-N 
method have been developed and implemented. An assessment of these techniques on a strongly 
heterogeneous problem using S, Gaussian quadrature and several different cell sizes and expansion 
orders is reported. It confirms the proposed methodologies as leading to a robust, efficient and 
accurate computer implementation, with the possibility of automatic error control. Future work will 
be aimed at multidimensional problems and the design of adaptive criteria. 
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