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ABSTRACT 

Neutron time-of-flight experiments have long been used to determine resonance 
parameters. Those resonance parameters have then been used in calculations of integral 
quantities such as Maxwellian averages or resonance integrals, and results of those 
calculations in turn have been used as a criterion for acceptability of the resonance analysis. 
However, the calculations were inadequate because covariances on the parameter values 
were not included in the calculations. In this report an effort to correct for that deficiency 
is documented: the R-matrix analysis code SAMMY has been modified to include integral 
quantities of importance, directly within the resonance parameter analysis, to determine the 
“best fit” to both differential (microscopic) and integral (macroscopic) data simultaneously. 
This modification was implemented because it is expected to have an impact on the 
intermediate-energy range that is important for criticality safety applications. 
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1. INTRODUCTION 

Determination of integral quantities from resonance parameters until now has been 
performed separate from the resonance parameter analysis. First, theoretical cross sections 
had to be calculated from the resonance parameters and stored. From those values the 
integral quantities were typically generated via Simpson’s rule or other integration algorithm. 
The integral tests were usually performed by evaluators other than the resonance parameter 
evaluators. Additionally, parameter uncertainties were used to determine the uncertainty on 
the calculation of the integral quantities. However, that determination was inherently flawed 
because covariances on the parameter values were not included. This deficiency has now 
been corrected, and it is now possible to automatically adjust parameter values (within the 
confines of the covariance matrix) to provide a set of parameter values and covariances that 
fit both the differential and the integral data. It is the purpose of this report to describe the 
implementation of such a procedure within the analysis code SAMMY. * 

In Sect. 2 the basic procedure for analysis (fitting) of any type of data is outlined. 
Section 3 describes the specific hct ions that are currently included as part of the SAMMY 
code; algebraic details are given in Sect. 4. In Sect. 5 is a discussion of the application of 
this technique to the analysis of 235U. Concluding remarks are in Sect. 6. Appendix A is a 
description of techniques used within SAMMY for the calculation of expressions that can 
lead to numerical difficulties if not done carefblly. Appendix B is essentially those pages 
for the next revision of the SAMMY manual which document how SAMMY users can 
access this technique. 

2. BACKGROUND 

Analysis of (microscopic or differential) neutron cross section and neutron transmission 
measurements involves the use of sophisticated computer models (e.g., SAMMY) to 
determine those values for the resonance parameters which provide the best fit of theoretical 
calculations to experimental measurements. The computer models incorporate the following 
steps: 

1. Using the analyst’s estimated initial values for the parameters, generate theoretical 
cross sections via an appropriate description of the nuclear reaction (e.g., via the Reich- 
Moore approximation to multilevel R-matrix theory). Also, generate partial derivatives 
of the theoretical cross sections with respect to the resonance parameters. 

2. Calculate corrections to these cross sections based on actual experimental situation. 
These corrections may include (but are not limited to) Doppler broadening, resolution , 

broadening, normalization, background subtraction, and multiple-scattering 



3. 

4. 

corrections. Determine partial derivatives for any additional parameters that may be 
added at this stage. 

Utilize a fitting procedure (e.g., Bayes’ method, generalized least squares) to determine 
the “best fit” values of all the parameters. 

Iterate steps (1-3) as needed, to adjust for nonlinearities, since the fitting procedure is 
inherently a linear process. 

At the completion of this process, the end result is a set of values (not necessarily 
unique) for the resonance and data-reduction parameters, and a covariance matrix describing 
the accuracy to which the values are known. In essence, the square roots of the diagonal 
elements of the covariance matrix are the uncertainties on the parameter values, and the off- 
diagonal elements define their interconnectedness. Together, the values plus covariance 
matrix provide a complete description of the data that have been analyzed. 

The values of the parameters plus the covariance matrix from analysis of one 
experiment can be used as input to the analysis of another experiment, and the results thus 
obtained provide an apt description for both measurements. This concept can of course be 
extended to multiple experiments. 

What is new in this report is the extension of this concept into a different realm -to 
the analysis of nondifferential data (i.e., integral quantities). 

3. MATHEMATICAL DESCRIPTION OF THE INTEGRAL QUANTITIES 

A variety of “integral quantities” are available within SAMMY; more may be added 
as the need arises. In Eqs. (1-5) below, subscript x is used to represent the type of cross 
section; that is, x can be a (absorption),f(fission or reaction), or c (capture); in Eqs. (6-9) 
particular types of cross sections are designated via subscripts. Though SAMMY calculates 
theoretical values for all 18 (for fissile nuclides) or 5 (for non-fissile) quantities, the user 
needs to provide only those types of data for which measurements are available. 

1.  Thermal cross sectionY2 

for Eo = 0.0253eV . 
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2. Maxwellian average at thermal energy.3 This quantity is defined with somewhat 
different normalization from that used for calculation of stellar averages (see Sect. V.F 
of the SAMMY manual), that is, as 

whereEl= 10”eVandEZ=3eV. 

3. Westcott’s g-fa~tor,~ 

4. Resonance integral! 

in which E = 0.5 eV, and E , and XllX are specified by the user. (However, in the 
case of E ,  = 20 MeV, XqX is assumed to be zero.) 

5. Average integral, 

6.  Watt spectrum average: 

in which the upper limit E = 20 MeV. The Watt fission spectrum ( E )  is given by 
the function 

@ ( E )  = s i n h ( m )  = e - E 1 a  ( e 6  - e - 6 ) / 2  . (7) 

Here a and b are constants to be supplied by the user. For U235 values of a and b are 
0.988 MeV and 2.249 MeV”, respectively. 

3 



7. ~ 1 , 4  

2 K1 = va0/g/ - aoaga = ( v a  - “) - 
J;; 

, f 

where v is a constant provided by the user. 

8. Alpha, or u , ~  
a = I C / $  . (9) 

The equations shown above determine the value of the integral quantity itself; what is 
not shown, but is included in the computer code, is the calculation of the derivatives of the 
integral quantities. These are found in an identical manner, substituting the derivative for 
the cross section wherever it appears within the equations. 

4. ALGEBRA FOR EVALUATING INTEGRALS 

The integrations shown in Eqs. (1-9) of Section 3 can be evaluated in the following 
manner: First, the range of integration is divided into short regions, each region bounded by 
adjacent energy points from SAMMY’S “auxiliary grid.” This grid is chosen sufficiently 
dense such that the cross section between adjacent points is very nearly linear (or, for low 
energies, proportional to 1 / fi plus a constant). The value for the entire integral is then the 
sum of the integrals over the individual energy regions, with each individual region evaluated 
explicitly as described below. Note that the subscript x on the cross sections has been 
deliberately omitted, for convenience’s sake. In fact, the discussion below applies not only 
to the cross sections as stated explicitly, but also to the partial derivatives of the cross 
sections. 

1 .  Thermal cross section. No integrations necessary. 

2. Maxwellian 

In the thermd region (low-energy region in which the cross section is monotornically 
decreasing), u may be expanded in the form 

4 



O ( E )  = A I V  + B , 

where Vis the square root of E, and A and B are given by 

and 

for Vi s V I Vi + 1 ,  where a subscript refers to the energy at which the quantity is evaluated; 
that is, 

Vi = E .and 0, = u ( E i i )  , 

with similar expressions for i + 1 . [Primes on the energies are used to denote points within 
the energy grid used for evaluation of the integrands, in order to distinguish these energies 
from the integration limits E ,  and E, of Eq. (10). In the SAMMY manual' the primed 
energy set is referred to as the "auxiliary energy grid."] In this case the integral from Eli to 
E'i+l can be written as 

E', + 1 

E -EIE, d E  = ?'(+ + B )  E e x p ( - E )  2 V d V  
E' I v, vo' vo' 

in which variable x has been substituted for V /  Vo . Inserting Eq. (12) and integrating then 
give 

5 



[ -& e - E ' , I E ,  erfc  ( V i /  V o )  - erfc ( Vi + / V o )  - -  ' i . 1  e - E ' l . l / E o  

vo 

To simplify the notation, we replace Vi I Vo by x I  and rearrange, giving 

2 - ( 1  + x i + ] )  2 + ( C J ~ + ~ X ~ + ,  - o j x i )  

or, rearranging to give coefficients of cross sections, 

6 



(02) 
I + !  ! 13-  I + !  l3 

= v  

(8 1) 



in which we have set y j  = E \. / E ,  and 6i = y i  + - y i  . Combining like terms and writing as 
coefficients of a, and give 

1 ( 2  + y i ) e  -'I - ( 2  + y , + l ) e  - ' I * ,  

i 
6 

= E ,  a, [ ( 1  +y,)e-Yi  - 

As with Eq. (1 8), in this form the equation can be evaluated accurately even for very small 
6, using numerical techniques for differences of exponentials. (See Appendix A.) 

The numerator of Eq. (1 0) is then found from Eq. (1 8) and (23) by summing over all 
energies. The denominator can be evaluated directly as 

E2 EdEO 

d E  = E ,  / x e - X  d x  
El /Eo 

( 1  + E 2 / E o )  ] , -E, IE, 
= E ,  [ e  ( 1  + E l / E , )  - e  

which, in the limit of small E ,  and large E , ,  is equal to E , .  

3. Westcott's g-factor. No additional integrations needed. 
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4. The resonance integral is defined as 

d E  I = f E  U ( E )  - + X4 . 
E3 

In the thermuZ regions the cross sections can again be approximated by Eqs. (1 1) and 
(12), giving 

2 V d V  a ( E )  - = I(-+.) - Vl+1 A d E  E'l+l 

E' I VI 
E V V 2  

1 0 3 1  V [ 2 v  i + l  l o > ] ,  V 
+ U i + l  - 2  + 

V i Vj+1 -Vi ' i  

in which we have again defined Vi as K. Similarly, for the nonthermd regions Eqs. (1 9) 
and (20) apply, and the contribution to the resonance integral from that range is then 

d E  = ) d E  E 

E', + 1 

E' I E' 1 

A + B E  - 

E', + 1 

E' I E' I 

= A ' 7 ' d E  - + B  I d E  
E 
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This expression can be rewritten to give coefficients of the cross sections as 

E’ 
i + l  In 21 E’ 

E l i i l  - E l i  E t i  
d E  E’, + I 

E’ I 

/ U ( E )  - E = ai 

E l i  ’ E‘j+l  
- E ‘  i E t i  

In - 

The resonance integral is then the sum over all energy intervals, using Eq. (26) for small 
energies and Eq. (28) for large. Note that the normalization on this integral is unity. 

The expressions in Eqs. (26) and (28) are written in such a form as to be amenable to 
accurate calculation, even for the case where the two energies are relatively close to each 
other. Details are given in Appendix A. 

Because the integration limits for the resonance integral are finite, it is possible that the 
integrand does not reach zero at those limits; this situation is especially likely at the lower 
limit, where the cross section may be exhibiting 1N behavior. Therefore care must be taken 
to ensure that the limits are reached exactly. If Eli+, represents that point from the SAMMY 
auxiliary energy grid directly above E3, and if the cross section is decreasing at this energy 
&e., in thermal regions), then the contribution from that region is 

If the cross sections do not exhibit “thermal” behavior (e.g., if they are increasing with 
energy), then the contribution from the lowest-energy region is 

10 



Similarly, the contribution from the interval at the upper end of the integration range 
can be approximated as 

( J l + l  - (Ji 
( E 4  --Eli) 

- E ' i + l ( J i  -E' i (J i+l  
- In- + 

E t i t l  - E ' ,  E t i  E ' i+ l  -E' ,  

- ( E 4  - E t i )  
i 

- - 
i + l  

- ? + l  - ( E 4  - E t i ) ]  . - E', 

5. The average integral was defined as 

In the thermal region, contributions to t l i i s  integral (numerator only) have the form 

11 



E', VI 

= 2 vr ( A  + B V ) d V  = 2 A  ( V i + 1  - V i )  + B (  Vf+l -V,?) 
v, 

Similarly, in the nonthermal region, the cross section between adjacent grid points can 
be assumed to be linear in energy and given by Eqs.( 17) and (1 8). The contribution to the 
average integral for two such points is then 

E', E', 

B 
= A ( E ' i + l  - E l i )  + j - ( E ' : + l  - E ' : )  

1 
= - 2 ( E ' i + l - E ' i )  (ui+l + U i )  . 

6. The Watt spectrum average is defined as 
E7 - uWf = [ u ( E )  @ ( E )  d E  / ] @ ( E )  d E  , 

E, E ,  

where @ ( E )  has the form 

(34) 

(3 5 )  

12 



In the thermal region, the cross section has the form given by Eqs. (1 1) and (12). 
Making these substitutions and setting E = V 2  give the integral over the ith energy region 
for the numerator of Eq. ( 3 9 ,  

This expression can be written as the sum of two terms which differ only by signs, 

E', +I 1 u(E) @(E) dE = I+ + I -  , 
E' I 

in which the integrals I are defined as 

and the obvious definitions are used for the integration limits. Setting x = 
(and making analogous definitions for the limits) gives 

= V 6 

in which the exponent was expanded by completing the square. Defining y as 

(with the limit yi similarly expressed in terms of x i ,  E' i ,  or V i )  and rearranging give 

I * = * & .  'r ( A  f B a f i 1 2  + B&y ) e -''dy , 
Y I  

which can be evaluated as 

13 



I ,  = f e a b I 4  6 ( A  f B a 6 1 2 )  $ [ erfc(y,) -erfc(y i i l )  1 
' I .  1 

f e ab14 ~f [ e  -YI - e - Y I + I  

Substituting the expressions in Eq. (1 2) for A and B, and defining z as 

V; E t j  2 a b  - z .  = yj - - - -rv .J i ;  = --.E - 
a J 4 a J 

give the result 

(43) 

(44) 

1 Z j  i 1 -Zj  -21 - e - * l * l  a e  * -  
2 Z i i l  -zi v i+ l  - vi 

Z j  i 1 -Zj  a e -21 - e 
T -  

2 z i + l  -zi V i i l  - vi I - (45) 

In this form the equation can be evaluated accurately even for small values of Vi + - Vi. The 
contribution to the integrand from this energy region is then the sum of the two terms I, of 
Eq. (45). 

In the nonfhermal region, Eqs. (1 9) and (20) are used to approximate the value of the 
cross sections. Integration over the i* energy region gives, for the numerator of Eq. (35), 

Again setting x = m, treating the two terms of 
rearranging terms give 

separately, completing the square, and 

14 



- 
+ @ - ] x d x  4 

a b  

Setting y equal to ( x  T a b l 2 ) l J a b  gives 

Y f  + I  

I * = * -  e Obi4 / ( A  + B ( a y 2 h  u p y  + a 2 b / 4 ) )  
b 

Yt  

x ( p y f a b l 2 )  e - Y 2  d y  . 

Eq. (48) can be rewritten as 

I * = * - -  b e o b 1 4  [ f ( A + -  ""42): - '7 e - Y Z  d y  

e) ' 7 y 2  e - Y 2  d y  + B a p  [ y '  e - Y Z  d y  + B (*a2b* . 1 Y f  *I 

2 
Y f  Yt  

The third and fourth integrations in Eq. (49) may be partially evaluated as follows: 

and 
yt *1 yt +1 

[ y '  e - Y z d y  = + [ y  e -Y2dy . 

(49) 

15 



Similarly, the remaining two integrals are evaluated as 

and 

7 * 

S y 2 e - y 1 d y  = 1 ( e -  yt - e  - y I * I  
Y‘ +1 

2 
Y I  

With these substitutions and algebraic manipulations, the formula for I ,  becomes 

(53) 

Again the definitions ofy and z from Eq. (41 and 44) and the definitions of A and B of 
Eq. (20) can be used to reorganize this result to give 

( E L  3 e -21 - e - z t + I  

f- - - a b  - 1 
a 4  E ‘ , + ,  -E‘ ,  

16 



In this form the expressions can again be accurately evaluated, even for small energy- 
difference denominators. Details are given in Appendix A. 

Finally, the denominator of Eq. (35) 
constant terms of the cross section, to give 

E5 

/ @ ( E ) ~ E  = 

El 

where 

can be evaluated in the same manner as the 

I ,  + I -  9 (56) 

x7 

I, = + L  -x21ab+x xdx  = @ eabI4 T ( G y f  a b / 2 )  e - Y 2 d y  
b - b  

X1 Yl  

in which the same definitions are used for y and z as previously, and the subscripts refer to 
the integration limits, that is, 

and 

U 

and similarly for y1 and zl. 

7 and 8. K1 and Alpha. No further integrations are needed. 
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5. APPLICATION TO 235U 

In the evaluations for ENDF/B-5,6 the 235U cross-section representation was given by 
pointwise values for low energy up to 1.0 eV, rather than as a resonance parameter 
representation. Above 1 .O eV the cross-section representation was given by the single-level 
Breit-Wigner formalism, which does not account for the long-range strong interference 
effects in the fission channels and therefore impacts the cross section representation at 
thermal energy. For ENDF/B-6 (see Ref. 7), the situation was greatly improved by using the 
reduced R-matrix Reich-Moore formalism for cross-section representation. In the present 
evaluation of Leal et a1.* it has been possible to reproduce the shape of the cross sections 
accurately everywhere, from a few eV into the keV energy region. Although earlier 
evaluations included only microscopic data in the fitting process, Hardy4 has recommended 
using both experimental microscopic data and experimental integral data for fitting. For the 
present 235U evaluation both microscopic and integral data are being used. 

For the resonance parameter analysis of 235U, cross sections in the thermal-energy 
region and integral data are important for the calculation of thermal power reactors and for 
the interpretation of thermal critical benchmark experiments. Three integral quantities for 
which experimental measurements exist have therefore been included in the new analysis. 
These quantities are K1 and the Westcott factors gf and g, . The quantity KZ, as defined in 
Eq. (8), is 

KI = Vq)/g/-o,& * 

The quantities gf and g, are given in Eq. (3), 

In Eq. (60), v is the number of neutrons per fission at thermal energy (0.00253 eV), a,/ and 
oO0are respectively fission and absorption cross sections at thermal, and gl and g are, 
respectively, fission and absorption Westcott factors obtained from the cross sec;ons 
averaged over a Maxwellian. Experimental values for gf and go are given in ref. 2 and the 
recommended value for K1 is indicated in ref. 4. 

Thermal parameters obtained in the present evaluation, first by using the microscopic 
experimental data only and secondly by also including the integral data, are compared to the 
SAMMY input experimental data in Table 1. In the fit of the microscopic data only, a strong 
constraint was put on the standard values, but the calculated values for the Westcott factors 
and for K1 are too small. By including the integral data in the fitting process, excellent 
values are obtained for gf, g,  and K1; the fission cross section at thermal (0.00253 eV) is 
a little higher than the standard and the capture cross section a little lower, but both remain 
within the accuracy of the standard values. 

18 
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Table 1. Comparison between experimental and calculated thermal values and integral 
I quantities. 

Measured, recommended, Fit to differential Fit to differential plus 
Quantity and standard values data integral data 

(J f 584.25 f 1.1 1 584.28 584.80 

98.96 f 0.74 98.18 98.64 

(Js 15.46 f 1.06 15.44 15.67 

K1 722.7 f 3.90 7 17.48 722.37 

gr 0.9771 f 0.0008 0.9743 0.97801 

ga  0.9790 f 0.0008 0.9774 0.97995 

uY 

6. CONCLUDING COMMENTS 

This report has documented a capability that permits analysis of resonance parameters 
by fitting to both microscopic and integral quantities. The R-matrix analysis code SAMMY 
has been upgraded to incorporate this capability. Application of the methodology to the 
evaluation of the 235U cross sections was discussed; results of the analysis are in good 
agreement with both the microscopic and the integral results. Other integral quantities will 
be incorporated into SAMMY as the need arises. 
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APPENDIX A. DETAILS OF THE NUMERICAL CALCULATIONS 

Evaluation of the integral quantities described in this report require numerical 
integration methods in which part of the integrand is known analytically (e.g., a Guassian 
function) and part is known on a fixed grid (e.g., the cross sections). The numerical portion 
must be interpolated to give values between the grid points. The interpolated function is then 
multiplied by the analytic function and the result integrated. This method is described in 
Section IV. [Alternatively, one could assume that the entire integrand exhibits linear 
behavior between grid points, and use, e.g., Simpson’s rule to calculate the integral. In the 
limit of sufficiently dense mesh, the two methods should give comparable results. The 
method employed here, though more difficult to program initially, should be more accurate 
with fewer mesh points.] 

One pitfall of numerical integration schemes is the necessity to evaluate functions that 
are ratios of two expressions, for which both denominator and numerator can be very small. 
(Equation (16), for example, contains this kind of function.) These functions must be 
evaluated by taking the limits correctly. In this appendix three such limiting cases are 
discussed in detail. 

1 : Exponential 

The expression from Eq. (1 8) involving the differences between two exponentials, 

can be rewritten in the form 

2 2  -.,? 1 - e -(x,+1-xt ) x,?+,-x,? 
Q ,  = - e  

+ 1 - x;+, - xi  2 

In this form the final fiaction is clearly just the sum x i  + , + x i .  The fraction involving 
the exponential can be expanded using the Taylor series for exponentials, 

. . .  , e - ’ = 1  - a + - - - + -  a2 a3 a4 - 
2! 3!  4! 

so that the fraction involving the exponential becomes 

+ . . .  , a a2 a’ 
a 2! 3!  4! 

-a  
1 - e  = I - - + - - -  
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which is a well-behaved function even for small a. 

This technique can of course be expanded to higher orders, as needed. Within 
SAMMY, such expressions are evaluated in subroutine ABCEXP(X,A,B,C), in which X is 
the input argument (X = -a ), and the output variables A, B, and C are defined as 

x 2  x 3  A B C E X P ( X , A , B , C )  = 1 + X + - + - + .  , . 
2 !  3 !  

+ . . .  A =  - I + - + - + -  
X 2!  3!  4!  

e x - 1  - x x 2  x 3  

+ . . .  B = -  - - + - + - + -  A - 1  - 1 x x 2  x' 
X 2 !  3!  4! 5 !  

B - 1/2 - 1 X X 2  X' c =  - - + - + - + - + . *  
X 3 !  4!  S !  6! 

2. Error functions 

A second term in Eq. (1 8) which requires care for dense grid points is 

erfc ( x i )  - erfc ( x i  + 

Q = @  
2 2  ' , + I  - X i  

A variety of numerical techniques are available for evaluation of the error function, 
with a range of validity appropriate to the particular technique. The technique that seems to 
work best for evaluating differences of error functions, in the case when the difference 
between the arguments is small, is to use the expansion whose first terms are given by 

- J?; 
2 

- 1  + 2 x 2  [ e r f c ( X - Y ) - e r f c ( ~ ) ]  = e - X 2  [ Y + X Y Z +  Y' + . . . I  
3 

(This result can be derived from Abromowitz and Stegun9 Eq. (7.1.5) using the binomial 
expansion for (X-Y)2n+1, as shown later in this appendix.) Within SAMMY this expression 
is evaluated via function ABCERF(X,Y,A,B,C), in which 
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E 

+ Y 4 f ( X , Y )  9 

3 2xz - 1 ABCERF(X,Y,A,B,C) = Y + Y z X  + Y 
3 

A - 1  
Y 

B =  - 

B -X c =  - 
Y 

= x + y c  = 

In these expressions the functionf is a polynomial in Y, and the coefficients of r' in 
that polynomialf are themselves polynomials in X. 

3. Logarithms 

For small x the approximation 

can be used to evaluate functions involving logarithms, such as those in Eq. (26) or (28). 
Within SAMMY the function ABCLOG(X,A,B,C) is used for th is  purpose, where 

ABCLOG(X,A,B,C) = - 1 ln(1 +XI = - (-XI" , 
X n = o  n + l  

A =  1 -ABCLOG - - - - B X  1 ( -XI" 
X 2 n = o  n + 2  

B =  

c =  

112-A 
X 

1 1 3  - B  
X 
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4. Derivation of Eq. (68) 

Eq. (7.1.5) of Abromowitz and Stegun9 has the following form: 

Since erfc ( x )  = 1- erf (x) ,  Eq. (72) can be used to express the difference 

Replacing the (X-Y) term by its binomial expansion gives 

(2n  + l ) !  2 n + l  

Y j  x X Z n + l -  X 2 n + l - j  [ j = O  ( 2 n + l  - j ) ! j !  

which can be rewritten as 

(2n  + l ) !  
(2n  + 1 - j ) !  j !  

2 n + l  
y j  ( -  1 ) ' + I  c x Z n + l - J  

j = l  

(74) 

To simplify this expression, we interchange the summations and consider the coefficient of 
each Y j  separately. The result is 

in which 4 is a polynomial of degree j-1 in X. To derive the functional form for f i  in Eq. 
(76), note that the j =1 term on the right-hand side of Eq. (75) has the form 

, 
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for j  =2, the expression is 

Continuing in this manner, one could derivefi for as many values of j as needed to reach 
convergence. In summary, the first six polynomials are as follows: 

forj  = 1: f i  = 1 
f o r j = 2 :  fi = X 
f o r j = 3 :  f3 = ( 2 X 2 - 1 ) / 3  
forj  =4:  $4 = ( 2 X 3  - 3 X ) / 6  
f o r j = 5 :  fs  = ( 4 X 4 - 1 2 X 2 + 3 ) / 3 0  
f o r j = 6 :  4 = ( 4 X s - 2 0 X 3 + 1 5 ) / 9 0  , 

25 



APPENDIX B. INTEGRAL DATA FILE 

(Note: This appendix is essentially Sect. VI.1. from the SAMMY manual.’) 

L 

When the data type is specified as “INTEGral quantities” (see Card Set 8 of the INPut 
file, p. 107 of the SAMMY manual), then two kinds of data files are needed. The first is an 
experimental dzfferential data file, which is used (if at all) only to generate the energy-grid 
on which the integrals are to be calculated; the type of data and values of the cross sections 
in this file are ignored. The second kind of data file contains the experimental integral data 
itself and is designated as the “NTG” file. 

In the NTG file, each type of integral data is specified by a unique five-character name, 
which is given in Columns 1-5 of the appropriate card. Names can be either capitals or lower 
case, and the ordering is arbitrary. Only those data types for which experimental 
measurements exist need to be specified; others can simply be omitted from this file. 

Table 2 (VI.I.1 in the SAMMY manual) shows the various types of integral data 
available in SAMMY. Note that underscore - in a name denotes a blank space. 

Table 2. Types of integral data 

Name as used in NTG file Description 

THABS, THFIS, THCAP 

MXABS, MXFIS, 
MXCAP 

WGABS, WGFIS, 
WGCAP 

RIABS, RIFIS, RICAP 

AVABS, AVFIS, AVCAP 

~ ~ ~ ~~ ~~ 

Absorption, fission, or capture cross section respectively, 
at thermal energy (E=0.0253 eV) 

Maxwellian average absorption, fission, or capture cross 
section 

Westcott’s g factor for absorption, fission, or capture 
cross section 

Resonance integral for absorption, fission, or capture 
cross section 

Average integral for absorption, fission, or capture cross 
section 

Watt spectrum average 

[ v (MXFIS) - (MXABS)] 2 / fi 
a = (RICAP) / (FUFIS) 
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When the INPut and PARameter files specify more than one nuclide (isotope), 
SAMMY will calculate the integral quantities for each nuclide separately, ignoring the 
abundances specified in INPut and/or PARameter files. Integral data are assumed to be for 
a specific nuclide; it is important to note that the ordering of the nuclides must be the same 
in the NTG file as in the PAR file. 

Correlations between experimental data are also given in the NTG file. 

The name of the integral data file is given directly after the name of the differential data 
file, in the “interactive or batch input to SAMMY.” Details for the format of the NTG file 
are given in Table 3 (Table VI.I.2. in the SAMMY manual). 

Table 3. Format of the NTG file 
Card Variable 
Number Column Name Meaning 
1 1-70 TITLE Title for the file; is printed in LPT file but never used 
2 1-5 NUCLID Nuclide number (default = 1); nuclides must be in the 

3,4, etc. 1-5 WHAT Type of integral data, from list in Table VI.I.2 
same order as in PAR file. 

1 1-20 DATA Experimental value for this data type 
21-30 UNC Experimental uncertainty for this data type 
3 1-40 

4 1-50 CONST2 added to the integrated value. 

CONST For resonance integral data, CONST is the maximum 
energy for integrand, and CONST2 is the remainder to be 

For average integral data, CONST is the lower limit on 
the integral and CONST2 the upper. 
For K I ,  CONST is the value of v. 
For Watt spectrum average, CONST = a and CONST2 = b. 

Repeat cards 2-5 as many times as needed. 
5 (Blank) 
6, etc. 
7 (Blank) 
8 1-5 WHAT CORRElations follow 
9 1-5 WHAT1 Type of integral data 

6-10 NUC 1 Nuclide number 
1 1-1 5 WHAT2 Type of integral data 
16-20 NUC2 Nuclide number 
21-30 CORR Correlation between data of type WHAT1 for nuclide 

number NUC 1 , and WHAT2 for Nuc2 
Repeat Card 9 as many times as needed 10, 11, etc. 

12 (Blank) 
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1. 
2-7. 

8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 

18-22. 

41. 

42. 
43. 

44. 

45. 

46. 

47. 
48. 

49. 
50. 

51. 

52. 

53. 

54. 
55. 

ORNLRM- 13495 

INTERNAL DISTRIBUTION 

B. L. Broadhead 
H. Derrien 
F. C. Difilippo 
C. Y. Fu 
N. M. Greene 
K. Guber 
J. A. Harvey 
C. M. Hopper 
D. T. Ingersoll 
P. E. Koehler 
M. A. Kuliasha 
D. C. Larson 
N. M. Larson 

23-27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 

37-38. 
39. 
40. 

L. C. Leal 
C. V. Parks 
R. W. Roussin 
C. H. Shappert 
M. S. Smith 
R. R. Spencer 
R. M. Westfall 
J. E. White 
R. Q. Wright 
RSICC 
Laboratory Records for submission to OSTI 
Laboratory Records, ORNL-RC 
Central Research Library 

EXTERNAL DISTRIBUTION 

P. Blake, DEWSPRCLEPH, Batiment 230, Centre d’Etudes de CADARACHE, 13 108 
Saint Paul-lez-Durance, France 
R. Block, Rensselaer Polytechnic Institute, Troy, NY 121 80-3590 
0. Bouland, DEWSPRCLEPH, Batiment 230, Centre d’Etudes de CADARACHE, 
13 108 Saint Paul-lez-Durance, France 
D. Cabrilla, U.S. Department of Energy, EM-66, Clover Leaf, Room 1 199,19901 
Germantown Road, Germantown, MD 20874- 1290 
D. E. Carlson, Reactor and Plant System Branch, Division of System Research, Offke 
of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, MS T-10 G6, 
RM T-10,17, Washington, DC 20555-0001 
F. Corvi, Central Bureau for Nuclear Measurements, Steenweg op Retie, 2240 Geel, 
Belgium 
R. L. Dintaman, U.S. Department of Energy, DP-13, Washington, DC 20585 
C. Dunford, Bldg 197D, National Nuclear Data Center, Brookhaven National 
Laboratory, Upton, NY 1 1973 
J. R. Felty, U.S. Department of Energy, DP-3 1 1, Washington DC 20585 
P. Finck, Argonne National Laboratory, Reactor Analysis Division, Bldg 208, Argonne, 
IL 60439 
C. M. Frankle, NIS-6, MS 5562, Los Alamos National Laboratory, Los Alamos, NM 
87545 
S. C. Frankle, X-TM, MS B226, Los Alamos National Laboratory, Los Alamos, NM 
87545 
F. Froehner, Kernforschungszentrum Karlsruhe, Institut f. Neutronenphysik und 
Reacktortechnik, Postfach 336 40, D-7602 1 Karlsruhe, Germany 
W. Furman, Frank Laboratory of Neutron Physics, JINR, Dubna, Russia 
S. Ganesan, Head, Nuclear Data Section, Indira Gandhi Centra for Atomic Research, 
Kalpakkam 603 102, Tamilnadu, India 
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56. 

57. 

58. 
59. 

60. 

61. 

62. 

63. 

64. 
65. 
66. 

67. 
68. 
69. 

70. 

71. 

72. 
73. 

74. 

75. 

76. 

77. 

78. 
79. 

80. 

81. 
82. 

83. 

H. Gruppelaar, Netherlands Energy Research Foundation ECN, Westerduinweg 3, P. 0. 
Box 1 , NL 1755 ZG Petten, Netherlands 
F. Gunsing, Centre D’Etudes De Saclay, F-Saclay - 9 1 19 1 GIF-SUR-YVETTE Cedex, 
France 
G. M. Hale, T-2, MS B243, Los Alamos National Laboratory, Los Alamos, NM 87545 
A. Hasagawa, Nuclear Data Center, Japan Atomic Energy Research Institute, Tokai- 
mura, Naka-gun, Ibaraki-ken 3 19- 1 1 , Japan 
R. N. Hwang, Argonne National Laboratory, Reactor Analysis Division, Bldg 208, 
Argonne, IL 60439 
R. P. Jacqmin, DER/SPRC/LEPH, Batiment 230, Centre d’Etudes de CADARACHE, 
13 108 Saint Paul-lez-Durance, France 
N. Janeva, Bulgarian Academy of Sciences, 72, Boul, Tzarigradsko shosse, Sofia 1784, 
Bulgaria 
L. Lambros, 08 E23, U.S. Nuclear Regulatory Commission, 11555 Rockville Pike, 
Rockville, MD 20852-2746 
R. Little, X-TM, MS B226, Los Alamos National Laboratory, Los Alamos, NM 87545 
C. Lubitz, Knolls Atomic Power Laboratory, P. 0. Box 1072, Schenectady, NY 12301 
R. E. MacFarlane,T-2, MS B243, Los Alamos National Laboratory, Los Alamos, NM 
87545 
C. Mounier, CEN Saclay, DMT/SERMA/LENR, 9 1 19 1 Gif Sur Yvette Cedex, France 
M. C. Moxon, 3 Hyde Copse, Marcham, Abingdon, Oxfordshire, England 
D. Muir, IAEA Nuclear Data Section, Wagramerstr. 5 ,  P. 0. Box 100, A-1400 Wien, 
Austria 
C. W. Nilson, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory 
Commission, Mail Stop TWFN 9-F-33, Washington, DC 20555 
C. Nordborg, OECDMEA, Le Seine St-Germain 12, Boulevard Iles, 92 130 Issy-les- 
Moulineaux, France 
C. Raepsaet, CEN Saclay, DMT/SERMA/LEPP, 91 191 Gif Sur Yvette Cedex, France 
M. Salvatores, DRN/P, Batiment 707, C. E. CADARACHE, 13 108 Saint Paul-lez- 
Durance, France 
E. Sartori, OECDhJEA, Le Seine St-Germain 12, Boulevard Iles, 92 130 Issy-les- 
Moulineaux, France 
0. A. Shcherbakov, Petersburg Nuclear Physics Institute, 188 350 Gatchina, Leningrad 
District, Russia 
R. Shelley, Central Bureau for Nuclear Measurements, Steenweg op Retie, 2240 Geel, 
Belgium 
K. Shibata, Nuclear Data Center, Japan Atomic Energy Research Institute, Tokai-mura, 
Naka-gun, Ibaraki-ken 3 19- 1 1, Japan 
D. L. Smith, TD-207-DB 1 16, Argonne National Laboratory, Argonne, IL 60544 
H. Takano, Nuclear Data Center, Japan Atomic Energy Research Institute, Tokai-mura, 
Ibaraki-ken 3 19- 1 1, Japan 
H. Weigmann, Central Bureau for Nuclear Measurements, Steenweg op Retie, 2240 
Geel, Belgium 
C. Werner, Renssalaer Polytechnic Institute, Troy, NY 121 80-3590 
R. White, Lawrence Livermore National Laboratory, P. 0. Box 808, Livermore, CA 
94550 
M. Williams, Nuclear Science Center, Louisiana State University, Baton Rouge, LA 
70803 
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