
Idaho 
National 

Engineering 
Laboratory 

/ 

INEEL/EXT-98-00303 

March 1998 

Corral Monitoring System 
Assessment Resu Its 

MASTER 

L O C K H E E D  M A R T I  

c -  , 



INEEUEXT-98-00303 

Corral Monitoring System Assessment Results 

E. E. Filby and K.J. Haskell 

Published March 1998 

Idaho National Engineering and Environmental Laboratory 
National Security Programs 

Lockheed Martin Idaho Technologies Company 
Idaho Falls, Idaho 83415 

Prepared for the 
Defense Special Weapons Agency 

under IACRO HDI 102-7-1490-1 5 
Work For Others authorized by the 

U.S. Department of Energy 
Under DOE Idaho Operations Office 

Contract DE-AC07-941D13223 



. 

e 



DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof, nor any of their employees, makes any warranty, express or implied. or 
assumes any legal liability or responsibility for the accuracy, completeness, or use- 
fulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any spe- 
cific commercial product, proms, or service by trade name, trademark, manufac- 
turer, or otherwise does not necessarily constitute or imply its endorsement, m m -  
mendhtion, or favoring by the United States Government or any agency thereof. 
The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof. 



9 

ABSTRACT 

This report describes the results of a functional and operational assessment of 
the Corral Monitoring Systems (CMS). The assessment was performed at three 
levels: One level evaluated how well the planned approach addressed the target 
application, which involved tracking sensitive items moving into and around a site 
being monitored as part of an international treaty or other agreement. The second 
level examined the overall design and development approach, while the third 
focused on individual sub-systems within the total package. Unfortunately, the 
system was delivered as dis-assembled parts and pieces, with very poor 
documentation. Thus, the assessment was based on fragmentary operating data 
coupled with an analysis of what documents were provided with the system. The 
system design seemed to be a reasonable match to the requirements of the target 
application; however, important questions about site manning and top-level 
administrative control were left unanswered. Four weaknesses in the overall 
design and development approach were detected: (1) Poor configuration control 
and management, (2) inadequate adherence to a well-defined architectural 
standard, (3) no apparent provision for improving top-level error tolerance, and 
(4) weaknesses in the object oriented programming approach. The individual sub- 
systems were found to offer few features or capabilities that were new or unique, 
even at the conceptual level. The CMS might possibly have offered a unique 
combination of features, but this level of integration was never realized, and it had 
no unique capabilities that could be readily extracted for use in another system. 
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EXECUTIVE SUMMARY 

A. 

This work was sponsored by the Defense Special Weapons Agency (DSWA) as the CMSAssessment 
and Integration project, under the programmatic designation IACRO HD1102-7-1490-15. The CMS was 
designed to detect and document accountable items entering or leaving a monitored site. Its development 
was motivated by the possibility that multiple sites in the nuclear weapons states of the former Soviet Union 
might be opened to such monitoring under the provisions of the Strategic Arms Reduction Treaty (START). 
The Local Operator Workstation (LOW) component of the CMS would collect sensor information with the 
intent of identifying unauthorized boundary crossings. Data collected by the LOW would be downloaded 
via telephone or satellite telemetry into an identically-structured database resident in the Remote Operator 
Workstation at the Remote Data Center. 

The design strategy for the CMS included making the maximum possible use of commercial off-the- 
shelf (COTS) components. The Operator workstations would host a software suite centered around 
customdesigned System Integration Software (SIS) developed within the object-oriented programming 
(OOP) environment, VisualAgem (an International Business Machines, IBM, product). Initial CMS 
development took place at Raytheon Service Company in 1995 and into January of 1996. When this 
assessment project was initiated in May 1997, a extensive set of CMS hardware and software components 
were gathered together and shipped to the INEEL. Along with two workstations, a total of 16 RAID 
(Redundant Array of Independent Disk) drives were included. One of the early problems was to identify 
which disks were usable boot disks, and which were only for data storage. This was further complicated 
by the fact that there were just under 150 thousand separate files located in hundreds of directories. While 
many were duplicates (often in a different directory on the same disk or partition), many were not and there 
seemed to be nearly a thousand unique .EXE files. 

The original assessment project had two basic goals. The first goal was to evaluate the operability and 
functionality of the System, while the second was to assess the feasibility of integrating its capabilities with 
a “distributed” monitoring and control network. However, as early work proceeded, it became clear that 
many parts of the prototype were incomplete, un-tested, or based on obsolete technology. The focus then 
returned to the first goal, with the proviso that the project would emphasize an in-depth analysis of the 
functionality provided by various parts of the CMS. Understanding how CMS provided these functions and 
whether they did, or did not, address critical nonproliferation surveillance needs would provide valuable 
input for future programs in this area. It should be emphasized that the documentation received with the 
CMS components was not very complete. Also, in their rush to finish the prototype, the developers seem 
to have lost all version control, and were never able to regain it. 

As the functional assessment proceeded, it was concluded that a tremendous level of effort would be 
required to reverse-engineer enough system knowledge to decide which modules were operable, finish 
interim versions for software that was “almost there,” and fill in the many gaps in the documentation. It 
did not help that some design features had crucial dependencies upon commercial components that had 
moved ahead significantly in the 14 months the CMS was standing still. Beyond this, the assessment 
highlighted four areas of concern in the overall approach: The first problem was the poor configuration 
control and management already highlighted by the loss of version control. The second problem was 
inadequate adherence to a clear architectural standard. While IBM OS12 was the “standard” selected, some 
vendors of their selected COTS components had no plans to ever support that particular operating system. 
The third problem was the lack of any provision for improving top-level error tolerance. Error recovery 
routinely required a complete system re-boot, and there was almost no mention of exception handlers in 
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any of the design documents provided to us. Finally, although they did their development in an OOP 
environment, their overall approach was very weak. Many normal elements of proper 00 analysis and 
design were missing, and the actual approach seemed to be an unplanned commingling of 00 and 
procedure-oriented philosophies. 

Because all the key CMS components were embedded in the workstation, everything had to work 
together properly for us to be able to get any kind of system up and running. This turned out to be very 
difficult. Some individual equipment items could be operated, but these were not of much use. Despite 
systematic disk swapping, at no time could a reasonably complete array of CMS components be made to 
work together. The final conclusion was that it was basically impossible to implement and evaluate many 
individual features planned for the CMS. 

In addition to the top-level functional assessment, eleven sub-systems identified as being the 
fundamental components of the CMS were evaluated on a case-bycase basis. The User Inreface sub- 
system was meant to provide “navigational“ branches to all the other CMS functions. This component was 
found to be “marginally adequate,” but had no special or unique features. The Security Log-On sub-system 
was also only marginally adequate. One problem was that the hardware security check gave no visual 
indication of any kind to show that the check had occurred. Actually, we had a lot of trouble with this 
whole hardware-based security approach. Other than that, this sub-system performed like a standard 
database password protection system. The Evenr Assessmenr sub-system was considered potentially one 
of the best features of the CMS. Unfortunately, we experienced a great many debugger error messages 
as we worked with this sub-system, and encountered a number of unexplainable lockups and other 
problems. Basically, this sub-system was too far from being a finished product for us to assess how well 
it might have worked. 

The System Configuration sub-system was meant to allow one to define and configure sensor suites, 
establish user profiles, and even configure individual sensors. It was supposed to do all this via an 
“intuitive” Graphical User Interface (GUI); however, we found that the only way to actually generate a new 
working site configuration was to modify the underlying SmallTalk code itself. A great deal of work 
remained to make this sub-system usable. Some fairly serious anomalies were observed in trying to run 
the Mainrenance Fmctions sub-system, so it could only be assessed “on paper.” We decided that the design 
did not offer much that was particularly innovative or unusual. Access to the Data Transfer sub-system 
was not really possible. The custom scripts apparently worked for the developer under carefully controlled 
conditions, but we had very little success. We finally decided that the obsolete 092-specific links created 
for this program probably had little to offer for new configurations that might be planned. 

The Data Munugemem sub-system was meant to allow the user to manage disk utilization and archived 
data. Unfortunately, the only portion of this sub-system that could be tested was the deletion of data using 
the “Assessment” window. It did not appear that the CMS design offered any ideas that might be 
transferable for use in some other application. We spent by far the most effort trying to make the Data 
Acquisition sub-system work. Unfortunately, these efforts were largely unsuccessful because many units 
would not run, or ran inconsistently or unreliably. Plans for this sub-system called for the use of the COTS 
Alarm Assessment Sensor Processor (AASPTM ) neural network algorithm, but it was never implemented. 
Basically, the device interface part of the CMS was not something we felt had any promise for future 
applications. The Database sub-system seemed to offer only standard functionality. Thus, we did not feel 
there was that much to learn from the work done on this part of the system. The total lack of 
documentation made it impossible to determine if the Scheduler sub-system actually worked, or was even 
a part of the CMS SIS. Similarly, we had no way to assess the CMS Compression/Decompression sub- 
system because there was no video input to compress or decompress. 

I 

vi 



FORWARD 

This work was sponsored by the Defense Special Weapons Agency 
(DSWA) as the CMS Assessment and Integration project, under the 
programmatic designation IACRO HD 1 102-7-1490- 15. It was approved 
by the U.S. DOE Idaho Operations Office as an authorized Work For 
Others effort in May 1997. The CMS prototype had been developed 
previously as a project sponsored by the Defense Nuclear Agency (DNA, 
predecessor to the DSWA). The original intent of the current project was 
to evaluate the maturity of the CMS package, to assess what portions of 
it might be integrated with elements of the DOE-sponsored Modular 
Integrated Monitoring System (MIMS), and (given a positive assessment) 
assist in integrating appropriate CMS and MIMS components and 
functions. Before the evaluation had proceeded very far, it was decided 
there would be no follow-on integration work, so the work scope was 
changed to focus on this thorough evaluation of all the features of the 
existing CMS. This report contains the results of that assessment effort. 
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Corral Monitoring System Assessment Results 

1. SYSTEM BACKGROUND AND DESCRIPTION 

Functional Background for CMS Proposal 

Target Application 
According to its Summary System Description, the original Corral Monitoring System (CMS) 

development project was initiated in response to “opportunities” created by the signing of the Strategic 
Arms Reduction Treaty (START) and the subsequent breakup of the Soviet Union. In the proposers view, 
“a number of opportunities have emerged for the employment of various on-site monitoring regimes as 
adjuncts to the periodic or continuous presence of U.S. inspectors at sites within the nuclear weapons states 
of the former Soviet Union.” A key goal would be to monitor “nuclear warhead inventories and by- 
products of the associated conversion and elimination” activities and processes. “To satisfy a potential need 
for verification at numerous sites simultaneously, DNA is investigating the possibility of [a] monitoring 
system with remote reporting and control capability that is supported by minimal periodic maintenance.” 
These needs and desires drove the design for the CMS development effort. 

System Overview 
The CMS was designed to perform the generic mission of detecting and documenting accountable items 

entering or leaving a monitored site. It was to be a computer-driven system that would automatically 
collect, process, and analyze data received from sensors and video cameras positioned around the site. 
Figure 1, on the following page, illustrates the overall concept. 

The outer-most monitoring layer would be an array of intrusion detectors covering the site boundary, 
a concept that is often defined quite explicitly in treaty-related situations. The boundary designation can 
include not only a description of the location and physical characteristics of the perimeter, but also a 
definition of the kind of monitoring units to be used. Note that the “monitored site” may or may not 
encompass an entire facility; it may, in fact, be only a part of a larger physical location. But the essential 
features of the definition are that boundary crossings are restricted, and activities inside are subject to 
surveillance. Field elements capable of detecting boundary crossings or intrusion would be placed at the 
designated boundary. These might include long-range break beam detectors, video motion sensors, passive 
infrared motions sensors, and others. The Local Operator Workstation (LOW) component of the CMS 
would collect sensor information with the intent of identifying unauthorized boundary crossings. 

The next key part of the system would be monitoring devices at designated site entry/exit points; these 
too are generally clearly and explicitly called out in treaty-covered situations. Sensors and video equipment 
would collect data at these locations to document vehicle and personnel traffic, authenticate the identity of 
treaty-limited items, and provide a continuous record of all activities in the area. Like that from the 
boundary devices, these data would be transmitted to the LOW. 

In principle at least, the CMS should also have been able to track the movement of treaty-limited items 
inside the area defined by the boundary. The Summary System Description concept diagram does not show 
this added monitoring layer, but does mention “waypoint areas.” 
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Figure 1. CMS Installation Concept 

The LOW was to be housed at a Local Data Center (LDC), which would be located within, or near, the 
monitored site boundary. Software installed on the LOW would provide automated data collection (including 
storage of video surveillance images), continuously monitor equipment health, and guard against tampering. 
Collected data would be loaded into a Master Database. The software suite was meant to provide fully 
integrated functionality, including a user-friendly operator interface. The final version of the CMS was to 
have the ability to discriminate an accountable item from its background, and its Automated Assessment 
Signal Processingm (AASP) neural network algorithm would train the system to discriminate between 
legitimate and false alarms for selected intrusion detection sensors. 

Other features of the software were intended to allow the operator to review and analyze the collected 
information. The LOW Master Database would also be periodically synchronized via telephone or satellite 
telemetry with an identically-structured Slave Database resident in the Remote Operator Workstation (ROW) 
at the Remote Data Center (RDC). 

The RDC was to be situated somewhere away from the monitored site, or sites. In principle, it could 
be located hundreds or thousands of miles away, and the intent was to be able to handle many monitored 
sites from one oversight facility. Clearly, ROW software functionality would be primarily for data review 
and analysis; components for “raw” data collection would not be necessary. 

Operational Activities 
The CMS was meant to be totally “transparent” to the operators of a monitored site. It would be set up 

as a completely independent, fully automated, system that would never interfere with normal site activities. 
In particular, it would not prevent or even hinder any entry or exit. Despite the high level of planned 
automation, the Summary System Description also refers to a CMS operator, who would apparently be on- 
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site during normal working hours. The CMS operator would perform some fairly high level data review 
functions, but would supposedly not need to know a lot about the technical workings of the system. 

Typically, an operator coming on duty would first confirm the CMS state-of-health. The system was 
to be designed so this information could be acquired automatically, or at the operator’s demand. Any 
system degradation noted would be recorded in a maintenance log database for later reference during 
periodic maintenance activity. The operator would then manually enter any declaration information for 
impending transits of treaty items, to be later correlated with the actual transit events. 

The operator would be notified regarding any monitoring data that might have been received and stored 
in a queue in anticipation of operator review. The operator would then examine the monitoring data, 
typically on a first-in first-out basis. This review process would involve reading textual data and viewing 
visual data associated with an accountable event. During this process, the operator might need to log 
assessment responses into the system. The review of routine events was expected to mainly involve 
confirmation of declaration matches. 

Monitoring data associated with events requiring immediate attention, such as undeclared entry/exit 
transits or boundary breaches, would be subjected to close scrutiny. These events would automatically be 
queued ahead of groups of routine events awaiting review. Each event data set that had been completely 
reviewed would then be removed from the operator review queue and archived for later adjudication, if 
necessary. It would have been entirely possible for a number of events to accumulate before an operator 
had a chance to review them. This latency would have had no adverse impact, because an event-driven 
response was not considered necessary in the baseline CMS design. The ultimate goal of the CMS was 
merely to conclusively document accountable monitored site activity. 

The “representative scenario” described in the Summary System Description focuses on the arrival of a 
truck carrying two treaty-covered items at an entrance to the monitored facility. The arrival would be 
detected by a video motion detector, which would transmit a message to the LOW and trigger the capture 
of a video frame of the arriving vehicle. The video frame would be displayed on the LDC monitor, while 
a radio-linked tag partially would confirm the identities of the two items, and radiation data would be 
collected to verify their isotopic signatures. Further video frames would also be captured and displayed. 
All these data and video were to be stored at the LDC and transmitted via satellite to the RDC in near real 
time. In this scenario, the Remote operator would analyze this information, confirm that there has been a 
previous declaration, and verify that the identity of the arriving items matched that provided in the 
declaration. No mention is made of the Local operator, but presumably he or she would have had to be on 
site to enter the declaration into the system. 

Support Activities 
The CMS maintenance concept embodied what the designers called “a worst case scenario” for 

maintaining the system, which corresponded to the remote operating mode. Routine maintenance visits by 
circuit-rider teams were expected to be scheduled at 90-day intervals. The term circuit-rider refers to 
personnel on temporary duty, who would circulate between CMS monitored sites according to a pre- 
determined schedule. Circuit-riders would typically provide maintenance at the Remote Data Center 
between site visits, and might perform CMS operator functions there as well. 

Activities during a site visit would encompass both corrective and preventative maintenance work. When 
all corrective and preventive maintenance activity had been completed, the circuit-riders would document 
their actions and the resulting system status in a maintenance log database for future reference. Changes 
to the system configuration baseline would also be noted. 
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Proposed Structure 
The design strategy for the CMS included making the maximum possible use of commercial off-the-shelf 

(COTS) components. These were to be integrated together to create the final system. Figure 2 shows a 
block diagram of the intended configuration. 

Figure 2. Workstation Block diagram 

Basic Workstation Equipment 
The CMS hardware design architecture was centered around EISA/PCI “superserver” workstations 

configured with two 90-MHz Intel@ Pentium processors; these were to be used for the Local operator 
Workstation (LOW) and the Remote Operator Workstation (ROW). These workstations were equipped with 
64-megabytes of error checking and correcting random-access memory. 

Video Motion Detection The Local Operator Workstation would contain Senstar DAVID’ 300 video 
motion detection (VMD) cards to provide vehicle and personnel detection capabilities using cameras located 
at the entry/exit and boundary areas. Each DAVID 300 ISA-bus card can accommodate two monochrome 
or composite color video camera inputs. The DAVID 300 digitizes each video frame and contains 
embedded processing hardware that executes an algorithm that detects motion subject to pre-set parameters 
and otherwise filters out nuisance alarm sources such as cloud shadows and camera shake, Alarm 
information is annotated on the video output signal while alarms would be documented in alarm log files 
on the host hard drive. 

’ Digital Automated Video Intrusion Detection 
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Video Switching Coreco OCULUS-CS 16 X 4 video multiplexor ISA-bus cards were proposed to 
minimize the need for many “framegrabber” cards in CMS configurations with large numbers of cameras. 
Only three 4-input framegrabbers would be needed to handle up to 48 camera channels. Switching camera 
channels would be done under software control, to capture sequential frames from successive cameras. 

Wdeo framegrabbing The Imaging Technologies PCI-bus video frame-grabber card was proposed to 
capture video images associated with entry/exit and boundary events; such event-triggered images would 
be embedded in the Master Database. Each card has four monochrome or composite color inputs. These 
inputs are compatible with the Photonics Darkstar low-light-level cameras at the CMS Boundary, as well 
as the Cohu color video camera at the entry/exit area. This framegrabber takes advantage of the 133 
MB/sec PCI-bus transfer speed to allow the host workstation CPU(s) to perform the digitizing process. 

fractal lmage Compression Fractal Image Format (FIF) compression makes it possible to zoom into 
an image without the blockiness (pixellation) typical of other approaches. The proposed Fractal Image 
Compression Accelerator unit was an ISA-bus card that provides fractal transform co-processing to quickly 
convert framegrabbed camera image bitmaps to .FIF files. This format provides 100: 1 or better lossless 
compression of 8-bit monochrome or 24-bit color images to greatly enhance data transfer and data storage 
efficiency. Decompression was to be accomplished in software only. 

Communications Modules All the local telemetry, including that from the video cameras, was to 
involve radio-frequency (rf) data links, with extensive use of Authenticated Item Monitoring System ( A I M S )  
components. An rf receiver near the LOW would collect the sensor signals, and forward the data via a serial 
interface link. The system was designed to use relatively inexpensive portable satellite terminals providing 
64-Kbps dial-up access. An external V.34 modem was to be included in the equipment suite. In most cases, 
serial data interchange with the LOW would take place via an “intelligent” multi-port I/O-mapped serial card 
(Control RocketPorP), using OS/2@ drivers supplied by the vendor. They intended to make use of two 
other data authentication measures: The Modular Video Authentication System (MVAS) for video links, and 
the COTS public key encryption program ViaCrypt PGPm for the satellite data link. 

As the project evolved, a data-collection approach based on the use of the LonTalkm protocol was also 
included in the design. LonTalk is the specialized operating system at the core of the COTS LonWorks@ 
technology licensed to many vendors by Echelon Corporation (Palo Alto, California). LonWorks provides 
programmable device controllers that can be linked to communicate among themselves in a classic peer-to- 
peer network. During the time period when CMS was being developed, rf-linked LonWorks nodes were 
not available, so a twisted-pair wire link was required to collect the sensor data. The interface between that 
network and the LOW was to be via a standard Serial-to-LonTalk Adapter (SLTA/2). 

Operator Workstation Data processing 
involved a number of multi-tasked application 
programs that would run in the Operator 
Workstations under a version of the IBM OS/2@ 
operating system. This system was proposed 
because it was said to allow scaleability for up to 
16 CPUs along with “inherently seamless” 
memory management and ability to multi-task 
DOS and MS-Windowsm programs. All 
workstation resident application software would 
be linked into a graphical user interface (GUI) 

I 
for use by operators and maintenance personnel. I 

Figure 3. CMS Workstation 

5 



Field Sensor Equipment 
Entry/exit field sensors would detect the approach of both vehicles and people, screen both for the 

presence of isotopic material, characterize any material present, read the unique identifier code from tagged 
items, and collect video snapshots of activity at the entry/exit area. 

Radiation Detector The CMS design called for the use of a TSA Systems, Ltd. Model VM-250 drive-- 
through vehicle portal monitor. This detector auto-adjusts to the background radiation level and can provide 
a contact-closure alarm when it detects very small amounts of radiation, such as that which might leak 
through item containers. The unit is battery-powered, and can be trickle-charged from AC prime power or 
from a suitable solar power source. It can also be used to screen personnel passing between the pillars. 

Multichannel Analyzer Another sensor included in the CMS plan was the TSA Systems, Ltd. Model 
mMCA-430 multi-channel analyzer. This unit is a 256-channel analyzer that characterizes isotopic material 
by scanning to determine the gamma radiation energy spectrum and counting incident neutrons. The unit 
is battery powered and can store numerous scans in non-volatile memory, as well as transferring scan data 
via an integral EIA-232 serial port. 

lnterrogatable Tagging System Items to be tracked by the CMS were to be tagged with the Amtech 
Corporation SmartpassTM. This system utilizes a Model A1161 1 integrated rf tag reader operating in the 2.4 
GHz band, along with Model AT5510 battery-powered passive rf tags, and the AP4110 PC-based tag 
programmer. Vendor specifications claim that this system can identify a tagged item at a distance of up to 
50 meters within a vehicle moving at up to 10 mph. 

Microwave Sensor One unit suggested for use along the boundary of the surveillance area was the 
M.I.L. PAC version of the Southwest Microwave Model 310B bi-static microwave intrusion detection 
sensor. This unit is ruggedized and battery-operated, making it suitable for rapid deployment. Its excellent 
detection performance and low invalid alarm rate were said to make it ideal for this application. 

Color Video Camera Video surveillance was to be provided using a Cohu, Inc., Model 8242-1- 
000/EH06 color CCD camera. This unit is battery powered, using solar cells for recharging. Aside from 
providing surveillance per se, this camera can act as an intrusion detector in conjunction with VMD 
hardware and software elements located in the LDC. These cameras supplement the low-light level cameras 
in cases where suitable host-provided area lighting is available for nighttime operation, as would often be 
the case in an entry/exit area. 

Low-Light-Level Camera To provide surveillance coverage under low-light conditions, the Photonic 
Systems, Ltd. "Darkstar" unit was specified. This unit is battery powered, using solar cells for recharging. 
No area lighting is required. Like the CCD color camera, this camera would act as a boundary intrusion 
detector in conjunction with VMD hardware and software elements located in the LDC. 

Software Approach 
The Operator Workstations would host a software suite centered around custom-designed System 

Integration Software (SIS) developed with IBM's object-oriented programming (OOP) environment, 
VisualAgeTM. This software development tool enables the system integrator to rapidly develop advanced 
OS/2 client-server applications using a library of Smalltalk objects that are linked using a "graphical" 
programming paradigm. VisualAge was used to add functionality to a suite of legacy applications that 
would provide video framegrabbing, image compression, data filtering and analysis functions, and interfaces 
to diverse SIS data acquisition elements. The SIS application was designed to have a modular structure, to 
create a multimedia-enabled database server with operator interface and data acquisition client processes. 
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COTS software components that were to be resident in the CMS workstations included: the OS/2 
operating system, the database management system (DBMS) associated with the integration application 
client-server database; utilities for file and disk management; system tuning and performance monitoring 
applications; and remote control, task scheduling, and communications privacy software. 

Project Background 
The CMS units evaluated here at the INEEL were actually a “mixed bag” of hardware and software 

components going back to a Proof-of-Concept CMS project under the PortaUPerimeter Monitoring System 
program, contract DNA-001-90C0018. Initial CMS development took place at Raytheon Service Company 
(RSC) in Burlington, MA, between March 1, 1995 (when software development commenced) and 
January 31, 1996 (the contract end date). 

During the course of the project, interim products were twice demonstrated: One at the 1995 DNA Arms 
Control Conference in Philadelphia, Pennsylvania in June 1995; the second at the Testbed for Arms Control 
Technologies (TACT) site in Albuquerque, New Mexico in November 1995. According to the development 
team leader, the CMS LOW at the TACT site did operate in an integrated manner - capturing DAVID, 
A I M S  and LonWorks sensor data and radiation spectra, and establishing telemetry sessions with the ROW 
at the Raytheon development lab in Burlington, Massachusetts. The only major caveat was the fact that 
automatic event-triggered framegrabbing was not possible at that time. In fact, the necessary OS/2 
framegrabber driver and libraries did not become available until the very end of the project. 

Apparently, CMS development continued until the very end of the contract, allowing little time to 
carefully document the end status of the project, especially as regards the OS/2-based SIS. This also meant 
that they had moved beyond the working system demonstrated in Albuquerque, with different members of 
the team at widely varied stages of their assigned sub-system development tasks. When the projected was 
terminated, these various pieces were gathered together and set aside in storage. 

When this assessment project was initiated in May 1997, a disparate conglomeration of CMS hardware 
and software components were gathered together and shipped to the INEEL. Much effort was initially 
expended in trying to define combinations that would actually work together to demonstrate at least some 
sub-parts of the overall CMS functionality. 

11. ASSESSMENT GOALS AND APPROACH 

Assessment Goals 
The original CMS Assessment and Integration project had two basic goals. The first was to evaluate the 

operability and functionality of the System, while the second was to assess the feasibility of integrating its 
capabilities with a “distributed” monitoring and control network sponsored by the U.S. Department of 
Energy. That distributed network approach is based totally on the LonWorks@ technology previously noted 
in this report. The longer term goal was to combine some or all of the CMS features with those of the DOE 
approach to obtain a more powerful and versatile integrated system. 

However, as early work proceeded, it became clear that many parts of the prototype were incomplete, 
un-tested, or based on obsolete technology. For example, much of the CMS system-integration computer 
code existed only in a “rapid prototype” form, and was very poorly documented. Moreover, it was 
determined early-on that the system should evolve toward a platform that has a greater market presence than 
OS/2; Le., Microsoft (MS) Windows NT or Windows 95. The level of effort required to re-assemble, 
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re-do, revise, upgrade, etc. the existing prototype was judged to be simply too great; and therefore not 
possible under current fiscal constraints (and perhaps not technically worthwhile anyway). 

The focus then returned to the first goal, with the proviso that the project should emphasize an in-depth 
analysis of thefunctionality provided by various parts of the CMS. This still included making every effort 
to actually run as much of the system as possible ... to actively demonstrate system, or subsystem, 
capabilities so the usability and maturity of the pertinent functions could be thoroughly assessed. 
Understanding how CMS provided these functions and whether they did, or did not, address critical 
nonproliferation surveillance needs would provide valuable input for future programs in this area. A sub- 
goal was to try to identify actual components, hardware and program code, that could be salvaged for 
eventual inclusion in a future monitoring system. Some of the specific topics to be covered by the assessment 
included: 

The strengths and weaknesses of the System Integration Software, and the Automated Alarm 
Assessment Process; 

The strength and adaptability of various video-handling features; and 

The maturity and compatibility of its LonWorks functionality and interface. 

To make the most of the lessons learned in this CMS functionality assessment, the second (integration) 
goal was re-cast as an evaluation of COTS “toolkits” that might allow implementation of the same, or 
similar, features on a workstation attached to a LonWorks network. This comparative feature analysis will 
be reported later in a separate document: Corral Monitoring System Feature Comparison. We expect to be 
able to recommend a preferred COTS approach when that document is prepared. 

Assessment Approach 
The assessment proceeded on three general levels: At the highest level, the match between the top-level 

system approach and the requirements of the target application were reviewed. At the next level, the overall 
system functionality and development process was examined. The third level examined the individual CMS 
sub-systems. For some topics, additional information has been included in the report to help put the 
assessment results in perspective. Thus, a brief discussion of OOP is included in the assessment section for 
the overall process because the RSC development approach was meant to be object oriented. 

At the “macro” level, the assessment covered how well the CMS addressed the target application, and 
might address similar nonproliferation applications. It also tried to determine what lessons could be learned 
from how they actually approached their development tasks. And, as mentioned above, the top-level 
assessment dealt with the broader features of the System, such as the operating system used. Because we 
were never able to get a complete system up and running, this part of the assessment was based on an 
analysis of the documentation provided, supplemented by fragmentary data collected for those components 
that could be made operable. 

It should be emphasized that the documentation received with the CMS components was not very 
complete; in particular, no basic Functional and Operational Requirements (F&OR) document was made 
available to us. At one point during the project, Mr. David Levy (the former project leader for RSC) visited 
the INEEL to help in understanding the system; he also provided some additional documentation. Yet it soon 
became clear that some of the documents we did receive no longer matched the actual state of the system. 
This situation created two problems: One, our assessment might very well have covered features or 
approaches of the project that were, in fact, no longer relevant. They could have already been changed or 
eliminated by the developers. And, two, there are likely to be items we considered questionable simply 
because the documentation provided an inadequate rationale for that particular feature or approach (or 
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provides none at all). As just one example: The “DB2” system was selected as the database development and 
management approach, but no where does the documentation explain what features made this system a 
suitable choice for the application. (As we shall see shortly, this selection does have some project-level 
disadvantages.) This poor documentation meant that some of the system-level judgements could not be very 
detailed and specific. 

On the other hand, at least some of the sub-system assessments could be much more specific. In these 
cases, we asked: What was the sub-system supposed to do? Did it actually work? If we could get that part 
to run then . . , What did the sub-system actually do? What problems were encountered? If we could not 
fully access and exercise a sub-system, we asked: How close were we to getting it to run? Did we know 
why we had problems? 

Whether or not we could get a sub-system to run, we also asked: Did a feature provide a unique or 
unusual capability? If it did, was the feature really useful? Of course, this meant taking into account how 
much various steadily-progressing COTS products had changed while the CMS was standing still. Some of 
the other criteria included: What resources did this sub-system require? Were those resources available in 
the package received at the INEEL? Were they still available commercially? 

111. ASSESSMENT ACTIVITIES AND RESULTS 

General Features 
As noted above, a large and varied array of 

CMS hardware and software was shipped to the 
INEEL for this assessment project. Most was 
transported in the large “work station cases” 
procured for the original project; Figure 4 
shows one of the nine containers sent here. A 
large box of software was also sent. 

Along with two workstations, a total of 16 
RAID (Redundant Array of Independent Disk) 
drives were included; these, in turn, were 
divided into 19 different mass storage 
partitions. One of the early problems was to 
identify which disks were usable boot disks, 
and which were only for data storage. This was 
further complicated by the fact that there were 
just under 150 thousand separate files located in 
hundreds of directories dispersed across the 19 
partitions. There were over 11 thousand DLLs, 
nearly 10 thousand .EXE files, and nearly 22 
thousand “.FIF” files. While many were 
duplicates (often in a different directory on the 
same disk or partition), many were not and 
there seemed to be nearly a thousand unique 
.EXE files. 

Figure 4. Workstation Shipping Case 
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Virtually no documentation was available to identify what these various executables did, or which 
versions were “current.” Of course, the supporting DLLs, bitmap files, and so on have similar problems. 
By a process of directed trial and error, we were able eventually to find combinations that worked together. 
Unfortunately, in their rush to complete the prototype, the developers seem to have lost all version control, 
and were never able to regain it. Worst of all, it appeared that sometimes two or more versions of the same 
file sets are (in a sense) “right” ... but not right for the same reasons. One set might be the latest and best 
combination for accepting alarms from the video motion detector (VMD) but have an older set (or even non- 
functioning “ghost” versions) for getting data from the AIMS interface unit. Conversely, another set might 
be perfect for the AIMS interface, but be non-functional with the VMD. Thus, combinations such as these 
worked - after a fashion - in isolation, but could not be combined onto one common disk set. 

A supporting goal of our original work package was to create an “after-the-fact” Configuration Control 
and Management (CCM) infrastructure for the CMS. The intent was to establish proper version control, 
supported by a standard array of baseline documents for application requirements, system design basis, 
current configuration, and so on. Unfortunately, it was found that very little of the information needed for 
these documents was available, and even then it was generally in a non-standard format. It was also clear 
that some modules were in a state of software “limbo” - we could not find, or no longer had, a prior version 
that actually worked; but development of a new working version was not yet complete. We concluded that 
a tremendous level of effort would be required to reverse-engineer enough system knowledge to decide 
which modules were operable, finish interim versions for software that was “almost there,” and fill in the 
many gaps in the documentation. This expected high level of effort was a major reason the follow-on 
integration task was eliminated from this project. 

Target Application Assessment 
As noted earlier, the CMS was intended to detect, identify, and document the movement of accountable 

items entering or leaving a number of sites monitored as some kind of follow-up to START. Locally 
collected data would be transmitted from all these sites to the RDC. However, the Summary System 
Description (SSD) actually presented two different views of how the system was to be implemented. 

The Operational and Maintenance Concept descriptions listed many activities for an on-site CMS 
operator at the LDC: Checking the state-of-health, local data review, logging data for the maintenance 
circuit rider, and manual entry of declaration information. The concept description did make it clear that 
operator coverage would not be continuous. They mentioned “an operator coming on duty” after “a number 
of events” had accumulated. In contrast, these descriptions made no mention of an operator at the RDC, 
other than a brief suggestion that the circuit rider might “perform CMS operator functions there” [the RDC]. 
According to this view, the main focus of the implementation would be the monitored site and the LDC. 

The description of the “Representative Scenario” in the back of the SSD completely reversed this 
emphasis. That scenario clearly expected the RDC to be continuously manned, asserting that monitoring data 
transmitted to the RDC would be “assessed in near real-time.” After the assessment, the remote operator 
would prepare a report to document the event data. Although the scenario description said monitoring data 
would be displayed at the LDC, it made no mention whatsoever of a local CMS operator. It also said the 
remote operator would compare “the collected data with associated declaration,” but never said how the 
declaration information got into the system in the first place. 

Elsewhere, the SSD asserted that the monitoring system would be basically invisible to site personnel, 
and would never interfere with normal site activities. This seemed to support the view presented in the 
Representative Scenario, but begs the question of how declaration data would be entered into the system. 
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We were left not really knowing what the developers had in mind. The distinction is important because the 
system design could have been significantly altered depending upon the actual approach taken. 

This point will need to be clarified before requirements are prepared for any possible future system 
development. At that time, it would be very important to involve “policy” people in the discussion. 
Ultimately, the approach used at a monitored foreign site is going to depend upon what higher-level 
negotiators can agree upon. It seems very likely that hard-and-fast requirements cannot be derived in 
advance of such negotiations. That in itself defines a development requirement: Whatever work is done 
must preserve enough flexibility so the results are applicable to a variety of situations. 

Ove ra I I Development Approach 
The only reasonably detailed description of the CMS software specifications we received were the 

Application Architecture Document and the User Inteface Design Document for the proof-of-concept SIS 
prototype. We also received a CMS SZS User Guide, but of course this gave no specific information about 
the underlying design approach. The Application Architecture Document mentioned a set of “CMS 
Specifications” contained in a System Description for the Proof of Concept CMS; however, we did not 
receive a copy of this document. Our assessment of the software approach was based on the descriptions 
contained in these documents, a relatively cursory examination of the SmallTalk source code embedded in 
the VisualAge environment, and our review of the actual implementation. 

The assessment highlighted four areas of concern in the overall approach: (1) Poor configuration control 
and management, (2) inadequate adherence to a well-defined architectural standard, (3) no apparent 
provision for improving top-level error tolerance, and (4) weaknesses in the OOP approach. Each of these 
concerns is discussed below. 

Configuration Control and Management (CCM’ The problem of poor CCM was highlighted above by 
the discovery of multiple software versions, at different stages of development, on the system disks. The 
purpose of a CCM system is (obviously) control; but control in the sense of keeping track of what’s going 
on, not in the sense of unduly restricting development. It is especially important for larger and more 
complex projects, like the CMS, where the development work was separated into sub-tasks that were 
assigned to different workers. 

Effective CCM has three primary benefits for the product being developed. First, it insures that all the 
pieces of a project will work together. This can be extraordinarily difficult because there are so many ways 
for a complex system to fail. Programs to operate external devices, drivers for on-board functions, software 
“hooks” into the user interface, data streams that map onto complex database structures ... all these have 
potential for incompatible behavior, resource conflicts, and other unpredictable problems. 

Second, effective CCM provides the basis for maintaining the working product. That is, as bugs are 
identified (and there are always bugs in complex software), the framework established by the CCM should 
help diagnose their nature and source. Often, the developmental history captured by effective CCM provides 
clues as to how the bugs could have “crept in” and suggests preferred approaches for fixing the problems. 

Finally, effective CCM is important when changes must be made in the product. Inevitably, complex 
hardware-software systems must change to meet new conditions: Application requirements change, users 
want new features, hardware becomes obsolete, and on and on. As with changes to fix bugs, changes to 
meet new needs will benefit greatly from the CCM framework. 

Of course, CCM also provides project management and oversight benefits. Clearly, a CCM system 
should provide information needed to assess progress on the project. But also, as development proceeds, 
it may become clear that some project goals are unrealizable or need to be modified. Proper CCM provides 
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the information to make that judgement, and can help guide necessary changes in the project plan itself. 
Standard CCM methods are well established, so we need not go into great detail here. The core “tools” of 
CCM are easily listed: Timely review, clear and prompt reporting, and an appropriate mix of basic 
documentation. “Appropriateness” is important because CCM costs money and time; one must walk a fine 
line between providing enough control and documentation without over-loading the project budget. 

None of the documentation we would normally expect from a formal CCM system was provided to us 
for the CMS project. This does not necessarily mean the original development project had no formal CCM, 
but whatever controls were in place were lost when the project was ended. We would have expected CCM 
documents to be included with the mixed inventory of hardware and software held for demonstrations and 
a possible project re-start. 

Four key items would have benefitted the assessment and integration work. First was an F&OR 
document, which would have described the features and functions the planners felt were needed for the 
target application. Second, we needed to know how various versions of the sub-systems and integration 
software evolved. In fact, we received I ~ Q  version control information. Among the huge number of duplicate 
files, there was no way to tell which were actually working versions, which were “works in progress,” and 
which might be archives of older versions. Third, although working versions of the CMS prototype were 
demonstrated twice, no reliable descriptions of the features implemented for those events were provided. 
Again, this is baseline information we would have expected to be retained in the CCM documentation. 
Finally, no annotated source code listings were provided. Annotation with extended commentary would help 
understand how a particular feature was implemented, and why a specific approach was selected. (The 
assertion that “SmallTalk code is self-documenting’’ is neither accurate nor useful .) 

Architectural Standards Non-Adherence According to the Summary System Description, IBM OS/2 
was to be the architectural standard for the CMS. We need to emphasize that our concerns here are separate 
from questions about the specific standard selected. As noted before, early in our program MS Windows 
was cited as the preferred standard for continued work in this area. OS/2 was judged to have far too small 
a market presence to compete with Windows NT as a multi-tasking operating platform. 

The developers certainly meant to stay within their OW2 standard, and most of the individual component 
descriptions assumed that would be the case. In practice, however, major deviations from that standard were 
allowed: Various portions of the system were delivered as DOS applications, MS Windows packages, or 
different versions of OS/2 software. Yet the SSD noted that these programs would “benefit from conversion 
to 32-bit 0 3 2  applications.” The plan was to run these applications as sub-processes under OS/2, in 
dedicated windows. As we will see, in at least one case the 0 9 2  driver used with CMS was a “non- 
product.” The vendor did not support OS/2 and had no plans to ever do so. This mis-match would increase 
the probability for inter-process conflicts and aggravate the problem of communication between sub-systems. 
In some cases, the sub-components used in the prototype were themselves prototypes . . . development-grade 
units that were not necessarily ever going to be part of a viable product line. 

Based on our discussions with the developers, we understood that these deviations from the architectural 
standard were allowed in the interest of getting demonstration prototypes up and running. And, basically, 
this strategy did work. As noted above, CMS was twice demonstrated “in operation.” But using non-standard 
components to provide required features has both a short-term and a long-term cost. In the short run, 
developer time would be spent to interface the non-standard components, with the almost certain knowledge 
that the work would need to be re-done when a standard equivalent becomes available. 

Two longer-tern possibilities then arise, only one of which is “good.” The not-bad alternative is that the 
vendor will indeed provide an OS/2 version of their program. However, this would mean that the CMS 
would need to be modified to handle the new version. Depending upon the component, this could become 

12 



a significant cost. On the other hand, the vendor may never convert the application to run under OS/2. 
Experience shows that the version running in the non-supported environment will soon become an “orphan.” 
From then on, no bug fixes or other maintenance support would be provided, and copies would no longer 
be available for use with additional CMS installations. 

The issues created by non-adherence to a standard impacted two of our other areas of concern: First, the 
poor CCM implementation would make it very difficult to convert everything in the system to a common 
standard. This would be even more work if everything had to be converted to run on Windows NT. Second, 
the presence of non-standard components would make it that much more difficult to improve the top-level 
error tolerance of the system. Clearly, the more internal boundaries data and instructions must cross, 
especially at the operating system level, the more chance there was for something to go wrong. 

No Error Tolerance Provisions A complex hardware-software product like the CMS has numerous 
potential sources of error. To begin with, we know that software can have bugs. We hope that the most 
serious coding errors will be caught during the development cycle. Yet even logical errors - oddities that 
result from unforseen combinations of code and data - do appear in supposedly finished programs. Then 
there are entire lists of typical run-time errors: file not found, illegal function call, mathematical overflow, 
subscript out of range, device time-out, and many more. Other problems appear due to erroneous device 
or user input. While good programs trap the more predictable input errors, it is very difficult to catch them 
all. Finally, this system seemed likely to be susceptible to errors in memory management and multi-process 
resource clashes. This last problem was acknowledged in the Application Architecture Document: “Is there 
a point at which the individual software components start to interfere with each other?” Finding answers to 
this and related questions was deferred to “future phases” of the project. 

Despite this acknowledgment, none of the documents sent to us contain any reference to systematic 
exception handling or error recovery. The only mention of error messages was among the Uses Cases of 
the Security Log-On sub-system. (Entry of an invalid user identification or password causes an error 
message display.) Thus, any instance of fallacious user or device input, bugs in the SIS or legacy software 
code, or other run-time error could cause major or minor system problems. And, in fact, we experienced 
numerous system failures (including many complete lockups) as we tried to re-assemble a working 
combination of components. We realize that the developers, to save on time and cost, might not implement 
extensive error checking for a demonstration prototype. However, the design documents should at least 
mention some approach to including such features, even if adding them to the system was to be deferred 
to a “later phase.” 

Object Orientation Weaknesses The project documents available to us present a puzzling view with 
regard to the developer’s approach to OOP. On the one hand, they used a pure SmallTalk programming 
environment, and SmallTalk is renowned as the language for object-oriented development. On the other 
hand, their design seemed to be a curious overlay of procedural t h i i g  onto OOP tools. That is, while they 
used an 00 language, their documentation never really showed any commitment to an 00 analysis and 
design (OOA&D) approach. Some key deficiencies are described below. To help put these remarks in 
perspective, additional aspects of the 00 approach, including its advantages and disadvantages, are 
described in Appendix A. 

First, OOP is about objects and object classes. In this context, a software object is a construct that is 
meant to represent some item relevant to your “problem domain,” Le., your particular application. A class 
is a groups of objects that have the same attributes, associated operations, and relationships. In 00 
terminology, objects are instances of the class. Methods are an integral part of the object. As with 
procedures and functions in traditional languages, methods are used to make things happen, i.e. perform 
operations. Encapsulation is considered a key generic property of objects. This means that you never 
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directly access the information hidden within the object, it is accessed only by the methods associated with 
the object. 

The early stages of OOA&D involve converting the features and requirements of the real world 
application into object classes. Eventually, a design document is generated containing everything the 
programmers need to represent the problem domain on the computer. As noted in Appendix A, the OOD 
should include, in some form, three features: An object model (usually described by a class diagram), a 
dynamic model showing the time-variant behavior of the system, and afunctional model to show data 
transformations made within the system. 

Class diagrams describe the basic structure of the objects used to represent the real world application. 
Class diagrams show the features of individual object classes, and how each class relates to others in the 
same parent-child hierarchy. All OOP systems use class hierarchies, because all 00 development 
environments (including VisualAge) contain standard packages called class libraries. The entire thrust of 
OOP is to use object classes in these libraries to create a computer representation of the problem domain. 
Object classes may be used directly, or modified to better meet the application requirement. 

Without a doubt, the most complete information in the Application Architecture Document (AAD) was 
in the “Use Cases” parts for each sub-system. This should have provided a good start on creating a complete 
object model of the application; that approach is widely used in the 00 community. Yet that next step was, 
to put it charitably, very poorly executed. The AAD does have a section entitled “Object Model;” however, 
the material here was quite incomplete, and did not seem to match up very well with the Use Case 
descriptions. The Object Model section had charts for around 50 objects, while our assessment of the 
VisualAge source files found around 320 classes specified for the CMS. (The names of these object classes 
are listed in Appendix B.) The developers did use a reasonably well-defined set of naming conventions to 
suggest which sub-systems the classes were meant for. The number of classes in each sub-set are roughly 
as follows: 

SL Security Login 6 
UI User Interface 6 
EA Event Assessment 60 
MF Maintenance Function 2 
DM Data Management 10 
DT Data Transfer 13 
DA Data Acquisition 33 
DB Database 3 
sc System Configuration 38 
OM Object Model 110 

Note that the final, and largest, entry referred to the “object model,” which was not a sub-system 
identified in the AAD. One might presume that these represented abstract classes that cut across sub-system 
boundaries, but we had no way to tell without digging deep into the VisualAge code files. Also, there were 
no classes listed for the final two sub-systems described in the AAD: The Scheduler (SH) and 
CompressiodDecompression (CD). 

The charts shown in the AAD did generally show the attributes and operations for the small subset of 
objects identified. (One chart is shown Figure 5). The ALL-CAPS notations on the left were presumably 
“variables” defined for the object, while the mixed-case items on the right were the associated methods. 
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Alarm 
5.4.2.1 & 5.4.2.2 

ALARMlD 
SENSOR ID 
TIME STAMP 

EVENT ID 

Get Sensor 
Get Time Stamp 
Set.Get Mapped Event 
Get Snapshot 

Video SnapShots collection = all records from Snapshot table that 
Match AlarmlD 

Figure 5 .  Alarm Object model 

VIDEO SNAPSHOTS (Collection) I 
SENSOR DATA 
TEXT (String) 
TRANSFERRED (boolean) 
COPIED (boolean) 

The text below the object box did give information about how this entity was connected with some other 
items in their design. But this by no means constituted a normal class relationship chart. Four of the charts 
did show a kind of tree structure. However, we could not tell if they were meant to be hierarchical 
relationship diagrams; there was no hint as to any inheritance of properties down the chart. We could not 
even be sure from these charts which sub-system, or sub-systems, an object was meant to be used in. Some 
of the titles and sub-headings provided clues, but it was often very hard to be sure. At least a cross-index 
to the class names we found and listed in Appendix B should have been provided. (Recall again that our 
document set was clearly incomplete; this information may have existed somewhere at some time.) 

There was also a problem of scope. Some charts were clearly high-level objects: Showing the “Station” 
and “ROW” and “LOW.” Others, like the Alarm Object above, were just as clearly very low level, and some 
seemed to be mid-level objects. Nowhere did the section show which object might have inherited features 
from a high level object. As illustrated in Appendix A, a more informative object model (class diagram) 
should show exactly how classes relate to one another. We would know which classes inherited traits, what 
traits were inherited but modified by the developer, and which had to be added. From the documentation, 
we could not tell which objects were adopted from the VisualAge library, and which had to be created more 
or less from scratch. It is possible, although highly unlikely, that the smaller set of objects shown in the AAD 
were those that the developers had to create, and other activities were all accomplished using standard 
VisualAge objects. (we do not think this is really the case.) 

In the end, it must be said that the object model within the CMS design was simply inadequate to support 
a project of this scope. It was not just that there was no way to tell how well system requirements had been 
mapped onto the object structure. Because we could not tell which objects did what, there would be no 
reasonable way to isolate parts of the code for re-use in some other application. 

We also could not find any reasonable equivalent of afunctional model or a dynamic model for the CMS. 
It was hard to tell if any significant computations took place in this system, so it was difficult to judge 
whether or not the functional model was important. The decompression algorithms for the Fractal Image 
Format files were probably non-trivial, but those were surely supplied by the vendor. In a system with a 
strong OOD, these and other major data transformations would be represented in the documentation. 

SetlGet Sensor Date 
Add Snapshot 
Add Sensor Data 
Remove Snapshot 
Get Message 
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One approach to converting the use cases into a dynamic model would have been to develop object 
interaction diagrams (OIDs), at least for the non-trivial use cases. An object interaction diagram specifies 
how the objects communicate with one another to carry out a specific scenario for a use case. Generally, 
inter-object communications rn the time-dependent behavior of the system. No OIDs were found in the 
documentation provided to us, nor any other information that might have provided comparable content. 
There were some charts that resembled data flow diagrams, but none of these gave any idea of when, or 
under what circumstances, such flows were supposed to take place. Actually, if the authors of the MD 
meant for these diagrams to be data flow diagrams, there were some things missing; e.g., data flows should 
be labeled so the reader can tell what data is flowing between sources, sinks, and processes. 

As a matter of fact, two of the largest parts of the documentation were these (incomplete) data flow 
diagrams, and a set of functional decomposition charts. Although data flow diagrams may indeed be used 
during an OOD process, the heavy use of these two formalisms showed a strong bias toward procedural 
design and development methodology. These points, and other general features of the documentation support 
our contention that a hybrid procedural desigdobject encoding approach was being attempted in this project, 
an approach that would have almost certainly caused problems in the long run. This might also be the basis 
for the very poor CCM process discussed earlier. 

Feature Set Implementation 
One feature that stood out in the CMS design was the degree too which functions were embedded in the 

workstation: On-board video motion analysis, image capture, video switching, image compression, and so 
on. The distributed control philosophy of the LonWorks approach pushes those functions “out into the field” 
to reduce the processor load on the central computer, provide more independent security zone functionality, 
improve the scaleability of the applications, and provide for better localized command and control. 
“Scaleability” here refers to the range of application sizes the system can readily handle . . . from a small 
security enclosure around a single building up to a large site with many buildings, tanks and sheds, access 
control areas, internal fences, and the like. 

Because practically everything about CMS was embedded in the workstation, everything had to work 
together properly for us to be able to get any kind of system up and running. This turned out to be very 
difficult. Some individual equipment items could be operated, but these were not much use. A few of the 
problems encountered are outlined below. 

During his visit, David Levy (former CMS Project Leader for Raytheon Service Company) helped find 
four drives that could be used successfully as operational drives. These drives were used to try to interact 
with the DAVID 300 cards. However, although we saw a likely-looking executable (“David.exe”) that did 
seem to activate the DAVID 300 when used directly, it could not be launched from within CMS. The same 
file appeared elsewhere, but did not seem to work at all from that configuration, nor could it be launched 
from within CMS. Eventually, by systematic disk swapping, we actually got the system to log video alarms, 
which then showed up in the CMS transcript window. Even so, there were still problems: For no good 
reason, debugger windows popped up intermittently with error messages, sometimes the system tried to do 
framegrabbing, and at other times tried to contact the ROW to establish a communications link. At no time 
could a reasonably complete array of CMS components be made to work together. Some of the reasons for 
these difficulties have been identified in prior sections (loss of version control being the primary one). 
Others may be rooted in problems with individual sub-systems; these will be covered shortly. 

Because of the rapid-prototyping mode in which this project was run, the CMS System Integration 
Software (SIS) was embodied in development and runtime images of the VisualAge for SmallTalk system. 
Those “images” contained the objects and sub-applications needed for the overall system. Levy noted that 
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various “team development repositories” were maintained throughout the project cycle. As has already been 
suggested, the presence of various development versions, at different stages of completion, was what 
ultimately made it impossible to re-create even the demonstration systems that were run at two stages of the 
project. The final conclusion was that it would be essentially impossible to now implement and evaluate 
many individual features planned for the CMS; this conclusion was explored thoroughly in prior sections. 
The sub-system assessments are reported in the next Section. 

Sub-system Breakdown 
The sub-systems discussed below are those identified in the Application Architecture Document (AAD). 

The individual discussions are each divided into three units: The first part is a (usually brief) description of 
what the sub-system is supposed to do. Next is the assessment itself, covering the apparent status of the sub- 
system (how mature and usable it seems to be), how well what we received worked, whether or not we think 
its features might be unique or special, and perhaps some idea of a possible COTS substitute for the 
capability. The final unit is a general discussion of our experiences with the sub-system, if any. Some areas 
we spent a great deal of time with, while others were barely touched. 

User Interface Sub-system 
Description The User Interface sub-system provided a GUI and mouse functions so the user could view 

the application and navigate in a logical fashion through the other subsystems. The application was started 
by selecting the VisualAge icon from the OS/2 task bar, using a C: drive configured as a LOW or ROW, 
and logging on to establish a user profile. The user could branch to available sub-systems by selecting a 
menu option. An example of the GUI, with the Security Logon sub-system activated, is shown on the 
following page. 

Assessment The top level CMS user interface seemed to be reasonably complete. Dongle and password 
check windows were presented successfully to steer the user into the software, and the branches to the 
various other parts of the system seemed to work properly. Overall, the user interface was neither a major 
hindrance, nor did it have any unique or exciting features. Had any form of system-level error recovery 
been implemented, it was within this User Interface we would have expected to find it. This would have 
helped a great deal during our attempts to run the system. In the final analysis, we considered this sub- 
system marginally adequate, but not anything special. Today, numerous toolkits are readily available to help 
build as good, or better GUI screen sets. 

Discussion We had no special problems, nor any memorable successes with this part of the system. 

Security Log-On Sub-system 
Description The Security Logon sub-system controlled access to the underlying application data and 

functions by creating a user profile, which told the User Interface sub-system what areas a user was 
authorized to access. Logging on as a guest provided access only to the menu item “Archived Events.” 
Logging on as an authorized operator allowed access to all capabilities except site configuration and user 
authorization levels. Supervisor authority gave access to all capabilities. 

Assessment The Security Logon sub-system worked basically as expected. It was not clear, however, 
whether or not a security dongle check had actually been performed. There was no visual indication of any 
kind to show that the check had occurred. As we’ll see shortly, we had a lot of trouble with this whole 
dongle approach. In any case, there was nothing special about the security setup. Much of it was exactly 
what would be expected from a standard database password protection system. Certainly this is not a unique 
capability; there are many other good ways that such a system can be implemented 
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Figure 6 .  GUI with Security Logon window 

Discussion For a while early in the setup phase, we were unable to get past the user id and password 
check required by the system. We had received no information on what the current entries were, and had 
no idea how they might be bypassed. Obviously this was very frustrating, but eventually we (or rather, a 
representative of the program sponsor) made some good guesses and moved through the security layer. 
When David Levy visited the INEEL, he added a generic userid/password pair 

Eventually we discovered that the User ID and Password requirements associated with the CMS SIS 
application were actually DB2 database access control features. As such, the user names and passwords 
were stored in the database, and could be queried using the DB2 Query Manager. It was necessary to know 
how to log into the Query Manager and how to navigate the database tables in order to find this information 
for a given system. The most common User ID / Password combination to obtain supervisor-level access 
turned out to be <Cal / Sup>. 

Event Assessment Sub-system 
Description The Event Assessment sub-system was designed to give the user the tools to group sensor 

data into packages called “events,” assess what those events might mean, and move the events into various 
distinct categories. It gave a site administrator or overseer the ability to review the assessed events, and 
dispose of them, and to manage declarations. It allowed guests to view archived events, and users to focus 
on specific data. 

18 



Assessment This sub-system was considered the “heart of the application.” It was meant to display 
alarm data in a fashion that enhanced the ability of the operator to assign alarms to specific events, and to 
aid in the subsequent assessment of those events. It was clear from early in the assessment program that this 
was potentially one of the best features of the CMS. At any reasonably busy facility, monitoring personnel 
are apt to be overwhelmed by the mass of raw data being logged into the system. Having the ability to 
summarize and categorize that data, to have help in “making it make sense,” would be an extremely useful 
capability. Unfortunately, we experienced a great many debugger error messages as we worked with this 
sub-system, and encountered a number of unexplainable lockups and other problems. We therefore had to 
conclude that this sub-system was simply not a finished product. 

This CMS feature was somewhat similar to an “alarm filtering system” developed previously here at the 
INEEL. We knew the power of such an approach and were looking forward to seeing how the CMS 
accomplished the function, and were disappointed when it proved to be unavailable. One feature we would 
like to see include in any future implementation of a similar system is the ability to run algorithms, and other 
functions, on the data. This should not be difficult to do, and would greatly enhance the usefulness of the 
feature. 

Discussion At one point during the assessment, we were able to make the DAVID 300 system work, 
and to have the logger record the alarms it generated. We used these as current events to test this sub- 
system. During assessment of “List Events” from the alarm log window, an error occurred that stated that, 
“An event has been logged which appears to have no associated alarms”. This appeared for each event in 
the alarm log, and each error had to be recognized by the user before the “Event Log” window appeared. 

In another case, we tried to “Accept” of an “Assess Event” menu item but the VisualAge Debugger 
appeared with another error message. The “Video Snapshots” function under “Details For Events” window 
was also found to not work as specified. It seemed to work only for the “Alarm Details” window. During 
“Accept Final Assessment- Archive Event,” the debugger window again appeared. The “Declarations” 
function did not work under the “Details for Event” window. “Reviewing and Associating Declaration”, did 
not work either. Selecting “View Alarm” for the mini-Multichannel Analyzer (mMCA) was supposed to 
load legacy software to view spectral data, but there was no indication that it did. 

System Configuration Sub-system 
Description The System Configuration sub-system allowed the site administrator to set workstation 

defaults, event assessment defaults, user preferences, data management defaults, WAN definitions such as 
data transfers, remote control, and targets for data transfers. The supervisor could create or maintain a site 
view and maintain security profiles of users, such as guest, operator, or administrator. It was also meant 
to provide the functionality to configure individual sensors via sensor legacy software. 

Assessment After considerable effort, we found that the only site view and sensor configurations that 
could actually be used were ones that had been essentially hard-coded onto a working set of disks. A new 
visual site tree could be generated, such as one for Idaho Falls, but new sensors could not be linked to the 
database. The only way to generate a new working site configuration was to go into the VisualAge system 
and modify the SmallTalk code itself. This is not an acceptable way to configure new monitored sites. 
Clearly, a great deal of work remained to make this sub-system usable. 

The plans for the System CorQuration sub-system looked workable. However, the CMS approach did 
not really seem to offer any novel ideas. Several COTS packages appear to offer much the same features 
or capabilities, so this is probably not a fruitful area to consider for any follow-on project. 
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Discussion When David Levy was at the INEEL, a demonstration was undertaken using the CMS 
ROW disk, along with the data drive containing the “canned scenario” database, as previously demonstrated 
at the Center for Verification Research (CVR) in October 1996. After demonstrating the configuration 
features and navigating the sitekensor tree, a review of “current” monitoring events was undertaken, which 
involved comparison with activity declarations entered into the database, and examination of associated 
video snapshots, rf tag ID strings, and actual gamma spectra and neutron counts taken by a mMCA. 

~ - 

I 

Figure 7. Idaho Falls Site Tree 

Levy was also asked to show how to modify the Site Tree configuration to tailor a CMS LOW to monitor 
data from a suite of sensors to be set up at the INEEL. Using the Configuration sub-system features, a new 
monitoring location (Idaho Falls) was added to the LOW Site Tree at the same level as Albuquerque. Two 
monitoring areas (one indoors and one outdoors) were then added at the next level, with a number of 
different sensor types in each area. Sensors added included door switches and a bi-static microwave sensor 
( both types annunciated via AIMS), as well as an mMCA radiation analyzer and an rf tag reader. 

The DB2 database query manager was then used to modify the database attributes for the new 
configuration. After the reconfiguration was completed, the new Site Tree for the INEEL monitoring area 
was displayed, printed out, and subsequently FAXed to the program monitor for review. A correspondingly 
tailored Map Display capability could have been created using bitmap files that depict the INEEL facility 
and monitoring areas associated with the CMS demonstration. 

In the course of this demonstration, Levy mentioned that a similar process had been used to set up a new 
monitoring configuration in Alburquerque for the November 1995 CMS Test. Although they had hoped to 
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perform site-specific tailoring of the CMS monitoring areas using just a simple GUI, this level of 
configuration transparency had not yet been achieved by the end of the CMS development cycle. Since these 
modifications were originally performed by the CMS programmers, it was unknown at that time whether 
revisions to the SIS SmallTalk code itself were required to support these site configuration changes. Later, 
Levy contacted members of the former CMS programming team and confirmed that such changes were 
indeed required. 

Levy noted that the SIS database on the Albuquerque LOW was never configured to add LonWorks 
sensors to the runtime image having the corresponding sensor interface code (using the Paragon TNT 
SmallTalk API). However, the Paragon TNT for OS12 LonWorks Process I/O (PIO) software module and 
interfaces were successfully tested on a standalone basis in Albuquerque. Furthermore, the ability to 
annunciate alarms from a SmartControls LonWorks sensor interface via the CMS SIS was fully 
demonstrated in the development laboratory toward the end of the project; Levy speculated that this 
configuration might still be present on one of the LOW drives present at the INEEL at that time. Because 
the INEEL equipment set did not include the Paragon dongle (more later), this was a moot point. 

Maintenance Functions Sub-system 
Description The Maintenance Functions sub-system allowed the user or supervisor to view sensor 

“Maintenance History” and “On Demand Video” and confirm the correct camera and sensor operations. This 
could be done manually or via automatic maintenance data collection. 

Assessment Some fairly serious anomalies were observed in trying to run this sub-system, so serious 
that we were not able to study its operational functionality very much. Based on the design documents, this 
seemed to be a well-conceived set of functions. However, as with many of the other units, the design did 
not offer much that was particularly innovative or unusual. A database system built on virtually any COTS 
platform and designed to capture the equipment maintenance histories could offer similar functions. 

Discussion This sub-system “sort of worked,” but exhibited some strange abnormalities. The “Sensor 
Maintenance” screen showed the DAVID 300 alarm as an off-line sensor, when in fact the operator was 
logging alarms with it. The “On Demand Video,” using a DAVID 300 alarm, periodically sent a request to 
have the framegrabber capture a video snapshot. However, this activity was meaningless because the 
framegrabber function was not available. The system then displayed a “canned” snapshot called up from disk 
storage. We were unable to determine why the incorrect sensor status message was displayed. The “On 
Demand Video” was clearly set up only as part of a pre-configured demonstration event. 

Data Transfer Sub-system 
Description The Data Transfer sub-system was designed to provide remote communication for data 

transfers from a LOW to the ROW. Transfers could be either automatic for un-attended workstations, or 
on demand for attended workstations. Alarm, sensor, and compressed video information were to be the data 
sent from the LOW to the ROW. .I 

Assessment During our review, we learned that LOW-ROW communications were handled using the 
third-party OS/2 application called Remote Service Manager (RSM), in conjunction with some CMS-specific 
customized session scripts. For the equipment shipped to the INEEL, access to the sub-system was not really 
possible. The custom scripts apparently worked for the developer under carefully controlled conditions, but 
we had very little success. Since the core software was a COTS package, we decided that these features 
could be included in any application where we were willing to build custom links. Conversely, the obsolete 
OS/Zspecific links created for this program probably have little to offer for new configurations that might 
be planned. Although the Summary System Description asserted that the LOW-ROW data stream was to be 
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authenticated, this design feature was not considered among the use cases for this sub-system in the 
Application Architecture Document. It appears that, aside from the AIMS components, the developers were 
unable to implement data authentication in the working CMS. 

Discussion For at least one disk combination, we were able to identify the RMS software on the LOW 
and ROW, and check for configuration under “System Configuration-Workstation” menu. The ROW was 
configured with a recognizable phone number, but the LOW did not have that information. This might have 
been configured had we had modems to test it with. These servers were meant to be used with SatCom 
links, not modems. A second communications software package, called Talkthru, was present on the LOW 
and ROW drives. It appeared to us that his software was probably not used, and certainly we had no way 
to determine its function. 

When we forced a “Pull” (a request for data from the ROW to the LOW), a window appeared that stated 
“Starting PolyPM2.” This was, in fact, the communications software. Nothing happened at this point, and 
it seemed like the software did not load. Similarly, during an alarmed event, the communications software 
loaded and tried to connect to the ROW. However, without modems or a ROW that would load software, 
it was impossible to tell whether or not the transfer would have been successful. These attempts probably 
failed because, despite appearances, we were still not using the right disk combination in the ROW and 
LOW. This was a general problem throughout the assessment work in trying to operate the various hardware 
interfaces. According to the developer, RSM can establish communication sessions in a number of different 
ways. Although “direct connection” was used with SatCom links, LOW-ROW sessions were usually 
conducted via asynchronous dial-up modems, with or without the use of TCP/IP. 

Other SIS images and repositories with new and relatively untested features were present on ROW Drive 
C:, these had been set up by Dave Levy while he was at CVR to provide a demonstrable CMS populated 
with canned monitoring data. That demonstration included actual framegrabbed images and radiation 
analyzer spectra from the Albuquerque site. The new features incorporated in those SIS images included 
some database modifications, as well as integration of PGP encryption and event filtering enhancements for 
the LOW to ROW data transfer. However, Levy has also said that these features were never fully tested 
using CMS workstations. We did note the presence of PGP for Windows software on one of our disks, but 
it did not seem to be operable. Neither the ViuCrypt PGP software nor the Modular Video Authentication 
System described in the SSD were on any of the disks we received. 

Levy said the data transfers and remote control sessions had been configured to utilize TCP/IP SLIP 
sessions to improve throughput and reliability, especially for SatCom telemetry. However, this approach 
required operators at the LOW as well as the ROW to manually launch the necessary software. Plans to 
develop REXX scripts to completely automate this process could not be implemented before the original 
CMS development project was terminated. 

Data Management Sub-system 
Description The Data Management sub-system was used to manage archived data and disk utilization. 

The sub-system made it possible to delete old un-assigned, un-assessed, assessed, or archived data to make 
space for newer, more current data. The disk utilization functions determined if a D: drive existed, and if 
so, it was assigned to be the data disk. However it was done, a D: drive always needed to be installed in 
the system, whether on a ROW or LOW. 

Assessment The only portion of this sub-system that could be tested was the deletion of data using the 
“Assessment” window, although it did not necessarily process old or assessed data. The disk utilization also 
seemed to work to the extent that the sub-system knew when a D: drive was not installed. This is a very 
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important capability to have in a data logging and review workstation. However, it is not at all clear that 
the CMS design offered any ideas that might be transferable for use in some other application. This opinion 
might have ‘been different had we been able to utilize more of its intended functionality. 

Discussion Actually, the only real indication that the disk utilization feature was working was that the 
CMS software would not load. The scheduler functions of the Data Management sub-system were apparently 
controlled by the Legacy “Scheduler” sub-system. We were not able to completely test this subsystem 
because we lacked a working database of associated alarm “Events.” Of course, we lacked a database of 
events because we could not get that many CMS components to run. 

Data Acquisition subsystem 
Description The Data Acquisition sub-system comprised all the interfaces (hardware, and software) 

needed to collect data from active, passive, and continuous sensors. This interface was responsible for 
converting the alarm information generated by the individual sensor hardware and software, into data that 
could be used by the CMS SIS application. 

Assessment We spent by far the most effort trying to make the Data Acquisition sub-system work. 
(Note the long Discussion section that follows.) Unfortunately, these efforts were largely unsuccessful. Only 
minor pieces of the acquisition components could be made to work, and even then they did not run very 
reliably or consistently. In the final analysis, the device interface part of the CMS was not something we 
felt had any promise for future applications. 

A combination of several problems seemed to be at the root of this failure. First, despite all the 
equipment that was shipped to the INEEL, we still lacked a number of key components (like the security 
dongles). Second, there were clear incompatibilities in the software ... Either the CMS module was 
incomplete or we had the wrong version, or the software supplied with a component had something wrong 
with it. And finally, many equipment items came with no documentation whatsoever (no specifications or 
users manuals, for example). Even when we were able to contact the vendors, we often found that they no 
longer supported the particular component we had on hand. As for the potential for transferring this CMS 
functionality to some other project, we judged this to be nil. This highly centralized approach was just too 
complicated and had too many “show-stopper” problems. 

Plans called for the use of a COTS Alarm Assessment Sensor Processor (AASPM ) neural network 
algorithm with CMS, but it was not implemented. In general, the neural network approach is not amenable 
to the kinds of validation and verification exercises we normally would want to apply to a security-related 
component. Issues raised by the possible inclusion of such an approach in any future monitoring system like 
the CMS should be carefully examined before proceeding. 

Discussion We had many problems trying to integrate additional components into the CMS sensor suite. 
Although much of the work moved forward in fits and starts, this section has been organized so as to 
consider each component area in one block 

We received an AIMS Receiver Processing Unit (RPU), but no receiver and no sensors. According to 
Levy, the internal software for this RPU was a version specifically created by workers at Sandia National 
Laboratory to work with a certain CMS configuration. It was Levy’s opinion that, if we were to replace the 
RPU with a new receiver/RPU combination, the new setup would almost certainly have the wrong software 
version for communicating with the CMS workstation. The same version-matching problem might also 
happen if we tried to interface just a new receiver to the old RPU. Much of this discussion was moot at the 
time since we had no AIMS-compatible sensors. Later, a search of the storage areas at Kirtland AFB turned 
up a number of (contact closure) field sensors and associated AIMS Authenticated Sensor Transmitter 
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(ASTX) packs. These were not shipped to the INEEL, because problems with the RPU firmware would have 
prevented any further progress in this area anyway. 

Although the SSD mentioned a bi-static microwave motion sensor, it was only after the search at Kirtland 
that we received any of this hardware. Levy noted that the CMS demonstration in Albuquerque had 
preempted the integration, testing, and training of the AASP with the bi-static microwave sensors. The 
AASP was one of the COTS software systems proposed for inclusion in the final CMS configuration. 
Because the integration work was not completed, we could not evaluate this component in actual operation. 

Trying to make the DAVID 300 VMD boards operate properly was a major source of frustration. During 
CMS startup, the operator was asked if the DAVID application should be started. Upon a “yes” response, 
the CMS seemed to load normally. But the top level CMS task window did not show any kind of DAVID 
300, or VMD application to be up and running. We did find the file named “David.exe,” and were able to 
cycle out of the CMS process and manually start the application. At that point, it showed up on the task list, 
and seemed to work fine. But clearly, the DAVID 300 system could not be started from within the CMS. 
Nevertheless, with a camera and video monitor connected to one of the DAVID cards, we were able to 
create video motion alarms that were annunciated both via the CMS alarm log display and the alarm logging 
features of the standalone DAVID configuratiordlogging DOS application. 

Sometimes a VisualAge debugger window popped up with an object error that seemed to be related to 
the VMD. These did not seem to correlate with the video events, so things were perhaps all right. As we 
continued our assessment, however, we realized that the system was also trying to trigger the (non-existent) 
framegrabbing hardware, and to contact the ROW for data communications. None of this made any sense, 
but again we terminated our hardware efforts before we could figure it out. 

We received a color framegrabber card, an AM-CLR system from Imaging Technology, with the CMS 
workstation. Unfortunately, what documentation we had indicated that the CMS was set up to run only with 
a monochrome video board. After much discussion with the sponsors and Dave Levy, we confirmed that 
this was indeed the case. In fact, the only combination that appears to have ever worked employed a 
monochrome (shades of gray) card installed on a daughterboard “on loan from the vendor” and even then 
they achieved only “partially successful experiments” with it. What appears to be a night time snapshot, 
obtained from the User Zntefluce Design Documenr, is shown in Figure 8. 

We also found that the OS/2 drivers and libraries for the monochrome version were not actual vendor 
products. They were apparently provided just as a favor to the developers. Levy said the color frame- 
grabber had “never been successfully integrated with CMS.” There would have been two major hurdles to 
overcome to integrate these components: First, the hardware we had was obsolete, so the vendor could not 
provide any useful help. Second, their upgraded version runs under MS Windows, not OS/2. (The vendor 
says they do not support OS/2 versions for any of their products, and claim that they never have.) 

The Coreco OCULUS-CS was proposed to select banks of camera channels via register-level 
programming over the EISA bus. At one point we thought we had received the expansion chassis, but the 
item involved turned out to be something else so we could not test this component. We later learned from 
Levy that a standalone 0 9 2  application was successfully developed to test this capability. In this stand-alone 
mode, successful control of the switcher and RAM image buffers was demonstrated. This made it possible 
for them to use up to 16 cameras with a single IC-PCI framegrabber card and AM-VS (monochrome) 
acquisition module. However, Levy also reported that integration of this video switcher with the 
framegrabber code was never fully tested. 
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Figure 8. Video Snapshot on Screen 

Because of the many problems encountered with the all these video components, essentially all of the 
video assessment and integration tasks were deleted from the work scope in late August 1997. 

The Amtech rf tag reader and tags were two more components discovered in storage at Kirtland. Because 
of all the other interface problems we were having, we decided it would not be worthwhile to bring this 
component here for further work. In addition, Levy reported that, during the Albuquerque demonstration, 
the tag reader occasionally sent back two tag ID numbers when polled only once. They could not determine 
whether this was a hardware, firmware or software problem. 

The mMCA radiation analyzer also became available later in our project. We felt we might be able to 
run the mMCA, if we could overcome some minor hardware problems, and determine how to run the 
software. It appeared that we could connect it to a communication port set up with a “commport” 
configuration. Unfortunately, it also looked like we might need an alarm as a trigger to start the gamma 
scan. The little documentation we had was not clear (we had no technical specification manual), and Levy 
was unsure how the system really worked. He did report that the analyzer had continually malfunctioned 
during the Albuquerque demonstration, despite prior re-work at the factory to correct a known design flaw. 
Its calibration was also suspect because of the often-strange appearance of the low end of the gamma scans. 
We terminated most of our hardware studies before these issues could be resolved. 

Parallel to the video component work, we also explored the software-hardware situation involving the 
use of LonWorks devices with the system. To run LonWorks with the CMS, we needed to work through 
the Paragon Engineering interface screen outside of the CMS. (This seemed rather like the situation with 
the DAVID card.) However, to run Paragon, we needed to replace the lost copy-protection key or “dongle.” 
While we did eventually work out a way we could have replaced the dongle, there were also other, more 
serious, problems. To begin with, we could not be sure which combination of disks would allow us to run 
a LonWorks-connection version. Unfortunately, it appeared that whatever that combination was . . . it might 
not be one where we could also run other pieces of the CMS at the same time. We finally decided that trying 
to re-link a LonWorks network to the CMS was not worth the effort. 
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Database Sub-system 
Description The Database sub-system provided management of the CMS SIS data files. It was logically 

represented by a Relational Database Model (RDM), and specifically implemented by the IBM product 
DB2/2, V1.2. 

Assessment The DB/2 database was used during logging of David 300 alarms within CMS. The alarms 
were viewable as current data, and some assessments of the data were possible. A reasonable range of 
database functions were tested during our work with the system. We finally concluded that the database 
software was fairly well integrated into the CMS SIS. However, one of our reviewers asserted that the use 
of a relational database with an object oriented s o h a r e  product was a fundamental mistake; this mis-match 
would make the integration more prone to maintenance problems and add to the overall development cost. 

Yet there does seem to be some disagreement about this assertion both here at the INEEL, and in the 00 
and database communities at large. More to the point, we do not feel there was that much to learn from the 
work done on this part of the CMS. The selected COTS database platform is widely used, and many other 
actual working applications are available for study. 

Discussion The CMS design document contained a relational model (entity relationship diagram) for 
the application. Actually, the Application Architecture Document contained both a prototype RDM and a 
"projected" RDM. A portion of the projected RDM linkage diagram is reproduced in Figure 9. The use of 
such models is is a standard way of approach the design of a relational database management system 
(RDBMS). However, many people in the 00 community feel that the use of an RDBMS with an object- 
oriented language increases the project cost and schedule 10% to 30%. This is because the application must 
provide code to map tables to objects and vice versa. They feel that a more optimum solution is to use an 
object-oriented database management system (OODBMS). An OODBMS is a persistent store of objects 
created by an OOP language. The OODBMS allows objects to persist beyond the confines of program 
execution. The use of an OODBMS with an OOP is relatively transparent. 
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According to Levy, the interface between the CMS database and the SIS application was subject to 
modification and fine-tuning up to the very end of the CMS development cycle, partially as a result of a 
DB2 upgrade. Some database versions were consequently not compatible with the SIS, and would result in 
“empty” datasets when viewed via the SIS user interface. We think we encountered such a situation several 
times as we worked our way though the database-handling menus. Apparently, the “correct” (i.e., least 
risky) reply to the “Install/Abort/Continue” query in the user interface was usually “Continue.” We later 
learned that the “mixed bag” of removable hard drives we had almost certainly contained several different 
“canned” datasets and CMS SIS development images. 

Legacy Sub-system - Scheduler 
Description The Legacy Scheduler sub-system provided a means of scheduling background processes 

such as data transfers from an unattended LOW, archived data management requests, and to control 
automatic scheduling. According to what documentation we had, the COTS package called CHRON was 
being used for the CMS scheduler. 

Assessment Basically, it was impossible to determine if the Scheduler sub-system actually worked, or 
was even a part of the CMS SIS. With no documentation beyond the name of the product, it was impossible 
to assess this part of the design. 

Discussion We found that the CHRON software was indeed present on the CMS LOW, but it could not 
be started from the Filestar utility program, or executed using any of the CMS menu options. No further 
effort was expended in this area. 

Legacy Su b-system - Compression/Decompression 
Description The Compression/Decompression sub-system was used to compress video snapshots for 

reduced use of disk space, and to provide shorter data transfer times. The compressed video could then be 
decompressed later for viewing, from either the LOW or ROW. Apparently a COTS component from a 
company called Iterated Systems was to be used to provide this capability 

Assessment As it turned out, we had no way to assess this part of the CMS. Anyone who has a need 
for this capability must evaluate the unit on its own merits, without regard to any interactions with other 
planned features of the CMS. 

Discussion Iterated Systems COTS hardware did exist on the LOW, and software was present on the 
LOW L1 drive as a Windows/OS2 software package. We could not test to see if it was part of the CMS SIS. 
Trying to run the compression software in a stand-alone mode caused the system to lock up, so we had to 
reboot. The ROW server contained no Iterated Systems hardware. Actually, without framegrabbing 
capabilities, the compression/decompression hardware and software was useless because there was no video 
input to compress. 

27 



IV. CONCLUSIONS 
The earliest conclusion reached in this effort led to termination of the original second phase of the 

project. That is, the sponsor agreed with our determination that the level of effort required to prepare the 
CMS prototype for integration with a distributed network was simply too great. That led to a re-direction 
to focus on the features and functionality of the system. 

Using mostly the Summary System Description (SSD) report as a basis, we assessed how well the CMS 
addressed the target application, and might address other nonproliferation applications. We concluded that 
the SSD description was adequate as a broad perspective, but it fell short in mapping those broad 
requirements into a coherent operational concept. For example, we could not determine their preferred or 
expected site manning approach. In one section they emphasized the presence of an operator at the 
monitored site, while in another they seemed to assume that the most critical functions would be performed 
at the Remote Data Center. We were left not really knowing what the developers had in mind. The lesson 
to be learned here is that flexibility, with a broad “shopping list” of capabilities, is probably more important 
than any one specific feature for this kind of system. 

At the next assessment level, our intent was to determine what lessons could be learned from how they 
approached their development tasks. Unfortunately, these lessons were taught more by what was not done 
than vice versa. We concluded that the weaknesses in their overall development approach were all directly 
or indirectly related to the “rapid-prototyping” mode in which the original development project was run. One 
indirect consequence was that little or no provision was made for trapping out errors or other exceptions. 
None of the design documents contained any reference to systematic exception handling or error recovery. 
All too often, the only way we could recover from an error was to re-boot the computer. This was not only 
frustrating and time-consuming, it increased the risk that data and program files might become corrupted 
or be lost. The lesson to be learned here is that at least a top-level error over-ride or restart function should 
be implemented early in a programming project. 

The other three weaknesses were inter-related: The absence of a formal Configuration Control and 
Management (CCM) system, failure to stick with a standard system environment, and apparent use of a 
hybrid procedural desigdobject oriented encoding approach. Basically, none of the documentation we would 
normally expect from a formal CCM system was provided: No formal Functional and Operational 
Requirements (F&OR) document, and no history files to show how various versions of the sub-systems and 
integration software evolved to the state in which we received them. Worse yet, no annotated source code 
listings were provided to explain how specific features were implemented, and why. Finally, although two 
separate demonstrations had been presented as formal events, no reliable descriptions of the system states 
during those activities were provided. 

- 

The problem of poor version control and documentation was compounded by the failure to adhere to 
their selected IBM OS/2 operating environment. No only would they have now needed to track versions of 
their own software, they would also have needed to stay current as vendors changed how they supported 
COTS components intended for any of three different operating systems. Of course, the use of multiple 
platforms increased the probability for inter-process conflicts and aggravated the problem of communication 
between sub-systems. This combination would create a kind of negative feedback loop. The use of multiple 
environments would make it much more difficult to maintain accurate CCM documents, and poor CCM 
documents would make it very difficult to evolve everything toward a common standard. Of course, it seems 
likely that they never had to deal with these extra problems because no formal documentation was attempted, 
and they never tried to pull everything together onto one operating platform. 

28 



We found that the hybrid procedural desigdobject oriented encoding approach led to a CMS design 
package that was simply inadequate to support a project of this scope. It was not just that there was no way 
to tell how well system requirements had been mapped onto the object structure. The problem was also that, 
because we could not tell which objects did what, there was no reasonable way to isolate parts of the code 
for re-use in some other application. (This was particularly unfortunate because one of the claimed strengths 
of the 00 approach is the supposed ability to readily re-use code.) This mixed approach to analysis, design, 
and coding also almost certainly contributed to the general lack of formal CCM structure. 

Several lessons can be (re-)learned from these problems. First, selecting a standard, or set of standards, 
for a complex project will simplify the documentation, shorten the learning curve as new components are 
added, and reduce the potential for component incompatibilities. Second, an appropriate CCM approach 
should be established early in a project. It can then be allowed to evolve as the project proceeds and needs 
change. Finally, the choice of standards should also include a reasoned selection of a coherent approach to 
analysis, design, and coding. Whatever approach is selected, it should feed into, and benefit from, the 
structure of the CCM system. One caveat: It is not at all clear how to best adapt a formal CCM system to 
the currently preferred approach to OOP, which involves rapid prototyping in short iterative cycles. 

The final assessment level was directed at the eleven individual CMS sub-systems. In general, this had 
to be done in a rather piecemeal fashion because so few of the components were found to be operable, much 
less being able to run as integrated packages. Far and away the most effort was expended in trying to make 
parts of the Data Acquisition sub-system work. Conversely, very little (or no) work was done with the 
Maintenance, Scheduler, and Compression/Decompression sub-systems, while a moderate amount was done 
with the User Interface, System Conjiguration and Data Transfer sub-systems. 

Only two components seemed to run adequately and consistently: the User Interface and Database sub- 
systems. The software parts of the Security Log-On sub-system ran all right, but the hardware security 
devices were either missing or did not work properly. Unfortunately, the other sub-systems were mostly 
unusable. We encountered numerous bugs (some caused the computer to lock up), serious and unexplainable 
anomalies in behavior, or inconsistent and unreliable operation. Sometimes a sub-system would work one 
day, and then fail the next time it was accessed . . . even though there had been no apparent change in the 
system setup. The System Conjiguration sub-system had a special problem. It seemed to run, marginally, 
but required changes in the actual source code to perform its stated function. This was not an acceptable 
approach, particularly with the poor state of the documentation. Ultimately, we had to base the sub-system 
assessments on fragments of observed operating behavior and a reading of what documentation we did have. 

We found that most of these sub-systems really offered very few features or capabilities that were new 
or unique, even at the conceptual level. For example, the Security Log-On sub-system pretty much used 
a standard approach, even though it included checks of some hardware-based security devices. Similarly, 
the User Interface sub-system was a conventional GUI, one that could easily be duplicated today using any 
one of several readily available “toolkits.” The Event Assessment sub-system seemed to have possibilities, 
but it was simply not a finished product, so we were unable to assess its actual operation. The Data 
Acquisition sub-system was hampered by its highly centralized approach and unreliable operation. 

Our observations yielded three broad conclusions: First, the match between the system design and the 
target application was not very good; several issues needed to be evaluated more thoroughly. Second, 
weaknesses in the overall design and development approach would almost certainly have caused significant 
problems had the original project continued, and played a major role in crippling our re-start attempts. 
Finally, at the basic functional level, we concluded that the system had no special features that would be 
worth extracting for use in another system. A completed CMS might have offered a unique combination of 
features, but this level of integration was never realized. 
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APPENDIX A - DISCUSSION OF OBJECT ORIENTED PROGRAMMING 

The purpose of this Appendix is to describe some general features of object oriented analysis, design, 
and programming (OOA, OOD, OOP). As noted in the report body, OOP works with object classes, which 
have attributes, operations, and relationships. Properly designed objects provide encapsulation, hiding 
features and methods from external access. Another often-mentioned 00 concept is that objects 
communicate only by sending and receiving messages. This terminology is presumably used to emphasize 
the need for effective encapsulation. In practice, however, object messages look and act basically the same 
as function and procedure calls in more traditional language systems. 

Two other key concepts of 00 are inheritance and polymorphism. Inheritance occurs when a new 
(“child”) class is created by adding new features to those of an existing class (“parent”). All OOP systems 
allow many layers of inheritance, potentially leading to complex hierarchies of classes. Some language 
systems allow for multiple inheritance, in which the child inherits features from more than one parent class. 
Polymorphism occurs when a new class is derived from an existing class by over-riding (internally re- 
defining) one or more inherited traits. It is entirely possible to build a new class by adding new features and 
over-riding some inherited features. These two capabilities, along with encapsulation, are critical to the 
success of the object oriented approach. 

Advantages and Disadvantages of 00 
Numerous advantages are claimed for 00 compared to traditional approaches. First, OOA and OOD 

are said to be a “more natural’’ way of looking at the world. Second, the use of 00 supposedly improves 
the communication process, both within the development group and between the developers and the client. 
Third, 00 code is said to be highly “re-usable” in the sense that existing modules can be used to provide 
comparable functions in a new project. Finally, it is asserted that 00 leads to better-quality software: 
Programs that work better, with code that is easier to maintain and more readily modified. There appears 
to be some validity to these assertions, yet the situation is not nearly as positive as early proponents hoped. 

To begin with, the “naturalness” of viewing the world as a collection of objects is not supported by any 
empirical data, nor even by any reliable anecdotal information. Plus, even 00 advocates agree that applying 
it to “ill-structured” or poorly defined problem areas is difficult and time-consuming . Moreover, 
practitioners agree that, ultimately, what seems natural to you may not necessarily look natural to me. The 
community obviously agrees that 00 has numerous advantages, but a general feeling seems to be developing 
that being a universally “natural” way of looking at the world is not one of them. 

The assertion that an 00 approach “improves communications” is supposedly bolstered by case studies 
reported in the computer press. It does seem likely that communications within the development team could 
be improved. This is especially true if, as is normally the case, everyone on the team uses the same 
development platform with a standard “class library” (set of pre-defined objects). This enforced 
standardization makes intra-developer agreement more workable and likely. A degree of standardization 
could be enforced on traditional platforms, but their stock of pre-defined functions and procedures is often 
much more limited. 

The belief that 00 also improves developer-client communications is less plausible. With suitable 
coaching, a developer and the client may indeed be able to “think in objects.” The question is: Are they the 
~ a m e  objects? There is compelling evidence in other case studies that, in fact, they are not. The client almost 
always thinks in terms of the “narrative” objects describing the real world features. Developers see the 

. 
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abstract computer objects that are meant to correspond to the descriptive objects. This is not necessarily a 
problem. In fact, it’s how the system is supposed to work, if the mapping between the two object views is 
valid. Unfortunately, experience shows that several, sometimes many, revisions of the computer objects may 
be required before the correct mapping is accomplished. (We’ll re-visit this point in a moment.) . 

Code re-use is the most cited benefit of OOP, with some justification. Once an object has been designed, 
coded, and tested for a particular feature set, it can be used and re-used whenever those features are needed 
in a new application. Encapsulation means there are no unexpected interactions for the object; you know 
what the object can do and exactly how you must go about doing it. Of course, older programming language 
also re-use code; the extensive libraries associated with FORTRAN are just one example. Inheritance and 
polymorphism significantly enhance this advantage in OOP by providing a structured means for modifying 
existing, almost-ready objects for a new application. Faster development is often claimed as a secondary 
benefit from this approach, and there are certainly examples where this is true. 

On the other hand, code re-use rn be overdone or mis-used. That is, the idea of code re-usability can 
lead developers away from performing a thorough systems analysis so they can devise classes that efficiently 
and effectively address the application. Given the normal “deliver-a-product” drive in development, it seems 
more likely than not that the developer will grab the frst class object that seems to meet a need, or that looks 
like it can easily be modified to meet the need. Will it be the best way to meet that need? Perhaps, but in 
the real world of program production, people will simply move on to the next problem. We may never know 
any different unless problems appear later on. Programs generated when this happens tend to be bloated and 
inefficient. The worst case occurs when the developer subtly or drastically modifies the application to fit 
into an existing set of classes. The product no longer accurately represents the initial problem domain. While 
a good testing phase should catch such alterations, there are cases where the client went along anyway -just 
to get a product out the door. 

Possible problems such as these cast doubt on the claim that 00, but its nature, leads to the production 
of better-quality software. First, it is by no means automatic that 00 programs will “work better” than those 
produced by other approaches. In fact, if “use system resources most efficiently” is the criteria, there is good 
reason to believe that 00 program will not work as well. Several case studies have demonstrated that real- 
time applications are hampered by performance problems inherent to the 00 approach. Because OOP forces 
encapsulation, object oriented code may indeed be more maintainable than would otherwise be the case. 
Similarly, inheritance and polymorphism should, in principle, make it easier to modify 00 code. 
Nevertheless, poorlydesigned OOP can still be hard to maintain and modify, while proper design can make 
it easier to maintain and modify any computer program. 

Above, we noted the fact that some of the claimed benefits of the 00 approach are not actually realized, 
or are less clear-cut than proponents would hope. Besides these, the approach has some clear problems. To 
begin with, its weakness in handling ill-structured or poorlydefmed systems seems to be a general problem. 
It can be much more difficult to find re-usable object classes that apply to such situations, and they 
significantly heighten communications problems between the client and developer. More specifically, case 
studies have shown that 00 systems seem to have no reliable way to handle “concurrency” (when several 
real-world activities happen simultaneously). Also, several facets of the 00 approach can hamper 
performance - sometimes quite severely, as in the case of real time systems. 

Finally, at the project level, the 00 approach has two known weaknesses. First, we know from personal 
experience that the “learning curve’’ is quite steep for understanding and adopting 00 methods. Second, 
there is still seems to be no generally-accepted process for project-level management of OOA, OOD, and 
OOP. Several different methods are used, most of which are quite different in philosophy from approaches 
used in the procedural/functional world. One 00 author has even asserted that, “traditional Life Cycle 
approaches” are “un-usable” for 00 projects. 
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Overall Design Philosophy 
Of course, at the broadest level, analysis and design are still analysis and design. They proceed through 

the usual general steps: Establish requirements and model the behavior of the application, design computer 
constructs that will meet those requirements, and implement the design in program code. Two behavioral 
patterns distinguish the 00 implementation of these broad strokes from non-00 approaches. The first 
difference should be obvious: Features and behavior are modeled in terms of objects rather than functions, 
procedures, and data flows. As it turns out, the second is also highly characteristic. Virtually without 
exception, leaders in the 00 field advocate an incremental, iterative approach to the entire process. They 
see the process as “evolutionary” and “situational” in nature (whatever W means). 

One of the most influential authors, Grady Booch2, promotes what has been called a “round-trip” 
iterative approach. That is, select a piece of the total project, quickly analyze it to build what appears to 
be a workable design, hack some code to implement the sub-system, and then test it. At this point, you 
basically fold the analysis of the outcome back into the original analysis, and redesign it to address any 
flaws. The cycle continues until the computer sub-system meets the requirements of the real-world 
application. Booch does say that an overall system perspective must be kept in mind, .but also advocates 
running the cycle with very small chunks (according to one report, his softwaredevelopment company does 
weekly internal “releases”). Other leaders in the field differ in the details and scale of the work, but their 
general design philosophy is basically the same. 

Note how this cyclic analyze-design-program approach relates to the client-developer communication 
problem discussed above. In any complex problem domain, its seems almost certain that these two will not 
start out understanding each other. After all, the client is an expert on his or her real world domain, but 
ignorant about complicated class libraries and other 00 “stuff.” Conversely, the developer knows the 
computer stuff, but is ignorant about the client’s application area. Particularly for ill-structured problems, 
the probability seems pretty small that the “first cut” object definitions will actually meet all the client’s 
requirements. The iterative cycle makes it possible to show the client some results and ask, “IS this really 
what you want? Does it do what you need it to do?” Given enough time and effort on both sides, this 
should, sooner or later, converge on a mutually-agreeable solution. 

A variety of design tools have been suggested to aid the process, some having their own notation and 
detailed sequence. One approach is known as the Object Modeling Technique (OMT). The OMT 
methodology uses three complementary models to express aspects of a problem and its solution - object 
model, dynamic model, and functional model. Each model, incomplete by itself, presents a different 
perspective of the system. The models combine to really describe a system. The object model characterizes 
the static structure of the system. A class diagram is used to show the classes, their attributes and 
operations, and their relationships to other classes. The dynamic model represents the time-dependent 
behavior of the system and the objects in it. State transition diagrams or Hare1 state charts are the most 
common approaches used to describe the dynamic behavior of the objects in the system. Thefunctional 
model defines the computations that objects perform - how output values are computed from input values. 
Data flow diagrams which consist of processes, data flows, actors, and data stores are used to show how 
input data values are transformed into output data values. Whether a developer uses this specific model set 
or not, his or her approach must address the same issues. 

Grady Booch, Object-Oriented Analysis and Design with Applications, 2 nd edition, Benjamin 
Cummings, Redwood City, CA (1993). ISBN 0-8053-5340-2 
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Example Sequence 
The early analysis part of the sequence is not really unique to 00: 

Define the real world situation the program is expected to handle. The more clearly defined and 

Define the major interfaces within the system, and with situations on the outside. Often the user 

Define the abstract concepts the computer program will be expected to capture. Modeling the 

reasonably bounded a scenario is, the greater the likelihood of a successful project. 

interface is the most important of these. 

opening of a door should be easy, but you must be much more careful when modeling the approval 
process that allows a specific person to open the door. 

c 

Defining the object structure is a two-step problem. First, you must devise an object-based model of 
your real-world problem. Describing physically distinct elements as objects is not as easy as it may sound, 
and less concrete situations can be even more difficult. Moreover, a desire for 00 efficiency dictates that 
common features of these lower-level objects should be combined into abstract “super-classes;” this is by 
no means an easy task. At this point, the objects will probably be described in a concise narrative form, 
perhaps as a table of descriptive names and features. Once we have a “book” of requirements, physical and 
abstract components, and interface descriptions, we can really begin the object modeling sequence. 

Suppose we want to model the door situation suggested above. Our overall system perspective is that the 
door is one of many access control points at a large facility. Components include an electronic door lock 
with a personnel identification system, perhaps a keypad with small display. The keypad/display is our user 
interface. This equipment must interface to a central monitoring station, which downloads authorization 
data to access points, and collects site-wide entry data. .For this overview, this is all of the system “book” 
we will use. Our brief summary continues from here with the object-building sequence. 

We will treat the central station as a “black box,” defining no more of it than we have to. The object, or 
objects, we end up with must model the entire access authorization process, not just the opening of the lock. 
Our narrative summary would be: 

Physical components: Keypad/display , electronic door lock, link to central station. 
Operations: Update authorized-personnel list, show instructions, accept user input, compare to 
authorized-entry list, allow or deny entry, inform central station, (conditional) unlock door. 
Zntersaces: Data link to central station, keypad/display for user input-output, link to lock mechanism. 

We immediately encounter a fundamental question: Should we model the entire access point as one object 
class, or more than one? We could certainly do so with one, and later “instantiate” other door-access points 
as objects of the same class. However, this facility will surely have other controlled-access points with 
different physical hardware and entry methods: Gates with chain-drive motors, entrances manned by a 
guard, biometric personnel id systems, etc. We should consider those system-wide needs in our plan for this 
particular sub-system. For this informal example, possible classes are enclosed in “curly” brackets, {}, 
operations (methods) are in italics, and attributes are in plain text. 

{Access interface} 
Name 
Personal ID data 
Clearance level 
Instructions 
AccessYN 
Request information 
Show instructions 
Check authorization 

{Barrier 
Control*} 

Release barrier 

(Central 
Workstation} 

Name 
Personal ID data 
Clearance level 

Send information 
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Note how the electronic lock component has been generalized to cover a wider range of potential real- 
world situations where (Barrier Control*) processes occur. Of course, at this point the example is too 
simple to provide an interesting mix of object classes (especially since the most complex component, the 
central workstation, is being treated as a black box). However, as we begin to use these general classes to 
represent more access points, we began to “grow” our object model to match the increased complexity. 

(General) class (Access interface) 
Name 
Personal ID data 
Clearance level 
Location 
Date & time 
Instructions 
AccessY N 
Request information 
Show instructions 
Send results 

. 

Child class (Keypad/display) 
Inherits (Access interface) 
PIN entry 
Read and check PIN 

[new attribute] 
[new method] 

Child class (Hand geometry reader) 
Inherits (Access interface) 
Geometric pattern [new attribute] 
Read & check hand shape [new method] 

Child class (Retinal scanner) 
Inherits (Access interface) 
Retinal pattern [new attribute] 
Read & check retina pattern [new method] 

Initially, the general class was designed to have a procedure, Read & check identijication, but our design 
iterations showed that the type of ID reader was the major distinguishing feature of each child class. (We 
kept having to polymorphize the method.) That is why this generation of classes has individual methods 
defined within the child class. Our object model would show the three child classes in a hierarchy below 

, the parent (Access interface). This is shown on the next page 
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I .  

(Ke ypadlDispla y} 
[Inheritance] 
PIN-Entry J Resd&CheckPIN 

[Inheritance] 
GeometricPattern 
Read&CheckShepe 

[RetinalScan} 
[Inheritance] 
Retinalpattern 
Reed&CheckRet 

Obviously, the model for an full-fledged system would be much more complicated; at the bottom of this 
page is the class library structure for the Visual Component Library (VCL) of the 00 Delphim program 
development environmen?. 

The dymnzic model for this system is also rather simple, but non-trivial. We might view the process as 
“beginning” when an access point requested updated personnel identification data from the (Central 
workstation). The workstation would respond by downloading a list of persons authorized to enter the area 
protected by that specific access control unit. Dynamically, the system would see the request for 
authorization “internally,” respond with instructions, and the Read & check ... method would collect 
personal identification in real time, match it against the stored ID information and “Clearance level,” and 
set the “AccessYN” to the appropriate value. The Send results method has two message destinations: 
Whether access was denied or allowed, a time-stamped message would be sent to the (Central workstation). 
If access is allowed, a message would also go to the (Barrier control) object, which would initiate its 
Release barrier method. 

Even though this is a really simple system, thefunctional model might still contain some fairly complex 
pattern-matching algorithms for the hand geometry reader and retinal scanner. 

Clearly, a program like the CMS would have a vastly more complex design package than this. 
Nevertheless, this example should give you some idea of what the OOA&D process looks like. 

TObject 
I 

I 

I I I I 
Exception TStream TPersistent TPrinter TList 

I I I I I I 
TGraphicsObject TGraphic TComponent TCanvas TPicture TStrings 

TTimer TScreen TMenultem TMenu TCTtrol  TCommonDialog TGlobal omponent 
I I I I I I I 

I I 

I 
7 

W i n  ontrol TApplication 7 TGraphControl 

TButtoncontrol 
TScrollBar 

TCustomEdit TScrollinaWinControI 
TCustomListBox- -1 

TForm 

Delphi VCL Structure 

Delphi Component Writer’s Guide, Borland International (1996) 
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APPENDIX B - CMS OBJECT CLASS NAMES 
As noted in the report body, we found on the order of 320 object classes defined for the CMS project 

Although no class diagram was provided, they did try to follow a reasonably well-defined naming 
convention. It appears that the naming convention was adhered to in most cases. CMSxx is the first five 
letters of the names of most classes, where xx is the sub-application designator (such as DA = data 
acquisition, DB = data base, and so on). Then they tried to indicate the role of the object with the text that 
trailed. Sometimes this attempt seemed to work, many other times it did not. 

CMSAutoGenEvents CMSDMVCopy 
CMSCIA CMSDMVCopyPrompt 
CMSCLegacyAppAgent CMSDMVDelete 
CMSDACAASPAgent CMSDTCAgent 
CMSDACAASPDongleConfiguration CMSDTCEventPushAgent 
CMSDACAASPDriver CMSDTCModemMgr 
CMSDACAimsAgent CMSDTCOnDemandTransfer 
CMSDACAimsAlarmRecord CMSDTConstants 
CMSDACAimsTestStream CMSDTCReceivedDataAgent 
CMSDACAlarmAgent CMSDTCReceivedDataAgentEncrypted 
CMSDACAlarmDispatcher CMSDTCTransferRequestAgent 
CMSDACAlarmLogger CMSDTCTransferRequestAgent Encrypted 
CMSDACAlarmRecord CMSDTCXferAgent 
CMSDACBusyAgentDialog CMSDTNPgpStarter 
CMSDACComStream CMSDTVAaeWorkingMessage 
CMSDACCswlDll CMSDTVRequestPush 
CMSDACDataBuffer CMSEAAlarmDetails 
CMSDACDataLine CMSEAAlarmDetailsAction 
CMSDACOavidAgent CMSEAAlarmDetailsView 
CMSDACDavidAlarmRecord CMSEA.AlarmLog 
CMSDACDDEClientWrapper CMSEAAlarms 
CMSDACDDEServerWrapper CmSEAAlarmsOffLine 
CMSDACLonWorks CMSEABMP 
CMSDACLonWorksAgent CMSEACBitmap 
CMSDACMicrowavelnterface CMSEACDrift FreeTimer 
CMSDACMicrowaveRequest CMSEACGenericLightTable App 
CMSDACSNMAnalyzerDriver CMSEAClmage 
CMSDACSOHLogger CMSEAClrnageViewer 
CMSDACStream CMSEACLightTable 
CMSDACSwldll CMSEACLightTableApp 
CMSDACTagAlarni Record CMSEACLogicalAgent 
CMSDACTag ReaderAgent CMSEACSlide 
CMSDACTagTestStream CMSEACSlidelnfoArea 
CMSDACTestStream CMSEACSnapshotFilter 
CMSDACVideoFile CMSEADatabaseAccess 
CMSDACVideoServer CMSEAMenu 
CMSDataAcquisition CMSEANAutoAssessmentEngine 
CMSDatabaseDDL CMSEANAutoEventCategorizer 
CMSDataManagement CMSEANAutoGenEngine 
CMSDataTransfer CMSEANEventDeclarationMatcher 
CMSDBDataAccess CMSEANSNMRadiationSignature 
CMSDBDemoSupport CMSEASystemGreeting 
CMSDEDemoSupportAbtPackage CMSEAVAlarmsOffLineView 
CMSDMCCopy CMSEAVAnnotationBox 
CMSDMCDatabaseBackuplnterface 
CMSDMCDataMgtOnDemand CMSEAVAutoEventWorking Message 
CMSDMCDataMgtProcessor CMSEAVDeclaration 
CMSDMCDataMgtSchedProcessor CMSEAVDeclarationActivityView 
CMSDMCDisklnformation CMSEAVDeclarationlCM 
CMSDMVBackupDatabase CMSEAVDeclarationlCMView 

C M S E AVA r ea I D 

L 
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. 
t 

CMSEAVDeclaration List 
CMSEAVDeclarationListPart 
CMSEAVDeclarationListView 
CMSEAVDeclarationPurpose 
CMSEAVDeclarationSelectionView 
CMSEAVDeclarationView 
CMSEAVEventCategory Buttons 
CMSEAVEventCategoryView 
CMSEAVEventDetailsComprehensiveView 
CMSEAVEventList 
CMSEAVEventListView 
CMSEAVFinalAssessmentView 
CMSEAVlcmDetailView 
CMSEAVlCMList 
C M S EAVlcmTag E n try 
CMSEAVMapViewForAlarms 
CMSEAVMapViewForArchive 
CMSEAVOnDemandSnapshot 
CMSEAVSensorHistory 
CMSEAVSensorHistoryView 
CMSEAVSiteTreeContainer 
CMSEAVSiteTreeView 
CM S EAVSi teTreeView ForArch ive 
CMSEAVSiteTreeViewForSensor 
CMSEAVTileSnapshots 
CMSEAVTreeTestbed 
CMSEnvironment 
CMSEventAssessment 
CMSGUCDriftFreeDelay 
CMSGUCDrifting Delay 
CMSGUVMessage 
CMSGLTVProgressBar 
CMSGUVProgressDialog 
CMSGVCRubberBandTracker 
CMSlNClnstallation 
CMSlNCTableBuilderProxy 
CMSlnstallation 
CMSlNVErrorLog 
CMSlNVlnstallScreen 
CMSLegacyAppManagement 
CMSLegacyAppManager 
CMSLightTable 
CMSLonWorksParagonTNT 
CMSLonWorksParagonTNTAbtPackage 
CMSLTVProgressDialog 
CMSMaintenanceFunction 
CMSMFVOnDemandSnapshot 
CMSMFVOnDemandSnapshotNoProgressBar 
CMSO bjectModel 
CMSOMCAbstractData base 
CMSOMCAbstractDatabaseWithIndex 
CMSOMCAbstractDbAlarm 
CMSOMCAbstractDbCamera 
CMSOMCAbstractDbConnectedStation 
CMSOMCAbstractDbCountry 
CMSOMCAbstractDbDatabaseVersion 
CMSOMCAbstractDbDeclaration 
CMSOMCAbstractDbEvent 
CMSOMCAbstractDbEventLogic 
CMSOMCAbstractDbHomeStation 
CMSOMCAbstractDblcm 
CMSOMCAbstractDblcmDeclaration 
CMSOMCAbstractDblndexList 

CMSOMCAbstractDbMaintenanceDatum 
CMSOMCAbstractDbMap 
CMSOMCAbstractD bMonitoringArea 
CMSOMCAbstractD bSensor 
CMSOMCAbstractDbSite 
CMSOMCAbstractDbSnapShot 
CMSOMCAbstractDbSwitch 
CMSOMCAbstractDbUserProfile 
CMSOMCAbstractTreeobject 
CMSOMCAbstractViewer 
CMSOMCAimsSensor 
CMSOMCAlam 
CMSOMCAlarm DistinctAreas 
CMSOMCAlarmGroupld 
CMSOMCAlarmld 
CMSOMCAlarmLog 
CMSOMCAlarmMessageBinding 
CMSOMCArealdentifierDbHierarch y 
CMSOMCBitMap 
CMSOMCBoundary Declaration 
CMSOMCBoundaryMicrowave 
CMSOMCCamera 
CMSOMCCameraComplete 
CMSOMCCardReader 
CMSOMCClause 
CMSOMCCountry 
CMSOMCDatabaseVersion 
CMSOMCDeclaration 
CMSOMCEntryExitDetector 
CMSOMCEntryExitTag Reader 
CMSOMCEvent 
CMSOMCEventLogic 
CMSOMCFiberOpticSeal 
CMSOMCFieldElement 
CMSOMCFieldElementld 
CMSOMCGenericSensor 
CMSOMCGlobalMap 
CMSOMClcm 
CMSOMClcmDeclaration 
CMSOMClcmDeclarationltem 
CMSOMClcmld 
CMSOMClcon 
CMSOMClconList 
CMSOMClconobject 
CMSOMCldentifier 
CMSOMCldentifierDbHierarchy 
CMSOMCJunctionBox 
CMSOMCListViewer 
CMSOMCLonWorksSensor 
CMSOMCLowld 
CMSOMCMaintenanceDatum 
CMSOMCMaintenanceHistory 
CMSOMCMap 
CMSOMCMessageBinding Subsystem 
CMSOMCMonitoringArea 
CMSOMCMonitoringAreaId 
CMSOMCNewFieldElement 
CMSOMCNextlndexList 
CMSOMCNotebook 
CMSOMCNuclearMaterialAnalyzer 
CMSOMCObjectClass 
CMSOMCOnDemand 
CMSOMCPhysicalGrouping 
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CMSOMCPortSensor 
CMSOMCSelfContainedList 
CMSOMCSelfContainedobject 
CMSOMCSensor 
CMSOMCSensorComplete 
CMSOMCSensorDatum 
CMSOMCSensorldentifierDbHierarchy 
CMSOMCSite 
CMSOMCSiteld 
CMSOMCSnapShot 
CMSOMCSqlError 
CMSOMCStarter 
CMSOMCStation 
CMSOMCStationConnected 
CMSOMCStationHome 
CMSOMCStationNotebook 
CMSOMCStationNotebookDataXfer 
CMSOMCSubSystem 
CMSOMCSubSystemAASP 
CMSOMCSubSystemAlMS 
CMSOMCSubSystemDAVlD 
CMSOMCSubSystemld 
CMSOMCSubSystemLonWorks 
CMSOMCSu bSystemVideo 
CMSOMCSwitch 
CMSOMCTamperSwitch 
CMSOMCTaskList 
CMSOMCTimeStamp 
CMSOMCValidationObject 
CMSOMVListViewerEditor 
CMSOMVNotebookButtons 
CMSOMVNotebookXfer Buttons 
CMSOMVObjectEditor 
CMSPMContainerExtension 
CMSPMContainerExtension AbtPackage 
CMSSCCAlarmLogicModeI 
CMSSCCAssignComports 
CMSSCCBitMapTableObject 
CMSSCCClauseValidator 
CMSSCCConfigAddressList 
CMSSCCEventLogic 
CMSSCCEventLogicHolder 
CMSSCCPortConfig 
CMSSCCStationNotebook 
CMSSCCTree 
CMSSCCUserListObject 
CMSSClmageClass 
CMSSCVAlarmLogicSetup 
CMSSCVAssignComports 

CMSSCVAutomaticEventAssessmentConfigure 
CMSSCVEncryptionSettings 
CMSSCVF,ncryptionSettingsS hell 
CMSSCVMapBitMapDrillDown 
CMSSCVMapBitMapList 
CMSSCVMapCanvas 
CMSSCVMaplconList 
CMSSCVMa pTreeView 
CMSSCVSensor 
CMSSCVSensorAims 
CMSSCVSensorConfigurator 
CMSSCVSensorDavid 
CMSSCVSensorLonworks 
CMSSCVSensorVideo 
CMSSCWiewUserList 
CMSSCWVanButtons 
CMSSCWVanConnectedStationPage 
CMSSCVWorkstation 
CMSSCWVorkstationDirectories 
CMSSCWVorkstationShell 
CMSSCWVrkData.Management 
CMSSCWVrkLocalPage 
CMSSCWVrkSleepMode 
CMSSCWVrkUsrPreference 
CMSSecurityLogin 
CMSSensorConfiguration 
CMSShape 
CMSSLCConnectedProfile 
CMSSLCSecurityListViewer 
CMSSLCUserProfileobject 
C MSS LDAccess Set 
CMSSLManageUserCanvas 
CMSSLNDongle 
CMSSLNUserDatabaseAccess 
CMSSLWiewManageUser 
CMSSLWiewSystemLogon 
CMSStarter 
CMSSystemConfiguration 
CMSSystemlntegrationSoftware 
CMSSystemlntegrationSoftwareAbtPackage 
CMSTest 
CMSTestAbtPackage 
C M SToo I s 
CMSUtilities 
CMSVLegacyAppNotifier 
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APPENDIX C - PROJECT STRUCTURE AND PERSONNEL 

Technical Team 

Evan E. Filby, Ph.D. 
Dr. Filby is is a Consulting Scientist at the INEEL, with nearly 25 years of experience in fields related 

to special nuclear materials (SNM) measurement and protection. During his tenure as first a research 
scientist in mass spectrometry, and later as team leader for instrument develop and support, he helped 
improve the analytical precision on mass spectrometry for SNM accountability by a factor of three -- more, 
for some kinds of samples. Later, he worked with advanced instrument control systems, computer modeling 
of nuclear fuel cycle systems, measurements for reactor materials research, and general radiochemistry. He 
is now Principal Investigator, and Program Manager, for the INEEL Center for Integrated Monitoring and 
Control (CIMC). He is a recognized authority on safeguards instrumentation and methods, integrated 
monitoring for arms control and nonproliferation, information management, and other related technologies. 

In recent years, he has acted as the INEEL representative on numerous DOE technical panels, advisory 
groups, and task teams, including: the Program of Technical Assistance to UEA Safeguards, Safeguards 
Laboratory Advisory Group, DP Task Force on Impact of LAEA Safeguards on Nuclear Weapons Complex, 
Task Force on Restart of Electromagnetic Isotope Separation Process, and the Special BrieBng Task Force 
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on North Korean Reactor History. In 1994, he organized and was principal lecturer for a short course 
entitled Nuclear Research Center Purpose and Function, a course that was meant to teach U.S. government 
personnel to detect possible nuclear proliferation activities at such facilities. He has been recognized with 
a number of awards and citations, including: received a Lockheed-Martin Excellence Award, four times 
received the George Westinghouse Signature Award of Excellence (nominated ten times) for significant 
technical achievements, nominated for an IR-100 Award for innovation, and received an Operation Ivory 
Purpose award for technical support during the Three Mile Island emergency. 

Dr. Filby has authored or co-authored over 210 technical papers, reports, book chapters, and other 
publications; made over 110 formal presentations; and prepared four patents or patent disclosures. (In this 
context, a disclosure indicates that the work is considered innovative, but the commercial potential is 
insufficient to justify the patent application costs.) A selected list of relevant papers and presentations, and 
the titles of the four patents, are included at the end of this Appendix. 

Kevin J. Haskell 
Mr. Haskell is a Technical Specialist in electronics instrumentation at the INEEL, with over 20 years 

of experience here and at Los Alamos National Laboratory (LANL). His work at LANL included 
construction, test and evaluation, calibration, and maintenance of electronics instrumentation used for 
designing and testing U.S. nuclear weapons technology. Not only did he participate in all the activities 
needed to maintain and improve this equipment, he was also responsible for the day-to-day oversight of 
instruments being used in critical physics experiments. Some of the instrumentation involved included 
(among others) complex timing systems and image intensified video equipment. 

At the INEEL, he has been responsible for trouble-shooting and maintaining a wide variety of industrial 
instrumentation and radiation sensing electronics, many of which were crucial to operations at the INEEL 
nuclear fuel reprocessing facility. Equipment for which he was responsible included several kinds of 
chemical analysis instruments (a- and y-spectroscopy systems, mass spectrometers, and others), data 
acquisition systems, industrial monitoring equipment, and main-frame computer systems and peripherals. 
Of particular relevance to his CMS work is the age of some of the components for which he was solely 
responsible . .. some of these “legacy” units are over 20 years old. In many cases, spare parts are no longer 
available, any manuals have long since been lost, and sometimes the vendor is no longer in business. 
Keeping such equipment operational requires resourcefLllness, perseverance, and an intimate knowledge of 
how electronics systems really work. Those traits were invaluable in our efforts to re-start the poorly 
documented and already-outdated components of the CMS. 

Brian H. Clark 

Mr. Clark is a Staff Engineer here at the INEEL. He has around 15 years of experience as a 
project/design engineer for projects involving video systems, rf and telephonic communications, and 
computer-based control systems. Prior to coming to the INEEL, he was a Principal Engineer at Boeing 
Aerospace, where he was responsible for project management and design tasks for various command and 
control system projects. His “credits” include the design of a system for both internal and external 
communications and control for the Boeing 777 Airplane Program. He was also responsible for the overall 
design and qualification testing of a Voice and Radio Control System built by Westinghouse to be used in 
a Command and Control System. The system provided touch screen control of UHF, VHF, and HF radios, 
encryption equipment, PABX, modems, and COMSEC equipment. Mr. Clark was the lead engineer 
responsible for a board-level design to translate data received from the Boeing AWACS communications 
processor and reformat the data for recording on an AMPEX tape recorder, and was the design engineer 
responsible for the integration of a Collins HF radio system into the Boeing E-6 airplane for the U.S. Navy. 
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Also at Boeing, he was lead video Project Engineer responsible for the design and integration of a 
Closed-Circuit Television (CCTV) system to be used in a Command and Control System located in Saudi 
Arabia. He designed rack and console assemblies, integrated over 150 separate audiolvideo components, 
and generated factory acceptance test procedures for this project. After joining the INEEL, he continued 
a heavy involvement with complex video-based systems. He was the Project EngineedDesigner responsible 
for the overall design of a Mobile Radio and Television Broadcasting System for the U.S. Army, and a 
video/audio production studio for the U.S. Navy. 

More recently, Brian was video engineer responsible for design of a 96-input by 152-output RGB video 
distribution system installed at the U.S. Air Force NORAD Command Center in Colorado. This sub-task 
of the large-scale Granite Sentry project set up a system for the distribution of broad-band analog video 
signals over secure fiber links. This was also his introduction to LonWorks technology; a LonWorks-based 
keypad with minidisplay was designed and implemented for video switching and control. Most recently, 
he was the Lead Engineer on a project that upgraded the real-time SNM monitoring system for a Category I 
vault located at the Idaho Chemical Processing Plant. In addition to project management responsibilities, 
he designed a LonWorks-based node to handle the load cell monitoring output, and worked with a vendor 
to realize that design by adapting one of their standard products. 

Thomas E. Smith 
Mr. Smith is a Electronics Systems Engineer with over a decade of experience with distributed 

monitoring and control systems, audiohide0 distribution systems, and micro-electronics. Before coming 
to the INEEL, he worked at Signetics and at National Semiconductor, where he was responsible for 
evaluation and testing of new releases of advanced CMOS logic devices, including new and redesigned 
circuits for the Signetics FAST logic family. He also helped develop process improvements to maintain and 
enhance production yields in their chip-fabrication facilities. Among his accomplishments was the 
performance of yield enhancement analyses that led to the development of formulae to accurately predict 
the number of possible good die on a wafer. He also developed a user-friendly Man Machine Interface 
(MMI) for their test engineering program, and concurrently devised a training program for operators who 
would be using the new MMI. 

To some extent, his career here at the INEEL paralleled that of Brian Clark, including work on the video 
production studio and mobile radio and television station project. For these projects, he worked directly 
with the customer to develop requirements and specifications, and supervised technicians and crafts 
personnel during construction, installation and testing at these facilities. He had similar duties on the 
Granite Ceruury NORAD project, as well as tasks involving PLC (Programmable Logic Chip) design and 
programming. The specifications for that part of the project required fully redundant environmental, 
security, and projector control. When he joined the CIMC, he received additional LonWorks training at 
Echelon Corporation and played a significant role in several on-going distributed monitoring and control 
projects. 

Miles A. McQueen 

Mr. McQueen has around 20 years of experience with real-time software development, complex 
simulations, algorithm design, software engineering, systems analysis, and the development of integrated 
hardware/software systems. He is currently an Advisory Engineer here at the INEEL, where his duties have 
included the development of C + + software in support of system simulations, technical coordination for 
the Spatial Analysis and Internet Systems Group, the development of embedded real-time software systems, 
and work with several distributed monitoring and control projects for the CIMC. He has also performed 
process evaluations for the Software Process Engineering Department, and organized and executed a broad- 
based validation and verification effort to support various DoD programs. One of his current research 
projects involves an examination of how “fault tolerant” principles might be integrated onto a LonWorks 
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network. Fault tolerant systems have the ability to continue operation in the presence of faults (bad data or 
malicious tampering), and the development of such capabilities could significantly enhance the security of 
a monitoring and control network. 

Prior to joining the INEEL, he spent a number of years at the Hughes Aircraft Corporation. While 
there, he was Manager of the Advanced IR Tracker Development effort, which required development of 
real-time simulations and tactical software in C, Ada, assembly language on a variety of commercial 
platforms and proprietary hardware. He had previously had the technical lead for a large research and 
development program in support of their anti-armor missile systems project. This work included the 
development of real-time, hardware-in-the-loop, 3-D simulations used to guide the formulation of system 
specifications, and the design of man-aided tracking algorithms. 

Kurt W. Derr 
Mr. Kurt Derr has over 15 years of INEEL experience as a Project Manager and Principal Investigator 

for software engineering projects involving the use of object oriented (00) technology. His 00 project 
experience include resource management systems, data conversion utilities, database question bank 
protocols, and advanced database access approaches. Other 00 activities have involved geographical 
information systems, a "virtual storefront" project, object-oriented middeware, and graph visualization. His 
25-plus year career includes software development and project management jobs at Datapoint Corporation, 
Datascan America, Computran Systems Corp, NCR Corporation, and Sperry Rand Corporation. Specific 
accomplishments included development of radar system software, computerized traffic control systems, and 
text storage and retrieval software for PC databases. He was also project manager for the deployment of 
a distributed client-server computer network using a UNIX derivative operating system. 

In addition to his direct INEEL duties, Mr. Derr is a computer science instructor at the local branch 
campus of the University of Idaho. He has taught structured analysis and design, 00 analysis and design, 
00 programming, "C" language programming, C programming in the UNIX environment, computer 
networking, and distributed processing. In addition to various technical papers and presentations, he has had 
a book on the Object Modeling Technique (OMT) published [see reference list]. 

Relevant Reference Titles 

E. E. Filby, L. J .  Hanson, M. A. McQueen, T. E. Smith, "Distributed Auto-Control for Optimum Video 
Surveillance," J.  Institute of Nuclear Material Management, Proceedings on CD-ROM (1 997). 

M. A. McQueen, E. E. Filby, Support Framework for Agreement and Synchronization Using LonWorks@ 
Distributed Nenoorks, LDRD technical report (October 1, 1997). 

E. E. Filby, R. K. Albano, T. E. Smith, Cooperative Remote Monitoring Test and Evaluation: Device and 
Scenario Review, report INEEL/EXT-97-002 1, LIMTCO (February 1997). 

E. E. Filby, T. E. Smith, R. K. Albano, M. K. Andersen, R. L. Lucero, K. M. Tolk, N.S. Andrews, "Testing 
Integrated Sensors for Cooperative Remote Monitoring, " J .  Institute of Nuclear Material Management, 
proceedings issue (1996), p. 982. 

E. E. Filby, T. E. Smith, R. L. Albano, "LonWorks@ Device Integration for International Treaty Verification," 
LonUsers@Inrernational Conference Proceedings, Echelon Corporation, Palo Alto, California (May 2 1-22, 
1996) p. 139. 

C. D. Friesen, N. S.  Andrews, D. W. Myers, E. E. Filby, "Modular Integrated Monitoring System (MIMS)," 
Arms Control and Nonproliferation Technologies magazine, DOE/NN/ACNT-95D (Fourth Quarter 1995). 
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K. W. Derr, Applying the Object Modeling Technique, SIGS Publications, Inc., distributed by Cambridge 

R. L. Martinez, D. R. Waymire, D. A. Fuess, D. W. Myers, C. I. Frerking, E. E. Filby, "Modular Integrated 

University Press (August 1995). 

Monitoring System (MIMS) Field Test Installation, " J.  Institute of Nuclear Material Management, Vol. XXI v, 
proceedings issue (1995) p. 1100. 

Test of MIMS Subsystem Capability at INEL, Sandia National Laboratory Report (December 1994). 

(May 1994). 

D. R. Waymire, R. L. Martinez, E. E. Filby, D. W. Myers, B.J. Wheeler, J. Abraham, Final Repon: FY94 Field 

G. J. McManus, E. E. Filby, Monitoring for Nobles Gases as a Reprocessing Signature, INEL-SP-349, WINCO 

E. E. Filby, Nuclear Facility Transparency Signatures for the Idaho Chemical Processining Plant, WINCO-1185 
(November 1993). 

K. W. Derr, "Object-Oriented Programming," INEL Computer Symposium, Idaho Falls, ID (October 1993). 

E. E. Filby, "Safeguards-Related Activities at the INEL," Overview Meeting for the International Atomic Energy 
Agency, Vienna, Austria (October 13, 1993). 

K.W. Derr, "A Proposal for DOE-Wide Compliance Assessment Database for Risk Assessment," Energy Facility 
Contractors Group Conference (February 1993). 

E. E. Filby, J. K. Hartwell, Control of High-Enriched Uranium at the Idaho Chemical Processing Plant, Parts 1 

E. E. Filby, R. A. Rankin, D. E. Yoshida, "Automated Intelligent Assistant for Mass Spectrometry Operation, " 

and 2, program Report ST129A, U. S. DOE (October 1992). 

Proceedings of AI'9I: Frontiers in Innovative Computing for the Nuclear Industry, American Nuclear Society, 
Idaho Section (September 1991 
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