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Abstract

The void percolation threshold is calculated for a distribution of overlapping

spheres with equal radii, and for a binary sized distribution of overlapping

spheres, where half of the spheres have radii twice as large as the other half.

Using systems much larger than previous work, we determine a much more

precise value for the percolation thresholds and correlation length exponent:

The values for the percolation thresholds are shown to be significantly dif-

ferent, in contrast with previous, less precise works that speculated that the

threshold might be universal with respect to sphere size distribution.
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I. INTRODUCTION

The concept of percolation was originally introduced to describe the flow of a fluid

through a porous medium [1]. However, once an understanding regarding the universality of

the problem was achieved, much of the mathematical work was relegated to lattice models

that showed the same mathematical behavior with regard to the critical exponents ~2-7].

While work on lattice percolation allowed for ease of simulation and mathematical tractabil-

ity in special cases, this technique also lost some of the information regarding quantities

such as pore size and flow rate.

Continuum percolation differs from lattice percolation in the sense that the problem is

not restricted to a lattice? but is defined on the full d-dimensional space. There are two

common continuum percolation problems bas;d on overlapping spheres. The first is that of

percolation of overlapping disks or spheres themselves [S–16]. This problem is analogous to

the lattice percolation problem where the points are distributed randomly through space. A

bond between two spheres is formed when the two spheres overlap. This is what is Usuaily

referred to in the literature under the name of continuum percolation.

The other type of continuum percolation problem is the complementary problem to

the first type. In this case, one considers a system of overlapping spheres and asks when

the space not occupied by the spheres percolates [17–19]. This is generally referred to as

uoid percokztion~ but is also referred to as swiss-cheese percolation (although complementary

continuum percolation would probably be a more descriptive term). This type of percolation

is very similar to the original definition involving fluid flow through a porous media.

Without any additional mathematical tools to help solve the problem, the question of

determining whether or not there is a connected path for fluid to flow through a system of

overlappitig spheres would be difficult. Fortunately, Kerstein [17] showed that the problem

could be mapped to the bond percolation problem on the edges of the Voronoi tessella-

tion of the sphere centers. The primary computational problem is then reduced to that of

determining the Voronoi tessellation [20]. Once the bond percolation model is established
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from that, one can apply well known Monte Carlo techniques to determine the percolation

threshold and related exponents.

Due to the increased complexity involved in calculating the Voronoi tessellation and the

increased memory required to store the corresponding data structures, the size of the problem

that one can effectively work on is greatly reduced relative to lattice or standard continuum

percolation problems. The net effect is that there has been much less work done on the

void problem, and the numerical results that have been obtained are much less precise. One

interesting recent result has shown that the void percolation threshold for a binary system of

spheres with unequal radii seems to be equivalent to that of a system of spheres with equal

radii [19]. This would be a remarkable result if it were true since the arguments that apply

to universality of the critical exponents should not apply to the percolation thresholds.

In this paper, we use much larger systems to obtain a precise value for the void percolation

threshold for a system of equisized spheres. In a similar way, we calculate the void percolation

threshold for a set of spheres that have two different values for their radii, and show it is

statistically different. We also calculate the correlation length exponent v, and confirm that

it is similar to that of lattice percolation and ordinary continuum percolation, as universality

dictates.

II. MATHEMATICAL BACKGROUND

A. Scaling Laws

The precise value of the percolation threshold p. for any system is defined in the limit

of a system of infinite size. In practice, one can only calculate the value of the effective

percolation threshold for a syste”m of finite linear size L, pc(L). Then, one uses the scaling

relation [3]

PC(L) – p. ccL+’,

where v is the correlation length exponent.

3
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In many lattice applications, Lisa natural variable to write the scaling relation in terms

of. However in continuum systems, especially those with a variety of particle sizes, the

number of particles N is a much more natural scaling variable. Using the fact that

:1

N K LD

where D is the dimensionality of the embedding space, we can write Eq. (1) as I

PC(N)– Pc cx Iv-l/(”~). “ (3)

in order to calculate pC, one must calculate pc(N) for different values of N, and plot them

‘-1/(”~). For large values of N, this should be linear, and an extrapolation of theagainst N

line to the limit N-ll(”D) + O (N+ w) will give the result for the infinite system.

Before that calculation can be done, one ~also needs a value of v. Values obtained for

lattice models can be used, but for the sake of self-consistency, we will calculate v from the I
I

data. This is done by calculating pC(N) for a large number of finite systems of N particles,

and calculating the standard deviation ApC(N) of those values. Then, one applies the scaling
\
I

relation [3]

Ape(N) cx N-l/(”D)

to calculate v.

(4)

There is another reason to independently calculate v in the case of the void problem. It ~ \l
I

turns out that universality does not apply to all exponents in this case. The mechanical and
!

transport exponents are different, due to the narrow bottlenecks that form in the system

~21]. It is generally understood that v does not change in this case, but there have not been
I

any calculations of v for void percolation systems that could confirm this with precision.
I

I
II

B. Voronoi Diagrams

I

A Voronoi diagram of a set of points is a decomposition of the space into regions (which I
I

we will call cells) that are associated with each point, such that every point in the Voronoi
I
~
I
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cell is closer to the associated point than any other point in the system [22]. Mathematically,

if there are N sphere centers, and the coordinates of the sphere centers are given by xl, where

i=l ,..., N, then the Voronoi cell associated with i is defined as the set of all points x such

that

O!(X, Xi) < O!(X;Xj) Vi # j. (5)

,

t
I

‘1
In this definition, d(x, y) is the distance between points x and y.

The boundaries of the Voronoi cells represent points that are equidistant from two or more

sphere centers. From this, it is easy to see physically that any void space in the system,
$

if it exists, can be associated with a Voronoi vertex since the Voronoi vertices represent
.

points in the systems which are as far away as possible from its associated sphere centers

(generally 4, for random three dimensional svstems). In the same way, anv connected path. .

in the void region can be associated with a Voronoi edge that links two Voronoi vertices.

The edge represents the set of points equidistant to the sphere centers that are common to I

the two vertices that it connects. Therefore, once the network of vertices and edges has been

established, it is just necessary to determine which of the vertices represent void space and

which of the edges are not intersected by any spheres. This procedure is proven by Kerstein

[17].

The method of solving the void percolation problem for overlapping spheres with possibly

different radii follows the same basic idea, but uses a more general version of the Voronoi

tessellation known as a radical Vomnoi’ tessellation [23]. This definition is similar to the

definition for the standard Voronoi tessellation, except now for a sphere i with center at xi,

there is an associated radius ri, and the definition of the radical Voronoi cell becomes the II

set of points x such that

d(x, xJ2 – r? < d(x, xj)2 – r; Vi # j. (6)

This is known as a “radical” Voronoi tessellation since the cell boundaries now represent
I
)1

points that are equidistant from tangent lines drawn from each sphere. This definition is I

often referred to as a power diagram in the mathematics literature [24].

5
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This tessellation has a number of nice properties, including preserving planarity of the

faces that separate the resulting cells. Most importantly, the vertices and edges contain

precisely the same connectivity information as the case of equisized spheres [19], so the

algorithm is essentially unchanged. In the case of all sphere radii being equal, the standard

Voronoi tessellation is recovered.

III. VORONOI DIAGRAM CONSTRUCTION

The fact that the passages through the void space can be mapped to the edges in a
I

Voronoi tessellation is indeed a fortuitous one, since the problem is very difficult to, solve /
I,

without prior knowledge of this fact. However, this is still one of the more time consuming i
t
,

steps in the calculation and having an efficient method of constructing the Voronoi tessella- 1

tion is important.
1

There were two methods of calculating the Voronoi tessellation The primary method was

via insertion. To use this method, one starts with an initial tessellation; and then inserts 1

the new sphere center and changes the structure accordingly [20]. This method is very

quick since it can be implemented by finding a single vertex that will be affected by the ,
~

insertion, and recursively searching through all of its neighbors until one has identified all ,
.1

of the vertices which will be affected. The primary drawback with the method is that one
!

“
needs some initial tessellation to start using the method. This was accomplished by starting t

(

with a small initial set of particle centers and performing a “shooting” type tessellation. For
I

I
this tessellation, a single vertex was initially located, and then its neighboring vertices were I

then located. The determination of neighboring vertices is fairly straightforward in this case

as one knows that the neighboring vertices will have 3 of the 4 particle centers in common.
I
I\
I
,

IV. NUMERICAL DETAILS

To answer the question regarding universality of the percolation threshold for different
.,

~

sphere size distributions, we chose to study two different systems. In both sets, half of the

6
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spheres had a radius of rl, and the other half were assigned a radius of T2. In the first

set, rl = r2, while in the second, rl = r2/2. The factor of 2 in radii sizes was chosen with

the hope that if there were differences in the percolation threshold, it would manifest itself

strongly at that ratio. This was not based on any analytical prediction, but simply on the

fact that in the limit that rl/r2 approaches either O or 1, one recovers the equisized case.

Finite size scaling was used to calcplate v and p., as dictated by Eqs. (3) and (4). Values

of N ranged from 312 to 80000, with the

each time. The number of configurations

ranged from 10000 for N = 312 to 500 for .

value increasing by approximately a factor of 2

used the generate the data for each value of N

N = 80000.

Calculation of the percolation threshold for each system was done by a binary search

through the different values of volume fraction for a fixed set of sphere positions and sphere

radii ratios. One started with an initial value for the upper and lower bound for the perco-

lation threshold for the system, and chose a first test value halfway between the two for an

initial guess. If the void percolated, the upper bound was set at this value, and a new guess

was chosen halfway between the lower bound and the new upper bound. Similarly, if the

void did not percolate, the lower bound was set at this value and a new value was chosen

halfway between the new lower bound and the upper bound. The search was iterated until

the difference between two previous guesses was less than a specified tolerance. This toler-

ance was chosen to be 10-6. Periodic boundary conditions were employed, and percolation

was defined as the point when the largest cluster spanned one of the directions of the unit

cell and overlapped with itself.

The sphere radii were determined using the fact that in a system of overlapping spheres

which are

fraction is

randomly distributed over a periodic unit cube, the average total void volume

given by en, where q is defined by

(7)
j=~ d

and is just the sum of all of the individual sphere volumes. It should be noted that this is

not the precise value of the total volume in each system, but it is very, close and did not

. 7
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significantly affect the results.

The vertex percolation method was used to determine the Voronoi vertex network for !

the first 500 sphere centers (or all of them for the N= 312 case), and then the insertion t
I

method was used for the rest of the centers for each sample. It should be noted that in the

case where all of the sphere radii are the same size, the Voronoi network does not change as

the sphere radii change, and it only needs to be calculated once. However, in the case where

the radii are different, the vertex network needs to be recalculated for each value of p. The

main effect of this is that the cases where rl /r2 = 1/2 took significantly longer to run.

V. RESULTS

The log-log plot of ApC(N) vs. N is shown in Fig. (l). Although the numerical values of

ApC(N) are different for each of the two cases, the slopes values are indistinguishable within

the numerical tolerance of the simulation. The value for N = 312 is not used for the fit

as it appears to lie outside the scaling region. The slope of the line for the rl/r2 = 1 case

corresponds to a value of v = 0.902 + 0.005, while the rl/r2 = 1/2 case gives a value of

v = 0.901+ 0.005.

This value is significantly larger than the value of 0.84 computed for void percolation

from two different sphere distributions (one equisized, one not) in [19]. However, that work

used only 5 different values of N that ranged from 100 to 10000 for the equisized case, and

used only 4 values (ranging from 100 to 3162) for the non-equisized cased. .4s demonstrated

here, much of that region did not seem to lie in the scaling regime. Also, fewer samples

were used for each value of N. The value of v calculated here is much more in line with the

value ??? reported for lattice calculations, and the value 0.89 + 0.01 reported for ordinary

continuum percolation [16]. It should be noted that the value of 0.84 given in [19] is not

completely out of line, given the errors for the different cases. We also note here that for

this and later comparisons with [19], that their non-equisized case had a different value of

rl /r2 = 1/4, and the number fraction of larger spheres was 0.2070 (instead of 1/2 for the

s

— _—. .



.

current study).

Using a value of l/(vD) = 0.37 (corresponding to v = 0.901), the values of PC(N). were

plotted against N-l/(”~l. Then a least-squares fit was done to fit a line through the values

for N ~ 2500 to obtain the value of the for N-ll(”DJ = O (N = co). These data are shown in

Fig. 2. From the plots, it is very clear that the values are significantly different. For rl/r2 = 1

we find that p= = 0.0301 + 0.0003, while for rl/r2 = 2 the value is p== 0.02S7 + 0.0005. Not

only are the values significantly different but from the graph it is clear that the extrapolation

to N = w will give different values. These values are very similar to the values given in

[19], but are much more precise, allowing the difference between the two values to be seen

clearly.

VI. CONCLUSIONS

We have precisely calculated the void perc~lation threshold for two distinct overlapping

sphere systems. First, as a benchmark, we have calculated a much more precise value of

the void percolation threshold for a system of equisized spheres. Then we have shown a

recent conjecture that this value might be universal for different sphere size distributions to

be false by calculating the void percolation threshold for a set of spheres with half of the

spheres having radii twice as large as the others.
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FIGURES

FIG. 1. Log-log plot of the standard deviation ApC(N) as a function of N for the case of rl = rz

(filled circles) and rl = r2/2 (filled squares). The lines represent a least-squares power-law fit to

the data. The case N = 312 is excluded from the fit since it appears to be out of the scaling

regime.

FIG. 2. Plot of pC(N) vs. N1/(vD). The solid line represents a linear fit to the rl = r2 data

for N <= 2500, while the dashed line represents the same thing for the rl = r2/2 case. The

y-intercepts for the two fits are very clearly different.
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