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Abstract

Statistical analysis of liquid seepage in partially saturated,
heterogeneous fracture systems :

by
Tai-Sheng Liou
Doctor of Philosophy in Civil and Environmental Engineering

University of California, Berkeley

Professor Nicholas Sitar, Chair

Field evidence suggests that water flow in unsaturated fracture systems may occur
along fast preferential“ flow paths'. . However, conventional macroscale continuum
approaches generally predict the downward migration of water as a spatially uniform
wetting front subjected to strong imbibition into the partially saturated rock matrix. One
possible cause of this discrepancy may be the spatially random geometry of the fracture
surfaces and, hence, the irregular fracture apeﬁure; Therefore, a numerical model was
developed in this §tudy to investigate the effects of geometric features of natural rock

fractures on liquid seepage and solute transport in 2-D planar fractures under isothermal,

partially saturated conditions.

The fractures were conceptualized as 2-D heterogeneous porous media that are
characterized by their spatially correlated permeability fields. A statistical simulator,
which uses a simulated annealing (SA) algorithm, was employed to generate synthetic
permeability fields. Hypothesized geometric features that are expected to be relevant for

seepage behavior, such as spatially correlated asperity contacts, were considered in the




SA algorithm. Most importantly, a new perturbation mechanism for SA was developed in
order to consider specifically the spatial correlation near conditioning asperity contacts.
Numerical simulations of fluid flow and solute transport were then performed in these
synthetic fractures by the flow simulator TOUGH2, assuming that the effects of matrix
permeability, gas phase pressure, capillary/permeability hysteresis, and molecular

diffusion can be neglected.

Results of flow simulation showed that liquid seepage in partially saturated
fractures is characterized by localized preferential flow, along with bypa;ssing, funneling,
and localized ponding. Seepage pattern is dominated by the fraction of asperity contracts,
and their shape, size, and spatial correlation. However, the correlation structure of
permeability field is less important than the spatial correlation of asperity contacts. A
faster breakthrough was observed in fractures subjected to higher normal stress,
accompanied with a nonlinearly decreasing trend of the effective permeability.
Interestingly, seepage dispersion is generally higher in fractures with intermediate
fraction of asperity contacts; but it is lower for small or large fractions of asperity
contacts. However, it may become higher if the ponding becomes significant. Transport
simulations indicate that tracers bypass dead-end pores and travel along flow paths that
have less flow resistance. Accordingly, tracer breakthrough curves gen'eral'Iy show more
spreading than breakthrough curves for water. Further analyses suggest that the log-
normal travel time model generally fails to fit the breakthrough curves for water, but it is

a good approximation for breakthrough curves for the tracer.



Statistical Analysis of Liquid Seepage in
Partially Saturated, Heterogeneous Fracture Systems

Copyright © 1999
by

Tai-Sheng Liou

The U.S. Department of Energy has the right to use this document
for any purpose whatsoever including the right to reproduce
all or any part thereof.







Table of contents
ADSEIACE wuviriitiinccniiniiinnissiinnsetesistessisesasstesssstsstssssstssssssostareasesesssssissessssssssessssasassass I
Table Of CONLENLS ....covruireeriieriierinecriissisiniinscnsiiestsrestssissessssssisssssssissssesssassessesessonses iii
LISt Of FIGUIES cuueeueeurevereneercerensenrrcsananesnessonsensessensessssessessessesessnontossssssstossssssessssnsasass vi
LiSt Of TabIES ....vvvueeeriiirireceniiiinniniitiencsenenestsseestsiseesssssssssssnisesssssssssssessesnes XV
LiSt Of SYMDOIS ..cuviereiiiiniriiinitnicinsintnentestssceesesessssssssssssessssssissosssssssassassnns xvi
Acknowledgments ..................................................................................................... xxi
L INITOAUCLION .cvecuieinriirieicriereisensisissesissisiesisiessssissesessssissesesssssssssessssesssnssssssessasesssseses 1
L1 MOBVAHON. <vvrreeesmeesvsssne s sessessnssssee oo 1
L2 ADDIOACH ...ttt aeaeas 3
1.3 ODJECLIVES ..uevrercrenrecnernviiisrcrsnsnunesanreneesssnssnsssasesssssmssnsescmsssssssssasssssssssesssnsss 6
II. Background — Fracture properties and fracture flow .........cccceeerierncnennvnccicininns 8
II.1 Surface properties of natural fractures .........ccceceveeiecinsinrensnsesncsnessienisnesenes 8
II.1.1 Fracture permeability ............... seteeessessatstst et et e esasn s as b s b s e banes 8
IT.1.2 Fracture apertlIe .......c.cevereeseessssseserssessnsessessesessessessessesssssssssssenes 11
IT.1.3 Surface roughness .......cccuumcuimsimssssssssimsisssssinsssssrsssasses 14
I1.2 Limitations and applicability of the cubic 1aw ........ccccceveeeveerrccvrnruennnne 16
III. Statistic Modeling of Fractures with Spatially Varying Roughness ........c.cc.ce.. 20
I 1 INEOQUCHION ..e.eveeieveseirercniescnescstsaeescessessessssnsssaesesssscssesssssesssssanssesseaens 20
I1.2 Simulated annealing algorithm ........cccceceeveerrerrererenenreeserseereesnessnesnsosans 21
IIL2.1 INitial SEATE ..covceevercueierncniienrcnncseescsnencsesaeseesessesssnsscsesaraensoness 22
II.2.1.1 Spatially correlated asperity contacts .........co.ceeeerceesunnne 23
II1.2.1.1(a) Indicator SIMulation .........c.ceceeeeerereecersneeecccanes 24
TH.2.1.1(D) KEZING ..cooneiniernerecrcernreennereeeesansneneseeseessnsses 26
11.2.1.1(c) Indicatpr KIIGING c.eeveeeeereetecereneeeeevesreeeeneeees 31

iii




IMI.2.1.2 Spatially random asperity CONtaCtS .......cceeceesmeunsueresnce 33

II1.2.2 Objective fUNCHON ....cvccoeviiererreressnssensassssssnsnssssssnsistsssssssscanssnes 34

I1.2.3 Perturbation mechanism ........c.ceeveeeenerieensennencsncsnncescnscccssances 38

I1.2.3.1 Modified Metropolis algorithm .......cccvveeeercenevencscnees 41

TL.2.4 Annealing SChedule ........oovenenieniiiieeenncniienccnistsnennennes 43

I11.3 Effects of spatial discretization on characterization of random fields...... 45

1.4 Examples of simulated random fields..........cccocveecivecncnininiinnnincninnnnnn. 50

IV. FIOW STMUIAHOI ...eeeureieirrenrecerinsiesesiesisiesssneesesassassssesssnsaasssssassssssansasasssseses 57
IV.1 FlOW SIIMUIALOT ..c..eeeiecmeeverernenseiissiesinesiesanasessessessnesansssesasontossessssssessos 57

IV.2 GOVErning €qUAON ......cccvverieererurrernenessesnerssnsssssssssnsssssssessesessesssscsssanssases 57

IV.3 Integral form of Richards’ equation ..........ceceeveeercseicsennnniinniniininncennnnes 60

IV .4 Verification of TOUGH2 .......cococevremriirensenrirericsnssnssnesessesassescssneseassoseos 66
IV.4.1 Test problem ......... reteeeereetenseseeseasnsstesssnesteresassan b et e ae s ea s s nerannnas 69

V. Seepage SIMUIAIONS ..coverereririerieierireeeeisinsneneenneseseeesestesesessstssssssseeannsasasenens 73

V.1 Setup of numerical simulations and factors affecting seepage in

13610111 - RN PR 73

V.2 Impact of spatial discretization on liquid SEEPAZE «..eerereeccrercriccreriseesennns 75

V.3 Seepage Versus. NOIMAL SIIESS ...evveeerererressesmarsnssessnsussccsasansisssssesnsnnas 79

V.4 Seepage dispersion and its dependence on asperity contacts .................. 99

V.5 Influence of anisotropy of asperity CONtacts ........oceeveereereerecnscnseensnne 107

V.6 Influence of anisotropy of permeability .........ccocevervreriererrererssecrensanne 117

VI. Tracer SETTIIIAIONS 1or e e emeeeeemeessessesmneesssessssssssssssessmsssesesesessssssasssssssssesoee 126
VI 1TIACET trANSPOIL . .c.veucerenieercreesisisisssrsssississssessesnesssssssnssassasaasasnssssnsasanens 126

V1.2 Episodic infilfration .......coevcvurerererueserecnnsreressesnsisesiensssssessesssssssessoneacene 135

V1.3 Limitations of space and time averaging.........c.ccoeveverveseerssraresessasensnenes 152

VII. Discussion and CONCIUSIONS ....ccccerrerririeeeeirriniissirnssiricsrerieeessenssseesrassessessenns 155

v



References ...

Appendix A

Appendix B
Appendix C

Appendix D

............................................................................................................ 162
Derivation of a semi-variogram model and its corresponding
COTTElAtioN fUNCLION .ueveverrreeeernerecrereeerareeseseaensacneneeresasssasssnsssssnessnes 170
Nugget effect of a semi-variogram model ..........ocecececreemveeniesencnss 175
Source code of the modified Metropolis algorithm........cccceueevenennes 179
Calculation of effective permeability ... 227

v




Chapter II
Figure I1.1

Figure I1.2

Figure I11.3

Chapter III
Figure II1. 1

Figure I11.2

Figure IIL.3

Figure [IL.4

Figure II1.5

Figure I11.6
Figure II1.7

List of Figures

Schematic representation of the parallel plate model .........ccceeveverereennnnnnen. 9

Change of void geometry in natural Stripa granites with respect
to normal stress, measured by Pyrak-Nolte et al. (1987) using
the Wood’s metal injection method. Asperity contacts (or
inaccessible pore space) appear as black regions, while regions
penetrated by Wood’s metal are white. Note that these
micrographs were taken from different portions of the same
SAMIPIE ..ooeeevirerereeriessesrenneesssestonnessnassoscassasaensessessssssasnsassessassassasstessessnsssases 13

(a) Schematic diagram of natural fractures idealized as smooth
and parallel plates, (b) Sketch of the capillary pressure as a
function of the saturation of the wetting phase fluid, for both
the parallel plate pore model and a real porous medium ...........ccceceerererenne 18

Sketch of a kriging system with three reference nodes ..........cccceeerveuennn... 27

A log-normal distribution with mean (¢ ) = 1.00 and standard
deviation (si¢ ) = 1.50. The permeaf)ility cutoff, (., in this plot
is 0.63 such that additional 15% asperity contacts (the shaded
area) are ProdUCEA .........covvvrueveiiriinusiiineiseenstsseeeaesssssssesescsssensacsassseses 34

Definition of lag offsets. Lag offsets are assigned such that
semi-variogram for a given pair of data will be calculated only
once. Fourteen lags are illustrated in this plot.....c..cccevveeeererreererenreeeennens 37

Update of simulated semi-variogram in a small grid where (uy,
uy) is the position of the random pair and w;; and wu;, are
separated from u; by lag vectors +h, and -h,, respectively.........cccueuu...... 39

Schematic definition of the neighborhood illustrated for the
asperity contact at (0,0) With [ =3 .....covevirirecernereereereeesenenesneeessesaenss 42

Concepts of the modified Metropolis algorithm............cceeeeeuereererereesceranee 43

Two realizations of spatially random and spatially correlated
asperity contacts in a grid discretized with A = 0.2m.......cveveeevevereevennen. 47

vi




Figure I11.8

Figure I1.9

Figure ITI.10

Figure IT.11

Figure II1.12

Figure ITI.13

Chapter IV
Figure IV.1

Permeability fields used for the sensitivity analysis. Each
permeability field is annealed with the modified Metropolis
algorithm in which realizations (a) to (c) are conditioned on
spatially random asperity contacts (Figure IIL7(a)), and
realizations (d) to (f) on spatially correlated asperity contacts
(Figure II1.7(b)). The correlation structure for each realization
is an isotropic exponential semi-variogram with nugget = 0, sill
= 190 (for realizations (a) to (c)) or 110 (for realizations (d) to
(D), and correlation lengths (Ar) = 0.4m or 0.8m. ............cu.........

Examples of spatially random (a and b) and spatially correlated
(c and d) asperity contacts. The correlation function of asperity
contacts for realizations (c) and (d) are two exponential semi-
variograms with nugget = 0, sill = 0.1875, but different
COITElation SCALES (AQ) weevereerereererrererrererrernrreeresesesesseseesesssesesessoses

Initial permeability fields corresponding to each of the
conditoning asperity contacts shown in Figure II9. A log-
normal distribution with mean and standard deviation of In{ as
1.0 and 1.5, respectively, was used to generate the un-
cOnditioned data.......cccvveeuerererrenrereeenrerieesresesesassesseessesesesesesanas

Permeability fields annealed with the Metropolis and the
modified Metropolis algorithms. Each realization was annealed
with an anisotropic exponential semi-variogram with nugget =
0, sill = 120, and correlation lengths (A;) = 1.6 m and 0.2 m in
the major and minor axes, respectively .........cccoceererrererereresrnnnens

Annealed permeability fields corresponding to the initial fields
shown in Figure II1.10. Each permeability field was annealed
with the modified Metropolis algorithm. The correlation
structure was an isotropic exponential semi-variogram with
nugget = 0, correlation length (A4) = 0.4m, and sill = 180.0 for
realizations a and b or 120.0 for realizations ¢ and d. Spatial
discretization (A) = 0.2IM0 e..ceveerereeeeieireeneerieeesreeesseseessesseseseossessans

Change of objective function during annealing, and simulated
semi-variograms after annealing for permeability fields
corresponding to those shown in Figure IIL.12..........ccccevevevenenen..

Relative permeability and capillary pressure from van
Genuchten’s formulas, with parameters chosen for coarse sands

vii

.............. 48




Figure IV.2

Figure IV.3

Figure IV.4

Figure IV.5

Figure IV.6

Figure IV.7

Chapter V
Figure V.1

Figure V.2

Figure V.3

Figure V.4

Figure V.5

Interfacial mass flux F¥across the interface Ann and
associated parameters in elements n and M.....cccocovererieererscnessccnssesensenes 63

Schematic diagram of the one-dimensional infiltration problem eeereoneeeens 67

Functional form of ¢@ versus § for a soil whose relative
permeability and capillary pressure functions are described by
van Genuchten’s fOrmulas.......cocveecinincencrnseeseestneercennesiscessnnesessecnesessens 70

Linear relative permeability and absoiute capillary pressure for
the soil considered in the test Problem .....c..ccvcvurreecnierrenscresrennnensiesennensacas 71

Analytical solution obtained by Philip’s method for the one-

dimensional infiltration problem with 6, =0.198 and 6p=0.45................. 71
Comparison of analytical and numerical solutions for one-

dimensional infiltration into a horizontal SOIl tUDE.......eeeeeeerirreeeirersersecnnenee 72
Idealization of the flow dOMAIM ....ccccceeenvirrrennriiensraeeeensenresssesssssssssesesessens 74

Schematic representation of flow lines diverted by anisotropic
asperity contacts which are represented as ellipses for
SIIPICILY cveeververeercnieisenenernecnisieseseescsacsensessssnensnsessssesensessssassacsssnssssssnens 75

Saturation at breakthrough (cases a to c) and steady state (cases
d to f) in synthetic fractures shown in Figure II1.8(a) to IIL.8(c),
with isotropic, spatially random asperity contacts with different
radii and grids with different values Of A ........ceuveereevveecieeeernereeereeeseesseens 77

Saturation at breakthrough (cases a to ¢) and steady state (cases
d to f) in synthetic fractures shown in Figure IT1.8(d) to IIL.8(f),
with isotropic, spatially correlated asperity contacts with
different correlation lengths and grids with different values of

Spatially random (case a) and spatially correlated asperity
contacts (cases b to e€), used as the conditioning data for
heterogeneous fractures. Radius (ro) and correlation length (Ao)
for asperity contacts are both 0.4 m. The correlation structure
for cases b to d is an isotropic exponential semi-variogram with
nugget = 0.0 and Sill = 0.1875. ...c.uereeeieeereeeeeereeeeeeeereeecresas et e e nnsene 80

viii




Figure V.6

Figure V.7

Figure V.8

Figure V.9

Figure V.10

Figure V.11

Figure V.12

Figure V.13

Figure V.14

Figure V.15

Figure V.16

Figure V.17

Synthetic fractures conditioned on spatially random asperity
contacts as shown in Figure V.5(a). The expected correlation -
structure is an isotropic semi-variogram with nugget = 0.0, sill
= 190.0 and correlation length (Ag)= 0.4m. Spatial discretization

Synthetic fractures conditioned on spatially correlated asperity
contacts as shown in Figures V.5 (b) to V.5(e). The expected
correlation structure is an isotropic semi-variogram with nugget
= 0.0, and correlation length (A;) = 0.4m. Sill numbers are
120.0, 115.0, 100.0, and 90.0 for realizations (a), (b), (c) and
(d), respectively. Spatial discretization (A) = 0.2m. ....cccceveeveeveeveecuerureacenes 82

Saturation at the time of breakthrough at the depth of -19.9 m,
in fractures with spatially random asperity contacts. Initial
water saturation is at the value 0f 0.15. c..eeriiiiiiecnreierccemereeressssseneecesessns 83

Steady state saturation in fractures with spatially random
asperity contacts. Initial water saturation is at the value of 0.15................ 84

Saturation at the time of breakthrough at the depth of -19.9 m,
in fractures with spatially correlated asperity contacts. Initial
water saturation is at the value 0f 0.15. ....eeeierivrcrerreeiiiinnnierscssssnreeeessessanne 85

Steady state saturation in fractures with spatially correlated
asperity contacts. Initial water saturation is at the value of 0.15................ 86

Arithmetic means of effective permeabilities in synthetic
fractures with spatially random and spatially correlated asperity
COMEACES ...uvevenererrctenreriincsineesaetessset st sssse s sessesessssesbenesssatensassnssssssssensoses 87

Vertical advance curves obtained from flow simulations with
spatially correlated fracture aSperities .......cccceereererereerersecnernenereeneenereseesenses 88

Histograms of time to breakthrough in fractures subject to
INCIEeasing NOIMAL SLIESS......cccererreereererrerreereseesesassessessessessassessessassessessassans 88

Transient and steady state saturation with localized injection in
fractures with spatially correlated asperity contacts..........ccceceeervereruererennne 90

Vertical advance curves and corresponding saturation in
synthetic fractures with spatially correlated asperity contacts.
Figures IV.16(a) and V.16(c) feature the effects of ponding and
flow funneling, 1€SPECLIVELY. ...ccevuecevrerecrrrerentrrerenireesnereseste e cseseeseseeenene 91

(a) Theoretical log-normal travel time model for different
values of the heterogeneity parameter, o, (Chesnut, 1992). The

154




Figure V.18

Figure V.19

Figure V.20

Figure V.21

Figure V.22

Figure V.23

Figure V.24

Figure V.25

Figure V.26

Figure V.27

mean travel time, <>, is fixed at 1.0 for all curves, which is
also the normalizing factor for the horizontal axis; (b)
Simulated BTCs for flow simulations in fractures with spatially
correlated asperity contacts. Note that the horizontal axis is the

travel time normalized by the mean travel time <f>.........ccececeververnen.

Results of fitting the log-normal travel time model to each of

the BTCs shown in Figure V.17(D) ....ccecerererrerenrrrererereerereresnenesseenenes

Saturation at breakthrough and steady state in fractures subject
to high normal stress, i.e., the total fractions of asperity contacts
is 40%. These results illustrate the effect of seepage retardation

(caseg a and b) and acceleration (cases c and d) due to ponding.........

BTCs showing the effects of seepage impedance (the solid
curve) and seepage acceleration (the dashed curve),
corresponding to flow realizations in Figures V.19(b) and
V.19(d), respectively. The dash-dotted BTC shows the

interchanging effects of seepage impedance and acceleration.............

Breakthrough curve and saturation at steady state in a synthetic
fracture subject to high normal stress. The competition between

gravity and ponding effects can be seen from the BTC. .....................

The degree of pondng in isotropic fractures with isotropic,
spatially random and spatially correlated asperity contacts, for

transient and steady state flow fields. .....c.ccceuveerruererrererrenans seesensensenns

Histograms of tyo, tso, and tgg for fractures with spatially random

ASPEIILY COMEACES u.vruirrvrsercreenesesiecsuseacosncsessesasesnsesessensasessssessssnesssseses

Histograms of tio, tso, and toy for fractures with spatially

correlated aSPErity COMLACLS ....cvivrecrerearereerenrererersessesseseenessesssessesensanens

Histograms of D for fractures with spatially random (cases 1 ~

4) and spatially correlated (cases 5 ~ 8) asperity contacts ..................

Isotropic permeability fields with anisotropic spatially random
asperity contacts. Radii of asperity contacts for each case are
indicated in captions. The subscripts 1 and 2 specifies the
longitudinal and transverse directions of asperity contacts. Each
permeability field is annealed with an isotropic semi-variogram

with nugget = 0.0, sill = 190.0, and integral scale = 0.2m..................

Isotropic permeability fields with anisotropic spatially
correlated asperity contacts. Correlation lengths of asperity
contacts for each case are indicated in captions. The subscripts

X

....... 98




1 and 2 specifies the principal and minor directions of asperity
contacts. Each permeability field is annealed with an isotropic
semi-variogram with nugget = 0.0, sill = 190.0, and correlation
length = 0.2M....cuvimieiiniicienineneeceercecarnssriseceecsansones eveesessseneteanes 109

Figure V.28 Saturation at breakthrough in synthetic fractures with spatially
random, anisotropiC asperity COMLACLS ........ceccorsuercencsecrrrmsusscnssnssssesesesees 110

Figure V.29 Saturation at steady state in synthetic fractures with spatially
random, aniSOtropiC aSPerity CONLACES ........cccevrrervurerercceeeruesressessesanenenes 111

Figure V.30 Saturation at breakthrough in synthetic fractures with spatially
correlated, aniSOtropiC asperity CONLACES...c.ccueurerervcrienreresserercseresseosessennns 112

Figure V.31 Saturation at steady state in synthetic fractures with spatially
correlated, aniSOtropic asperity CONtACES.....cc.covrevircrecerrererscrnnseesensessessessens 113

Figure V.32 Degree of ponding as a function of aniSotropy ratio of asperity
contacts, for transient and steady state flow fields. ........cccocecervrvrirucnennne. 115

Figure V.33 Coefficient of seepage dispersion (Ds) in fractures with
anisotropic asperity contacts that are spatially random or
spatially correlated........coeuinininninrinnisissicnnretecsnesessscsasessesessesnsssses 116

Figure V.34 Anisotropic permeability fields conditioned on spatially
random asperity contacts. The principal radii of asperity
contacts are 0.4m or 1.6m, and principal directions in N-S or
NW-SE. The anisotropic semi-variogram of permeability has
nugget = 0, sill = 190, and principal correlation length as 0.4 m
or 1.6 m. The minor correlation length is half of the principal
correlation length. The subscripts 1 and 2 for A; denote the
principal and minor directions, reSpectively........cccoueeereeerurreesrereerenesaeas 119

Figure V.35 Anisotropic permeability fields conditioned on spatially
correlated asperity contacts. The principal correlation lengths of
asperity contacts are 0.4m or 1.6m, and principal directions in
N-S or NW-SE. The anisotropic semi-variogram of
permeability has nugget = 0, sill = 120, and principal
correlation length as 0.4m or 1.6m. The minor correlation
length is half of the principal correlation length. The subscripts
1 and 2 for Ax denote the principal and minor directions,
TESPECLIVELY. c.vreecinriiccicitces ettt esae e e e sesasanasesesensnasesenses 120

Figure V.36 Saturaiton at breakthrough in anisotropic fractures with
spatially random, anisotropic asperity contacts shown in Figure
V3 ettt csar et be st st s e st s e s e st st sensananas 121

xi



Figure V.37

Figure V.38

Figure V.39

Figure V.40

Figure VI
Figure VI.1

Figure V12

Figure VI.3

Figure V1.4

Figure VL5

Figure VI.6

Figure VI.7

Figure V1.8

Figure V1.9

Figure VI.10

Saturation at steady state in anisotropic fractures with spatially
random, anisotropic asperity contacts shown in Figure V.34................... 122

Saturation at breakthrough in anisotropic fractures with
spatially correlated, anisotropic asperity contacts shown in
FIZUIE V.35 cuiiirntiicnirrinisnnsasisenssisssnestssssssinecsssnssssasaasssnens 123

Saturation at steady state in anisotropic fractures with spatially
correlated, anisotropic asperity contacts shown in Figure V.35............... 124

Comparisons of the degree of ponding in two flow scenarios,
one with isotropic permeability and the other with anisotropic
permeability. Synthetic fractures for both flow scenarios are
conditioned on the same anisotropic asperity contacts...........ccoeeercrcvenenee 125

Schematic partition of the pore space for two-water systems .................. 127

Vertical advance curve for the realization shown in Figure
VL19(d)erenieiirenniintrinenicsisssisncsisacsaetestssesisssssssssssssssasensssssssasessasasssenesasses 129

Snapshots of tracer transport with the steady state flow field
shown in Figure V.19(d) as the initial condition. .......cccceeeeveererrreeeereeennn. 130

BTCs of water and tracer transport shown in Figures V.19(d)
ANA VL3(A)..ccriieiriniririnrinneinennnerectssieitssissssessssasssssssessessssssossessesssssons 132

Fitted results of the log-normal travel time model to the water
and tracer BTCs shown in Figure VIA4..........cooivivoiennerereecncnensnesaesnnns 133

Initial conditions for tracer simulations: (a) the transient flow
field of water, which is approximately terminated at flux ratio =
0.5, and (b) its corresponding steady state flow field..........ccoveeeerreeruennne 134

Snapshots of tracer transport continued from the transient flow ‘
field in FIgure VLO(2).....cccceeverrerreecrerseeseeeneseesessesseeneesessessessasssssessessenses 136

Two tracer BTCs corresponding to simulations with different
initial conditions. (a) The initial condition is the transient flow
field in Figure V1.6(a); and (b) The initial condition is the

steady state flow field in Figure VLO(D).....ccccceverrverrrereerecneereesrenseesnesnens 137
Water BTC corresponding to flow field in Figure VL.O6()....cccceveeuevenenens 138
Schematic of episodic infiltration eVeNtS........c.cecerervceueeervecrercseerereesseenes 139

Xii




Figure VI.11

Figure VI.12

Figure VI.13

History of water saturation of five repeated wetting and drying
cycles. Each wetting cycle lasts for one day with a constant
injection rate of 107 kg/s, and drying cycle for 10 days. The top
two plots show the liquid saturation of a single wetting cycle at
breakthrough and steady state, respectively, with a continuous,
constant inJection Of 107 KE/S........c.vvurveesrseesrsenssseessnsssssssssnssnsssssssanses 140

Vertical advance curves of the first wetting and drying cycles,
and the single Wetting EVENL .........cccoveererrereereereneereeseecsenrerecesseesessessessesacons 141

Capillary pressure and relative permeability for the first and
second wetting cycles and the first drying cycle. .....c.cocveeceevcesernercreeunncn. 142

Figure VI.14 History of water 2 saturation of five repeated wetting and

Figure VL15
Figure V1.16

Figure VI.17
Figure V1.18
Figure VI.19

Figure V1.20

Figure VL21

Appendix A
Figure A.1

Figure A.2

drying cycles. The top two plots show the total water and water
2 saturation, respectively, for which water 2 is continuously
injected into the fracture after the 5-th drying cycle. The flow
fields for the top two plots are terminated at the time when

Qo Quop = 0.933 .ottt sr e 144
Change of saturation and capillary pressure at the top surface ................ 145
Change of accumulated mass of water 2 after the first drying

CYCIR e ttereteetrrtreienrerarsaesnesesaessssnsessesaassesssssssaernesnessaans revreserresaneseseseenes 146
Change of accumulated water 2 flux at the bottom boundary.................. 146
Saturation for episodic infiltration events with intensified rates............... 148
Vertical advance curves for episodic infiltration eVents ......c.e.cececeeereuencne 149

Saturation, relative permeability and capillary pressure at the
top surface for constant and sporadic infiltrations.........c.ceeveureeurvsccennee 150

Water and tracer BTCs for simulations using the macroscale
AVETAZING APPIOACKL ....ueeverrrervereerereereesesasaesesssessenrensasssssssssssssssassasessessanns 154

Scatterplot of random variables U and V .........cccooeervevcnrmecrenccennvseeenenn 171

Hlustration of an exponential semi-variogram and its
corresponding correlation fUNCHON.........cccvevvererrerseenensrerreerenenennrerannneas 173

X1ii



Appendix B
Figure B.1
Figure B.2

Figure B.3

Nugget effect due to SAMPING EITOT .....cveveverererreceeneneeeerererressssssessannes 177

Nlustration of nugget effect due to small-scale variability (from

Ae-MaISILY, 1986) ....covveuerreerrererserererineresereresasencsesesesssesesessssssesssessassesessess 178

Exponential semi-variogram and its corresponding correlation

function with nugget effect due to small-scale variability ...........ccuun... 178
Xiv




Chapter V
Table V.1

~

Chapter VI
Table V1.1
Table VL2

List of Tables

Statistics of normal and log-normal distributions fitted to the
sample data of D; in fractures with spatially random and

spatially correlated aSperity CONTACES..........cueveueeerereeceececnrereseesesesesessssses 103

Results of episodic iNJECtiON........ccvvrreerererurerererisiresseeeceeeeessnssssssessennes 149

Comparisons between the macroscale approach and the current

APPIOACK. ...ttt e e sasnessaess s se s sssas st senaesensnsesesenns 153
XV




List of Symbols

(A) Variables in Greek font

A spatial discretization of the flow domain [L]

Q a parameter used in van Genuchten’s formula for Pegy [L™']

D cumulative distribution function of a normal distribution

r boundary of an element within the flow domain

Achy) sum of squared differences of N(h,) pairs of {’s

IT Lagrangian multiplier

(S) vector of unknown variables in the flow system

o slope of the log-log plot of the power spectral density of roughness versus
frequency

B kriging weights

X a random fluctuation term when considering nugget effect due to sampling
error

£ a constant used to represent the bias of measurement when considering the
nugget effect due to sampling error

¢ porosity

v(h) semi-variogram at separation distance h

Yexpectea(hty)  expected semi-variogram of the permeability modifier at separation distance
h, '

Yuv spatial variability between random variables U and V in terms of semi-
variogram ,

n maximum allowable ratio of the number of perturbations to Kyax When the
objective function continues to increase after each perturbation

() the dimensionless variable used in Philip’s solution, function of 6 only

Kaceept maximum number of favored perturbations between two consecutive
reductions of temperature

Kmax maximum number of allowable perturbations between two consecutive
reductions of temperature correlation length of a random field [L]

Ak correlation length of permeability fields [L]

Ao correlation length of spatially correlated asperity contacts [L]

Ap profile length while measuring surface roughness using profilometers [L]

Ac mismatch length scale [L]

) viscosity [M/LT]

0 volumetric moisture content

xvi




8o

volumetric moisture content at the surface of the one-dimension, semi-
infinite soil column

initial volumetric moisture content in the one-dimension, semi-infinite soil
column

density [M/L3]

root-mean-square (rms) roughness of an individual fracture surface [L]
standard deviation of travel time [T]

surface tension between the wetting and not-wetting phase [M/T?]
temperature reduction factor, T < 1

the exponent used in van Genuchten’s formulas for k,; and Peap

range parameter of a semi-variogram [L]

correlation function

permeability modifier, { =k / ket

permeability modifier after shifting, i.e., {" = max ({~ ., 0), for spatially
random asperity contacts only

averaged permeability modifier in the entire neighborhood
cutoff permeability modifier, for spatially random asperity contacts only

(B) Variables in small-case Italic font

(m)
[iCu)]*

& 8

neighborhood in indicator kriging
estimate of the conditional probability at u by indicator kriging
coefficients in the system of equations of a kriging system

statistical distance on a scatterplot from a random pair (U;, V;) to the
perfectly correlated line (U = V) at 45°

gravitational constant [L/T?]

hydraulic head [L]

head drop across a unit length of fractures [L] -
fracture permeability [L%]

Boltzmann constant

reference permeability [L?]

liquid phase relative permeability

size of the neighborhood of an asperity contact
mean of a random variable

mean of natural logarithm of { -

total number of random pairs (U;, V;) on a scatterplot
standard deviation of a random variable

Xvii




sample standard deviation of D

Spq
Sa@) sample standard deviation of In(Ds)

st standard deviation of the { field

Sing standard deviation of natural logarithm of {
t time [T]

<t> mean travel time [T]

V4 elevation [L]

(C) Variables in small-case font

2b fracture aperture; hydraulic aperture [L]

by left-hand side fracture aperture in Figure 1.2 [L]

b, right-hand side fracture aperture in Figure 1.2 [L]

c nugget

d mechanical aperture [L]

h separation distance between two spatially random variables, h = lhl [L]

h, separation distance at r-th lag (or 7~th semi-variogram distance) [L]

n normal vector out of the boundary I"

nlag total number of lags at separation distance h,

DNyyz total number of grid points

p probability of occurrence of I(u)

p’ acceptance probability of an unfavored perturbation in a thermodynamic
system

Paccept acceptance probability of an unfavored perturbation.in a SA system

q mass sink/source [M/L*T]

Io radius of spatially random asperity contacts

u spatial location [L]

(D) Variables in capital font

A contact area, or interfacial area [L?]
Cy(h) covariance of two indicator variables separated by h (h = Ihl)
C(h) covariance of two random variables separated by h = lhl, also Cy(u;u;) or C;;

where h=lw;- ujl
Cov[U,V] covariance of random variables U and V
Cq flow rate constant used in the cubic law [1/LT]
D diffusivity [L/T]

xviii




fractal dimension
coefficient of seepage dispersion

sample mean of Dj

sample mean of the natural logarithm of D;

system énergy of a thermodynamic system

mass flux [M/LZT]

indicator variable at location u

Jacobian matrix

hydraulic conductivity [L/T]

distance from the center of an element to the interface [L]
fluid mass [M]

total number of { pairs at separation distance h,

total number of grid blocks within the neighborhood of all asperity contacts
total number of elements

total number of equations

total number of phases

objective function in SA

desired objective function at convergence, used to represent the global
minimum energy of the SA system

objective function of the initial field
pressure [M/LT?]

pressure difference [M/LTZ]

capillary pressure [M/LT?]

gas phase pressure, a constant IM/LT?]
volumetric flux through fractures [L*/T]
the residual matrix

liquid saturation

water saturation

scaled saturation, S” = (S, =S,)/(1-S,,)

residual saturation of the liquid phase

temperature parameter in a SA system (or in a thermodynamic system)
initial temperature in a SA system

volume of an element [L%]

volume of the liquid phase

bulk volume of a porous medium

Xix




WM upstream weighting factor

X mass fraction in a two-component flow system

Y estimation error between the true spatially random variable and its estimated
value from kriging

Z(u) a general spatially random variable at location u

(E) Subscripts

B fluid phase

l liquid phase

r r-th lag

norm properties associated with element n or element m

nm properties at the interface between elements n and m

Q) iteration index

(F) Superscripts

@ i-th component in a fluid phase

j time-stepping index

(G) Operator

\ gradient operator

XX

TR AN MR O A S RS I A Sl AT I S SRR Iy S ar i o £ P A IS WY K TR f S Y W ¥ YN



Acknowledginents

I would like to express my utmost gratitude to some very special people who.have

helped me greatly for my graduate study at Berkeley.

First of all, I would like to thank my major advisor, Dr. Nicholas Sitar, for his
guidance and patience during the period of my graduate research and the thesis writing.
In particular, I would like to give my special thanks to Dr. Karsten Pruess for his
professional guidance and support throughout the whole period of my graduate research
at the Lawrence Berkeley National Laboratory. I am greatful to Dr. Yoram Rubin for his
valuable advice and discussion on my research work. I also thank Dr. James Hunt and Dr.

Ted Patzek for their time and efforts in reviewing my dissertation.

I would like to thank the following fellow students at Berkeley, Sheng-Chieh

Chang, Wei-Cheng Lo, Julio Garcia, Li-Chiun Lee, Wen-Chin Lee, Yz-Yin Lin, Wei-
Hsien Lu, Alex Sun, Chyi-Shan Suen, Ru-Fang Yeh, and Jeong-Seok Yang for their
friendship and stimulating discussions throughout the years. I also thank Fu-Chung Wang
and Ting-Ruei Shiu for their constant support during my presidency of the Berkeley
" Association of Taiwanese Students (BATS). Especially, I would like to thank Fei-Wen

Chuang for her sincere friendship, and for making my spiritual life more fruitful.

Finally, I would like to express my deepest gratitude and love to my parents and

sisters, for their support, unconditional love, and always being by my side.

xxi

L .



Chapter 1. Introduction

I.1 Motivation

The conventional approach for field-scale analysis of liquid seepage in partially
saturated fractured media usually employs macroscale continuum concepts (Peters and
Klavetter, 1988). Macroscale volume averaging homogenizes hydrologic propetties of the
media, such as fracture and matrix permeabilities, and averages spatially variable inputs,
such as infiltration rates, applied at the system boundary (Pruess et al., 1999).
Consequently, downward water migration in such media is generally modeled as a
spatially uniform wetting front, which is subject to strong imbibition into the partially

saturated rock matrix (Wang and Narasimhan, 1985, 1993).

However, preferential flow of water and tracer has been observed in the field
under saturated or unsaturated conditions. At Rainier Mesa, highly localized flow of
water from fractures into drifts was found at depths of several hundred meters beneath the
land surface (Thordarson, 1965). At the Stripa mine in Swedén, localized flow paths of
water in fractured granite were identified from tracer experiments (Abelin et al.,1987),
and localized preferential flow was observed in saturatéd fractured granite (Long et al.,
1992). Strongly spatially variable solute concentration and channeling effects were also
shown at the Stripa mine (Neretnieks, 1993). At Fran Ridge near Yucca Mountain, lateral
" migration and preferential flow structures were observed in the densely welded and
fractured Topopah Spring tuff (Eaton et al., 1996). Near the Radioactive Waste

Management Complex at the Idaho National Engineering and Environmental Laboratory
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(INEEL), tracer experiments from the Large-Scale Infiltration Test (LSIT) revealed an
irregular distribution of tracer flow, mostly along vertical paths and less so along lateral
paths (Wood and Norrell, 1996). Localized preferential flow of water along nonhorizontal

fractures has also been observed in laboratory experiments (Nicholl ez al.; 1994).

Fast preferential flow paths have also been observed at the Yucca Mountain site
intended proposed as the Department of Energy (DOE) high-level nuclear waste
repository. Geologic units at Yucca Mountain consist primarily of welded and non-
welded tuffs, with varying degrees of fracturing in different units. The proposed
repository at the Exploratory Studies Facility (ESF) is at approximately 300 m depth. The
ESF lies within the unsaturated zone because the water table at Yucca Mountain is
approximately 600 m below the land surface. Fracture and fault permeabilities are
generally high, on the order of 1 — 10 darcies and 10 — 100 darcies, respectively (Ahlers et
al., 1996). In contrast, the matrix permeabilities are on the order of 1 — 10 microdarcies
(Flint, 1997). The contrast of permeability in fractures and the rock matrix suggests that
most of the flow must preferentially go through fractures and major faults. For example,
field experiments using environmental isotopes found elevated levels of *°Cl at several
locations in the ESF (Fabryka-Martin et al., 1996). If the effect of imbibition into the
partially saturated rock matrix were significant, the travel time of water from the land
surface to the water table would require thousands of years and the corresponding water
velocity was roughly estimated to be on the order of 50 mm/year (Pruess et al., 1999).
However, field experiment data (Fabryka-Martin ez al.,1996) suggest that water seepage

through Yucca Mountain occurs with velocities on the order of 10 m/year or faster
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(Pruess et al., 1999). In addition, calcite-coating data show that deposition is found
mostly within fractures and not within the matrix. Hence, the diffusion of water into the
rock matrix is very low. In summary, all evidence suggests that in semi-arid environments
water is able to migrate downward rather rapidly along localized preferential flow paths
through fracture networks in partially saturated rocks, without being imbibed into the

rock matrix.

1.2 Approach

Unsaturated flow in naturally fractured rocks is generally a multi-phase, non-
isothermal flow that occurs in a three-dimensional fracture network. A complicated
model is generally needed to model the actual fluid flow and transport in natural
fractures. However, the primary interest of this study is to understand the effect of
geometric features of natural rock fractures on gravity-driven liquid seepage in fractures
under isothermal, partially saturated conditions. Thus, the following assumptions have

been made to simplify the modeling:

a. Impact of the gas phase on seepage is neglected by assuming that gas phase
pressure is a constant. Namely, effects associated with the gas phase fluid,
such as the dramatic change of hydraulic characteristics of porous media by
trapped air (Faybishenko, 1995), are not considered in this study. For systems
with small capillary numbers, it is reasonable to ignore gas phase pressure. By
making this assumption, the total number of phases in the system is reduced‘
by one and only the balance equation of the wetting phase fluid (e.g., water)

needs to be considered for two-phase problems. Consequently, the remaining
3




unknown variables will be either liquid phase saturation for one-component
flow systems, or liquid saturation and mass fraction of the second component
liquid for two-component flow systems. Although the gas phase is assumed to
be stagnant, phase interference is still considered by specifying the relative

permeability of the aqueous phase.

. Matrix permeability and the interaction between the fractures and the
surrounding rock matrix is negligible. This assumption is based on the
following considerations. First, field data show that matrix permeability for
some rock types, e.g., welded tuff, is orders of magnitude smaller than fracture
permeability. Second, the effect of matrix permeability on seepage evolves at a
much longer time scale (months to years) than the effect of fracture
permeability (usually hours). For solute transport, molecular diffusion may
dominate the interaction between fractures and the rock matrix, which is also a
slow process. Thus, for shorter time scale simulations, the effect of the rock

matrix can be neglected.

. Hysteresis effects of capillary pressure as well as permeability are neglected.

Hysteresis of capillary pressure occurs when fractures are subject to repeated
wetting and drying cycles. Permeability hysteresis occurs when fractures are
undergoing repeated loading/unloading cycles. Since most simulations in this
study consider single wetting events without loading/unloading cycles,

hysteresis effects are not important.




In addition to the above assumptions, this study focuses on studying seepage
behavior in planar two-dimensional fractures that are conceptualized as 2-D
heterogeneous porous media. Approximation of 3-D fracture networks as 2-D
heterogeneous porous media is only applicable to small fractures in hard rocks of low
permeability, such as welded tuffs, graywacke, mudstones, granite, and some fractured
basalts. It would not be applicable to larger fractures with 3-D void space, or to small
fractures in rocks with significant matrix permeability, such as non-welded tuffs and
sandstones. Of course, 3-D flow effects cannot be adequately modeled in a 2-D
framework. However, such conceptualization is believed to be sufficient for the purpose
of fundamental understanding of flow and transport in 3-D fracture networks. An
immediate advantage of using such conceptualization is that the effective properties of
porous media, such as relative permeability and capillary pressure, can be subétituted for
fractures. Indeed, the similarity between porous media and fractures in terms of relative

permeability and capillary pressure has been verified experimentally (Persoff and Pruess,

1995).

Fluid flow in single fractures can be conveniently analyzed by a continuum
approach. However, important flow mechanisms in partially-saturated fractured rock
usually operate at microscales such that the macroscale volume-averaged parameters or
system of equations may not capture all the significant mechanisms. For example,
macroscale continuum approaches generally fail to predict preferential flow observed in

partially saturated fractured media such as Yucca Mountain. Furthermore, predictions
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based on macroscale continuum approaches may become totally meaningless if a great

volume of the flow system is bypassed due to fracture heterogeneities.

The following approach is then proposed to overcome the conceptual difficulty of
macroscale continuum approaches for modeling fluid flow and transport in variably
saturated fractured media. First, 3-D fracture systems are approximated as 2-D planar
fractures that are conceptualized as 2-D heterogeneous porous media. Volume-averaged
parameters for porous media such as porosity, permeability and capillary pressure are all
expected to show spatial variability. However, this study focuses on permeability
heterogeneity in the fracture plane. Heterogeneous permeability fields generated with a
statistical simulator at a high spatial resolution are used to characterize the porous media.
Then, a volume-averaged Richards’ equation is employed to model Fhe flow behavior in
the equivalent porous media. The difference between this approach and conventional
continuum approaches is that fracture heterogeneity (permeability) is explicitly
incorporated into the Richards’ equation. Thus, it is expected to capture important
seepage mechanisms that may be overlooked by continuum approaches, such as flow

bypassing and channeling.

1.3 Objectives

Based on to the evidence of fast preferential flow at sites with thick unsaturated
fractured zones, several researchers have proposed to conceptualize unsaturated flow in
heterogeneous fractured media as a stochastic distribution of localized seeps (Gauthier ez
al., 1992; Gauthier, 1994), i.e., the Weeps model. Although oversimplified, the Weeps

model is important because it implies the relationship between the fast preferential flow
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and geometric features of natural fractures. Accordingly, a mechanistic process model
combined with statistically characterized fracture heterogeneity is used herein to evaluate
flow and transport behavior of natural fractures. The appropriateness of the current
approach is judged on the basis of how relevant the assumptions of significant geometric
properties of fractures are to field observations. However, our ability to directly obtain
geometric characteristics of fracture void spaces from field observations is very limited.
Only input into and output from the flow system at the boundaries can be obtained from
field observations, which can be linked only implicitly to the assumptions for synthetic

rock fractures. Therefore, the objectives of this study are

(1) to evaluate what geometric features of natural rock fractures determine

gravity-driven liquid seepage in partially saturated conditions.

(2) to provide building blocks for a theory of liquid seepage in partially saturated
fracture systems, formulated in terms of statistical properties of ensemble of

seeps.

(3) to develop guidance for observing, sampling and testing in partially saturated

fractures systems, in order to obtain meaningful field characterization.




Chapter I1. Backgi'ound - Fracture properties and fracture flow

I1.1 Surface properties of natural fractures

Natural fractures are characterized by their spatially varying aperture geometry
and heterogeneous permeability. These properties are the result of the spatial variability
and correlation of the rough surface of fractures. Accordingly, the general approach for
characterizing natural fractures is to conceptualize them as two rough surfaces that
contact each other at discrete points, and are spatially correlated with each other at

different scales (Brown, 1995).

The topography (roughness) of fracture surfaces determines not only the
mechanical but the hydraulic/transport properties of fractures (Glover et al., 1998a;
Brown, 1987ab, 1989; Pyrak-Nolte et al., 1987; Brown and Scholz, 1985b; Kranz ef al.,
1979). While the shape, size, and number of contact points between fracture surfaces
control mechanical properties of rock, geor-netrical properties of fracture surfaces control
fluid flow in fractured rocks. Thus, geometric properties of fracture surfaces as well as the
resulting fracture permeability and aperture are important factors for understanding fluid

flow and solute transport in unsaturated fractures.

I1.1.1 Fracture permeability

Fracture permeability can be theoretically defined by the parallel plate model
(Witherspoon et al., 1980). This model has been traditionally used to study the steady

state, single-phase, isothermal and saturated flow of incompressible fluids in single




fractures. In this model, naturally rough fracture surfaces are idealized as two smooth,

parallel plates that are separated by a constant aperture (2b), see Figure I.1.

Idealized, parabolic
velocity distribution

l’

;

l" 4
l" f
A7/
g

§

.

.
.

/[

flaw

open natural fractures smooth, parallel plates
with varying apertures with a constant aperture

Figure II.1 Schematic representation of the parallel plate model.

Analytic analyses such as Bear (1972) show that fracture permeability (k) has the

following relationship to fracture aperture

_(2b)?
12

k 2.0

Equivalently, fracture transmissivity (T) is found to be proportional to the cube of the
. fracture aperture, ie., T = (2b)3. In addition, fluid ﬂui per unit drop in head can be

developed from Darcy’s law, which may be written in a simplified form as

Q_ 3
- =Cq(2) 2

where Q is the volumetric flow rate across the fracture, Ah is the head drop, and Cyisa

constant depending on flow geometry and fluid properties (Witherspoon et al., 1980).
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Equation (2.2) has been referred to as the “cubic law” in the literature. What is also
predicted from the parallel plate model is that the flow field within the fracture has a
symmetric parabolic velocity distribution, see Figure IL.1. This well-developed velocity
distribution has known to be contrary to field observations. Accordingly, the lack of
consideration of the spatially varying roughness and the spatial correlation of aperture is
the key to the failure of the parallel plate model to predict the real flow field in natural

fractures (Wang and Narasimhan, 1988).

Indeed, experimental as well as theoretical studies have shown that permeability
of single, natural fractures is a complicated parameter depending on several factors.
Kranz et al. (1979) found that the higher the surface roughness (the mean asperity height)
of jointed fractures, the slower the decline of permeability with increasing effective stress
(the difference between the external confining pressure and the internal fluid pressure). In
addition, they found that fracture permeability decreases nonlinearly with increasing
effective stress and increasing sample size. This trend indicates that effective permeability
approaches asymptotically to the lower limit at zero for fractures subjected to increasing
normal stress. It also implies that residual flow may exist even if the apparent fracture
aperture is essentially zero. The existence of residual flow in fractures at high normal
stress is consistent with experiments previously reported by Iwai (1976) and Raven and
Gale (1985). Walsh (1981) attributed the decrease of permeability with increasing normal
stress to the decrease of aperture, increase of contact points, and increase of tortuosity of
flow paths. In addition, fracture permeability measured in the laboratory exhibits a

significant hysteresis effect during loading and unloading cycles (Raven and Gale, 1985;
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Kranz et al., 1979). This is attributed to plastic deformation caused by crushing of

asperities in jointed fractures, or irrecoverable damage in intact rocks (Kranz et al., 1979).
Zimmerman et al. (1992) found that, regardless of the geometry of asperities, fracture
permeability decreases nonlinearly with increasing fraction of contact area. Experimental
data show that flow path tortuosity of natural fractures increases with normal stress
(Pyrak-Nolte et al., 1987). While Walsh (1981) suggested that tortuosity is not an
important parameter in estimating the flow rate through fractures, Tsang (1984) showed
that neglecting tortuosity effects may result in one to two orders of magnitude error in

computing the flow rate. Moreover, fracture permeability also depends on contact area.

- In general, factors confrolling fracture permeability include fracture aperture,
sample size, surface roughness, contact area, tortuosity, normal stress, stress history, scale
of measurement and rock type. Permeability measured in the laboratory is generally
several orders of magnitude smaller than that in.the field (Brace, 1980). Furthermore,
permeability of jointed rock is much greater than that of intact rock (Kranz ef al., 1979),

implying that fluid flow is confined essentially to joints and fractures in the rock.

IL.1.2 Fracture aperture .

An important aspect of modeling flow and transport in natural fractures is the
ability to describe their spatial variability of the aperture geometry. Although fracture
aperture can be inferred from surface roughness, it is generally difficult to measure
surface roughness in fractures in-situ, especially on a large scale. Another difficulty is
posed by multiple definitions of fracture aperture and orders of magnitude differences

between various definitions. The most commonly used definitions are "hydraulic
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aperture" and "mechanical aperture". The hydraulic aperture, 2b, is defined as the
constant opening between the two smooth surfaces in the parallel plate model. Reca}l that
it is related to the intrinsic fracture permeability (k) by k = (2b)%/12. The mechanical
aperture, d, is defined as the mean separation distance between two fracture surfaces that
are held parallel to each other. It is not a constant but varies non-linearly with normal
stress (Raven and Gale, 1985). In addition, the mechanical aperture depends on the details
of fracture surface topography as well as the elastic properties of fractures (Brown and
Scholz, 1986). Another definition of aperture is the "volumetric aperture” (Abelin et al.,
1987), i.e., the fracture void volume per unit fracture surface area. It is often orders of
magnitude larger than the hydraulic aperture and the mechanical aperture (Abelin et al.,
1987). In addition, hydraulic aperture may underestimate the mean residence time for the
water (Abelin et al., 1987). This implies that tracer breakthrough curves predicted from
the hydraulic aperture may have earlier arrival of the peak concentration than that

predicted from the volumetric aperture.

Much experimental research has been done in the last decade to explore the void
space geometry between fracture surfaces. Most experiments used fluid injection and
image processing methods to study this property of natural fractures. Mercury
porosimetry method is one of the method;_ used (Myer et al., 1993). However, the wood’s
metal injection method is more popular than the mercury porosimetry method. The
advantage of Wc;od’s metal is that it can yield the actual metal casts of the voids for the
same fracture in experiments at different stresses (Pyrak-Nolte et al., 1987). For example,

the micrographs in Figure I.2 were obtained by Pyrak-Nolte et al. (1987) by the Wood’s
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metal injection method to characterize the void geometry for a natural fracture in granite,

which is subjected to increasing normal stress from 3 MPa, 33 Mpa, to 85 MPa.

L ]
Wrhs o

oo Wit

Approximate scale

04 mm

Approximate scale

Approximate scale 0.4 mm

0.4 mm

Figure IL2 Change of void geometry in natural Stripa granites with respect to normal
stress, measured by Pyrak-Nolte et al. (1987) using the Wood’s metal injection method.
Asperity contacts (or inaccessible pore space) appear as black regions, while regions
penetrated by Wood’s metal are white. Note that these micrographs were take from
different portions of the same sample.

Figure I1.2 shows that contact areas generally increase nonlinearly with the normal
stress (Pyrak-Nolte et al., 1987). In addition, flow paths in the fracture plane becomes
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more tortuous as the normal stress increases. Since contact areas and voids are spatially
correlated, a contact point (or a void site) is likely to be surrounded by other points of
contact (or other void sites) (Pyrak-Nolte et al., 1990). This spatial correlation structure

could be numerically approximated by an exponential function (Coakley et al., 1987).

Based on direct measurement data, several researchers also found that roughness
cf natural fracture surfaces can be described by a characteristic length scale (Brown and
Scholz, 1986; Brown et al., 1986). The asperities are correlated below this scale and
uncorrelated above. Hence, this correlation length scale is called the mismatch length
scale, Ac. It may also be used as the cutoff wavelength for the scaling law of fracture
aperture (Brown, 1995). Namely, fracture aperture is scale dependent only if the

wavelength of roughness is smaller than A..

I1.1.3 Surface roughness

Surface roughness is a small-scale characteristic of natural fracture surfaces. It can
be measured in the field as well as in the laboratory by a profilometer (Brown et al., 1986;
Brown and Scholz, 1985ab, 1986; Power et al., 1987; Glover et al., 1998b). After
comparing the roughness of various natural rock surfaces, Brown and Scholz (1985a)
concluded that fracture surfaces are fractal in nature. Thus, the surface profile of an
individual fracture surface can be decomposed into a series of sinusoidal Fourier waves,
each of them have a wavelength, amplitude, and phase. Surface roughness depends on
sample size and the scale of observation (Brown and Scholz, 1985). For example, Brown

(1995) showed that the scaling law for an individual fracture surface can be written as ¢ ~
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?»p(“'l)/z, where o is the root-mean-square (rms) roughness (or the standard deviation of
the height of a fracture surface), A, is the wavelength of a sinusoidal Fourier wave, and
‘ocis the slope of the log-log plot of the power spectral density of roughness versus
frequency. Surface roughness is an important in controlling laminar flow through natural
fractures in theoretical, numerical as well as experimental studies (Walsh, 1981;
Brown,1987a; Pyrak-Nolte et al., 1987, Pyrak-Nolte et al., 1988; Brown, 1989;

Zimmerman et al., 1992).

The void space geometry in fractured rocks may span multiple scales. It may
range from a small scale (roughness), intermediate scale (asperity contacts, fracture
intersections and terminations) to large scale (network connectivity). This property is due
to the small-scale variability of an individual surface and the spatial correlation of the
contacting fracture surfaces. It is then expected that fluid particles will take a tortuous

flow path when moving through a real fracture.

Brown (1995) suggested that only a few parameters are needed to exhaustively

characterize natural fracture surfaces. These parameters are the rms roughness (c), fractal

dimension (Dy), and the mismatch length scale (A.). Fractal dimension is also used to

measure the scaling of fracture surfaces, i.e., G ~ A:D’ with o = 7 - 2D¢ (Brown, 1995,

1987a). Recall that the mismatch length scale is also defined as the cutoff length-scale
specifying the correlation/un-correlation of fracture surfaces. In reality, however, fracture
surfaces may vary over a broad range of wavelengths (or inversely, frequencies). Thus,

the unique cutoff mismatch length-scale employed in Brown’s model does not seem to be
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adequate for modeling real fractures. This difficulty has been overcome by Glover et al.
(1998) by taking 'into account the smoothly varying degree of mismatch in natural
fractures. Of course, fractal models are not the only approach of characterizing natural
fractures. Recent success of employing a statistical simulator other than fractal models for
generating synthetic replica of fractured rocks has been reported in the literature. For
example, Pruess and Antenuz (1995) used the turning band method (TBM) to generate

synthetic fractures in terms of fracture permeability.

I1.2 Limitations and applicability of the cubic law

Numerous experimental as well as theoretical studies have been done to
investigate the applicability of the cubic law to natural fractures. In general, the cubic law
appears to be applicable to fluid flow through loosely mated and open fractures, as well as
to fractures with high correlation between fracture surfaces (Nolte et al., 1989).
Experimental works by Witherspoon et al. (1980) and Iwai (1976) indicated that the
cubic law is generally valid independent of the rock type. In addition, numerical
simulations by Brown (1987) showeci that the actual flow rate asymptotically approaches
that predicted by the cubic law as the ratio of fracture aperture to rms roughness

increases.

However, the cubic law generally tends to overestimate the actual flow rate in
natural fractures. Tsang and Witherspoon (1981) found that the flow rate predicted by the
cubic law has to be reduced if surface roughness is taken into account. Brown (1987)
found that the actual flow rate is only 40% - 60% of that predicted by the cubic law if the

ratio of fracture aperture to rms roughness is one; but is increased to 70% - 90% if this
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ratio is between 2 to 4.24. Nolte et al. (1989) established an empirical power law of flow
rate to mechanical aperture based on flow experiments performed on Stripa granite. They
found that the volumetric flow rate is proportional to aperture raised to a power greater
than 3 and close to 8, suggesting that the cubic law may not adequately describe natural
fractures. In addition, permeability predicted from the cubic law was found to be orders of
magnitude higher than that measured from experiments (Kranz et al.,1979; Raven and

Gale, 1985).

In general, the cubic law is not applicable to rough fractures under high normal
stresses. As contact areas in fractures increase with increasing normal stress (Nolte et al.,
1989), the actual flow paths become more tortuous and channeled (Raven and Gale, 1985;
Brown, 1987b; Glover et al., 1998b; Pyrak-Nolte et al., 1987). Thus, Pyrak-Nolte et al.
(1988) found that the flow rate predicted by the cubic law for fractures at high normél
stress significantly differs from measured data. They suggested that this difference may be
a consequence of the dominating influence of a critical neck (the point of smallest

aperture along the paih of highest aperture) on flow through the fracture.

It is evident that natural fractures should be characterized by a spatially varying
aperture distribution. From a numerical point of view, some researchers, e.g., Pruess and
Tsang (1990), adopted the approach that fracture surfaces can be locally approximated as
two parallel plates separated with a constant aperture. In addition, the cubic law is
assumed to be locally valid within that pore space. However, several aspects need to be

considered before adopting this approach.
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Figure I1.3 (a) Schematic diagram of natural fractures idealized as smooth and parallel
plates, (b) Sketch of the capillary pressure as a function of the saturation of the wetting
phase fluid, for both the parallel plate pore model and a real porous medium.

Consider two pores idealized as parallel plates as shown schematically in Figure
II.3(a). Assuming that the pores are initially filled with a wetting. phase fluid. Also,
assuming that the system is connected to the right with the non-wetting phase, and to the
left the wetting phase fluid. The drainage process can be initiated if the pressure
difference between the wetting and non-wetting phase fluids is large enough to overcome
the capillary pressure P, ( = 20,4/b, ). Thus, the initial drainage curve will follow line ab
in Figure IL3(b). Subsequently, the system is drained from location 3 to location 2 in
Figure 11.3(a), corresponding to line bc in Figure IL3(b). Since the capillary pressure
needed to drain the larger pore (P = 2 G,y/b;) is smaller than P, the non-wetting phase
fluid will completely penetrate the larger pore as soon as the interface arrives at location 2
in Figure I1.3(a). This is reflected by line cd in Figure I1.3(b). After the wetting phase is
completely drained from the larger pore, an equilibrium capillary pressure (P.;) is

reached, which is indicated by the dashed interface at the left-hand side of Figure I1.3(a).
18




With the help of capillary pressure, the wetting phase fluid can be imbibed into the larger
pore if the pressure of the wetting phase fluid is slightly increased. Hence, the initial
imbibition process will follow line ef in Figure IL.3(b), and the interface will advance
from location (1) to location (2). Since the capillary pressure at the pore throat (location
(2) in Figure I.3(a)) is larger than P, the wetting phase fluid will be sucked into the
smaller pore as soon as the interface reaches location (2) in Figure II.3(a). Thus, the entire

imbibition process follows line efg in Figure IL.3(b).

In reality, however, the drainage/imbibition processes for a real porous medium
would follow the dashed curve in Figure I1.3(b). Moreover, if the flow velocity is large,
flow dynamics may become dominant at the pore throat where significant change of
surface curvature occurs. Counter-current eddies as shown by the dashed arrows in Figure
II.3(a) may develop due to the large flow velocity and may result in over-estimation of
flow rate calculated based on the parallel-plate model. Therefore, neglecting the small-
scale wall roughness of natural fractures may result in unrealistic approximation of the
real flow field in fractures. This is especially true for field scale applications because
idealizing field scale fractures as parallel plates certainly suffers from the difficulty of
capturing the small scale surface roughness. Overall, this overview shows that there is a
need to develop fracture flow models which adequately and re'alistically describe the

spatial variability of the fracture aperture. This is the approach pursued herein.
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Chapter III. Statistic Modeling of Fractures with Spatially Varying

Roughness

II1.1 Introduction

Modeling of flow and transport in fractured rocks or porous media very often
faces the problem of incomplete information ai:>01.1t {he heterogeneity of the media. Thus,
stochastic simulation has become a common tool for characterizing and visualizing
medium heterogeneity based on incomplete information. To reduce the uncertainty of
predicting heterogeneity, it is favored to incorporate field data from a variety of sources
into a simulator, e.g., borehole logs (Johnson and Dreiss, 1989), seismic data (Copty and
Rubin, 1995), and tracer concentration data (Dagan et al., 1997). Such simulations not
only try to reduce the uncertainty of characterization but honor the sample data.
Unfortunately, no stochastic simulators can perfectly reproduce the reality of the field and
most simulators canﬂot make use of all avéilable information. Moreover, some simulators
are restricted to Gaﬁssian random fields only, e.g., the turning bands method (TBM)
(Mantoglou and Wilson, 1982; Tompson et al., 1989), COVAR (Williams and El-Kadi,
1986; Abdel-Salam and Chrysikopoulos, 1996), and spectral methods (Shinozuka and
Jan, 1972). However, discrete or combinatorial optimization methods, such as simulated
annealing (SA), have shown great promise in their applicability to various random fields
and their ability to incorporate data from various sources into their models by formulating
a suitable 'objective function (Datta-Gupta et al., 1995; Deutsch and Journel, 1994). In

order to model fracture characteristics, the stochastic simulator needs to be able to model
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the following elements: (1) the presence of asperity contacts, (2) a gradual change
towards larger apertures away from the asperities, (3) fracture wall roughness, and (4)
spatial correlation structure of fracture aperture (Pruess and Antunez, 1995). Siﬁmlated
annealing (SA) is chosen in this study as the numerical simulator to characterize fracture

heterogeneity because it very well satisfies these objectives, as discussed next.
I1.2 Simulated annealing algorithm

Simulated annealing (SA) is an algorithm originally developed for combinatorial
optimization, i.e., optimizing a system with discrete variables. The heart of SA is an
analogy with a thermodynamic system i.e., the physical process of annealing materials
such as semiconductors and metals (Deutsch and Journel, 1994). It is effective for large-
scale systems with discrete variables (Kirkpatrick et al., 1983). However, it can also be
applied for optimizing a system with continuous variables (Press et al., 1986). It has been
successfully applied in a great variety of fields invoiving computer design (Kirkpatrick et
al., 1983), nonlinear geophysical inversion (Sen and Stoffa, 1991), and stochastic
reservoir modeling (Deutsch and Journel, 1994). In hydrology, SA was first employed by
Dougherty and Marryott (1991) for finding an optimal groundwater management strategy.
Several computer codes of SA are available in the literature. The computer code used in
this study is updated from the subroutine SASIM in the software library GSLIB (Deutsch

and Journel, 1992).

To be able to “anneal” the numerical system in a way similar to annealing a

thermodynamic system, a SA algorithm must contain the following four components: (1)
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an initial state, (2) an objective function that is to be minimized, (3) perturbation
mechanism, and (4) annealing schedule. (Deutsch and Cockerham, 1994), which will be

explained in detail in the following sections.
I11.2.1 Initial field

The initial field for SA can be a purely random field or a field that already shares
certain spatial features of the desired random field (Datta-Gupta ef al., 1995). For a purely .
random field, many perturbations may be needed to reach the optimal state. However, the
performance of the SA algorithm may be improved if the initial state already has some

spatial features (Johnson et al., 1989).

As mentioned in Chapter I, fracture permeability (k) is used to characterize
heterogeneous fractures. For convenience, permeability is scaled by a constant reference
permeability, k.r. The scaled permeability is called the permeability modifier and is
symbolized as , i.e., k = kee X {. A reasonable value of the reference permeability for
field-scale fractures, e.g., welded tuff, may be 10° m? (1000 d). Asperity contacts, i.e.,

regions with zero permeability, are simply modeled as { = 0.

All the initial states in this study are generated in the following two steps. First,
the conditioning asperity contacts are generated by a pre-processor. All conditioning data
are asperity contacts; however, not all asperity contacts are conditioning data, see section
IL.2.1.2. Two different pre-processors are used for generating the conditioning asperity
contacts. The difference between these pre-processors is their ability to consider the
spatially correlation of asperity contacts. Second, the un-conditioned grid blocks are filled
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with data drawn from a known probability distribution. The probability distribution used
in this study was assumed to be log-normal (see Eq(3.1)), but other distributions may also

be possible.

(3.1)

1 (lnC _mlnc:)z
f) \/Z_ES‘,,;C P|: 2Sf,g
Mean (¢ ) and standard deviation (siar) of the log-normal distribution, were chosen as
1.0 and 1.5, respectively. Note that SA does not require that the random field be Gaussian
(Dutta-Gupta et al., 1995). In contrast, the initial field can be drawn from a variety of
sources. For example, field sampled data (the conditioning data) plus random values

drawn from a known distribution (the un-conditioned data) may be used.

Asperity contacts with and without spatial correlation are considered in this study,
which are referred to as spatialiy correlated and spatially random asperity contacts,
respectively. Indicator simulation and Boolean sﬁnulation are the corresponding pre-
processors for generating these types of asperity contacts. Both pre-processors can be

found in GSLIB (Deutsch and Journel, 1992).
IT1.2.1.1 Spatially correlated asperity contacts -

Since fracture surfaces are spatially correlated to each other, asperity contacts
(regions where two fracture surfaces contact each other) are also expected to be spatially
correlated. Accordingly, the ;nicrographs shown in Figure IL.2 illustrate that asperity
contacts (the black regions) are clustered with a specific spatial correlation. Recall that
this spatial correlation can be approximated by an exponential function (Coakley et al.,
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1987). Moreover, these micrographs imply that the void space in a fracture plane can be
approximated by a binary process. Namely, the void space at a specific location in the
fracture plane is either closed (asperity contact) or open (aperture). Hydrologic parameters
in some porous media may also have this binary property, such as hydraulic conductivity
in sand-shale or sand-clay formations in fractured rock (Rubin, 1995), or effective
permeability in sand-shale formations (Desbarats, 1987, 1990). Statistically, a binary
process can be described by an indicator function (Journel, 1983). Therefore, indicator
simulation (Deutsch and Journel, 1992) used in geostatistics is employed herein to

simulate spatially correlated asperity contacts in natural fractures.

I11.2.1.1(a) Indicator simulation

Indicator simulation is a linear regression algorithm which sequentially updates
the estimation of a spatially random variable with conditioning information collected
from a suitable neighborhood (Deutsch and Journel, 1992). The size of neighborhood will
be discussed at the end of IL2.1.1(c). Indicator simulation is ideally suitable for
simulating binary variables, for example, asperity contacts and void space in a fracture

plane.

A binary, spatially random variable Z(u), such as the aperture field in natural
fractures, can be defined in terms of an indicator function I(u). Hereafter in this chapter, a
bold capital letter refers to a spatially random variable, while a italic capital letter is its
realization. The indicator function is a spatially random function (SRF), and can be

defined as
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1, probability = fi
I(ll)={ probability =p(u) forues s =asperity contacts (3.2)

0, probability =1-p(u) forugs ’
where u is the spatial coordinate. Likewise, we can define another indicator variable
(I’(w)) for the counterpart of the binary variable, e.g., void space in a fracture planej. That
is,

1, probability =1-p(u) forues’
I'(w)= ,s = void space (3.3)

0, probability = p(u) forug s’

The expectation of an indicator variable can be derived as

Eff(w)]=1-p(u)+0- (1- p(u)) =p(u) (3.4

i.e., the expected value of an indicator variable is its probability of occurrence. Similarly,

the expected value of I'(u) is 1-p(u). The variance of an indicator variable is

Var[X(w) |=E[ (T -E[1w)])?]=E[(1w) |- B[1w) [* = p@)-(1-p@) ~ (3.5)

Similarly, variance of the counterpart indicator variable (I'(u)) is also p(u)(1- p(u)). The

covariance of two indicator random variables separated by a distance h is

Cov[I(u), I(u+h)]=E[l(w) - I(u+h)]- p(u)- p(u+h)
=1-1-Prob{I(u)=1,I(u+h) =1}+1-0- Prob{I(u) =1, I(u+h) =0}
+0-1-Prob{I(u) =0, I(u+h) =1}+0-0-Prob{I(u) =0, I(u+h) =0}  (3.6)

—p(u) - p(u+h)
=Prob{ I(u) =1, I(u+h) = 1}- p(u) - p(a +h)

An SREF is stationary if its cumulative distribution function (CDF) is invariant to

spatial translation. Therefore, the mean and variance for a stationary SRF are constants,
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and the covariance depends only on the magnitude of the separation distance (thl or h). If
the indicator random variable I(u) isa sfationary SREF, its mean, variance and covariance

can be rewritten as

E[I(w) ]=p
Var[Kw) J=pl-p) (3.7)
Cov|[I(u), I(u+h) |]=Prob{I(w) =1, I(u+h) =1}-p*> =C,(h)

The non-centered covariance of I(u) and I(u+h), i.e., E[I(u)-I(u+h)], can then be rewritten
as
E[I(u) - I(u +h)] = Prob{I(u) =1, I(u+h) =1}

= Prob{I(u) =11I(u+h) =1} Prob{I(u+h) =1} (3.8)
=Prob{I(u)=11I(u+h)=1}p

where Prob{I(u)=1l I(u+h)=1} is the conditional probability of the indicator random
variable at u given that the indicator random vaﬁable at u+h is 1. Equation (3.8) is the
basis for indicator simulation. A suitable regression algorithm, e.g., kriging, can be used
to estimate and update the conditional probability of Eq(3.8). Information for the update
processes is provided by the available data collected within the neighborhood of the node

being estimated.
I11.2.1.1(b) Kriging

Kriging is a linear regression algorithm which estimates an SRF at a particular
position from the information collected in its neighborhood. It is also called the “best
linear unbiased estimator” (BLUE) (Isaaks and Srivastava, 1989). The term “best” is used
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because its variance of error is minimized; it is “linear” because its estimates are
weighted linear combinations of existing measurements; it is “unbiased” because its mean
residual (mean error) is zero. Derivations in this section follow the line given in most

textbooks of geostatistics, such as Isaaks and Srivastava (1989).

Figure III.1 Sketch of a kriging system with three reference nodes.

For example, in Figure 1.1, we want to estimate the variable (Z) at an unsampled
location, wo. In kriging, this estimate is written as a weighted linear combination of the

measurements from w; to us,i.e.,

3
Z'(u,) =B, +Zﬁ,-<u)Z(u,-> (3.9)

where Z} (up)is the estimate of Z at wo, Po is a correction term reflecting the

measurement bias, f; are the weights, and Z(u;) are the measurements at location u;. The

subscript K refers to different weighting methods, either simple kriging (SK) or ordinary
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kriging (OK). The difference between simple kriging and ordinary kriging will be the sum
of the weights, see the end of this section. Generally, there will be an arbitrary number of
measurements such that the upper limit of the summation in Eq(3.9) can be replaced by

an arbitrary integer n. Then, a more general equation is

Z'(u,) = B, +Zﬁ,.(u)Z(u,.) (3.10)

which simply means that the estimation of Z at location up is a weighted linear
combination of n measurements from uy, uy, ..., to Uy, plus an arbitrary constant . The

estimation error (Y) of Eq(3.10) is defined as

Y = Zw) - Zy(w) = Zp-B—3 BOZw) (3.11)

i=l

where Z(up) is the true value of Z(u) at wy. To ensure that kriging is an unbiased

estimator, the expectation of Y must be zero. From Eq(3.11) it yields
E[Y)=E[Zu)-Z,@)] = mw)- §, Y, B,@m,) =0 (3.12)
i=1

where m(u;) = E{Z(u)}is the location dependent mean values of Z at w;. Therefore, the

constant 3 in Eq(3.10) is

By =m(u) - Bwmu,) (3.13)
i=1

Substituting Eq(3.13) into Eq(3.10) yields
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Zy(u,)=m(uy) + zn:ﬁ W [Z(w;) - m(u,)] (3.14)
i=1

which is the estimation equation used in kriging. The estimation error, Y, can then be

rewritten as
Y =2(0,) ~Z (0)=Zitg)—m(y) -5 B, @) Zlw) ) 1=, ¢, @] Zw)-mw)] (3.15)
i=1 i=0

where ag(u) = 1, and a;(u) = - B; for i = 1, ..., n. Then, the variance of Y can be derived

as

Var[Y]= Zza,. (Wa,(u)C,(u;,u;) (3.16)

i=0  j=0
where Cj(u;, u;) is the covariance of random variables Z(u;) and Z(u;). To minimize

Var[Y], the following system of equations has to be satisfied

.ala_r[ﬁ:Z Zn:a.(u)Ci.(u,.,u.) =2 ao(uo)Cio(u,.,uo)+zn:a.(u)Ci.(ui,u.)
aa, =0 4 v I = J ij J
3.17)
= Z{Cio(ui’uo) _Zﬂj (u)cij(ui’uj)} =0
j=1
The minimum of Var(Y) occurs when
Zﬂj(u)cij(ui’uj)=Ci0(ui3uo),i=13°“9n (3.18)
j=1

which is called the normal system of equations. For a stationary SRF, the means, m(u;),

can be written as a constant m. Stationarity is usually the basic assumption of simple
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kriging. Therefore, the estimation function, the normal system of equations, and the

estimation variance of simple kriging are written as

n

Z, (u,)=m+ 2 B w)[Z(u,)—m]= Z BE)Z(u,)+|1- 2 B (u) [m(3.19)
i=1

i=1 i=l

n

z B;* W)Cy(u, —u;)=Cy(u; —uy) , i=1-,n (3.20)

j=1

2
n

Ssx = E[(Z(uo) ~Zy (“o))2 ]= E zai (Z;(w,)~m)
=0 (3.21)

= Zzaiajcij(ui —u;)=Cy —ZﬂiSKCiO(ui —u,)

i=0 j=0 i=0

where ap=1,and a;=— B fori=1, ..., n.

The difference in the bracket of the last term in Eq(3.19) is zero if the sum of

kriging weights is one. This is one of the requirements for an ordinary kriging system.
Thus, the estimation Zg (u,)can be simplified as a linear combination of the n

measurements, without the need of knowing the constant mean value m. This constraint

can be solved by introducing a Lagrangian multiplier I(u), i.e.,

Zoy (uy) = ZB.-‘”‘ (WZ(u,) (3.22)

Z B (w)C;(u; —u;)-II(u) = C,o(u, —u,)
Jm

Zﬁ}”{(u)ﬂ Ji=1,nm
. j=l
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2

Sox = E[(Z(uo) - Z:u{ (“o))2 ]= E zai (Zi (w;)— m)
i=0 (3.24)

- ZZaia Cy(u, —u,)=Cyy -z B Co(w, —up) +TI(w)
i=0

i=0  j=0

where ap=1,and @;=— B fori=1,...,n.

I11.2.1.1(c) Indicator kriging

Considering the binary process of asperity contacts versus void space in a fracture
plane, the appropriate indicator random variable can be defined as Eq(3.2). To simulate
such binary process in space, it is equivalent to asking the following question: what is the
conditional probability that the indicator variable at location u is 1 given that the indicator
variable at location u+h is also 1. This is exactly the conditional probability given by
Eq(3.8). Thus, indicator kriging is aimed at providing an unbiased estimate of the
conditional probability, but not at estimating the indicator variable itself at location u
(Deutsch and Journel, 1992). For convenience, the conditional _probability estimated by
indicator kriging is written as [i(u)]”. This conditional probability is equivalent to its

conditional expectation because
)] =Prob{I(u) =1|I(u+h) =1 }=Prob{I(w) =1|(m} =E{Iw|m)} (3.25)

where (n) represents the neighborhood of location w. The size of neighborhood grows as
more data, either from measurements or recent estimations, become available. The value

of [i(u)]" can be estimated either by simple kriging or ordinary kriging. From the
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properties of indicator function, i.e., Eq(3.7), it is known that the mean of an indicator
function is its probability of occurrence. Since this probability is assigned prior to
indicator simulation, it is appealing to use simple kriging instead of ordinary kriging.

Therefore, [i(u)]* can be estimated by

i, = Prob{I(w)=1|(n) };K
= z B (w)I(u,)+ 1—2@“ (u) [Efi(u)} (3.26)

i=1 L i=1

n n

=Z B (w)I(u,)+ 1—213,-“ (w|p

i=1 i=

The normal equations are

n

Zﬁf"(u)cl(u,.—uj)=cl(ui—uo) ,i=1-n (3.27)

j=1

where I(u;) are realizations of indicator variable in the neighborhood (n), and Cy (h) =

Cov {I(u), I(u+ h)} is the indicator covariance. If I(u) is stationary, Cy(h) is equivalent to

Ci(h).

Indicator simulation starts from a random location, searches the neighborhooél of
that location to find enough conditioning points for performing kriging, and then updates
the conditional probability. This updated conditional probability is compared with a
randomly drawn probability (p) to determine the value of the indicator variable at that
location. If the random probability is smaller than or equal to p, the indicator variable is
set to 1; otherwise it is set to 0. Subsequently, another random path is taken and the above
procedures are repeated. Note that the neighborhood () for subsequent updates consists

of the original data and the previously simulated indicator values. Thus, even if the
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indicator simulation starts initially from a null field (no conditioning data at all), it
becomes a conditional .simulation as long as the neighborhood contains information that
was previously simulated. Deﬁﬁing the size of neighborhood for the indicator simulation
is equivalent to specifying the search method. An efficient way of searching is not to
search all the nodes on the grid but to search a limited number of nodes that are close
enough to the node being estimated. The “closeness” is evaluated by the variogram
distance (or lag, see section II1.2.2), i.e., a node is close to the estimation node if their

relative distance is smaller than the variogram distance (Deutsch and Journel, 1992).

I11.2.1.2 Spatially random asperity contacts

Boolean simulation is a process that distributes geometric objects in space
according to a desired probability law (Deutsch and Journel, 1992). The Boolean
algorithm in GSLIB randomly generates two-dimensional ellipses or circles with

specified radii, orientations and aspect ratios.

Boolean simulation starts from a random point in space which is the centroid of a
geometric object that is going to be formed. The geometric object, either isotropic (a
circle) or anisotropic (an ellipse), is constructed by add@ng “mass” around the centroid
until this object satisfies the randomly selected radius, orientation, and anisotropy ratio.
Subsequently, another random centroid is chosen and the above procedure is repeated

until the specified total fraction of asperity contacts is reached.

In order to generate asperity contacts and simulate the gradual change of aperture

away from asperity contacts towards larger aperture between asperities, the original log-
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normal sample is shifted to the left by a constant (., i.e., {'=max({ — ¢, ,0), such that

additional asperity contacts are produced. Figure IIL.2 shows that if (. is 0.63, additional
15% asperity contacts are produced. These additional asperity contacts are un-conditioned

data, which may be free to move while being perturbed in a SA system.

04

additional asperity contacts

Figure IIL.2 A log-normal distribution with mean (mr) = 1.00 and standard deviation
(Sing) = 1.50. The permeability cutoff, ., in this plot is 0.63 such that additional 15%
asperity contacts (the shaded area) are produced.

I11.2.2 Objective function

An objective function, or energy function, is used to transform the SA system into
an optimization model. It is a measure of the difference of some spatial features between
the desired distribution and the realization. In this study, the objective function is defined
as the normalized squared difference of the semi-variogram between the realization and

an expected distribution, i.e.,

n \ _ 2
O = O 1 i b’ (hr) yexpected (hr)] (328)

initial yezxpectcd (h,)
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where v ’(h,) is the semi-variogram at separation distance h, of the permeability modifier

field (§), i.e.,

N{hy)

y(h,) = [Zw) -z +1)) =E{Zw-Z@+h)*]  (3.29)

2N (h,)

Yexpected(hy) is the expected semi-variogram of €, Ojnisial is the objective function of the
initial field, and ny,, is the total number of lags for y(h,). The lag h, has to be defined in

such a way that the same data pair will not be calculated twice. This definition is

illustrated in Figure IIL.3. The squared difference in Eq(3.28), i.e., [y' (B,) = Vexpectea (h,)]2 ,

is normalized by 'yzexpecwd(h,) to give more weight to small values of Yexpectea(h,). Note that
the term within the outer bracket in Eq(3.28) is further weighted by a factor 1/Ojxisar. This

is for mathematical convenience such that the objection function (O) always starts from 1.

The semi-variogram in Eq(3.28) of the numerical system can be calculated using

the following equation

N(h,)
E[g(ui)_C(uj)]z
7b,) =22

#of Qui —uj|=h,)

Lj

_1A®M,)
2 N(h,) (3.30)

where N(h,) are the total number of { pairs at lag h,, and A(h,) is the sum of sqﬁére_d )

differences of N(h,) pairs of {’s. Recall that, in Chapter I, the spatial correlation of the

void space as well as asperity contacts can be approximated by an exponential function.
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Therefore, it is assumed that the (field has an exponential correlation function.

Therefore, Yexpected(hy) in Eq(3.28) can be written as

Yexpectea (B,) =C+ sZ {l—exp(—%’-) } =c+ sz {1 —exp(__ 3? ] } (3.31)

where c, the nugget, is assumed to be zero in this study, sz is the variance of the { field,

A is the integral scale (correlation length) in the principal direction, & is the range
parameter, and h, is the magnitude of the separation distance h,. Definitions of A and &
can be found in Appendix A. The physical meaning of range is that, at this separation

distance, the value of semi-variogram is 95% of sz . Or, equivalently, the value of the
correlation function is 5% of sf . Thus, the random field is practically un-correlated as

long as the separation distance is greater than the range (see Appendix A for details). In
addition, the range is three times the correlation length for exponential models. The
nugget effect is caused by small-scale variability and/or sampling error (Isaaks and

Srivastava, 1989), which is explained in Appendix B.

Equation (3.31) is an isotropic semi—variograrﬁ. For anisotropic semi-variograms,

Eq(3.31) can be modified as
Y (nY
chpected (hr) = Yexpecwd (hl,hz) =0+ SZ 1 —exXp —\/(Zx] + [Zz] (332)

where the subscripts 1 and 2 denote the longitudinal and transverse axes, and hy, h; as

well
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Figure III.3 Definition of lag offsets. Lag offsets are assigned such that semi-variogram
for a given pair will not be calculated twice. Fourteen lags are illustrated in this plot.
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as A, A, are the separation distance and correlation lengths on the longitudinal and
transverse axes, respectively. Anisotropy such as in Eq(3.32) is called the “geometric

anisotropy” (Isaaks and Srivastava, 1989).

Calculating vy ’(h,) in Eq(3.28) may be a time-consuming task if the grid size is
large. To reduce the computational effort, Deutsch and Cockerham (1994) proposed an
efficient method of updating v ‘(h,). Since only one random pair is perturbed at a time,
v’(h;) needs not to be recalculated at each perturbation but can be updated based on
previous information. This is illustrated in Figure IIL4. Consider the random pair, {(u,)
and {(uy). For a particular lag h,, the neighboring data points contributing to updating
Y ’(h,) are shown as solid circles; whereas data points contributing nothing to updating
v’(h,) are marked with hollow circles. Therefore, v '(h,) can be updated by the following
equation
[ 2 T

A(h,>+2[—(§(hl)-c<u“»2+(c<u2)—c<u,.-»2]
i=1 (3.33)

2N(h,) 2
I +z[—(§(u2)—§(uzi))2+(C(u1)_g(uzi))2]

i=1

1

v'(h,)=

where A(h,) is the sum of squared difference of { pairs from the previous perturbation.
II1.2.3 Perturbation mechanism

Starting from the initial field, SA selects a random pair of data points before each
perturbation. Each data point in this pair has to be un-conditioned data. The system is

then perturbed by comparing the system energy before and after swapping the locations of
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C(uy,)

@ : grid point that is to be perturbed

@® : grid point at which variogram is re-calculated
O : unchanged grid point

h : r-th lag vector

r

Figure .4 Update of simulated semi-variogram in a small grid where (u;, uy) is the
location of the random pair, and u;; and u;, are separated from w; by lag vectors +h; and
-h,, respectively.
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the two data points. If the system energy decreases after a perturbation, the two data
points will exchange their locations. Otherwise, the system remains unchanged. This
process is repeated until the system reaches the state with the minimum energy (Op;y); or
stopped when the number of perturbations is beyond an upper limit. Other perturbation
mechanisms may also be used. For example, one possible mechanism is to randomly
select a data point and replace its value by a new one draw_n from a specific probability

population (Datta-Gupta, et al., 1995).

The critical drawback of the above perturbation mechanisms is that the minimum
energy Omin at convergence may be a local minimum but not global. This is because such
perturbation mechanisms always favor the paths with decreasing energy, and the paths
with increasing energy are unconditionally rejected. To correct this shortcoming,
Metropolis et al. (1953) proposed an algorithm such that an unfavorable perturbation can
also be accepted with a certain probability. By conditionally accepting an unfavorable
perturbation, the system is able to jump out of a local minimum. Then, the optimal system
energy at convergence can be close to the global minimum (Press ef al., 1986). The
perturbation mechanism of unconditionally accepting a favored perturbation but
conditionally accepting an unfavorable perturbation has been referred to as the

“Metropolis algorithm”.

From the theories of thermodynamics and statistical physics, the probability of
changing the system energy from E; to E, can be described by the Boltzmann distribution

(Metropolis et al., 1953), i.e.,
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’ —(E,-E) — :AE_
p —exp[ 6T ] exp[ kBT] (3.34)

where kg is the Boltzmann constant, and T is the temperature. The probability in Eq
(3.34) is modified in SA to represent the probability of accepting an unfavorable
perturbation. By letting kg = 1, AE = AO (change of objective function before and after a
perturbation), and T = temperature parameter in SA, the acceptance probability in SA is

approximated as

-AO
Piceept =CXP[ T ] (3.35)

I11.2.3.1 Modified Metropolis algorithm

As mentioned earlier in Section IIL.1, a realistic representation of natural ﬁacunes
must model the gradual change from zero aperture at asperity contacts toward larger
apertures between asperities. However, preliminary tests of the Metropolis algorithm
showed that it may not be adequate to achieve that goal because it is not “sensitive
enough” to simulating “simply connected” (in the topological sense) asperity contacts.

Thus, a modified Metropolis algorithm was developed as a part of this study.

The concept of “neighborhood” was introduced in order to modify the Metropolis
algorithm. The neighborhood of an asperity contact is defined as an un-conditioned grid
block that the distance from the center of this grid block to the center of the aspenty
contact is smaller than or equal to [ grid block units. For example, the 28 gray blocks

shown in Fig. IIL.5 are the neighborhood of the asperity contact located at (0,0) with [ = 3.

41




The purpose of introducing neighborhood to asperity contacts is to treat the regions near
and far from asperity contacts separately, and to emphasize particular features of the

region near asperity contacts.

Figure ITL.5 Schematic definition of the neighborhood illustrated for the asperity contact
at (0,0) with [/ =3.

The Metropolis algorithm is then modified by taking into account the relative
locations of the grid blocks in a random pair. If the objective function decreases after a
perturbation, this random pair is accepted unconditionally. However, the locations of the
random pairs become important if the objective function increases after a perturbation. If
both of the grid blocks are in some neighborhoods, or none of them in any neighborhood,
this pair is still evaluated probabilistically by Eq(3.35); otherwise, this pair is accepted
only if the grid block located in a neighborhood has a larger value of { than the grid block
that is not in any neighborhood. In o;her words, it is favored to introduce grid blocks with

small values of { into neighborhoods of asperity contacts. Figure L6 illustrates the idea

of the modified Metropolis algorithm. Also, see Appendix C for the source code of the
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modified Metropolis algorithm. Note that the modified Metropolis algorithm reduces to

the Metropolis algorithm if the size of neighborhood (J) is zero.

- conditioning O decreases, accept

asperity contacts 2 | Oincreases, accept with p = exp(-AO/T)
neighborhood [‘EI(_ _ O decreases, use Metropolis algorithm

(un-conditioned) O increases, accept only if £(u,) < {(u,)

Figure III.6 Concepts of the modified Metropolis algorithm.

I11.2.4 Annealing schedule -

While annealing a material, the temperature in the thermodynamic system is
lowered gradually until the system reaches the state with the minimum thermal energy. To
numerically simulate the thermodynamic processes of annealing, it is then necessary to
define, in the numerical system, a controlling parameter which acts like the real
temperature in the thermodynamic system. In the SA algorithm, the controlling parameter
is also called “temperature”. Thus, the annealing schedule is the specification of the

timing and magnitude of the temperature reduction in the numerical system.
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Since the temperature in a real thermodynamic system is lowered continuously, it
reflects that all particles in the system experience the same temperature as they .cool
down. In SA systems, however, only one random pair is chosen at each perturbation. To
model the simultaneous temperature reduction analogous to a thermodynamic system, the
temperature parameter in SA systems has to be lowered piecewise but not continuously.
Numerically, this can be done by lowering the temperature when either one of the
following two conditions is satisfied: (1) the number of favored perturbations exceeds the
upper limit, Kaccepr; OF (2) the total number of perturbations (either favored or rejected
perturbation) after the previous perturbation at which the temperature is lowered exceeds
the maximum allowable value, Km.x. If one of the above two conditions is satisfied, the

temperature will be lowered by a factor T (T < 1).

A suitable annealing schedule should be chosen such that Ty is as large as
possible, and 7T is as small as possible. However, such annealing schedule is at the
expense of large amount of computations, especially when the grid is finely discretized.
Therefore, a compromise between good annealing results and a reasonable computational
effort is necessary. Based on our experience, the following annealing schedule is
satisfactory, i.e., To= 1.0, T= 0.9, Kmax= 50 Nyy, Kaccept = 5 Dxyz, M = 3, Omin = 10”7, which
are initial temperature, temperature reduction factor, maximum number of allowable
perturbations between two consecutive reductions of temperature, maximum number of
accepted perturbations, the maximum allowable ratio of the number of perturbations to

Kmax When the objective function continues to increase after each perturbation, and the



minimum objective function, respectively. The number Dyy, is the total number of grid

blocks.
IIL.3 Effects of spatial discretization on characterization of random fields

In general, spatial discretization of the numerical grid should be as fine as possible
to capture the detailed spatial variability of the random field. However, fine discretization
may often make burdensome the computation loads of numerical characterization and
flow simulation. Moreover, preferential flow is commonly observed in unsaturated flow
in fractured rocks. This suggests that some areas in the fracture will not even be contacted
by the aqueous phase due to flow bypassing. Therefore, from the computational point of
view, using a fine discretization may not be as cost-effective for characterization purposes
as for flow modelings. Thus, a “reasonable” spatial discretization should be adopted. The
value of this spatial discretization should be chosen such that basic elements of spatial
variability of permeability are preserved, and the fesulting flow simulation is physically
meaningful as well as representative of field conditions. In this study, the size of the flow
domain is 20 m X 20 m X 1 cm. Considering computational capacity and efficiency, a
suitable spatial discretization was then chosen as A = 0.2 m, ie., totally 10,000 grid
blocks. For comparison purposes in this section, a finer discretization of A = 0.1 m is also

considered.

One of the factors controlling the dependence of the accuracy of the generated
random field on spatial discretization (A) is the correlation length (A) of the random field.

A dimensionless ratio of spatial discretization to correlation length, A/A, is commonly
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used to analyze the relationship between characterization accuracy and spatial
discretization. A theoretical study by Li and Der Kiureghian (1993) suggested that a
simulated random field has negligible error with respect to its true random field if this
ratio is smaller than 0.5, i.e., A/A < 0.5. Detailed analyses of the relationship between the
spatial discretization and the accuracy of characterization is not pursued in this study.
Instead, a sensitivity analysis is performed in this section to examine the impact of spatial
discretization on characterization accuracy. Another set of sensitivity analysis on the

effect of spatial discretization on seepage patterns is latter investigated in Chapter V.

Two realizations of conditioning asperity contacts that are spatially random and
spatially correlated are shown in Figures IIL.7(a) and III.7(b), respectively. Radius (ro) and
correlation length of asperity contacts (Ag) are both 0.4m. Based on these asperity
contacts, Figure IIL.8 shows corresponding realizations of permeability fields with
different spatial discretizations and correlation lengths (As) of permeability. Note that the
same asperity contacts, whether spatially random or spatially correlated, are used both in
a coarse grid (A = 0.2 m) and a fine grid (A = 0.1 m). Two correlation lengths of
permeability are considered, Ay = 0.4 m and 0.8 m. Thus, the ratio A/A; is 0.25 or 0.5,
both satisfying the requirement of A/A; < 0.5. Modified Metropolis algorithm was used
for annealing each of the permeability fields in Figure III.8. In addition, the correlation

was given by an isotropic exponential semi-variogram, Eq(3.31).

It is expected that certain spatial features of the permeability field may become

apparent as the ratio A/A; is decreased. For permeability fields with spatially random
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Distance (m)

(a) isotropic, spatially random asperity contacts
with radius r, = 0.4m

10 12 14 16 18 20
Distance (m)

(b) isotropic, spatially correlated asperity contacts
’ with A;=0.4m

Figure I11.7 Two realizations of spatially random and spatially
correlated asperity contacts in a grid discretized with A = 0.2m.
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Figure II1.8 Permeability fields used for the sensitivity analysis. Each permeability field
is annealed with the modified Metropolis algorithm in which realizations (a) to (c) are
conditioned on spatially random asperity contacts (Figure I11.7(a)), and realizations (d)
to (f) on spatially correlated asperity contacts (Figure IIL7(b)). The correlation structure
for each realization is an isotropic exponential semi-variogram with nugget =0, sill =

190 (for realizations (a) to (¢)) or 110 (for realizations (d) to (f)), and correlation lengths
) =0.4m or 0.8m.
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asperity contacts, Figures III.8(a) and IL.8(b) show that the clustering effect around
asperity contacts becomes more obvious as the ratio A/A; is decreased from 0.5 to 0.25.
Accordingly, flow channeling is expected to be more prominent in Figure IIL.8(b) than in
Figure IT1.8(a). Com-parisons between Figures II.8(d) and 1I.8(e), however, demonstrate
that the intrinsic variability of a random field with spatially correlated asperity contacts is
nearly preserved as long as the ratio A/A; is smaller than 0.5, though finer resolution of

tortuosity is observed in a fine grid, Figure IIL.8(e).

As stated earlier, it is not practical to further refine the grid. Thus, the other way
of looking at the impact of the ratio A/A; on characterization (and/or flow simulation) is
to fix the spatial discretization at A = 0.2 m but increase the correlation length of
.permeability. Figures II1.8(c) and IIL.8(f) demonstrate this change by increasiné Ay from
0.4 m to 0.8 m. For spatially correlated asperity contacts, Figures IIL.8(d) and II1.8(f) show
that heterogeneities in these two realizations with ’different ratios of A/A; are qualitatively
the same. However, permeability heterogeneity for random fields with spatially random

asperity contacts varies with the ratio A/A, see Figures II1.8(a) and II1.8(c).

Combining the above observations concludes that fracture heterogeneity is
virtually insensitive to the ratio A/A; for permeability fields with spatially correlated
asperity contacts, as long as the ratio A/A«< 0.5. For permeability fields with spatially
random asperity contacts, permeability heterogeneity is sensitive to the ratio A/A;. As far
as the accuracy of characterization is considered, a finer grid may be needed while

considering permeability field with spatially random aéperity contacts.
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14 Exambles of simulated random fields

To demonstrate the effectiveness of the modified Metropolis algorithm, Figure
.9 shows four realizations of spatially random as well as spatially correlated
conditioning asperity contacts, which are either isotropic or anisotropic. Corresponding
initial fields are shown in Figure III. 10. Note that the un-conditioned asperity contacts in

Figure II. 10 were drawn from a log-normal distribution with ¢ = 1.0 and sipz = 1.5.

Figures IM.11(c) and (d) show two permeability fields annealed with the
Metropolis and the modified Metropolis algorithms, respectively. The spatial structure is
an anisotropic exponential semi-variogram with nugget = 0.0, sill = 120, and correlation
lengths (A;) = 1.6 m and 0.2 m in the major and minor axes, respectively. Compared with
permeability fields annealed with the Metropolis algorithm, permeabﬁity fields annealed
with the modified Metropolis algorithm have a stronger tendency to draw un-conditioned
asperity contacts and/or grid blocks with smaller values of { into the neighborhoods of
asperity contacts. This tendency is independent of the spatially correlation of asperity
contacts. In addition, the tendency may often be obtained at the expense of a larger
number of perturbations, compare Figures II.11(a) and IIL11(b). Thus, Figure M.11(d)
shows a more significant clustering effect around asperity contacts than Figure II.11(c).
.Moreover, these two realizations can be quantitatively compared by deﬁniné the average
permeability in the neighborhood as follows

1 Nb
k..=—Y kX, 3.36
NbZ 0.9 (3.36)

i=]
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where Nb is the total number of grid blocks that are located in the entire neighborhood of
all asperity contacts. The average permeability is significantly reduced from 6.7 x 10” m?
in Figures IIL.11(c) to 5.4 X 10® m? in Figure II.11(d). Thus, this provides quantitative
confirmation that the modified Metropolis algorithm is better suited to our problem than

the Metropolis algorithm.

Figures III.11(a) and III.11(b) show the change of objective function with respect
to the number of perturbation, corresponding to permeability fields annealed with the
Metropolis and modified Metropolis algorithm, respectively. The curve in Figure III.11(a)
shows a monotonic decreasing trend. However, the curve in Figure IIl.11(b) shows
significant fluctuation before convergence. Even if the Metropolis algorithm considered
the possibility of taking an unfavorable path while perturbing the random field, Figure
II.11(a) suggests that it still tends to get trapped in a local minimum. The fluctuating
curve in Figure II.11(b) implies that permeability fields annealed with the modified
Metropolis algorithm is more likely to reach the global minimum energy. Although
realizations in Figure III.11(c) and ITI.11(d) reveal distinctive clustering effects, the semi-
variogram at the end of SA, Figure III.11(e) and II.11(f), both fit the expected correlation
structure. Figure III.12 shows permeability fields annealed with the modified Metropolis
algorithm, corresponding to initial fields in Figure IIL.10. Corresponding plots of change
of objective function and semi-variogram are shown in. Figure III.13. Again these plots
show that the modified Metropolis algorithm is able to produce significant clustering
effect around conditioning asperity contacts as well as perturb the permeability field to

the desired spatial correlation.
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A, =0.8m and 0.4m in NE-SW and NW-SE, respectively

Figure I11.9 Examples of spatially random (a and b) and spatially correlated (c and d)
asperity contacts. The correlation function of asperity contacts for realizations (c) and

(d) are two exponential semi-variograms with nugget = 0, sill = 0.1875, but different
correlation scales (A,)

52



Depth (m)

-2
Permeability -4 | Permeability
) modifier, § S modifier, {

Depth (m)

o
T

14 16 18 2 2000 6 B 10 12 1416 18 30
Distance (m) Distance (m)
(2) initial permeability field corresponding to (b) initial permeability field corresponding to

conditioning asperity contacts in Figure IT1.9(a) conditioning asperity contacts in Figure II1.9(b)

O
| Permeability Permeabilit.
modifier, § modifier, §
—— —~~
E £
g o
-12
() ; ()}
-14 ;,
-16
-18§

20y e B "6 18 20 6 8 10 12 14 16 1
Distance (m) Distance (m)
(c) initial permeability field corresponding to (d) initial permeability field corresponding to

conditioning asperity contacts in Figure Il1.9(c)  conditioning asperity contacts in Figure II1.9(d)

Figure IIT.10 Initial permeability fields corresponding to each of the conditoning
asperity contacts shown in Figure IIL.9. A log-normal distribution with mean and
standard deviation of In{ as 1.0 and 1.5, respectively, was used to generate the
un-conditioned data.
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Figure I11.12 Annealed permeability fields corresponding to the initial fields shown in
Figure II1.10 Each permeability field was annealed with the modified Metropolis
algorithm. The correlation structure was an isotropic exponential semi-variogram with
nugget = 0, correlation length (A,) = 0.4m, and sill = 180.0 for realizations a and b,
and 120.0 for realizations ¢ and d. Spatial discretization (A) = 0.2m.
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Figure ITI.13 Change of objective function during annealing, and simulated
semi-variograms after annealing for permeability fields corresponding to

those shown in Figure I11.12
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Chapter IV. Flow simulation

IV.1 Numerical simulator

A general-purpose flow simulator, TOUGH2 (Pruess, 1991), is used in this study.
TOUGH?2 is a numerical simulation program for nonisothermal flow of multicomponent,
multiphase fluids in porous and fractured media. The acronym “TOUGH” stands for
“Transport Of Unsaturated Groundwater and Heat”. TOUGH2 is able to simulate a
variety of flow problems by substituting suitable fluid property modules into the
modularized architecture. Each flow module specifies the hydrological/thermal properties
of fluids under consideration, which is also referred to as “equation-of-state” or EOS
module. Thus, TOUGH?2 is applicable to a wide range of problems including geothermal
reservoir engineering (O’Sullivan, et al., 1998), nuciear waste isolation (Senger, et al.,
1998), environmental contamination (Webb, et al., 1998), unsaturated zone hydrology

(Doughty, 1998), and mining engineering (Xu et al.; 1998)

IV.2 Governing equation

The problem considered in this study is strictly a two-phase (water and air) flow
under partially saturated, isothermal conditions in naturally fractured rocks. By making
proper assumptions and approximations (see Chapter 1.2) this problem reduces to a
single-phase flow problem in equivalent 2-D heterogeneous porous media. Furthermore,
fluid properties such as density as well as viscosity can be treated as constants under

isothermal conditions. Based on these assumptions and approximations, the equation-of
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state flow module reduces to that of solving the mass balance equation (the Richards’

equation) of the aqueous phase in partially saturated porous media.

In addition to the neglect of gas phase pressure, several assumptions are implied
in Richards’ equation (Philip, 1969). First, the continuum approach must be valid such
that hydrologic parameters can be represented as values that are averaged over a
representative elemental volume (REV), a volume that is “large” enough compared to an
individual pore but is “small” relative to some macroscale. Second, Darcy’s law must
hold. That is, inertia effects must be negligible and fluid properties are Newtonian. Third,
the flow is isothermal. Once thermal effects become significant, vapor diffusion may turn
out to be an important mechanism. For non-isothermal systems, an additional balance
equation of heat must be solved along with the liquid phase balance equation. Thus, the

Richard’s equation can be written in a multi-phase form as follows

—g;@s,p,)w-[ %p,V(P, +p,gz)] @.1)

(4

where ¢ is porosity, S; is liquid saturation, p; is liquid density, k is the absolute
permeability, &, is the liquid phase relative permeability, 1, is liquid viscosity, P, is the
liquid phase pressure, g is gravity, and z is the elevation. Liquid saturation (S;) is defined

as

Vl el
=L 4.2)
Ve 0

S, =

in which 6y is the volumetric moisture content of the liquid phase, i.e.,
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V,
9,=-—L . 43
=y, 4.3)

where V; is the volume of the liquid phase and Vj; is the bulk volume of the medum.
Equation (4.1) is a volume-averaged equation though the scale at which these average
values are taken is not explicitly recognized. It is, however, assumed that Eq (4.1) and its
implied approximations, such as applicability of relative permeability and capillary

pressure, are valid for the equivalent porous media on a scale of 0.1 — 1 m (Pruess, 1998).

Recall that fractured media are similar to porous media in terms of relative
permeability and capillary pressure (Persoff and Pruess, 1995). If hysteresis effects are
neglected, relative permeability as well as capillary pressure can be expressed in terms of
a single-valued function of liquid saturation only. Accordingly, customary formulas of
relative permeability and capillary pressure for Iﬁorous media, such as van Genuchten’s

equations, can be used in Eq (4.1), which are

Lo @ 2
k, =~S* 1-(1-& ] )
Rap ={ 22| 1 -1) @)
Ca Q
§" =(8; =Si)/(1-Sy)

where S;, is the residual saturation of the liquid phase, and S” is a scaled saturation such
that it is in the range [0, 1]. Parameters used in Eq (4.4) correspond to those for coarse
sands, i.e., ®= 0.457, S;, = 0.15 for k, and 0.0 for Pc,p, and Q = 50 m” for reference

permeability (ker) at 10° m® These two functions are illustrated in Figure IV.1.
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Following the sign convention of P, in Eq (4.4), the liquid phase pressure in Eq (4.1)

can then be written as P; = Pgas + Peap, in which Py, is the constant gas phase pressure.

100 et rro oy oo vt v 1 1T
102} .
107} S,=0.15 |
= 6| 4
o 1o8
10°} 1
10—10_ 4

—T04 06 __ 0.
Liquid saturation (S))

8

O N
1075 02

Figure IV.1 Relative permeability and capillary pressure from van Genuchten’s formulas,
with parameters chosen for coarse sands.

IV.3 Integral form of Richards’ equation
Richards’ equation is conventionally written as a differential form such as Eq
(4.1), in which a divergence operator is included. The shortcoming of using a differential
form of balance equations is that the expression of the divergence operator changes with
coordinate systems. However, the inherent physical quantity should be invariant to
coordinate systems. Therefore, an integral form of Eq (4.1) is preferred. This is the basic
idea of the integral finite difference scheme (Narasimhan and Witherspoon, 1976), which

is used throughout TOUGH2. Integral finite difference avoids any reference to a global
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system of coordinates, and offers the advantage of being applicable to regular or irregular

discretization in one, two, or three dimensions (Pruess, 1991).

Discretizing the flow domain into N elements, Eq (4.1) can be rewritten as the

following integral form

%JM“’dV=J-F“’ndI‘+Jq“’dV 4.5)
vn

T, A
where V,, is the volume of element n in the discretized flow domain, M® is the mass of
component i in Vp, FD is the mass flux of component k across the element boundary I',
associated with a normal vector n, and q® is the mass sink/source term of component i in
element n. Each term in Eq (4.5) can be further decomposed as follows. M® is the

accumulated mass of component i in all phases, i.e.,
. P
M?P=¢ ¥ §,X7 4.6
¢ 35 Pp 4.6)
B=1

where p is the total number of phases, Sp is the saturation of phase f3, X([? is the mass

fraction of component k present in phase f3, and pg is the fluid density of phase B. Mass

flux F@ is the sum of fluxes of component i from all phases, i.e.,

= @.7)
kk

Fp = —T;E-prg) (VPﬂ - ppg)

61




where Fj is the total mass flux of phase f, 115 is the viscosity of phase f, k is the intrinsic
permeability, &, is the relative permeability of phase f3, Pg s the pressure of phase 8, and

g is gravity. Note that Fg is the multiphase version of Darcy’s law.

Each integral in Eq (4.5) can be approximated by a product of element volume
(Va) and a volume-averaged variable. The volume integral of mass M® can be

approximated as
J MYdv=V,M® = V,,zq;ns,,,,, PopXSh (4.8)
Vn B=l

where M, ¢n, Su.p, Pnp, and X, are volume-averaged values of M@, ¢, Sp, ps,

andXy' within element n, respectively. Of course, Eq (4.8) is valid only if the
discretization is fine enough so that MY, ¢n, Snp, Pnp, andX®; are uniformly

distributed within element n. By the same token, the surface integral of interface mass

flux F® can be approximated as

J-F""ndl"= ZAMF;,Q = ZAm iFﬂ"““ 4.9)

L A=l
The term Ky in Eq (4.9) is the averaged interfacial mass flux across the interface Amn

between element n and all its contacting elements m. This mass flux vector is illustrated

in Figure IV.2 as pointing from element m to element n. For simplicity, only one

contacting element is shown in Figure IV.2. In addition, the interfacial mass flux F® is
actually a summation of mass fluxes from various phases. Thus, F is further
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decomposed as the last summation in Eq (4.9). From Eq (4.7), Fcan be further

decomposed as

. i . k P, . —P
F® = — XD B B B,m - 4.10

p=1

k
where kuym , —'p-, and ppnm are, respectively, the interfacial permeability, mobility, and
B

density associated with the interface Apn. The last integral in Eq (4.5) is simply

0]

approximated as V,q" in which q¥is the volume-averaged sink/source.

Oms krns Hn

Figure IV.2 Interfacial mass flux F,f,‘,f across the interface Anm and associated parameters
in elements n and m.

Different weighting schemes are used in TOUGH2 for calculating interfacial
parameters. Interfacial permeability is harmonically weighted depending on distances Ly

and L, i.e.,

63




ko Xhnla #Ln) 5o 1 20 and L, 20
L.k +Lk,
k= k ifL, =0 @.11)
k ifL_=0

Interfacial density can be upstream weighted, i.e.,

Pum =WM, xp +WM_xp_ (4.12)

where WM, = 1 and WM, = 0 if the driving force is directed toward n; otherwise, WM, =

0 and WM, = 1. Or it can be uniformly weighted, i.e.,

0.5xp,+0.5%xp, ifL #0andL_=#0

Pom Pum =P, IfL, =0 (4.13)

Pun = Ppif Ly, =0

In order to obtain physically realistic results, interfacial mobility must be upstream

weighted (Peaceman, 1977), i.e.,

k =WM,,xk—m+Wme5ﬂ (4.14)
B Ky Ho

where WM, and WM, are defined above.
In summary, the integral form of Richards’ equation can be approximated as

(i)
dl:ft" =VLZAMF;;3 +q® 4.15)
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Equation (4.15) is solved by the finite difference scheme. In order to obtain numerical
stability, time is discretized fully implicitiy (Peaceman, 1977). Therefore, Eq (4.15) is

recast as

n

MO _ =£{2A FOH Ly q(t)ﬁl} (4.16)
n n V nm~ nm n M
where j is the index of time stepping. The difference of the two terms to the left and to the
right of the equal sign is referred to as :”residual”. Therefore, solution of Eq (4.16) occurs

when the residuals are zero. Eq (4.16) can then be rearranged as
RO# (@)= MPH(@)- MM (@)——{ZA FO#(0)+V, q('””} 0 (4.17)

where R is the residual. For each volume element V;, there are NEQ equations. For a flow
system with N grid blocks, Eq (4.17) thus represenfs a system of NEQ X N coupled, non-
linear and algebraic equations. The vector ® in Eq (4.17) contains NEQ X N independent

primary variables which completely define the state of the flow system at time level #*.

Expanding Eq (4.17) by its Taylor’s series to the first order yields

NxNEQ

R(x) \j+1 (®u+1) R(:) ,j+1 (@ ) + z

a (x) j+l

(0,0 -0,,)=0 (4.18)

where v is the iteration index. Eq (4.18) can be solved by the iterative Newton-Raphson

method. Time step in Eq- (4.18) may be automatically adjusted, depending on the

. @ .
condition of convergence during the iteration processes (Pruess, 1991). Usually, Eq
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(4.18) is written in the following form

NEER R D
- 2‘3(?3—’ (®u,u+1 -0,, )= RO#(O,) (4.19)
u=l v

which is further simplified as
JA® =R (4.20)

where J is the Jacobian matrix of the flow system (the partial derivatives of R, with
respect to ©;) and R is the residual vector consisting of NEW x NEL residuals. Other

features and flexibility of TOUGH2 code can be seen in detail in user’s guides for

TOUGH and TOUGH2 (Pruess, 1987, 1991).

II1.4 Verification of TOUGH2 — One-Dimensional Infiltration Model

An example of one-dimensional infiltration into a semi-infinite porous medium
was used to verify the TOUGH2 code. The movement of water in an one-dimensional,
semi-infinite unsaturated soil column can be described by the following form of the

Richards’ equation (Philip, 1955)

a8 9 d9) JdK
—_—=—|D=|-Z= 4.21
ot ax( ax) ox 21
where K is hydraulic conductivity, and D is the diffusivity that is defined as
D= K-(-i—h (4.22)
de

66




where A is the hydraulic head, which is defined as the sum of pressure head (P/pg) and

elevation head (), i.e.,

=L ., (4.23)
pg

The first term in (4.21) represents the capillary effect, and the second term gravity
effect. Equation (4.21) can be further simplified by neglecting gravity effect. This
assumption is valid either at earlier times of infiltration or for horizontal soil tubes. Thus

Eq (4.21) can be reduced to

06 9 d0

—=_| D= 4.24

ot ax( ax) 424
Assume that the soil column has an initial water content at 6, at x > 0. In addition, water
is infiltrated into the soil surface at x = 0 at a constant water content 8. These conditions

can be written as

0=0

L.t =0,x>0

(4.25)
0=0, ,x=10,¢20

and are illustrated in Figure IV.3.

: / 0=0,atr=0
(=]
D@ semi-infinite, homogeneous and isotropic medium
i ? hydraulic conductivity = K ®ooo0
S — water diffusivity =D
—>
> X

Figure IV.3 Schematic diagram of the one-dimensional infiltration problem.
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Based on similarity transformation (or Boltzmann transformation), Philip (1955)
developed an iterative analytical solution for Eq (4.24) subject to initial and boundary
conditions Eq (4.25). He transformed Eq (4.24) into an ordinary differential equation by

introducing a new variable, @, that is a function of 8 only. The number of independent

variables in Eq (4.24) is then reduced to one if @ is written as

0=0@)=x-1" (4.26)
Thus, Eq (4.24) can be recast as
_9do _ _d_( D 92] @.27)
2do do do
do

Multiplying both sides of Eq (4.27) by ® gives

_e_dfnde (4.28)
2 dol do

Initial condition and boundary condition for Eq (4.28) can be deduced from Eq (4.25) as

0=6,,¢0=0
? 4.2
056, ,p> (4.29)
Eq (4.29) implies that
do
——>0as 060, (4.30)

dé

Integrating Eq (4.28) with respect to 0 then yields
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¢
J Q49=-—2pL (4.31)
o 2 do

n

which is subject to the condition

0=0,, =0 (4.32)
Philip’s method is to solve Eq (4.31) with the condition specified in Eq (4.32). Figure
IV.4 illustrates an example of the relationship between ¢ and 0. This relationship is
obtained by assuming that relative permeability and capillary pressure of soil are
described by van Genuchten’s formulas, Eq (4.4), with parameters corresponding to
coarse sands. Once the functjon @(0) is found, other relationship such as saturation

profile or infiltration rate can be derived from that function.

I11.4.1 Test problem

Consider a horizontal soil tube with semi-infinite extent, e.g., Figure IV.3.
Assume that this soil has a porosity of 0.45 and intrinsic permeability of 1.2x107% m%
Initially, water saturation (S;) in this soil tube is 44%. Then, water is infiltrated into the
soil tube at x = 0 until it is fully saturated, i.e., S; = 1. Relative permeability (k) and
capillary pressure (Pcap) for this soil are assumed by the following linear functions

0 ,S,<0333

k=1820338 aancs o (4.33)
0.667

~9.7902x10% (Pa) , S,<0.333
Pep = —9.7902x10° 225 (Pa), 0.333<S, <1 (4.34)
0.667
0 , S, =1

69




1.2E4 T T —
8.0E-5|- -
@
4.0E-51 -]
0.0E+0 L —1 L
0.15 0.20 0.25 0.30 0.35

Figure IV.4 Functional form of ¢ versus 0 for a soil whose relative permeability and
capillary pressure functions are described by van Genuchten’s formulas.

which are illustrated in Figure IV.5. From Eq (4.33), the hydraulic conductivity, K, can
be written as the product of k and k,, where k is the absolute permeability. Then, Eq

(4.22) can be rewritten as

dpP,
D=g32 K S

(4.35)
o p¢ ds
where [ is water viscosity (10 Pa-s). From Eqs(4.33) and (4.34), Eq (4.35) is
5.8683x107 (S, —0.333) , 0.333<S, <1
D (m?*/s)= (4.36)
0, S,<0.333

The analytical solution, ie., ¢(8), is shown in Figure IV.6. Based on this

relationship, the saturation profile at a particular time can be obtained by multiplying
@(0) by \t . For example, Figure IV.7 shows three saturation profiles at t = 864 sec, 5184

sec, and 9504 sec. Solutions obtained by TOUGH2 are marked by symbols, and
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analytical solutions by lines. It is clear from Figure IV.7 that analytical solutions obtained

by Philip’s method are very close to numerical solutions by TOUGH2.

10000

1

0.8

_ 06
va

0.4

0.2

LI LI

R P, (Pa)

8000
16000 O

' 4000

Pcap

' 2000 —

06'

0.2

04

06

Liquid saturation

Figure IV.5 Linear relative permeability and absolute capillary pressure for the soil
considered in the test problem.

1.6E-3 T T T T T T

1.2E-3

?®  8o0E4

4.0E-41- N

0.0E+0 L ! L . L
045 020 025 030 035 040 045 050

0

Figure IV.6 Analytical solution obtained by Philip’s method for the one-dimensional
infiltration problem with 0,=0.198 and 6¢=0.45.
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Figure IV.7 Comparison of analytical and numerical solutions for one-dimensional
infiltration into a horizontal soil tube.
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Chapter V. Seepage simulations

V.1 Setup of numerical simulations and factors affecting seepage in fractures

Fluid flow in a partially saturated fracture is examined in this chapter, considering
different levels of normal stress, varying degrees of fracture heterogeneity, and various

initial and boundary conditions. Transient as well as steady state flow is considered.

The flow domain is idealized as in Figure V.1 in which the equivalent porous
medium lies within a vertically oriented fracture plane of 20 m x 20 m X lcm. This
domain is further discretized into a finite difference grid of 100 x 100 = 10,000 square
blocks. Such discretization is fine enough to represent medium heterogeneity, and is
manageable with the available computers. Porosity heterogeneity is neglected.
Accordingly, a spatially uniform porosity (¢) of 0.35 .is assumed. Water is injected into
the top boundary with a constant rate (10~ kg_/s), which is done by introducing an
additional single element (20 m X 0.2 m X 1 cm) at the ground surface (z = 0). This
element not only receives the water supply but transfers fluid mass with underlying
elements. Initial liquid saturation in fractures is assumed at the value of the residual
liquid saturation, i.e., S;-= 0.15. Lateral boundaries have no-flow boundary conditions. In
addition, a unit-gradient boundary is assumed at the bottom boundary, .i.e., the free
drainage boundary condition. The above initial and boundary conditions are applied to

most simulations if no other conditions are specified.

Effects of the gas phase pressure, matrix permeability, porosity heterogeneity, and

hysteresis of relative permeability and capillary pressure are neglected in this study. The
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remaining factors affecting unsaturated seepage in fractures, therefore, are the
heterogeneity and spatial correlation of permeability, as well as the initial and boundary
conditions. For homogeneous porous media, capillary pressure is inversely proportional

to a length scale that characterizes the pore structure of the media (Leverett, 1941), i.e.,

cap

P,/ |— (5.1)
¢

where k and ¢ are the permeability and porosity of the media. For heterogeneous media,
however, both permeability and porosity may be spatially varying variables. Since the

porosity is assumed to be homogeneous, capillary pressure for heterogeneous media is

= / P, = P (5.2)

in which k; and k, are the permeabilities of the equivalently homogeneous and

thus scaled as

heterogeneous media, which are ks and kees X , respectively.

an additional single element_ Constant Q
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Figure V.1 Idealization of the flow domain.
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The effect of permeability on seepage depends not only on the aperture, which is
a function of the magnitude of normal stress (see Figure IL.2), but also anisotropy of
asperity contacts. The latter is conceptually illustrated in Figure V.2, which shows
laterally extensive asperity contacts perpendicular, parallel, or oblique to the downward
flow direction. Asperity contacfs are represented as ellipses in Figure V.2 for simplicity
and convenience, though they may not necessarily have regular shapes. Figure V.2(a)
shows that asperity contacts perpendicular to the flow direction may divert flow more
dramatically than asperity contacts parallel to the flow direction, i.e., Figure V.2(b). More
importantly, flow may be funneled into localized regions if asperity contacts are arranged
in the manner schematically similar to Figure V.2(c). Funneled flow in porous media has
been indeed observed in the field (Kung, 1990ab). Thus, the ability of asperity contacts to
divert flow depends on their correlation lengths, anisotropic ratio, and their orientation

relative to the downward flow direction.

(@ (®

Figure V.2 Schematic representation of flow lines diverted by anisotropic asperity
contacts which are represented as ellipses for simplicity.

V.2 Impact of spatial discretization on liquid seepage

Recall that a sensitivity analysis of characterjzation accuracy with respect to

spatial discretization was carried out in Chapter II. Results from that sensitivity analysis,
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Figure I1.8, indicated that the spatial variability of permeability fields could be adequately
captured as long as A/Ax < 0.5. That sensitivity analysis is further extended in this sé;ction

for investigating the effect of spatial discretization on flow simulations.

Simulated liquid saturations at breakthrough and steady state in synthetic fractures
with simulated permeability fields shown in Figure II1.8 are represented in Figures V.3
and V4. The term “breakthrough” is simply defined as the condition when the first liquid
reaches the depth of —19.9 m. The term “steady state” is herein defined as the point in
simulation when the ratio of the total flux exiting the bottom boundary to the flux
injecting to the top boundary exceeds 0.999. It should keep in mind that flow fields

obtained by this convention are strictly pseudo steady-state flow fields.

Consequently, fine spatial discretization does not appear to be necessary to model
seepage through fractures with spatially correlated asperity contacts as long as A/A; < 0.5.
Figure V.3 shows that the discretizatiop length (A) and correlation length (Ay) both
influence the simulated seepage pattern in a fracture with uncorrelated asperity contacts.
In contrast, the simulated seepage patterns in a fracture with spatially correlated asperity
contacts are remarkably similar. The similarity is independent of the spatial discretization
as illustrated in Figures V.4(a) and V.4(b) (or Figures V.4(d) and V.4(e)) if the
permeability fields have the same correlation lengths and the ratio A/Axis smaller than
0.5. This similarity is preserved in Figures V.4(c) and Figure V.4(f) even if the
correlation length of permeability is increased. Thus, the seepage pattern is strongly
affected by the correlation structure of asperity contacts but to a lesser extent the

correlation structure of permeability, for A/A; <0.5.
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Figure V.3 Saturation at breakthrough (cases a to c) and steady state (cases d to f) in
synthetic fractures shown in Figure ITI.8(a) to I1.8(c), with isotropic, spatially random
asperity contacts with different radii and grids with different values of A.
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Figure V.4 Saturation at breakthrough (cases a to ¢) and steady state (cases d to f) in
synthetic fractures shown in Figures IT1.8(d) to IIL.8(f), with isotropic, spatially correlated
asperity contacts with different correlation lengths and grids with different values of A.
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V.3 Seepage versus normal stress

Experimental data (Pyrak-Nolte e al., 1987) has showed that contact areas in
natural fractures increase with normal stress. However, the detailed mechanical properties
of contact areas in fractures and their relationship with the normal stress are not interested
here. Then, the relationship between liquid seepage and normal stress is simulated instead
by changing the total fraction of asperity contacts. Four different fractions of asperity
contacts are considered here, 15%, 25%, 35% and 40%. For each fraction of asperity
contacts, twenty to thirty synthetic fractures were generated in order to obtain statistically

homogeneous realizations of heterogeneous fractures.

Spatially random and spatially correlated asperity contacts corresponding to the
different stress levels are shown in Figure V.5. The corresponding realizations of
permeability fields obtained by conditioning on the asperity data are shown in Figure V.6
and V.7. The expected spatial correlation structure of the permeability fields is an
isotropic exponential semi-variogram with nugget = 0.0, correlation length (As) = 0.4 m,
and sill number ranging from 90.0 to 190.0 in different realizations. Spatial discretization

(A)is 0.2 m,i.e, theratio A/ A =0.5.

Computed saturation at the time of breakthrough and steady state obtained using
the different permeability fields is plotted in Figures V.8 to V.11. Flow simulations in
fractures with spatially random asperity contacts and low normal stress exhibit numerous
interconnected flow paths. As the normal stress increases, significant preferential flow
occurs whether the asperity contacts are spatially random or spatially correlated. The
preferential flow is accompanied by significant flow bypassing and ponding. The asperity
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Figure V.5 Spatially random (case a) and spatially correlated asperity contacts (cases b to e),
used as the conditioning data for heterogeneous fractures. Radius (r,) and correlation length
() for asperity contacts are both 0.4 m. The correlation structure for cases b to d is an iso-
tropic exponential semi-variogram with nugget = 0.0 and sill = 0.1875.
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Figure V.6 Synthetic fractures conditioned on spatially random asperity contacts as
shown in Figure V.5(a). The expected correlation structure is an isotropic semi-
variogram with nugget = 0.0, sill = 190.0 and correlation length (A, )= 0.4m. Spatial
discretization (A) = 0.2m.-
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Figure V.7 Synthetic fractures conditioned on spatially correlated asperity contacts as
shown in Figures V.5 (b) to V.5(e). The expected correlation structure is an isotropic
semi-variogram with nugget = 0.0, and correlation length (A,) =0.4m. Sill numbers are

120.0, 115.0, 100.0, and 90.0 for realizations (a), (b), (c) and (d), respectively. Spatial
discretization (A) = 0.2m.
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Figure V.8 Saturation at the time of breakthrough at the depth of -19.9 m, in
fractures with spatially random asperity contacts. Initial water saturation is

at the value of 0.15.
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Figure V.10 Saturation at the time of breakthrough at the depth of -19.9 m, in fractures
with spatially correlated asperity contacts. Initial water saturation is at the value of 0.15.
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contacts divert the water into spatially localized fingers that may further proceed
downward, merge with other fingers, or be terminated/ponded on laterally extensive sub-

horizontal asperity contacts.
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Figure V.12 Arithmetic means of effective permeabilities in synthetic fractures with
spatially random and spatially correlated asperity contacts.

Horizontal and vertical effective permeabilities for each of the synthetic fractures
were calculated for each fraction of asperity contacts. To calculate effective permeability,
single phase flow simulations were performed to steady state and the permeability was
calculated based on Darcy’s law (see Appendix D for details). The results are plotted in
Figure V.12 and a monotonically decreasing trend with normal stress as would be

expected.

The vertical advance of the fastest finger with respect to time is plotted in Figure
V.13 for flow simulations with spatially correlated asperity contacts. The slopes of these
curves tend to increase with increasing normal stress, suggesting faster breakthrough in
fractures subject to increasing normal stresses. The occurrence of faster breakthrough in
fractures results from the increasing degree of preferential flow as normal stress

increases, along with the increased Darcy’s velocity as the flow funnels into localized
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fingers. The trend of shorter breakthrough time is further verified by histograms of
breakthrough time shown in Figure V.14. The vertical advance curves for fractures
subject to low normal stress tend to be linear because the effects of bypassing and
ponding are weak. However, the curves become irregular as flow bypassing and ponding

become significant at high normal stress.
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Figure V.13 Vertical advance curves obtained from flow simulations with spatially
correlated fracture asperities.
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Figure V.14 Histograms of time to breakthrough in fractures subject to increasing normal
stress.
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An alternative boundary condition is to consider localized injection. Figure V.15
shows the transient and steady state flow fields in fractures with spatially correlated
asperity contacts, subject to localized injection. Water is injected at the center of the top
boundary. The injection zone has a lateral extent of 1.0 m,. No flux is allowed to across
the top boundary outside the injection zone. The constant injection rate is 103 kg/s, and
initial conditions and other boundary conditions are the same as before. Seepage patterns
similar to those for distributed injection cases are observed in these simulations, such as
fingering, ponding, bypassing, and lateral spreading. However, the preferential flow paths
for localized injection cases are obviously different from those for the distributed
injection cases. In addition, the location of ‘the first breakthrough for the localized
injection case may or may not be the same as the distributed injection case. These flow
phenomena were also observed by Pruess (1998) in his simulations using synthetic
fractures with spatially random asperity contacts. Furthermore, he observed that seepage
patterns in natural fractures strongly depends on fracture permeability, capillary effects,
and applied flow rate. Thus, it is expected that these observations also apply to the

simulation results in the present study.

A vertical advance curve records the downward migration of the fastest finger.
Thus, an abrupt change in the slope of the curve indicates the emergence of a faster finger
or acceleration/retardation of seepage. Usually, the change of slope is ascribed to ponding
on asperities. For example, the curve in Figure V.16(a) exhibits an arrest in the fluid
advance before breakthrough. The corresponding flow simulation in Figure V.16(b)
shows that this is indeed because of ponding at about —15 m. In addition, the slope of the
advance curve after ponding may increase or decrease. For example, Figure V.16(b)
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Figure V.15 Transient and steady state saturation with localized
injection in fractures with spatially correlated asperity contacts.
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Figure V.16 Vertical advance curves and corresponding saturation in synthetic fractures

with spatially correlated asperity contacts. Figure IV.16(a) and V.16(c) feature the effects
of ponding and flow funneling, respectively.
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shows that finger on the left of the ponded zone breaks through the bottom boundary.
This finger has lower seepage velocity and the curve in Figure V.16(a) shows a flatter
slope just before breakthrough. In contrast, the curve in Figure V.16(c) shows that
seepage starts with a smaller velocity, becomes arrested by ponding for approximately 8
hrs, and then proceeds faster toward the bottom boundary. The ponding is clearly visible

in Figure V.16(d).

Breakthrough curves (BTCs) corresponding to flow simulations in Figure V.11
are presented in Figures V.13(b). For better representation, tails of BTCs after 10 days

are truncated because they are essentially asymptotes approaching to flux ratio at 1.0.

Chesnut (1992, 1994) suggested that travel time breakthrough curves of
groundwater through unsaturated media can be approximated by a log-normal model. He
proposed that the cumulative distribution function for groundwater travel time may be

written as

(5.3)

2
P(tSt0)=d)[ln(t0/<t>)+6t ]
Gt

Here, P(t < #y) is the fraction of fluid flowing between inflow and outflow boundaries for
which travel time is less than or equal to £, <z> is the mean travel time, o; is the standard

deviation of the natural logarithm of travel time, and ® is the cumulative distribution

function of a normal distribution, i.e.,

D(x) = ﬁ " expl-u?/2)du =%erfc(— /V2) (5.4)

oo
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in which erfc() is the complementary error function. An important feature of the log-
normal model given in Eq(5.3) is that a significant fraction of flow has travel times much
shortel; than the mean travel time. This effect becomes obvious for strongly
heterogeneous media (larger o), as shown in Figure V.17(a). Note that the horizontal axis
of Figure V.17(a) is the travel time normalized by the mean travel time, <£>, that is fixed

at 1.0.
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Figure V.17 (a) Theoretical log-normal travel time model for different values of the
heterogeneity parameter, o; (Chesnut, 1992). The mean travel time, <>, is fixed at 1.0 for
all curves, which is also the normalizing factor for the horizontal axis; (b) Simulated
BTC:s for flow simulations in fractures with spatially correlated asperity contacts. Note
that the horizontal axis is the travel time normalized by the mean travel time <z>.
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The log-normal model is fitted to each of curves shown in Figure V.17(b), which
are the BTCs for flow simulations in fractures with spatially correlated asperity contacts.
The fitting begins by interpolating the sample BTC data and then taking numerical
derivative of the interpolated BTC. These numerical derivatives then serve as the
approximated probability distribution of the BTC data, from which the mean and
variance of travel time can be estimated. Subsequently, analytical pdf and CDF can be
obtained based on these two parameters. The fitted results in Figure V.18 show that the
log-normal model does not adequately fit the individual travel time data. The reason for
this poor fit is that water transport is strongly affected by the spatial distribution of
permeability and the associated effects such as ponding, bypassing, and change of
seepage velocity. Thus, the log-normal model is too simple to accurately capture those

complicated flow effects.
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Figure V.18 Results of fitting the log-normal travel time model to each of the BTCs
shown in Figure V.17(b).
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Figure V.19 Saturation at breakthrough and steady state in fractures subject to high normal -
stress, i.e., the total fractions of asperity contacts is 40%. These results illustrate the effect of
seepage retardation (cases a and b) and acceleration (cases c and d) due to ponding.
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Breakthrough curves in fractures subject to low normal stress tend to be smooth
and monotonically increasing curves. This is because the effect of asperity contacts is not
significant and liquid gradually comes out the entire bottom boundary in a spatially
uniform manner. For fractures subject to high normal stress, however, BTCs behave like
a step function because only a number of fingers can break through the bottom boundary.
In addition, seepage velocity within these localized fingers is generally faster, resulting in
the fast increase of a BTC. Moreover, such BTCs may intermittently exhibit horizontal
segments, which are generally the result of impedance by ponding. For example, the
effect of seepage impedance and acceleration can be demonstrated- respectively from
realizations in Figures V.19(b) and V.19(d); and the solid and dashed BTCs in Figure
V.20, respectively. BTCs in fractures subject to intermediate normal stress behave
intermediately between the two extremes, and their shapes depend on the heterogeneity

of fractures, see the dash-dotted BTC in Figure V.20.
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Figure V.20 BTCs showing the effects of seepage impedance (the solid curve) and
seepage acceleration (the dashed curve), corresponding to flow realizations in Figures
V.19(b) and V.19(d), respectively. The dash-dotted BTC shows the interchanging effects
of seepage impedance and acceleration.

The mechanisms of seepage acceleration and irilpedance as a result of ponding in

fractures subject to high normal stress are not independent but compete with each other.
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A vgrtical line shown in a BTC simply means that seepage after breakthroug!l is
dominated by the gravity effect. Competition between gravity and ponding will not start
until other fingers also reach the bottom boundary. If the gravity effect still dominates,
discharge at the bottom boundary would keep growing and the BTC would remain to be
vertical. If, however, seepage is impeded by ponding, discharge would keep steady for a
certain time during which the BTC would show a horizontal segment. Not until the
gravity effect becomes significant again would the BTC show an abrupt increase in slope.
For example, see the BTC in Figure V.21(a) and the corresponding distribution of
saturation. In general, the competition between gravity and ponding is usually

intermittent; for example, the dash-dotted BTC in Figure V.20.

The quantitative relationship between the degree of ponding and the total fraction
of asperity contacts deserves further investigation. The degree of ponding is defined as
follows. First, ponding regions are defined as the wetted region, in either transient or
steady state flow fields, in which water saturation is one. Here the term “wetted region” is
defined as the total volume in which water saturation is greater than the residual water
saturation. Numerically, the cutoff saturations for ponded and wetted regions are chosen
as 0.999 and 0.151, respectively. The degree of ponding can then be defined as the
volumetric ratio of the ponded regions to the wetted region. Various factors may affect
the total volume of ponded regions in heterogeneous fractures, including the total fraction
of asperity contacts, correlation length of asperity contacts and permeability, and the
correlation directions of asperity contacts and permeability. The parameter of the total
fraction of asperity contacts is considered in this section because only synthetic fractures

with isotropic asperity contacts and permeability are considered.
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Figure V.21 Breakthrough curve and saturation at steady state in a
synthetic fracture subject to high normal stress. The competition
between gravity and ponding effects can be seen from the BTC.
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Figure V.22 illustrates the degree of ponding in synthetic fractures with spatially
rz'mdom or spatially correlated asperity contacts, for transient as well as steady state flow
fields. The plots in Figure V.22 suggests that the degree of ponding generally increases
with the total fraction of asperity contacts, irrespective of the spatial correlation of

asperity contacts and the status of the flow field.
V. 4 Seepage dispersion and its dependence on asperity contacts

Most BTCs in this study exhibit a non-uniformly increasing trend with respect to
time. In this study, seepage dispersion is the term for describing the spreadin;g behavior of
liquid seepage in heterogeneous fractures. It can be quantitatively measured by a
coefficient (Ds) which is the ratio of (tgg — ti0) to tso, i.€., Ds = (too-t10)/tso. The parameters
too, tso and t;o are the travel times at which the flux ratios are 90%, 50% and 10% of the

steady state flux (Neretnieks, et al., 1982), respectively.

Histograms of tyo, tsp, an;i top are plotted in Figures V.23 and V.24 for synthetic
fractures with spatially random or spatiglly correlated asperity contacts, respectively.
Each histogram is fitted by a normal and a log-normal distributions. In general, the log-
normal distribution usually fits the travel time data better than the normal distribution.
The trend for t;o behaves as the breakthrough time, ie., tio generally decreases with
increasing normal stress. Similarly, tsg also decreases with increasing normal stress. The
travel time tgo approximately follows the trend of steady state time, i.e., tog tends to be

smaller for low and high normal stresses but larger for intermediate normal stress.
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Figure V.25 shows the histograms of the coefficient of seepage dispersion (D;) for

fractures with spatially random and spatially correlated asperity contacts. Note that the

horizontal axes of histograms with 40% asperity contacts begin from —1. This is for

representation purpose only because the fitted log-normal distribution is highly right-

skewed toward zero. Statistics for fitted normal and log-normal distributions are listed in

Table V.1, along with the goodness of fit data (p-value) obtained by the chi-square test.

The quantitative evidence that the log-normal distribution fits the sample data better than

the normal distribution is reflected by the larger p-value for the log-normal distribution

(Table V.1). Thus, each histogram shown in Figure V.25 is fitted by a log-normal

distribution.

Table V.1. Statistics of normal and log-normal distributions fitted to the sample data of
D; in fractures with spatially random and spatially correlated asperity contacts.

Normal distribution Log-normal distribution
S,
Fraction of 5 s val —_—— 0s) val
asperity contacts Ds D:  sp, /Dy Pvalte WD) sy In(D;) prvate
Fractures with spatially random asperity contacts
15% 0.530 0.143 0.269 0217 -0.667 0.257 0.385 0.535
25% 0.866 0.174 0.201 0389 -0.164 0.211 1.287 0.500
35% 0.903 0.533 0.591 0289 0243  0.565 2.325 0.822
40% 1.114 1.400 1256 0.0000 -0.539 1461 2712 0.624
Fractures with spatially correlated asperity contacts
15% 0.795 0.324 0.408 0522 -0308 0413 1.339 0.937
25% 0915 0.355 0.387 0381 -0.168 0424 2.533 0.715
35% 1.059 0.660 0.623 0.039 -0.077 0.502 6.544 0.627
40% 0.781 0.812 1.039  0.0015 -0.958 1.660 1.733 0.245

Figure V.25 exhibits a qualitative dépendence of Ds- on normal stress. That is,

partially saturated flow tends to be more dispersive in fractures subject to intermediate

normal stress and less dispersive in fractures subject to either low or high normal stress.
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- This is because most fingers in fractures subject to low normal stress are not significantly

affected by asperities. Thus, most realizations may have similar breakthrough behavior
and the dispersion is generally weak. Similarly, only a limited number of fingers in
fractures subject to high stress can break through and the dispersion is weak again.
However, many fingers can be formed in fractures subject to intermediate normal stress.
Some of them are fast and some of them are slow. Thus, greater value of the coefficient

of seepage dispersion is generally expected in such fractures.

The seepage dispersion may be quantitatively verified by the mean value of the
natural logarithm of D, lniDs ). Results in Table V.1 indicate that lniDs ) is smaller in
fractures subject to low and high normal stress, but larger in fractures subject to

intermediate normal stress. However, the arithmetic mean of D, i.e., _D:, in fractures
with spatially random asperity contacts and subject to high normal stress ( D_s =1.114) is

larger than the value for fractures subject to intermediate normal stress (_D_s = 0.866 or

0.903). This is because an outlier with a large value of D; (7.169) shows up in the sample
data of D, see the histogram in Figure V.25(4) and the corresponding flow simulation
and the solid BTC in Figures V.16(c) and V.17, respectively. The presence of an outlier

thus increases the standard deviation of a fitted distribution, see the columns labeled SD;

and sjnpy in Table V.1. If the outlier were absent, however, the standard deviation would

generally follow the same trend as lniDs ), i.e., the standard deviation of D would be

larger for fractures at intermediate normal stress, but smaller for fractures at low and high

normal stresses.
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Two opposite effects of ponding on seepage dispersion may occur in fractures
subject to high normal stress: (1) Ponding retards seepage as would be expected. Seepage
is slowed down by ponding because liquid must fill the dead-end pores above asperities
as a result of the constant recharge at the surface. This process can take a long time to
complete if the total volume of dead-end pores is large. For example, flow simulations in
Figures V.19(a) and V.19(b) illustrate this effect. Figure V.19(a) shows two fingers at the
time of breakthrough, one to the left arrives at the bottom boundary while the other to the
right reaches a depth of — 10 m. The left finger continuously evolves after breakthrough;
meanwhile, the right finger proceeds downward, hits asperities and develops significant
ponding, see Figure V.19(b). The gradual development of the right finger is shown on the
solid BTC in Figure V.20 by a long horizontal segment, resulting in greater value of
seepage dispersion, D = 7.169; (2) On the other hand, ponding can gather distributed
seepage and funnel it into narrow paths with large fluxes and velocities. The effect of
accelerated breakthrough induced by ponding can be seen on a BTC by a vertical line.
Thus, weak seepage dispersion would be observed under such conditions. An example of
accelerated seepage by ponding can be seen by the dashed BTC in Figure V.20 for which
there is nearly no dispersion at all, i.e., Ds = 0.008. The corresponding distribution of
saturation for accelerated seepage is shown in Figurf:s V.19(c) and V.19(d). These
simulation results show that all other possible flow paths are blocked by asperities and

fluid is only allowed to go through one finger that finally reaches the bottom boundary.
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V.5 Influence of anisotropy of asperity contacts

The purpose of these analyses is to examine the effect of anisotropy of asiaerity
contacts on flow patterns. Anisotropic asperity contacts, whether spatially random or
spatially correlated, are considered in isotropic permeability fields. Three principal
correlation lengths for spatially correlated asperity contacts (or principal radii for
spatially random asperity contacts), 0.4m, 0.8m, and 1.6m, are taken into account, along
with the same minor correlation length (or minor radius) of 0.2m. Four principal
directions, North, North-East (45° to North), East (90° to North), and South-East (135° to
North), are investigated. Initial and boundary conditions are the same as those in section
V.1. The total fraction of asperity contacts for these synthetic fractures is fixed at 25%.
Simulated permeability fields are shown in Figures V.26 and V.27, and corresponding

saturation at breakthrough and steady state are shown in Figures V.28 to V.31.

For notational convenience, the term “anisotropy ratio” in this section refers to the
ratio of the principal correlation length (or radius) of anisotropic, spatially correlated
(random) asperity contacts to the minor correlation length (radius) of asperity contacts.

That is, three anisotropy ratios, 2.0, 4.0, and 8.0, are considered.

Results of flow simulation show that the principal direction of anisotropic asperity
contacts determines the direction to which the flow is diverted. The larger the anisotropy

ratio, the stronger the diversion effect. In addition, the total number of fingers reaching

. the bottom boundary at steady state generally decreases with increasing anisotropy ratio.

This is especially true in fractures with spatially correlated asperity contacts that are not

principally correlated in the vertical (North) direction. Moreover, the diversion effect

107

- T —eTT T
T ES T TR B R U A O e e N R AR GO MR P AMAIEL AR R SE > e PRI RIS
DA A e PRRPINA . P N A M 2l S 5



AL

y R A _li"?

o
- SRR T
E £ {ﬁ(‘)&.j ) I €
< . £ - 25 s -
g . & . 10 & .
Qa o H o

. . 18

Dilance (m) '
(@) SE, 1,,=04m,1,,=0.2m !

Dlstance (m) Dilance (m) .

()N, 5,=04m,1,,=02m (2) NE, L, = 04m,1,,=02m

Depth (m)
Depth (m)

= &
(@] N
OO 8 8 0 ! 8 0 4 6 8 0 4 8 8 0 ,
Distance {m) Distance (m) Distance (m) 1‘
®N,1,,=08m,1,,=02m (6)NE, 1y, =08 m, 1,,=02m (8) SE,1,,=0.8m, 1), =0.2m

.~.,,_g-u¥-¢;:u. Wik Ay
:;5% ’%&&#‘i

e

I
AAAS ’,
‘9N

AL

3 ‘(-.il“‘« NN

Depth (m)
Depth (m)
_ Depth (rfl)
oo

Ditance {m) ' Dilance (m) Distance (m) »

O)N,15,,=16m,1,,=02m (10)NE,r,, =16 m, 1, =0.2m (IDE,;r,=1.6m,1,,=02m (12) SE, 1, =1.6 m, 1,,=0.2m

Figure V.26 Isotropic permeability fields with anisotropic spatially random asperity contacts. Radii of asperity
contacts for each case are indicated in captions. The subscripts 1 and 2 specifies the principal and minor
directions of asperity contacts. Each permeability field is annealed with an isotropic semi-variogram with
nugget = 0.0, sill = 190.0, and correlation length = 0.2m.




0

|
i

601

Depth (m)

Distane (m)
(N, &), =04m,%,=02m

Dltane (m)
(5)N, %, =0.8m, A, =0.2m

©O)N, &, =1.6m,%,=02m

Depth (m)

‘Distance (m)
(2) NE, 4, =0.4m,%,,=02m

Dltane (m)
(6)NE, %), =0.8m,2,,=02m

DHane (m) v
(10) NB, &y, =1.6 m, 4, =0.2m

Depth (m)

Depth {(m)

‘Distance (m)
(3)E, A, =0.4m, A, =02m

Dilane (m)
(1B, %, =0.8m,4,,=0.2m

b & b d o

Dltane (m)
(11) B, A, =1.6m, 4, =0.2m

= 75
= 50
£ 0 25
10
& 5
14 ;

Ditance {m)

(4) SE, A, =0.4m, A, =0.2m

Depth (m)

‘Distance (m)
(8) SE, Ay, =0.8m, A, =0.2m

Dlstane (m)
(12) SE, 4, =1.6m, A, =0.2m

Figure V.27 Isotropic permeability ficlds with anisotropic spatially correlated asperity contacts. Correlation length
of asperity contacts for each case are indicated in captions. The subscripts 1 and 2 specifies the principal and
minor directions of asperity contacts. Each permeability field is annealed with an isotropic semi-variogram with
nugget = 0.0, sill = 120.0, and integral scale = 0.2m.




01T

2 .
4 ‘! ;
6| . 'g“l' :a{l'ui?xa‘:ldon
E E 2 E
£ 10 £ 4 £ .
% 12 % . %
[a) a [=]
14 14 B
-18
-18! 18
208 fosugiy W 20k fuussuy unuu » A PN,
Distance (m) Distance (m) Distance (m) Distance (m)
(1) Time =43.69 hrs (2) Time = 44.68 hrs (3) Time = 52.72 hrs (4) Time =41.11 hrs
0
28
uld -4 Liguid =
saturation .6 saturation r 54 saturation
£ 8':9 E -8 ggo E 4
£ 08 £ 1ol R 08 S .0k
3 4 e 1B 5.
. -14 2 -14
.16 3 16
.18 Lt -18
8 8 0 4 6 8 (LI T T 20§ 8 o 0 m 0 20§ 58 0
Distance (m) Distance (m) Distance (m) Distance (m)
(5) Time =46.21 hrs (6) Time =46.14 hrs (7) Time =38.91 hrs (8) Time =45.6 hrs

R A
b

N R

B
Al

b & &N o

Depth (m)

Depth (m)
Depth (m)
Depth (m)

Dltance (m) . Dilance (m) ' Ditance (m) v Distance (m)

(9) Time = 48.28 hrs (10) Time = 45.97 hrs (11) Time = 50.93 hrs (12) Time = 33.58 hrs

Figure V.28 Saturation at breakthrough in synthetic fractures with spatially random, anisotropic asperity contacts.




}

1
-1
i
3
Lt
1

111

Depth (m)

Distance (m)

(1) Time = 59.99 days

"Distanca (m)
(5) Time = 26.76 days

Ditana (m)
(9) Time = 27.13 days

Depth (m)

Depth (m)

IR

]
-2
-4
-8
-8

PSR
i

-
E
=
=
£
.
©
o

Depth (m)

Ditane (m)
(4) Time =31.72 days

Depth (m)
Depth (m)

W, ;
“Distance (m) ‘Distanca (m) “Distance (m)
(6) Time =38.29 days (7) Time =64.32 days (8) Time = 32.09 days

Om

.

4

8|
E E E
g g 5
a g g.

"Distance (m) ‘Distance (m)
(10) Time = 33.26 days (11) Time = 26.44 days (12) Time = 34.01 days

Dllane (m)

Figure V.29 Saturation at steady state in synthetic fractures with spatially random, anisotropic asperity contacts.



(41!

Depth (m)

Depth (m)

Liguid

& saturation

€ . 1 B oo
= y 3 08
£ .10F } J 08
r 4 M o4
§ 12 H Baf o2

Dltane (m) '
(1) Time = 44.34 hrs

Dltane (m)
(5) Time =44.33 hrs

Ditane (m)
(9) Time = 54.28 hrs

Depth (m)

Depth (m)

Depth (m)

Ditance (m) .

(2) Time = 44.05 hrs

“Distance (m)
(6) Time = 39.23 hrs

Ditance (m)

(10) Time = 28.09 hrs

Depth (m)

Depth (m)

Depth (m)

op AL
-4 ﬁ Mid
6 il‘ aturation
8 ol 099
08
10 06
12 o2
14
16
-18
-20f 6 & 0
Distance (m)
(3) Time =38.12 hrs

O

2

-4 Liguid
.8 saturation
8

103

"Distancs (m)
(7) Time = 28.74 hrs

Dilane (m)
(11) Time = 28.36 hrs

Depth (m)

Depth (m)

Depth (m)

Dllance (m) v

(4) Time =40.23 hrs

Dltane {m)
(8) Time = 44.36 hrs

Ditance {m)
(12) Time = 52.35 hrs

Figure V.30 Saturation at breakthrough in synthetic fractures with spatially correlated, anisotropic asperity contacts.




o .
~2
P sabubaton W scoutaion
E -j 099 € £ T < [
=} 08 = = = 08
£: % £: £ 3:*
8- 02 8- 3 8- 1=K
R r o, < I
Distance (m) Distance (m) Distance (m)
(1) Time = 42.92 days (3) Time =50.19 days (4) Time = 23.42 days
t 0
é Liguid id
N satwation saturation
: € 09 E E 090 £
£ !gg < =3 !3;; <
< 3 8 g OB
ok
H : 8 = ! 0 “‘r‘ . ) 8 U ;! 8 t]
et Distance (m) Distance (m) Distance (m)
(5) Time = 24.82 days (6) Time =33.25 days (7) Time = 59.85 days
- o
uld
" saturation
E - 099 =3 g T
£ - o8 £ g - £ -
& o g % &
=] 02 o o’ o’
DHan (m) Dltane (m) Dltane (m) ‘ D!tan {m)
4 (9) Time = 9.83 days (10) Time = 12.28 days (11) Time = 46.73 days (12) Time = 26.83 days

Figure V.31 Saturation at steady state in synthetic fractures with spatially correlated, anisotropic asperity contacts.



seems to be more significant in fractures with spatially correlated asperity contacts than
in fractures with spatially random asperity contacts. Also, ponding effect generally

increases as the anisotropy ratio increases.

The effect of ponding on seepage breakthrough is indicated in flow simulations
illustrated in Figures V.30(4), V.30(8), and V.30(12). Although the vertical effective
permeability in the South-East direction increases as the anisotropy ratio increases from
2.0 to 4.0, the distribution of saturation in Figure V.30(8) shows a slower breakthrough
than that in Figure V.30(4). This is affected by the delaying effect of ponding, which is
shown in Figure V.30(8) at the upper right and lower right comners. As the anisotropy
ratio of asperity contacts increases from 4.0 to 8.0, Figures V.30(8) and V.30(12) show
that more ponding is developed. In addition, calculations show that the effective
permeability decreases significantly as the anisotropy ratio increases from 4.0 to 8.0.
Thus, the delaying effect of ponding associated with the decreasing vertical effective

permeability leads to the much slower breakthrough in Figure V.30(12).

The degree of ponding as a function of anisotropy ratio is shown in Figure V.32.
Generally, degree of ponding increases as the anisotropy ratio increases. In addition,
degree of ponding in fractures with vertically correlated asperity contacts is generally the
weakest, which becomes obvious as the anisotropy ratio increases. However, degree of
ponding in fractures with non-vertically correlated asperity contacts has different levels
of significance, depending on the type of asperity contacts, the principal direction, and
the anisotropy ratio of asperity contacts. For example, Figures V.32(a) and V.32(b) show

that the degree of ponding for horizontally correlated asperity contacts is always the
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greatest. However, degree of ponding strength in fractures with spatially correlated
asperity contacts generally varies with the heterogeneity of permeability. Furthermore,
there may be a dramatic increase in the degree of ponding in fractures with spatially
correlated asperity contacts that are not vertically correlated. For example, Figure V.32(c)
and V.32(d) shows that this occurs when asperity contacts are principally correlated in

the South-East direction.
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Figure V.33 Coefficient of seepage dispersion (D) in fractures with anisotropic asperity
contacts that are spatially random or spatially correlated.

Seepage dispersion depends on the heterogeneity of fractures as well as ponding.
The term “heterogeneity” herein means the overall effect of tortuosity, flow diversion,
and the ability of generating new fingers after breakthrough. The later varies in different
synthetic fractures but generally decreases as the anisc;tropy ratio increases. The general
decreasing trend of seepage dispersion with increasing anisotropy ratio is observed in

Figure V.33. However, the curve in Figure V.33(b) shows that seepage dispersion in the

North-East direction increases as the anisotropy ratio changes from 4.0 to 8.0. This

116




increase is clearly ciue to the ponding as shown in Figures V.31(6) and V.31(10). In
addition, Figure V.33(b) shows that the seepage dispersion in the horizontal direction
significantly increases with the anisotropy ratio, which is the result of increasing
diversion effect as illustrated in Figures V.31(3), V.31(7) and V.31(11). Similar increase
of seepage dispersion with respect to anisotropy ratio also presents in Figure V.33(a) for

the curve associated with the vertical correlation direction.
V. 6 Influence of anisotropy of permeability

Anisotropy of the spatial distribution of asperity contacts logically leads to the
consideration of anisotropy of permeability. It is then expected that the realized
permeability field may have similar effects as the anisotropy of asperity contacts as far as

flow bypassing and fingering are concerned.

To evaluate the effect of anisotropy of permeability, permeability fields in this
section were obtained by conditioning on the same .conditioning asperity contacts that
were used for cases (1), (4), (9) and (12) in Figures V.26 and V.27. These anisotropic
asperity contacts are principally correlated in the North or South-East directions, with
principal correlation length (or principal radius) of 0.4 m or 1.6 m. Thus, anisotropic
permeability with two principal correlation lengths (0.4 m and 1.6 m) and two principal
directions (North and South-East) are investigated. Correlation length in the minor
directions is half of its principal correlation length. Again, the total fraction of asperity
contacts is fixed at 25%. Figures V.34 and V.35 are the realized permeability fields

conditioned on spatially random and spatially correlated asperity contacts, respectively.
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Corresponding flow simulations are shown in Figures V.36 to V.39, and the strength of

ponding for these flow simulations is shown in Figure V.40.

Simulation results in Figure V.38 (or Figure V.39) closely resemble the
simulation results (1), (4), (9) and (12) in Figure V.30 (or Figure V.31). Recall that the
former and the later simulation scenarios were carried out in synthetic fractures
conditioned on the same spatially correlated asperity contacts but different correlation
structures of permeability. This similarity thus suggests that liquid seepage in natural
fractures may be less sensitive to the spatial correlation of permeability and tends to
depend more strongly on the spatial distribution of asperity contacts. It also suggests that
tortuosity of flow paths may be insensitive to the anisotropy of permeability as'long as
conditioning asperity contacts are the same. However, the difference between the two
flow scenarios can be identified in terms of degree of ponding as illustrated in Figure
V.40. It shows that the two flow scenarios are obviously different from each other if the

asperity contacts are not vertically correlated, see Figures V.40(e) to V.40(h).

Breakthrough and steady state flow fields shown in Figures V.36 and V.37 are
also similar to corresponding simulation results, i.e., cases 1, 4, 9, and 12 in Figures V.28
and V.29. The minor difference between these simulation results is because some of the
spatially random asperity contacts in these fractures are not conditioning data. That is, the
overall spatial distribution of asperity contacts is not the same between the two flow
scenarios. The difference becomes significant only for cases with larger anisotropy ratios.
For example, the ponding strength in Figure V.40(b) and V.40(d) explicitly show the

difference between the two simulation scenarios.
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Figure V.34 Anisotropic permeability fields conditioned on spatially random asperity
contacts. The principal radii of asperity contacts are 0.4m or 1.6m, and principal
directions in N-S or NW-SE. The anisotropic semi-variogram of permeability has
nugget =0, sill = 190, and principal correlation length as 0.4m or 1.6m. The minor
correlation length is half of the principal correlation length. The subscripts 1 and

2 for A, denote the principal and minor directions, respectively.
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Figure V.35 Anisotropic permeability fields conditioned on spatially correlated asperity
contacts. The principal correlation lengths of asperity contacts are 0.4m or 1.6m, and
principal directions in N-S or NW-SE. The anisotropic semi-variogram of permeability
has nugget = 0, sill = 120, and principal correlation length as 0.4m or 1.6m. The minor
correlation length is half of the principal correlation length. The subscripts 1 and 2 for
A, denote the principal and minor directions, respectively.
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Figure V.36 Saturation at breakthrough in anisotropic fractures with spatially random,
anisotropic asperity contacts shown in Figure V.34.
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Figure V.37 Saturation at steady state in anisotropic fractures with spatially random,
anisotropic asperity contacts shown in Figure V.34.
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Figure V.38 Saturation at breakthrough in anisotropic fractures with spatially correlated,
anisotropic asperity contacts shown in Figure V.35.

123




Liquid

Liquid
f| Saturation
3 B 0.99 E
o | 0.8 £ 4
= 0.6 a
@ 0.4 -1
Q 0.2 Q 14
-16F
-18
A B o 20 P ‘ﬁ. 212100
6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 20
Distance (m) Distance (m)
(a) Time = 28.79 days (b) Time = 31.95 days

Liguid
Saturation
-
S
S’
£ 10
% 12
8-

.20b .. XL vrons, (] .20B A5 B, 3
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 20

Distance (m) Distance (m)

(c) Time = 19.33 days (d) Time =23.42 days

Figure V.39 Saturation at steady state in anisotropic fractures with spatially correlated,
anisotropic asperity contacts shown in Figure V.35.
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Chapter VI. Tracer simulations

VI. 1 Tracer transport

As stated earlier, field evidence suggests that, in semi-arid environments, water is
able to migrate downward rather rapidly along preferential paths. At Yucca Mountain,
Nevada, for example, fracture networks in unsaturated rocks may provide such fast
preferential flow paths. This observation thus raises concerns that, once a storage canister
starts leaking, radionuclides may transport with groundwater and reach the downstream
biosphere at an unexpectedly short time scale. Detailed analyses of solute transport need
to consider coupled flow and transport equations, which are beyond the scope of the
present study. To simplify the problem, however, tracer transport without taking into

account the effect of molecular diffusion is considered in this section.

“Tracers” are defined herein as dilute compounds that are completely non-reactive
and dissolved in water without significantly changing its physical properties, e.g., density
and viscosity, of water. An example would be a small amount of brine will mixed with

water. By this convention, tracers can be treated as a second component of water.

For multi-phase simulations, liquid saturation is defined as the ratio of pore

volume occupied by the liquid phase to the total pore volume, i.e.,

\/ \/

I=W=$\Z (61)

where V; is the pore volume occupied by liquid phase, PV stands for the total pore

volume, ¢ is porosity, and Vy, is the bulk volume of rock. Primary variables for two-
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component simulations are defined as liquid saturation (S) (or liquid pressure (P;) ) and
mass fraction of the second component of liquid phase(X») (Pruess, 1991). Mass fractions -

for two-component flow systems are defined as

_ prIt VvV 1 62)

V, PV S,
zM 3o

If the i-th component of 11qu1d saturation is defined as

V,
Sl' L

=Py (6.3)

then the mass fraction and liquid saturation have the following relationship

o {

S,=X,S5, - (64)

See Figure VI.1 for illustration of two-water systems.

Air, V=(1-S)¢V,

Water 1, V=X5,4V, Water 2 =Tracer, V=X, S, q)V
o* component of! water) (2™ component of waler)
{mass fraction X,) (mass fraction X,)

Figure V1.1 Schematic partition of the pore space for two-water systems.

For i= 2, i.e., the second component of water; or tracer, Eq(6.4) yields

Si2 =X, 5 . (6.5)
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That is, the quantity S, is in fact the pore volume occupied by tracer per unit void
volume of rock. From Eq(6.5), the volumetric fractiqn of tracer to the total pore volume
is the mass fraction of tracer, S;. Strictly speaking, S;, is not liquid saturation but a
“pore-space-weighted saturation”. For notational convenience, however, S, will be

named “tracer saturation” in the remainder of the text.

Initial conditions for tracer transport may be a steady state or a transient flow field
of water. First, let us consider the steady state flow field such as Figure V.19(d). This
flow field is interesting because (1) it is the result of water simulation in a synthetic
fracture at high normal stress, (2) it has the least seepage dispersion, and (3) it has several
regions that are fully saturated with water. These fully saturated regions have different
effects on seepage for transient and steady state flow fields. For example, the effects of
seepage retardation and seepage acceleration by ponding are illustratéd by the horizontal
segment in Figure VI.2 and the dashed BTC in Figure V.20, respectively. Moreover,
some of the saturated regions may become “dead-end pores” to water. Note that dead-end
pores usually occur above laterally extensive asperity contacts or at fracture terminations,
e.g., the upper left corner of Figure V.19(d) and to the right at depths from — 3 m to — 8

m.

Figure VI.3 shows four snapshots of tracer transport at different times. These
simulations were obtained by injecting tracer (at the constant rate of 10° kg/s uniformly
distributed over the entire top boundary) into the steady state flow field of Figure V.19(d)

and simulating under the same boundary conditions as specified in section V.1. These
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simulations were terminated at the times when the flux ratios of tracer reached 0.1, 0.5,

0.9, and 0.987, respectively. The flux ratio for tracer simulations is defined as

= 6.6)
Qtop Qtop (

where Qup and Quq are the total liquid flux at the top and bottom boundary, respectively.
Qaz,bot is the total tracer flux at the bottom boundary and is defined as the numerator in
Eq(6.6). The subscript j in Eq(6.6) stands for all grid blocks that directly contact the

bottom boundary, and Xj; is the mass fraction of tracer in grid block j.

IDepthl (m)

Time (hrs)

Figure V1.2 Vertical advance curve for the realization shown in Figure V.19(d).

Simulation results in Figure VI.3 show that tracer not only travels along flow
paths that have been developed by water but bypasses dead-end pores. Obviouslly, tracer
flow paths have higher relative permeability (or, equivalently, lower flow resistance) due
to higher total 11qu1d saturation. The bypassmg of tracer away from ponded regions is

because of the assumptmn of non-reactive tracers and the neglect of molecular diffusion.
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Figure VI.3 Snapshots of tracer transport with the steady state flow field shown in
Figure V.19(d) as the initial condition.
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Neglecting molecular diffusion thus limits the time scale for which the realistic solute

transport can occur. The limiting time scale can be estimated by the diffusive length scale

y = J2D¢, where D is a typical aqueous phase diffusivity of order 10™'° m?s. For
example, the time scale for tracers to diffuse into the ponded region in Figure VI.3(d)
from depths — 11 m to — 10 m would approximately take 160 years. Since the simulation
time for Figure VI.3(d) is only 4.56 days, which is far below the limiting time scale,
tracers do not invade those dead-end pores by diffusion. Thus, the invasion of tracer into
the ponded region above the depth at —12 m is due to other mixing mechanisms. In this
study, the only mixing mechanism occurring between water and tracer is caused by the
finite spatial resolution in the computational grids, with a dispersivity on the order of
Az/2 = 0.1 m (Pruess, 1991). The quantitative measurement of the mixing is then

represented by mass fractions.

Breakthrough curves of water and tracer are shown in Figure VIL.4. As discussed
earlier in section V.3 the BTC for liquid seep in Figure VI.19(d) is delayed by ponding,
and it behaves likes a step function. However, the tracer BTC is smoother than the water
BTC. Moreover, the tracer BTC is more dispersive than the water BTC and shows the

effects of dispersion.

Figure VL5 shows the results of fitting the log-normal travel time model to each
of the BTCs in Figure VI4. The sample BTC as obtained from flow simulations is
plotted as solid dots in Figure VL5. Recall that analytical pdf and CDF are obtained by
calculating the sample mean aﬁd sample variance from the sample BTC data, see section

V.3, which are plotted as solid and dashed-dotted lines respectively in Figure VLS. As
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expected, the log-normal model does not fit the water BTC very well, see Figure V1.5(a).
Figure VL5(b) shows that the log-nonnai model fits the tracer BTC very well, especially
for the analytical CDF. In addition, the probability distribution for tracer travel time' gends
to be a positively skewed distribution. This property of tracer BTC suggests that the time

scale for the total breakthrough is longer for tracer transport than for water transport.

1 L I~ o T T T ]
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R i ; ;
o 0.6 o i .:
S i i R
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~ 04F |
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L
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F/
- I
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0 1 2 3 4 5 6 7 8
Time (days)

Figure V1.4 BTCs of water and tracer transport shown in Figures V.19(d) and VI.3(d).

The next example investigates the effect of initial condition on tracer transport.
Instead of starting from a steady state flow field of water, this numerical experiment uses
a transient flow field as the initial condition. Figure V1.6(a) shows the initial condition for
this experiment. This flow ﬁeld was obtained by injecting water uniformly over the entire
top boundary into a synthetic fracture with spatially correlated asperity contacts. The
constant injection rate of water was 10 kg/s, and the total fraction of asperity contacts
was 40%. In addition, this transient flow field was terminated at the time at which the
flux ratio is approximately 0.5. For comparison, its corresponding steady state flow field

is shown in Figure VI.6(b).
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Figure VL5 Fitted results of the log-normal travel time model to the water and
tracer BTCs shown in Figure VI1.4.
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Figure VI.6 Initial conditions for tracer simulations: (a) the transient flow field of water,
which is approximately terminated at flux ratio = 0.5, and (b) its corresponding steady
state flow field.
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Figure VL7 shows four snapshots of tracer transport, using the transient water
flow field shown in Figure VI1.6(a) as the initial condition. Again, tracer was injected
uniformly over the entire top Boundary at a constant rate of 10~ kg/s, starting at the time
when the water simulation is terminated. To save computation time, this tracer simulation
was terminated when the flux ratio is approximately 0.95. Similar transport behavior as
present in Figure VI3 is also observed in Figure VI.7. Moreover, Figure VI.8(a) shows
that the tracer BTC can be reasonably fitted by the log-normal model, though the tail of
the analytical CDF deviates from the sample BTC. The deviation at the tail may be
because the tracer transport has not reached the steady state yet. For comparison, Figure
VI.8(b) shows the BTC obtained by injecting tracer to the steady state flow field of
Figure VI.6(b). The resulting flow fields of tracer are not shown here because they are
very close to those flow fields in Figure V1.7. Because the former tracer simulation was
terminated at a higher flux ratio (at 0.97), the BTC in Figure VI.8(b) shows that it can be
better fitted by the log-normal model. For the water BTC, however, Figure V1.9 shows

that the log-normal distribution is not a good model for predicting water travel time.
VL. 2 Episodic infiltration

The study of episodic infiltration is motivated by field observations that in-situ
surface infiltration into fractures may experience temporal variability to a large extent
(Bodvarsson and Bandurraga, 1996). Under such conditions, fractures are undergoing
repeated wetting and drying cycles. Therefore, hysteresis effects may become significant
for episodic infiltration events. However, detailed analysis of hy;steresis effects is beyond

the scope of the present study. Instead, this section focuses on episodic infiltration events,
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Figure VI.7 Snapshots of tracer transport continued from the transient flow field

in Figure V1.6(a).
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Figure V1.8 Two tracer BTCs corresponding to simulations with different initial
conditions. (a) The initial condition is the transient flow field in Figure VI.6(a);
and (b) The initial condition is the steady state flow field in Figure VI.6(b).
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which are either events with repeated wetting and drying cycles or events with temporally
intensified infiltration. The purpose of these analyses is to study the change of seepage

patterns with respect to the change of infiltration rate applied at the boundary.
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Figure V1.9 Water BTC corresponding to flow field in Figure VL.6(b).

Two types of episodic infiltration events are illustrated in Figure V1.10. The first
type, Figure V1.10(a), considers a periodic infiltration event. The intervals of wetting and
drying periods are At; and At, respectively. For the following example, the values of At;
and At; are assumed to be 1 and 10 days, respectively. The infiltration rate for this
example is still assumed to be 107 kg/s. Note that water 1 is the supplying fluid during
the first wetting cycle, but it is changed to water 2 in subsequent wetting cycles. The
purpose of switching the supplying fluid is to examine the effect of antecedent saturation
history on seepage. The second type considers a tramsient infiltration event with a
temporary intensified supply rate. This is illustrated in Figure VI.10(b) as the solid line.
The interval At is the breakthrough time for constant supply rate of Qo. The arbitrary
integer n is the ratio of the intensified rate to the constant rate. Three ratios are

considered, i.e., 2, 5, and 10. Note that the total amount of liquid injected into the fracture
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Figure VI.10 Schematic of episodic infiltration events.

is the same, which is Qo X At. In both scenarios, fluid is injected uniformly over the entire
top boundary at a constant rate of 10 kg/s. The initial saturation at non-asperities is

assumed at the value of residual water saturation.

Figure VI.11 shows the snapshots of the total water saturation at the end of each
wetting and drying cycles for the first episodic infiltration event. For comparison, the
realizations of water seepage at breakthrough and steady state for the corresponding
single wetting event are shown at the top of the figure. For both wetting and drying
cycles, water travels along the flow paths that are depicted in the steady state flow field
of water. However, the speed of downward migration during a drying cycle is slower than
the speed during a wetting cycle. This change of speed is shown in Figure VI.12 for the
first wetting and drying cycles. The average speed of downward migration is reduced
from 0.47 m/br for the first wetting cycle to 0.31 m/hr for the first drying cycle. The
reduction of speed is because of the lower relative permeability at the smaller liquid
saturation during a drying cycle. The change of capillary pressure is shown in Figure

VI1.13(a) to VL.13(c).
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Figure VI1.12 Vertical advance curves of the first wetting and drying cycles, and the
single wetting event.

For subsequent wetting cycles, water only travels within flow paths that have
been developed by previous drying cycle. This is because those flow paths have higher
relative permeability than dry flow paths. New flow paths can only be developed during
drying cycles. The reason is that, from capillary theory, water (the wetting phase) tends to
remain in smaller pores during drying cycles. Since dry flow paths have smaller relative
permeability to water than wet flow paths, their effective pore space is smaller than that
for wet flow paths. Change of relative ];;ermeability in consecutive wetting and drying
cycles can be seen in Figure VI.13(d) to VIL13(f). It is obvious that the relative

permeability in a drying cycle is smaller that that in wetting cycles.

Because the governing Richards’ equation does not consider hystefesis effects,
liquid seepage in Figure VI.11 starts to repeat itself approximately after the third wetting-
drying cycle. However, the flow fields near the lower boundary after the second drying
cycle are somewhat different from each other because the wetting front is still sensitive to

the surface infiltration. Simulation continues after the fifth drying cycle by constantly
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injecting water 2 into the fracture, and then stops when the flux ratio of water 2 is 0.933.
The resulting flow field of total water is shown at the top left in Figure VI.14. This flow
field is, as it should be, very close to the steady state flow field of water of the single
wetting event because hysteresis effects are neglected. The top right plot in Figure VI.14
shows the water 2 saturation after the fifth drying cycle. For completeness, flow fields ;)f

water 2 after the first drying cycle are shown in the rest of Figure V1.14.

Figure VI.15 shows the periédic change of saturation at the top surface for the
five wetting and drying cycles. For the first wetting-drying cycle, Figures VI.15(b) show
that saturation at the top surface increases rapidly to a constant value during a wetting
cycle and then decreases gradually to a lower value during a drying cycle. Because the
capillary hysteresis is neglected, it is expected that the absolute capillary pressure at the
top surface also experiences similar variations. That is, the flow simulation switches to a
constant head boundary condition during a short interval, even though the simulation
starts from a constant injection boundary condition. It is expected, therefore, that flow

simulations using a constant head boundary would be close to the present simulations.

Because drying duration was only 10 days in previous simulations, significant
changes of capillary pressure or other dynamic processes may not be evident. For
example, Figure VI.16 shows that the transient change of accumulated mass at the bottom
boundary behaves as an increasing function with time. If the drying duration was long
enough, it would be expected to see this curve to be stabilized before the end of each
drying cycle. On the other hand, the exiting flux of water 2 at the bottom boundary tends

to stabilize at the end of each drying cycle, see Figure VI1.17.
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Now, let us consider the second type of episodic infiltration. The constant supply
rate (Qp) and the time to breakthrough (Af) are 107 kg/s and 43.56 hrs, respectively, for
this numerical experiment. Three ratios of the flow rate (2, 5, and 10) are considered.
Therefore, the new injection rates are 2x107 kgfs, 5%107 kg/s, and 1x102 kg/s, and the

new intervals of injections are 21.78 hrs, 8.712 hrs, and 4.356 hrs.
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Figure VI1.18 shows realizations of saturation at breakthrough for events with a
uniformly distributed supply rate and intensified rates. All realizations are practically the
same, only with a minor difference due to free drainage after surface infiltration is turned
off. However, Figure VL.19 shows that the vertical seepage for all episodic infiltration
events evolve at a faster speed than the event with a uniformly distributed supply rate. If
the average seepage velocity is defined as the ratio of the depth of the plume tip to travel
time, Table VL1 (see column 4) shows that the initial average velocity increases with
increasing surface infiltration. As surface infiltration increases, however, the ratio of
average velocity for episodic infiltration to the average velocity for hconstant infiltration
becomes smaller than the ratio of supply rate, see column 6 of Table VIL1. On the other
hand, the ratio of ponding duration is approximately the inverse of the ratio of supply
rate. Furthermore, liquid seepage after ponding proceeds at a faster speed than seepage

before ponding, see the last column of Table V1.1 and Figure VI1.18.

These simulation results suggest that liquid seepage for episodic infiltration
follows some patterns if the total mass injected into fracture is conserved. These patterns
can be roughly divided into three stages: before ponding, during ponding and after
ponding. The ponding refers to the regions which significantly delay the seepage. For
example, the ponding refers to the regions above the depth at — 13 m in Figure VI.18. It is

obvious that these patterns are different from each other.

The first pattern applies to the time interval before the seepage develops
significant ponding. It says that the initial average seepage velocity increases with

increasing surface infiltration. This increasing trend is because the flow resistance
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Table VI.1 Results of episodic injection
Qkgls) Tcr) Tethr) Ve(mhr) Ro Rv _ Ty(hr) Vy(m/hr)

1x1073 43.56 24.93 0.52 1 1.00 15.17 3.17
2%10 22.76 13.23 0.98 2 1.89 7.51 5.19
5x107 10.31 5.69 2.27 5 4.37 3.11 8.81
1x107 6.12 3.00 4.30 10 8.27 1.68 8.39

Q = surface infiltration rate

T = breakthrough time

T¢ = first arrival time to the depth of — 13.0 m, the depth where ponding occurs
V¢ = initial average seepage velocity, i.e., 13.0/T¢

Rq= ratio of surface infiltration, i.e., Q/1 X 103

Ry = ratio of the initial average seepage velocity for the episodic infiltration to the

average velocity for the event with a uniformly distributed rate
Tp = time needed to completely saturate the ponded regions at ~13.0 m
V, = average seepage velocity after ponding

decreases with increasing supply rate. The decrease of flow resistance with respect to
injection rate is interpreted by the increasing relative permeability and decreasing
absolute capillary pressure at the top surface, see Figure VI.20 (b) and VI.20(c). This
initial seepage velocity remains approximately constant until water descends to a depth at
about —13 m at which significant ponding is occuring. However, the increase of the initial
seepage velocity is not at the same pace as the increase of supply rate. This may be
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because seepage needs longer time to develop new flow paths as the supply rate
increases. Thus, the ratio of seepage velocity for episodic infiltration to the velocity for

the event with uniformly distributed supply rate is smaller than the ratio of supply rate.

Note that each of the curves in Figure V1.20 for episodic infiltration drops off
because of the termination of surface infiltration. In contrast, the tails of curves for
constant infiltration remain horizontal. In addition, all the curves in Figure V1.20 exhibit
a stepwise increasing behavior. This is because liquid has to fill in dead-end pores before
developing new flow paths. Thus, there are two obvious jumps in each of these curves.

Each jump corresponds to each dead-end pore shown in Figure VI.18.

The second-stage pattern suggests that the time needed to completely saturate the
ponded regions at — 13 m inversely follows the pattern of supply rate. This is simply
because of mass balance. That is, the larger the supply rate, the shorter the duration to fill

the pore space.

The third-stage pattern suggests that seepage after ponding has an average
velocity that is even faster than the initial seepage velocity. However, there seems to be
no explicit correspondence to the pattern of supply rate. But, results in Table VL3 suggest
that average seepage velocity after ponding becomes closer to each other as the supply

rate increases.

In summary, these patterns observed in Figure VI.19 suggest that ponding
duration inversely correspond to the pattern of surface infiltration. However, average

seepage velocity follows different patterns before and after ponding. Combining these
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patterns implies that ponding may have less impact if the surface infiltration becomes
stronger. For an infiltration event with a high supply rate, liquid seepage may follow a
single average seepage velocity even if significant ponding appears. On the other hand, if
the surface infiltration become weaker, time lag due to ponding may have significant

impact on liquid seepage as well as BTC behavior.

VI3 Limitations of space and time averaging

It is known that the macroscale approach, instead of representing the spatial
heterogeneity of fractures with a detailed resolution, averages the heterogeneity of
fractures as well as the inputs to the system boundary. In this section, a numerical

experiment is conducted to point out the limitations of such an approach.

Consider, for example, the synthetic fracture in Figure V.6(d). This fracture has
spatially random asperity contacts with a total volumetric fraction of 40%. To simulate
the macroscale averaging approach, the heterogeneities are replaced with spatially
averaged porosity and effective permeability. The same initial and boundary conditions
as those specified in section V.1 are used for the simulation. The resulting values of
parameters for this flow simulation are listed in Table V1.2. The computed saturation at
breakthrough is spatially uniform with a value of 0.58. In addition, the vertical advance
curve for transient flow field is perfectly linear. However, the time to breakthrough
obtained by the macroscale approach is longer than that obtained using detailed
resolution of fracture heterogeneity. After the first breakthrough, however, the liquid seep
corresponding to the macroscale approach takes a shorter time to reach the steady state.

Overall, the macroscale averaging approach is not able to simulate the occurrence of fast
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preferential flow paths as observed in the fields. More importantly, the macroscale
approach cannot predict the complicated seepage patterns, such as fingering, bypassing

and ponding, that are expected to be seen in the fields.

Table V1.2 Comparisons between the macroscale approach and the current approach

Simulation method ¢  kapork(m®)  kg,ork(m?  Breakthrough - Steady state .
time (hrs) time (days) Lo

Macroscale approach  0.21  0.055 x 107 0.060 x 10” 98.64 478
Current approach 035 1.0x10°x{  1.0x10°x( 34.85 18.80

The water and tracer BTCs for the simulation using the macroscale approach are
shown in Figure VL.21. Tracer simulation is continued from the steady state flow field
obtained by the macroscale approach. The same boundary conditions as those used for
the water simulation are employed for the tracer simulation. Again, the resulting tracer
flow field is trivial because it is also a spatially uniform saturation field. Figuré V121
shows that the log-normal model can be fitted to both water and tracer BTCs. Note that
the o, for water BTC is very small (6, = 0.0063). TilllS, the water BTC can be practically
approximated by a step function, and its pdf can be represented by a spike at tﬁe mean
travel time (<t> = 4.22 days). However, tracer BTC is more dispersed than water BTC (o

= 0.45).
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Figure V1.21 Water and tracer BTCs for simulations using the
macroscale averaging approach.
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Chapter VII. Discussion and conclusions

Field evidence suggests that in semi-arid environments water is able to migrate
downward rather rapidly along preferential paths. For example, at Yucca Mountain,
Nevada, environmental tracers have been shown to migrate several hundred meters deep
within decades. However, the time scale of tracer transport predicted by numerical
models using conventional volume-averaging approaches is on the order of thousands of
years. In order to address this discrepancy, a numerical model based on fundamental

processes and mechanisms has been proposed in this study.

Attempts at modeling flow and transport in unsaturated fractured rock based on a
mechanistic process model must start from a specification of void space geometry in
fractures. Unfortunately, the multiple length scales of fracture surfaces generally
complicates the specification of void space geometry. On the other hand, our ability to
directly obtain geometric characteristics of fracture void spaces from field observations is
limited. Only inputs into and outputs from the flow system boundaries can be observed in
the field, which are all subject to significant temporal as well as ‘spatial variability. In this
study, void spaces in fractures are characterized based on hypothesized geometric
features, such as spatially correlated asperity contacts. These spatial characteristics are
expected to be most relevant for seepage behavior. The appropriateness of these
geometric features is then judged by whether they are able to reproduce flow and

transport behavior that would be observed in the field.

Fluid flow and solute transport in natural fractures.f-;enerally occur in 3-D fracture

networks. In this study, however, fracture networks were approximated as 2-D
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heterogeneous porous media in a vertical fracture plane. In addition, the effect of matrix
permeability was neglected. This assumption is reasonable for shoﬂ-terﬁ flow and
transport behavior, but may not be viable when considering long-term flow patterns.
Thus, the present study is applicable to “small” fractures in hard rocks of low
permeability, such as welded tuffs, graywacke, mudstones, granite, and some fractured
basalts. It would not be applicable to larger fractures with 3-D void space, or to small
fractures in rocks with significant matrix permeability (e.g., non-welded tuffs or

sandstones).

Several approximations and assumptions were made in this study. Effects of
entrapped air were neglected. Hysteresis effects in capillary pressure and relative
permeability were also neglected. Furthermore, permeability heterogeneity was assumed
to be the dominating inﬂuencé on seepage. Porosity heterogeneity was not considered.
For solute transport, molecular diffusion was neglected. The last assumption suggests that
the only mixing mechanism is due to the finite spatial discretization. In addition,
neglecting molecular-diffusion limits the time scale for which the realistic solute transport

can occur.

Among the various spatial features of fracture void spaces, the spatial correlation
around asperity contacts is focused in this study. This is motivated by preliminary
analyses that conventional semi-variograms are not very sensitive to the topology of
asperity contacts in fractures. The reason for this insensitivity may be because the
detailed heterogeneity of a random field is averaged out by the semi-variogram. Thus, a

modified Metropolis algorithm is proposed as a new perturbation mechanism for
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simulated annealing (SA). This modified algorithm is able to emphasize the
neighborhoods of conditioning asperity contacts, while formulating the objective function
by employing the conventional semi-variogram. Simulated permeability fields obtained
by the modified Metropolis algorithm thus show much stronger clustering of asperity

contacts.

It was found from sensitivity analyses that the ratio of A/A; < 0.5 is preferred for
better representation of spatially correlated permeability fields. However, seepage
patterns were not as sensitive as characterization accuracy to this ratio. Indeed, seepage
patterns are virtually insensitive to the ratio A/?»; as long as’its is smaller than 0.5. This is
especially true for flow simulations in permeability fields with spatially correlated
asperity contacts. This insensitivity is explained by the significant bypassing effect of

flow due to asperity contacts that are laterally correlated to a large extent.

Seepage in unsaturated fractures with either localized or distributed injection is
characterized by localized preferential flow, along with bypassing, funneling, and
localized ponding. Generally, flow and transport behavior is dominated by the fraction of
asperity contacts, and their shape, size, distribution and spatial correlation. However, the
detailed distribution of permeability in the open space of fracture is less important than
the spatial correlation of asperity contacts. For increasing fraction of asperity contacts,
there is more flow bypassing and ponding, but fewer fingers. For a fixed fraction of
asperity contacts, however, flow bypassing, fingering and average vertical seepage
velocity depend on the correlation length and the principal correlation direction of

asperity contacts. If asperity contacts are horizontally correlated, flow bypassing,
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fingering, and average vertical seepage velocity generally increase with increasing
horizontal correlation length of asperity contacts. For non-horizontally or non-vertically
correlated asperity contacts, flow bypassing and average vertical seepage velocity
increase as the anisotropy ratio of asperity contacts increases; but flow fingering

decreases with increasing anisotropy ratio.

Seepage dispersion is generally higher for fractures with intermediate fraction of
asperity contacts; but it is lower for small or large fractions of asperity contacts. The
reason for this behavior is that many fingers can be formed in fractures with small
fraction of asperity contacts. These fingers are not significantly affected by asperity
contacts, and they all have similar breakthrough behavior. Thus, seepage dispersion is
weak. With a large fraction of asperity contacts, only a limited number of fingers
(sometimes only one) can break through; thus, seepage dispersion is generally weak.
However, a few fingers (both fast and slow) are formed in fractures with intermediate

fraction of asperity contacts. Thus, seepage dispersion is generally stronger.

Ponding occurs in regions that lack permeability in the vertical direction. It is then
expected that ponding would slow down the downward advancement of seepage. As a
result, seepage dispersion may become larger because of ponding, even for fractures with
large fraction of asperity contacts. However, if ponding is significant, it may gather
distributed seepage and focus flow into more localized pathways. Accordingly, seepage
may be accelerated because the funneled flow has a higher seepage velocity. Under such
circumstances, seepage dispersion may be greatly reduced, and the resulting water BTC

behaves like a step function.
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The strength of ponding depends on the fraction of asperity contacts and their
correlation structure, i.e., their correlation lengths, anisotropy ratio, and the principal
direction. In synthetic fractures with isotropic permeability and asperity contacts, -the
strength of ponding increases with increasing fraction of asperity contacts. Yet, the
relationship between the strength of ponding and the anisotropic structure of permeability

and asperity contacts is still not clear.

Simulation results found that BTCs for solute transport tends to be more
dispersive than water BTCs. This is because water has to fill dead-end pores along its
flow paths while migrating downward. However, tracers bypass these dead-end pores and
travel along flow paths that have less flow resistance. Therefore, tracer transport is more
uniform than water transport. More importantly, it was found that the log-normal travel
time model does not fit water BTCs very well. In contrast, BTCs of solute transpoﬁ either
under transient or steady state flow field of water can be fitted very well by the log-
normal model. The positively skewed log-normal distribution implies that tracer transport

may evolve over a longer time scale than water transport.

The general features of flow patterns, as well as the different scaling laws with
respect to infiltration events with different rates of surface injection have several
implications for field experiments. First, the in-situ sampling techniques need to consider
the effect of preferential flow and flow bypassing. Installing sampling devices in a
spatially uniform manner may not be cost-effective because flow may only break through
certain locations at the exiting boundary. Second, acceierated or delayed stepage due to

ponding needs to be considered when designing the sampling intervals, especially for

159




automatic sampling equipment. Third, field experiments should be carefully designed to
consider the temporal and spatial variability of the input to fractures. Results of our
simulation suggest that initial seepage velocity increases with the infiltration rate. In
addition, the effect of ponding also changes with the supply rate. Thereforle, seepage
patterns are also subject to change with the surface infiltration. For waste isolation
problems, it may be necessary to locate the fast preferential flow paths to prevent the
infiltrating water from contacting the storage canister. From the aspect of waste
management, it may be needed to consider the transport pathways of solute once a

storage canister is exposed to water.

In the future, studies of flow and solute transport in natural fractures should focus
on employing more realistic assumptions. The numerical model should be expanded to
consider 3-D effects. In addition, flow and solute transport in unsatui'ated fractures is at
least a two-phase process, effects of the gas phase should not be neglected. For example,
Richards’ equation implicitly assumes that the noﬁ-wetﬁng phase fluid (air/gas) does not
interfere with the movement of the wetting phase. In reality, however, air may be trapped
within dead-end pores or be accumulated ahead of a critical pore neck. Therefore, it may
block the movement of the wetting phase. Its pressure may be increased to a critical
point, e.g., the bubbling pressure, such that it may be released by bubbling or be pushed
through the pore neck. Thus, phase interference and phase change are essential
mechanisms for two-phase problems. The appearance of pore necks then raises the
concern of the spatial variability of porosity. Porosity heterogeneity may have long-term
effects on seepage as well as solute transport. Furthermore, the effect of matrix

permeability should be included when considering long-term seepage effects. As a result,
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molecular diffusion should also be considered because it is the dominating mechanism of
mass transfer between the rock matrix and fractures. Furthermore, field observations
indicate that surface infiltration and percolation are both subject to temporal variability.
Seepage is therefore expected to experience hysteresis effects. Therefore, hysteresis

effects of capillary and relative permeability should also be included.
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Appendix A. Derivation of a semi-variogram model and
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Figure A.1. Scatterplot of random variables U and V.

Dependence of two random variables U and V can be visualized from their
scatterplot as shown in Figure A.1 (Isaaks and Srivastava, 1989), in which sample data of
U and V measured at the same location are plotted against each other on the same
diagram. Note that the solid line at 45° features the perfectly correlated pair, i.e., U= V.
The spatial correlation of the two random variables is usually quantitatively measured by
their covariance function, Cov{U, V]

Cov[U, V]=E[U - m, XV -m, )]=E[U-V]-mym, (A-1)

where my and my are means of U and V, respectively. Covariance is used to measure the
similarity between two random variables. However, the variability of two random
variables is usually measured by their moment of inertia about the 45° line on their
scatterplot. This quantity is called “semi-variogram™ in the literature of geostatistics,
which is written as

1 & 1 & 2
=—Yd?=—SU.-V A-2

where N is the total number of random pairs (U;, V;), and d; is distance on a scatterplot
from a random pair (U;, V;) to the line on which U=V. Semi-variogram and covariance
have the following relationship

2V = I:I—t’_iU"z _mlz.l]-l'[%iviz _ms':l_[%iljivi —2mUmv]+(mU ‘mv)z
i=l i=l

i=]

(A-3)
— 2 2 2
= 53 +52 =2Cov[U, V]+ (my —m, )
where sy and sy are standard deviations of U and V, respectively. The above definitions
of covariance and semi-variogram can be applied to two random variables measured at
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the same location, e.g., U; and V; in Figure A.l; or the same attribute measured at
different locations. The latter is usually used in the literature of geostatistics to measure
the spatial variability of a spatially random function (SRF).

For a SRF Z(u), its spatial variability is quantitatively measured by calculating
the mean squared difference between a pair (Z(u), Z(u+h)), where h is the separation
distance between Z(u) and Z(u-+h). Based on Eq(A-2), the semi-variogram of Z(u) is

N(h)

27, (h) =Fz7>2[z(”‘) ~ 2, +)]* =B{ [Z@w) - Z@+ W]} (A-4)

If Z is a stationary SRF, i.e., the statistics of Z are independent of location, Eq(A-4) can

be simplified as

2y, () =E{[Z() - Za + W)]* }= 2Var[Z(w)]- 2Cov[Z(w), Zu +h)] (A-5)

or

Yz(h) = C5(0)-Cy(h) (A-6)

where Cz(0) is the variance of Z, and Cgz(h) is the covariance of Z with separation
distance h. Hereafter, the subscript in yz(h) or Cz(h) will be omitted for simplicity if it is
clear that what SRF is being dealt with.

(B) Mathematical models of y(h) and C(h)

A function that can be used as a covariance function must be positive definite
such that a function that is a weighted linear combination of n SRF’s has a non-negative
variance. From this property, other properties of C(h) can be inferred, which are (2)
C(0)= Var(Z(u)) = 0, (b) C(h) = C(-h), and (c) IC(h)! < C(0). (Journel and Huijbregts,
1978).

In the literature of geostatistics, there are several models of semi-variogram that
have shown to be positive definite. One of the most commonly used models is the
exponential model which is defined as

y(h)=s2 l:l - exp[— Eg ﬂ (A-7)

its corresponding covariance function is defined as

C(h) = s; exp(—%) (A-8)

where i = |hl is the magnitude of the separation distance, & is the range parameter, and
s3 is the sill (or the variance of the underlying random variable Z). Note that Eqs (A-7)
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is an isotropic model, thus, ¥ (h) =y (#). The “range” is defined as the distance at which
the semi-variogram reaches 95% of the sill. That is, at & = &, equation (A-7) reduces to

y(h) = s [1-exp(-3)]=0.95s2 (A-9)

For any semi-variogram model, the integral scale A, (or correlation length) of Z is
defined as (Dagan, 1989)

l 0
A =—| Ch)dh A-10).
o [ cw (A-10)
Therefore, for an exponential semi-variogram, A can be derived as
_ 1 *® 9 3h -g
A i [k -exp(—-é:—]dh——g— (A-11)

That is, for an exponential semi-variogram, the correlation length is one third of the
range. See Figure A.2 for illustration.

Yh) or C(h)
sil, s2
\ %h 0.95 s2
“" . 1
\\- 0.63 52 ‘
W
®0.37 s;
G(h) . X
\—-—
A E=3A h

Figure A.2. lllustration of an exponential semi-variogram and its
corresponding correlation function.

From Eq(A-11), Eq(A-7) can be recast as ' ;
y(h)=s2 [1 - exp(— %)] (A-12) .

For an anisotropic exponential semi-variogram, Eq(A-12) can be rewritten as
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A A

X Z

2 2
Y(h)='}'(hx,hz)=c+s§ 1—exp —-\/[h—‘) +(h—‘) : (A-13)

where A and A, are the correlation lengths in the x and z directions, respectively; and A,
and h, are the separation distances in the x and z directions, respectively. Note that this
kind of anisotropy is called “geometric anisotropy” in the literature of geostatistics
(Isaaks and Srivastava, 1989).
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Appendix B. Nugget effect of a semi-variograin model
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Theoretically, semi-variogram model at zero separation distance (h = 0) should

have a zero value, i.e., ¥(0) = 0, regardless of what type of model it may be. This property
comes from that fact that the spatial correlation of Z to itself at # = 0 should be its

univariate variance s;. When fitting a semi-variogram model to sample data, however, it

may happen that the intercept extrapolated from the sample data to the vertical axis at the
origin is a finite value but not zero. Likewise, the covariance function at large separation
distance may approach asymptotically a finite value, not zero. This non-zero semi-
variogram value at zero separation distance is called the “nugget effect” in the literature
of geostatistics.

Nugget effect can be attributed to sampling error as well as small-scale variability
(or microvariability) (Kitanidis, 1997). Usually, these two effects occur simultaneously in
the field. Sampling error may be removed by following cautious sampling procedures, or
using equipment with better precision, while taking field measurements. However, it is
generally difficult to map the detailed variability of a spatially heterogeneous field by
using finite sampling intervals. Thus, it is worthy to understand these effects and find an
analytic way to describe them.

(A) Nugget effect due to sampling error

Denote the spatial random function by Z. At a particular location u, let the true
value of Z be zo(u), and the measured value be Z(u). Due to sampling error, zo(u) and
Z(u) may not be the same. Thus, we may write Z(u) as the sum of zy(u), sampling error
(&) and a random fluctuation term (x(u)), i.e.,

Z(u) = zp(w) + €+ x(u) (B-1)

where zg(u) is a constant and ¢ is a constant random variable. Assume that €has mean
and variance as u, and sf, respectively; and ¥(u) is a random fluctuation term with mean
and variance as 0 and s; , respectively. Furthermore, assume that % (x) and ¥(u+Au) are

correlated to each other with a general correlation function Y,(u), and € and § are
independent to each other. Then, statistics of Z(u) can be derived as the followings

E[Z(u)] = z,(u) +m,
Var[Z(w)]=s? + 52 (B-2)
Cov[Z(u), Z(u + Aw)]= 5? +y, (w)s = C(Au) = C(h)

Assuming positive correlation of i, i.e., 0 < yy,(u) < 1, then s? < C(h) < sf+s; .
The correlation function C(h) is shown schematically in Figure B.1. It is obvious from
Figure B.1 that the covariance function does not go to zero as h increases but go
asymptotically to a constant s?. Statistically speaking, the contribution of s> to the

correlation function C(%) is called “bias” (Rice, 1995). In other words nugget effect may
be resulted from a biased measurement.
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(B) Nugget effect due to small-scale variability

To make measurements of a SRF in the field, it is inevitable to have a minimum
sampling interval due to the constraint of cost and efficiency. That is, spatial variability
within the minimum sampling interval may not be sampled. See Figure B.2(a) for
illustration, in which the nugget effect is caused by the small-scale variability. In this
case, however, there may still exist a semi-variogram that fits the sample data but has a
zero value at h = 0, see Figure B.2(b). In other words, the semi-variogram at 4 = 0 may

still be zero but jumps to a finite value at small separation distance due to small-scale
variability.

C(h)

S+ S

L)

Zl
sE

} nugget

h
Figure B.1 Nugget effect due to sampling error (or bias).

To model the discontinuous jump at the origin, a semi-variogram model, e.g.,
exponential, with a nugget effect can be recast as

0 ifh=0
vih) = s§+s§|:1—exp(-—3§—h]:| if h>0 (B-3)

and the corresponding correlation function can be written as

st+s2 ifh=0

C) = 52 exp( -36—’1) ifh>0 (B-4)

where s; is the nugget, and Sq + 55 is the sill (Isaaks and Srivastava, 1989).

Equations (B-3) and (B-4) can be plotted in Figures B.3(a) and B.3(b),
respectively. Figure B.3(a) shows that y(%) at the origin still has a zero value. As soon as

h becomes larger than zero, there is a sudden jump from 0 to sg. This sudden jump
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reflects the fact that the sampling interval is too large to capture the spatial variability
within the distance smaller than the sampling interval. The corresponding covariance

function shows that C(k) at i = 0 is the summation of s and s’ (the nugget). As soon as

h becomes larger than 0, C(h) suddenly drops to s;. As h becomes even larger, C(h)

decreases asymptotically to zero, suggesting as it should be because Z’s become
uncorrelated to each other at large separation distances.

(k) (k)

X sampledata @ 0| --ememeee- extrapolated sample data

possible semi-variogram considering

small scale variability
nugget$ - nugget® 7

h h

(2) sample data (b) fitted semi-variogram

Figure B.2 Illustration of nugget effect due to small scale variability (from de Marsily,
1986).

One way to overcome the small-scale variability is to reduce the sampling
interval. However, doing so may not be practical due to the extra number of sampling
points. Thus, the other convenient alternative is to manipulate the definition of y(h) and
introduce a discontinuity at the origin such as Eqs(B-3) and (B-4).

(k) C(h)
55 +53 52 +s§l
o g
A q
H g h £ h

(a) (b)

Figure B.3 Exponential semi-variogram and its corresponding correlation function with
nugget effect due to small-scale variability.
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Appendix C Source code of the modified Metropolis algorithm
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(1) Flowchart
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(2) Source code

C INCLUDE FILE ‘METRO.INC’

C%%% Pe %o % Fo %o %% Yo To% Fo %o % To %o %o %o %o %o %o %o To %o % o %o % Fo %o %o o Fo %o %o To Fo %o %o Fo % To %o %o %o %o % Fo %o %o %o % Yo %o %o %o %o %o %o %o % %o

C %
C Copyright (C) 1992 Stanford Center for Reservoir Forecasting. All rights reserved %
C Distributed with: C.V. Deutsch and A.G. Journel. %
C “*GSLIB: Geostatistical Software Library and User's Guide,” Oxford University Press, New York, 1992. %
C %

C The programs in GSLIB are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY. Noauthoror %
C distributor accepts responsibility to anyone for the consequences of using them or for whether they serve any particular purpose %
C or work at all, unless he says so in writing. Everyone is granted permission to copy, modify and redistribute the programs in %
C GSLIB, but only under the condition that this notice and the above copyright notice remain intact. %
C %% %0 %0 %0 %% Te%e %o %o T %o %o %o %o o To %o %o % %o To %o % To T To To %o %o %o %o o o To o o Fo To %o %o o To %o %o %o Fo % Fo %o %o To To o Fo %o %o %o %o % %o To %o
c

c The following Parameters control static dimensioning within sasim3d:

c
¢ MAXX  maximum nodes in X

¢ MAXY  maximumnodesin Y

¢ MAXZ maximum nodesinZ

¢ MAXCUT maximum number of cutoffs/data to define CDF

¢ MAXLAG maximum number of lags in variogram calculation
¢ MAXNST maximum number of structures for variogram model
c

¢ Author: C.V. Deutsch Date: February 1990

c

implicit real*8(a-h,0-z)

parameter (MAXX =100, MAXY =100,MAXZ = I,
+ MAXCUT =5, MAXLAG =500, MAXOBJ = 2,
+ MAXNST = 4, EPSLON=1.0d-20,VERSION=1.200)

c

¢ Array declaration:

c
real*8  cut(MAXCUT),cdf(MAXCUT),var(MAXX,MAXY , MAXZ),sas(6)
real*8  vamew(MAXLAG,MAXOBJ),varmod(MAXLAG),
+ varact(MAXLAG,MAXOBIJ),scifac(MAXLAG),
+ vardiv(MAXLAG,MAXOBJ), tpar,utpar,renorm
integer seed,part,report,ixiMAXLAG),iyl(MAXLAG),izI(MAXLAG),
+ it(MAXNST),utail, ltail
logical twopar,only2d,cond(MAXX,MAXY ,MAX7),comp
real*8  cc(MAXNST),aa(MAXNST),angl (MAXNST),ang2(MAXNST),
+ ang3(MAXNST),anis1(MAXNST),anis2(MAXNST),

+ gammanew(maxlag,2),gammah(maxlag,2),gammav(maxlag,2),
+ divnew(maxlag,maxobj) —
real*8  gamunwt(maxlag)

[

~

C
¢ 1/20/97 : The following lines are added by Tai-Sheng Liou
c
real*8 ymean,ystd
integer itrans,nbhd(maxx,maxy),defnbhd
character datafl*40,outfI*40,dbgf1*40,condfl*40,lagf1*40,
+ horvarfl*40,vervarfl*40,varfl*40,imageinfl*40,
+ imageoutfl*40
C A%
¢ Common blocks:
c
common /grid3d/ xsiz,ysiz,zsiz,xmn,ymn,zmn,nx,ny,nz
common /genral/ seed,nsim, var,sas,part,llag,limagein,limageout,
+ lout,lvar,idbg,report,Idbg

common /inimod/ cut,cdf,ltpar,utpar,tail,utail,zmin,
+ zmax,igauss,isill,ncdf
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common /variog/ sclfac,vamew,varact,vardiv,

+ varmod,divnew,renorm,nlag,
+ neighbor,ixliyl.izl
common/variogl/ gamunwt
common /cova3d/ c0,cmax,cc,aa,angl,ang2,ang3,anis1,anis2,nst,it
common /logics/ twopar,only2d,cond
common /compwt/ wtcomp,oinit,pmsum,pmnew,gamdf,comp,nwt
c
C /
¢ 1720/97 : The following common blocks are added by Tai-Sheng Liou
c

common /lognorm/ ymean,ystd,pcut,itrans

common /weight/ wfedge, wfcond,scale,iedge,icond
common /anisop/ lhvar,lvvar,noisop

common /datapt/ noncond

common /cutoff/ xcut0,aspcut,xcut,ptarget,cutsave,paspsave
common /fname/ datafl,outfl,dbgfl,condfl,horvarfl,vervarfl,
+ varfl,lagfl,imageinfl,imageoutfl,intervar,nswap

common /gamma/ gammanew,gammah,gammav

common /neighbor/ nbhd
common/annealinglmétro,defnbhd,imod,iﬁeld

C MAIN PROGRAM ‘SASIM’ (the calling program for SA)

subroutine sasim
[

C%%0% Fo%%o% %o %% %o %o % o %eTo % %o e To e To To Fo%eFo %o FoTo FoT%e o %o %o % To %o %6 % o Fo %o To %o %o %o % o % %o % To % %o % %o % Yo% %o % % %o %o

C . %
C Copyright (C) 1992 Stanford Center for Reservoir Forecasting. All rights reserved. %
C Distributed with: C.V. Deutsch and A.G. Joumnel %
C " GSLIB: Geostatistical Software Library and User's Guide,” Oxford University Press, New York, 1992 %
C %

C The programs in GSLIB are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY. Noauthoror %
C distributor accepts responsibility to anyone for the consequences of using them or for whether they serve any particular purpose %

C or work at all, unless he says so in writing. Everyone is granted permission to copy, modify and redistribute the programs in %
C GSLIB, but only under the condition that this notice and the above copyright notice remain intact. %
C %

C%%%% %0 %o % %o To% To %o % %% % ToFoTo %o %o FoToT0% %o %o %o To % % %o %o % % %% o %6 %6 % % % %o %6 %o % % %o %o %o % % %o o %6 % % %o %o %o %
c

c 3-D Simulation by Annealing

c

c

¢ Conditionally Simulate a Complete 3-D Field with Simulated Anealing,
c

¢ The objective function is the squared difference between the desired variogram and the actual variogram for as many lags as
c specified. The objective function may be in two parts - one part includes the conditioning data and the other includes pairs of
¢ simulated data only.

c INPUT/OUTPUT Parameters:

- Name of a data file of conditioning data (GEOEAS format)
- column numbers for x, y, z, and variable

- trimming limits (used to flag missing values)

- flag specifying whether a standard Normal deviate is to be simulated (set to 1)
- Name of a data file for non-parametric distribution

- column numbers for variable and weight

- data limits (used for tail extrapolation)

- option and parameter for the lower tail

- option and parameter for the upper tail

- An output file (may be overwritten)

- A output file for variograms (may be overwritten)

- The debugging level (integer code - larger means more)

O000000000000
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- A file for the debugging output
- Whether or not to use an automatic annealing schedule (0=auto)
- annealing schedule
~ Whether a one part or a two part objective function is used
- Random Number Seed
- The number of simulations
- X grid definition (number, minimum, size): nx,xmn,xsiz
- Y grid definition (number, minimum, size): ny,ymn,ysiz
- Z grid definition (number, minimum, size): nz,zmn,zsiz
- The maximum number of lags to be considered
- Variogram Definition: number of structures(nst), nugget, and whether or not to renormalize sill to the variance(0=auto)
- the next "nst*2" lines require:
First line:
a) an integer code for variogram (1=sph,2=exp,3=gaus,4=pow)
b) "a" parameter (range except for power model)
b) "¢" parameter (contribution except for power modet).
Second line:
a) azimuth principal direction (measured clockwise from Y).
b) dip of principal direction (measured negative down from X).
¢) a third rotation of the two minor directions about the principal direction. This angle acts counterclocwise
when looking in the principal direction.
Two anisotropy factors are required to complete the definition
of the geometric anisotropy of each nested structure:
d) radius in minor direction at 90 degrees from the principal direction divided by the principal radins.
€) radius in minor direction at 90 degrees vertical from the principal direction divided by the principal radius.

OO0OOO0O0000O0000000000000000600060

c
¢ The output file will be a GEOEAS file containing the simulated values The file is ordered by x,y,z, and then simulation (i.e., x cycles
c fastest, then y, then z, then simulation number).

c
¢ Original: C.V. Deutsch Date: April 1990

c

¢ Definitions of some variables

C .

¢ varact(il,io) - sum of squared difference between the weighted variogram and the model variogram .

¢ vamew(il,jo) - same as ‘varact' but used in the subroutine 'OBJECT". If perturbation accepted, set varact=vamew; otherwise,reset
c varact to the previous value at the next perturbation

¢ var_unwt(il,io) - sum of squared difference between the un-weighted variogram and the model variogram. This variogram value is
c used to test the convergence

¢ varwl(iljo) - same as var_unwt but used in the subroutine 'OBJECT" If perturbation accepted, set var_unwt=varw]; otherwise,

c reset var_unwt to the previous value at the next perturbation

¢ vardiv(il,io) - number of pairs at il-th lag for weighted variogram

c divnew(il,io) - same as vardiv but used in ‘OBJECT". It will be restored to the previous value if a perturbation is rejected.

c div_unwi(il,jo) - number of pairs at il-th lag for unweighted variogram

c

C /

c

¢ Updated by Tai-Sheng Liou, 4/22/1997

c

include 'metro.inc’
logical accept,first,vgmout(6)
real*8 actsv(30,2),divsv(30,2)
c
¢ Read the data (Initialize) and find the starting objective function:
c
open(50,file='obj.dat',status="unknown')
first=.true.
doi=1,6
vegmout(i)=.false.
end do
do 10i=1,nx
do 10 j=1,ny
nbhd(i,j)=0
10 continue

c
¢ 6/28/97 : Find the neighborhood of aspersity contacts
c nbhd=1, neighborhood is defined as a square
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c nbhd=2, neighborhood is defined such that the distance between a grid block and an asperity contact is smaller than the size of
c neighborhood
c
[+
open(777 file="neighbor.dat’ status="unknown")
size=real(neighbor)
do 12 i=l,nx
do 12 j=1,ny
do 12 k=I,nz
if (cond(i,j,k)) then
do fi=-neighbor,neighbor
do jj=-neighbor,neighbor
ix=i+i
iy=j+jj
iz=k
if (defnbhd.eq.2) then
dx=real(ii)
dy=real(jj)
dist=sqrt(dx*dx+dy*dy)
end if
if (ix.ge.l.and.ix.le.nx.and.iy.ge.1.and.iy.le.ny.and.
+ iz.ge.1.and.iz.le.nz) then
if (defnbhd.eq.1) then
if(.not. cond(ix,iy,iz).and.nbhd(ix,iy).eq.0)then
nbhd(ix,iy)=t
xasp=xmn+real(ix-1)*xsiz
yasp=ymn+real(iy-1)*ysiz
write(777,778) xasp,yasp,0,wfcond
end if
elseif(defnbhd.eq.2) then
if(.not. cond(ix,iy,iz).and.nbhd(ix,iy).eq.0.
+ and.dist.le.size) then
nbhd(ix,iy)=1
xasp=xmn+real(ix-1)*xsiz
yasp=ymn+real(iy-1)*ysiz
write(777,778) xasp,yasp,0,wfcond

end if
end if
end if
end do
end do
end if
12 continue
778 format(2(f6.1,1x),i4,2x,f5.1)
close(777)
A}
c
¢ 1/28/97 - Write header to lagfl if the filename of lagfl is not ‘nodata.dat'
c

¢ if (first.and.lagfl(1:10).ne.'nodata.dat') then
c write(llag,9990)
¢ endif

call initob(obj, first)
first=.false.
c
c Initial Conditions:
c
nswap =0
iend =0
temp =sas(l)
accept = .false.
if(only2d) then
kl=1
k2=1
endif
c
¢ Loop until convergence or the stopping number:
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c
1 naccept=0
ntry =0
write(ldbg,*) ' Obj. Fun. # of swap’
if(idbg.gt.2) then
write(*,777) obj
write(*,996) temp,nswap
write(ldbg,996) temp,nswap
write(ldbg,997) obj,nswap
write(50,*) nswap,obj
996 format(' New Temperature: ‘,e12.5," Total swaps: ',il12)
997 format('0 ',e14.7,1x,i12)
777 format(’ Objective function: *,e14.7)
endif
c
¢ Keep attempting to swap values until some limit is exceeded:

c
2 ntry =ntry +1
nswap = nswap + |
if(idbg.gt.2) then
if((int(nswap/report)*report).eq.nswap) then
write(*,998) obj,nswap
write(ldbg,999) obj,nswap
write(50,*) nswap,obj
endif
998 format(’ Objective Function: ‘,e14.7,’ Total swaps: *,i12)
999 format('l ',e14.7,1x,i12)
endif
c
c Find a random pair such that none of the data is a conditioning point
c
3 il =int(getrand(seed)*nx)+1
j! = int(getrand(seed)*ny)+1
if(.not.only2d)
+k1 = int(getrand(seed)*nz)+1
if(cond(il,jl,k1)) goto 3
4 i2 =int(getrand(seed)*nx)+1
j2 = int(getrand(seed)*ny)+1
if(.not.only2d)
+k2 = int(getrand(seed)*nz)+1
if(cond(i2,j2,k2)) go to 4
if(i2.eq.il.and.j2.eq.jl.and k2.eq.k1) go to 4

c

¢ Calculate Objective Function:

c .
call object(il,j1,k1,i2,j2,k2,accept,objtry)

c

¢ Accept the swap if the objective has gone down and with a certain probability if the objective has gone up:
c
accept = .false,
if(objtry.gt.obj) then
unif = dmax1(EPSLON,getrand(seed))
if(metro.eq.1) then
ifimod.eq.1) then

MODI:
both Pl and P2 innbhd : standard Metropolis
none of P1 and P2 in nbhd. : standard Metropolis
P1 in nbhd butnot P2 : standard Metropolis and P2<P1

fceeoeeQ

if(nbhd(il j1).eq.1.and.nbhd(i2,j2).eq.1) then
if(objtry.It.(obj-temp*dlog(unif))) accept = .true.
elseif(nbhd(il,j1).ne.1.and.nbhd(i2,j2).ne.1) then
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if(objtry.1t.(obj-temp*dlog(unif))) accept = .true.
elseif(nbhd(il j1).eq.1.and.nbhd(i2,j2).ne.1) then
if(objtry.lt.(obj-temp*dlog(unif)).and.

+ var(i2,j2,k2).It.var(il,j1 k1))accept=.true.
else
if(objtry.lt.(obj-temp*dlog(unif)).and.
+ var(il,j1 k1).It.var(i2,j2,k2))accept=.true.
end if
elseif(imod.eq.2) then
c
¢ MOD2:

¢ bothPland P2innbhd :reject

¢ none of Pl and P2 in nbhd. : standard Metropolis

¢ PlinnbhdbutP2not :standard Metropolis and P2<P1
c

if(nbhd(il jI).eq.1.and.nbhd(i2,j2).eq.1) then
accept=.false.

elseif(nbhd(il j1).ne.1.and.nbhd(i2,j2).ne.1) then
if(objtry.lt.(obj-temp*dlog(unif))) accept = .true.

elseif(nbhd(il j1).eq.1.and.nbhd(i2,j2).ne.1) then
if(objtry.lt.(obj-temp*dlog(unif)).and.

+ var(i2,j2,k2).It.var(il,j1,k1))accept=.true.
else
if(objtry.1t.(obj-temp*dlog(unif)).and.
+ var(il,j1,k1).lt.var(i2,j2 k2))accept=.true.
end if
elseif (imod.eq.3) then
c
¢ MOD3:

¢ bothPlandP2innbhd : standard Metropolis

¢ none of P1 and P2 in nbhd. : standard Metropolis
¢ PlinnbhdbutP2not :P2<Pl
c

if(nbhd(il j1).eq.1.and.nbhd(i2,j2).eq.1) then
if(objtry.It.(obj-temp*dlog(unif))) accept = .true.

elseif(nbhd(il j1).ne.1.and.nbhd(i2,j2).ne.1) then
if(objtry.It.(obj-temp*dlog(unif))) accept = .true.

elseif(nbhd(il j1).eq.1.and.nbhd(i2,j2).ne.1) then
if(var(i2,j2,k2).it.var(il,j1,k1))accept=.true.

else
if(var(il j1,k1).It.var(i2,j2,k2))accept=.true.
end if
elseif(imod.eq.4) then
c
c MOD4:

¢ bothPland P2innbhd : reject

¢ none of P1 and P2 in nbhd. : standard Metropolis
¢ PlinnbhdbutP2not :P2<Pl
c

if(nbhd(il,j1).eq.1.and.nbhd(i2,j2).eq.1) then
accept = .false.
elseif(nbhd(il,j1).ne.1.and.nbhd(i2,j2).ne.1) then
if(objtry.It.(obj-temp*dlog(unif))) accept = .true.
elseif(nbhd(il j1).eq.1.and.nbhd(i2,j2).ne.1) then
if(var(i2,j2,k2).It.var(il,j1,k1))accept=.true.
else
if(var(il,j1,k1).lt.var(i2,j2,k2))accept=.true.
end if
end if
else
c
c Standard Metropolis considering the acceptance probability
c

if(objtry.It.(obj-temp*dlog(unif))) accept = .true.
end if
else
accept = .true.
endif
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if(ifield.eq.1) then
if(nswap.eq.1ed)vgmout(l)=.true.
if(nswap.eq.1e5)vgmout(2)=.true.
if(nswap.eq.1e6)vgmout(3)=.true.
if(nswap.eq.1e7)vgmout(4)=.true.
if(nswap.eq.2.e7)vgmout(5)=.true.
if(nswap.eq.3.e7)vgmout(6)=.true.

end if

c
c If we are keeping it then update the variogram arrays:
c
if(accept) then
ni=le4
if (ifield.eq.1) then
do kk=1,6
if(kk.le.4)n2=n1*10
if(kk.ge.5)n2=nl+1¢7
if(vgmout(kk))then
if(nswap.ge.nl.and.nswap.lt.n2) then
vgmout(kk)=.true,
no=1230+kk
nol=1250+kk
if(kk.eq.1)open(no,file='gammad.dat',status="unknown')
if(kk.eq.2)open(no,file="gamma5.dat'status="unknown')
if(kk.eq.3)open(no,file="gamma6.dat',status="unknown")
if(kk.cq.4)open(no,file="gamma7.dat',status="unknown’)
if(kk.eq.5)open(no,file="gamma71.dat' status="unknown'’)
if(kk.eq.6)open(no,file="gamma72.dat’status="unknown")
if(kk.eq.1)open(nol file="real4.dat’,status="unknown')
if(kk.eq.2)open(nol file="real5.dat'status="unknown")
if(kk.eq.3)open(nol file="real6.dat’status="unknown")
if(kk.eq.4)open(nol file="real7.dat',status="unknown")
if(kk.eq.5)open(nol file="real71.dat,status="unknown’)
if(kk.eq.6)open(nol,file="real72.dat'status="unknown")
end if
end if
if(kk.le.3)nl=n1*10
if(kk.ge.4)nl=nl+1e7
end do
end if
do 5 ilag=1,nlag
do 5 iobj=I,part
varact(ilag,iobj) = vamew(ilag,iobj)
vardiv(ilag,iobj) = divnew(ilag,iobj)
actsv(ilag,iobj) = vamew(ilag,iobj)
divsv(ilag,iobj) = divnew(ilag,iobj)
5  continue
naccept  =naccept+ 1
obj = objtry
vartemp = var(il,jl1,kl)
var(il j1,kl) = var(i2,j2,k2)
var(i2,j2,k2) = vartemp
if(ifield.eq.1) then
do kk=1,6
no=1230+kk
nol=1250+kk
if (vgmout(kk)) then
do 11 j=1,nlag
do 11 k=I,part
varact(j,k) = 0.0d0
vardiv(j,k) = 0.0d0

11 continue
C
c
¢ Calculate the Experimental Variogram:
c

do 31 ix=I,nx
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do 31 iy=1,ny
do 31 iz=l,nz

41
31

13
701
702
105

[+

vl = var(ix,iy,iz)

do 41 il=1,nlag

iix = ix +ixI(il)
Jiy =iy +iylGh
kkz =iz +izl(il)
if(jix.ge.1.and.iix.le.nx.and.
jiy-ge.l.and jjy.le.ny.and.
kkz.ge.1.and.kkz.le.nz) then
v2 = var(iix,jjy.kkz)
io=1
varact(il,io) = varact(il,io)+
(v1-v2y*(v1-v2)
vardiv(il,io) = vardiv(il,io)+2.d0
endif
continue

continue

write(no,*) * nswap = ',nswap
write(no,500)
doil=l,nlag
dx = dble(ixI(il)) * xsiz
dy = dble(iyl(il)) * ysiz
dz = dble(izl(il)) * zsiz
dx = sqrt(dx*dx+dy*dy-+dz*dz)
write(no, 105) il,dx,varmod(il),
varact(il,1)/vardiv(il,1),actsv(il,1)/divsv(il, 1)
end do
do 13 iz=1,nz
do 13 iy=L,ny
do 13 ix=1,ax
xx=xmn-+xsiz¥dble(ix-1)
yy=ymn+ysiz*dble(iy-1)
zz=zmn+zsiz¥dble(iz-1)
if(cond(ix,iy,iz)) then
if (var(ix,iy,iz).eq.xcutQ)
var(ix,iy,iz)=0.0d0
write(nol,701) xx,yy,zz,var(ix,iy.iz)
else
write(no1,702) xx,yy,zz,var(ix,iy,iz)
endif
continue
format(3(£8.2,2x),f12.4," ¢")
format(3(f8.2,2x),f12.4)
format(i4,£10.4,6f18.8)
vgmout(kk)=.false.
close(no)
close(nol)
end if

end do
end if
end if

c Converged to a Solution?

c

C
c

/
i

¢ 1721/97 : The following lines are added to show the users why the program is terminated , Tai-Sheng Liou

[

¢ Test the convergence based on the un-weighted variogram: var_unwt

[

if(obj.le.sas(6).or.iend.ge.sas(5)) then

+

write(50,*) nswap,obj

if (intervar.gt.nswap) write(*,*)
‘intervar = ‘,intervar,’ > ",nswap

if (obj.le.sas(6)) then
write(*,600) nswap,obj,sas(6)
write(ldbg,600) nswap,obj.sas(6)
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end if
if (iend.ge.sas(5)) then
write(*,¥) 'Have tried *,iend,
3 sas(3)," iterations -Program terminated’
write(Idbg,*) ‘Have tried ‘,iend,
$ sas(3),’ iterations -Program terminated’
end if
if (part.eq.1) then
if(.not.first) write(lvar,500)
if (noisop.eq.1 .and. .not.first) then
write(lhvar,500)
write(lvvar,500)
end if
else
if (.not.first) write(lvar,510)
if (noisop.eq.1 .and. .not.first) then

write(lhvar,510)
write(lvvar,510)
end if
end if
C ¥
c
¢ Calculate the experimental semi-variogram of the final image as a final check of the simulation
c
first=.false.
call initob(obj,first)
ms=0.0d0

doil=1,nlag
dx = dble(ixI(il)) * xsiz
dy = dble(iyl(il)) * ysiz
dz = dble(izI(il)) * zsiz
dx = sqri(dx*dx+dy*dy+dz*dz)
write(lvar,102) il,dx,varmod(il),
+ gammanew(il, 1),gammanew(il,2),gamunwt(il)
if (noisop.eq.1) then
if (noisop.eq.1) then
if(iyl(il).eq.0) write(lhvar,102) il,dx,
$ varmod(il),garmmah(i},1),gammah(il,2)
if(ixI(il).eq.0) write(lvvar,102) il,dx,
$ varmod(il),gammav(il,1),gammav(il,2)
end if
end if
rms=rms+(varmod(il)-gamunwt(il))**2.d0
end do
rms=dsqrt(rms)
write(lvar,*)
write(lvar,505) rms
505 format(RMS of semi-variogram =",{9.4)
return
endif
c
¢ Tried too many at this "temperature"?
c
if(ntry.gt.sas(3)) then
iend =fiend + 1
temp = sas(2) * temp
gotol
endif
c
¢ Accepted enough at this "temperature”?
c
if(naccept.gt.sas(4)) then
temp = sas(2) * temp
iend=0
gotol
endif
c
¢ Go back for another attempted swap:
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c
102 format(i4,f10.4,6f12.4)
500 format(3x,7,4x,h',9x,' r{model)" 4x,'r(actual),15x, r(final)’)
510 format(3x,'.4x,'h',9x,'r{model)' 4x,'r(simu.),17x,'r(cond.)")
600 format(’ At'i12,' -thiter., obj ="el2.5, <'e12.5)
9990 format( lag',2x,’'t2 w2 ' V1-6x,'V1'7x,/t1 wl",

+ ' VI+d4x'td wa'\5x,'V2-,6x,'V2,7x,'3 w3 °,

+  2x,'V2+.7x,'7(h),10x,'r_exp(h,1)",6x,

+ 'r_exp(h,2)")

goto2

end
c
c
c Little function to shorten the calling arguments each time a random number is needed
c

real*8 function getrand(seed)
implicit real*8(a-h,0-z)
reat*8 randnu(l)

integer seed

call rand(seed, ! ,randnu)

getrand = randnu(1)

return

end
c

subroutine initob(obj,first)
[«
c Routines to Compute Objective Function
c
c

¢ The objective function is the squared difference from the model variogram and the experimental variogram.

C The user specifies the lag separation distances and the number of lags that contribute to the objective function.

[

c 1. Initial Objective Function - Compute Both the Experimental and the Model Variograms. Compute the objective function as the

¢ squared difference between the actual and the model variograms:
¢ 2. The second routine updates the variogram when a swap is being considered.

c
¢ Author: C.V. Deutsch Date: April 1990
c
include ‘metro.inc’
logical first,image
c
c Initialize the varigoram arrays:
c
do 1 j=1,nlag
if(.not. first) gamunwt(j)=0.d0
do 1 k=1,part
varact(j,k) = 0.0d0
vardiv(j,k) = 0.0d0
1 continue
c
¢ Calculate the Experimental Variogram:
c
do 3 ix=1,nx
do 3 iy=1,ny
do 3 iz=l,nz
c
¢ Consider the first value in the pair and all directions and lags:
c
vl = var(ix,iy,iz)
do 4 il=1,nlag
it =ix + ixI(il)
il =iy +iyla)
kk =iz +izl(il)
if(ii.ge.1.and.ji.le.nx.and.
+ ji-ge.l.and jj.le.ny.and.
+ kk.ge.1.and.kk.le.nz) then
c
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c Found a pair that should go in calculation. Possibly keep the pairs involving a conditioning data separately:

c
v2 = var(ii,jj,kk)
io=1
varact(il,io) = varact(il,io)+
+ (v1-v2)¥(vl-v2)
vardiv(il,io) = vardiv(il,io)+2.d0
endif
4 continue
3 continue
c

¢ Reture if obj=-1, i.e., obj=-1 for checking the experimental variogram at certain iterations
c
if(obj.eq.-1.d0) return
c
¢ write out the experimental varigoram:
c

obj =0.0d0
do 5 il=1,nlag
if (first) then
dx = dble(ixI(il)) * xsiz
dy = dble(iyl(il)) * ysiz
dz = dble(izl(il)) * zsiz
dx = sqri(dx*dx-+dy*dy+dz*dz)
demon=varmod(il)
sclfac(il) = 1.0d0/(dmax 1(1.d-4,demon*demon))
end if
c
¢ Compute the objective function while we're at it:
c
if(vardiv(il,1).1e.0.0d0) then
write(*,*) 'ERROR: lag ‘il
write(*,*) 'there are no pairs!!'
stop
endif
if(part.eq.1) then
act = varact(il, 1 )/vardiv(il,1)
obj = obj + (varmod(il)-act)
* (varmod(il)-act)
¥ sclfac(il)
if(.not. first) gamunwi(il)=act
else
actl = varact(il,1)/vardiv(il,1)
obj =obj + (varmod(il)-actl)
* (varmod(il)-actl)
* sclfac(il)
if(vardiv(il,io).gt.0.5d0) then
act2 = varact(il,2)/vardiv(il,2)
obj = obj + (varmod(il)-act2)
+ * (varmod(il)-act2)
+ * sclfac(il)
endif
endif
5 continue

+ +

+ +

c
¢ Normalize the scale factors so that the initial objective function is 1.0:
c
if(first) then
inquire(file=imageinfl,exist=image)
if(image) then
renorm=1.d0
clse
renorm = 1.0d0 / obj
end if
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do 9il=1,nlag
sclfac(il) = sclfac(il) * renorm
9 continue
obj =1.0d0
endif
if(first) then
open(8888, file="initvar.dat',status="unknown")
doil=l,nlag
dx=ixI(il)*xsiz
dy=iyl(il)*ysiz
dz=izl(il)*zsiz
h=sqrt(dx*dx+dy*dy+dz*dz)
if(io.eq.1) write(8888,*) h,varmod(il),
+ varact(il,1)/vardiv(il,1)
if(io.eq.2) write(8888,*) h,varmod(il),
+  varact(il,1)/vardiv(il, 1), varact(il,2)/vardiv(il,2)
end do
close(8888)
end if

102 format(i4,f10.4,3f12.4)
500 format(" i h r(model) r(actual)’)
510 format(’ i h r(model) r(simu.) r(cond.)’)
c
¢ Return with the current objective function:
c
return
end

c
c
¢ Considering a swap: Update the Experimental Variogram and then compute the objective function as the squared difference between
c the actual and the model variogram.

c
¢ Author: C.V. Deutsch Date: April 1990
c

subroutine object(il,j1,k1,i2,j2,k2,accept,objnew)

include ‘metro.inc'

logical accept
c

¢ Ensure that the experimental variogram array values are current. If the last swap was accepted then we don't have to update the new
¢ array, otherwise we have to reset back to the correct variogramarray:

c
if (nswap.le.50.and.lagfl(1:10).ne.'nodata.dat’)
+ write(llag,*) nswap,' -th perturbation’
if (nswap.le.50.and.lagfl(1:10).ne.'nodata.dat’)
+ write(llag,*)
if(-notaccept) then
do 10 il=1,nlag
do 10 io=1,part
varnew(il,io) = varact(il,io)
divnew(il,io) = vardiv(il,io)
10 continue
endif
vl =var(il,j1 k1)
v2 = var(i2,j2,k2)
c
¢ MAIN LOOP to consider the change to all lags and directions:
c
do 20 il=1,nlag
c
¢ Update the variogram near the first point (positive lag):
c

i =il +ixI(il
ij=jl +iylGD
Kk = k1 + izI(il)
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if(ii.ge.1.and.ii.le.nx.and.
+ jj-ge.l.and jj.le.ny.and.
+ kk.ge.l.and.kk.le.nz) then
if(ii.ne.i2.or.jj.ne.j2.or.kk.ne.k2) then
v0 = var(ii.jj,kk)
io=1
if (twopar) then
if(nbhd(il,j1).eq.1.and.cond(ii,jj,kk))io=2
if(cond(il,j1,k1).and.nbhd(ii jj).eq.1)io=2
if(nbhd(i1,j1).eq.1.and.nbhd(ii jj).eq. 1 )io=2
end if
vamew(il,io) = varmew(il,io)
+ -(v1-v0)y*(v1-v0)+(v2-v0)*(v2-v0)
end if
end if

c
¢ Update the variogram near the first point (negative lag):
c

ii =il - ixI(il)
ii=jl -iyliD
kk =kl - izl(il)
if(ii.ge.l.and.ii.le.nx.and.
+ ij.ge.l.and.j.le.ny.and.
+ kk.ge.1.and.kk.le.nz) then
if(ii.ne.i2.or.jj.ne.j2.or.kk.ne.k2) then
v0 = var(ii jj,kk)
io=1
if (twopar) then
if(nbhd(i1,j1).eq.1.and.cond(ii,jj,kk))io=2
if(cond(il j1,k1).and.nbhd(ii jj).eq.1)io=2
if(nbhd(il,j1).eq.l.and.nbhd(ii jj).eq.1)io=2
end if
vamew(il,io) = vamew(il,io)
+ ~(v1-v0)y*¥(v1-v0) + (v2-v0)*(v2-v0)
end if
end if

c
¢ Update the variogram near the second point (positive lag):
c

it =12 + ixI(il)
ji=j2 +iylah
kk = k2 + izl(il)
if(ii.ge.1.and.ii.le.nx.and.
+ jj-ge.1.and jj.le.ny.and.
+ kk.ge.1.and.kk.le.nz) then
if(ii.ne.il.or jj.ne.jl.or.kk.ne.k1) then
v0= var(ii,jj.kk)
io=1
if (twopar) then
if(nbhd(il,j1).eq.1.and.cond(ii,jj,kk))io=2
if(cond(il j1,k1).and.nbhd(ii jj).eq.1)io=2
if(nbhd(i1,j1).eq.1.and.nbhd(ii jj).eq.1)io=2
end if
vamew(il,io) = vamew(il,io)
+ -(v2-v0)¥(v2-v0) + (v1-v0)*(vi-v0)
end if
end if

c
¢ Update the variogram near the second point (negative lag):
c

ii =12 - ixI(il)

ii=j2 -iyliD

kk =k2 - izl(il)

if(ii.ge.1.and.ii.le.nx.and.
+ jj.ge.l.and jj.le.ny.and.
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+ kk.ge.l.and.kk.le.nz) then
if(ii.ne.il.or.jj.ne.jl.or.kk.ne.kl) then
v0 = var(ii jj,kk)
io=1
if (twopar) then
if(nbhd(il,j1).eq.1.and.cond(ii,jj,kk))io=2
if(cond(il j1,k1).and.nbhd(ii,jj).eq.1)io=2
if(nbhd(il,j1).eq.1.and.nbhd(ii,jj).eq.1)io=2
end if
vamew(il,io) = varnew(il,io)
+ -(v2-v0)*(v2-v0) + (v1-v0)*(vi-v0)
end if
end if

20 continue

c
c Compute the objective function and return:
c
objnew = 0.0d0
do 30 il=1,nlag
do 30 io=1,part
act = vamew(il,io)/divnew(il,io)
objnew = objnew + (varmod(il)-act)
+ * (varmod(il)-act)
+ * sclfac(il)
gammanew(il,io)=act
if (noisop.eq.1) then
if (iyl(il).eq.0) gammah(il,io)=act
if (ix1(il).eq.0) gammav(il,io)=act
end if
30 continue

if(nswap.le.50.and.lagf1(1:10).ne.'nodata.dat’)
+ write(llag,*) ' Obj =‘,objnew
if (nswap.eq.intervar) then
open(999,file="varmid.dat',status="unknown")
doil=l,nlag
dx = dble(ixl(il)) * xsiz
dy = dble(iyl(il)) * ysiz
dz = dble(izl(iD)) * zsiz
dx = sqri(dx*dx-+dy*dy+dz*dz)
write(999,199)il,dx,varmod(il)
end do
close(999)
end if
199 format(i2,f10.4,2x,3f12.4)
9901 format(2x,i2,1x,2(2(f4.1,2x),2(f7.4,2x),2(f4.1,2x),7.4),
+  3(f124,2x))
retum
end

real*8 function cova3(x1,y1,z1,x2,y2,22,nst,c0,it,cmax,cc.aa,
+ angl,ang2,ang3,anis1,anis2,first)

Covariance Between Two Points (3-D Version)

000

Cc

¢ This function returns the covariance associated with a variogram model that is specified by a nugget effect and possibly four
¢ different nested varigoram structures. The anisotropy definition can be different for each of the nested structures (spherical,

¢ exponential, gaussian, or power).

c

c INPUT VARIABLES:

c

¢ xl,yl,zl  Coordinates of first point

¢ x2,y2,22 Coordinates of second point

c nst Number of nested structures (max. 4).
c c0 Nugget constant (isotropic).
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C cmax

¢ cc(nst)
aa(nst)
it(nst)

[r]

c

c

c

c

c

c angl(nst)
c ang2(nst)
c ang3(nst)
c

c anisl(nst)
¢ anis2(nst)
c
c
c

first

c

Maximum variogram value needed for kriging when using power model. A unique value of cmax is used for all
nested structures which use the power model. therefore, cmax should be chosen large enough to account for the
argest single structure which uses the power model.
Multiplicative factor of each nested structure. slope for linear model.
Parameter "a" of each nested structure.
Type of each nested structure:
1. spherical model of range a;
2. exponential model of parameter a; i.e. practical range is 3a
3. gaussian model of parameter a; i.e. practical range is a*sqri(3)
4. power model of power a (a must be gt. 0 and It. 2). if linear model, a=1,c=slope.
Azimuth angle for the principal direction of continuity (measured clockwise in degrees from Y)
Dip angle for the principal direction of continuity (measured in negative degrees down)
Third rotation angle to rotate the two minor directions around the principal direction. A positive angle acts
clockwise while looking in the principal direction.
Anisotropy (radius in minor direction at 90 degrees from ang] divided by the principal radius in direction angl)
Anisotropy (radius in minor direction at 90 degrees vertical from “angl" divided by the principal radius in direction
"angl")
A logical variable which is set to true if the direction specifications have changed — causes the rotation matrices to be
recomputed.

¢ OUTPUT VARIABLES: retumns “cova3" the covariance obtained from the variogram model.

c
c

¢ NO EXTERNAL REFERENCES:

C:

implicit real*8(a-h,0-z)
parameter(DTOR=3.14159265d0/180.d0,EPSLON=1.0d-20)
real*8 aa(*),cc(*),angl(*),ang2(*),ang3(*),anis1(*),anis2(*),
+ maxcov

integer it(*)

logical first

save  maxcov

c

c The first time around, re-initialize the cosine matrix for the variogram structures:

c

if(first) then
maxcov = c0
do 1 is=I,nst
if(it(is).eq.4) then

maxcov = maxcov + cmax

else

maxcov = maxcov + cc(is)

endif
1 continue

endif
c

¢ Check for very small distance:

c

hsqd = sqdist(x1,y1,z1,x2,y2,22,angl (1),ang2(1),ang3(1),

+

anisl(1),anis2(1))

if(hsqd.It. EPSLON) then
cova3 = maxcov

returmn

endif
c

¢ Non-zero distance, loop over all the structures:

[

cova3 =0.,0d0
do 2 is=1,nst

c

¢ Compute the appropriate structural distance:

[

if(is.ne.1) hsqd = sqdist(x1,y1,21,x2,y2,22,ang1(is),

o+

ang2(is),ang3(is),anis1(is),anis2(is))

h = sqrt(hsqd)
if(it(is).eq.1) then
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¢ Spherical model:

c
hr = h/aa(is)
if(hr.ge.1.0d0) goto 2
cova3 = cova3 + cc(is)*(1.-hr*(1.5d0-.5d0*hr*hr))
else if(it(is).eq.2) then
c
c Exponential model:
c
cova3 = cova3 +cc(is)*dexp(-h/aa(is))
else if(it(is).eq. 3) then )
c
¢ Gaussian model:
c
hh=-(h*h)/(aa(is)*aa(is))
cova3 = cova3 +cc(is)*dexp(hh)
else
c
¢ Power model:
c
covl =cmax - cc(is)*(h**aa(is))
cova3 = cova3 + covl
endif
2 continue
return
end
c
c
c
real*8 function sqdist(x1,y1,z1,x2,y2,22,ang1,ang2,ang3,anis|,
+anis2)
c Anisotropic Distance Calculation
c
c

c This routine calculates the anisotropic distance between two points given the coordinates of each point and a definition of the
c anisotropy. The components of the vector in the rotated coordinates are calculated and then the squared anisotropic distance is
c calculated.

c

c

¢ INPUT VARIABLES:

xLyl.zl Coordinates of first point
x2,y2,22 Coordinates of second point

angl Azimuth angle for the principal direction of continuity (measured clockwise in degrees from Y)
ang2 Dip angle for the principal direction of continuity (measured in negative degrees down)
ang3 Third rotation angle to rotate the two minor directions around the principal direction. A positive angle acts clockwise
while looking in the principal direction.
anisl Anisotropy (radius in minor direction at 90 degrees from angl divided by the principal radius in direction angl)
anis2 Anisotropy (radius in minor direction at 90 degrees vertical from "ang1” divided by the principal radius in direction
"ang1®)
OUTPUT VARIABLES:
sqdist The squared distance accounting for the anisotropy and the rotation of coordinates (if any).
PROGRAM NOTES:

1. The program converts the input (angl,dip,plg) to three angles which make more mathematical sense:
alpha angle between the major axis of anisotropy and the E-W axis. Note: Counter clockwise is positive.
beta angle between major axis and the horizontal plane. (The dip of the ellipsoid measured positive down)
theta angle of rotation of minor axis about the major axis of the ellipsoid.

NO EXTERNAL REFERENCES

O00MN00000000000000000000000

¢ Author: C. Deutsch Date: July 1989
c

196




implicit real*8(a-h,0-z)
parameter(DEG2RAD=3.14159265d0/180.d0)
real*8 rmatrx(3,3)
save  rmatrx,anglo,ang20,ang3o0,anislo,anis20
c
¢ Compute rotation matrix only if required:
c
if(angl.ne.anglo.or.ang2.ne.ang2o.or.ang3.ne.ang3o.0r.
+ anisl.ne.anislo.or.anis2.ne.anis20) then

anglo =angl
ang2o0 =ang2
ang3o =ang3

anislo = anis!
anis2o = anis2
if(angl.ge.0.d0.and.ang1.1t.270.d0) then
alpha =(90.0d0 - angl) * DEG2RAD
else
alpha = (450.0d0 - angl) * DEG2RAD
endif
beta =-1.0d0 * ang2 * DEG2RAD
theta= ang3 * DEG2RAD
cosa = cos(alpha)
cosb =cos(beta)
cost = cos(theta)
sina =sin(alpha)
sinb =sin(beta)
sint = sin(theta)

rmatrx(l,1) = (cosb * cosa)
rmatrx(1,2) = (cosb * sina)
rmatrx(1,3) = (-sinb)

rmatrx(2,1) = (1.0d0/anis1)*(-cost*sina + sint*sinb*cosa)
rmatrx(2,2) = (1.0d0/anis1)*(cost*cosa + sint*sinb*sina)
rmatrx(2,3) = (1.0d0/anis I )*( sint * cosb)
rmatrx(3,1) = (1.0d0/anis2)*(sint*sina + cost*sinb*cosa)
rmatrx(3,2) = (1.0d0/anis2)*(-sint*cosa + cost*sinb*sina)
rmatrx(3,3) = (1.0d0/anis2)*(cost * cosb)
endif
c
¢ Compute component distance vectors and the squared distance:
c
dx=x1-x2
dy=yl-y2
dz=z1-22
sqdist = 0.0d0
do1i=1,3
temp = rmatrx(i,1)*dx + rmatrx(i,2)*dy + rmatrx(i,3)*dz
sqdist = sqdist + temp*temp
1 continue
return
end

Order of magnitude of a number
Argument
x - input number
order - order of magnitude of x

Q00000

integer function order(x)
real*8 x,div

n=0
if(x.eq.0.d0) then
order=0
return
end if
67 if(x.gt.1.d0) div=x/(10.d0**n)
if(x.It.1.d0) div=x*10.d0**n
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N

if(div.1t.10.d0.and.div.ge.1.d0) then
goto 68

else
n=n+1
goto 67

end if

68 if(x.gt.1.d0)order=n

if(x.it.1.d0)order=-n

return

end

C SUBROUTINE ‘SASIMM’ (the SA algorithm)

program sasimm
C%%%%0% o %0 % Yo% % ToTo %o %o % %o %o To % o %o T To %o %o %o %o To To % o %o %o To To %o % To To ToTo To %o % To To To %o % To %o o To %o %o %o %o % o %o %o %o
C

C Copyright (C) 1992 Stanford Center for Reservoir Forecasting. All rights reserved.

CDistributed with: C.V. Deutsch and A.G. Journel.

C “"GSLIB: Geostatistical Software Library and User's Guide," Oxford University Press, New York, 1992.

C

C The programs in GSLIB are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY. No author or

C distributor accepts responsibility to anyone for the consequences of using them or for whether they serve any particular purpose
C or work at all, unless he says so in writing. Everyone is granted permission to copy, modify and redistribute the programs in

C GSLIB, but only under the condition that this notice and the above copyright notice remain intact.
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%
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c
c Conditional Simulation of a 3-D Rectangular Grid
c
c
c This is a template driver program for GSLIB's “sasim" subroutine. 3-D realizations with a given autocovariance model and
C conditional to input data are created. The conditional simulation is achieved by modifying an initially uncorrelated image.

c

¢ The program is executed with no command line arguments. The user will be prompted for the name of a parameter file. The
C parameter file is described in the documentation (see the example sasim.par) and should contain the following information:
c

- Name of a data file of conditioning data (GEOEAS format)
column numbers for x, y, 2, and variable
Minimum acceptable value (used to flag missing values)
If a standard Normal deviate is to be simulated set to 1
Name of a data file for non-parametric distribution
column numbers for variable and weight
option and parameter for the lower tail
option and parameter for the upper tail
An output file (may be overwritten)
A output file for variograms (may be overwritten)
The debugging level (integer code - larger means more)
A file for the debugging output
Whether or not to use an automatic annealing schedule (O=auto)
annealing schedule
Whether a one part or a two part objective function is used
Random Number Seed
The number of simulations
X grid definition (number, minimum, size): nx,xmn,xsiz
Y grid definition (number, minimum, size): ny,ymn,ysiz
Z grid definition (number, minimum, size): nz,zmn,zsiz
- The maximum number of lags to be considered
Search Anisotropy
Variogram Definition: number of structures(nst), nugget, and whether or not to renormalize sill to the variance(0=auto)
the next "nst*2" lines require:
First line:
a) an integer code for variogram (1=sph,2=exp,3=gaus,4=pow)
b) "a" parameter (range except for power model)
b) "c" parameter (contribution except for power model).
Second line:
a) azimuth principal direction (measured clockwise from Y).
b) dip of principal direction (measured negative down from X).

[
c
[
[+
c
[
[~
[
C
Cc
c
C
[+
[
c
c
C
Cc
C
C
Cc
Cc
C
[
[
[
C
Cc
c
c
c
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c c) a third rotation of the two minor directions about the principal direction. This angle acts counterclocwise

c when looking in the principal direction.

c Two anisotropy factors are required to complete the definition of the geometric anisotropy of each nested structure:
¢ d)radius in minor direction at 90 degrees from the principal direction divided by the principal radius.

c e) radius in minor direction at 90 degrees vertical from the principal direction divided by the principal radius.

c

¢ The output file will be a GEOEAS file containing the simulated values The file is ordered by x,y,z, and then simulation (i.., x cycles
c fastest, then y, then z, then simulation number).

c

¢ Original: C.V. Deutsch Date: August 1990

c
¢ 1/20/97 : Updated by Tai-Sheng Liou in the subroutines

READPARM - Read mean and variance of In(k) and ITRANS

INITMOD - Change the calling arguments of GINV

GINV - Transform N(0,1) to LN(m,s) depending the flag ITRANS. The purpose of this change is to generate a parametric
realization of log-normally distributed variate which is then combined with the conditioning data in file ‘condfl

- Neo X K:]

include ‘metro.inc'
character*1 chrlL,chrIR,chr2L,chr2R

open(500,file="adasp.dat' status='unknown')
open(550,file="imgasp.dat',status="unknown’)
open(600,file="aspnbhd.dat’,status="unknown’)

C
¢ call timer(itime0)
C
¢ Read the Parameter File and the Data:
call readparm
c
C Establish the number of lags to keep
call getlag
¢ Loop over all the simulations:
C
do 1 isim=1,nsim
c
c Initialize an image and the statistics :
c
call initmod
write(*,*)
write(ldbg,*)
write(*,20) ymean,ystd,pcut,paspsave,ptarget,
+ cutsave,xcut,aspcut,xcut0
write(ldbg,20) ymean,ystd,pcut,paspsave ptarget,
+ cutsave,xcut,aspcut,xcut0
20 format(/' Ensemble staistics :7/
+ ' Mean of Ink =',f6.2/
+ ' S.td. of Ink =",f6.2/
+ * Initial cutoff probability =",f6.4/
+ * Iterated cutoff probability=",f6.4/
+ ' Target cutoff probability =",f5.3/
+ * Initial cutoff PM value ='f7.4/
+ ' Iterated cutoff PM value =',f7.4/
+ ' Asperity contact ="16.2/
+ ' Minimum PM value ="16.2//)
write(ldbg,*)
c
¢ Call sasim for the simulation:
c
call sasim
c
¢ Write the Simulated results, close the output files, and stop:
c

write(lont,*) ‘Permeability field from simulated annealing'
write(lout,*) 4

write(lout,999) 'X’,'X’,nx,'’X',xmn, X' xsiz

write(lout,999) 'Y','Y",ny,'Y',ymn,"Y".ysiz

write(lout,999) 'Z','Z' \nz,'Z',zmn,'’Z zsiz
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999 format(Al,’ location N',A1,'="i4,1x,2(1x,'D",Al1,'=",6.2))
write(lout,*) ‘Permeability field'
do 2iz=1,nz
do 2 iy=1,ny
do 2 ix=1,nx
xx=xmn+xsiz*dble(ix-1)
yy=ymn+ysiz*dble(iy-1)
zz=zmn+zsiz*dble(iz-1)
if(cond(ix,iy,1z)) then
if (var(ix,iy,iz).eq.xcut0) var(ix,iy.iz)=0.0d0
write(lout,101) xx,yy,zz,var(ix,iy,iz)

else
write(lout,102) xx,yy,zz,var(ix,iy,iz)
endif
c
¢ 7/16/97 : Write additional asperity contacts and z'<=5.0 to addasp.dat
c
if(var(ix,iy.iz).eq.0.0d0) then
if(.not.cond(ix,iy,iz))write(500,102) xx,yy.zz.0.0
end if
if (var(ix,iy.iz).gt.0.0d0.and.
+ var(ix,iy,iz).le.5.0d0)
+ write(500,102) xx,yy,zz,var(ix,.iy,iz)
C
c

¢ 10/8/97 : Write permeability modifier, excluding the conditioning asperity contact data, in the neighborhood
c
if (nbhd(ix,1y).gt.0)
+ write(600,102) xx,yy,zz,var(ix,iy,iz)
2 continue
101 format(3(f8.2,2x),f12.4,' ¢')
102 format(3(f8.2,2x),f12.4)

c
c Calculate the average permeability for two kinds of neighborhood
c
c First, assign nbhd(i j)=1 for defnbhd=1 only and nbhd(i,j)=2 for defnbhd=1 and defnbhd=2
c
size=real(neighbor)
do 12 i=1,nx
do 12 j=1,ny
do 12 k=1,nz
if (cond(i,j,k)) then
do ii=-neighbor,neighbor
do jj=-neighbor,neighbor
ix=i+ii
ly=j4jj
iz=k
dx=real(ii)
dy=real(jj)
dist=sqrt(dx*dx-+dy*dy)
if (ix.ge.l.and.ix.le.nx.and.iy.ge.1.and.iy.le.ny.and.
+ iz.ge.1.and.iz.le.nz) then
if(.not. cond(ix,iy.iz).and.nbhd(ix,iy).eq.0)
+ nbhd(ix,iy)=1
if(nbhd(ix,iy).eq.1.and.dist.le.size) nbhd(ix,iy)=2
end if
end do
end do
end if
12 continue
c
¢ Second, calculate avg. PM for two kinds of neighborhood
c
if (neighbor.ne.0) then
zsum1=0.0
zsum2=0.0
nozl=0
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noz2=0
do 3 ix=1,nx
do 3 iy=I,ny
do3iz=lnz
if (nbhd(ix,iy).eq.2) then
zsum2=zsum2+var(ix,iy,iz)
noz2=noz2+l
zsuml=zsuml-+var(ix,iy,iz)
nozl=nozl+l
end if
if (nbhd(ix,iy).eq.1) then
zsuml=zsum!l+var(ix,iy,iz)
nozl=nozl+l
end if
3 continue
if (defnbhd.eq.1) then
chr2L="("
chr2R="y
else
chrilL="("
chriR=")
end if
write(ldbg,*)
write(ldbg,*) ' NBHD =",defnbhd
write(ldbg,50)chr1L,nozl,zsum1,zsum1/dble(nozl),chriR,
+ chr2L,noz2,zsum2,zsum?2/dble(noz2),chr2R
50 format(/,
+2x,A1,'First nbhd : Nbl=",i5,' Suml=",9.4,' Avg="18.5,A1/
+2x,A1,'Second nbhd: Nb2=",i5,' Sum2=",{9.4,' Avg=",{8.5,A1)

end if
c
¢ End loop over all simulations:
c

1 continue

¢ call timer(itimel)
itime=itimel -itime0
time=real(itime)/100.0
ihr=int(time/3600.0)
imin=int((time-real(ihr)*3600.0)/60.0)
sec=time-real(ihr)*3600.0-real(imin)*60.0
write(ldbg,5) ihr,imin,sec
write(*,5) ihr,imin,sec

5 format(/1x,'Elapsed time =",i2,' hours ,',i3,' mins, ',f5.2,
+  'secs’)

close(lout)

close(lvar)

close(ldbg)

write(*,*) 'Finished SASIM: simulated results in *,outfl
write(*,*)* variogram output in ‘,varfl
write(*,%) ' debugging output in ‘,dbgfl
write(*,¥)

stop

end

subroutine readparm

c
c

c Initialization and Read Parameters

c

c

¢ The input parameters are read from a file name provided from standard input (a default name will be tried if none is keyed in by the
C user).

c

¢ The complete 3-D field is then filled in with values drawn at random from either a standard normal distribution or some distribution
c specified in a non-parametric way (i.c., a series of values and associated weights) with possibly a parametric option to treat values
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¢ in the tails of the distribution.

c

¢ Conditioning data is then read in (if available) and assigned to the nearest node if within the grid network.

c

¢ Error checking is performed and the statistics of both the initialrealization and conditioning data are written to the debugging file.
c

c

c

¢ Original: C.V. Deutsch Date: July 1990

c
include ‘metro.inc'
parameter(MV=20)
real*8  val(MV)
logical testfl,image

character str*40,title*80
c
¢ Unit numbers:
c
lin =1
lout=2
ldbg =3
lvar=4
lhvar =5
lvvar=6
llag =7
limagein= 8
limageout=9
c
¢ Open the input file 'sasim.par’
c
open(lin,file='sasim.par’ status="OLD")
c
¢ Find Start of Parameters:
c

1 read(lin,'(a4)',end=97) str(1:4)
if(str(1:4).ne.'STAR") go to 1
c
c Read Input Parameters:
c

read(lin,'(a40)',err=97) imageinfl

if (imageinfl(1:10).ne.'nodata.dat")

+ write(*,*) 'Initial image file :'imageinfl
read(lin,'(a40)’,err=97) imageoutfl

write(*,*) 'Output image file :',imageoutfl
read(lin,'(a40)'",err=97) condfl

write(*,*) 'Conditioning data file: *,condfl
read(lin,*,err=97) ixloc,iyloc,izloc,ivrl
read(lin,*,err=97) tmin,tmax
read(lin,*,er=97)  igauss
read(lin,'(a40)',err=97) datafl

read(lin,*,err=97) ivriwt

read(lin,*,err=97) zmin,zmax
read(lin,*,err=97)  ltail,ltpar
read(lin,*,err=97) utail,utpar
read(lin,'(a40)',err=97) outfl

write(*,*) 'Output file: ‘outfl
read(lin,'(a40)',err=97) varfl

write(*,*) 'Overall variogram output file: *,varfl
read(lin,'(a40),err=97) horvarfl

write(*,*) 'Horizontal variogram output file: ',horvarfl
read(lin,'(a40)',err=97) vervarfl

write(*,*) 'Vertical variogram output file: °,vervarfl
read(lin,*,err=97)  idbg,report,intervar
read(lin,'(a40)',err=97) dbgfl

write(*,*) 'Debug file: *,dbgfl

open(ldbg, file=dbgfl,status="UNKNOWN")
write(ldbg,*) 'Conditioning data file: *,condfl
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read(lin,'(a40)',err=97) lagfl
write(*,*) 'Lag file: "lagfl

write(*,*)
read(lin,* err=97) isas
write(*,111) isas
write(ldbg,111) isas
111 format(/" Annealing schedule : *,i%/,

+ ' (O:user, 1:default, 2:fast, 3:very fast ) )

read(lin, *,err=97) (sas(i),i=1,6)
read(lin,*,err=97)  part
read(lin,*,err=97)  seed
read(lin,*,err=97)  nsim
read(lin,*,err=97)  nx,xmn,xsiz
read(lin,*,err=97)  ny,ymn,ysiz
read(lin,*,err=97)  nz,zmn,zsiz
read(lin,*,err=97)  nlag,neighbor

c
¢ 1/23/97 : Select the annealing schedule
¢ 0-Usersupplied

¢ 1-Default

¢ 2-Fast

¢ 3-Veryfast

¢ Tai-Sheng Liou (Deutsch and Cockerham, 1994)

c
sas(3)=sas(3)*dble(nx*ny*nz)
sas(4)=sas(4)*dble(nx*ny*nz)
if(isas.eq.1) then

sas(1) = 1.0d0

sas(2) =0.1d0

sas(3) = 100.d0*dble(nx*ny*nz)

sas(4) = 10.d0*dble(nx*ny*nz)

sas(5) = 3.d0

sas(6) =0.001d0
elseif(isas.eq.2) then

sas(1) = 1.0d0

sas(2) = 0.05d0

sas(3) = 50.d0*dble(nx*ny*nz)

sas(4) = 5.d0*dble(nx*ny*nz)

sas(5) = 3.d0

sas(6) = 0.001d0
elseif(isas.eq.3) then

sas(1) = 0.5d0

sas(2) = 0.01d0

sas(3) = 10.d0*dble(nx*ny*nz)

sas(4) = 2.d0*dble(nx*ny*nz)

sas(5) = 3.d0
sas(6) = 0.001d0
endif

write(*,112) (sas(i),i=1,6),part
write(ldbg,112) (sas(i),i=1,6),part
112 format(’ User set schedule : 7
'O ='f5.1/
' T factor =",f5.1,/
'Kmax ='e7.1/
' Kaccept =',e7.1,/
'S ="'15.1/
'Omin  ="'e7.1/
‘Part =',i2)

+ 4+ + o+ F

write(*,*)
read(lin,*,err=97)  nst,c0,isill
sill=c0
write(*,100) isill,nst,c0
if(nst.le.0) then

write(*,9997) nst

9997  format(’ nst must be at least I, it has been set to *,i4,/,
+ ' The c or a values can be set to zero")

stop
endif
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c
¢ 1/25/97 : noisop=0 for isotropic variogram; noisop=1 for anisotropic variograms
c
noisop=0
do 3 i=1,nst
read(lin,*,err=97) it(i),aa(i),cc(i)
sill = sill + ce(i)
read(lin,*,err=97) angl(i),ang2(i),ang3(i),anis1(i),anis2(i)
if (anis1(i).ne.1.or.anis2(i).ne.1) noisop=1
write(ldbg,*)
write(ldbg,*) 'Semi-variogram mode] :'
If (it(i).eq.1) write(ldbg,*) ‘Spherical model'
if (it(i).eq.2) write(ldbg,*) 'Exponential model'
if (it(i).eq.3) write(ldbg,*) ‘Gaussian model'
if (it(i).eq.4) write(ldbg,*) 'Power model'
if (noisop.eq.0) write(ldbg,*) ‘isotropic model with’
if (noisop.eq.1) write(ldbg,*) "anisoptropic mode! with'
write(ldbg,20) sill,aa(i)
if (noisop.eq.1) then
write(ldbg,21) angl (i),ang2(i),ang3(i),anis 1 (i),anis2(i)
end if
3 continue
20 format('Sill =,f8.2/'Longitudinal correlaiton length =',{8.2)
21 format(‘anisotropic anglel =",{8.2/
+  ‘anisotropic angle2 =",{8.2/
+  ‘anisotropic angle3 =",f8.2/
+  ‘'anisotropic ratiol =",f8.2/
+ ‘anisotropic ratio2 =',{8.2)
c
¢ 1721/97 : The following lines are added by Tai-Sheng Liou
¢ iedge=(0)1-(not)correct edge-effect with weighting factor=wfedge
¢ icond=(0)1-(not)correct discontinuity-effect with weighting factor=wfcond
¢ itrans=(0)1-(not)transform N(0,1) to LN(xmean,xstd) [y=Inx]
citrans=2 - transform N(0,1) to LN(xmean,xstd) but do not shift the LOGNORMAL data
cnoiter - maximum number of iteration for calculating the sample statistics in order to have statistics as close to ensemble statistics
c as possible

read(lin,*) iedge,wfedge
read(lin,*) icond,wfcond
write(*,*) .
write(*,*)
¢  write(*,*) "Weighting factors :'
¢ if (iedge.eq.0) write(* *)'Edge effect not weighted'
c if (iedge.eq.1) write(*,21) wfedge
c
c

if (iedge.eq.0) write(ldbg,*)'Edge effect not weighted'
if (iedge.eq.1) write(idbg,21) wfedge
c2l format(' Edge factor ='16.2)
¢ if (icond.eq.0) write(*,*) 'Discontinuity effect not weighted'
¢ if (icond.eq.1) write(*,22) wfcond
¢  if (icond.eq.0) write(ldbg,*) ‘Discontinuity effect not weighted’
¢ if (icond.eq.1) write(ldbg,22) wfcond
c22 format(' Discontinuity factor = ',£6.2)
write(*,23) nlag,neighbor
write(ldbg,23) nlag,neighbor
23 format(’ Total # of lags  =",id/
+ ' # of neighborhood =',i4)
write(*,*)
read(lin,*) ymean,ystd,itrans
read(lin,*) pcut,aspcut,xcut,ptarget

c
¢ Read which annealing algorithm should be used:
¢ 0 - standard Metropolis algorithm, 1- modified Metropolis algorithm
c
read(lin,*) metro
write(ldbg,*)
if (metro.eq.0) then
write(*,*) 'Using standard Metropolis algorithm’
write(ldbg,*) 'Using standard Metropolis algorithm’
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elseif(metro.eq.1) then
write(*,*) 'Using modified Metropolis algorithm’
write(ldbg,*) 'Using modified Metropolis algorithm’
else
write(*,*) ‘Type of SA algorithm is not specified’
stop
end if
read(lin,*) defnbhd
write(ldbg,*)
if (defnbhd.eq.1) then
write(*,*) 'The neighborhood is defined as a square'
write(ldbg,*) “The neighborhood is defined as a square'
elseif (defnbhd.eq.2) then
write(*,*) 'The neighborhood is a square plus four ears’
write(ldbg,*) "The neighborhood is a square plus four ears'
clse
if(metro.eq.1) then
write(*,*) ‘Neighborhood is not defined’
stop
end if
end if
write(ldbg,*)
read(lin,*) imod
if(imod.It.1.or.imod.gt.4) then
write(*,*) ‘Choose the type of Modified Metropolis’,
+ * algorithm, i.e., imod=1 or 4'
stop
end if
write(*,*) 'Using MOD',imod
write(Idbg,*) 'Using MOD',imod
read(lin,*) ifield
if(ifield.l.0.or.ifield.gt.1) then
write(*,*)'Enter 0 (No) or 1 (Yes) to print out evolving files'
end if
if(ificld.eq.0) then
write(*,*) 'Do not generate internal files of PM fields'
write(Idbg,*) ‘Do not generate internal files of PM fields'
else
write(*,*) 'Generate internal files of PM fields'
write(ldbg,*) 'Generate internal files of PM fields'
end if
c
close(lin)
100 format(/,’ Reset sill: *,i2/,
+ ' number of structures =",i3,/,
+ ' nugget effect ='f8.4)
101 format( ' type of structure ',i3,' =',i3,,
+ ! aa parameter ='f124/,
+ ' cc parameter ="f12.49)
102 format( ' angl, ang2,ang3 ='3f6.2/,
+ ! anisl, anis2 ="2f12.4)
c
c Reset the annealing schedule if automatic timing is being used:
c
if(part.eq.1) then
twopar = .false.
else
twopar = .true.
endif
if(nz.le.1.or.izloc.le.0) then
only2d = .true.
else
only2d = .false.
endif
c
¢ Perform some quick error checking:
c
if(nx.gt MAXX) stop ‘nx is too big - modify .inc file'
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if(ny.gt. MAXY) stop 'ny is too big - modify .inc file'
if(nz.gt. MAXZ) stop ‘nz is too big - modify .inc file’
if(nlag.gt. MAXLAG) stop 'nlag is too big - modify .inc file'
if(nst.gt. MAXNST) stop nst is too big - modify .inc file'

c

¢ Open the debugging and output files:

c
open(lvar, file=varfl,status="unknown")
open(lhvar,file=horvarfl,status="UNKNOWN")
open(lvvar,file=vervarfl,status="unknown')
open(lout,file=outfl,status="UNKNOWN")

if(lagfl(1:10).ne.'nodata.dat’)

+ open(llag,file=lagfl,status='unknown’)

if (imageinfl(1:10).ne.'nodata.dat’)

+ open(limagein,file=imageinfl,status="unknown')

if (imageoutfl(1:10).ne.'nodata.dat’)

+ open(limageout,file=imageoutfl status="unknown')
c

c If possible read in the cdf ("cut” and "cdf" arrays) to use as the distribution to initialize the realization:

c
title ="SASIM SIMULATIONS: ¥/
+ . .
if(igauss.eq.0) then
inquire(file=datafl,exist=testfl)
if(.not.testfl) then
write(*,*) 'ERROR file ’,datafl,’ does not exist!
write(*,*) ' you need a univariate distribution’

write(*,*) ' unless you want a Gaussian distribution’

stop
endif
ncdf = 0.0d0
ccdf = 0.0d0
open(lin, file=datafl,status="OLD")
read(lin,'(a60)",err=98) title(21:80)
read(lin, *,err=98) nvari
do 4 i=],nvari

4 read(lin,*,err=98)

5 read(lin,*,end=6,err=98) (val(j),j=1,nvari)
if(val(ivr).lt.tmin.or.val(ivr).ge.tmax) go to 5
ncdf =ncdf+1
if(ncdf.gt MAXCUT) then

write(*,*) ' ERROR: exceeded storage for cdf',ncdf
stop
endif
cut(ncdf) = val(ivr)
if(iwt.le.0) then
cdf(ncdf) = 1.0d0
else
cdf(ncdf) = val(iwt)
endif
cedf = cedf + cdf(ncdf)
goto5
6 close(lin)
c

¢ Tumn the (possibly weighted) distribution into a cdf that can be used to initialize all the grid nodes:

c
call sortem(1,ncdf,cut,1,cdf,c,de.f.g,h)
oldcp = 0.0d0
cp =0.0d0
ccdf =1.0d0 / ccdf
do 7 i=1,ncdf

cp =cp +cdf(i) * ccdf
cdf(i) =(cp + oldcp) * 0.5d0
oldcp =cp
7 continue
endif
c
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¢ Tum all conditioning flags to false:
c
do 8 ix=1,nx
do 8 iy=1,ny
do 8 iz=1,nz
cond(ix,iy,iz) = .false.
8 continue
c
¢ Check to see if a file of conditioning data exists, if it does then read in the data:
c
inquire(file=condfl,exist=testfl)
if(testfl) then
open(lin,file=condfl,status="OLD")
read(lin,'(a60)',err=99) title(21:80)
read(lin,*,err=99)  nvar
nd=0
av =0.0d0
55 =0.0d0
do 9 i=1,nvari
9 read(lin,'(a40)",err=99) str
c
¢ Read all the data until the end of the file:

c
10 read(lin,*,end=11,err=99) (val(j),j=1 ,avari)
if(val(ivrl).le.tmin.or.val(ivrl).gt.tmax) go to 10
nd =nd+ 1
av =av + val(ivrl)
ss =ss + val(ivrl)*val(ivrl)
ix=min0(max0((int((val(ixloc)-xmn)/xsiz+0.5d0)+1),1),nx)
iy=min0(max0((int((val(iyloc)-ymn)/ysiz+0.5)+1),1).ny)
iz=min0(max0((int{(val(izloc)-zmn)/zsiz+0.5)+1),1),nz)
if(only2d) iz=1
var(ix,iy,iz) = val(ivrl)
cond(ix,iy,iz) = .true.
goto 10
11 close(lin)

c

¢ Compute the averages and variances as an error check for the user:

c
av = av / amax1{dble(nd),1.0)
ss =(ss / amaxI(dble(nd),1.0)) -av * av
write(ldbg,*) ‘Data for SASIM: Variable number *,ivrl
write(ldbg,*)* Number of acceptable data =‘,nd
write(ldbg,*) ' Equal Weighted Average ="‘,av
write(ldbg,*) ' Equal Weighted Variance ='ss

endif

c

¢ 1/27/97 : Calcuate the number of data points that is not conditioning data (noncond)

c
noncond=nx*ny*nz-nd

c

¢ Write a header on the output file and return:

¢ 1/23/97 : Comment out by Tai-Sheng Liou

c
¢ write(lout,105) title
¢ 105 format(a80,,'1"/,'simulated value')

retum
c
¢ Error in an Input File Somewhere:
c

97 stop 'ERROR in parameter file!
98 stop 'ERROR in distribution file!'
99 stop 'ERROR in data file!

end
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subroutine initmod

Initialization of Grid

O 00000

include ‘metro.inc'
real*8  randnu(l)
logical image

c
c Initialize all nodes to some random quantile:
c

call rand(seed, I ,randnu)

seed=0

do 6 ix=1,nx
do 6 iy=1,ny
do 6iz=1,nz
if(.not.cond(ix,iy,iz)) var(ix,iy,iz)=0.d0
6 continue

c
¢ 2/4/97 : Read the initial image file or automatically genreate the initial image by either non-parametric distribution or Gaussian
c distribution, Tai-Sheng Liou
c
inquire(file=imageinfl,exist=image)
if (image) then
read(limagein,*)
read(limagein, *) nheader
do i=1,nheader
read(limagein,*)
end do
do 10 iz=1,nz
do 10 iy=1.ny
do 10 ix=1,nx
read(limagein, *) dummy,dummy,dummy, var(ix,iy,iz)
10  continue

write(*,15) imageinfl
15 format(’ Using ',al5,’ as initial image')
write(¥,*)
else
c
¢ 1/27/97 : Draw a Monte Carlo Realization from either a Gaussian distribution (igauss.ne.0) or a non-parametric distribution
c (igauss.eq.0),  Tai-Sheng Liou
c
if (igauss.eq.0) then
do 1i=I,nx
do 1 j=1,ny
do 1l z=lnz
c
¢ Only initialize if not a conditioning datum:
c

if(cond(i,j,k)) goto 1
call rand(seed, 1,randnu)
call beyond(ncdf,cut,cdf,zmin,zmax,ltail,
+ Itpar,utail,utpar, var(i,j,k),randnu(1),ierr)
1 continue
elseif (igauss.eq.1) then
call gridxyz(seed)
else
call etapdf(seed)
end if
end if
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¢ Renormalize the variogram parameters to the variance of the realization if requested:

c
if(isill.eq.1) then
c
c Get current sill of variogram:
c
sill =c0
do 2i=l,nst
2 sill = sill + ce(i)
c
¢ Get variance of realization:
c
av=0.0d0
ss = 0.0d0
do3i=l,nx
do 3 j=l,ny
do 3 k=1,nz

av=av + var(i,j,k)
ss = ss + var(i,j,k)*var(i,j,k)
3 continue
av =av/ dble(nx*ny*nz)
ss =ss/ dble(nx*ny*nz) - av¥av

c
¢ Now, scale the variogram parameters:
c
fac = ss/sill
c0 =c0 * fac
do 4 i=1,nst
4 cc(i) =cc(i) * fac
c
¢ Also, scale the varmod array:
c

do 5 i=lI,nlag
5 varmod(i) = varmod(i) * fac
endif
c
¢ Finished getting initial image:
c
return
end

subroutine rand(seed,n, vector)

C
c

c This random number generator generates random numbers in 0,1[ Note that if the seed value is zero on the first call, a default value
¢ of 1369 will be used in a linear congruential generator to generate 55 odd integers for the array ‘itab()'. These values are preserved
¢ by a common statement, so that they may be used in subsequent calls by setting the seed to zero.If the value of 'seed" is greater than
¢ zero in a call to the subroutine, then the array ‘itab’ will be initialized and a new seed value will be returned by the subroutine. Best
c results are obtained by making the initial call with a seed of your choice and then setting the seed to ‘0" for all subsequent calls.

c

[
implicit real*8(a-h,0-z)
real*8 vector(*)
common /unusual/itab(55),n1,n2,nseed

integer m1,seed
c
¢ Test to see if 55 odd integers must be generated.
c
if((seed.gt.0).or.(nseed.It.1)) then
nseed = seed
if(seed.le.0) nseed =7931
do 10i=1,55

mi=mod(nseed*9069,32768)
if(mod(m1,2).eq.0) rnl =ml-1
itab(i) =ml

nseed =ml
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10 continue

nl=0
n2=24
endif
c
c generate "n" random components for the vector "VECTOR"
c
do30i=l,n
itab(55-n1) = mod(itab(55-n2)*itab(55-n1),32768)
vector(i) = abs(float(itab(55-n1))/float(32768))
nl =mod(nl+1,55)
n2 = mod(n2+1,55)
30 continue
if(seed.gt.0) seed=nseed
return
end
subroutine locate(xx,n,is,ie,x,j)
[
c

w.n

c Given an array “xx" of length "n", and given a value "x", this routine returns a value “j" such that "x" is between xx(j) and xx(j+1).
C xx must be monotonic, either increasing or decreasing. j=0 or j=n is returned to indicate that x is out of range.

c

¢ Modified to set the start and end points by "is" and “ie"

c

¢ Bisection Concept From “Numerical Recipes”, Press et. al. 1986 pp 90.

c

implicit real*8(a-h,0-z)
real*8 xx(n)
c
c Initialize lower and upper methods:
c
jl=is
ju=ie
c
¢ If we are not done then compute a midpoint:
c
10 if(ju-jl.gt.1) then
jm = (u+j)/2
c
¢ Replace the lower or upper limit with the midpoint:
c
if((xx(n).gt.xx(1)).eqv.(x.gt.xx(jm))) then
j1=jm
else
ju=jm
endif
goto 10
endif
c
¢ Retum with the ammay index:
c
j=jl
return
end

subroutine sortem(ib,ie,a,iperm,b,c.d,e,f,g,h)

Quickersort Subroutine

O ao0o0

c

¢ This is a subroutine for sorting a real array in ascending order. This is a Fortran translation of algorithm 271, quickersort, by R.S.
¢ Scowen in collected algorithms of the ACM. The method used is that of continually splitting the array into parts such that all

c elements of one part are less than all elements of the other, with a third part in the middle consisting of one element. An element
¢ with value t is chosen arbitrarily (here we choose the middle element). i and j give the lower and upper limits of the segment being
c split. After the split a value q will have been found such that a(q)=t and a(l)<=t<=a(m) for all i<=l<q<m<=j. The program then

c performs operations on the two segments (i,q-1) and (q+1,j) as follows The smaller segment is split and the position of the larger

210



c segment is stored in the It and ut arrays. If the segment to be split contains two or fewer elements, it is sorted and another segment is
c obtained from the It and ut arrays. When no more segments remain, the array is completely sorted.

c
c

¢ INPUT PARAMETERS:

c

c ibje  start and end index of the array to be sorteda
ca array, a portion of which has to be sorted.

c iperm 0 no other array is permuted.

I array b is permuted according to array a
2 arrays b,c are permuted.

3 arrays b,c,d are permuted.

4 arrays b,c,d,e are permuted.

5 arrays b,c,d,e.f are permuted.

6 arrays b,c,d,e,f.g are permuted.

7 arrays b,c,d,e,f,g,h are permuted.

>7 no other array is permuted.

b,c,d,e f.g,h arrays to be permuted according to array a.

OUTPUT PARAMETERS:

»

= the array, a portion of which has been sorted.

b,c,d,ef,g,h =arrays permuted according to array a (see iperm)

[ e A e B e B e B e B e B e B e R e B e B e B v B e e B e I o )

¢ NO EXTERNAL ROUTINES REQUIRED:
[
c
implicit real*8(a-h,0-2)

real*8 a(*),b(*),c(*),d(*),e(*).f(*),g(*).h(*)

c
¢ The dimensions for It and ut have to be at least log (base 2) n
c
integer 1t(64),ut(64).i,j.k.m,p.q
c
c Initialize:
c
j =ie
m =1
i =ib
iring = iperm+1
if (iperm.gt.7) iring=1
c
c If this segment has more than two elements we split it

c
10 if (j-i-1) 100,90,15

c

¢ p is the position of an arbitrary element in the segment we choose the middle element. Under certain circumstances it may be

¢ advantageous to choose p at random.

c
15 p =(+)2

ta =a(p)
a(p) =a(i)
g0 to (21,19,18,17,16,161,162,163),iring
163 th =h(p)
h(p) =h(i)
162 15 =g(p)
g(p) = g@)
161 o =f(p)
f(p) = f(i)
16 te =e(p)
e(p) =e(i)
17 W =d(p)
d(p) =d(i)
18 tc =c¢(p)
c(p) = c(i)
19 tb =b(p)
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b(p) = b(i)
21 continue
c
c Start at the beginning of the segment, search for k such that a(k)>t
c

q
k

j
i
20 k=k+l
iftk.gt.q) goto60
if(a(k).le.ta) go to 20
c
¢ Such an element has now been found now search for a q such that a(g)<t starting at the end of the segment.
c
30 continue
if(a(q).lt.ta) go to 40
q=q-
if(g.gt.k) goto30
goto 50
c
¢ a(q) has now been found. we interchange a(q) and a(k)
c
40 xa =a(k)
a(k) =a(q)
a(q)=xa
go to (45,44,43,42,41 411,412,413),iring
413  xh =h(k)
h(k)=h(q)
h(q) = xh
412 xg =gk)
gk) = g(q)
g(q) =xg
411 xf =f(k)
(k) = f(q)
f(q) =xf
41 xe =e(k)
e(k) = e(q)
e(@) =xe
42 xd =dk)
d(k) = d(q)
d(q)=xd
43 xc =c(k)
c(k) =c(q)
c(q) =xc
4  xb =bk)
b(k) =b(q)
b(q) =xb
45 continue
c
¢ Update q and search for another pair to interchange:
c
q=q-1
g0 to 20
50 q=k-1
60 continue
c
¢ The upwards search has now met the downwards search:
c
a(i)=a(q)
a(g)=ta
go o (65,64,63,62,61,611,612,613),iring
613  h(i) =h(q)
h(@)=th
612 g(i)=g(q
g =tg
611 f(i)=1(q)
flg) =tf
61 e(i)=e
e(q)=te
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62 d(i)=d(q)
d(q)=td
63  c(i)=c(q)
c(@)=tc
64 b(i) =blq)
b(g) =tb
65 continue
c
c The segment is now divided in three parts: (i,g-1),(q),(q+1.j) store the position of the largest segment in It and ut
c
if (2*q.le.i+j) goto 70
It(m) =1
ut{m) = g-1
i=q+l
goto 80
70 It(m) =q+l
ut(m) = j
i=q-l
c
¢ Update m and split the new smaller segment
c
80 m=m+l
goto 10
c
¢ We arrive here if the segment has two elements we test to see if the segment is properly ordered if not, we perform an interchange
c
90 continue
if (a(i).le.a(j)) go to 100
xa=a(i)
a(i)=a()
a(j)=xa
£0 10 (95,94,93,92,91,911,912,913),iring
913 xh =h()
h(i) = h(j)
h(j) = xh
912 xg =g(i)
() = 2G)
80 =xg
911 xf =f1(i)
(i) = 1) - ‘..
f(§) = xf
91 xe =e(i)
e() =e()
e(j) =xe
92 xd =d(i)
d(i) =d(j)
d(j) =xd
93 xc =c(i)
cfi) =c(j)
c(j) =xc
94 xb =b(i)
b(i) =b(j)
b() =xb
95 continue
c
c If It and ut contain more segments to be sorted repeat process:

c
100 m=m-1
if (m.le.0) goto 110
i=It(m)
j=ut(m)
goto 10
110 continue
return
end
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subroutine beyond(ncut,cut,cdf,zmin,zmax,Itail,Itpar,utail,utpar,
+ zval,cdfval,ierr)

Go Beyond a Discrete CDF

O 000

c
¢ This subroutine is a general purpose subroutine to interpolate within and extrapolate beyond discrete points on a conditional CDF. If
¢ the Z value "zval" is specified then the corresponding CDF value “cdfval" will be computed, if the CDF value “cdfval” is specified

¢ the comresponding Z value “zval” will be computed.

c
c
c
¢ INPUT/OUTPUT VARIABLES:
c
ncut number of cutoffs defining the global CDF
cut() real array of the ncut cutoffs
cdf() real array of the global cdf values
zZmin,zmax minimum and maximum allowable data values
Itail option to handle values in lower tail
Itpar parameter required for option Itail
utail option to handle values in upper tail
utpar parameter required for option utail
zval interesting cutoff (if -1 then it is calculated)

cdfval interesting CDF (if -1 then it is calculated)

ierr error flag: 0 - no problem
1 - both zval or cdfval can not be
defined or undefined
2 - invalid parameters

Original: C.V. Deutsch October 1991 ’

OO0 0000000600000000000

implicit real*8(a-h,0-z)
parameter(EPSLON=1.0d-20,UNEST=-1.0d0)
dimension cut(ncut),cdf(ncut)

real*8  utpar,ltpar,lambda

integer Itail,utail

c
c Figure out what part of distribution: ipart = 0 - lower tail
c ipart=1 - middle
c ipart =2 - upper tail
ipart=1
if(cdfval.le.cdf(l)) ipart=0
if(cdfval.ge.cdf(ncut)) ipart =2
c
¢ ARE WE IN THE LOWER TAIL?
c
if(ipart.eq.0) then
if(Itail.eq.1) then
c
¢ Straight Linear Interpolation:
c
powr = 1.0d0
zval = powint(0.0d0,cdf(1),zmin,cut(1),cdfval,powr)
else if(Itail.eq.2) then
c
¢ Power Model interpolation to lower limit "zmin"?
c
cpow = 1.0d0 / Itpar
zval = powint(0.0d0,cdf(1),zmin,cut(1),cdfval,cpow)
else
c

¢ Error situation - unacceptable option:
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fer=2
retumn
endif
endif

c
¢ FINISHED THE LOWER TAIL, ARE WE IN THE MIDDLE?
c
if(ipart.eq.l) then
c
c Linear interpolation between the rescaled global cdf?
c
call locate(cdf,ncut,1,ncut,cdfval,ilow)
ihigh=ilow + 1
powr = 1.0d0
zval = powint(cdf(ilow),cdf(ihigh),cut(ilow),cut(ihigh),
+ cdfval,powr)
endif
c B
c FINISHED THE MIDDLE, ARE WE IN THE UPPER TAIL?
[+
if(ipart.eq.2) then
if(utail.eq.1) then
powr = 1.0d0
zval = powint(cdf(ncut),1.d0,cut(ncut),zmax,cdfval,powr)
else if(utail.eq.2) then
c
¢ Power interpolation to upper limit "utpar"?
c
cpow = 1.0d0 / utpar
zval = powint(cdf(zcut),1.d0,cut(ncut),zmax,cdfval,cpow)

c
¢ Fit a Hyperbolic Distribution?

c
else if(utail.eq.4) then
c
¢ Figure out "lambda" and required info:
c
lambda = (cut(ncut)**utpar)*(1.0d0-cdf(ncut))
zval = (lambda/(1.0d0-cdfval))**(1.0d0/utpar)
else .
c
c Error situation - unacceptable option:
c
fer=2
return
endif
endif

if(zval.gt.zmax) zval = zmax

c
¢ All finished - return:
c

retum

end

real*8 function powint(xlow,xhigh,ylow,yhigh,xval,pow)

C
[

c Power interpolate the value of y between (xlow,ylow) and (xhigh,yhigh) for a value of x and a power pow.

[+
C

implicit real*8(a-h,0-z)

parameter(EPSLON=1.0d-20)

powint = ylow + (yhigh-ylow)*
+ (((xval-xlow)/amax1(EPSLON,(xhigh-xlow)))**pow)
return
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end

real*8 function ginv(p,ymean,ystd,itrans)
c

c
¢ Computes the inverse of the standard normal cumulative distribution function with a numerical approximation from : Abramovitz,
¢ M. and Stegun, 1., 1972, handbook of mathematical functions, 10th printing, National Bureau of Standards, p. 933.

c
c

c .
¢ Coefficients of approximation:
c
implicit real*8(a-h,0-z)
data c0/2.515517d0/,¢1/.802853d0/,¢2/.01032840/
data d1/1.432788d0/,d2/.189269d0/,d3/.001308d0/
c
¢ Values for + and - infinity:
c
data gneg/-5.0d0/,gpos/5.0d0/
c
¢ Check for probability =0 or 1
c
if(p.le.0.0d0) then
ginv = gneg
else if(p.ge.1.0d0) then
ginv = gpos
c
¢ Approximate the function:
c
else
pp=p
if(pp.ge.0.5d0) pp = 1.0d0 - pp
t = dsqri(dlog(1.d0/(pp*pp)))
2 =t*t
13 =t2%t
ginv =t - (cO+cI*t+c2*2)/(1+d 1 ¥t+d2*2+d3*13)
if(p.eq.pp) ginv=-ginv 3}
endif
if (itrans.ge.1) then
ginv=dexp(ystd*ginv+ymean)
end if
c
¢ Return with ginv:
c
return
end

subroutine getlag

Establish the number and location of the lags to consider

Author: C.V. Deutsch Date: April 1992

00600000

include ‘metro.inc'
real*8  maxcov
c real*8 dist(maxlag)
logical covaf
c
¢ Compute maximum covariance:
[
covaf =.true.
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maxcov = cova3{0.0d0,0.0d0,0.040,0.0d0,0.040,0.0d0,nst,c0.it,
+ cmax,cc,aa,angl,ang2,ang3,anisl,anis2,covaf)
covaf = .false.
c
c Initialize the variogram and lag arrays:
c
do 1 i=1,nlag
varmod(i) = 1.0d+20
c dist(i) =1.0d10

ixl)) =0
iyli) =0
izlf)) =0
1 continue
[
¢ Calculate the Experimental Variogram:
c
na =0
nxl = nx/2
nyl =ny/2
nzl =nz/2
do 20 ix=0,nxl
do 20 iy=-nyl,nyl
do 20 iz=-nzl,nzl

if(ix.eq.0.and.iy.eq.0.and.iz.eq.0) go to 2
if(ix.eq.0.and.iy.le.0.and.iz.le.0) go to 2
dx = dble(ix) * xsiz
dy = dble(iy) * ysiz
dz = dble(iz) * zsiz
c dxyz=sqdist(0.d0,0.d0,0.d0,dx,dy,dz,angl,ang2,
¢ +ang3,anisl,anis2)
vario = maxcov - cova3(0.0d0,0.0d0,0.0d0,dx,dy,dz,nst,c0,it,
+ cmax,cc,aa,angl,ang2,ang3,anisl,
+ anis2,covaf)

if(na.eq.nlag.and.vario.gt.varmod(na)) go to 2
c if(na.eq.nlag.and.dxyz.gt.dist(na)) goto 2
c
¢ Consider this sample (it will be added in the correct location):
c
if(naltnlagyna=na+1
c dono=1,na
c if (vario.eq.varmod(no)) goto 20
c if (dxyz.eq.dist(no))goto 20
c end do
ixl(na) =ix
iyl(na) =iy
izl(na) =iz
varmod(na) = vario
c dist(na)=dxyz
if(na.eq.1) goto 2
c
c Sort samples found thus far in increasing order of distance:
c
nl =na-1
do 3 ii=I,nl
k=ii
if(vario.lt.varmod(ii)) then
c if(dxyz.lt.dist(ii)) then
jk=0
do 4 jj=k,nl
j =nl-jk
jk=jk+1
jl=j+1
varmod(j1) = varmody(j)
c dist(j1)=dist(j)
ixIGl) =ixIQ)
iylj1) =iyl(j)
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iZIG) =izl()

4 continue
varmod(k) = vario
c dist(k)=dxyz
ixl(k) =ix
izl(k) =iz.
goto2
endif
3 continue
c

¢ 1/22/97 : The following debugging information are added by Tai-Sheng Liou to see how lags are chosen
2 if (na.eq.nlag.and.vario.gt.varmod(na))goto 20
c 2 if (na.eq.nlag.and.dxyz.gt.dist(na)) goto 20

20 continue
c minus=1

¢ doi=lnlag
c iyl(i)=iyl(i)*(-1)**minus
c minus=minus+1
c dx=ixl{iy*xsiz
c dy=tyl(i)*ysiz
c dz=izl(i)*zsiz
c varmod(i)=maxcov-cova3(0.0d0,0.0d0,0.0d0,dx,dy,dz,nst,c0,it,
c + cmax,cc,aa,angl ,ang2,ang3,anisl,
c + anis2,covaf)
¢ enddo
c
¢ Debugging information:
c
write(ldbg, 100) nlag

100 format("Closest *,i3,' Jags: Lag number variogram offsets’)

do 10 i=l,nlag
write(ldbg, 101) i,varmod(i),ixI(i),iy)(i).izl(i)

c
¢ 1/22/97 : The following line is added by Tai-Sheng Lion

c write(7788,101) i,varmod(i),ix1(i),iyl(i),izI(i)
c
101 format(i2,1x,f12.4,3i3)
10 continue
c
c Return with the closest lags:
c
retum
end
subroutine gridxyz(iseed)
c
c

c This subroutine generate a sample that honors the input mean and variance of the variable on the non-conditioning points. The
c probability distribution of the variable is assumed to be log-normal.

c

c Input:

c ymean : Mean of In(x) [y=In(x)}

c ystd : S.T.D. of In(x)

c iseed : Initial seed number

c

¢ Output :

c var(nx,ny,nz) : Image of the random field in the grid
c
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¢ Remark :

c noncond = # of data points that are not conditioning data
c
c

include 'metro.inc’
real*8 xtry(maxx,maxy,maxz),xsave(50),pasp(50)
logical image
c .
¢ Generate the initial image in the grid
¢ (The conditioning data is not changed)
c
p=getrand(iseed)
iseed=0
nxyz=nx*ny*nz
c
€ 2/10/97 : Define xcut,i.e., the cutoff value of z
c (1) itrans=1 : Z’=max(z-xcut,xcut0)
c (2) itrans=2 : z'=max(z,xcut0)
c xcutO=minimum PM (or Ks) value
c
ci.e. ifitrans=1 and xcut.ne.0, use input value as cutoff PM value
¢ ifitrans=1 and xcut=0, xcut=LN-1(pcut,ymean,ystd)
c ifitrans=2, the cutoff PM value(xcut) is defaulted as 0.0
c

c
c-----Reset cutoff PM (or Ks) value (xcut) to zero if itrans=
¢ Ifitrans=1 and xcut=0 => iterate until pasp=ptarget
¢ [Ifitrans=1 and xcut>0 => no iterations, transform z'=max(z-xcut,xcut0)
c

if (itrans.eq.2) xcut=0,0

cutsave=xcut

write(*,20) xcut

write(*,*)
20 format(' Initial PM cutoff ="'{7.4)

c
¢ Check again the type of simulation:
c
write(*,*)
write(ldbg,*)
if(igauss.eq.0) then
write(*,*) 'You are using a non-parametric distribution ...
write(ldbg,*) 'You are using a non-parametric distribution ..."
elseif (igauss.eq.1) then
inquire(file=imageinfl,exist=image)
if (.not.image) then
write(*,*) 'You are simulating standard normal deviates ..."
write(ldbg,*) 'You are simulating standard normal deviates ..."
end if
end if

c
¢ 2/13/97 : Define the vatue of asperity contact.

¢ (a) The lowest possible of LN variate, i.e., ginv(0.0....)
¢ (b) A very small value defined by user, e.g., 1.0e-4

c

¢ 7/14/97 : Iterate the generating process until the proportion of asperity contact reaches the target proportion, ptarget

c

xcutO=aspcut

do i=1,50
pasp(iter)=0.d0
xsave(iter)=0.d0

end do

iter=1

psave=0.d0

pdif=!1.d0
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smean=0.d0
smeanln=0.d0

if (itrans.eq.2) then
if(pcut.eq.ptarget)then
do 17 i=1,nx
do 17 j=1.ny
do 17 k=1,nz
if(.not.cond(i,j.k))then
p=getrand(iseed)
var(i,j,k)=ginv(p,ymean,ystd,itrans)
do while(var(i,j,k).gt.zmax.or.var(i,j,k).It.zmin)
p=getrand(iseed)
var(i,j.k)=ginv(p,ymean,ystd,itrans)
end do
end if
smean=smean+var(i,j,k)
17 continue
else
nop=nxyz*(1.d0-pcut)
dowhile(nop.gt.nxyz*(ptarget-pcut))
13 il = int(getrand(seed)*nx)+1
j1 = int(getrand(seed)*ny)+1
ki=1
if(var(il,j1.k1).ne.0.0.or.cond(il jI k1)) goto 13
p=getrand(iseed)
var(il j1,k1)=ginv(p,ymean,ystd,itrans)

do while(var(il,j1,k1).gt.zmax.or.var(il j1,k1).It.zmin)
p=getrand(iseed)
var(il,j1,k1)=ginv(p,ymean,ystd,itrans)

end do

0060600

if(var(il,j1,k1).gt.zmax)var(il,j1,k1)=zmax
if(var(il j1,k1).lt.zmax)var(il,j1,k1)=zmin
smean=smean-+var(il j1,k1)
nop=nop-1
end do
end if
else
if(xcut.eq.0)then
DOWHILE(pdif.gt. 1.0d4-3)
smean=0.0d0
smeanin=0.d0
if(iter.eq.2) then
xsave(iter)=ginv(pcut,ymean,ystd,itrans)
elseif(iter.gt.2) then
xsave(iter)=(ptarget-pasp(1))*xsave(iter-1)/
+ (pasp(iter-1)-pasp(1))
end if
if(iter.ge.2)xcut=xsave(iter)
do 1 i=1,nx
do 1 j=1,ny
do 1 k=1,nz
p=getrand(iseed)
if (.not.cond(i,j,k)) then
xtry(i,j,K)=ginv(p,ymean,ystd,itrans)
var(ij,k)=amax1(xtry(i.j.k)-xcut,xcut0)
if(var(i,j,k).gt.zmax)var(i j,k)=zmax
if(var(i,j,k).lt.zmin)var(i,j,k)=zmin
else
var(i,j,k)=xcut0
end if
if(var(i,j,k).eq.xcut0) pasp(iter)=pasp(iter)+1.d0
smean=smean-+var(i,j,k)
if(var(i,j,k).gt.0.d0)smeanin=smeanin-+dlog(var(i,j,k))
1 continue
pasp(iter)=pasp(iter)/dble(nxyz)
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write(¥,3) iter,xcut,ptarget,pasp(iter)
paspsave=pasp(iter)
format(' iter=",i2,’ cut="f7.4,’ ptarget=",16.2," pasp=',
+ €20.9)
psave=pasp(iter)
iter=iter+1
pdif=abs(ptarget-psave)
if (ptarget.eq.0.d0) pdif=0.d0
END DO
else
do 111 i=l,nx
do 111 j=l,ny
do 111 k=I,nz
p=getrand(iseed) .
if (.not.cond(i,j,k)) then
xtry(ij,k)=ginv(p,ymean,ystd,itrans)
var(i,j,k)=amax 1(xtry(i,j,k)-xcut,xcut0)
if(var(i,j,k).gt.zmax)var(i,j,k)=zmax
if(var(i,j,k).It.zmin)var(i,j,k)=zmin
clse
yvar(i,j k)=xcut0
end if
if(var(i j,k).eq.xcut0) pasp(iter)=pasp(iter)+1.d0
smean=smean-+var(i,j,k)
if(var(ij,k).gt.0.d0)smeanln=smeanIn-+dlog(var(i,j,k)y

[11  continue

2

c

end if
end if

smean=smean/dble(nxyz)
smeanln=smeanln/dble(nxyz)
sstd=0.0d0
sstdin=0.d0
do 2 i=I,nx
do 2 j=1,ny
do 2 k=1,nz
sstd=sstd+(var(i,j,k)-smean)*(var(i,j,k)-smean)
if(var(i,j,k).gt.0.d0)sstdIn=sstdIn+(dlog(var(i,j.k))-
* smeanln)*(dlog(var(i,j,k))-smeanin)
continue
sstd=dsqrt(sstd/(dble(nxyz)-1.d0))
sstdin=dsqrt(sstdin/(dble(nxyz)-1.d0))
write(*,*)
write(*,60) smeanin,sstdIn*sstdIn
write(*,70) smean,sstd*sstd
write(ldbg,*)
write(ldbg,60) smeanlnx,sstdinx*sstdinx ,
write(ldbg,70) smean,sstd*sstd
if(imageoutﬂ(l:lO).ne.'nodaw.dgt') then
write(limageout,*) 'Initial image data’
write(limageout,*) 5
write(limageout,*) ‘X location’
write(limageout,*) 'Y location'
write(limageout,*) ‘Z location’
write(limageout,*) 'k before the cutoff'
write(limageout,*) 'k after the cutoff’

¢ change ymn to yini for output using DEPTH as the vertical distance

C

do 40 i=1,nx
do 40 j=1,ny
do 40 k=I,nz
xx=xmn+xsiz¥dble(i-1)
yy=ymn+ysiz¥dble(j-1)
zz=zmn+zsiz*dble(k-1)
write(limageout,30) xx.yy,zz,xtry(i,j,k),var(i,j,k)
if (var(i,j,k).eq.xcut0) then
if(.not.cond(i,j,k))then
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write(550,30) xx.yy,zz,0.0
end if
end if
40  continue
end if
close(limageout)
30 format(3(f6.2,2x),2f10.4)
60 format(’ Generated statistics of In(PM) : mean="e12.4,' Var=",
+ el24)
70 format(’ Generated statistics of PM : mean='el2.4,' Var=",
+  el24)

return
end

subroutine etapdf(iseed)
c

c

c This subroutine generates a sample that uses user-specified pdf (CDF) with the following three options:
c

¢ Case 1: log-normal (see gridxyz above)
c

¢ Case 2 :(Exponential)

c f(x)=0.25 d(x) x<=0

c f(x)= lumda*exp(-lumda*x) x>0

c

¢ Case 3 : step-wise uniform

c f(x)=0.25 d(x) x<=0

f(x)=0.1 O<x<1

f(x)=0.0625 1<x=5

f(x)=0.02 5<x<10

f(x)=0.01 10<x<=25
f(x)=0.004 25<x<=50
f(x)=0.001 50<x<=100

Q0000000

include 'metro.inc’
real*8 xtry(maxx,maxy,maxz),xsave(50),pasp(50)
real*8 lumbda
c
¢ Generate the initial image in the grid
¢ (The conditioning data is not changed)
c -
smean=0.0d0
p=getrand(iseed)
iseed=0
nxyz=nx*ny*nz
[
¢ Set non-conditioning data to 0.000
c
nocond=0
do 3i=l,nx
do 3 j=1,ny
do 3 k=1,nz
if (.not.cond(i,j.k)) var(i,j,k)=0.0d0
if (cond(i,j,k))nocond=nocond+1
3 continue

c
¢ Check again the type of simulation:
c
write(*,*)
write(ldbg,*) )
if(igauss.gt.2) then -
icase=igauss-1
write(*,*) 'You are using *,icase,’ -th kind of CDF
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write(ldbg,*) 'You are using ",icase,’ -th kind of CDF
end if

c
¢ 6/30/97 : Generate initial permeability ficld using
c user-defined CDF
c
nop=0
nopmax=10000*(1.d0-ptarget)
icase=igauss-1
if(icase.eq.2)then

c

c Case 2 -- 25% exponentially decayed pdf with

c

c p(x)=lumda*exp(-lumda*x), CDF(x)=0.25+0.75*(1-exp(-lumbda*x))
c lumbda=1/(mean of PM)

lumbda=0.065

write(ldbg,*) 'lumbda=",lumbda
write(ldbg,*) ‘nop = ',nop
write(Idbg,*) ‘ptarget=",ptarget
write(ldbg,*) ‘nopmax='nopmax
write(ldbg,*) 'xcut0=",xcut0

if (peut.eq.ptarget)then

c

c Assign pm values to grid blocks sequentially if fraction of conditioning data is exactly ptarget

c

do 100 i=1,nx

do 100 j=1,ny

do 100 z=l,nz
if(.not.cond(i,j,k))then
do while(var(i,j,k).eq.xcut0)

c .or.var(ij,k).gt.zmax.or.var(i,j,k).lt.zmin)
p=getrand(iseed)
if(p.gt.ptarget)var(i,j,k)=-dlog(1.d0-(p-ptarget)/

+ (1.d0-ptarget))/lumbda
end do
if(var(i,j,k).gt.zmax)var(i,j,k)=zmax
if(var(i,j,k).lt.zmin)var(i j,k)=zmin
end if

100 continue

else

c

¢ Assign pm values to grid blocks randomly if fraction of conditioning data is less than ptarget

c

do while(nop.It.nopmax)
6 i=int(getrand(iseed)*nx)+1
j=int(getrand(iseed)*ny)+1
k=1
if(var(i,j,k).ne.xcut0.or.cond(i,j,k))goto 6
do while(var(i,j,k).eq.xcut0)

c .or.var(i,j,k).gt.zmax.or.var(i,j,k).It.zmin)
p=getrand(iseed)
if(p.gt.ptarget)var(i,j,k)=-dlog(1.d0-(p-ptarget)/

+ (1.d0-ptarget))/lumbda

end do
if(var(i,j,k).gt.zmax)var(i,j,k)=zmax
if(var(i,j,k).lt.zmin)var(i j,k)=zmin
if(p.gt.ptarget)nop=nop+1

end do

write(*,*) 'End of generating sample data’

end if

c
c Case 3 -- 25% of total asperity contacts
c

elseif(icase.eq.3)then
if(pcut.eq.ptarget)then
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c

¢ Assign pm values to grid blocks sequentially if fraction of conditioning data is exactly ptarget

c
do 200 i=1,nx
do 200 j=1,ny
do 200 k=1.nz
do while (p.1t.0.25.0r.p.gt.1.d0)
p=getrand(iseed)
if(p.gt.0.25.and.p.le.0.35)var(i,j,k)=(p-0.25)/0.1d0
if(p.gt.0.35.and.p.le.0.60)var(i,j,k)=1.+(p-0.35)/6.25d-2
if(p.gt.0.60.and.p.le.0.70)var(i,j,k)=5.+(p-0.60)/2.d-2
if(p.gt.0.70.and.p.1e.0.85)var(i,j.k)=10.+(p-0.70)/1.d-2
if(p.gt.0.85.and.p.1e.0.95)var(i,j,k)=25.+(p-0.85)/4.0d-3
if(p.gt.0.95.and.p.le.1.00)var(i,j,k)=50.+(p-0.95)/1.d-3
end do
200  continue
else
c
¢ Assign pm values to grid blocks randomly if fraction of conditioning data is less than ptarget
c
do while (nop.it.nopmax)
7 i = int(getrand(seed)*nx)+1
j =int(getrand(seed)*ny)+1
k=1
if(var(i,j,k).ne.0.0.or.cond(ij.k)) go o7
p=getrand(iseed)
if(p.gt.0.25.and.p.1e.0.35)var(i,j,k)=(p-0.25)/0.1d0
if(p.gt.0.35.and.p.le.0.60)var(i j.k)=1.+(p-0.351/6.25d-2
if(p.gt.0.60.and.p.le.0.70)var(i,j,k)=5.+(p-0.60)/2.d-2
if(p.gt.0.70.and.p.le.0.85)var(i,j,k)=10.+(p-0.70)/1.d-2
if(p.gt.0.85.and.p.le.0.95)var(i,j,k)=25.4+(p-0.85)/4.0d-3
if(p.gt.0.95.and.p.le.1.00)var(i,j.k)=50.+(p-0.95)/1.d-3
if(p.gt.0.25.and.p.le.1.0) nop=nop+1
c elseif(icase.eq.4) then
c
¢ Case 4-- 30% of total asperity contacts
c
c if(p.gt.0.25.and.p.le.0.30)var(i,j,k)=(p-0.25)/0.05d0
c if(p.gt.0.30.and.p.le.0.40)var(i j.k)=1.+(p-0.30)/2.5d-2
c if(p.gt.0.40.and.p.le.0.45)var(i,j,k)=5.+(p-0.40)/1.d-2
c if(p.gt.0.45.and.p.le.0.55)var(i,j,k)=10.+(p-0.45)/6.66667d-3
c if(p.gt.0.55.and.p.1e.0.65)var(i,j,k)=25.4+(p-0.55)/4.0d-3
c if(p.gt.0.65.and.p.1e.0.75)var(i j,k)=50+(p-0.65)/4.d-3
c if(p.gt.0.75.and.p.le.1.00)var(i,j,k)=75.+(p-0.75)/1.d-2
c if(p.gt.0.25.and.p.le.1.0) nop=nop+1
end do
end if
end if
smean=0.0
do 5 i=l,nx
do 5 j=1,ny
do 5 k=1,nz
smean=smean-+var(i,j,k)
5 continue
10 write(*,*)

write(*,*) 'nop =",nop
smean=smean/dble(nxyz)
sstd=0.0d0

do 2i=1,nx

do 2 j=1,ny

do 2 k=1,nz

sstd=sstd+(var(i,j,k)-smean)*(var(i,j,k)-smean)
continue

sstd=sqrt(sstd/(dble(nxyz)-1.d0))
write(*,*)

write(idbg,*)

write(*,70) smean,sstd*sstd
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write(ldbg,70) smean,sstd*sstd
c
¢ change ymn to yini for output using DEPTH as the vertical distance
c
¢ yinit=-(ysiz*dble(ny)-ysiz/2.d0)
if(imageoutfl(1:10).ne.'nodata.dat’) then
write(limageout,*) 'Initial image data’
write(limageout,*) 5
write(limageout,*) 'X location'
write(limageout,*) 'Y location’
write(limageout,*) ‘Z location’
write(limageout,*) 'k before the cutoff’
write(limageout,*) 'k after the cutoff’
do 40 i=I,nx
do 40 j=1,ny
do 40 k=1,nz
xx=xmn+xsiz*dble(i-1)
yy=ymn+ysiz*dble(j-1)
zz=zmn+zsiz*dble(k-1)
write(limageout,30) xx,yy,zz,var(i,j,k),0.0
if (var(i j,k).eq.0.d0) then
if(.not.cond(i,j,k))then
c yy=yinit+ysiz¥dble(j-1)
write(550,30) xx,yy,2z,0.0
end if
end if
40  continue
end if
close(limageout)
30 format(3(16.2,2x),2f10.4)
60 format(’ Generated statistics of In(PM) : mean=",f7.3,' Var=",
+  fl11.3)
70 format(’ Generated statistics of PM : mean=‘f7.3,' Var=",
+  flL3)

retum
end
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(3) Sample input file

Parameters for SASIM
START OF PARAMETERS:
nodata.dat \input initial image file
image.dat \output initial image file
asperity.dat \conditioning data (if any)
1203 \columns: x,y,z,vr
-1.0e21 1.0e21 \data trimming limits 0=non parametric; 1=Gaussian; 2=left open; 3=Exp: 4=step-wise uniform)
nodata.dat \non parametric distribution
30 \columns: vr,wt
0.0 100.0 \minimum and maximum data values
1 10 \lower tail option and parameter
4 20 \upper tail option and parameter
case.dat \output File for simulation
var.dat \output File for variogram
varh.dat \output file for hori. variogram
varv.dat \output file for ver. variogram
3 5000000 25000000 \debug level, reporting interval
case.dbg \output file for debugging
nodata.dat \output file for lag information

1.00.950.05.0 3 1.0d-7
1
112063

1

100 0.1 02
100-19.9 0.2

1 05 1.0

14 3

1 000

2 0.2 1900
0.0 0.0 0.0 1.0 1.0
0 40

1 1.0

1015 1
0.100.0 0.0 0.25
0

2

Notes:

\annealing schedule? (0-3 with O=user supplied, 1=default, 2=fast, 3=very fast)
\manual schedule: t0,lambda,ka,k.e,Omin

\l or 2 part objective function

\random number seed

\number of simulations

\nx,xmn,xsiz

\ny,ymn,ysiz

\nz,zmn,zsiz

\max lags for conditioning

\nst, nugget, (1=renormatlize)

\it,aa,cc: STRUCTURE 1

\angl, ang2, ang3, anisl, anis2:

\iedge(1:yes, 0:no),wedge

\icond(1:yes, 0:no),wcond

\mink,stdink,itrans

\pcut ,aspcut(xcut0), xcut, ptarget

\O:standard, 1:modified Metropolis algorithm

\1:first hbhd, 2:second nbhd

\imod (different perturbation mechanisms)

\ifield (1(0)=do(not) generate evolving files of PM and semi-variogram fields)

itrans=0 not transform to LN data, itrans>0, transform to LN data

itrans=1 2'=max(z-PMCUT,aspcut) where PMCUT=xcut, if xcut .ne. 0 or PMCUT=LN-1(ymean,ystd,pcut) if xcut=0
itrans=2 z'=max(z,aspcut), i.e., PMCUT=0 (without shifting)

aspcut=PM value of asperity contact

xcut=cutoff permeability (O=defualt)

peut=cutoff probability=ratio of asperity contact to total rock volume and is used to caleulate xcut

(4) Sample output file

Permeability field from simulated annealing

4

X location NX= 100 DX= 0.10 DX= 0.20
Y location NY= 100 DY=-19.90 DY= 0.20

Z location NZ= 1
Permeability field
0.1000 -19.9000 0.5000
0.7000 -19.9000 0.5000

19.7000 -0.1000 0.5000
19.9000 -0.1000 0.5000

DZ= 0.50 DZ= 1.00

36.1209
27844

0.0000
2.7400
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Appendix D. Calculation of effective permeability
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(A) Horizontal effective permeability

To calculate the horizontal effective permeability, attach two boundary elements,
‘ths 1” and ‘lhs 1’ to the entire right and left hand side boundaries, respectively, and let the
element ‘lhs 1’ be inactive such that primary variables in that element will not be changed
during simulation. Inject water from ‘rhs 1" and turn the gravity off. Run the simulation
under single-phase conditions then the pressure in element ‘rhs 1’ will increase and reach
to a constant value after a short transient, i.e., the steady state is reached. Calculate the
horizontal effective permeability according to Darcy’s law, i.e.,

M __ K .
keff,h"pAVP—pA(AP/Ax) (Dl)

where L [Pa-s] is water viscosity, q [kg/s] is injection rate, p [kg/m®] is water density, A
[mz] is the contact area of ‘rhs 1’ to the entire right hand side boundary, and AP [Pa] and
Ax [m] are the pressure difference and horizontal distance between ‘rhs 1° and ‘lhs 1,
respectively.

(B) Vertical effective permeability

Vertical effective permeability can be obtained by following the same procedures
as in (A) but attaching two boundary elements, “top 1 and ‘bot 1/, to the entire top and
bottom boundaries, respectively. Let the element ‘bot 1” be inactive and inject water from
“top 1”. Gravity is sill turned off in this case. Therefore, the vertical effective permeability
is calculated according to

_ Mg _ g ]
keff,v—pAVP—pA(AP/AZ) D-2)

where |, q, and p are the same as in (A), A is the contact area of the element ‘top 1 to the
entire top boundary, AP is the pressure difference between ‘top 1’ and ‘bot 1/, and Az is
the vertical distance between “top 1” and “bot 1'.
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