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Abstract

Statistical analysis of liquid seepage in partially saturated, “
heterogeneous fracture systems

by

Tai-Sheng LIOU

Doctor of Philosophy in Civil and Environmental

University of California, Berkeley

●

Professor Nicholas Sitar, Chair

Engineering

Field evidence suggests that water flow in unsaturated fracture systems may occur
..

fast preferential flow paths. However, conventional macroscale continuum
~

approaches generally predict the downward migration of water as a spatially uniform

wetting front subjected to strong imbibition into the partially saturated rock matrix. One

possible cause of thk discrepancy may be the spatially random geometry of the fracture

surfaces and, hence, the irregular fracture aperture, Therefore, a numerical model was

developed in this study to investigate the effects of geometric features of natural rock

fractures on liquid seepage and solute transport in 2-D planar fractures under isothermal,

partially saturated conditions.

The fractures were conceptualized as 2-D heterogeneous porous media that are

characterized ‘by their spatially correlated permeability fields. A statistical simulator,

which uses a simulated annealing (SA) algorithm, was employed to generate synthetic

permeability fields. Hypothesized geometric features that are expected to be relevant for

seepage behavior, such as spatially correlated asperity cont?icts, Were considered in the
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SA algorithm. Most importantly, a new perturbation mechanism for SA was developed in

order to consider specifically the spatial correlation near conditioning asperity contacts.

Numerical simulations of fluid flow and solute transport were then performed in these

synthetic fractures by the flow simulator TOUGH2, assuming that the effects of matrix

permeability, gas phase pressure, capilku-y/permeability hysteresis,. and molecular

difision can be neglected.

Results of flow simulation showed that liquid seepage in partially saturated

fractures is characterized by localized preferential flow, along with bypassing, fi..mneling,

and localized pending. Seepage pattern is dominated by the fi-actionof asperity contracts,

and their shape, size, and spatial correlation. However, the correlation structure of

permeability field is less important than the spatial correlation of asperity contacts. A

faster breakthrough was observed in fractures subjected to higher normal stress,

accompanied with a nonlinearly decreasing trend of the effective permeability.

Interestingly, seepage dispersion is generally higher in fractures with intermediate

fraction of asperity contacts; but it is lower for small or large fractions of asperity

contacts. However,. it may become higher if the pending becomes significant. Transport

simulations indicate that tracers bypass dead-end pores and travel along flow paths that

have less flow resistance. Accordingly, tracer breakthrough curves gerierally show kore

spreading than breakthrough curves for water. Further analyses suggest that the log-

normal travel time model generally fails to fit the breakthrough curves for water, but it is

a good approximation for breakthrough curves for the tracer.

2
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volumetric moisture content
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‘c
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L3w
cc

volumetric moisture content at the surface of the one-dimension, semi-
infinite soil column

initial volumetric moisture content in the one-dimension, semi-infinite soil
column

density [M/L3]

root-mean-square (rms) roughness of an individual fracture surface [L]

standard deviation of travel time [T]

surface tension between the wetting and not-wetting phase [M/T2]

temperature reduction factor, %<1

the exponent used in van Genuchten’s formulas for krland P=P

range parameter of a semi-variogram ~]

correlation fi.mction

permeability modifier, < = k/ kmf

permeability modifier after shifting, i.e., ~’= max (~– CC,O),for spatially
random asperity contacts only

averaged permeability modifier in the entire neighborhood

cutoff permeability modifier, for spatially random asperity contacts only

.

(B) Variables in small-case Italic font

(n) neighborhood in indicator kriging

[i(u)]* estimate of the conditional probability at u by indicator kriging

(Zi

di

g

h

Ah

k

kb

kzf

krl

1

m

coefilcients in the system of equations of a kriging system

statistical distance on a scatterplot from a random pair (Ui, Vi) to the
perfectly correlated line (U= V) at 45°

gravitational constant ~2]

hydraulic head ~]

head drop across a unit length of fractures [L]

fracture permeability [L2]

Boltzmann constant

reference permeability ~2]

liquid phase relative permeability

size of the neighborhood of an asperity contact

mean of a random variable

,..

mln~ mean of natural logarithm of ~

N total number of random pairs (Ui, Vi) on a scatterplot

s standard deviation of a random variable
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SDS
sample standard deviation of D.

%@.)
sample standmd deviation of I@,)

Sg standard deviation of the ~ field

SIn~ standard deviation of natural logarithm of ~

t time ~]

<b mean travel time [T]

z elevation [L]

(C) Variables in small-case font

2b

bl

b,

c

d

h

h,

n

nlag

nXY

P

P’

precept

q

ro

u

fracture aperture; hydraulic aperture [L]

left-hand side fracture aperture in Figure 1.2 ~]

right-hand side fracture aperture in Figure 1.2 ~]

nugget

mechanical aperture ~]

separation distance between two spatially random variables, h = Ihl &]

separation distance at r-th lag (or r-th semi-variogram distance) ~]

normal vector out of the boundary l_’

total number of lags at separation distance h,

total number of grid points

probability of occurrence of I(u) ~

acceptance probability of an unfavored perturbation in a thermodynamic
system

acceptance probability of an unfavored perturbation in a SA system

mass sinldsource ~3T]

radius of spatially random asperity contacts

spatial location ~]

(D) Variables in capital font

A contact area, or interracial area [L2]

C1(h) covariance of two indicator variables separated by h (h = Ihl)

C(h) covariance of two random variables separated by h = Ihl, also CU(Ui,U.)or Co
where h = IU1 - ujl

COVIU,V] covariance of random variables U and V

Cq flow rate constant used in the cubic law ~1/LTl

D diffusivity [L2/T]
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Df

D,

~

In(D,)

E

F

I(u)

J

K

L

M

N(h,)

Nb

NEL

NEQ

NPH

o

own

Oi”iti~

P

AP

Pcap

Pgas

Q
R

S[

s.

s*

S[r

T

To

v

V[

vb

fiactal dimension

coefficient of seepage dispersion

sample mean of D~

sample mean of the natural logarithm of D~

system energy of a thermodynamic system

mass flux [M/L%]

indicator variable at location u

Jacobian matrix

hydraulic conductivity [J_iT]

distance from the center of an element to the interface [L]

fluid mass ~

total number of ~ pairs at separation distance h,

total number of grid blocks within the neighborhood of all asperity contacts

total number of elements

total number of equations

total number of phases

objective function in SA

desired objective fimction at convergence, used to represent the global
minimum energy of the SA system

objective function of the initial field

pressure ~T2]

pressure difference [M/LT2]

capillary pressure [MiLT2]

gas phase pressure, a constant [M/ET2]

volumetric flux through fractures ~3/Tl

the residual matrix

liquid saturation

water saturation

scaled saturation, S* = (Sl – Sl,)/(l – Sl,)

residwd saturation of the liquid phase

temperature parameter in a SA system

initial temperature in a SA system

volume of an element [L3]

volume of the liquid phase

bulk volume of a porous medium
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upstream weighting factor

x mass fraction in a two-component flow system

Y estimation error between the true spatially random variable and its estimated
value from kriging

z(u) a general spatially random variable at location u

(E) Subscripts

P fluid phase

1 liquid phase

r r-th lag

norm properties associated with element nor element m

nm properties at the interface between elements n and m

v iteration index

(F) Superscripts

(i) i-th component in a fluid phase

j time-stepping index

(G) Operator

v gradient operator
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Chapter I. Introduction

1.1 Motivation

The conventional approach for field-scale analysis. of liquid seepage in partially

saturated fractured media usually employs macroscale continuum concepts (Peters and

Klavetter, 1988). Macroscale volume averaging homogenizes hydrologic properties of the

media, such as fracture and matrix permeabilities, and averages spatially vmiable inputs,

such as infiltration rates, applied at the system boundary (l?ruess et al., 1999).

Consequently, downward water migration in such media is generally modeled as a

spatially uniform wetting front, which is subject to strong imbibition into the partially

saturated rock matrix (Wang and Narasimhan, 1985, 1993).

under

However, preferential flow of water and tracer has been observed in the field

saturated or unsaturated conditions. At R’ainier Mes~ highly localized flow of

water from fractures into drifts was found at depths of several hundred meters beneath the

land surface (Thordarson, 1965). At the Stripa mine in Sweden, localized flow paths of

water in fractured granite were identified from tracer experiments (Abelin et al., 1987),

and localized preferential flow was observed in saturated fractured granite (Long et al.,

1992). Strongly spatialIy variable solute concentration and channeling effects were also

shown at the Stripa mine (Neretnieks, 1993). At Fran Ridge near Yucca Mountain, lateral

migration and preferential flow structures were observed in the densely welded and s

fractured Topopah Spring tuff (Eaton et al., 1996).

Management Complex at the Idaho National Engineering
,.

1

Near the Radioactive Waste

and Environmental Laboratory



(INEEL), tracer experiments from the Large-Scale Infiltration Test (LSIT) revealed an
.

irregular distribution of tracer flow, mostly along vertical paths and less so along lateral

paths (Wood and Norrell, 1996). Localized preferential flow of water along nonhorizontal

fractures has also been observed in laboratory experiments (Nicholl et d.; 1994).

Fast preferential flow paths have also been observed at the Yucca Mountain site

intended proposed as the Department of Energy (DOE) high-level nuclear waste

repository. Geologic units at Yucca Mountain consist primarily of welded and non-

welded tuffs, with varying degrees of fracturing in different units. The proposed

repository at the Exploratory Studies Facility (EN?) is at approximately 300 m depth. The

ESF lies within the unsaturated zone because the water table at Yucca Mountain is

approximately 600 m below the land surface. Fracture and fault permeabilities are

generally high, on the order of 1 – 10 darcies and 10 – 100 darcies, respectively (Ahlers et

al., 1996). In contrast, the matrix permeabilities are on the order of 1 – 10 microdarcies

(Flint, 1997). The contrast of permeability in fractures and the rock matrix suggests that

most of the flow must preferentially go through fractures and major faults. For example,

field experiments using environmental isotopes found elevated levels of 3GC1at several

locations in the ESF (Fabryka-Martin et al., 1996). If the effect of imbibition into the

partially saturated rock matrix were significant, the travel time of water from the land

surface to the water table would require thousands of years and the corresponding water

velocity was roughly estimated to be on the order of 50 mm/year (l%uess et al., 1999).

However, field experiment data (Fabryka-Martin et al., 1996) suggest that water seepage

through Yucca Mountain occurs with velocities on the order of 10 ndyear or faster

2
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@mess et al., 1999). In addition, calcite-coating data show that deposition is found

mostly within fractures and not within the matrix. Hence, the diffusion of water into the

rock matrix is very low. In summary, all evidence suggests that in semi-arid environments

water is able to migrate downward rather rapidly along localized preferential flow paths

through fracture networks in partially saturated rocks, without being imbibed into the

rock matrix.

1.2 Approach

Unsaturated flow in naturalIy fractured rocks is generally a multi-phase, non-

isothermal flow that occurs in a three-dimensional fracture

model is generally

fractures. However,

needed to model the actual fluid flow

the primary interest of this study is to

network. A complicated

and transport in natural

understand the effect of

geometric features of natural rock fractures on gravity-driven liquid seepage in fractures

under isothermal, partially saturated conditions. Thus, the following assumptions have

been made to simpli~ the modeling:

a. Impact of the gas phase on seepage is neglected by assuming that gas phase

pressure is a constant. Namely, effects associated with the gas phase fluid,

such as the dramatic change of hydraulic characteristics of porous media by

trapped air (Faybishenko, 1995), are not considered in this study. For systems

with small capillary numbers, it is reasonable to ignore gas phase pressure. By

making this assumption, the total number of phases in the system is reduced

by one and only the balance equation of the wetting phase fluid (e.g., water)

needs to be conside~ed for two-phase problems. Consequently, the remaining

3
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unknown variables will be either liquid phase saturation for one-component

flow systems, or liquid saturation and mass fraction of the second component

liquid for two-component flow systems. Although the gas phase is assumed to

be stagnant, phase interference is still considered by specifying the relative

permeability of the aqueous phase.

b. Matrix permeability and the interaction between the fractures and the

surrounding rock matrix is negligible. This assumption is based on the

following considerations. First, field data show that matrix permeability for

some rock types, e.g., welded tuff, is orders of magnitude smaller than fracture

permeability. Second, the effect of matrix permeability on seepage evolves at a

much longer time scale (months to years) than the effect of fracture

permeability (usually hours). For solute transport, molecular diffbsion may

dominate the interaction between fractures and the rock matrix, which is also a

slow process. Thus, for shorter time scale simulations, the effect of the rock

matrix can be neglected.

c. Hysteresis effects of capillary pressure as well as permeability are neglected.

Hysteresis of capillary pressure occurs when fractures are subject to repeated

wetting and drying cycles. Permeability hysteresis occurs when fractures are

undergoing repeated loadinghmloading cycles. Since most simulations in this

study consider single wetting events without loadinghuiloading cycles,

hysteresis effects are not important.

4



In addition to the above assumptions, this study focuses on studying seepage

behavior in planar two-dimensional fractures that are conceptualized

heterogeneous porous media. Approximation of 3-D fracture networks

as , 2-D

as 2-D

heterogeneous porous media is only applicable to small fractures in hard rocks of low

permeability, such as welded tuffs, graywacke, mudstones, granite, and some fractured

basalts. It would not be applicable

fractures in rocks with significant

sandstones. Of course, 3-D flow

to larger fractures with 3-D void space, or to small

matrix permeability, such as non-welded tuffs and

effects cannot be adequately modeled in a 2-D

framework. However, such conceptualization is believed to be sufficient for the purpose

of fundamental understanding of flow and transport in 3-D fracture networks. An

immediate advantage of using such conceptualization is that the effective properties of

porous media, such as relative permeability and capillary pressure, can be substituted for

fractures. Indeed, the similarity between porous media and fractures in terms of relative

permeability and capillary pressure has been verified experimentally (l?ersoff and Pruess,

1995). ‘ .

Fluid flow in single fractures can be conveniently analyzed by a continuum

approach. However, important flow mechanisms in partially-saturated fractured rock

usually operate at microscales such that the macroscale volume-averaged parameters or

system of equations may not capture all the significant mechanisms. For example,

macroscale continuum approaches generally fail to predict preferential flow observed in

partially saturated fractured media such as Yucca Mountain. Furthermore, predictions
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based on macroscale continuum approaches may become totally meaningless if a great

volume of the flow system is bypassed due to fracture heterogeneities.

The following approach is then proposed to overcome the conceptual difilculty of

macroscale continuum approaches for modeling fluid flow and transport in variably

saturated fractured media. First, 3-D fracture systems are approximated as 2-D planar

fractures that are conceptualized as 2-D heterogeneous porous media. Volume-averaged

parameters for porous media such as porosity, permeability and capillary pressure are all

expected to show spatial variability. However, this study focuses

heterogeneity in the fracture plane. Heterogeneous permeability fields

on permeability

generated with a

statistical simulator at a high spatial resolution are used to characterize the porous media.

Then, a volume-averaged Richards’ equation is employed to model the flow behavior in

the equivalent porous media. The difference between this approach and conventional

continuum approaches is that fracture heterogeneity (permeability) is explicitly

incorporated into the Richards’ equation. Thus, it is expected to capture important

seepage mechanisms that may be overlooked by continuum approaches, such as flow

bypassing and channeling.

1.3 Objectives

Based on to the evidence of fast preferential flow at sites with thick unsaturated

fractured zones, several researchers have proposed to conceptualize unsaturated flow in

heterogeneous fractured media as a stochastic distribution of localized seeps (Gauthier et

al., 1992; Gauthier, 1994), i.e., the Weeps model. Although oversimplified, the Weeps

model is important because it implies the relationship between the fast preferential flow

6



and geometric features of natural fractures. Accordingly, a mechanistic process model

combined with statistically characterized fracture heterogeneity is used herein to ev@ate

flow and transport behavior of natural fractures. The appropriateness of the current

approach is judged on the basis of how relevant the assumptions of signific’mt geometric

properties of fractures are to field observations. However, our ability to directly obtain

geometric characteristics of fracture void spaces from field observations is very limited.

Only input into and output from the flow system at the boundaries can be obtained from

field observations, which can be linked only implicitly to the assumptions for synthetic

rock fractures. Therefore, the objectives of this study are

(1) to evaluate what geometric features of natural rock fractures determine

gravity-driven liquid seepage in partially saturated conditions. “

(2) to provide building blocks for a theory of liquid seepage in partially saturated

fracture systems, formulated in terms of statistical properties of ensemble of

seeps.

.

(3) to develop guidance for observing, sampling and testing in partially saturated

fractures systems, in order to obtain meaningful field characterization.



.

Chapter II. Background - Fracture properties and fracture flow

IIol

and

and

Surface properties of natural fractures

Natural fractures are characterized by their spatially varying aperture geometry

heterogeneous permeability. These properties are the result of the spatial variability

correlation of the

characterizing natural

contact each other at

rough surface of fractures. Accordingly, the general approach for

fractures is to conceptualize them as two rough sutiaces that

discrete points, and are spatially correlated with each other at

different scales (Brown, 1995).

The topography (roughness) of fracture surfaces determines not only the

mechanical but the hydraulichransport properties of fractures (Glover et al., 1998q

Brown, 1987ab, 1989; Pyrak-Nolte et al., 1987; Brown and Scholz, 1985b; Kranz et al.,

1979). While the shape, size, and number of contact points between fracture surfaces

control mechanical properties of rock, geometrical properties of fracture surfaces control

fluid flow in fractured rocks. Thus, geometric properties of fracture surfaces as well as the

resulting fracture permeability and aperture are important factors for understanding fluid

flow and solute transport in unsaturated fractures.

IL1.1 Fracture permeability

Fracture permeability can be theoretically defined by the parallel plate

(Witherspoon et al., 1980). This model has been traditionally used to study the

state, single-phase, isothermal and saturated flow of incompressible fluids in

8
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fractures. In this model, naturally rough fracture surfaces are idealized as two smooth,

parallel plates that are separated by a constant aperture (2b), see Figure 11.1.

/’

-f..&

Idealized,parabolic
veloo”~distribution I

open natural fractures smooth, parallel plates
with varying apertures with a constant aperture

Figure Ill Schematic representation of the parallel plate model.

Analytic analyses such as Bear (1972) show that fracture permeability (k) has the

following relationship to fracture aperture

Equivalently, fracture

, fracture aperture, i.e.,

~_ (2b)2_—
12

(2.1)

transmissivity (T) is found to be proportional to the cube of the

, T = (2b)3. In addition, fluid flux per unit drop h

developed from Darcy’s law, which maybe written in a simplified form as

:= C,(2b)3

head can be

(2.2)

where Q is the volumetric flow rate across the fracture, Ah is the head drop, and C~ is a

constant depending on flow geometry and fluid properties (Witherspoon et al., 1980).
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Equation (2.2) has been referred to as the “cubic law” in the literature. What is also

predicted from the parallel plate model is that the flow field within the fracture has a

symmetric parabolic velocity distribution, see Figure II.1. This well-developed velocity

distribution has known to be contrary to field observations. Accordingly, the lack of

consideration of the spatially varying roughness and the spatial correlation of aperture is

the key to the failure of the parallel plate model to predict the real flow field in natural

fractures (Wang and Narasimhan, 1988).

Indeed, experimental as well as theoretical studies have shown that permeability

of single, natural fractures is a complicated parameter depending on several factors.

Kranz et al. (1979) found that the higher the surface roughness (the mean asperity height)

of jointed fractures, the slower the decline of permeability with increasing effective stress

(the difference between the external confining pressure and the internal fluid pressure). In

addition, they found that fracture permeability decreases nonlinearly with increasing

effective stress and increasing sample size. This trend indicates that el%ctive permeability

approaches asymptotically to the lower limit at zero for fi-actures subjected to increasing

normal stress. It also implies that residual flow may exist even if the apparent fracture

aperture is essentially zero. The existence of residual flow in fractures at high normal

stress is consistent with experiments previously reported by Iwai (1976) and Raven and

Gale (1985). Walsh (1981) attributed the decrease of permeability with increasing normal

stress to the decrease of aperture, increase of contact points, and increase of tortuosity of

flow paths. In addition, fracture permeability measured in the laboratory exhibits a

significant hysteresis effect during loading and unloading cycles (Raven and Gale, 1985;

10



Kranz et al., 1979). This is attributed to plastic deformation caused by crushing of

Wperities in jointed fractures, or irrecoverable damage in intact rocks (Kranz et al., 1979).

Zimmerman et al. (1992) found that, regardless of the geometry of asperities, fracture

permeability decreases nonlinearly with increasing fraction of contact area. Experimental

data show that flow path tortuosity of natural ffactures increases with normal stress

(Pyrak-Nolte et al., 1987). While Walsh (1981) suggested that tortuosity is not an

important parameter in estimating the flow rate through fractures, Tsang (1984) showed

that neglecting tortuosity effects may result in one to two orders of magnitude error in

computing the flow rate. Moreover, fracture permeability also depends on contact area.

In general, factors controlling fracture permeability include fracture aperture,

sample size, surface roughness, contact are% tortuosity, normal stress, stress history, scale

of measurement and rock type. Permeability measured in the laboratory is generally

several orders of magnitude smaller than that in. the field (Brace, 1980). Furthermore,

permeability of jointed rock is much greater than that of intact rock (I@nz et al., 1979),

implying that fluid flow is confined essentially to joints and fractures in the rock.

IL1.2 Fracture aperture .

An important aspect of

ability to describe their spatial

aperture can be inferred from

modeling flow and transport in natural fractures is the

variability of the aperture geometry. Although fracture

surface roughness, it is generally Wlcult to measure

surface roughness in fractures in-situ, especially on a large scale. Another difficulty is

posed by multiple definitions

between various definitions.

of fracture aperture and orders of magnitude

The most commonly used definitions are

11
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aperture” and “mechanical aperture”. The hydraulic aperture, 2b, is defined as the

constant opening between the two smooth surfaces in the parallel plate model. Recall that

it is related to the intrinsic

aperture, d, is defined as the

fracture permeability (k) by k = (2b)2/12. The mechanical

mean separation distance between two fracture surfaces that

are held parallel to each other. It is not a constant but varies non-linearly with normal

stress (Raven and Gale, 1985). In addition, the mechanical aperture depends on the details

of fracture surface topography as well as the elastic properties of fractures (Brown and

Scholz, 1986). Another definition of aperture is the “volumetic aperture” (Abelin et al.,

1987), i.e., the fracture void volume per unit fracture surface area. It is often orders of

magnitude larger than the hydraulic aperture and the mechanical aperture (Abelin et al.,

1987). In addition, hydraulic aperture may underestimate the mean residence time for the

water (Abelin et al., 1987). This implies that tracer breakthrough c&ves predicted from

the hydraulic aperture may have earlier arrival of the peak concentration than that

predicted from the volumetric aperture.

space

image

Much experimental research has been done in the last decade to explore the void

geometry between fracture surfaces. Most experiments used fluid injection and

processing methods to study this property of

porosimetry method is one of the methods used (Myer et al.,. .

natural fractures. Mercury

1993). However, the wood’s

metal injection method is more popular than the mercury porosimetry method. The

advantage of Wood’s metal is that it can yield the actual metal casts of the voids for the

same fracture in experiments at different stresses (Pyrak-Nolte et al., 1987). For example,

the micrographs in Figure 11.2were obtained by Pyrak-Nolte et al. (1987) by the Wood’s

12



metal injection method to characterize the void geometry for a natural fracture in granite,

which is subjected to increasing normal stress from 3 MPa, 33 Mpa, to 85 MPa. .

3 MPa

Approximate scale
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Figure 11.2Change of void geometry in natural Stripa granites with respect to normal
stress, measured by Pyrak-Nolte et al. (1987) using the Wood’s metal injection method.
Asperity contacts (or inaccessible pore space) appear as black regions, while regions -
penetrated by Wood’s metal are white. Note that these micrographs were take from
different portions of the same sample.

Figure 11.2shows that contact areas generally increase nonlinearly with the normal

stress (Pyrak-Nolte et al., 1987). In addition, flow paths in the fracture plane becomes

13



more tortuous as the normal stress increases. Since contact areas and voids we spatially

correlated, a contact point (or a void site) is likely to be surrounded by other points of

contact (or other void sites) (Pyrak-Nolte et al., 1990). This spatial correlation structure

could be numerically approximated by an exponential function (Coakley et al., 1987).

Based on direct measurement data, several researchers also found that roughness

of natural fracture surfaces can be described by a characteristic length scale (Brown and

Scholz, 1986; Brown et al., 1986). The asperities are correlated below this scale and

uncorrelated above. Hence, this correlation length scale is called “the mismatch length

scale, & It may also be used as the cutoff wavelength for the scaling law of fracture

aperture (.&own, 1995). Namely, fracture aperture is scale dependent only if the

wavelength of roughness is smaller than&.

1101.3Surface roughness

Surface roughness is a small-scale characteristic of natural fracture surfaces.

be measured in the field as well as in the laboratory by a profilometer (Brown et al.,

Brown and Scholz, 1985ab, 1986; Power et al., 1987; Glover et al., 1998b).

It can

1986;

After

comparing the roughness of various natural rock surfaces, Brown and Scholz (1985a)

concluded that fracture surfaces are fractal in nature. Thus, the surface profile of an

individual fracture surface can be decomposed into a series of sinusoidal Fourier waves,

each of them have a wavelength, amplitude, and phase. Surface roughness depends on

sample size and the scale of observation (Brown and Scholz, 1985). For example, Brown

(1995) showed that the scaling law for an individual fracture surface can be written as 6-

14



&(lw2
9 where a is the root-mean-square (rms) roughness (or the standard deviation of

the height of a fracture surface), & is the wavelength of a sinusoidal Fourier wave, and

ct is the slope of the log-log plot of the power spectral density of roughness versus,

frequency. Surface roughness is an important in controlling laminar flow through natural

fractures in theoretical, numerical as well as experimental studies (Walsh, 1981;

Brown, 1987% Pyrak-Nolte et al., 1987, Pyrak-Nolte et al., 1988; Brown, 1989;

Zimmerman et al., 1992).

The void space geometry in fractured rocks may span multipIe scales. It may

range from a small scale (roughness), intermediate scale (asperity contacts, fracture

intersections and terminations) to large scale (network connectivity). This property is due

to the small-scale variability of an individual surface and the spatial correlation of the

contacting fracture surfaces. It is then expected that fluid particles will take a tortuous

flow path when moving through a real fracture. “’

Brown (1995) suggested that only a few parameters are needed to exhaustively

characterize natural fracture surfaces. These parameters are the rms roughness (c), fiactal

dimension (Df), and the mismatch length scale (~). Fractal dimension is also used to

measure the scaling of fracture surfaces, i.e., c - A? with a = 7- 2Df (Brown, 1995,

1987a). Recall that the mismatch length scale is also defined as the cutoff length-scale

specifying the correlationhn-correlation of fracture surfaces. In reality, however, fracture

surfaces may vary over a broad range of wavelengths (or inversely, frequencies). Thus,

the unique cutoff mismatch length-scale employed in Brown’s model does not seem to be
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adequate for modeling real fractures. This dh%culty has been overcome by Glover et al.

(1998) by taking into account the smoothly varying degree of mismatch in natural

fractures. Of course, fractal models are not the only approach of characterizing natural

fractures. Recent success of employing a statistical simulator other than fractal models for

generating synthetic replica of fractured rocks has been reported in the literature. For

example, Pruess and Antenuz (1995) used the turning band method (TBI@ to generate

synthetic fractures in terms of fracture permeability.

11.2Limitations and applicability of the cubic law

Numerous experimental as well as theoretical studies have been done to

investigate the applicability of the cubic law to natural fractures. In general, the cubic law

appears to be applicable to fluid flow through loosely mated and open fractures, as well as

to fractures with high

Experimental works by

cubic law is generally

correlation between fracture surfaces (Nolte et al., 1989).

Witherspoon et al. (1980) and Iwai (1976) indicated that the

valid independent of the rock type. In addition, numerical

simulations by Brown (1987) showed that the actual flow rate asymptotically approaches

that predicted by the cubic law as the ratio of fracture aperture to rms roughness

increases.

However, the cubic law generally tends to overestimate the actual flow rate in

natural fractures. Tsang and.Witherspoon (198 1) found that the flow rate predicted by the

cubic law has to be reduced if surface roughness is taken into account. Brown (1987)

found that the actual flow rate is only 40% - 60% of that predicted by the cubic law if the

ratio of fracture aperture to rms roughness is one; but is increased to 70$Z0- 90% if this

16



ratio is between 2 to 4.24. Nolte et al. (1989) established an empirical power law of flow

rate to mechanical aperture based on flow experiments performed on Stripa granite. They

found that the volumetric flow rate is proportional to aperture raised to a power greater

than 3 and close to 8, suggesting that the cubic law may not adequately describe natural

fractures. In addition, permeability predicted from the cubic law was found to be orders of

magnitude higher than that measured from experiments (Kranz et al., 1979; Raven and

Gale, 1985).

In general, the cubic law is not applicable to rough fractures under high normal

stresses. As contact areas in fractures increase with increasing normal stress (Nolte et al.,

1989), the actual flow paths become more tortuous and channeled (Raven and Gale, 1985;

Brown, 1987b; GIover et al., 1998b; Pyrak-Nolte et al., 1987). Thus, Pyrak-Nolte et al.

(1988) found that the flow rate predicted by the cubic law for fractures at high normal

stress significantly differs from measured data. They suggested that this difference may be

a consequence of the dominating influence of a critical neck (the point of smallest

aperture along the path of highest aperture) on flow through the fracture.

It is evident that natural fractures should be characterized by a spatially varying

aperture distribution. From a numerical point of view, some researchers, e.g., Pruess and

Tsang (1990), adopted the approach that fracture surfaces can be locally approximated as

two parallel plates separated with a constant aperture. In addition, the cubic law is

assumed to be locally valid within that pore space. However, several aspects need to be

considered before adopting this approach.

17
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Figure 11.3(a) Schematic diagram of natural fractures idealized as smooth and parallel
plates, (b) Sketch of the capillary pressure as a function of the saturation of the wetting
phase fluid, for both the parallel plate pore model and a real porous medium.

Consider two pores idealized as parallel plates as shown schematically in Figure

11.3(a). Assuming that the pores are initially fdled with a wetting phase fluid. Also,

assuming that the system is connected to the right with the non-wetting phase, and to the

left the wetting phase fluid. The drainage process can be initiated if the pressure

difference between the wetting and non-wetting phase fluids is large enough to overcome

the capillary pressure PC,,( = 20,W/b,). Thus, the initial drainage curve will follow line ab

in Figure 11.3(b). Subsequently, the system is drained from location 3 to location 2 in

Figure 11.3(a), corresponding to line bc in Figure IL3(b). Since the capillary pressure

needed to drain the larger pore (PC,l= 2 C.W/bl) is smaller than PC,,,the non-wetting phase

fluid will completely penetrate the larger pore as soon as the interface arrives at location 2

in Figure 11.3(a).This is reflected by line cd in Figure 11.3(b).After the wetting phase is

completely drained from the larger pore, an equilibrium capillary pressure (PC,l) is

reached, which is indicated by the dashed interface at the left-hand side of Figure 11.3(a).

18
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With the help of capillary pressure, the wetting phase fluid can be imbibed into the larger

pore if the pressure of the wetting phase fluid is slightly increased. Hence, the initial

imbibition process will follow line ef in Figure 11.3(b), and the interface will advance

from location (1) to location (2). Since the capillary pressure at the pore throat (location

(2) in Figure 11.3(a)) is larger than PC,I,the wetting phase fluid will be sucked into the

smaller pore as soon as the interface reaches location (2) in Figure 11.3(a).Thus, the entire

imbibition process follows line efg in Figure 11.3(b).

In reality, however, the drainage/imbibition processes for a real porous medium

would follow the dashed curve in Figure 11.3(b).Moreover, if the flow velocity is large,

flow dynamics may become dominant at the pore throat where significant change of

surface curvature occurs. Counter-cument eddies as shown by the dashed arrows in Figure

11.3(a)may develop due to the large flow velocity and

flow rate calculated based on the parallel-plate model.

scale wall roughness of natural fractures may result in

may result in over-estimation of

Therefore, neglecting the small-

unrealistic approximation of the

real flow field in fractures. This is especially true for field”scale applications because

idealizing field scale fractures as parallel plates certainly suffers from the difficulty of

capturing the small scale surface roughness. Overall, this overview shows that there is a

need to develop fracture flow models which adequately and realistically describe the

spatial variability of the fracture aperture. This is the approach pursued herein.
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Chapter III. Statistic Modeling of Fractures with Spatially Varying

Roughness

IILl Introduction

Modeling of flow and transport in fractured rocks or porous media very often
. . ..

faces the problem of incomplete information about the heterogeneity of the media. Thus,

stochastic simulation has beeome a common tool for characterizing and visualizing

medium heterogeneity based on incomplete information. To reduce the uncertainty of

predicting heterogeneity, it is favored to incorporate field data from a variety of sources

into a simulator, e.g., borehole logs (Johnson and Dreiss, 1989), seismic data (Copty and

Rubin, 1995), and tracer concentration data (Dagan et al., 1997). Such simulations not

only try to reduce the uncertainty of characterization but honor the sample data.

Unfortunately, no stochastic simulators can perfectly reproduce the reality of the field and

most simulators cannot make use of all available information. Moreover, some simulators

are restricted to Gaussian random fields only, e.g., the turning bands method (TEM)

(Mantoglou and Wilson, 1982; Tompson et al., 1989), COVAR (Williams and E1-Kadi,

1986; Abdel-Salam and Chrysikopoulos, 1996), and spectral methods (Shinozuka and

Jan, 1972). However, discrete or combinatorial optimization methods, such as simulated

annealing (SA), have shown great promise in their applicability to various random fields

and their ability to incorporate data from various sources into their models by formulating

a suitable objective function (Datta-Gupta et al., 1995; Deutsch and Journel, 1994). In

order to model fracture characteristics, the stochastic simulator needs to be able to model
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the following elements: (1) the presence of asperity contacts, (2) a gradual change

towards larger apertures away from the asperities, (3) tlacture wall roughness, and (4)

spatial correlation structure of fracture aperture (l%uess and Antunez, 1995). Simulated

annealing (SA) is chosen in this study as the numerical simulator to characterize fracture

heterogeneity because it very well satisfies these objectives, as discussed next.

111.2Simulated annealing algorithm “

Simulated annealing (SA) is an algorithm originally developed for combinatorial

optimization, i.e., optimizing a system with discrete variables. The heart of SA is an

analogy with a thermodynamic system i.e., the physical process of annealing materials

such as semiconductors and metals (Deutsch and Journel, 1994). It is effective for large-

scale systems with discrete variables (Kirkpatrick et al., 1983). However, it can also be

applied for optimizing a system with continuous variables (Press et al., 1986). It has been

successfully applied in a great variety of fields involving computer design (Kirkpatrick et

al., 1983), nonlinear geophysical inversion (Sen and Stoff~ 1991), ‘and stochastic

reservoir modeling (Deutsch and Joumel, 1994). In hydrology, SA was fnst employed by

Dougherty and Marryott (1991) for finding an optimal groundwater management strategy.

Several computer codes of SA are available in the literature. The computer code used in

this study is updated from the subroutine SASIM in the software library GSLIB (Deutsch

and Joumel, 1992).

To be able to “anneal” the numerical system in a way similar to annealing a

thermodynamic system, a SA algorithm must contain the following four components: (1)
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an initial state, (2) an objective function that is to be minimized, (3) perturbation

mechanism, and (4) annealing schedule. (Deutsch and Cockerham, 1994), which will be

explained in detail in the following sections.

111.2.1Initial field

The initial field for SA can be a purely random field or a field that already shares

certain spatial features of the desired random field (Datta-Gupta et al., 1995). For a purely -.

random field, many perturbations may be needed to reach the optimal state. However, the

performance of the SA algorithm may be improved if the initial state already has some

spatial features (Johnson et al., 1989).

As mentioned in Chapter I, fracture permeability (k) is used to characterize

heterogeneous fractures. For convenience, permeability is scaled by a constant reference

permeability, k=f. The scaled permeability is c~ed the permeability modifier and is

symbolized as ~, i.e., k = &f x (. A reasonable value of the reference permeability for

field-scale fkactures, e.g., welded tuff, may be 10-9m2 (1000 d). Asperity contacts, i.e.,

regions with zero permeability, are simply modeled as ~ = O.

All the initial states in this study are generated in the following two steps. First,

the conditioning asperity contacts are generated by a pre-processor. All conditioning data

are asperity contacts; however, not all asperity contacts are conditioning data, see section

IIL2.1.2. Two different pre-processors are used for generating the conditioning asperity

contacts. The difference between these pre-processors is their ability to consider the

spatially correlation of asperity contacts. Second, the un-conditioned grid blocks are filled
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with data drawn from a known probability distribution. The probability distribution used

in this study was assumed to be log-normal (see Eq(3. l)), but other distributions may also

be possible.

1 ‘xp[-(’n’2”}1
f‘()=Ilxshg(

(3.1)

Mean (rnln~) and standard deviation (sln~)of the log-normal distribution, were chosen as

1.0 and 1.5, respectively. Note that SA does not require that the random field be Gaussian

(Dutta-Gupta et al., 1995). In contrast, the initial field can be drawn from a variety of

sources. For example, field sampled data (the conditioning data) plus random values

drawn from a known distribution (the un-conditioned data) maybe used.

Asperity contacts with and without spatial correlation are considered in this study,

which are referred to as spatially correlated and spatially random asperity contacts,

respectively. Indicator simulation and Boolean simulation are the corresponding pre-

processors for generating these types of asperity contacts. Both pre-processors can be

found in GSLIB (Deutsch and Journel, 1992).

111.2.1.1Spatially correlated asperity contacts

Since fracture surfaces are spatially correlated to each other, asperity contacts

(regions where two fracture surfaces contact each other) are also expected to be spatially

correlated. Accordingly, the micrographs shown in Figure 11.2 illustrate that asperity

contacts (the black regions) are clustered with a specific spatial correlation. Recall that

this spatial correlation can be approximated by an exponenti~ function (Coakley et al.,
. .
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1987). Moreover, these micrographs imply that the void space in a fracture plane can be

approximated by a binary process. Namely, the void space at a specific location i~ the

fracture plane is either closed (asperity contact) or open (aperture). Hydrologic parameters

in some porous media may also have this binary property, such as hydraulic conductivity

in sand-shale or sand-clay formations in fractured rock (Rubin, 1995), or effective

permeability in sand-shale formations (Desbarats, 1987, 1990). Statistically, a binary

process can be described by an indicator function (Journel, 1983). Therefore, indicator

simulation (Deutsch and Journel, 1992) used in geostatistics is employed herein to

simulate spatially correlated asperity contacts in natural fractures.

IIL2.1.l(a) Indicator simulation

Indicator simulation is a linear regression algorithm which sequentially updates

the estimation of a spatially random variable with conditioning information collected

from a suitable neighborhood (Deutsch and Journel, 1992). The size of neighborhood will

be discussed at the end of 111.2.1.l(c). Indicator simulation is ideally suitable for

simulating binary variables, for example, asperity contacts and void space in a fracture

plane.

A binary, spatially random variable Z(u), such as the aperture field in natural

fractures, can be defined in terms of an indicator function I(u). Hereafter in this chapter, a

bold capital letter refers to a spatially random variable, while a italic capital letter is its

realization. The indicator fi.mction is a spatially random function (SRF), and can be

defined as
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1, probability =p(u) forues
I(u) =

O, probability= 1-p(u) foru@s
,s = asperity contacts (3.2)

where u is the spatial coordinate. Lkewise, we can define another indicator variable

(I’(u)) for the counterpart of the binary variable, e.g., void space in a fracture plane. That

is,

{

1, probability= 1- p(u) for uc s’
I’(u) = , s’= void space

O, probability= p(u) for uz s’

The expectation of an indicator variable can be derived as

EII(u)]= 1“p(U) +0 “(1- p(U)) =p(U)

i.e., the expected value of an indicator variable is its probability of occurrence

the expected value of I’(u) is l-p(u). The variance of an indicator variable is

Var[I(u)]=E[(I(u) -E[I(u)])2]=E[( I(u)) 2]- E[I(u)]2 = p(u) .(1- P(U))

Similarly, variance of the counterpart indicator variable (I’(u)) is also p(u)(l-

covariance of two indicator random variables separated by a distd.nceh is

. .

(3.3)

(3.4)

Similarly,

(3.5)

p(u)). The

COVII(U), I(u + h)]= EII(u) “I(u+ h)]– p(U) “p(U+ h)

=1. 1. Prob{l(u) = 1,I(u+h) = 1}+ 1.0- Prob{l(u) = 1, I(u+h) = O}

+0. 1. Prob{l(u) = O,1(u+ h) = 1}+0.0. Prob{l(u) = O,1(u+ h) = O} (3.6)

– p(U). p(U+ h)

= Prob{l(u) = 1, I(u+ h) = 1}– p(u). p(u + h)

An SRF is stationary if its cumulative distribution fimction (CDF) is invariant to
-.

spatial translation. Therefore, the mean and variance for a stationary SRF are constants,
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and the covariance depends only on the magnitude of the separation distance (Ihlor h). If

the indicator random variable I(u) is a stationary SRF, its mean, variance and covari,ance

can be rewritten as

E [I(u)]= p

Var[I(u) ]= p(l–p) (3.7)

Cov [I(u), I(u+h) ]= Prob{l(u) = 1, l(u+h) = 1}- p’ = C1(h)

The non-centered covariance of I(u) and I(u+h), i.e., EII(u)”I(u+h)], can then be rewritten

as

EII(u). I(u+h)] = Prob{I(u) = 1,I(u+h) = 1}

= Prob{l(u) = 1II(u+ h) = 1}.Prob{l(u+ h) = 1} (3.8)

= Prob{l(u) = 1II(u+ h) = 1}”p

where Prob {1(u)=1I I(u+h)= 1} is the conditional probability of the indicator random

variable at u given that the indicator random variable at u+h is 1. Equation (3.8) is the

basis for indicator simulation. A suitable regression algorithm, e.g., kriging, can be used

to estimate and update the conditional probability of Eq(3.8). Information for the update

processes is provided by the available data collected within the neighborhood of the node

being estimated.

111.2.l.l(b) Kriging

Kriging is a linear regression algorithm which estimates an SRF at a particular

position from the information” collected in its neighborhood. It is also called the “best

linear unbiased estimator” (BLUE) (Isaaks and Srivastava, 1989). The term “best” is used
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because its variance of error is minimize~ it is “linear” because its estimates are

:,

weighted linear combinations of existing measurements; it is “unbiased” because its mean Ih

residual (mean error) is zero. Derivations in this section follow the line given in most

textbooks of geostatistics, such as Isaaks and Srivastava (1989).
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Figure III.1 Sketch of a kriging system with three reference nodes.

1,

For example, in Figure JII.1, we want to estimate the variable (Z) at an unsampled
:,.,

location, Uo.In kriging, this estimate is written as a weighted linear combination of the

measurements from ul to u3,i.e.,

(3.9)

,,,,

where Z; (UO) is the estimate of Z at Uo, Do is a correction term reflecting the {. I
f

measurement bias, pi are the weights, and Z(ui) are the measurements at location Ui.The
;.

~:
subscript K refers to different weighting methods, either simple kriging (SK) or ordinary , ,.
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kriging (OK). The difference between simple kriging and ordinay kriging will be the sum

of the weights, see the end of this section. Generally, there will be an arbitrary number of

measurements such that the upper limit of the summation in Eq(3.9) can be replaced by

an arbitrary integer n. Then, a more general equation is

n

Z;(uo)=po+
x

/3i(u)z(ui) (3.10)
isl

which simply means that the estimation of Z at location U. is a weighted linear

combination of n measurements from Ul, U2,. . .. to u., plus an arbitrary constant PO.The

estimation error (Y) of Eq(3. 10) is defined as

(3.11)

where Z(uo) is the true value of Z(u) at Uo. To ensure that kriging is an unbiased

estimator, the expectation of Y must be zero. From Eq(3. 11) it yields

E[Y]=E[Z~)–~K(~)] = m(~)– & –~~i(u)m(~) = O (3.12)

where m(ui) = E{Z(u)}is

constant POin Eq(3. 10) is

,=1

the location dependent mean values of Z at Ui. Therefore, the

& ‘m(~)-~~i(u)m(ui)
i=l

Substituting Eq(3. 13) into Eq(3. 10) yields

28
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z~(u~)=m(uo) + ~~i(u)[z(ui)-m(ui)]
,=1

(3.14)

which is the estimation equation used in kriging. The estimation error, Y, can then be

rewritten as

where so(u) = 1, arid ai(u) = – pi for i = 1, . . .. n. Then, the variance of Y can be derived

as

n n

var[Y]=
m

.)ai(U)aj (U)cij (u, Yu,
i=o j=o

(3.16)

where c~(ui, UJ is the covariance of r~dom variables Z(ui) and Z(Uj). TO minimize

Var[Yl, the following system of equations has to be satisfied

avar[Y]

[
= 2 ~aj(u)cjj(ui,uj) 1{=2 ao(uo)cjo(uj,”o)+~aj(u)c~(uj,uj)

aa, j=o j=l }

{ }

(3.17)

= 2 cio(ui$uo)-~/3j(u) c~(ui>uj) ‘0
j=l

The minimum of Var(Y) occurs when

n

zpj(u)cti(ui,u j)=cio(ui,u o),i=l,...,n (3.18)
j=l

which is called the normal system of equations. For a stationary SRF, the means, m(ui),

can be written as a constant m. Stationarity is usually the basic assumption of simple
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kriging. Therefore, the estimation function, the normal system of equations, and the

estimation variance of simple kriging are written as

n

z

n

z [z

n

Z:K(UO)=T?Z+ py(u)[z(ui) -m]= By(u)z(ui) + 1– /?’K(u) m (3 19)i .

S:K

i= 1 i=l L icl

n

zPfl(”)cti(ui‘“j) =ci~(ui ‘U,) > i=l,-..,n
j=l

[[=0iii11=E[(Z(UO)- Z&(UO)~ ]= E ~a (Z (U ) -m)

n n

Zz
n

= aiajCV(Ui – Uj) = C,, –
z

ppcio(ui -Uo)
i=, j=(l i=,

where a. =1, andai=– ~~ fori= 1, . . ..n.

(3.20)

(3.21)

The difference in the bracket of the last term in Eq(3. 19) is zero if the sum of

kriging weights is one. This is one of the requirements for an ordinary kriging system.

Thus, the estimation Z& (uO)can be simplified as a linear combination of the n

measurements, without the need of knowing the constant mean value m. This constraint

can be solved by introducing a Lagrangian multiplier II(u), i.e.,

n

Z;K(UO) =
z

py(u)z(ui)
icl

i

n

x
~~(”)c~(ui ‘Uj) - ‘(u)= Ci~(ui ‘U,)

j=l
n

z
Py(u)=l ,i=l,...,n

j=l

30
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[[,=oi i i J-- E[(Z(UO)-Z~.(Uo)~ ]= E ~a (Z (U ) -m)S;K –

whereao = 1, ~dai=– ~~fori=l,..., n.

IIL2.1.l(c) Indicator kriging ,,

Considering the binary process of asperity contacts versus void space in a fracture
}

plane, the appropriate indicator random variable can be defined as Eq(3.2). To simulate

such binary process in space, it is equivalent to asking the following question what is the

conditional probability that the indicator variable at location u is 1 given that the indicator ‘,,.

variable at location u+h is also 1. This is exactly the conditional probability given by

Eq(3.8). Thus, indicator Icriging is aimed at providing an unbiased estimate of the

conditional probability, but not at estimating the indicator variable itself at location u

(Deutsch and Journel, 1992). For convenience, the conditional probability estimated by

indicator kriging is written as [i(u)]”. This conditional probability is equivalent to its

conditional expectation because

~(u)]” = Prob{l(u) = ll~(u+h) = 1}= Prob{l(u) = ll(n)~ = E{I(u) l(n)~ (3.25)

where (n) represents the neighborhood of location u. The size of neighborhood grows as

more data, either horn measurements or recent estimations, become available. The value

of [i(u)]* can be estimated either by simple kriging or ordinary Iuiging. From the

,,
31

f



properties of indicator function, i.e., Eq(3.7), it is known that the mean of an indicator

function is its probability of occurrence. Since this probability is assigned pri~r to

indicator simulation, it is appealing to use simple kriging instead of ordinary kriging.

Therefore, [i(u)]” can be estimated by

(3.26)

The normal equations are

n

zP~(”)c~(uj -uj)=c~(uj-U~) > i = l,.”.,n (3.27)

jzl

where I(ui) are realizations of indicator variable in the neighborhood (n), and C1 (h) =

Cov {I(u), 1(u i- h)} is the indicator covariance. IfI(u) is stationary, C1(h) is equivalent to

Indicator simulation starts from a random location, searches the neighborhood of

that location to find enough conditioning points for performing kriging, and then updates

the conditional probability. This updated conditional probability is compared with a

randomly drawn probability (p) to determine the value of the indicator variable at that

location. If the random probability is smaller than or equal to p, the indicator variable is

set to 1; otherwise it is set to O.Subsequently, another random path is taken and the above

procedures are repeated. Note that the neighborhood (n) for subsequent updates consists .

of the original data and the previously simulated indicator values. Thus, even if the
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indicator simulation starts initially from a null field (no conditioning data at all), it

becomes a conditional simulation as long as the neighborhood contains information that

was previously simulated. Defining the size of neighborhood for the indicator simulation

is equivalent to speci@ing the search method. An efficient way of searching is not to

search all the nodes on the grid but to search a limited number of nodes that are close

enough to the node being estimated. The “closeness” is evaluated by the variogram

distance (or lag, see section IIC.2.2),i.e., a node is close to the estimation node if their

relative distance is smaller than the variogram distance (Deutsch and Journel, 1992).

IIL2.1.2 Spatially random asperity contacts

Boolean simulation is a process

according to a desired probability law

that distributes geometric objects in space

(Deutsch and Journel, 1992). The Boolean

algorithm in GSLIB randomly generates

specified radii, orientations and aspect ratios.

two-dimensional ellipses or circles with

Boolean simulation starts from a random point in space which is the centroid of a

geometric object that is going to be formed. The geometric object, either isotropic (a

circle) or anisotropic (an ellipse), is constructed by adding “mass” around the centroid

‘,,.

,.

until this object satisfies the randomly selected radius, orientation, and anisotropy ratio.

Subsequently, another random centroid is chosen and the above procedure is repeated

until the specified total fraction of asperity contacts is reached.

In order to generate asperity contacts and simulate the gradual change of aperture

away from asperity contacts towards larger aperture between asperities, the original log-
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normal sample is shifted to the left by a constant CC,i.e., ~‘ = max(~ – <C,O), such that

additional asperity contacts are produced. Figure 111.2shows that if& is 0.63, additional

15% asperity contacts are produced. These additional asperity contacts are un-conditioned

data, which may be free to move while being perturbed in a SA system.

0.4

[ , additional asperity contacts

Figure IIL2 A log-normal distribution with mean (mho = 1.00 and standard deviation
(sh~) = 1.50. The permeability cutoff, ~., in this plot is 0.63 such that additional 15%
asperity contacts (the shaded

IIL2.2 Objective fnnction

area) are produced.

An objective function, or energj fimction, is used to transform the SA system into

an optimization model. It is a measure of the difference of some spatial features between

the desired distribution and the realization. In this study, the objective function is defined

as the normtilzed squared difference of the semi-variogram between the realization and

an expected distribution, i.e.,

o=~ [2nk’(h,)-&.,xti(hr)]2
Oititid ?’:,wti(L)

d 1

(3.28)
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where y ‘(h~)is the semi-variogram at separation distance h~ of the permeability modifier

field (~), i.e.,

N(h )

~(h,) = & ~
x

[Z(U,)-Z(Ui +hr)]’ =E{[Z(u)-Z(u+h,)]2} (3.29)
r i=l

yexpected(~r) is the expected Sefi-variogram of g, Oinitid is the objective finction of the

initial field, and nl~~is the total number of lags for y(h~). The lag hr has to be defined in

such a way that the same data pair will not be calculated twice. This definition is

illustrated in Figure ITI.3.The squared difference in Eq(3.28), i.e., ~ (hr) –y~XPti (hr)]’,

is normalized by ~exwti(hr) to give more weight to small values of ~ex~t~(hr). Note that

the term within the outer bracket in Eq(3.28) is fi.uther weighted by a factor l/Oimitid.This

is for mathematical convenience such that the objection fimction (0) always starts from 1.

The semi-variogram in Eq(3.28) of the numerical system can be calculated using

the following equation

N(h )

~k \ (Ui) -g(uj)]z

y’(h,) = ~ ~x=l
= 1 A(h,).—

xl

2 N(h,)
#of Ui–uj I=h,)

(3.30)

Lj

..
where N(h,) are the total number of ~ pairs at lag h,, and A(h,) is-the sum of squ~e.d

differences of N(h,) pairs of ~’s. Recall that, in Chapter I, the spatial correlation of the

void space as well as asperity contacts can be approximated by an exponential function. -
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Therefore, it is assumed that the ~ field has an exponential correlation fimction.

Therefore, yex~t~(h,) in Eq(3.28) can be written as

where C,the nugget, is assumed to be zero in this study, $ is the variance of the ~ field,

A is the integral scale (correlation length) in the principal direction, ~ is the range

parameter, and h, is the magnitude of the separation distance hr. Definitions of X and ~

can be found in Appendix A. The physical meaning of range is that, at this separation

distance, the vahe of semi-variogram is 95% of $. Or, equivalently, the value of the

correlation function is 5% of s;. Thus, the random field is practically un-correlated

long as the separation distance is greater than the range (see Appen&x A for details).

as

In

addition, the range is three times the correlation length for exponential models. The

nugget effect is caused by small-scale variability and/or sampling error (Isaaks and

Srivastava, 1989), which is explained in Appendix B.

~. For anisotropicEquation (3.3 1) is an isotropic semi-variogr

l-exp[-~m

semi-variograms,

(3.32)

where the subscripts 1 and 2 denote the longitudinal and transverse axes, and hl, h2 as

well

36



1(o, )

t
(o 2)

3
(o, )

(o,

!,2)

/

/
1,1)

+

-

~1 ,0)

\

\
\(l 11-

b

(1,-2)

/
2,2)

/’ (2,1)

a

(2,0)

\

(2,-1)

\

(2,-2)

(3,0)

-

,

Ah,x
-> () always

Ax
Ahrz Ahrx
- # Owhen ->0

AZ’ Ax

Ah,z Ah==o
-> Owhen -

AZ Ax

.

;>
, ,“.

Ah
&=horizontal offse I
Ahr,z
- = vertical offset

.,{.

,

Figure 111.3Definition of lag offsets. Lag offsets are assigned such that semi-variogram
for a given pair will not be calculated twice. Fourteen lags are illustrated in this plot.
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as Ll, kz are the separation distance and correlation lengths on the Iongitudinid and

transverse axes, respectively. Anisotropy such as in Eq(3.32) is called the “geometric

anisotropy” (Isaaks and Srivastava, 1989).

Calculating y ‘(h,) in Eq(3.28) may be a time-consuming task if the grid size is

huge. To reduce the computational effort, Deutsch and Cockerham (1994) proposed an

efilcient method of updating y ‘(h,).

y ‘(h,) needs not to be recalculated

Since only one random pair is perturbed

at each perturbation but can be updated

at a time,

based on

previous information. This is illustrated in Figure 111.4.Consider the random pair, ~(ul)

and ~(u2). For a particular lag hr, the neighboring data points contributing to updating

y ‘(h,) are shown as solid circles; whereas data points contributing nothing to updating

y ‘(h,) are marked with hollow circles. Therefore, y ‘(h,) can be updated by the following

equation

I
2

A(hl) + ~[ -(c(%) -((%))2 + (((%) -w,))’]
y’(h,)= 1 i=]

2 1(3.33)
2N(h1)

+ ~[ ‘(4_(”2)-g(u2i)) 2+(<(u*)-4(u2i))21

i+
. .

where A(hr) is the sum of squared difference of ~ pairs from the previous perturbation.

111.2.3Perturbation mechanism

Starting from the initial field, SA selects a random pair of data points before each

perturbation. Each data point in this pair has to be un-conditioned data. The system is

then perturbed by comparing the system energy before and after swapping the locations of
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Figure 111.4Update of simulated semi-variogram in a small grid where (ul, U2) is the
location of the random pair, and WI and W2 are separated from u by lag vectors +h, and
–h,, respectively.
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the two data points. If the system energy decreases after a perturbation, the two data

points will exchange their locations. Otherwise, the system remains unchanged. This

process is repeated until the system reaches the state with the minimum energy (Oti.); or

stopped when the number of perturbations is beyond an upper limit. Other perturbation

mechanisms may also be used. For example, one possible mechanism is to randomly

select a data point and replace its value by a new one drawn from a specific probability

population (Datta-Gupt& et al., 1995).

The critical drawback of the above perturbation mechanisms is that the minimum

energy Oti~ at convergence maybe a local minimum but not global. This is because such

perturbation mechanisms always favor the paths with decreasing energy, and the paths

with increasing energy are unconditionally rejected. To correct this shortcoming,

Metropolis et al. (1953) proposed an algorithm such that an unfavorable perturbation can

also be accepted with a certain probability. By conditionally accepting an unfavorable

perturbation, the system is able to jump out of a local minimum. Then, the optimal system

energy at convergence can be close to the global minimum (Press et al., 1986). The

perturbation mechanism of unconditionally accepting a

conditionally accepting an

“Metropolis algorithm”.

From the theories of

unfavorable perturbation has

thermodynamics and statistical

favored perturbation

been referred to as

but

the

physics, the probability of

changing the system energy from El to E2 can be described by the Boltzmann distribution

(Metropolis et al., 1953), i.e.,

.
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“=exp[-(:iE’)l=exp(3.34)

where kB is the Boltzmann constant, and T is the temperature. The probability in Eq

(3.34) is modified in SA to represent the probability of accepting an unfavorable

perturbation. By letting kB= 1, AE = AO (change of objective function before and after a

perturbation), and T = temperature parameter in SA, the acceptance probability in SA is

approximated as

[1–AO
‘accept= exp —

T
(3.35)

IIL2.3.1 Modified Metropolis algorithm

As mentioned earlier in Section 111.1,a realistic representation of natural fractures

must model the gradual change from zero aperture at asperity contacts toward larger

apertures between asperities. However, preliminary tests of the Metropolis algorithm

showed that it may not be adequate to achieve that goal because it is not “sensitive

enough” to simulating “simply comected” (in the topological sense) asperity contacts.

Thus, a modified Metropolis algorithm was developed as a part of this study.
.-

The concept of “neighborhood” was introduced in order to modify the Metropolis

algorithm. The neighborhood

block that the distance from

of an asperity contact is defined

the center of this grid block to

as an un-conditioned grid ,’
. . ,.

the center of the asperity

contact is smaller than or equal to 1 grid block units. For example, the 28 gray blocks

shown in Fig. 111.5are the neighborhood of the asperity contact located at (0,0) with 1= 3.
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The purpose of introducing neighborhood to asperity contacts is to treat the regions near

and far from asperity contacts separately, and to emphasize particular features of the

region near asperity contacts.

m

U
,..,....,..,::*::.....

Figure 111.5Schematic definition of the neighborhood illustrated for the asperity contact.
at (0,0) with 1= 3.

The Metropolis algorithm is then modified by taking into account the relative

locations of the grid blocks in a random pair. If the objective function decreases after a

perturbation, this random pair is accepted unconditionally. However, the locations of the

random pairs become important if the objective fimction increases after a perturbation. If

both of the grid blocks are in some neighborhoods, or none of them in any neighborhood,

this pair is still evaluated probabilistically by Eq(3.35); otherwise, this pair is accepted

only if the grid block located in a neighborhood has a larger value of ~ than the grid block
.

that is not in zuiyneighborhood. In other words, it is favored to introduce grid blocks with

small values of ~ into neighborhoods of asperity contacts. Figure IIt.6 illustrates the idea

of the modified Metropolis algorithm. Also, see Appendix C for the source code of the
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modified Metropolis algorithm. Note that the modified Metropolis algorithm reduces to

the Metropolis algorithm if the size of neighborhood (Z)is zero.

❑

I(J,I

conditioning
asperity contacts w:~::$:~~fi,,=ex,(-.o~

neighborhood
El+-Cl

O decreases, use Metropolis algorithm

(un-conditionec$ % O increases, accept only if c(ul) < C&)

Figure DI.6 Concepts of the modified Metropolis algorithm.

IIL2.4 Annealing schedule

While annealing a material, the temperature in the thermodynamic system is

lowered gradually until the system reaches the state with the minimum thermal energy. To

numerically simulate the thermodynamic processes of annealing, it is then necessary to

define, in the numerical system, a controlling parameter which acts like the real

temperature in the thermodynamic system. In the SA algorithm, the controlling parameter

is also called “temperature”. Thus, the annealing schedule is the spectilcation of the

timing and magnitude of the temperature reduction in the numerical system.
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Since the temperature in a real thermodynamic system is lowered continuously, it .

reflects that all particles in the system experience the same temperature as they .COO1

down. In SA systems, however, only one random pair is chosen at each perturbation. To

model the simultaneous temperature reduction analogous to a thermodynamic system, the

temperature parameter in SA systems has to be lowered piecewise but not continuously.

Numerically, this can be done by lowering the temperature

following two conditions is satisfied: (1) the number of favored

when either one of the

perturbations exceeds the

upper limit, ~~pt; or (2) the total number of perturbations (either favored or rejected

perturbation) after the previous perturbation at which the temperature is lowered exceeds

the maximum allowable value, K~X.If one of the above two conditions is satisfied, the

temperature will be lowered by a factor T (z < 1).

A suitable annealing schedule should be chosen such that To is as large as

possible, and z is as small as possible. .However, such annealing schedule is at the

expense of large amount of computations, especially when the grid is finely discretized.

Therefore, a compromise between good annealing results and a reasonable computational

effort is necessary. Based on our experience, the following annealing schedule is

satisfactory, i.e., To= 1.0, %= 0.9, Km== 50 nxw,G-pt = 5 n.p, q = 3, Otin = 10-7,which

are initial temperature, temperature reduction factor, maximum number of allowable

perturbations between two consecutive reductions of temperature, maximum number of

accepted perturbations, the maximum allowable ratio of the number of perturbations to

K~U when the objective function continues to increase after each perturbation, and the
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minimum objective function, respectively. The number nXwis the total number of grid

blocks.

111.3 Effects of spatial discretization on characterization of random fields

Jn general, spatial discretization of the numerical grid should be as fine as possible

to capture the detailed spatial variability of the random field. However, fine discretization

may often make burdensome the computation loads of numerical characterization and

flow simulation. Moreover, preferential flow is commonly observed in unsaturated flow

in fractured rocks. This suggests that some areas in the fracture will not even be contacted

by the aqueous phase due to flow bypassing. Therefore, from the computational point of

view, using a fine discretization may not be as cost-effective for characterization purposes

as for flow modelings. Thus, a ‘reasonable” spatial discretization should be adopted. The

value of this spatial discretization should be chosen such that basic elements of spatial

variability of permeability are preserved, and the resulting flow simulation is physically

meaningful as well as representative of field conditions. In this study, the size of the flow

domain is 20 m x 20 m x 1 cm. Considering computational capacity and efficiency, a

suitable spatial discretization was then chosen as A = 0.2 m, i.e.; totally 10,000 grid

blocks. For comparison purposes in this section, a finer discretization of A = 0.1 m is also

considered.

One of the factors controlling the dependence of the accuracy of the generated

random field on spatial discretization (A) is the,correlation length (k) of the random field.

A dimensionless ratio of spatial discretization to correlation length, A/k, is commonly
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used to analyze the relationship between characterization accuracy and spatial

discretization. A theoretical study by Li and Der Kiureghian (1993) suggested mat a

simulated random field has negligible error with respect to its true random field if this

ratio is smaller than 0.5, i.e., A/l< 0.5. Detailed analyses of the relationship between the

spatial discretization and the accuracy of characterization is not pursued in this study.

Instead, a sensitivity analysis is performed in this section to examine the impact of spatial

discretization on characterization accuracy. Another set of sensitivity analysis on the

effect of spatial discretization on seepage patterns is latter investigated in Chapter V.

Two realizations of conditioning asperity contacts that are spatially random and

spatially correlated are shown in Figures 111.7(a)and IE.7(b), respectively. Radius (ro) and

correlation length of asperity contacts (k) are both 0.4m. Based on these asperity

contacts, Figure BI.8 shows corresponding realizations of permeability fields with

different spatial discretizations and correlation len@hs (k~)of permeability. Note that the

same asperity contacts, whether spatially random or spatially correlated, are used both in

a coarse grid (A = 0.2 m) and a fine grid (A = 0.1 m). Two correlation lengths of

permeability are considered, ~k = 0.4 m and 0.8 m. Thus, the ratio A/~k is 0.25 or ().5,

both satisfying the requirement of A& S 0.5. Modified Metropolis algorithm was used

for annealing each of the permeability fields in Figure 111.8.In addition, the correlation

was given by an isotropic exponential semi-variogram, Eq(3.3 1).

It is expected that certain spatial features of the permeability field may become

apparent as the ratio A/& is decreased. For permeability fields with spatially random

46



o .,ll!, !,,,,,,,,,,,,,,,,,,,,,,,,=,,,,,,,,,,,, ,,,,

-2~
■

%:
E

‘2
1,, ,,1, ,,,1, ,,,1,-,1 ~,,

Distance (m)

(a)isotropic,spatially random asperity contacts

With radius r.= 0.4m

,$

I

,.

,.

>,
‘,

i’,‘
f ‘
,

i’,

i

i

1
,,

i ,“,

:.

:?

,,

i

.,

,,
t.

[,,
;.

{,

1

i
i!,.
;’
,’

.,,

~
.—— --., ,, , .. ,,,...,?,.?,.!, ,-,-,, ,, ...... ..... ,,, ,..~..,......... ..,, ,., ... .. .. ... . ... . .. ,. \......... . ——.

Distance (m)

(b)isotropic, spatially correlated asperity contacts
with A.. = 0.4rn

Figure 111.7Two realizations of spatially random and spatially
correlated asperity contacts in a grid discretized with A = 0.2m.
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Figure 111.8Permeability fields used for the sensitivity analysis. Each permeability field
is annealed with the modified Metropolis algorithm in w~ch realizations (a) to (c) are
conditioned on spatially random asperity contacts (Figure 111.7(a)),and realizations (d)
to (f) on spatially correlated asperity contacts (Figure 111.7(b)).The correlation structure
for each realization is an isotropic exponential semi-variogram with nugget = O,sill =
190 (for realizations (a) to (c)) or 110 (for realizations (d) to (f)), and correlation lengths
(~) = 0.4m or 0.8m.
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asperity contacts, Figures lJI.8(a) and IU.8(b) show that the clustering effect around

asperity contacts becomes more obvious as the ratio A/& is decreased Ilom 0.5 to 0.25.

Accordingly, flow channeling is expected to be more prominent in Figure 111.8(b)than in

1’

Figure DI.8(a). Comparisons between Figures 111.8(d)and 111.8(e),however, demonstrate I

that the intrinsic variability of a random field with spatially correlated asperity contacts is
,,

nearly preserved as long as the ratio A/~k is smrdler than 0.5, though finer resolution of

tortuosity is observed in a fine grid, Figure 111.8(e).

As stated earlier, it is not practical to further refine the grid. Thus, the other way

of looking at the impact of the ratio A/& on characterization (and/or flow simulation) is

to fix the spatial discretization at A = 0.2 m but increase the correlation length of

permeability. Figures ILI.8(c) and 111.8(f)demonstrate this change by increasing & from

0.4 m to 0.8 m. For spatially correlated asperity contacts, Figures 111.8(d)and 111.8(f)show

that heterogeneities in these two realizations with different ratios of A/~kare qu~ltatively

the same. However, permeability heterogeneity for random fields with spatially random

asperity contacts varies with the ratio A/&, see Figures 111.8(a)and 111.8(c).

Combining the _above observations concludes that fracture heterogeneity is

virtually insensitive to the ratio A/~k for permeability fields with spatially correlated

asperity contacts, as long as the ratio A&< 0.5. For permeability fields with spatially

random asperity contacts, permeability heterogeneity is sensitive to the ratio A/kk. As far

as the accuracy of characterization is considered, a finer grid may be needed while

considering permeability field with spatially random asperity contacts.

i,
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111.4Examples of simulated random fields

To demonstrate the effectiveness of the modified Metropolis algorithm, Figure

111.9 shows four realizations of spatially random as well as spatially correlated

conditioning asperity contacts, which are either isotropic or anisotropic. Corresponding

initial fields are shown in Figure III.10. Note that the un-conditioned asperity contacts in

Figure III.10 were drawn from a log-normal distribution with mh( = 1.0 and sh~ = 1.5.

Figures III.1l(c) and (d) show two permeability fields annealed with the

Metropolis and the modified Metropolis algorithms, respectively. The spatial structure is

an a.nisotropic exponential semi-variogram with nugget = 0.0, sill = 120, and correlation

lengths (X~)= 1.6 m and 0.2 m in the major and minor axes, respectively. Compared with

permeability fields annealed with the Metropolis algorithm, perineab~lity fields annealed

with the modified Metropolis algorithm have a stronger tendency to draw un-conditioned

asperity contacts and/or grid blocks with smaller values of ~ into the neighborhoods of

asperity contacts. This tendency is independent of the spatially correlation of asperity

contacts. In addition, the tendency may often be obtained at the expense of a larger

number of perturbations, compare Figures III.1l(a) and III.1l(b). Thus, Figure III.1l(d)

shows a more significant clustering effect around asperity contacts than Figure Ill. 1l(c).

.Moreover, these two realizations can be quantitatively compared by defining the average

permeability in the neighborhood as follows

50
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where Nb is the total number of grid blocks that are located in the entire neighborhood of

all asperity contacts. The average permeability is significantly reduced from 6.7 x 10-9m2

in Figures III.1l(c) to 5.4 x 10-9m2 in Figure III.11(d). Thus, this provides quantitative

confirmation that the modified Metropolis algorithm is better suited to our problem than

the Metropolis algorithm.

Figures III.1l(a) and 111.1l(b) show the change of objective function with respect

to the number of perturbation, corresponding to permeability fields annealed with the

Metropolis and modified Metropolis algorithm, respectively. The curve in Figure 111.ll(a)

shows a monotonic decreasing trend. However, the curve in Figure III.1l(b) shows

significant fluctuation before convergence. Even if the Metropolis algorithm considered

the possibility of taking an unfavorable path while perturbing the random field, Figure

III.1l(a) suggests that it still tends to get trapped in a local minimum. The fluctuating

curve in Figure III.1l(b) implies that permeability fields annealed with the modified

Metropolis algorithm is more likely to reach the global minimum energy. Although

realizations in Figure III.1l(c) and III.1l(d) reveal distinctive clustering effects, the semi-

variogram at the end of SA, Figure 111.1l(e) and III.11(f), both fit the expected correlation

structure. Figure III.12 shows permeability fields annealed with the modified Metropolis

algorithm, corresponding to initial fields in Fig&e III.10. Corresponding plots of change

of objective function and semi-variogram are shown in Figure III.13. Again these plots

show that the modified Metropolis algorithm is able to produce significant clustering

effect around conditioning asperity contacts as well as perturb the permeability field to

the desired spatial correlation.

..

!
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Figure 111.9Examples of spatially random (a and b) and spatially correlated (c and d)
asperity contacts. The correlation function of asperity contacts for realizations (c) and
(d) are two exponential semi-variograms with nugget= O,sill = 0.1875, but different
correlation scales (Xo)
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Figure III. 10 Initial permeability fields corresponding to each of the conditioning
asperity contacts shown in Figure 111.9.A log-normal distribution with mean and
standard deviation of ln~ as 1.0 and 1.5, respectively, was used to generate the
un-conditioned data.
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Figure 111.12Annealed permeability fields corresponding to the hiitial fields shown in
Figure III.1O Each permeability field was annealed with the modiiled Metropolis
algorithm. The correlation structure was an isotropic exponential semi-variogram with
nugget = O,correlation length (~) = 0.4m, and sill= 180.0 for realizations a and b,
and 120.0 for realizations c and d. Spatial discretization (A) = 0.2m.
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Chapter IV. Flow simulation

IV.1 Numerical simulator

A general-purpose flow simulator, TOUGH2 (Pruess, 1991), is used in this study.

TOUGH2 is a numerical simulation program for nonisothermal flow of multicomponent,

multiphase fluids in porous and fractured media. The acronym ‘TOUGH” stands for

“~ransport Qf unsaturated @oundwater- and ~eat”. TOUGH2 is able to simulate a

variety of flow problems by substituting suitable fluid property modules into the

modularized architecture. Each flow module specifies the hydrological/therms.I properties

of fluids under consideration, which is also referred to as “equation-of-state” or EOS

module. Thus, TOUGH2 is applicable to a wide range of problems including geothermal

reservoir engineering (O’Sullivan, et al., 1998), nuclear waste isolation (Senger, et al.,

1998), environmental contamination (Webb, et al., 1998), unsaturated zone hydrology

(Doughty, 1998), and mining engineering (XUet al., 1998)

IV.2 Governing equation

The problem considered in this study is strictly a two-phase (water and air) flow

under partially saturated,

proper assumptions and

isothermal conditions in naturally fractured rocks. By making

approximations (see Chapter 1.2) this problem reduces to a

single-phase flow problem in equivalent 2-D heterogeneous porous media. Furthermore,

fluid properties such as density as well as viscosity can be treated as constants under

isothermal conditions. Based on these assumptions and approximations, the equation-of
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state flow module reduces to that of solving the mass balance equation (the Richards’

equation) of the aqueous phase in partially saturated porous media.

In additioh to the neglect of gas phase pressure, several assumptions are implied

in Richards’ equation (Philip, 1969). First, the continuum approach must be valid such “

that hydrologic parameters can be represented as values that are averaged over a

representative elemental volume (REV), a volume that is “large” enough compared to an

individual pore but is “small” relative to some macroscale. Second, Darcy’s law must

hold. That is, inertia effects must be negligible and fluid properties are Newtonian. Third,

the flow is isothermal. Once therrd effects become significant, vapor difision may turn

out to be an important mechanism. For non-isothermal systems, an additional balance

equation of heat must be solved along with the liquid phase balance equation. Thus, the “

Richard’s equation can be written in a multi-phase form as follows

[ 1$(4FPI)=V” k;plv(p, +P,gz) (4.1)

where (#)is porosity, S1 is liquid saturation, pl is liquid density, k is the absolute

permeability, krl is the liquid phase relative permeability, pl is liquid viscosity, P1is the

liquid phase pressure, g is gravity, and z is the elevation. Liquid saturation (Sl) is defined

as

VI e,
s, .K=T

in which ef is the volumetric moisture content of the liquid phase, i.e.,
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b

, (4.3)

where V1 is the volume of the liquid phase and vb is the bulk volume of the medum.

Equation (4. 1) is a volume-averaged equation though the scale at which these average

values are taken is not explicitly recognized. It is, however, assumed that Eq (4. 1) and its

implied approximations, such as applicability of relative permeability and capillary

pressure, are valid for the equivalent porous media on a scale of 0.1 – 1 m (Pruess, 1998).

Recall that fractured media are similar to porous media in terms of relative

permeability and capillary pressure (Persoff and Pruess, 1995). If hysteresis effects, are

neglected, relative permeability as well as capillary pressure can be expressed in terms of

a single-valued function of liquid saturation only. Accordingly, customary formulas of

relative permeability and capillmy pressure for porous media, such as van Genuchten’s

equations, can be used in Eq (4.1), which me ,

kr,=@+b*l’’o)”~

‘.ap=-(ff)(~”]’’o-l)’-o (4.4)

S*=(SJ -%)/(1 –%-)

where S1,is the residual saturation of the liquid phase, and S* is a scaled saturation such

that it is in the range [0, 1]. Parameters used in Eq (4.4) correspond to those for coarse

sands, i.e., co= 0.457,

permeability (k,ef) at

S1,= 0.15 for k,l and

10-9 m2. These two

0.0 for PMP,and ~ = 50

functions are illustrated
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Following the sign convention of P=P in Eq (4.4), the liquid phase pressure in Eq (4.1)

can then be written as Pl = P~=+ PHP,in which PgUis the constant gas phase pressure.

—C&
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Liqui~~atura%% (S,)
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Figure IV. 1 Relative permeability and capillary pressure from van Genuchten’s formulas,
with parameters chosen for coarse sands.

IV.3 Integral form of Richards’ equation

Richards’ equation is conventionally written as a differential form such as Eq

(4.1), in which a divergence operator is included. The shortcoming of using a differential

form of balance equations is that the expression of the divergence operator changes with

coordinate systems. However, the inherent physical quantity should be invariant to

coordinate systems. Therefore, an integral form of Eq (4.1) is preferred. This is the basic

idea of the integral finite difference scheme (Narasimhan and Witherspoon, 1976), which

is used throughout TOUGH2. Integral finite difference avoids any reference to a global
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system of coordinates, and offers the advantage of being applicable to regular or irregular

discretization in one, two, or three dimensions (Pruess, 1991).

Discretizing the flow domain into N elements, Eq (4.1) can be rewritten as the

following integral form

ilM(i)dv=JF(i)nw+Jq(i)d
v“ F“ v“

(4.5)

where Vn is the volume of element n in the discretized flow domain, M(Ois the mass of

component i in V~, F‘0 is the mass flux of component k across the element boundary l_’~

associated with a normal vector n, and q(Ois the mass sinklsource term of component i in

element n. Each term in Eq (4.5) can be tier decomposed as follows. M(o is the

accumulated mass of component i in all phases, i.e.,

(4.6)

where p is the total number of phases, Sp is the saturation of phase ~, X;) is the mass

fraction of component k present in phase P, and pp is the fluid density

flux F(’)is the sum of fluxes of component i from all phases, i.e.,
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where F~ is the total mass flux of phase ~, pp is the viscosity of phase /3,k is the intrinsic

permeability, k,~ is the relative permeability of phase ~, Pp is the pressure of phase ~, and

g is gravity. Note that Fp is the multiphase version of Darcy’s law.

Each integral in Eq (4.5) can be approximated by a product of element volume

(V.) and a volume-averaged variable. The volume integral of mass M(o can be

approximated as

(4.8)

where M!), @n,Sn,~, ~n,~, andX~\ are volume-averaged values of M(i), $, SB, pp,

and X;) within element n, respectively. Of course, Eq (4.8) is valid only if the

discretization is fine enough so that M$), ~, Sn,~, pup, andX~~ are unifo~y

distributed within element n. By the same token, the surface integral of interface mass

flux d] can be appro@nated as

The term F: in Eq (4.9) is the averaged interracial mass flux across the interface A.~

between element n and all its contacting elements m. This mass flux vector is illustrated

in Figure IV.2 as pointing from element m to element n. For simplicity, only one

contacting element is shown in Figure IV.2. In addition, the interracial mass flux Fn~ 1s‘“-(i) :

actually a summation of mass fluxes from various phases. Thus, F~~ is further
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decomposed as the last summation in Eq (4.9). From Eq (4.7), F# can be further

decomposed as

F:=-$x,)km[;)m,,[pfl::lm=P,,mgm)(4.10)

k
where knm, ~, and Pp,.~ are, respectively, the interracial permeability, mobility, and

Pp

density associated with the interface Am. The last integral in Eq (4.5) is simply

approximated as V~q~) in which q:) is the volume-averaged sinklsource.

Figure IV.2 Interracial mass flux F: across the interface A~mand associated parameters
in elements n and m.

Different weighting schemes are used in TOUGH2 for calculating interracial

parameters. Interracial permeability is harmonically weighted depending on distances L

and ~, i.e.,
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1knxk~(Ln+L~)

L~kn + Lnk~
if Ln#O and L~#O

(4’11)km =

I
km if Ln=O

k. if L~=O

Interracial density can be upstream weighted, i.e.,

pm= WMn XP. +WM. XP. (4.12)

where WM~ = 1 and WM~ = Oif the driving force is directed toward n; otherwise, WMn =

Oand WM~ = 1. Or it can be uniformly weighted, i.e.,

Pm =

0.5xpn+0.5xp~ if Ln #O and L~ #O

Pm =p~if L~=O (4.13)

I Pm =p, if L~=O

In order to obtain physically realistic results, interracial mobility must be upstream

weighted (Peaceman, 1977), i.e.,

[1k,
=wMnx~+wMmx~

7. % 1%
(4.14)

where WM~ and WM~ are defined above.

In summary, the integral form of Richards’ equation can be approximated as

(4.15)

64



.

Equation (4.15) is solved by the finite difference scheme. In order to obtain numerical
.

stability, time is discretized fully implicitly (Peaceman, 1977). Therefore, Eq (4.15) is

recast as

(4.16)

where j is the index of time stepping. The difference of the two terms to the left and to the

right of the equal sign is referred to as.““residual”. Therefore, solution of Eq (4.16) occurs

when the residuals are zero. Eq (4.16) can then be rearranged as

R~)Ij+’(@)=M~)lfi’(@)- M$)I@) ‘t
{zVn

}
‘mnF#’H*(@)+vnq$)’H’ ‘0 (4-17)

m

where R is the residual. For each volume element V~ there are NEQ equations.-For a flow

system with N grid blocks, Eq (4.17) thus represents a system of NEQ x N coupled, non-

linear and algebraic equations. The vector @in Eq (4.17) cont@s NEQ x N independent

primary variables which completely define the state of the flow system at time level tfi’.
. .

Expanding Eq (4.17) by its Taylor’s series to the frost order yields

(i)j+’(w+~d;y(%+1-%.)=0 (4.18)R:),j+l(@v+,)= Rn

u ~U=l

where u is the iteration index. Eq (4.18) can be solved by the iterative Newton-Raphson

method. Time step - in Eq ~(4.18) may be automatically adjusted, depending on the
.

condition of convergence during the iteration processes (Pruess, 1991). Usu$ly, Eq -
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(4.18) is written in the following form

- y!q (@.,”+l-@ui”)=R:)@’(@”)
u““=1

(4.19)

which is further simplified as

JA@ = R (4.20)

where J is the Jacobian matrix of the flow system (the partial derivatives of Rn with

respect to @i) and R is the residual vector consisting of NEW x NEL residuals. Other

features and flexibility of TOUGH2 code can be seen in detail in user’s guides for

TOUGH and TOUGH2 (Pruess, 1987, 1991).

111.4Verification of TOUGH2 - One-Dimensional Infiltration Model

An example of one-dimensional infiltration into a semi-infinite porous medium

was used to verify the TOUGH2 code. The movement of water in an one-dimensional,

semi-infinite unsaturated soil column can be described by the following form of the

Richards’ equation (Philip, 1955)

[1~E)_tl @ i3K.—
atax ax ax

where K is hydraulic conductivity, and D k the diffusivity that is defined as
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where h is the hydraulic head, which is defined as the sum of pressure head (P/pg) and

elevation head (z), i.e.,

h= ~+z (4.23)
Pg

The first term in (4.21) represents the capillary effect, and the second term gravity

effect. Equation (4.21) can be further simplified by neglecting gravity effect. This

assumption is valid either at earlier times of infiltration or for horizontal soil tubes. Thus

Eq (4.21) can be reduced to

()ae_ a ~ae
at ax z (4.24)

Assume that the soil column has an initial water content at (3.at x >0. In addition, water

is infiltrated into the soil surface at x = Oat a constant water content O.. These conditions

can be written as

e=en, t=o, x>o

0=00 ,x= o,t>o

and are illustrated in Figure IV.3.

,El=6~att=0

semi-infinite,homogeneousandisotropicmedium
hydraulicconductivity= K

waterdlfisivity = D

I

I *X

Figure IV.3 Schematic diagram of the one-dimensional infiltration problem.
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Based on similarity transformation (or Boltzmann transformation), Philip (1955)

developed an iterative analytical solution for Eq (4.24) subject to initial and boundary

conditions Eq (4.25). He transformed Eq (4.24) into an ordinary differential equation by

introducing a new variable, (p, that is a function of e only. The number of independent

variables in Eq (4.24) is then reduced to one if q is written as

Thus, Eq (4.24) can be recast as

q)de d

[)

&.—— =—
2 d(p d~ d(p

(4.26)

(4.27)

dq
Multiplying both sides of Eq (4.27) by ~ gives

Initial condition and boundary condition for Eq (4.28) can be deduced from Eq (4.25) as

Eq (4.29) implies that

dq
~+oase-+en

Integrating Eq (4.28) with respect to (3then yields
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which is subject to the condition

e=e, ,~=o

Philip’s method is to solve Eq (4.31) with the condition

IV.4 illustrates an ex~ple of the relationship between

(4.31)

(4.32)

specified in Eq (4.32). Figure

q and & Tfis relationship is

~.
I

,,

,: .

obtained by assuming that relative permeability and capillary pressure of soil are

described by van Genuchten’s formulas, Eq (4.4), with parameters corresponding to

coarse’ sands. Once the function q(e) is found, other relationship such

profile or infiltration rate can be derived from that function.

111.4.1Test problem

Consider a horizontal soil tube with semi-infinite extent, e.g.,

Assume that this soil has a porosity of 0.45 and intrinsic permeability of

as saturation

Figure IV.3.

L2x10-14m2.

Initially, water saturation (S1)in this soil tube is 44%. Then, water is infiltrated into the

soil tube at x = O until it is fully saturated, i.e., S1 = 1. Relative permeability (lcr)and

capillary pressure (P~p) for this soil are assumed by the following linear functions

( o , s, <0.333

k,=

\

s, – 0.333
, 0.333 s s, s 1

0.667

I –9.7902x103 (Pa) , S1 S 0.333

P =
UP

1

– 9.7902X 103~ (Pa)., 0.333< S1<1

0., sl~l
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0.15 0.20 0.25 0.30 0.35

e

Figure IS7.4Functional form of q versus 6 for a soil whose relative permeability and
capillary pressure fi.mctionsare described by van Genuchten’s formulas.

which are illustrated in Figure IV.5. From Eq (4.33), the hydraulic conductivity, K, can

be written as the product of k and k,, where k is the absolute permeability. Then, Eq

(4.22) can be rewritten as

(4.35)

where p is water viscosity (10-3Pas). From Eqs(4.33) and (4.34), Eq (4.35) is

{

5.8683 x10-7(SI –0.333) , 0.333 <S/ <1
D (m2/s) = (4.36)

0 , S1<0.333

The analytical solution, i.e., $(6), is shown in Figure IV.6. Based on this

relationship, the saturation profile at a particular time can be obtained by multiplying

9(6) by ~. For example, Figure ~.7 shows three saturation profiles at t = 864 see, 5184
.

see, and 9504 sec. Solutions obtained by TOUGH2 are marked by symbols, and
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analytical solutions bylines. It is clear from Figure IV.7 that analytical solutions obtained

by Philip’s method are very close to numerical solutions by TOUGH.2.
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IV.5 Linear relative permeability and absolute capillary pressure for the soil
considered in the test problem.
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Figure IV.6 Analytical solution obtained by Philip’s method for the
infiltration problem with fl~=O.198 and 0.=0.45.
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Chapter V. Seepage simulations

V.1 Setup of numerical simulations and factors affecting seepage in fractures

Fluid flow in a partially saturated fracture is examined in this chapter, considering

different levels of normal stress, varying degrees of fracture heterogeneity, and various

initial and boundary conditions. Transient as well as steady state flow is considered.

The flow domain is idealized as in Figure V.1 in which

medium lies within a vertically oriented fracture plane of 20 m

the equivalent porous

x 20 m x lcm. This

domain is further discretized into a

blocks. Such discretization is fine

manageable with the available

finite difference grid of 100 x 100 = 10,000 square

enough to represent medium heterogeneity, and is

computers. Porosity heterogeneity is neglected.

Accordingly, a spatially uniform porosity (~) of 0.35 is assumed. Water is injected into

the top boundary with a constant rate (10-3 kgh), which is done by introducing an

additional single element (20 m x 0.2 m x 1 cm) at the ground surface (z = O). This

element not only receives the water supply but transfers fluid mass with underlying

elements. Initial liquid saturation in fractures is assumed at the value of the residual

liquid saturation, i.e., S1,= 0.15. Lateral boundaries have no-flow boundary conditions. In

addition, a unit-gradient boundary is assumed at the bottom boundary, i.e., the free

drainage boundary condition. The above initial and boundary conditions are applied to

most simulations if no other conditions are specified.

Effects of the gas phase pressure, matrix permeability, porosity heterogeneity, and

hysteresis of relative permeability and capillary pressure are neglected in this study. The
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remaining factors affecting unsaturated seepage in fractures, therefore, are the

heterogeneity and spatial correlation of permeability, as well as the initial and boundary

conditions. For homogeneous porous media, capillary pressure is inversely proportional

to a length scale that characterizes the pore structure of the media (Leverett, 1941), i.e.,

/[

pcap cc 1
k

T
(5.1)

where k and $ are the permeability and porosity of the media. For heterogeneous media,

however, both permeability and porosity

porosity is assumed to be homogeneous,

thus scaled as

may be spatially varying variables. Since the

capillary pressure for heterogeneous media is

“ap=lzpcap”lmp
in which kl and k2 are the permeabilities of the

(5.2)

,
equivalently homogeneous and

heterogeneous media, which are kr.f and kr.f x <,respectively.

x

2-D heterogeneous porous medium
discretized into 100x 100 grid blocks

Figure V.1 Idealization of the flow domain.
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The effect of permeability on seepage depends not only on the aperture, which is

a fi.mction of the magnitude of normal stress (see Figure 11.2), but also anisotropy of

asperity contacts. The latter is conceptually illustrated in Figure V.2, which shows

laterally extensive asperity contacts perpendicular, parallel, or oblique to the downward

flow direction. Asperity contacts are represented as ellipses in Figure V.2 for simplicity

and convenience, though they may not necessarily have regular shapes. Figure V.2(a)

shows that asperity contacts perpendicular to the flow direction may divert flow more

dramatically than asperity contacts parallel to the flow direction, i.e., Figure V.2(b). More

importantly, flow may be funneled into localized regions if asperity contacts are arranged

in the manner schematically similar to Figure V.2(C). Funneled flow in porous media has

1

r

I
,

been indeed observed in the field (Kung, 1990ab). Thus, the ability of asperity contacts to

divert flow depends on their correlation lengths, anisotropic ratio, and their orientation i

relative to the downward flow direction.

,-

(a) (b) (c)

Figure V.2 Schematic representation of flow lines diverted by anisotropic asperity
contacts which tie represented as ellipses for simplicity.

V.2 Impact of spatial discretization on Iiquid seepage

spatial

-.. . . . ---- . ... ,,

Recall that a sensitivity analysis of characterization accuracy with respect to
I

dlscretization was carried out in Chapter II. Results from that sensitivity analysis, I
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Figure 11.8,indicated that the spatial variability of permeability fields could be adequately

captured as long as A/~k<0.5. That sensitivity analysis is fukher extended in this section

for investigating the effect of spatial discretization on flow simulations.

Simulated liquid saturations at breakthrough and steady state in synthetic fractures

with simulated permeability fields shown in Figure 111.8are represented in Figures V.3

and V.4. The term “breakthrough” is simply defined as the condition when the first liquid

reaches the depth of –19.9 m. The term “steady state” is herein defined as the point in

simulation when the ratio of the total flux exiting the bottom boundary to the flux

injecting to the top boundary exceeds 0.999. It should keep in mind that flow fields

obtained by this convention are strictly pseudo steady-state flow fields.

Consequently, fine sp,atial discretization does not appear to be necessary to model

seepage through fractures with spatially correlated asperity contacts as long as A/~k<0.5.

Figure V.3 shows that the discretization length (A) and correlation length (~k) both

influence the simulated seepage pattern in a fracture with uncorrelated asperity contacts.

In contrast, the simulated seepage patterns in a fracture with spatially correlated asperity

contacts are remarkably similar. The similarity is independent of the spatial discretization

as illustrated in Figures V.4(a) and V.4(b) (or Figures V.4(d) and V.4(e)) if the

permeability fields have the same correlation lengths and the ratio A/~kis smaller than

0.5. This similarity is preserved in

correlation length of permeability is

affected by the correlation structure

Figures V.4(C) and Figure V.4(f) even if the

increased. Thus, the seepage pattern is strongly

of asperity contacts but to a lesser extent the

correlation structure of permeability, for A/~k<0.5.
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Figure V.3 Saturation at breakthrough (cases a to c) and steady state (cases d to f) in
synthetic fractures shown in Figure IU.8(a) to IL8(c), with isotropic, spatially random
asperity contacts with different radii and grids with different values of A.
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Figure V.4 Saturation at breakthrough (cases a to c) and steady state (cases d to f) in
synthetic fractures shown in Figures IH.8(d) to 111.8(f),with isotropic, spatially correlated
asperity contacts with different correlation lengths and grids with different values of A.
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V03Seepage versus normal stress

Experimental data (Pyrak-Nolte et al., 1987) has showed that contact areas in

natural fractures increase with normal stress. However, the detailed mechanical properties

of contact areas in fractures and their relationship with the normal stress are not interested

here. Then, the relationship between liquid seepage and normal stress is simulated instead

by changing the total fraction of asperity contacts. Four different fractions of asperity

contacts are considered here, 15%, 2570, 35~0 and 40?10.For each fraction of asperity

contacts, twenty to thirtys ynthetic fractures were generated in order to obtain statistically

homogeneous realizations of heterogeneous fractures.

Spatially random and spatially correlated asperity contacts corresponding to the

different stress levels are shown in Figure V.5. The corresponding realizations of

permeability fields obtained by conditioning on the asperity data are shown in Figure V.6

and V.7. The expected spatial correlation structure of the permeability fields is an

isotropic exponential semi-variogra.m with nugget = 0.0, correlation length (~~)= 0.4 m,

and sill number ranging from 90.0 to 190.0 in different realizations. Spatial discretization

(A) is 0.2 m, i.e, the ratio A / l.~= 0.5.

Computed saturation at the time of breakthrough and steady state obtained using

the different permeability fields is plotted in Figures V.8 to V.11. Flow simulations in

fractures with spatially random asperity contacts and low normal stress exhibit numerous

interconnected flow paths. As the normal stress increases, significant preferential flow

occurs whether the asperity contacts are spatially random or spatially correlated. The

preferential flow is accompanied by significant flow bypassing and pending. The asperity
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Figure V.5 Spatially random (case a) and spatially correlated asperity contacts (cases b to e),
used as the conditioning data for heterogeneous fractures. Radius (rO) and correlation length
(Lo)for asperity contacts are both 0.4 m. The correlation structure for cases b to d is an iso-
tropic exponential semi-variograrn with nugget= 0.0 and sill= 0.1875.
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Figure V.6 Synthetic fractures conditioned on spatially random asperity contacts as
shown in Figure V.5(a). The expected correlation structure is an isotropic semi-
variogram with nugget= 0.0, sill= 190.0 and correlation length (Lk)=0.4m. Spatial
discretization (A)= 0.2m.
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Figure V.7 Synthetic fractures conditioned on spatially correlated asperity contacts as
shown in Figures V.5 (b) to V.5(e). The expected correlation structure is an isotropic
semi-variogram with nugget= 0.0, and correlation length (~) = 0.4m. Sill numbers are
120.0, 115.0, 100.0, and 90.0 for realizations (a), (b), (c) and (d), respectively. Spatial
discretization (A)= 0.2m.
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Figure V.8 Saturation at the time of breakthrough at the depth of -19.9 m, in
fractures with spatially random asperity contacts. Initial water saturation is
at the value of 0.15.
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Figure V.9 Steady state saturation in ffactures with spatially random
asperi~ contacts. Initial water saturation is at the value of 0.15.
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contacts divert the water into spatially localized fingers that may further proceed

downward, merge with other fingers, or be terminated/ponded on laterally extensive sub-

horizontal asperity contacts.

1.50
● i,,, withspath!yrandomasparitycontacts

A i-, wthspatia[tjtandemaspafi!ycontacts

O LO,Jwithapatlaltjcorrrelstadaspariy contacts

“E
1.00 A 10H,wilhspalialtycorralled asperityconlacls

%
o
. ---- Flttadttiw\

+= 0.50

0.00 ‘
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percentage of asperity contacts

Figure V.12 Arithmetic means of effective permeabilities in synthetic fractures with
spatially random and spatially correlated asperity contacts.

Horizontal and vertical effective permeabilities for each of the synthetic fractures

were calculated for each fraction of asperity contacts. To calculate effective permeability,

single phase flow simulations were performed to steady state and the permeability was

calculated based on

Figure V.12 and a

Darcy’s law (see Appendix D for details). The results are plotted in

monotonically decreasing trend with normal stress as would be

expected.

The vertical advance of the fastest finger with respect to time is plotted in Figure

V. 13 for flow simulations with spatially correlated asperity contacts. The slopes of these

curves tend to increase with increasing normal stress, suggesting faster breakthrough in

fractures subject to increasing normal stresses. The occurrence of faster breakthrough in

fractures results from the increasing degree of preferential flow as normal stress

increases, along with the increased Darcy’s velocity as the flow funnels into localized
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fingers. The trend of shorter breakthrough time is further verified by histograms of

bretiough time shown in Figure V.14. The vertical advance curves for fractures

subject to low normal stress tend to be linear because the effects of bypassing and

pending are weak. However, the curves become irregular as flow bypassing and pending

become significant at high normal stress.
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Figure V. 14 Histograms of time to breakthrough in fractures subject to increasing normal
stress.

88



I

,,

An alternative boundary condition is to consider localized injection. Figure V. 15

shows the transient and steady state flow fields in fractures with spatially correlated

asperity contacts, subject to localized injection. Water is injected at the center of the top

boundary. The injection zone has a lateral extent of 1.0 m,. No flux is allowed to across

the top boundary outside the injection zone. The constant injection rate is 10-3kgh, and

initial conditions and other boundary conditions are the same as before. Seepage patterns

similar to those for distributed injection cases are observed in these simulations, such as

fingering, pending, bypassing, and lateral spreading. However, the preferential flow paths

for localized injection cases are obviously different from those for the distributed

injection cases. In addition, the location of the fust breakthrough for the localized

1 injection case may or may not be the same as the distributed injection case. These flow

phenomena were also observed by Pruess (1998) in his simulations using synthetic

fractures with spatially random asperity contacts. F.urtherrnore, he observed that seepage

patterns in natural fractures strongly depends on fracture permeability, capillary effects,

and applied flow rate. Thus,. it is expected that these observations also apply to the

simulation results in the present study.

A verticaI advance curve records the downward migration of the fastest finger.

Thus, an abrupt change in the slope of the curve indicates the emergence of a faster finger

or accelerationhetardation of seepage. Usually, the change of slope is ascribed to pending

on asperities. For example, the curve in Figure V. 16(a) exhibits an arrest in the fluid

advance before breakthrough. The corresponding flow simulation in Figure V. 16(b)

shows that this is indeed because of pending at about –15 m. Jn addition, the slope of the

advance curve after pending may increase or decrease. Foi example, Figure V.16(b)
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injection in fractures with spatially correlated asperity contacts.

90



20 [

g 10

00 10 20 30 40 50
t

Time (hrs)

(a) Vertical advance curve in
fractures with 25% spatially
correlated asperity contacts

20:

~ 15 ;

g 10

00 10 20 30 40 50
1

Time (hrs)

(c) Vertical advance curve in
fractures with 35% spatially
correlated asperity contacts

‘200246810121416 1820

L.##n

!0.99
0.8
0.6
0.4
0.2

.

Distance (m)

(b) Saturation corresponding to
curve (a) Breakthrough time =40.39 hrs

o

-2

-4

-6
Liquid

Saturation

~ -8

!

0,99
~ .10 0,8
Q 0.6
al -12
c1 0.4

-14 0.2

-16

-18

‘200246810121416 1820

Distance (m)

(d) Saturation corresponding to
curve (c) Breakthrough time =34.71 hrs

Figure V. 16 Vertical advance curves and corresponding saturation in synthetic fractures
with spatially correlated asperity contacts. Figure IV. 16(a) and V. 16(c) feature the effects
of ponding and flow funneling, respectively.
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shows that finger on the left of the ponded zone breaks through the bottom boundary.

This finger has lower seepage velocity and the curve in Figure V. 16(a) shows a flatter

slope just before breakthrough. In contrast, the curve in Figure V. 16(c) shows that

seepage starts with a smaller velocity, becomes a-rested by pending for approximately 8

hrs, and then proceeds faster toward the bottom boundary. The pending is clearly visible

in Figure V. 16(d).

Breakthrough curves (BTCS) corresponding to flow simulations in Figure V. 11

are presented in Figures V. 13(b). For better representation, tails of BTCS after 10 days

are truncated because they are essentially asymptotes approaching to flux ratio at 1.0.

Chesnut (1992, 1994) suggested that travel time breakthrough curves of

groundwater through unsaturated media can be approximated by a log-normal model. He

proposed that the cumulative distribution function for groundwater travel time may be

written as

P(t<t~)=@

[

ln(to / < t >)+ c:

at
)

(5.3)

Here, P(ts to) is the fraction of fluid flowing between inflow and outflow boundaries for

which travel time is less than or equal to to, <~ is the mean travel time, at is the standard

deviation of the natural logarithm of travel time, and @is the cumulative distribution

function of a normal distribution, i.e.,

Q(.)=*fexP(-.’/2=+efic(ifi)./fi)
—Ca

(5.4)
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in which erfco is the complementary error function. An important feature of the log-

normal model given in Eq(5.3) is that a significant fraction of flow has travel times much

shorter than the mean travel time. This effect becomes obvious for strongly

heterogeneous media (larger at), as shown in Figure V. 17(a). Note that the horizontal axis

of Figure V. 17(a) is the travel time normalized by the mean travel time, <~, that is fixed

at 1.0.

(a) Chesnut’smodelof log-normalBTC’swithdifferentvaluesofq

1 - I 1

0.8 : 15%
------- 25%

0.6 ; -“-””-”------- 35%
““””-””””””””’”--”-A()~o

0.4 :

0.2 : /::
$
<f

QO-2
~q, I t

10-’ 0 10’ 102
Normalize$travel time

(b)RealizedBTC’sinfractureswithspatiallycorrelatedasperitycontacts

Figure V. 17 (a) Theoretical log-normal travel time model for different values of the
heterogeneity parameter, of (Chesnut, 1992). The mean travel time, <~, is fixed at 1.0 for
all curves, which is also the normalizing factor for the horizontal axis; (b) Simulated
BTCS for flow simulations in fractures with spatially correlated asperity contacts. Note
that the horizontal axis is the travel time normalized by the mean travel time <~.
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The log-normal model is fitted to each of curves shown in Figure V. 17(b), which

me the BTCS for flow simulations in fractures with spatially correlated asperity contacts.

The fitting begins by interpolating the sample BTC data and then t&king numerical

derivative of the interpolated BTC. These numerical derivatives then serve as the

approximated probability distribution of the BTC data, from which the mean and

vmiance of travel time cart be estimated. Subsequently, analytical pdf and CDF can be

obtained based on these two parameters. The fitted results in Figure V.18 show that the

log-normal model does not adequately fit the individual travel time data. The reason for

this poor fit is that water transport is strongly affected by the spatial distribution of

permeability and the associated effects such as ponding, bypassing, and change of

seepage velocity. Thus, the log-normal model is too simple to accurately capture those

complicated flow effects.

L
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Figure V.18 Results of fitting the log-normal travel
shown in Figure V. 17(b).
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Figure V. 19 Saturation at breakthrough and steady state in fractures subject to high normal
stress, i.e., the total fractions of asperity contacts is 40%. These results illustrate the effect of
seepage retardation (cases a and b) and acceleration (cases c and d) due to pending.
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Breakthrough curves in fractures subject to low normal stress tend to be smooth

and monotonically increasing curves. This is because the effect of asperity contacts is not

significant and liquid gradually comes out the entire bottom boundary in a spatially

uniform manner. For fractures subject to high normal stress, however, BTCS behave like

a step function because only a number of fingers can break through the bottom boundary.

In addition, seepage velocity within these localized fingers is generally faster, resulting in

the fast increase of a BTC. Moreover, such BTCS may intermittently exhibit horizontal

segments, which are generally the result of impedance by pending. For example, the

effect of seepage impedance and acceleration can be demonstrated respectively from

realizations in Figures V. 19(b) and V. 19(d); and the solid and dashed BTCS in Figure

V.20, respectively. BTCS in fractures subject to intermediate normal stress behave

intermediately between the two extremes, and their shapes depend on the heterogeneity

of fractures, see the dash-dotted BTC in Figure V.20.
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Figure V.20 BTCS showing the effects of seepage impedance (the solid curve) and
seepage acceleration (the dashed curve), corresponding to flow realizations in Figures
V. 19(b) and V. 19(d), respectively. The dash-dotted BTC shows the interchanging effects
of seepage impedance and acceleration.

The mechanisms of seepage acceleration and impedance as a result of pending in

fractures subject to high normal stress are not independent but compete with each other.
..
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A vertical line shown in a BTC simply means that seepage after breakthrough is

dominated by the gravity effect. Competition between gravity and pending will notstart

until other fingers also reach the bottom boundary. If the gravity effect still dominates,

discharge at the bottom boundary would keep growing and the BTC would remain to be

vertical. If, however, seepage is impeded by pending, discharge would keep steady for a

certain

gravity

time during which the BTC would show a horizontal segment. Not until the

effect becomes significant again would the BTC show an abrupt increase in slope.

For example, see the BTC in Figure V.21(a) and the corresponding distribution of

saturation. In general, the competition between gravity and pondhg is usually

intermitten~ for example, the dash-dotted BTC in Figure V.20.

The quantitative relationship between the degree of pending and the total fraction

of asperity contacts deserves further investigation. The degree of pending is defined as

follows. First, pending regions are defined as the wetted region, in either transient or

steady state flow fields, in which water saturation is one. Here the term “wetted region” is.

defined as

saturation.

the total volume in which water saturation is greater than the residual water

Numerically, the cutoff saturations for ponded and wetted regions are chosen

as 0.999 and O.151, respectively. The degree of pending can then be defined as the

volumetric ratio of the ponded regions to the wetted region. Various factors may affect

the total volume of ponded regions in heterogeneous fractures, including the total fraction

of asperity contacts, correlation length of asperity contacts and permeability, and the

correlation directions of asperity contacts and permeability. The parameter of the total

fraction of asperity contacts is considered in this section because only synthetic fractures

with isotropic asperity contacts and permeability are considered.

i

I
I

,
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Figure V.21 Breakthrough curve and saturation at steady state in a
synthetic fracture subject to high normal stress. The competition
between gravity and pending effects can be seen from the BTC.
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Figure V.22 illustrates the degree of pending in synthetic fractures with spatially “

random or spatially correlated asperity contacts, for transient as well as steady state flow

~elds. The plots in Figure V.22 suggests that the degree of pending generally increases

with the total fraction of asperity contacts, irrespective of the spatial conflation of

asperity contacts and the status of the flow field.

V. 4 Seepage dispersion and its dependence on asperity contacts

Most BTCS in this study exhibit a non-uniformly increasing trend with respect to

time. In this study, seepage dispersion is the term for describing the spreading behavior of

liquid seepage in heterogeneous fractures. It can be quantitatively measured by a

coeftlcient (Q.) which is the ratio of (tgo– tlo) to t50,i.e., D~= (tgo-tlo)/t50.The parameters

tw, t50and tlo are the travel times at which the flux ratios are 90%, 50% and 10% of the

steady state flux (Neretnieks, et al., 1982), respectively.

!.

Histograms of tlo, t50,and tw are plotted in Figures V.23 and V.24 for synthetic

fractures with spatially random or spatially correlated asperity contacts, respectively.

Each histogram is fitted by a normal and a log-normal distributions. In general, the log-

normal distribution usually fits the travel time data better than the normal distribution.

The trend for tlo behaves as the breakthrough time, i.e., tlo generally decreases with

increasing normal stress. Similarly, t50also decreases with increasing normal stress. The

travel time tgoapproximately follows the trend of steady state time, i.e., tgotends to be

smaller for low and high normal stresses but larger for intermediate normal stress.
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1

Figure V.25 shows the histograms of the coefficient of seepage dispersion (D,) for

fractures with spatially random and spatially correlated asperity contacts. Note that the

horizontal axes of histograms with 40% asperity contacts begin from –1. This is for

representation purpose only because the fitted log-normal distribution is highly right-

skewed toward zero. Statistics for fitted normal and Iog-normal distributions are listed in

Table V.1, along with the goodness of fit data (p-value) obtained by the chi-square test.

The quantitative evidence

the normal distribution is

(Table V.1). Thus, each

distribution.

that the log-nonmd distribution fits the sample data better than

reflected by the larger p-value for the log-normal distribution

histogram shown in Figure V.25 is fitted by a log-normal

I
I

Table V.I. Statistics of normal and log-normal distributions fitted to the sample data of
D, in fractures with spatially random and spatially correlated asperity coitacts.

Normaldistribution Log-normaldistribution ,,,$

Fractionof ‘In(DJ
& ‘D~ SDS~ p-value Ml)asperitycontacts ‘lnQ) — p-value

ln(D~)

Fractures with spatially random asperity contacts

15% 0.530 0.143 0.269 0.217 -0.667 0.257 0.385 0.535
25% 0.866 0.174 0.201 0.389 -0.164 -0.211 1.287 0.500
35% 0.903 0.533 0.591 0.289 -0.243 0.565 2.325 0.822
40% 1.114 1.400 1.256 0.0000 -0.539 1.461 2.712 0.624

Fractureswithspatiallycorrelatedasperitycontacts

15% 0.795 0.324 0.408 0.522 -0.308 0.413 1.339 0.937
25% 0.915 0.355 0.387 0.381 -0.168 0.424 2.533 0.715
35% 1.059 0.660 0.623 0.039 -0.077 0.502 6.544 0.627
40% 0.781 0.812 1.039 0.0015 -0.958 1.660 1.733 0.245

Figure V.25 exhibits a qualitative dependence of D; on normal stress. That is,
.

partially saturated flow tends to be more dispersive

normal stress and less dispersive in fractures subject

103
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This is because most fingers in fractures subject to low normal stress are not significantly

affected by asperities. Thus, most realizations may have similar breakthrough behavior

and the dispersion is generally weak. Similarly, only a limited number of fingers in

fractures subject to high stress ‘can break through and the dispersion is weak again.

However, many fingers can be formed in fractures subject to intermediate normal stress.

Some of them are fast and some of them are slow. Thus, greater value of the coeftlcient

of seepage dispersion is generally expected in such fractures.

The seepage dispersion may be quantitatively verified by the mean value of the

natural logarithm of D~, “~). Results in Table V. 1 indicate that ‘~] is smaller in

fractures subject to low and high normal stress, but larger in fractures subject to

intermediate normal stress. However, the arithmetic mean of D~, i.e., ~, in fractures

with spatially random asperity contacts and subject to high normal stress (~ = 1.114) is

larger than the value for fractures subject to intermediate normal stress (~ = 0.866 or

0.903). This is because an outlier with a large value of D, (7.169) shows up in the sample

data of D., see the histogram in Figure V.25(4) and the corresponding flow simulation

and the solid BTC in Figures V. 16(c) and V. 17, respectively. The presence of an outlier

thus increases the standard deviation of a fitted distribution, see the columns labeled sD~

and sl@~)in Table V.1. If the outlier were absent, however, the standard deviation would

generally follow the same trend as ~], i.e., the standard deviation of D, would be

larger for fractures at intermediate normal stress, but smaller for fractures at low and high

normal stresses.
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Two opposite effects of pending on seepage dispersion may occur in fractures

subject to high normal stress: (1) Pending retards seepage as would be expected. Seepage

is slowed down by pending because liquid must fill the dead-end pores above asperities

as a result of the constant recharge at the surface. This process can take a long time to

complete if the total volume of dead-end pores is large. For example, flow simulations in

Figures V. 19(a) and V. 19(b) illustrate this effect. Figure V. 19(a) shows two fingers at the

time of breakthrough, one to the left arrives at the bottom boundary while the other to the

right reaches a depth of – 10 m. The left finger continuously evolves after breakthrough;

meanwhile, the right finger proceeds downward, hits asperities and develops significant

pending, see Figure V. 19(b). The gradual development of the right finger is shown on the

solid BTC in Figure V.20 by a long horizontal segment, resulting in greater value of

seepage dispersion, D~ = 7.169; (2) On the other hand, pending can gather distributed

seepage and fumel it into narrow paths with large fluxes and velocities. The effect of

accelerated breakthrough induced by pending can”be seen on a BTC by a vertical line.

Thus, weak seepage dispersion would be observed under such conditions. An example of

accelerated seepage by pending can be seen by the dashed BTC in Figure V.20 for which

there is nearly no dispersion at all, i.e., D, = 0.008. The corresponding distribution of

saturation for accelerated seepage is shown in Figures V. 19(c) and V. 19(d). These

simulation results show that all other possible flow paths are blocked by asperities and

fluid is only allowed to go through one finger that finally reaches the bottom boundary.
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V.5 Influence of anisotropy of asperity contacts

The purpose of these analyses is to examine the effect of anisotropy of asperity

contacts on flow patterns. Anisotropic

spatially correlated, are considered in

asperity contacts, whether spatially random or

isotropic permeability fields. Three principal

correlation lengths for spatially correlated asperity contacts (or principal radii for ~

spatially random asperity contacts), 0.4m, 0.8m, and 1.6m, are taken into account, along

with the same minor correlation length (or minor radius) of 0.2m. Four principal

directions, North, North-East (45° to North), East (90° to North), and South-East (135° to

North), are investigated. Initial and boundq-y conditions are the same as those in section

V. 1. The total fraction of asperity contacts for these synthetic fractures is fixed at 25%.

Simulated permeability fields are shown in Figures V.26 and V.27, and corresponding

saturation at breakthrough and steady state are shown in Figures V.28 toV.31.

For notational convenience, the term “anisotropy ratio” in this section refers to the

ratio of the principal correlation length (or radius) of anisotropic, spatially correlated

(random) asperity contacts to the minor correlation length (radius) of asperity contacts.

That is, three anisotropy ratios, 2.0,4.0, and 8.0, are considered.

Results of flow simulation show that the principal direction of anisotropic asperity

contacts determines the direction to which the flow is diverted. The larger the anisotropy

ratio, the stronger the diversion effect. In addition, the total number of fingers reaching

. the bottom boundary at steady state generally decreases with increasing anisotropy ratio.

This is especially true in fractures with spatially correlated asperity contacts that are not

principally correlated in the vertical (North) direction. Moreover, the diversion effect
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seems to be more significant in fractures with spatially correlated asperity contacts than

. . . . . in fractures with spatially random asperity contacts. Also, pending effect generally

increases as the anisotropy ratio increases.

The effect of pending on seepage breakthrough is indicated in flow simulations

illustrated in Figures V.30(4), V.30(8), and V.30( 12). Although the vertical effective

permeability in the South-East direction increases as the anisotropy ratio increases from

2.0 to 4.0, the distribution of saturation in Figure V.30(8) shows a slower breakthrough

than that in Figure V.30(4). This is affected by the delaying effect of pending, which is

shown in Figure V.30(8) at the upper right and lower right corners. As the anisotropy

ratio of asperity contacts increases from 4.0 to 8.0, Figures V.30(8) and V.30(12) show

that more pending is developed. In addition, calculations show that the effective

permeability decreases significantly as the anisotropy ratio increases from 4.0 to 8.0.

Thus, the delaying effect of pending associated with the decreasing vertical effective

permeability leads to the much slower breakthrough in Figure V.30(12).

The degree of pending as a fimction of anisotropy ratio is shown in Figure V,32.

Generally, degree of pending increases as the anisotropy ratio increases. In addition,

degree of pending in fractures with vertically correlated asperity contacts is generally the

weakest, which becomes obvious as the anisotropy ratio increases. However, degree of

pending in fractures with non-vertically correlated asperity contacts has different levels

of significance, depending on the type of asperity contacts, the principal direction, and

the anisotropy ratio of asperity contacts. For example, Figures V.32(a) and V.32(b) show

that the degree of pending for horizontally correlated asperity contacts is always the
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greatest. However, degree of pending strength in fractures with spatially correlated

asperity contacts generally varies with the heterogeneity of permeability. Furthermore,

there may be a dramatic increase in the degree of pending in fractures with spatially

correlated asperity contacts that are not vertically correlated. For example, Figure V.32(C)

and V.32(d) shows that this occurs when asperity contacts are principally correlated in

the South-East direction.

2- 3?
: ~ North ~“ North

..----.--B-----––East .-..—.B------- East
- ----+ ---- NOfih-East 2.5 : P

1.5
-----&---- NO~h-EaSt ./
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(a) D, for fractureswithspatially (b) D, for fractureswithspatially
random,anisotropicasperitycontacts correlated, anisotropic asperity contacts

Figure V.33 Coefficient of seepage dispersion (D,) in fractures with anisotropic asperity
contacts that me spatially random or spatially correlated.

Seepage dispersion depends on the heterogeneity of fractures as well as pending.

The term “heterogeneity” herein means the overall effect of tortuosity, flow diversion,

and the ability of generating new fingers after breakthrough. The later varies in different
.

synthetic fractures but generally decreases as the anisotropy ratio increases. The general

decreasing trend of seepage dispersion with increasing anisotropy ratio is observed in

Figure V.33. However, the curve in Figure V.33(b) shows that seepage dispersion in the

North-East direction increases as the anisotropy ratio changes from 4.0 to 8.0. This
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increase is clearly due to the pending as shown in Figures V.3 1(6) and V.3 1(10). In

addition, Figure V.33(b) shows that the seepage dispersion in the horizontal direction

significantly increases with the anisotropy ratio, which is the result of increasing

diversion effect as illustrated in Figures V.3 1(3), V.3 1(7) and V.31(1 1). Similar increase

of seepage dispersion with respect to anisotropy ratio also presents in Figure V.33(a) for

the curve associated with the vertical correlation direction.

V. 6 Influence of anisotropy of permeability

Anisotropy of the spatial distribution of asperity contacts logically leads to the

consideration of anisotropy of permeability. It is then expected that the realized

permeability field may have similar effects as the anisotropy of asperity contacts as far as

flow bypassing and fingering are concerned.

To evaluate the effect of anisotropy of permeability, permeability fields in this

section were obtained by conditioning on the same conditioning asperity contacts that

were used for cases ,(1), (4), (9) and (12) in Figures V.26 and V.27. These anisotropic

asperity contacts are principality correlated in the North or South-East directions, with

principal correlation length (or principal radius) of 0.4 m or 1.6 m. Thus, anisotropic

permeability with two principal correlation lengths (0.4 m and 1.6 m) and two principal

directions (North and South-East) are investigated. Correlation length in the minor

directions is half of its principal co~elation length. Again, the total “fractionof asperity

contacts is fixed at 25%. Figures V.34 and V.35 are the realized permeability fields

conditioned on spatially random and spatially correlated asperity contacts, respectively.

117

~
:(
,’

,.

,

,’

,,

,,

,,

,.
‘,.

,.

;.
;.,

I

.,

v

,’

,.

!

I

I
. . ----- ..-=

.,, ,.,. ,-. .. ; .,?,.,,., ,,<>~, — ,. ; , !<,-+7.,,.. ... .... .. ,,’ . ., ,, ,..:-, ‘. .;.’.. %>LLJ:> ?...,?:, :<:. -?. ,.: “.:.’~”
——-—

., ...,., ..’ ,,’



Corresponding flow simulations are shown in Figures V.36 to V.39, and the strength of

pending for these flow simulations is shown in Figure V.40.

Simulation results in Figure V.38 (or Figure V.39) closely resemble the

simulation results (l), (4), (9) and (12) in Figure V.30 (or Figure V.3 1). Recall that the

former and the later simulation scenarios were carried out in synthetic fractures

conditioned on the same spatially correlated asperity contacts but different correlation

structures of permeability. This similarity thus suggests that liquid seepage in natural

fractures may be less sensitive to the spatial correlation of permeability and tends to

depend more strongly on the spatial distribution of asperity contacts. It also suggests that

tortuosity of flow paths may b~ insensitive to the anisotropy of permeability as long as

conditioning asperity contacts are the same. However, the difference between the two

flow scenarios can be identified in terms of degree of pending as illustrated in Figure

V.40. It shows that the two flow scenarios are obviously different from each

asperity contacts are not vertically correlated, see Figures V.40(e) to V.40(h).

other if the

Breakthrough and steady state flow fields shown in Figures V.36 and V.37 are

also similar to corresponding simulation results, i.e., cases 1,4,9, and 12 in Figures V.28

and V.29. The minor difference between these simulation results is because some of the

spatially random asperity contacts in these fractures are not conditioning data. That is, the

overall spatial distribution of asperity contacts is not the same between the two flow

scenarios. The difference becomes significant only for cases with larger anisotropy ratios.

For example, the pending strength in Figure V.40(b) and V.40(d) explicitly show the

difference between the two simulation scenarios.

. .
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Figure V.34 Anisotropic permeability fields conditioned on spatially random asperity
contacts. The principal radii of asperity contacts are 0.4m or 1.6m, and principal
directions in N-S or NW-SE. The anisotropic semi-variogram of permeability has
nugget = O,sill = 190, and principal correlation length as 0.4m or 1.6m. The minor
correlation length is half of the principal correlation length. The subscripts 1 and
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Figure V.36 Saturation at breakthrough in anisotropic fractures with spatially random,
anisotropic asperity contacts shown in Figure V.34.
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Chapter VI. Tracer simulations

VI. 1 Tracer transport

As stated earlier, field evidence suggests that, in semi-arid environments, water is

able to migrate downward rather rapidly along preferential paths. At Yucca Mountain,

Nevada, for example, fracture networks in unsaturated rocks may provide such fast

preferential flow paths. This observation thus raises concerns that, once a storage canister

sw leaking, radionuclides may transport with groundwater and reach the downstream

biosphere at an unexpectedly short time scale. Detailed analyses of solute transport need

to consider coupled flow and transport equations, which are beyond the scope of the

present study. To simpli~ the problem, however, tracer transport without taking into

account the effect of molecular diffusion is considered in this section.

“Tracers” are defined herein as dilute compounds that are completely non-reactive

and dissolved in water without significantly changing its physical properties, e.g., density

and viscosity, of water. An example would be a small amount of brine will mixed with

water. By this convention, tracers can be treated as a second component of water.

For multi-phase simulations, liquid saturation is defined as the ratio of pore

volume occupied by the liquid phase to the total pore volume, i.e.,

(6.1)

where VI is the pore volume occupied by liquid phase, PV stands for the total pore

volume, $ is porosity, and vb is the bulk volume of rock. Primary variables for two-
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component simulations are defined as liquid saturation (Sl) (or liquid pressure (Pl) ) and

mass fraction of the second component of liquid phase(X2) (Pruess, 1991). Mass fkactions

for two-component flow systems are defined as

i= Plvl,i ‘li ‘Ii 1

:=i~i hlli=<’G”F
i=l i=l

If the i-th component of liquid saturation is defined as

v,,
S,$= -

Pv

then the mass fraction and liquid saturation have the following relationship

S,,i = xi S[

See Figure VI. 1 for illustration of two-water systems.

Air, V=(l-SJ@/b

Water 1, V=X,S @Vb Water 2= Tracer, V=> S, $ Vb
(l” component olwater) (2ti component of water)

(mass fractionXJ (mass frastion XJ

Figure VI. 1 Schematic partition of the pore space for two-water systems.

For i= 2, i.e., the second component of water; or tracer, Eq(6.4) yields

,,~ = x, s,s
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That is, the quantity S1,2is in

volume of rock. From Eq(6.5),

is the mass fraction of tracer,

fact the pore volume occupied by tracer per unit void

the volumetric fraction of tracer to the total pore volume

Sf,2.Strictly speaking, S~2is not liquid saturation but a

“pore-space-weighted saturation”. For notational convenience, however, S1,2will be

named “tracer saturation” in the remainder of the text.

Initial conditions for tracer transport may be a steady state or a transient flow field

of water. First, let us consider the steady state flow field such as Figure V. 19(d). This

flow field is interesting because (1) it is the result of water simulation in a synthetic

fracture at high normal stress, (2) it has the least seepage dispersion, and (3) it has several

regions that are fully saturated with water. These filly saturated regions have different

effects on seepage for transient and steady state flow fields. For example, the effects of

seepage retardation and seepage acceleration by pending are illustrated by the horizontal

segment in Figure VI.2 and the dashed BTC in Figure V.20, respectively. Moreover,

some of the saturated regions may become “dead-end pores” to water. Note that dead-end

pores usually occur above laterally extensive asperity contacts or at fracture terminations,

e.g., the upper left corner of Figure V. 19(d) and to the right at depths fkom – 3 m to – 8

m.

Figure VI.3 shows four snapshots of tracer transport at different times. These

simulations were obtained by injecting tracer (at the constant rate of 10-3kg/s uniformly

distributed over the entire top boundary) into the steady state flow field of Figure V.19(d)

and simulating under the same boundary conditions as specified in section V. 1. These
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simulations were terminated at the times when the flux ratios of tracer reached 0.1, 0.5,

0.9, and 0.987, respectively. The flux ratio for tracer simulations.is defined as

zX2,jQbot

*= j

Qtop Qtop

(6.6)

where QtOPand QbOtare the total liquid flux at the top and bottom boundary, respectively.

Qz,m is the total tracer flUX at the bottom boundary and is defined as the numerator in

Eq(6.6). The subscript j in Eq(6.6) stands for all grid blocks that directly contact the

bottom boundary, and X2Jis the mass fraction of tracer in grid blockj.

20

15 -

10 -

5 -

15 20 25 30 35 40 45

:.
,’

Time (hrs)

Figure VI.2 Vertical advance curve for the realization shown in Figure V.19(d).

Simulation results in Figure VI.3 show that tracer not only travels along flow

paths that have been developed by water but bypasses dead-end pores. Obviously, tracer

flow paths have higher relative permeability (or, equivalently, lower flow resistance) due

to higher total liquid saturation. The bypassing of tracer away from ponded regions is

because of the assumption of non-reactive tracers and the neglect of molecular diffusion.
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Figure VI.3 Snapshots of tracer transport with the steady state flow field shown in
Figure V. 19(d) as the initial condition.
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Neglecting molecukir diflhsion thus limits the time scale for which the realistic solute

transport can occur..The limiting time scale can be estimated by the difisive length scale

Y = =, where D is a typical aqueous phase diffhsivity of order 10-10rn2/s. For

example, the time scaIe for tracers to diffuse into the ponded region in Figure VI.3(d) I

from depths – 11 m to – 10 m would approximately take 160 years. Since the simulation

time for Figure VI.3(d) is only 4.56 days, which is far below the limiting time scale,
,,

tracers do not invade those dead-end pores by diffi,lsion.Thus, the invasion of tracer into :’

the ponded region above the depth at –12 m is due to other mixing mechanisms. In this

study, the only mixing mechanism occurring between water and tracer is caused by the

finite spatial resolution in the computational grids, with a dispersivity on the order of
.“

M2 = 0.1 m (l%uess, 1991). The quantitative measurement of the mixing is then

represented by mass fractions.

Breakthrough curves of water and tracer are shown in Figure VI.4. As discussed ,,

earlier in section V.3 the BTC for liquid seep in Figure VI. 19(d) is delayed by pending,

and it behaves likes a step function. However, the tracer BTC is smoother than the water

,
BTC. Moreover, the tracer BTC is more dispersive than the water BTC and shows the

effects of dispersion. f
1’

Figure VI.5 shows the results of fitting the log-normal travel time model to each
!’

of the BTCS in Figure VI.4. The sample

plotted as solid dots in Figure VI.5. Recall

BTC as obtained horn flow simulations is !,

that analytical pdf and CDF are obtained by

calculating the sample mean and sample variance from the sample BTC d,ata, see section

V.3, which are plotted as solid and dashed-dotted lines respectively in Figure VI.5. As
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expected, the log-normal model does not fit the water BTC very well, see Figure VI.5(a).

Figure VI.5(b) shows that the log-normal model fits the tracer BTC very well, especially
. .

for the analytical CDF. In addition, the probability distribution for tracer travel time tends

to be a positively skewed distribution. This property of tracer BTC suggests that the time

scale for the total breakthrough is longer for tracer transport than for water transport.

1 -------.. . . . . . .

0.8- I
T& i

j

‘~ 0.6 -
I
i

6
i
j

.Z 0.4 -
!
I
i Water BTC

u“ j
0.2 -/

-------------- Tracer BTC
.i
~

.-.:
00

! I t I I t I
1 2 3 6 7 8

Time ~daysf

Figure VI.4 BTCS of water and tracer transport shown in Figures V. 19(d) and VI.3(d).

The next example investigates the’effect of initial condition on tracer transport.

Instead of starting from a steady state flow field of water, this numerical experiment uses

a transient flow field as the initial condition. Figure VI.6(a) shows the initial condition for

this experiment. This flow field was obtained by injecting water uniformly over the entire

top boundary into a synthetic fracture with spatially

constant injection rate of water was 10-3kg/s, and the

correlated asperity contacts. The “

total fraction of asperity contacts

was 40%. In addition, this transient flow field was terminated at the time at which the

flux ratio is approximately 0.5. For comparison, its corresponding steady state flow field

is shown in Figure VI.6(b).
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Figure VI.7 shows four snapshots of tracer transport, using the transient water

flow field shown in Figure VI.6(a) as the initial condition. Again, tracer was injected

uniformly over the entire top boundary at a constant rate of 10-3kgh, starting at the time

when the water simulation is terminated. To save computation time, this tracer simulation

was terminated when the flux ratio is approximately 0.95. Sim.ik transport behavior as

present in Figure VI.3 is also observed in Figure VI.7. Moreover, Figure VI.8(a) shows

that the tracer BTC can be reasonably fitted by the log-normal model, though the tail of

the analytical CDF deviates from the sample BTC. The deviation at the tail may be

because the tracer transport has not reached the steady state yet. For comparison, Figure

VI,8(b) shows the BTC obtained by injecting tracer to the steady state flow field of

Figure VI.6(b). The resulting flow fields of tracer are not shown here because they are

very close to those flow fields in Figure VI.7. Because the former tracer simulation was

terminated at a higher flux ratio (at 0.97), the BTC in Figure VI.8(b) shows that it can be

better fitted by the log-normal model. For the water BTC, however, Figure VI.9 shows

that the log-normal distribution is not a good model for predicting water travel time.

VI. 2 Episodic infiltration

The study of episodic infiltration is motivated by field observations that in-situ

surface infiltration into fractures may experience temporal variabili~ to a large extent

(.Bodvarsson and Bandurraga, 1996). Under such conditions, fractures are undergoing

repeated wetting and drying cycles. Therefore, hysteresis effects may become significant

for episodic infiltration events. However, detailed analysis of hysteresis effects is beyond

the scope of the present study. Instead, this section focuses on episodic infiltration events,
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which are either events with repeated wetting and drying cycles or events with temporally

intensified infiltration. The purpose of these analyses is to study the change of seepage

patterns with respect to the change of infiltration rate applied at the boundary.

1
-

E.-

— Analyticallog-normal BTC
+
~ 0.4 ------- Mafytlcal log-normal pdf 1 82

k
- 4+

Time (day)

Figure VI.9 Water BTC corresponding to flow field in Figure VI.6(b).

Two types of episodic infiltration events are illustrated in Figure VI. 10. The first

type, Figure VI. 10(a), considers aperiodic itilltration event. The intervals of wetting and

drying periods are Atl and Atz, respectively. For the following example, the values of Atl

and Atz are assumed to be 1 and 10 days, respectively. The infdtration rate for this

example is still assumed to be 10-3kgk. Note that water 1 is the supplying fluid during

the f~st wetting cycle, but it is changed to water 2 in subsequent wetting cycles. The

purpose of switching the supplying fluid is to examine the effect of antecedent saturation

history on seepage. The second type considers a transient infdtration event with a

temporary intensified supply rate. This is illustrated in Figure VI. 10(b) as the solid line.

The interval At is the breakthrough time for constant supply rate of Qo. The arbitrary

integer n is the ratio of the intensified rate to the constant rate. Three ratios are

considered, i.e., 2, 5, and 10. Note that the total amount of liquid injected into the fracture
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Figure VI.1O Schematic of episodic infiltration events.

is the same, which is Q. x At. In both scenarios, fluid is injected uniformly over the entire

top boundary at a constant rate of 10-3 kg/s. The initial saturation at non-asperities is

assumed at the value of residual water saturation.

Figure VI. 11 shows the snapshots of the total water saturation at the end of each

wetting and drying cycles for the first episodic infiltration event. For comparison, the

realizations of water seepage at breakthrough and steady state for the corresponding

single wetting event are shown at the top of the figure. For both wetting and drying

cycles, water travels along the flow paths that are depicted in the steady state flow field

of water. However, the speed of downward migration during a drying cycle is slower than

the speed during a wetting cycle. This change of speed is shown in Figure VI. 12 for the

first wetting and drying cycles. The average speed of downward migration is reduced

from 0.47 rn/hr for the first wetting cycle to 0.31 m/hr for the fust drying cycle. The

reduction of speed is because of the lower relative permeability at the smaller liquid

saturation during a drying cycle. The change of capillary pressure is shown in Figure

VI. 13(a) to VL13(C).
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Figure VI. 12 Vertical advance curves of the frost wetting and drying cycles, and the
single wetting event.

For subsequent wetting cycles, water only travels within flow paths that have

been developed by previous drying cycle. This is because those flow paths have higher
,,
,,

relative permeability than dry flow paths. New flow paths can only be developed during
~!

drying cycles. The reason is that, from capillary theory, water (the wetting phase) tends to

remain in smaller pores during drying cycles. Since dry flow paths have smaller relative

permeability to water than wet flow paths, their effective pore space is smaller than that , ~

for wet flow paths. Change of relative permeability in consecutive wetting and drying
,,

cycles can be seen in Figure VI. 13(d) to VI. 13(f). It is obvious that the relative

permeability in a drying cycle is smaller that that in wetting cycles.

Because the governing Richards’ equation does not consider hysteresis effects,

liquid seepage in FigureVI.11 starts to repeat itself approximately after the third wetting-
,,

drying cycle. However, the flow fields near the lower boundary after the second drying ,.

cycle are somewhat different Ilom each other because the wetting front is still sensitive to

the surface infiltration. Simulation continues after the fifth drying cycle by constantly
,,.,,,
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injecting water 2 into the fracture, and then stops when the flux ratio of water 2 is 0.933.

The resulting flow field of total water is shown at the top left in Figure VI.14. This flow

field is, as it should be, very close to the steady state flow field of water of the single

wetting event because hysteresis effects are neglected. The top right plot in Figure VI. 14

shows the water 2 saturation after the fifth drying cycle. For completeness, flow fields of

water 2 after the f~st drying cycle are shown in the rest of Figure VI. 14.

Figure VI. 15 shows the periodic change of saturation at the top surface for the

five wetting and drying cycles. For the fwst wetting-drying cycle, Figures VI. 15(b) show

that saturation at the top surface increases rapidly to a constant value during a wetting

cycle and then decreases gradually to a lower value during a drying cycle. Because the

capillary hysteresis is neglected, it is expected that the absolute capillary pressure at the

top surface also experiences similar variations. That is, the flow simulation switches to a

constant head boundary condition during a short interval, even though the simulation

starts from a constant injection boundary condition. It is expected, therefore, that flow

simulations using a constant head boundary would be close to the present simulations.

Because drying duration was only 10 days in previous simulations, significant

changes of capillary pressure or other dynamic processes may not be evident. For

example, Figure VI. 16 shows that the transient change of accumulated mass at the bottom

boundary behaves as an increasing function with time. If the drying duration was long

enough, it would be expected to see this curve to be stabilized before the end of each

drying cycle. On the other hand, the exiting flux of water 2 at the bottom boundary tends

to stabilize at the end of each drying cycle, see Figure VI.17.
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Figure VI. 16 Change of accumulated mass of water 2 after the fust drying cycle.
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Figure VI. 17. Change of accumulated water 2 flux at the bottom boundary.

Now, let us consider the second type of episodic infdtration. The constant supply

rate (Qo) and the time to breakthrough (At) are 10-3 kg/s and 43.56 hrs, respectively, for

this numerical experiment. Three ratios of the flow rate (2, 5, and 10) are considered.

Therefore, the new injection rates are 2X10-3kg/s, 5X10-3kgk, and 1X10-2kg/s, and the

new intervals of injections are 21.78 hrs, 8.712 hrs, and 4.356 hrs.

*

146

J



Figure VI.18 shows realizations of saturation at breakthrough for events with a

uniformly distributed supply rate and intensified rates. All realizations are practically the

same, only with a minor difference due to free drainage after surface infiltration is turned

off. However, Figure VI. 19 shows that the vertical seepage for all episodic infiltration

events evolve at a faster speed than the event with a uniformly distributed supply rate. If

the average seepage velocity is defined as the ratio of the depth of the plume tip to travel

time, Table VI. 1 (see column 4) shows that the initial average velocity increases with

increasing surface infiltration. As sutiace infiltration increases, however, the ratio of

average velocity for episodic infiltration to the average velocity for constant infiltration

becomes smaller than the ratio of supply rate, see column 6 of Table VI.1. On the other

hand, the ratio of pending duration is approximately he inverse of the ratio of supply

rate. Furthermore, liquid seepage after pending proceeds at a faster speed than seepage

before pending, see the last column of Table VI. 1 and Figure VI.18.

These simulation results suggest that liquid seepage for episodic infiltration

follows some patterns if the total mass injected into fracture is conserved. These patterns

can be roughly divided into three stages: before pending, during pending and after

pending. The pending refers to the regions which significantly delay the seepage. For

example, the pending refers to the regions above the depth at – 13 m in Figure VI. 18. It is

obvious that these patterns are different from each other.

The first pattern applies

significant pending. It says that

to the time interval before the seepage develops

the initial average seepage velocity increases with

increasing surface infiltration. This increasing trend is because the flow resistance
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Table VI. 1 Results of episodic injection

Q (kg/s) T (hr) Tf (hr) Vf (m/h.r) RV T@r) V@/hr)

1X10-3 43.56 24.93 0.52 --1 1.00 15.17 3.17

2X10-3 22.76 13.23 0.98 2 1.89 7.51 5.19

5X10-3 10.31 5.69 2.27 5 4.37 3.11 8.81

1X10-2 6.12 3.00 4.30 10 8.27 1.68 8.39
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Q= surface infiltration rate
T = breakthrough time
Tf = fnst arrival time to the depth of – 13.0 m, the depth where pending occurs
Vf = initial average seepage veIocity, i.e., 13.Offf
RQCratio of surface infiltration, i.e., Q/lx 10-3
Rv = ratio of the initial average seepage velocity for the episodic infiltration to the

average velocity for the event with a uniformly distributed rate
TP = time needed to completely saturate the ponded regions at –13.0 m
VP= average seepage velocity after pending

decreases with increasing supply rate. The decrease of flow resistance

injection rate is interpreted by the increasing relative permeability

with respect to

and decreasing

absolute capillary pressure at the top surface, see Figure VI.20 (b) and VI.20(C). This

initial seepage velocity remains approximately constant until water descends to a depth at

about –13 mat which significant pending is occuring. However, the increase of the initial

seepage velocity is not at the same pace as “the increase of supply rate. This may be
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because seepage needs longer time to develop new flow paths as the supply rate

increases. Thus, the ratio of seepage velocity for episodic infiltration to the velocity for

the event with uniformly distributed supply rate is smaller than the ratio of supply rate.

Note that each of the curves in Figure VI.20 for episodic infiltration drops off

because of the termination of surface infiltration. In contrast, the tails of curves for

constant infiltration remain horizontal. In addition, all the curves in Figure VI.20 exhibit

a stepwise increasing behavior. This is because liquid has to ffl in dead-end pores before

developing new flow paths. Thus, there are two obvious jumps in each of these curves.

Each jump corresponds to each dead-end pore shown in Figure VI. 18.

The second-stage pattern suggests that the time needed to completely saturate the

ponded regions at – 13 m inversely follows the pattern of supply rate. This is simply

because of mass balance. That is, the larger the supply rate, the shorter the duration to fill

the pore space.

The third-stage pattern suggests that seepage after pending has an average

velocity that is even faster than the initial seepage velocity. However, there seems to be

no explicit correspondence to the pattern of supply rate. But, results in Table VI.3 suggest

that average seepage velocity after pending becomes closer to each other as the supply

rate increases.

?h summary, these patterns observed in Figure VI. 19 suggest that pending

duration inversely correspond to the pattern of surface infdtration. However, average

seepage velocity follows different patterns before and after pending. Combining these
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patterns implies that pending may have less impact if the surface infiltration becomes

stronger. For an infiltration event with a high supply rate, liquid seepage may follow a

single average seepage velocity even if significant pending appears. On the other hand, if

the surface infiltration become weaker, time lag due to pending may have significant

impact on liquid seepage as well as BTC behavior.

VL3 Lhnitations of space and time averaging

It is known that the macroscale approach, instead of representing the spatial

heterogeneity of fractures with a detailed resolution, averages the heterogeneity of

fractures as well as the inputs to the system boundary. In this section, a numerical

experiment is conducted to point out the limitations of such an approach.

Consider, for example, the synthetic fracture in Figure V.6(d). This fracture has

spatially random asperity contacts with a total volumetric fraction of 40%. To

the macroscale averaging approach, the heterogeneities are replaced with

simulate

spatially

averaged porosity and effective permeability. The same initial and boundary conditions

as those specified in section V. 1 me used for the simulation. The resulting values of

parameters for this flow simulation are listed in Table VI.2. The computed saturation at

breakthrough is spatially uniform with a value of 0.58. In addition, the vertical advance

curve for transient flow field is perfectly linear. However, the time to breakthrough

obtained by the macroscale approach is longer than that obtained using detailed

resolution of fracture heterogeneity. After the first breakthrough, however, the liquid seep

corresponding to the macroscale approach takes a shorter time to reach the steady state.

Overall, the macroscale averaging approach is not able to simulate the occurrence of fast
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preferential flow paths as observed in the fields. More

approach cannot predict the complicated seepage patterns,

and pending, that are expected to be seen in the fields.

importantly, the macroscale

such as fingering, bypassing

Table VI.2 Comparisons between the macroscale approach and the current approach

Simulation method 4 Lff,hOrk (m’) kff,.or k (m2) Breakthrough Steadystate
time (b) time (days)

Macroscaleapproach 0.21 0.055x 10-9 0.060 X 109 98.64 4.78

Currentapproach 0.35 1.0x 10-9X~ 1.0x lo-9x~ 34.85 18.80

The water and tracer BTCS for the simulation using the macroscale approach are

shown in Figure VI.21. Tracer simulation is continued from the steady state flow field

obtained by the macroscale approach. The same boundary conditions as those used for

the water simulation are employed for the tracer simulation. Again, the resulting tracer

flow field is trivial because it is also a spatially uniform saturation field. Figure VI.21

shows that the log-normal model can be fitted to both water and tracer BTCS. Note that

the crtfor water BTC is very small (ct = 0.0063). Thus, the water BTC can be practically

approximated by a step function, and its pdf can be represented by a spike at the mean

travel time (<~ = 4.22 days). However, tracer BTC is more dispersed than water BTC (at

= 0.45)0
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Chapter VII. Discussion and conclusions

Field evidence suggests that in semi-arid environments water

downward rather rapidly along preferential paths. For example, at

is able to migrate

Yucca Mountain,

Nevada, environmental tracers have been shown to migrate several hundred meters deep

within decades. However, the time scale of tracer transport predicted by numerical

models using conventional volume-averaging approaches is on the order of thousands of

years. In order to address this discrepancy, a numerical model based on fimdamental

processes and mechanisms has been proposed in this study.

Attempts at modeling flow and transport in unsaturated fractured rock based on a

mechanistic process model must start from a specification of void

fractures. Unfortunately, the multiple length scales of fracture

space geometry in

surfaces generally

complicates the specification of void space geometry. On the other hand, our ability to

d~ectly obtain geometric chmacteristics of fracture void spaces from field observations is

limited. Only inputs into and outputs from the flow system boundaries can be observed in

the field, which are all subject to significant temporal as well as spatial variability. In this

study, void spaces in fractures are characterized based on hypothesized geometric

features, such as spatially correlated

expected to be most relevant for

asperity contacts. These spatial characteristics are

seepage behavior. The appropriateness of these

geometric features is then judged by whether they

transport behavior that would be observed in the field.

are able to reproduce flow and

Fluid flow and solute transport in natural fractures generally occur in 3-D fracture

networks. In this study, however, fracture networks were approximated as 2-D
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heterogeneous porous media in a vertical fracture plane. In addition, the effect of matrix

permeability was neglected. This assumption is reasonable for short-term flow, and

transport behavior, but may not be viable when considering long-term flow patterns.

Thus, the present study is applicable to “small” fractures in hard rocks of low

permeability, such as welded tuffs, graywacke, mudstones, granite, and some fractured

basalts. It would not be applicable to larger fractures with 3-D void space, or to small

fractures in rocks with significant matrix permeability (e.g., non-welded tuffs or

sandstones).

Several approximations and assumptions were made in this study. Effects of

entrapped air were neglected. Hysteresis effects in capillary pressure and relative

permeability were also neglected. Furthermore, permeability heterogeneity was assumed

to be the dominating influence on seepage. Porosity heterogeneity was not considered.

For solute transport, molecular diffusion was neglected. The last assumption suggests that

the only mixing mechanism is due to the finite spatial discretization. In addition,

neglecting moleculardiffixion limits the time scale for which the realistic solute transport

can occur.

Among the various spatial features of fracture void spaces, the spatial correlation

around asperity contacts is focused in this study. This is motivated by preliminary

analyses that conventional serni-variograms are not very sensitive to the topology of

asperity contacts in fractures. The reason for this insensitivity may be because the

detailed heterogeneity of a random field is averaged out by the semi-variograrn. Thus, a

modified Metropolis algorithm is proposed as a new perturbation mechanism for
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simulated annealing (SA). This modified algorithm is able to emphasize the

neighborhoods of conditioning asperity contacts, while formulating the objective function

by employing the conventional semi-variogram. Simulated permeability fields obtained

by the modified Metropolis algorithm thus show much stronger clustering of asperity

contacts.

It was found from

better representation of

sensitivity analyses that the ratio of ~kk e ().5 is preferred for

spatially correlated permeability fields. However, seepage

patterns were not as sensitive as characterization accuracy to this ratio. Indeed, seepage

patterns are virtually insensitive to the ratio A.&as icing as-its is smaller than 0.5. This is

especially true for flow simulations in permeability fields with spatially correlated

asperity contacts. This insensitivity is explained by the significant bypassing effect of

flow due to asperity contacts that are laterally correlated to a large extent.

Seepage in unsaturated fractures with either localized or distributed injection is

characterized by localized preferential flow, along with bypassing, fimeling, and

localized pending. Generally, flow and transport behavior is dominated by the fraction of

asperity contacts, and their shape, size, distribution and spatial correlation. However, the

detailed distribution of permeability in the open space of fracture is less important than

the spatial correlation of asperity contacts. For increasing fraction of asperity contacts,

there is more flow bypassing and pending, but fewer fingers. For a fixed fraction of

asperity contacts, however, flow bypassing, fingering and average vertical seepage

velocity depend on the correlation length and the principal correlation direction of

asperity contacts. If asperity contacts are horizontally correlated, flow bypassing,
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fingering,

horizontal

correlated

and average vertical seepage velocity generally increase with increasing

correlation length of asperity contacts. For non-horizontally or non-vertically

asperity contacts, flow bypassing and average vertical seepage velocity

increase as the anisotropy ratio of asperity contacts increases; but flow fingering

decreases with increasing ahisotropy ratio.

Seepage dispersion is generally higher for fractures with intermediate fraction of

asperity contacts; but it is lower for small or large fractions of asperity contacts. The

reason for this behavior is that many fingers can be formed in fractures with small

fraction of asperity contacts. These fingers are not significantly affected by asperity

contacts, and they all have similar breakthrough behavior. Thus, seepage dispersion is

weak. With a large fraction of asperity contacts, only a limited number of fingers

(sometimes only one) can break through thus, seepage dispersion is generally weak.

However, a few fingers (both fast and slow) are formed in fractures with intermediate

fraction of asperity contacts. Thus, seepage dispersion is generally stronger.

Pending occurs in regions that lack permeability in the vertical direction. It is then

expected that pending would slow down the downward advancement of seepage. As a

result, seepage dispersion may become larger because of pending, even for Iiactures with

large fraction of asperity contacts. However, if pending is significant, it may gather

distributed seepage and focus flow into more localized pathways. Accordingly, seepage

may be accelerated because the funneled flow has a higher seepage velocity. Under such

circumstances, seepage dispersion may be greatly reduced, and the resulting water BTC

behaves like a step function.
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The strength of pending depends on the fraction of asperity contacts and their

correlation structure, i.e., their correlation lengths, anisotropy ratio, and the principal

direction. In synthetic fractures with isotropic permeability and asperity contacts, the

strength of pending increases with increasing fraction of asperity contacts. Yet, the

relationship between the strength of ponding and the anisotropic structure of permeability

and asperity contacts is still not clear.

Simulation results found that BTCS for solute transport tends to be more

dispersive than water BTCS. This is because water has to fill dead-end pores along its

flow paths while migrating downward. However, tracers bypass these dead-end pores and

travel along flow paths that have less flow resistance. Therefore, tracer transport is more

uniform than water transport. More importantly, it was found that the log-normal travel
. .

time model does not fit water BTCS very well. In contrast, BTCS of solute transport either

under transient or steady state flow field of water can be fitted very well by the log-

normal model. The positively skewed log-normal distribution implies that tracer transport

may evolve over a longer time scale than water transport.

The general features of flow patterns, as well as the different scaling laws with

respect to infiltration events with different rates of surface injection have several

implications for field experiments. First, the in-situ sampling techniques need to consider

the effect of preferential flow and flow bypassing. Installing sampling devices in a

spatially uniform manner may not be cost-effective because flow may only break through

certain locations at the exiting boundary. Second, accelerated or delayed sbepage due to

ponding needs to be considered when designing the sampling intervals, especially for
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automatic sampling equipment. Third, field experiments should be carefully designed to

consider the temporal and spatial variability of the input to fractures. Results of our

simulation suggest that initial seepage velocity increases with the infdtration rate. In

addition, the effect of pending also changes with the supply rate. Therefore, seepage

patterns are also subject to change with the surface infiltration. For waste isolation

problems, it may be necessary to locate the fast

infiltrating water from contacting

management, it may be needed to

storage canister is exposed to water.

the storage

consider the

preferential flow paths to prevent the

canister. From the aspect of waste

transport pathways of solute once a

In the future, studies of flow and solute transport in natural fractures should focus

on employing more realistic assumptions. The numerical model should be expanded to

consider 3-D effects. In addition, flow and solute transport in unsaturated fractures is at

least a two-phase process, effects of the gas phase should not be neglected. For example,

Richards’ equation implicitly assumes that the non-wetting phase fluid (air/gas) does not

interfere with the movement of the wetting phase. In reality, however, air maybe trapped

within dead-end pores or be accumulated ahead of a critical pore neck. Therefore, it may

block the movement of the wetting phase. Its pressure may be increased to a critical

point, e.g., the bubbling pressure, such that it maybe released by bubbling or be pushed

through the pore neck. Thus, phase interference and phase change are essential

mechanisms for two-phase problems. The appearance of pore necks then raises the

concern of the spatial variability of porosity. Porosity heterogeneityy may have long-term

effects on seepage as well as solute transport. Furthermore, the effect of matrix

permeability should be included when considering long-term seepage effects. As a result,
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molecular diffusion should also be considered because it is the dominating mechanism of

mass transfer between the rock matrix and fractures. Furthermore, field observations

indicate that surface infiltration and percolation are both subject to temporal variability.

Seepage is therefore expected to experience hysteresis effects. Therefore, hysteresis

effects of capillary and relative permeability should also be included.

:
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Appendix A. Derivation of a semi-variogram model and
its corresponding correlation function
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(A) Definitions
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Figure A. 1, ScatterPlot of random variables U and V.

Dependence of two random variables U and V can be visualized from their
scatterplot as shown in Figure A. 1 (Isaaks and Srivastava, 1989), in which sample data of
U and V measured at the same location are plotted against each other on the same
diagram. Note that the solid line at 45° features the perfectly correlated pair, i.e., U = V.
The spatial correlation of the two random variables is usually quantitatively measured by
their covariance function, COVIU,VJ

COVIU,V]=E[(U-MU)(V -mv )]= E[u. v]–rnumv (A-1)

where mu and mv are means of U and V, respectively. Covariance is used to measure the
similarity between two random variables. However, the variability of two random
variables is usually measured by their moment of inertia about the 45° line on their
scatteqiot. This quantity is called “semi-variogram” in the literature of geostatistics,
which is written as

1N2
~d.

‘u” ‘~ i=, 1
.-!-$( ui.v.)’1

i-l

(A-2)

where N is the total number of random pairs (Ui, Vi), and di is distance on a scatterplot
from a random pair (Ui, Vi) to the line on which U = V. Semi-variogram and covariance
have the following relationship

2'uv=[~2u:-m:]+[~~V2-m:]-[~$uiV-2mumvl+(mu-mvY(A-3)

=s; +s; - 2C0v[U,V]+ (mu -mv )’

where Su and Sv are standard deviations of U and V, respectively. The above definitions
of covariance and semi-variogram can be applied to two random variables measured at
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the same location, e.g., Ui and Vi in Figure A. 1; or the same attribute measured at
different locations. The latter is usually used in the literature of geostatistics to measure
the spatial variability of a spatially random function (SRF).

For a SRF Z(u), its spatial variability is quantitatively measured by calculating
the mean squared difference between a pair (Z(u), Z(ui-h)), where h is the separation
distance between Z(u) and Z(u+h). Based on Eq(A-2), the semi-variogram of Z(u) is

N(h)

1
2yZ(h) = —

N(h) z
[Z(ui)-Z(ui +h)]’ = E{[Z(u)-Z(u+h)]2} (A-4)

i=1

If Z is a stationary SRF, i.e., the statistics of Z are independent of location, Eq(A-4) can
be simplified as

2yZ(h) =E{[Z(U) -Z(u+h)]’}= 2Var[Z(u)]-2Cov[Z(u), Z(u+h)] (A-5)

or

y.(h) = G(o) - G-(h) (A-6)

where CZ(0) is the variance of Z, and Cz(h) is the covariance of Z with separation
distance h. Hereafter, the subscript in yz(h) or Cz(h) will be omitted for simplicity if it is
clear that what SRF is being dealt with.

(B) Mathematical modeIs of y(h) and C(h)

A function that can be used as a covariagce function must be positive definite
such that a function that is a weighted linear combination of n SRF’s has a non-negative
variance. From this property, other properties of C(h) can be inferred, which are (a)
C(0)= Var(Z(u)) 20, (b) C(h) = C(-h), and (c) IC(h)l S C(0). (Journel and Huijbregts,
1978).

In the literature of geostatistics, there are several models of semi-variograrn that
have shown to be positive definite. One of the most commonly used models is the
exponential model which is defkied as

[ (-?)1y(h) =s; l–exp

its corresponding covariance function is defined as

[)C(h) =s; exp –%
t

(A-7)

(A-8)

where h = Ihl is the magnitude of the separation distance, ~ is the range parameter, and

s; is the sill (or the variance of the underlying random variable Z). Note that Eqs (A-7)
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is an isotropic model, thus, y (h) = y (h). The “range” is defined as the distance at which
the semi-variogram reaches 95% of the sill. That is, at h = ~, equation (A-7) reduces to

y(h) = s~[l–exp(–3)]= 0.95s~ (A-9)

For any semi-variogram model, the integral scale L, (or correlation length) of Z is
defined as (Dagan, 1989)

~ ‘# ’O”C(h)dh (A-1O).

Therefore, for an exponential serni-variogram, Xcan be derived as

[)

~–~ dh=~ (A-n)a =-&:”e’x P g

That is, for an exponential semi-variogram, the correlation length is one third of the
range. See Figure A.2 for illustration.

~h) or C(h)

Sill,s: ....................................................................

/’
~h

s
~0.95 S2z

~.

Figure A.2. Illustration of an exponential iemi-variogram and its
corresponding correlation function.

From Eq(A-1 1), Eq(A-7) can be recast as

‘(h)=s’F-exp(-31
For an anisotropic exponential semi-variogram, Eq(A-12) can be rewritten as

(A-12)

.,

:.
I

.,

173
I

—~-. ... ?.,.i. ..i ./:!..<.., -,, -.,,.,,. ..~..-..,f,.’ .-,,. $..,, ..,...
—-—-.-l

.>,,:. ,., ..,. .,..>, ,,.-’~<, ,.-. .,



..—— ———-

2{[-{m]}m=w%~z)=c+sz l:exP (A-13)

where & and & are the correlation lengths in the x and z directions, respectively; and hX
and hZme the separation distances in the x and z directions, respectively. Note that this
kind of anisotropy is called “geometric anisotropy” in the literature of geostatistics
(Isaaks and Srivastava, 1989).

.
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Theoretically, semi-variogram model at zero separation distance (h = O) should
have a zero value, i.e., y(0)= O,regardless of what type of model it may be. This property
comes from that fact that the spatial correlation of Z to itself at h = O should be its
univariate variance s;. When fitting a semi-variogram model to sample data, however, it
may happen that the intercept extrapolated from the sample data to the vertical axis at the
origin is a finite value but not zero. Likewise, the covariance function at large separation
distance may approach asymptotically a finite value, not zero. This non-zero semi-
variogram value at zero separation distance is called the “nugget effect” in the literature
of geostatistics.

Nugget effect can be attributed to sampling error as well as small-scale variability
(or microvariability) (Kitanidis, 1997). Usually, these two effects occur simultaneously in
the field. Sampling error may be removed by following cautious sampling procedures, or
using equipment with better precision, while taking field measurements. However, it is
generally difficult to map the detailed variability of a spatially heterogeneous field by
using finite sampling intervals. Thus, it is worthy to understand these effects and find an
analytic way to describe them.

(A) Nugget effect due to sampling error

Denote the spatial random function by Z. At a particular location u, let the true
value of Z be Zo(u), and the measured value be Z(u). Due to sampling error, Zo(u)and
Z(u) may not be the same. Thus, we may write Z(u) as the sum of Zo(u), sampling error
(E) and a random fluctuation term (~(u)), i.e.,

Z(u) = ZO(U)+ &+ %(u) (B-1)

where Zo(u) is a constant and E is a constant random variable. Assume that &has mean

and variance as weand s:, respectively; and X(U)is ,a random fluctuation term with mean

and variance as O and s;, respective y. Furthermore, assume that ~(u) and ~(u+Au) are

correlated to each other with a general correlation function ~m(u), and & and & are
independent to each other. Then, statistics of Z(u) can be derived as the followings

E[Z(U)] = ZO(u) + m,

Var[z(u)] = s: + s; (B-2)

COVIZ(U),Z(u + Au)] = s; +Vn (u)sj = C(AU) = C(h)

Assuming positive correlation of ~, i.e., 0< ~xz(u) <1, then S: S C(h) S s~+s; .

The correlation function C(h) is shown schematically in Figure B. 1. It is obvious from
Figure B. 1 that the covariance function does not go to zero as h increases but go

asymptotically to a constant s:. Statistically speaking, the contribution of s; to the

correlation function C(h) is called “bias” (Rice, 1995). In other words nugget effect may
be resulted from a biased measurement.
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(B) Nugget effect due to small-scale variability

To make measurements of a SRF in the field, it is inevitable to have a minimum
sampling interval due to the constraint of cost and efficiency. That is, spatial variability
within the minimum sampling interval may not be sampled. See Figure B.2(a) for
illustration, in which the nugget effect is caused by the small-scale variability. In this
case, however, there may still exist a semi-variograrn that fits the sample data but has a
zero value at h = O, see Figure B.2(b). In other words, the serni-variograrn at h = O may
still be zero but jumps to a finite value at small separation distance due to small-scale
variability.

c (h)

s:+s;

s: 4}.......... ........ ........ . ........ ............... ......

Inugget

h

Figure B.1 Nugget effect due to sampling error (or bias).

To model the discontinuous jump at the origin, a semi-variogram model, e.g.,
exponential, with a nugget effect can be recast as “

‘(h)={s’+h>o(B-3)

,’

,’

:,

t,

I
,
}

and the corresponding correlation function can be written as
I I

H)C(h) =.2 ex 3h
z ——

~
ifh>O

where s: is the nugget, and s; +s; is the sill (Isaaks and Srivastava, 1989).

(B-4)

Equations (B-3) and (B-4) can be plotted in Figures B.3(a) and B.3(b),
respectively. Figure B.3(a) shows that y(h) at the origin still has a zero value. As soon as

h becomes larger than zero, there is a sudden jump from O to s:. This sudden jump
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reflects the fact that the sampling interval is too large to capture the spatial variability
within the distance smaller than the sampling interval. The corresponding covariance
function shows that C(h) at h = O is the summation of s: and s: (the nugget). As soon as

h becomes larger than O, C(h) suddenly drops to s;. As h becomes even larger, C(h)
decreases asymptotically to zero, suggesting as it should be because Z’s become
uncorrelated to each other at large separation distances.

Figure
1986).

I ti

X sample data

I../----
nugget ‘- nugget

~ h
(a) sample data

---------- extrapolated sample data
— possible semi-variogram considering

small scale variability

/
,.-,

h

(b) fitted sem i-variogram

B.2 Illustration of nugget effect due to small scale variability (from de Marsily,

One way to overcome the small-scale variability is to reduce the sampling
interval. However, doing so may not be practical due to the extra number of sampling
points. Thus, the other convenient alternative is to manipulate the definition of y(h) and
introduce a discontinuity at the origin such as Eqs(B-3) and (B-4).

y(h) C(h)

s: +s;---------------------------------------------s:+s; I.......--------------------------....
++

(a)

L
c h

(b)

Figure B.3 Exponential semi-variogram and its corresponding correlation function with
nugget effect due to small-scale variability.
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Appendix C Source code of the modified Metropolis algorithm
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Randomly select two un-
conditioned grid points U1and Uz

J

Calculate the objective function, 001~,with original locations of u, and U2

Calculate a new objective function, On,W,by swapping u, and Uz

AO = 0..,.. -0-,.

stop
Yes

No

Yes

No I No

Yes u, in a neighborhood

No

Swap C(ul)and C(UZ)4
naccept = n accept + 1

Tnew= z TOid Tnew = ‘TTold

i~n~= O ien~= iend+ 1

n –o *
accept— Yes

n –oaccept —

fly =0 ntw=0

(!)1
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(2) Source code

C INCLUDEFILE ‘METRO.INC’

c7o%%%%%%%%%%%%%Yo%qo%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%7o%%%7o7o%%%%
c %
CCopyright(C) 1992StanfordCcnterforRcservoirForccasting. All nghtsreserved %
C Distributed witlx C.V. Deutsch and A.G. Joumel. %
C “GSLIB: Geostatistical Software Libmry and User’sGuide: Oxford University Press, New York, 1992. %
c %
C The programs in GSLIB are distributed in the hope that they will be usefrd, but WITHOIJT ANY WARRANTY. No author or %
C distributor accepts responsibility to anyone for the consequences of using them or for whether they serve any particular purpose %
C or work at all, unless he says so in writing. Everyone is granted permission to copy, modify and redistribute the programs in %
C GSLIB, but only under the condition that thk notice and the above copyright notice remain intact. %
c7o%%7o%%%%70%7o%%%%%%%%%%%%7o%7o%%%7o%7o%%%%%%%%Yo%%%%%%%%%%%7o%%%70%%9o%%%%

c

c’IlrefollowingParametem controlstaticdimensioning witfrinsasim3d:
c
c MAXX maximum nodes inX
c MAXY maximumncdcs inY
c MAXZ maximumncdes inZ
c MAXCUT rnaximumnumberofcutoffsfdatatodefineCDF
c MAXLAG maximum number of lags in variogmmcalculation
c MAXNST maximum number of structures for variogmm model
c
c Authoc C.V. Deutsch Date February 1990
c----------------------------------------------------------------------------------------------------------------------------

implicit real*8(a-h,o-z)

parameter (MAXX = 100,MAXY = 100,MAXZ = 1,
+ MAXCUT =5, MAXLAG=500,MAXOBI= 2,
+ MAXNST = 4, EPSLON=l.Od-20,VERS10N=l .200)

c
c Army declaration:
c

c

rca1*8 cut(MAXCUT),cdf(MAXCUT),var(MAXX,MAXY,MAXZ),s~(6)
rcal*8 vamew(MAXLAG,MAXOBJ),vammrJ(MAXLAG),

+ varact(MAXLAG,MAXOBJ),sclfac(MAXLAG),
+ vardh(MAXLAG,MAXOBJ),ltpar,utpar,renomr
integer secd,part,repo~ix1(MAXLAG),iyl(MAXLAG),iz1(MAXLAG),

+ it(MAXNST),utail,kail
logical twopar,on1y2d,cond(MAXX,MAXY,MAXZ),comp
real*8 cc(MAXNST),aa(MAXNST),ang1(MAXNSf),ang2(MAXNST),

+ ang3(MAXNST),anisl(MAXNSllanis2(MAXNST),
-!- garnmanew(rnaxlag,2),gammah(rnaxlag,2),gammav(maxlag,2),
+ divnew(maxlag,mrrxobj)
real*8 gamunwt(maxlag)

c***********************************$************************/

c 1/20/97: The following lines are added by Tai-Sheng Lieu
c

real*8 ymean,ystd
integer itmrrs,nbhd(rnaxx,maxy),defbbhd
chamcter datafl*40,0utfl*40,dbgfl*40,condfl*40,1agfJ*40,

+ horvarfl*40,vervarfl*40,varfl*40,imageinfl*40,
+ imagcoutfl*40

c***********************************************************q
c Conrrnonblocks:
c

common @rid3rVxsiz,ysiGzsiLxmn,ymn,znrn,nx,ny,nz
common /genral/ seed,nsim,var,sas,part,llag,lirnagein,limageout,

+ lout,lvar,idbg,reportJdbg

common finimodl cut,cdf,ltpar,utpar,ltail,utail,zrnin,
+ znrax,igauss,isill,ncdf

;,

,.
!1

I
;.
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common /variog/ sclfac,vamew,varact, vardiv,

+ varmod,dhmew,renorm,nlag,
+ neighbor,ixl,iyl,izl
cornmon/variogl/ garnunwt
common /cova3d/ CO,cmax,cc,aa,angl,ang2,ang3,anisl ,anis2,nst,it
common /Iogics/ twopar,only2d,cond
common /compwti wtcomp,oini~pmsum,pmnew,garrtdf,comp,nwt

c
c**** **********************************************************/

c 1/20/97: The foIlowing common blocks are added by Tai-Sheng LIOU
c

common /Iognorm/ ymean,ystd,pcut,itmns
common /weighU wfcdge,wfcond,scale,iedge,icond
common /anisop/ lhvar,lvvar,noisop
common /datapt/ noncond
common /cutoff/ xcutO,aspcut,xcu~ptarget,cut.save,paspsave
common /frame/ datafl,outfl,dbgfl,condfl,horvarfl,vervarfl,
+ varfl,lagfl,imageinfl,imageoutfl,intervar,nswap
common /garnrtra/gamrnanew,gantmah,garnmav
common /neighbor/ nbhd
common/annealing/m&ro,defnbhd,imod,itield

c**** **********************************************************\

C MAIN PROGRAM ‘SASIM’ (the calling program for SA)

subroutine sasim
c---------------------------------------------------------------------------------------------------------------------------------------------

c%70Y070%70Y0%%%% T0%%%%%Yo%%7070Y0%%%% 70%%7070%70%v0%%%% 707070%Y0707070%%%%Y0Y0 %7o70%%%%%%%

c %

C Copyright (C) 1992 Stanford Center for Reservoir Forecasting. All rights reserved. %
C Dk.tributedwitlx C.V. Deutsch and A.G. Joumel %
C “GSLIB: Geostatistical Software Library and User’sGuide: Oxford University Press, New York, 1992
c

%
%

C The programs in GSLIB are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY. No author or %
C distributor accepts responsibility to anyone for the consequences of using them or for whether they serve any particular purpose %
C or work at all, unless he says so in writing. Everyone is granted permission to copy, mod@ and redistribute the programs in %
C GSLIB, but only under the condition that this notice and the above copyright notice remain intact-
C

%
%

c%%%Yo%%%%70%7070%%70%% 90%%%%70%90%%7070%7070% %70%%%% %%%%%%%%%%% %%%%%%%7o%%%%%%

c---------------------------------------------------------------
C 3-D Simulation by Annealing
c---------------------------------------------------------------
c
c Conditionally Simulate a Complete 3-D Field with Simulated Arresting.
c
c The objective function is the squared difference between the desired variogram and the actual variogmm for as many lags as
c specified. The objective function maybe in two parts - one part includes the conditioning data and the other includes pairs of
c simulated data only.

c INPUT/OUTPUT Parameters:
c
c - Name of a data file of conditioning data (GEOEAS format)
c - column numbers for x, y, z, and variable
c - trimming limits (used to flag missing values)
c - flag specifying whether a standard Normal deviate is to be simulated (set to 1)
c - Name of a data file for non-parametricdktribution
c - column numbers for variable and weight
c - data limits (used for tail extrapolation)
c - option and parameter for the lower tail
c - option and parameter for the upper tail
c - An output tile (may be overwritten)
c - A output file for variograms (may be overwritten)
c - The debugging level (integer code - larger means more)
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c - A tile for the debugging output
c - Whether or not to use an automatic annealing schedule (O=auto)
c- annealing scheduIe
c - Whether a one part or a two part objective function is used
c - Random Number Seed
c - The number of simulations
c - X grid definition (number, minimum, size} nx,xmn,xsiz
c - Y grid definition (number, minimum, size] ny,ymn,ysiz
c - Z grid definition (number, minimum, size): nz,zmn,zsiz
c - The maximum number of lags to be considered
c - Variogram Definition number of structures(nst), nugget, and whether or not to renorrnalizesill to the variance(kmrto)
c - the next “nst*2”lines require
c First line
c a) an integer code for variogmm (I=sph,2=exp,3=gaus,4=pow)
c b) “a”parameter (range except for power model)
c b) “c” parameter (contribution except for power model).
c Second line
c a) azimuth principal direction (measuredcleckwisefromY).
c b)dipofprincipaldirection(measurednegativedownfromX).
c c)athirdrotationofthetwominordirectionsabouttheprincipaldirwtion.Thisangleactscounterclmwke
c when looking in the principal direction.
c Two anisotropy factors are required to complete the definition
c of the geometric arrisotropyof each nested stmcturw
c d) radius in minor direction at 90 degrees from the principaI direction divided by the principal radius.
c e) radius in minor direction at 90 degrees vertical from the principal direction divided by the principal radius.
c
c The output file will be a GEOEAS file containing the simulated values The tile is ordered by x,y,G and then simulation (i.e., x cycles
c fastes~ then y, then G then simulation number).
c
c Original: C.V. Deutsch Date April 1990
c
c Definitions of some variables
c
c varact(il,io) - sum of squared dHererrce between the weighted variogmmand the model variogram
c vamew(il,io) - same as ‘varact’but used in the subroutine ‘OBJECT. If perturbation accepted, set varact=vamew, otberwise,rcset
c varact to the previous vaIue at the next perturbation
c var_unwt(il,io) - sum of squared difference between tbe un-weighted variogramand the model variogmm.This variogram vahreis
c used to test the convergence
c varwl (iI,io) - same as var_unwt but used in the subroutine ‘OBJECT If perturbation accepted, set var_unwt=varwl; otherwise,
c reset var_unwt to the previous value at the next perturbation
c vardiv(il,io) - number of pairs at il-th lag for weighted variogram
c divnew(il,io) - same as vardN but used in ‘OBJECT. It will be restored to the previous value if a perturbation is rejected.
c dlv_unwt(il,io) - number of pairs at iI-th lag for unweighed variogmm

c**** ***** ***** ******$*****************************************/

c

c Updated by Tai-Sheng Lieu, 4J22/1997
c
include ‘metro.inc’

logical accept,firsLvgmorst(6)
real*8 actsv(30,2),divsv(30,2)

c
c Read the data (Initialize) and find the starting objective function:
c

open(50,fiIe=’obj.dat’,status=’unknown’)
tirst=.trrre.
do i=l,6

vgmout(i)=.false.
end do
do 10 i=l,nx
do 10j=] ,ny

nbhd(i&O
10 continue

c

c 6/28/97 : Find the neighborhood of aspersity contacts
c nbhd=l, neighborhood is defined as a square
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c nbhd=2, neighborhoodis defined such that the distance between a grid block and an asperity contact is smaller than the size of
c neighborhood
c
c

open(777,fiIe=’neighbor.dat”,status=’unknown’)
size=real(neighbor)
do 12i=l,nx
do 12j=l,ny
do 12 k=l,nz

if (cond(ij,k)) then
do ii=-neighbor,neighbor

dojj=-neighbor,neighhor
ix=i+ii
iy=j+j
iz=k
if(defnbhd.eq.2) then

dx=rcal(ii)
dy=rcaI@)
dist=sqrt(dx*dx+dy*dy)

end if
if (ix.ge.1.and.ix.le.nx.and.iy.ge.1.and.iy.le.ny.and.

+ iz.ge. 1.and.iz.le.nz) then
if (defnbhd.eq.1) then
if(.not. cond(ix,iy,iz).and.nbhd(ix,iy).eq.O)then

nbhd(ix,iy)=l
xasp=xmn+reaI(ix-l)*xsiz
yasp=ymn+rcal(iy-l)*ysiz
write(777,778) xasp,yasp,O,wfcond

end if
elseif(defirbhd.eq.2)then
if(.not. cond(ix,iy,iz).and.nbhd(ix,iy).eq.O.

+ and.distJe.size) Uren
nbhd(ix,iy)=l
xasp=xmn+rcal(ix-1)*xsiz
yasp=ymn+real(iy-l)*ysiz
write(777,778) xasp,yasp,O,wfcond

end if
end if

end if
end do

end do
end if

12 continue
778 forrnat(2(f6.1,lx),i4,2x,f5. 1)

close(777)
c**** **********************************************************\

c
c 1/28/97: Write header to lagfl if the filename of lagfl is not “nodata.dat’
c
c if (tirst.and.lagfl(l: 10).ne.’norfata.dat’)then
c write(llag,9990)
c end if

call initob(obj,first)
first=.fafse.

c
c fnkial Conditions
c

nswap = O
iend = O
temp =Sas(l)
accept = false.
if(only2d) then

kl=l
k2=l

endif
c
c Loop until convergenceor the stopping numbec
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c
1 naccept = O

ntry =0
wrhe(Idbg,*)’ Obj. Fun. #of swap’
if(idbg.gt.2) then

write(*,777) obj
write(*,996) temp,nswap
write(1dbg,996)temp,nswap
wrhe(ldbg,997) obj,nswap
write(50,*) nswap,obj

996 format(’New Temperature ‘,el2.5; Total swaps: ‘,i12)
997 format(’O‘,e14.7,1x,i12)
777 forrnat~Objective function: ‘,e14.7)

cndif
c
c Keep attempting to swap values until some Iimit is exceeded
c
2 nhy=ntry+l

nswap = nswap + 1
if(idbg.gt.2) then

if((int(nswap/report)*report).eq.nswap)then
write(*,998) obj,nswap
write(Idbg,999) obj,nswap
write(50,*) nswap,obj

endif
998 format(’Objective Function: ‘,e14.7JTotal swaps: ‘,i12)
999 format(’1 ‘,e14.7,1x,i12)

endif
c
c Find a random pair such that none of the data is a conditioning point
c
3 il = int(getrand(seed)”nx)+l

j 1= int(getrand(seed)*ny)+l
if(.not.only2d)

+kl = int(getrand(seed)*nz)+l
if(cond(iljl,kl)) go to 3

4 i2 = int(getrand(seed)*nx)+l
j2 = int(getrand(seed)*ny)+l
if(.not.only2d)

+k2 = int(getrand(seed)*nz)+l
if(cond(i2j2,k2)) go to 4
if(i2.eq.i1.and.j2.eq.j1.and.k2.eq.kl) go to 4

c
c CaIculate Objective Function:
c

call objcct(il Jl,kl,i2J2,k2,accep~objtry)
c
c Accept the swap if the objective has gone down and with a certain probability if the objective has gone up
c

accept = false,
if(objtry.gt.obj) then

unif = drnaxl(J3PSfA3N,getmnd(seed))
if(metro.eq.l ) then

if(imod.eq.1) then

c**** **********************************************************/

c
c----------------------------------------------------------------
c MODI:
c both PI and P2 in nbhd : standard Metropolis
c none of P1 and P2 in nbhd. : stan&rd Metropolis
c P] in nbhd but not P2 : standard Metropolis and P2cP1
c... .. . .. . .. . . ----------------------------------------------------------

if(nbhd(i1J 1).eq.1.and,nbhd(i2,j2).eq.1) then
if(objtry.h.(obj-temp*dlog(unif))) accept = true.

elseif(nbhd(i1J 1).ne.1.and.nbhd(i2,j2).ne.1) then
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if(objtry.lt.(obj-temp*dlog(unif))) accept = true.
etseif(nbhd(i1J 1).eq.1.and.nbhd(i2J2).ne. 1) then

if(objtry.lt.(obj-temp*dlog(uni~).and.
-1- var(i2,j2,k2).lt.var(il j 1,kl))accept=.true. ‘

eke
if(objtry.lt.(obj-temp*dlog(unif))and.

+ var(i1,j1,k1).lt.va~12J2,k2))accept=.rrne.
end if

elseif(imod.cq.2) then
c-----------------------------------------------------------------------
c MOD2
c both PI and P2 in nbhd : reject
c none of PI and P2 in nbhd. : standard Metropolis
c PI in nbhd but P2 not : standard Metropolis and P2cP1
c-------------------------------------- —---------------------------- .

if(nbhd(il j 1).eq.1.and.nbhd(i2,j2).eq.1) then
accept=.false.

ek.eif(nbhd(i1j 1).ne.1.and.nbhd(i2j2).ne. 1) then
if(objtry.lt.(obj-temp*dlog(unif))) accept = true.

elseif(nbhd(iI J 1).eq.1.and.nbhd(i2J2).ne. 1) then
if(objtry.lt.(obj-temp*dlog(uni~).and.

+ va~]2,j2,k2).k. var(il J 1,kl))accept=.rrue.
else

if(objtry.lt.(obj-temp*dlog(unif)).and.
+ var(i1j 1,k1).lt.v@12j2,k2))accept=.~e.

end if
eIseif (imed.eq.3) then

c------------------------------------------------------
c MOD3:
c both PI and P2 in nbhd : standard Metropolis
c none of PI and P2 in nbhd. : standard Metropolis
c PI in nbhd but P2 not : P2<PI
c-----------------------------------------------------

if(nbhd(i1J 1).eq.1.and.nbhd(i2,j2).eq.l) then
if(objtry.It.(obj-temp*dlog(unif)))accept = true.

elseif(nbhd(i1J 1).ne.1.and.nbhd(i2j2).ne. 1) then
if(objtry.lt.(obj-temp*dlog(unif))) accept = true.

etseif(nbhd(il j 1).eq.1.and.nbhd(i2j2).ne.1) then
if(var(i2,j2,k2).lt.v~] 1j 1,kl))accept=.tme.

else
if(var(i1~1,kl ).lt.v@12~2,k2))accept=.mre-

end if
elseif(imod.eq.4) then

c---------------------------------------------------------
c MOD4
c both PI and P2 in nbhd : reject
c none of P1 and P2 in nbhd. : standard Metropolis
c PI in nbhd but P2 not : P2CP1
c---------------------------------------------------------

if(nbhd(i1~1).eq.1.and.nbhd(i2~2).eq.1) then
accept = .faIse.

elseif(nbhd(i1j 1).ne.1.and.nbhd(i2j2).ne. 1) then
if(objtry.lt.(obj-temp*dlog(unif))) accept = .tme.

ekeif(nbhd(i 1J 1).eq.1.and.nbhd(i2j2).ne. 1) then
if(va~12,j2,k2).lt.vz@1j 1,kl ))accept=.true.

else
if(var(iI j 1,kl ).lt.var(i2J2,k2))accept=.true. .

end if
end if

eke
c--------------------------------------------------------------------------
c Standard MerropoIisconsidering the acceptance probability
c------------------------------------------------------------------------

if(objtry.It.(obj-temp*dlog(unif))) accept = .tme.
end if

else
accept = .trrre.

endif
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if(ifield,ea.1 ) then
if(nswa~.~.lw$)vgmout(l)=.true.
if(nswap.eq.Ie5)vgmout(2)=.true.
if(nswap.eq.Ie6)vgmout(3)=.true.
if(nswap.eq.1e7)vgmout(4)=.true.
if(nswap.eq.2.e7)vgmout(5)=.true.
if(nswap.eq.3.e7)vgmout(6)=.true.

end if

c
c If we are keeping it then update the variogram arrayx
c

if(accept) then
nl=le4
if (itield.eq.1) then
do kk=l ,6

if(kk.le.4)n2=nl *10
if(kk.ge.5)n2=nl+1e7
if(vgmout(kk))then
if(nswap.ge.n1.and.nswap.It.n2)then

vgmorrt(kk)=.true.
no=1230+kk
nol=1250tkk
if(kk.eq.l)open(no,file=’garnma4.dat’,stahrs=’mrkrrown’)
if(kk.cq.2)open(no,file=’gamma5.dat’,status=’urrlarown’)
if(kk.eq.3)open(no,fik=’gamma6.dat’,status=’urrknowo’)
if(kk.eq.4)open(no,file='gamma7.dat',status='rmknown') .
if(kk.eq.5)open(no,fi1e=’gamma7I.dat’,sratus=’mrkrrown’)
if(kk.eq.6)open(no,fiIc=’gamma72.dat’,status=’unknown’)
if(kk.eq.1)open(nol ,fik=’rea14.dat’,statrrs=’urrknown’)
if(kk.cq.2)open(nol,fi1e='real5.dat',status='unknown')
if(kk.eq.3)open(nol ,file=’rca16.dat’,status=’urrknowrr’)
if(kk.eq.4)open(nol ,file=’rea17.dat’,status=’rmknown’)
if(kk.eq.5)open(nol ,file=’rea171.dat’,status=’unkrrown’)
if(kk.eq.6)open(nol ,file=”rea172.dat’,status=’unknowrr~

end if
end if
if(kk.le.3)nI=nl *1O
if(kk.ge.4)nl=n l+le7

end do
end if
do 5 ilag=l ,rdag
do 5 iobj=l ,part

varact(ilag,iobj) = varnew(ilag,iobj)
vardlv(ilag,iobj) = divnew(ilag,iobj)
actsv(ilag,iobj) = vamew(ilag,iobj)
divsv(ilag,iobj) = divnew(ilag,iobj)

5 continue
naccept = naccept + 1
obj = objtry
vartemp =v~ll,jl,kl)
var(il jl,kl) = var(i2,j2,k2)
var(i2J2,k2) = vartemp
if(ifield.eq.1) then
do kk=l,6

no=1230+kk
nol=1250+kk
if (vgmout(kk)) then

do 11j=l,rdag
do 11 k=l ,part

varact(j,k) = O.OdO
vtitv(j,k) = O.OdO

11 continue
c**** **********************************************************\

c
c Calculate the Experimental Variogmrm
c

do 31 ix=l,nx

187

,,
!,

,,

,
,

,,
;,

,,
,,
,,

,,,’

;,

.,

,,

,,

:,

,!

I
:.

:’,

. . . . ., ..,. . . . . . ,.. . .. . . . . . .. . . . .. . . . . . . . . ,. .... .. .. -, . ~,.. —., .— -- .-1,.



do 31 iy=l,ny
do 31 iz=l ,nz

v1= var(ix,iy,iz)
do 41 il=l ,rdag

iix = ix + ixl(il)
jjy = iy + iyl(il)
kkz = iz + izl(il)
if(iix.ge.1.and.iix.le.nx.and.

+ jjy.ge. 1.and.jjy.le.ny.and.
+ kkz.ge.1.and.kkde.nz) then

V2= var(iixjjy,kkz)
io=l
varact(il,io) = varact(il,io)+

+ (V1-V2)*(V1-V2)
vardiv(il,io) = vardiv(il,io)+2.dO

endif
41 continue
31 continue

write(no,*)’ nswap = ‘,nswap
write(no,500)
do il=l,nlag

dx = dble(ixl(il)) * xsiz
dy = dbl~iyl(il)) * ysiz
dz = dble(izl(il)) * zsiz
dx = sqrt(dx*dx+dy*dy+dz*dz)
write(no,105) il,dx,vanqod(il),

+ varact(il,l)/var&@,l),actsv(il,l)/dlvsv(il,l)
end do
do 13 iz=l,nz
do 13 iy=l ,ny
do 13 ix=l,nx

xx=xmn+xsiz*dble(ix-I)
yy=ymn+ysiz”dble(iy-1)
zz=zmn+zsiz*dble(iz-1)
if(cond(ix,iy,iz)) then

if (var(ix,iy,iz).eq.xcutO)
+ var(ix,iy,iz)=O.OdO

write(nol ,701) xx,yy,z~var(ix,iy,iz)
eke

write(nol ,702) xx,yy,zz,var(ix,iy,iz)
endif

13 continue
701 format(3(f8.2,2x),f12.4; c’)
702 forrnat(3(fS.2,2x),fl 2.4)
105 format(i4,f10.4,6f18 ~8)

vgmout(kk)=.fatse.
close(no)
close(nol)
end if

end do
end if
end if

c
c Converged to a SoIution?
c
c**** *********************************************************************************/

c
c 1/21/97: The following lines are added to show the users why the program is terminated, Tai-Sheng Lieu
c
c Test the convergence based on the un-weightedvariograrn var_unwt
c

if(obj.le.sas(6).or.iend.ge.sas(5)) then
write(50,*) nswap,obj
if (intervar.gt.nswap) write(*,*)

+ ‘intervar= ‘,intewar,”> “,nswap
if (obj.le.sas(6)) then

write(*,6tY3)nswap,obj,sas(6)
write(ldbg,600) nswap,obj,sas(6)
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end if
if (iend.ge.sas(5)) then

wri[e(*,*)‘Havetried ‘,iend,
$ sas(3); iterations -program terminated’

write(ldbg,*) ‘Havetried ‘,iend,
$ sSs(3)J iterations -Program terminated’

end if
if (part.cq,l) then

if(.not.first) write(lvar,500)
if (noisop.eq.1 and. .not.first) then

write(1hvar,500)
write(lvvar,500)

end if
else

if (.not.first) write(lvar,510)
if (noisop.eq.1 and. .not.first) then

write(Ihvar,510)
write(lvvar,510)

end if
end if

c***** *********************************:***** ***********$****************************q

c
cCalculate the experimental semi-variogmm of the final image as a final check of the simulation
c

first=.false.
calI initob(obj,first)
rrns=O.OdO
do il=l,nlag

dx = dble(ixl(il)) * xsiz
dy = dble(iyl(il)) * ysiz
dz = dble(izl(il)) * zsiz
dx = sqrt(dx*dx+dy*dyidz*dz)
write(lvar,102) il,dx,varmod(il),

+ gammanew(il,l),gammanew(il,2),gamunwt(il)
if (noisop.eq.1) then

if (noisop.eq.1) then
if(iyl(il).eq.0) write(lhvar,102) il,dx,

$ varmod(il),gammah(il,l ),gammah(il,2)
if(ixI(il).cq.0) wrhe(lvvar,102) il,dx,

$ varmod(il),gammav(il,l ),gammav(il,2)
end if

end if
rms=rms+(varmod(i1)-gamunwt(i1))**2.dO

end do
rms=dsqrt(rms)
writc@ar,*)
write(lvar,505) rms

505 forrnat(’RMSof semi-variogram = ‘,f9.4)
return

endif
c
c Tried too many at this “temperature”?
c

if(ntry.gt.sas(3)) then
iend = iend + 1
temp = sas(2) * temp
go to 1

endif
c
c Accepted enough at this “tempemture”?
c

if(naccept.gt.sas(4)) then
temp = sas(2) * temp
iend = O
go to 1

endif
c
c Go back for another attempted swap:
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c

102
500
510
600

format(i4,f10.4,6f12.4)
format(3x,Y,4x,’h’,9x:r(model)’,4x,’r(actuaI)’,15xJr(final)’)
format(3x,’i’,4x,’h’,9xJr(mode1)’,4x;r(simu.)’,17x;r(cond.)’)
format(’At ‘,i12,’-th iter., obj = ‘,e12.5,’e’,e12.5)

9990 format(’ Iag’,2x~S2 W2 ‘: V1-’,6x;Vl’,7x:tl w1’,
+ ‘ Vl+’,4x:t4 w4,5x;V2-’,6x;V2’,7x.’t3 W3 ‘,
-1- 2x,’V2+’,7xJr(h)’,IOx,’r_exp(h,1)’,6x,
+ ‘r_exp(h,2)’)
go to 2
end

c
c---------------------------------------------------------------------------------------------------------
c LhtIe function to shorten the calting arguments each time a random number is needed
c------------------------------------------------------------------------------------------------------

rcal*8 function getrand(seed)
implicit real*8(a-h,o-z)
real*8 randnrr(l)
integer seed
call mnd(seed,l ,mndnu)
getrand = mndnu(l)
return
end

c

subroutine initob(obj,first)
c-------------------------------------------------------------------------------------------------------------------------------------------
c Routines to Compute Objective Function
c **************************************

c
c The objective function is the squared difference from the model variogmm and the experimental vanogram.
C The user specifies the lag separation distanc~ and the number of lags that contribute to the objective function.
c
c 1. Initial Objective Function - Compute Both the Experimental and the Model Vanogmms. Compute the objective function as the
c squared difference between the actual and the model variogmrrr.s
c 2. The second routine updates the vanogmm when a swap is being considered.
c
c Author C.V. Deutsch Date April 1990
c------------------------------------------------------------------------------------------------------------------------------------------------------

include ‘metro.inc’
logical firs~image

c
c Irrhialize the vangoram ‘arrays:
c

do 1j=l,nlag
if(.not. first) gamunwt(j)=O.dO
do I k=l,part

varact(j,k) = O.MO
vardiv@k)= O.OdO

1 continue
c
c Calculate the Experimental Variogmrn
c

do 3 ix=l,nx
do 3 iy=l ,ny
do 3 iz=l ,nz

c
c Consider the first value in the pair and all directions and lags:
c

v1= var(ix,iy,iz)
do 4 il=l,nlag

+
+

c

ii = ix +;xl(il)
jj = iy + iyl(il)
kk = iz + izl(il)
if(ii.ge.1.and.ii.le.nx.and.

~’.ge.l.and.jj.le.ny.and.
kk.ge.1.and.kk.le.nz)then
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c Found a pair that should go in calculation. Possibly keep the pairs involving a conditioning data separately
c

V2= var(iijj,kk)
io=l
varact(il,io) = varact(il,io)+

+ (V1-V2)*(V1-V2)
vardiv(il,io) = vardiv(il,io)+2.d0

endif
4 continue
3 continue

c
c Normalize the scale factors so that the initial objective function is 1.0.
c

if(tirst) then
inquire(fik=imageinfl,exist=image)
if(image) then

renorrn=l.dO
else

renorm = 1.OdO/ obj
end if

c
c Reture if obj=-1, i.e., obj=- 1 for checking the experimental vanogmm at certain iterations
c

if(obj.eq- 1.dO)return
c
c write out the experimental vangorarn
c

obj = O.OdO
do 5 il=l,nlag

if (first) then
dx = dbl~xl(il)) * xsiz
dy = dbl<lyl(il)) * ysiz
dz = dble(izl(il)) * zsiz
dx = sqrt(dx*dx+dy*dy+dz*dz)
demon=vammd(il)
sclfac(il) = l.OdO/(dmaxl(l .d-4,demon*demon))

end if
c
c Compute the objcctivc function while we’reat it
c

if(vardiv(il,l).le.O.OdO)then
write(*,*) ‘ERROR lag ‘,il
write(*,*) ‘there are no pairs!t’
stop

endif
if(partq.1 ) then

act = varact(il, I)lvardlv(il, 1)
obj = obj + (varrnod(il)-act)

+ * (varmod(i[)-act)
+ * scIfac(il)

if(.noLfirst) gamunwt(il)=act
else

actl = varact(il,l)/vardN(il,l)
obj = obj + (varrnod(il)-actl)

+ * (varmod(il)-actl)
+ * sclfac(il)

if(vardiv(il,io).gt.O.5dO)then
act2 = vamct(il,2)/vardiv(il,2)
obj = obj + (varmod(il)-act2)

+ * (varrncd(il)-act2)
+ * sclfac(il)

endif
endif

5 continue
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9

do 9 il=l,rrlag
sclfac(il) = sclfac(il) * renorm

continue
obj =1.OdO

endif
if(frrst) then

open(8888,file=’initvar.dat’,status=’unkrrown’)
do il=l,rdag

dx=ixl(il)*xsiz
dy=iyl(il)*ysiz
dz=izl(il)*zsiz
h=sqrt(dx*dx+dy*dy+dz*dz)
if(io.eq.l ) write(8888,*) h,varmod(il),

+ varact(il,1)/vadlv(il, 1)
if(io.eq.2) write(8888,*) h,var-mod(il),

+ varact(il,1)/vardiv(il, l),varact(il,2)/vardiv(i1,2)
end do
close(8888)

end if

102 format(i4,f10.4,3f12.4)
500 format(’ i h r(model) r(actual)’)
510 format(’ i h r(model) r(simu.) r(cond.)’)
c
c Return with the current objective function:
c

return
end

c---------------------------------------------------------------------------------------------------------------------------------------------------------
c
c Consideringa swap Update the Experimental Variogmm and then compute the objective function as the squared difference between
c the actual and the model variogmm.
c
c Author C.V. Deutsch Date April 1990

subroutine object(ilj l,kl,i2,j2,k2,accept,objnew)
incIude ‘metro.inc’
logical accept

c
c Ensure that the experimental variogmm array vahtcs are current. If the last swap was accepted then we don’thave to update the new
c array, otherwise we have to reset back to the correct variogmmarray
c

if (nswap.le.50.and.lagfl(1:10).ne.’rrodata.dat’)
+ write(lIag,*)nswap: -th perturbation’
if (nswap.le.50.and.lagfi(l: 10).ne.’nodata.dat’)

+ write(llag,*)
if(.no~aecept) then

do IOil=l,nlag
do 10io=l,part

vamew(il,io) = vamct(il,io)
divnew(il,io) = vardiv(ii,io)

10 continue
endif
VI =var(il,jl,kl)
V2= var(i2,j2,k2)

c
c MAIN LOOP to consider the change to all lags and directions
c

do 20 il=l,nlag

c-------------------------------------------------------------------
c Update the vanogmm near the first point (positive lag):
c--------------------------------------------------------------------

ii = il + ixl(il)
jj =jI + iyl(il)
kk = kl + izl(il)
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if(ii.ge.1.and.ii.le.nx.and.
+ jj.ge. I.and.jj.le.ny.and,
+ kk.ge.1.and.kk.le.nz) then

if(ii.ne.i2.or.jj.ne.j2.or.kk.ne.f@ then
vO= var(ii,j,kk)
io=l
if (twopar) then
if(nbhd(iI,j 1).eq.l .and.cond(iijj,kk))ic=2
if(cond(i1j 1,kl ).and.nbhd@jj).eq. 1)io=2
if(nbhd(i1j 1).cq.1.and.nbhd(iijj).eq. 1)io=2

end if
vamew(il,io) = vamew(il,io)

-1- -(VI-VO)*(V1-VO)+(V2-VO)*(V2-VO)
end if

end if

c-----------------------------------------------------------------------
c Update the variogmm near the first point (negative lag)

+
+

+

~ = il - ixl(il)
~ =jl - iyl(il)
kk = kl - izl(il)
if(ii.ge.1.and.ii.le.nx.and.

jj.ge.l.and.jj. Ie.ny.and.
kk.ge.l .and.kk.le.nz) then

if(ii.ne.i2.or.jj.ne.j2.or.kk.ne.k2) then
vO= var(iijj,kk)
io=l
if (twopar) then
if(nbhd(i1,j1).eq. 1.and.cond~l,jj,kk))io=2
if(cond(i1j 1,k1).and.nbhd@jj).cq. 1)io=2
if(nbhd(i 1,j1).eq.1.and.nbhd(iijj).eq. 1)io=2

end if
vamew(il,io) = vamew(il,io)
-(VI-VO)*(VI-VO)+ (V2-VO)*(V2-VO)

end if
end if

c------------------------------------------------- .
c Updatethe variogmm near the second point (positive lag):
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! = i2 + ixl(il)
N =j2 + iyl(il)
kk = k2 + izI(il)
if(ii.ge.1.and.ii.le.nx.and.

+ jj.ge. l.and.j.le.ny.and.
+ kk.ge.l.and.kk.le. nz) then

if(iLne.i1.or.jj.ne.j1.or.kk.ne.kl) then
Vo=var~l,jj,kk)
io=l
if (twopar) then
if(nbhd(i1,j1).eq.1.and.cond(ii,jj,kk))io=2
if(cond(il jl ,kl ).and.nbhd(iijj) .eq.l)io=2
if(nbhd(i1,j1).eq. 1.and.nbhd(iijj).cq. l)io=2

end if
vamew(il,io) = vamew(il,io)

-1- -(V2-VO)*(V2-VO)+ (V1-VO)*(VI-VO)
end if

end if

c Update the vanogmm near the second point (negative lag):
c----------------------------------------------------------------------

~~= i2 - ixl(il)
N =j2 - iyl(il)
kk=k2 - izl(il)
if(ii.ge.I.and.ii.le.nx.and.

+ ~.ge. 1.and.jj.le.ny.and.
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+ kk.ge.1.and.kk.le.nz)then
if(ii.ne.i1.or.J.ne.j 1.or.kk.ne.kl) then

VO. var(iijj,kk)
io=l
if (twopar) then

if(nbhd(i1,j1).cq.1.and.cond@l,j,kk))io=2
if(cond(i1j 1,kl ).and.nbhd(iiJj) .eq.1)io=2
if(nbhd(i1j I).eq.1.and.nbhd(ii,jj).eq.I)io=2

end if
varnew(il,io) = vamew(il,io)

+ -(V2-VO)*(V2-VO)+ (V1-VO)*(V1-Vo)
end if

end if

20 continue
c
c Compute the objective function and return:
c

objnew = O.OdO
do 30 il=l,nlag
do 30 io=l,part

act = varnew(il,io)/divnew(il,io)
objnew = objnew + (varmod(il)-act)

+ * (varrnod(il)-act)
+ * sclfac(il)

gammanew(il,io)=act
if (noisop.cq.1) then

if (iyl(il).eq.0) gammah(il,io)=act
if (ixl(il).eq.0) gammav(il,io)=act

end if
30 continue

if(nswap.Ie.50.and.lagfl(1:10).ne.’nodata.dat’)
+ write(llag,*)’ Obj = ‘,objnew
if (nswap.eq.intervar) then

open(999,file=’varmid.dat”,status=’unknown’)
do il=l,rdag

dx = dble(ixl(il)) * xsiz
dy = dble(iyl(il)) * ysiz
dz = dble(izl(il)) * zsiz
dx = sqrt(dx*dxtiy*dy+dz*dz)
write(999,199)iI,dx,varmod(i1)

end do
close(999)

end if
199 forrnat(i2,f10.4,2x,3f12.4)
9901 fomt(2x,i2,lx,2(2(f4.l,2x),2(fl.4,2x),2(f4.l,2x),fl.4),

+ 3(f12.4,2x))
return
end

c------------------------------------------------------------------------------------------------------------------------------------------------------
real*8 function COVS3(X1,yl ,z1,x2,y2,z2,nst,c0,it,cmax,cc,aa,

+ angl ,ang2,ang3,anisl ,anis2,first)
c
c Covariance Between Two Points (3-D Version)
c *******************************************
c
c Ttds function returns the covariance associated with a variogmm model that is specified by a nugget effect and possibly four
c different nested varigoram structures. The anisotropy definition can be different for each of the nested structures (spherical,
c exponential, gaussian, or power).
c
c INPUT VARIABLES:
c
c xl ,yl ,zI Coordinates of first point
c x2,Y2,z2 Coordinates of second point
c nst Number of nested stmctores (max. 4).
c co Nugget constant (isotropic).
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c cmax Maximum variogmm value needed for kriging when using power model. A unique value of crnax is used for all
c nested structures which use the power model. therefore, cmax should be chosen large enough to account for the
c argest single stmcture which uses the power model.
c cc(nst) Multiplicative factor of each nested structure. slope for linear model.
c aa(nst) Parameter “a” of each nested structure.
c it(nst) Type of each nested structure
c 1. spherical model of range w
c 2. exponential model of parameter x i.e. pmctical range is 3a
c 3. gaussian model of parameter x i.e. practical range is a*sqrt(3)
c 4. power model of power a (a must be gt. O and It. 2). if finear model, a=l,c=slope.
c angl(nst) Azimuth angle for the principal direction of continuity (measured clockwise in degrees from Y)
c ang2(nst) DIp angle for the principal direction of continuity (measured in negative degrees down)
c m@(nst) Third rotation angle to rotate the two minor directions around the principal direction. A positive angle acts
c cbckwise while looking in the principal direction.
c anis 1(nst) Anisotropy (radius in minor direction at 90 degrees from angl divided by the principal radius in direction angl)
c anis2(nst) Anisotropy (radius in minor direction at 90 degrees vertical from “angl” divided by the principal radius in direction
c “angl”)
c first A logical variable which is set to true if the direction specifications have changed-causes the rotation matrices to be
c recomputed.

c
c OUTPUT VARIABLES: returns “COVS3”the covariance obtained from the variogram mcdeL

e

c
c
c NO EXTERNAL REFERENCES:
c.------------------------------------------------------------------------------------------- ——-——— -------

implicit reaI*8(a-h,o-z)
parameter(D’10R=3.14159265dO/180.d0,EPSLON=I.Od-20)
real*8 aa(*),cc(*),angl(*),ang2(*),ang3(*),anisl (*),anis2(*),

+ maxcov
integer it(*)
logical first
save maxcov

c
c The first time around, re-initialize the cosine matrix for the variogram structures
c

if(tirst) then
maxcov = co
do 1 is=l ,nst

if(it(is).cq.4) then
msxcov = maxwv + Cmax

else
maxcov= maxcov + cc(is)

endif
1 continue

endif
c
c Check for very small distance
c

frsqd= sqdist(xl ,yl ,zl,x2,y2,z2,angl (l),ang2(I),ang3 (l),
+ anisl(l),anis2(I))
if(hsqd.It.EPSLON) then

cova3 = maxcov
return

endif
c
c Non-zero distance, loop overall the structures
c

COVfi = O.OdO
do 2 is=l,nst

c
c Compute the appropriate structural distance
c

if(is.ne.1) frsqd= sqdist(xl ,yl,zl,x2,y2,z2,ang l(is),
+ ang2(is),ang3(is),anisl(is),anis2(is))

h = sqrt(hsqd)
if(it(is).cq.I) then

c
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c Spherical modek
c

br = Ir/aa(is)
if(frr.ge.1.OdO)go to 2
cova3 = cova3 + cc(is)*(1.-hr*(1.5dO-.5dO*br*hr))

else if(it(is).cq.2) then
c
c Exponential modek
c

cova3 = cova3 +cc(is)*dexp(-b/aa(is))
else if(it(is).eq. 3) then

c
c Gaussian modek
c

hh=-(h*h)/(aa(is)*aa(is))
cova3 = cova3 +cc(is)*dexp(hh)

eke
c
c Power model:
c

COVI = cmax - cc(is)*(h**aa(is))
COVS3= cova3 + Cov1

endif
2 continue

return
end

c

c
reaI*8 function sqdist(x 1,yl,zI ,x2,y2,z2,angl ,ang2,ang3,anis1,

+ anis2)
c Anisotropic Dk.tance Calculation
c ********************************

c
c Thk routine calculates the anisotropic distance between two points given the coordinates of each poiritand a definition of the
c anisotropy.The components of the vector in the rotated coordinates are calculated and then the squared anisotropic distance is
c calculated.
c
c
c INPUT VARIABLES:
c
c Xl,yl,zl Coordinates of first point
c x2,y2,z2 Coordinates of second point
c angl Azimuth angle for the principal direction of continuity (measured clockwise in degrees from Y)
c ang2 Dip angle for the principal direction of continuity (measured in negative degrees down)
c ang3 Third rotation angle to rotate the two minor directions around the principal direction. A positive angle acts clockwise
c while looking in the principal direction.
c anis1 Anisotropy (radius in minor direction at 90 degrees from angl divided by the principal radius in direction angl)
c anis2 Anisotropy (radius in minor direction at 90 degrees vertical horn “’angl”divided by the principal radius in direction
c “ang1”)
c
c OUTPUT VARIABLES:
c
c sqdist The squared distance accounting for the anisotropy and the rotation of ccmrdinates(if any).
c
c PROGRAM NOTES:
c
c 1.The progmm converts the input (angl,dip,plg) to three angles which make more mathematical sense
c
c alpha angle between the rnsjor axis of anisotropy and the E-W axis. Note: Counterclockwise is positive.
c beta angle between major axis and the horizontal plane. (Tiredip of the ellipsoid measured positive down)
c theta angle of rotation of minor axis about the major axis of the ellipsoid.
c
c NO EXTERNAL REFERENCES
c
c
c Authoc C. Deutsch Date July 1989
c----------------------------------------------------------------------------------------------------------------------------------------------------------------
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implicit reaI*8(a-h,o-z)
parameter(DEG2RAD=3.14159265d0/180.dO)
real*8 rmatrx(3,3)
save rmatrx,angl o,ang20,ang30,anislo,anis20

c
c Compute rotation matrix only if required
c

if(angl .ne.anglo.or.ang2.ne.ang20.0r.ang3.ne.arrg30.0r.
+ anisl.ne.anislo.or.anis2.ne.anis20) then

anglo =angl
ang20 = ang2
ang30 = ang3
anislo = anisl
anis20 = anis2
if(angl.ge.O.dO.and.angl.lt.270.dO) then

alpha = (90.OdO - angl) * DEG2RAD
eke

alpha = (450.OdO- angl) * DEG2RAD
endif
beta = -1.OdO* ang2 * DEG2RAD
theta = ang3 * DEG2RAD
cosa = cos(alpha)
cosb = cos(beta)
cost = cos(theta)
sins = sin(alpha)
sinb = sin(beta)
sint = sin(theta)
rmatrx(l,l) = (cosb * cosa)
rmatrx(l ,2)= (cosb * sins)
rmatrx(l,3) = (-sinb)
rmatrx(2,1) = (1.OdO/arrisl)*(-cost*sina + sint*sinb*cosa)
rmatrx(2,2) = (1.OdO/arrisl)*(cost*cosa + sint*sinb*sina)
rmatrx(2,3) = (1.OdO/anisl)*(sint * cosb)
rmatrx(3,1) = (1.OdO/anis2)*(sint*sina+ cost*sinb*cosa)
rmatrx(3,2) = (1.OdO/anis2)*(-sint*cosa+ cost*sinb*sina)
rmatrx(3,3) = (1.OdO/anis2)*(cost* cosb)

endif
c
c Compute component distance vectors and the squared distance
c

dx=xl -x2
dy=yl-y2
dz=zl-z2
sqdist = O.OdO
do 1 i=l,3

temp = rmatrx(i,l)*dx + rmatrx(i,2)*dy + rrnatrx(i,3)*dz
sqdist = sqdist + temp*temp

1 continue
return
end
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C Order of magnitude of a number
c Argument
c x - input number
c order - order of magnitude of x
c---------------------------------------------------------------------

integer function order(x)
real*8 x,div

n=o
if(x.eq.O.dO)then

order=O
return

end if
67 if(x.gt.1.dO)div=x/(10.dO**n)

if(x.lt. 1.dO)div=x*10.dO**n
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.

if(div.k.10.dO.and.div.ge.1.dO)then
goto 68

else
a=n+l
goto 67

end if
68 if(x.gt.1.dO)order=n

if(x.k. 1.dO)order=-n
return
end

C SUBROUTINE ‘SASIMM’ (the SA algorithm)
——

program sasimm
c%%%%7o%%%%%7o%%%%%%7o7oY0%%%%7oYo%%%%%%%%7o7o%%%%%%%%%%%%%%7o%%%%7o%7o%%%%%%
c %
C Copyright (C) 1992Stanford Center for Reservoir Forecasting. All rights reserved. 70
CDistributcd witi C.V. Deutsch and A.G. Joumel. 70
C “GSLIB: Geostatistical Software Library and User’sGuide,” Oxford University Press, New York, 1992. %
c %
C ‘fireprograms in GSLIB are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY. No author or %
C distributor accepts rc.sponsibitityto anyone for the consequences of using them or for whether they serve any particular purpose 7.
C or work at all, unless he says so in writing. Everyoneis gmnted permission to copy, mochfyand redistribute the programs in Y.
C GSLIB, but only under the condhion that this notice and the above copyright notice remain intact. %
c%9o7o%Yo%7o%%%7o%Y07o7o%7o%70%7o%%%%7o%7o7o9o%%%9o%%%7o%%%%%7o%%%%%%%%%7o7o%%%%%%%%%
c----------------------------------------------------------------------------------------------------------------------------------------------
c
c Conditional Simulation of a 3-D RectangularGrid
c ************************************************

c
c This is a template driver program for GSLIB’S“sasim”subroutine. 3-D realizations with a given autocovariance model and
C conditional to input data are created. The conditional simulation is achieved by mtilfying an initially uncorrelated image.
c
c The program is executed with no command tine argumenrs. The user will be prompted for the name of a parameter tile. ‘fire
C parameter file is described in the documentation (see the example sasim.par) and shouId contain the following information:
c
c-
c-
c-
c-
c-
c-
c-
c-
c-
c-
c-
c-
c-
c-
c-
c-
c-
c-
c-
c-
c-
c-
c-
c-
c
c
c
c
c
c
c

Name of a data file of conditioning data (GEOEAS format)
column numbers for x, y, z, and variable
Minimum acceptable vahre (used to flag missing vaIues)
If a standard Normal deviate is to be simulated set to 1
Name of a data file for non-parametric distribution
column numbers for variable and weight
option and parameter for the lower tail
option and parameter for ihe upper tail
An output tile (maybe overwritten)
A output file for variograrns (may be overwritten)
The debugging level (integer code - larger means more)
A file for the debugging output
Whether or not to use an automatic annealing scheduIe (O=auto)
annealing schedule
Whether a one part or a two part objective function is used
Random Number Seed
The number of simulations
X grid definition (number, minimum, size) nx,xnm,xsiz
Y grid definition (number, minimum, size] ny,yrnn,ysiz
Z grid definition (number, minimum, size] nz,znm,zsiz
The maximum number of lags to be considered
Search Anisotropy
Variogmm Definition number of stmcture.s(nst),nugget, and whether or not to renorrnrdizesill to the variance(t)=arrto)
the next “nst*2”lines requinx
First line
a) an integer code for variogmm (1=sph,2=exp,3=gaus,&-pow)
b) “a”parameter (range except for power model)
b) “’c”’parameter (contribution except for power model).

Second line
a) azimuth principal direction (measured clockwise from Y).
b) dip of principal direction (measured negative down from X).
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c C)a third rotation of the two minor directionsabout the principal direction. This angle acts counterclockwise
c when looking in the principal direction.
c Two anisotropy factors are required to complete the definition of the geometric anisotropy of each nested structuw.
c d) radius in minor direction at 90 degrees from the principal direction divided by the principal radius.
c e) radkrs in minor direction at 90 degrees vertical from the principal direction divided by the principal radius.
c
c The output tile will be a GEOEAS file containing the simulated values The file is ordered by x,y,z, and then simulation (i.e., x cycles
c fastes$ then y, then z, then simulation number).
c
c Originak C.V. Deutsch Date August 1990
c
c 1/20/97: Updated by Tai-Sheng Lieu in the subroutines
c READPARM - Read mean and varianceof In(k) and ITRANS
c fNITMOD - Change the calling arguments of GfNV
c GINV - Transform N(O,l) to LN(m,s) depending the flag ITRANS. The purpose of this change is to generate a parametric
c realization of log-normally distributed variate which is then combined with the conditioning data in file ‘condfl’

include ‘metro.inc’
character*1 chrl L,chrl R,chr2L,chr2R

open(500,tiIc=’adasp.dat”,statrrs=’unlmown’)
open(550,file=’imgasp.dat’,status=’mrknown’)
open(600,filc=’aspnbhd.dat’,status=’unknown’)

c
c call timer(itimco)
c
c Read the Parameter File and the Dam

call readparm
c
C Establish the number of lags to keep

call getlag
c
c Loop over all the simulations
c

do 1 isim=l,nsim
c
c Inhialize an inrage and the statistics:

c Call sasim for the simulation:
c

call sasim
c
c Write the Simulated results, close the output files, and stop:
c

write(lout,*) ‘Permeabilityfield from simulated annealing’
write(lout,*) 4
write(lout,999) ‘X’,’X’,nx,’X’,xmn,’X’,xsiz
write(!out,999) ‘Y’/Y’,ny,’Y’,ymn,’Y’.ysiz
write(lout,999) ‘Z’,’Z’,nz,Z’,zmn,’Z’,zsiz

199
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c

+

+
20

+
+
+
+
+
+
+
+
+

c

call initmod
write(*,*)
write(ldbg,*)
wrhe(*,20) ymean,ystd,pcu~pa.spsave,ptarge[,

cutsave,xcuLaspcut,xcutO
write(1dbg,20)ymcan,ystd,pcut,paspsave,ptarget,

cutsave,xcuLaspcu~xcutO
format(l’Ensemble staistics :’/

‘Mean of Ink = ‘,f6.2J
‘S.t.d. of Ink = ‘,f6.2/
‘ Initial cutoff probability= ‘,f6.4/
‘ Iterated cutoff probability= ‘,f6.4/
‘Target cutoff probability = ‘,f5.3/
‘ Initial cutoff PM value = ‘,f7.4/
‘ Iterated cutoff PM value = ‘,f7.4/
‘Asperity contact = ‘,f6.21
‘Mtnimum PM value = ‘,f6.2/1)

write(ldbg,*)



—— —

999

c

format(A1.’location N, AI.’=’,i4,1x,2(lx:D,Al,’=’,f6.2))
write(lout,*) ‘Permeability field’
do 2 iz=l,nz
do 2 iy=l,ny
do 2 ix=l ,nx

xx=xmn+xsiz*dble(ix-1)
yy=ymn+ysiz*dble(iy-l )
zz=zmn+zsiz*dble(iz-1)
if(cond(ix,iy,iz)) then

if (var(ix,iy,iz).eq.xcutO)var(ix,iy,iz)=O.OdO
Write(lout,101) xx,yy,zvar(ix,i y,iz)

else
Write(lout,102) xx,yy,zz,var(ix,iy,iz)

endif

c 7/16/97 : Write additionalasperitycontactsand z’c=5.O to addasp.dat
c

if(var(ix,iy,iz).eq.O.OdO)then
if(.not.cond(ix,iy,iz))write(500, 102) xx,yy,zz,O.O

end if
if (v@lx,iy,iz).gt.O.OdO.and.

+ var(ix,iy,iz).le.5.OdO)
+ write(500,102) xx,yy,~var(ix,iy,iz)

c
c
c 10/8/97: Write permeability modifier, excluding the conditioning asperity contact data, in the neighborhood
c

if (nbhd(ix,iy).gt.O)
+ write(600,102) xx,yy,zz,var(ix,iy,iz)

2 continue
101 format(3(f8.2,2x),f12.4: c’)
102 format(3(fs.2,2x),f12.4)

c
c Calculate the avetage permeability for two kinds of neighborhood
c
c First, assign nbhd(ij)=l for defnbhd=l only and nbhd(ij)=2 for defnbhd=l and defnbhd=2
c

size=real(neighbor)
do 12i=l,nx
do 12j=l,ny
do 12k=l,nz

if (cond(ij,k)) then
do ii=-neighbor,neighbor

do jj=-neighbor,neighbor
ix=i+ii
iy=j+j
iz=k
dx=rcal(ii)
dy=real~)
dist=sqrt(dx*dx+dy*dy)
if (ix.ge.l .and.ix.le.nx.and.iy.ge.1.and.iy.le.ny.and.

+ iz.ge.1.and.iz.le.nz) then
if(.not. cond(ix,iy,iz).and.nbhd(ix,iy).eq.0)

+ nbhd(ix,iy)=l
if(nbhd(ix,iy).eq.l .and.dist.le.size)nbhd(ix,iy)=2

end if
end do

end do
end if

12 continue
c
c Second, caIculate avg. PM for two kinds of neighborhcott
c

if (neighbor.ne.O)then
zsrsml=0.0
ZSUM2=0.O
nozl=O
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noz2=0

c

1
c

5

coniinue
cidl Iimer(itimel)

itime=itimel-itimeO
time=real(itime)/100.0
ihr=int(timd3600.0)
irnin=int((time-rea1(ihr)*3600.0)/60.0)
see=time-real(ihr)*3600.O-rea1(imirr)*60.O
write(ldbg,5) ihr,imin,sec
wrhe(*,5) ihr,imirr,sec
format(/lxJElapsed time= ‘,i2Jhours J,i3J reins, ‘,f5.2,

+ ‘sees’)

close(lout)
close(lvar)
close(ldbg)
Write(*,*)‘Finished SASRWsimulated results in ‘,outfl
write(*,*)’ variogram output in ‘,varfl
write(*,*)’ debugging output in ‘,dbgfl
wnte(*,*)
stop
end

subroutine readparm

do 3 ix=l ,nx
do 3 iy=l ,ny
do 3 iz=l ,nz

if (nbhd(ix,iy).eq.2) then
zsum2=zsum2+v~lx,iy,iz)
noz2=noz2+l
zsuml=zsrrml+v~lx,iy,iz)
nozl=nozl+l

end if
if (nbhd(ix,iy).eq.1) then
zsuml=zsuml+var(ix,iy,iz)
nozl=nozl+l

end if
3 continue

if (defnbhd.eq.l ) then
chf2L=’(’
chr2R=’)’

else
ChrlI-=’(’
chrlR=’)’

end if
write(Idbg,*)
wnte(ldbg,*)’ NBHD = ‘,defnbhd
write(Idbg,50)chrl~nozl,zsuml ,zsuml/dbIe(noz l),chrlR,

+ chr2L,noz2,zsum2,zsum2/dble(noz2),chr2R
50 format(/,

+2x,AI JFirst nbhd: Nbl= ‘,i5JSuml= ‘,f9.4: Avg= ‘,f8.5,Al/
+2x,AI ~Secondnbhd NW= ‘,i5j SUM2=‘,9.4: Avg= ‘,ft3.5,Al)

end if
c
c End loop overall simulations:
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c

c Initialization and Read Parameters
c **********************************

c
c The input parameters are read from a file name provided from standard input (a default name will be tried if none is keyed in by the
C user).
c
c The complete 3-D field is then filled in with values drawn at random from either a standard normal distribution or some distribution
c specified in a non-parametric way (i.e., a series of values and associated weights) with possibly a parametric option to treat values

201



c in the tails of the dktribution.
c
c Conditioning data is then read in (if available) and assigned to the nearest node if within the grid network.
c

c Error checking is performed and the statistics of both the initiafrealization and conditioning data are written to the debuggingtile.
c
c
c
c Originak C.V. Deutsch Date July 1990
c---------------------------------------------------------------------------------------------------------------------------------------------------------

inchrde ‘metro.inc’
parameter(MV=20)
real*8 val(MV)
Iogical testfl,image
chamcter stP40,titIe*80

c
c Unit numbers:
c

Iin=l
lout = 2
Idbg= 3
Ivar= 4
lhvar = 5
]VVU = 6
Ilag = 7
limagein= 8
timageout=9

c
c Open the input tile ‘sasim.par’
c

open(lin,file=’sasim.par’,status=’OLD)
c
c Fhrd Start of Pammetem
c
1 read(fin;(a4)’,end=97)str(l:4)

if(str(1:4).ne.’STAR’)go to 1
c
c Read fnput Parameters
c

rcad(lin:(a40)’,err=97) imageinfl
if (imageinfl(l: 10).ne.’nodata.dat’)

+ write(*,*) ‘Iritial image file : ‘,imageinfl
rcad(linJ(a40)’,en=97) imagcmrtfl
write(*,*) ‘Outputimage fiie : ‘,imageoutfl
rcad(fin;(a40)’,em-97) condff
write(*,*) ‘Conditioningdata file ‘,condfl
rcad(lin,*,err=97) ixloc,iyloc,izloc,ivrl
read(lin,*,en=97) trnin,tmax
rcad(iin,*,err=97) igarrss
rcad(lin:(a40)’,err=97)datafl
read(lin,*,en=97) ivr,iwt
read(lin,*,en=97) zmin,zmax
read(lin,*,err=97) ltail,kpar
rcad(lin,*,en=97) utail,utpar
read(Iin;(a40)’,err=97)orrtfi
write(*,*) ‘Outputtile ‘,outt-l
read(1in;(a40)’,en=97)varff
write(*,*) ‘Overallvariogram output file ‘,varfl
read(lin,’(a40)’,em=97)horvarff
write(*,*) ‘Horizontalvariogram output fiIe ‘,horvarfl
read(lin,”(a40)’,er-97) vervarff
write(*,*) ‘Verticalvariogmm output tile ‘,vervar-fl
rcad(lin,*,err=97) idbg,repo~intervar
rcad(lin,’(a40)’,em=97)dbgfl
write(*,*) ‘Debugfile ‘,dbgfl
open(ldbg,filc=dbgfl,statrrs=’UNKNOWN’)
write(ldbg,*) ‘Conditioningdata file ‘,condfl
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rcad(lin;(a40)’,e-97) Iagfl
write(*,*) ‘Lagfile: ‘,Iagfl
tite(*,*y****** ***************************************`
read(1in,*,er&7) isas
write(*,111) isas
write(ldbg,l 11) isas

111 forrnat(flAnnealing schedule: ‘,i2/,
+‘ ( &user, l:defarrl~2fas~ 3:very fast )‘)
read(lin,*,err=97) (sas(i),i=I,6)
read(Iin,*,en=97) part
read(1in,*,err=97) seed
read(lin,*,es-r=97) nsim
read(lin,*,err=97) nx,xnm,xsiz
read(lin,*,err=97) ny,yrnn,ysiz
read(lin,*,err=97) nz,zrnn,zsiz
rcad(Iin,*,err=97) nlag,neighbor

c
c l/23/97 :SeIect theannealing schedule
c O- Usersupplied
c 1- Default
c 2- Fast

3- Very fast
~ Tai-Sheng Lieu (Deutsch and Cockerham, 1994)
c

sas(3)=sas(3)*dble(nx*ny*nz)
sas(4)=sas(4)*dbIe(nx*ny*nz)
if(isas.eq.1) then

Sas(l) = I.odo
sas(2) = O.ldO
sas(3) = 100.dO*dble(nx*ny*nz)
555(4)= 10.dO*dble(nx*ny*nz)
sas(5) = 3.dO
sas(6) = 0.001dO

elseif(isas.eq.2) then
555(I)= l.odo
sas(2)=0.05d0
SSS(3)= 50.dO*dble(nx*ny*nz)
sas(4) = 5.dO*dble(nx*ny*nz)
sas(5) = 3.dO
SSS(6)= 0.001dO

elseif(isas.eq.3) then
sa.s(l) = 0.5d0
sas(2) = O.OldO
sas(3) = 10.dO*dble(nx*ny*nz)
SSS(4)= 2.dO*dbIe(nx*ny*nz)
sas(5) = 3.dO
sas(6) = 0.001dO

endif
write(*,112)(sas(i),i=l,6),part
write(ldbg,112)(sas(i),i=l ,6),part

112 forrnat(’User set schedule:’/
+ ‘To = ‘,f5.lj
+ ‘T factor= ‘,f5.1J
+ ‘Knrax = ‘,e7.lj
+ ‘Kaccept = ‘,e7.l/
+ ‘s =’,f5.lJ
+ ‘Ornirs = ‘,e7.1J
+ ‘Part = ‘,i2)
write(*,*~*********************************************q
read(lin,*,en=97) nst,cO,isiIl
sill = CO
wnte(*, 100) isill,nst,cO
if(nst.Ie.0) then

write(*,9997) nst
9997 forrnat(’nst must beat least 1, it has been set to ‘,i4J,

+ ‘The c or a values can be set to zero’)
stop

endif
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c

c 1/25/97 : noisop=ofor isotropicvanograrn, noisop=l for anisotropic variogmms
c

noisop=o
do 3 i=l.nst

3
20
21

read(lin,*,err=97) it(i),aa(i),cc(i)
sill = sill+ cc(i)
read(lin,*,en=97) angl(i),ang2(i),ang3 (i),anisl(i),anis2(i)
if (anisl (i).ne.1.or.anis2(i).ne.1) noisop=l
write(Idbg,*)
write(Idbg,*)‘Senti-variogrammodel :’
If (it(i).eq.1) write(ldbg,*) ‘Sphericalmodel’
if (it(i).eq.2) write(ldbg,*) ‘Exponentialmodel’
if (it(i).eq.3) write(ldbg,*) ‘Gaussianmodel’
if (it(i).eq.4) write(ldbg,*) “Powermodef’
if (noisop.eq.0) write(ldbg,*) ‘isotropic mcdel with’
if (noisop.cq.1) write(ldbg,*) ‘anisoptropicmcxIeIwith’
write(ldbg,20) sill,aa(i)
if (noisop.eq.1) then

write(Idbg,21) angl (i),ang2(i),ang3(i),anisl (i),anis2(i)
end if

continue
format(’Sill= ‘,f8.2/’LmtgitudinaIcorrelaiton length= ‘,fS.2)
forrnat(’arrisotmpicanglel = ‘,f8.2/

+ “anisotropicangIe2 = ‘,fS.2/
+ ‘anisotropicangle3 = ‘,fS.2/
+ ‘anisotropicratiol = ‘,N.2J
+ ‘anisotropicratio2 = ‘,fS.2)

c
. .

c 1/21/97: The following lines are added by Tai-Sheng Lieu
c iedgc=(0)l -(not)correct edge-effect with weighting factor=wfedge
c icond=(0)1-(not)comet discontinuity-effect with weighting factor=wfcond
c itmns=(0)l-(not)transforrn N(O,l) to LN(xmean,xstd) [y=lnx]
c itmns=2 - transform N(O,l) to LN(xmean,xstd) but do not shift the LOGNORMAL dam
c noiter - maximum number of iteration for calculating the sample statistics in order to have statistics as close to ensemble statistics
c as possible
c

rcad(lin,*) iedge,wfedge
read(lin,*) icond,wfcond
tite(*,*~****** ***************************************'
write(*,*)

c write(*,*) ‘Weighting factors :’
c if (iedge.eq.0) write(*,*)%dge effect not weighted’
c if (iedge.eq.l ) write(*,21) wfcdge
c if (iedge.eq.0) write(ldbgj*)’Edgeeffect not weighted’
c if (iedge.eq.l ) write(ldbg,21) wfcdge
c21 format(’Edge factor = ‘,f6.2)
c if (icond.eq.0) write(*,*) ‘Dkcontinuity effect not weighted’
c if (icond.cq.1) write(*,22) wfcond
c if (icond.eq.0) write(ldbg,*) ‘Discontinuityeffect not weighted’
c if (icond.eq.1) write(Idbg,22) wfcond
c22 format(’Dkcontinuity factor = ‘,f6.2)

write(*,23) nlag,neighbor
write(ldbg,23) nlag,neighbor

23 forrnat(’Total # of lags = ‘,i41
+ ‘#of neighborhood = ‘,i4)
write(*,*~*********************************************'
read(lbr,*)ymean,ystd,itrans
read(lin,*) peut,aspcut,xcrr~ptarget

c
c Read which annealing algorithm should be used:
c O- standard Metropolis aIgorithm, 1- modfied Metropolis algorithm
c

read(lin,*) metro
write(ldbg,*)
if (metro.eq.0) then

write(*,*) ‘Using standard Metropolis algorithm’
write(ldbg,*) ‘Using standard Metropolis algorithm’
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elseif(metro.eq.1) then
write(*,*) ‘Using modified Metropolis algorithm’
write(ldbg,*) ‘Using modified Metropolis algorithm’

else
wrhe(*,*) Type of SA algorithm is not specified’
stop

end if
read(lin,*) defnbhd
write(Idbg,*)
if (defhbhd.eq.1) then

write(*,*) The neighborhood is defined as a square’
wrhe(ldbg,*) The neighborhoodis defined as a square’

elseif (defnbhd.eq.2) then
write(*,*) The neighborhood is a square plus four ears’
wrhe(ldbg,*) The neighborhcmdis a square plus four ears’

else
if(metro.eq.l ) then

wrhe(*,*) ‘Neighborhoodis not defined’
stop

end if
end if
write(ldbg,*)
read(lin,*) imod
if(imod.k.1.or.imod.gt.4) then

wnte(*,*) ‘Choose the type of Modified Metropolis’,
+ ‘algorithm, i.e., imod=l or 4’

stop
end if
write(*,*) ‘UsingMOD’,imod
write(Idbg,*)‘Using MOD,imod
read(lin,*) itield
if(ifieId.lt.O.or.ifield.gt. 1) then
wrhe(*,*)’EnterO(No) or 1 (Yes) to printout evolving files’

end if
if(ifield.eq.0) then

write(*,*) ‘Donot generate internal tiles of PM fields’
write(ldbg,*) ‘Do not generate internal files of PM fields’

else
write(*,*) ‘Generate internal files of PM fields’
wrfte(ldbg,*)‘Generate internal tiles of PM fields’

end if
c

close(lin)
100 format(// Reset sill: ‘,i2J,

+’ number of structures= ‘,i3/,
+’ nugget effect = ‘,t-8.4)

101format(‘ typeof structure ‘,i3; = ‘,i3J,
+’ as parameter = ‘,f12.4j,
+’ cc parameter = ‘,f12.4)

102 format( ‘ angl, ang2, ang3 = ‘,3f6.2J,
+’ anis1, anis2 = ‘,2f12.4)

c
c Reset the annealing schedule if automatic timing is being used
c

if(part.eq.1) Ihen
twopar = false.

else
twopar = .tme.

endif
if(nz.le.1.or.izhx.le.0) then

only2d = .tme.
else

onIy2d= false.
endif

c
c Perform some quick error checking
c

if(nx.gt.MAXX) stop lrx is too big - modify .inc tile’

205



if(ny.gt.MAXY) stop ‘nyis tm blg - mdlfy .inc tile’
if(nz.gt.MAXZ) stop ‘nzis too big - morhfy.inc file’
if(nIag.gt.MAXLAG)stop “nlagis too big - modify .inc file’
if(nst.gt.MAXNST) stop ‘nstis too big - rnodfy .inc file”

c
c Open the debugging and output til~
c

open(lvar,fil=varfl,status=’unknown’)
open(lhvar,file=horvarfl,status=lJNKNOWN)
open(lvvar,file=vervarfl,statm=’unknown”)
open(lou@k=mstfl,status=’UNKNOWN)

if(lagfl(1:10).ne.’nodata.dat’)
+ open(llag,fkdagft,status=’unknown’)
if (imageinfl(1:10).ne.’nodata.dat’)

+ open(lirnagein,file=imageinfl,status=”unknown’)
if (imageoutfl(l: 10).ne.’nodata.dat’)

+ open(limageout,file=irnageoutfl,status="unknown')
c
c If possible read in the cdf (“cut”and “calf’arrays) to use as the distribution to initiahze the realization:
c

title = ‘SASLMSIMULATIONS: ’11
+’
if(igauss.eq.0) then

inquire(file=datafl,exist=testfl)
if(.not.testfl) then

write(*,*) ‘ERRORtile ‘,datafl,’does not exist!’
write(*,*)’ you need a univariate distribution’
write(*,*)’ unless you want a Gaussian distribution’
stop

endif
ncdf = O.OdO
ccdf = O.OdO
open(lin,file=datafl,status=’OLfY)
rcad(tin,’(a60)’,em-98)tit1e(21:80)
read(lin,*,em-98) nvan
do 4 i=l,nvari

4 read(lin,*,er-98)
5 read(lin,*,end=6,err=98) (val@j=l ,nvari)

if(val(ivr).lt.tmin.or.val(ivr).ge.tmax) go to 5
ncdf =ncdf+ 1
if(ncdf.gt.MAXCUT) then

write(*,*)’ ERROR exceededstorage for cdf,ncdf
stop

endif
cut(ncdf) = val(ivr)
if(iwt.le.0) then

cdf(ncdf) = LOdO
else

cdf(ncdf) = val(iwt)
endif
ccdf = ccdf + cdf(ncdf)
go to 5

6 close(Iin)
c
c Turn the (possibly weighted) distribution into a cdf that can be used to initialize all the grid nork
c

call sortem(l,ncdf,cut,l ,cdf,c,d,e,f,g,h)
oldcp = O.OdO
CP = O.OdO
ccdf = 1.OdO/ ccdf
do 7 i=l,ncdf

CP = cp + calf(i)* ccdf
calf(i)=(CP + oldcp) * 0.5d0
oldcp = Cp

7 continue
endif

c
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c Turn all conditioning flags to false
c

do 8 ix=l,nx
do 8 iy=l ,ny

do 8 iz=l,nz
cond(ix,iy,iz) = false.

, 8 continue
c
c Check to see if a file of conditioning data exists, if it does then read in the dam.
c

inquire(file=condfl,exist=testfl)
if(testfl) then

open(lin,file=condfl,status=’OLD)
read(linJ(a60)’,e~-99) title(21:80)
read(lin,*,err=99) nvan
nd=O
av = O.OdO
SS=O.OdO
do 9 i=l,rrvari

9 read(lirr:(a40)’,em-99) str
c
c Read all the data until the end of the file
c
10 rcad(lin,*,end=l 1,en=99) (val(j)j=l ,nvari)

if(val(ivrl).le.tnrirr.or.val(ivrl).gt.tmax)go to 10
nd =nd+l
av = av + val(ivrl)
ss = ss + vaI(ivrl)*val(ivrl)
ix=rninO(maxO((int((val(ix1oc)-xmn)/xsiz+O.5dO)+l),1),nx)
iy=minO(mxO((int((vaI(iyloc)-yr@/ysiz+o.5)+1 ),1),ny)
iz=minO(maxO((irrt((vaI(izloc)-zmrr)/zsiz+O.5)+1),1),nz)
if(onIy2d) iz = 1
var(ix,iy,iz) = val(ivrI)
cond(ix,iy,iz) = .tme.
go to 10

11 close(lin)
c
c Compute the averages and variances as an error check for the use~
c

av = av / amaxl(dble(nd),l .0)
ss =(SS / arnaxl (dble(nd),1.0)) - av * av
wnte(Idbg,*) ‘Data for SASIM: Variable number ‘,ivd
write(Idbg,*)’ Number of acceptable data = ‘,nd
writc(ldbg,*)’ Equal Weighted Average = ‘,av
write(ldbg,*)’ Equal Weighted Variance = ‘,ss

endif
c
c 1/27/97 : Calcuate the number of data points that is not conditioning data (noncond)
c

noncond=nx*ny*nz-nd
c
c Write a header on the output file and return:
c 1/23/97 : Comment out by Tai-Sheng UIOU

c
c write(lout,105) title
c 105 fomrat(a80J:l ‘J:simulatcd value’)

return
c
c Error in an brput File Somewhere
c

97 stop ‘ERROR in pammeter file!’
98 stop ‘ERRORin distribution filet’
99 stop ‘ERRORin data file!’ .

end
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subroutine initmod
c--------------------------------------------------------------------------------------------------------------------------------------------------------------
c

c Initialization of Grid
c **********************

c

include ‘metro.inc’
reaI*8 iandnu(l)
Iogical image

c
c Inkialize all nodes to some random quantile
c

call rand(seed,1,randnu)
seed = O

do 6 ix=l ,nx
do 6 iy=l,ny
do 6 iz=l,nz

if(.not-cond(ix,iy,iz)) var(ix,iy,iz)-+.dO
6 continue

c
c 214/97: Read the initial image file or automatically genreate the initial image by either non-parametic distribution or Gaussian
c distribution, Tai-Sheng Lieu
c

inquire(file=imageinfl,exi st=image)
if (image) then
read(limagein,*)
read(lhnagein,*)nheader
do i=l ,nheader

read(limagein,*)
end do
do 10iz=l,nz
do 10iy=l,ny
do 10 ix=l,nx

read(limagein,*)drrmmy,drrmmy,dummy,var(ix,iy,iz)
10 continue

write(*,15) irnageinfl
15 format~ Using ‘,a15: as initial image’)

write(*,*)
eke

c
c lL27/97: Dmw a Monte CZW1ORealization from either a Gaussian distribution (igauss.ne.0) or a non-parametric dk.tribution
c (igauss.eq.0), Tai-Sheng Lieu
c

if (igauss.eq.0) then
do 1 i=l,nx
do I j=l,ny
do 1z=l,nz

c
c Only initialize if not a conditioning datum
c

if(cond(ij,k)) go to 1
call rand(seed,1,randnu)
call beyond(ncdf,cut,cdf,zrrrin,zmax,ltail,

+ Itpar,utail,utpar,var(i,j,k),randnu(I),ierr)
1 continue

elseif (igauss.eq.1) then
call gridxyz(seed)

else
all etapdf(seed)

end if
end if

c
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c Renormalizethe variogram parameter-sto the varianceof the realization if requested:
c

if(isill.eq.I) then
c
c Get current sill of variograrn
c

sill = CO
do 2 i=l,nst

2 sill = sill+ cc(i)
c
c Get varianceof realization
c

av = O.OdO
SS= O.OdO
do 3 i=l,nx
do 3j=l,ny
do 3 k=l,nz

av = av + var(i,j,k)
ss = ss + var(i,j,k)*var(ij,k)

3 continue
av = av / dble(nx*ny*nz)
ss = ss / dbIe(nx*ny*nz)- av*av

c
c Now, scale the variogram parameters
c

fac = ss/sill
co =cO*fac
do 4 i=l,nst

4 cc(i) = cc(i) * fac
c
c Also, scale the varmod array:
c

do 5 i=l,nlag
5 vmrrrod(i)= varrnod(i) * fac

endif
c
c Finishedgetting initial imagti
c

return
end

subroutinerand(seed,n,vector)
c------------------------------------------------- --------------------------------------------------
c .

c This random number generator generates random numbers in ]0, 1[ Note that if the seed value is zero on the first call, a default value
c of 1369will be used in a linear congmential generator to generate 55 cdd integers for the array ‘itabo’.‘Ikse values are preserved
c by a common statement, so that they maybe used in subsequent calls by setting the seed to zero.If the value of ‘seed’is greater than
c zero in a call to the subroutine, then the array ‘itab’will be initialized and a new seed value will be returned by the subroutine. Best
c results are obtained by making the initial call with a seed of your choice and then setting the seed to ‘O’for all subsequent calls.
c
c---------------------------------------------------------------------------------------------------------------------------------------

implicit rerd*8(a-h,o-z)
real*8 vector(*)
common/unusuaVitab(55),nl,n2,nseed
integerm 1,seed

c
c Test to see if 55 odd integers must be generated.
c

if((seed.gt.O).or.(nseed.lt. 1)) then
nsecd = seed
if(secd.le.0) nseed = 7931
do 10i=1,55

ml=mod(nseed*9069,32768)
if(mod(ml,2).eq.0) ml = ml-l
itab(i) = m 1
nseed = ml
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10 continue
nl=O
n2 = 24

endif
c
c generate “’n”random components for the vector “VECTGR
c

do 30 i=l,n
itab(55-nl ) = mod(itab(55-n2)*itab(55-nl),32768)
vccto~l) = abs(float(irab(55-n1))/float(32768))
nl =mod(nl+l,55)
n2 = mnd(n2+l ,55)

30 continue
if(seed.gt.0) seed=nseed
return
end

subroutine Iocate(xx,n,is,ie,xj)
c--------------------------------------------------------------------------------------------------------------------------------------------------------------
c

c Given an array “xx” of length “n”, and given a value “x”, tfrk routine returns a value ‘j” such that “x” is between xx(j) and xx(j+l).
C xx must be monotonic, either increasing or decreasing. j=O or j=n is returned to indicate that x is out of range.
c

c Mcdicd to set the start and end points by “is” and “ie”
c
c Bisection Concept From “Numerical Recipes”, Press et. al. 1986 pp 90.
c-----------------------------------------------------------------------------------------------------------------------------------------------

implicit real*8(a-h,o-z)
rcal*8 xx(n)

c
c Iritiatize lower and upper methods
c

jl = is
ju = ie

c
c If we are not done then compute a midpoint
c
10 if@r-jl.gt.1) then

jm = @s+jl)L2
c
c Replace the lower or upper firtritwith the midpoint
c

if((xx(n).gt.xx(l )).eqv.(x.gt.xx~m))) then
j] =jm

eke
ju = jm

endif
go to 10

endif
c
c Return with the array index
c

j =jl

return
end

subroutine sortem(ib,ie,a,iperm,b,c,d,e,f,g,h)
c--------------------------------------------------------------------------------------------------------------------------------------------------------------
c

c QuickerSortSubroutine
c **********************

c

c ‘lWsis a subroutine for sorting a real array in ascending order. Thk is a Fortmn translation of algontbm 271, quickersort, by R.S.
c Scowen in collected algorithms of the ACM. The method used is that of continually splitting the array into parts such that all
c elements of one part are less than all elements of the other, with a rbbd part in the middle consisting of one element. An element
c with value t is chosen arbitrarily (here we choose the middle element). i andj give the lower and upper limits of the segment being
c split. After the spth a value q will have been found such that a(q)=t and a(l)c=tea(m) for all ic=l<qcme=j. The program then
c performs operations on the two segments (i,q-1)and (q+l j) as follows The smaller segment is split and the position of the larger
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c segment is stored in the It and ut arrays. If the segment to be spfh contains two or fewer elements, it is sorted and another segment is
c obtained from the It and ut arrays. When no more segments remain, the array is completely sorted.
c
c
c INPUT PARAMETERS
c
c ib,ie start and end index of the array to be sortcda
ca array, a portion of which has to be sorted.
c iperm Ono other array is permuted.
c 1 array b is permuted according to array a
c 2 arrays b,c are permuted.
c 3 arrays b,c,d are permuted.
c 4 arrays b,c,d,e are permuted.
c 5 arrays b,c,d,e,f are permuted.
c 6 arrays b,c,d,c,f,g are permuted.
c 7 armys b,c,d,e,f,g,h are permuted.
c >7 no other array is permuted.
c
c b,c,d,e,f,g,h arrays to be permuted accordingto array a.
c
c OUTPUT PARAMETERS
c
ca = the array, a portion of which has been sorted.
c
c b,c,d,e,f,g,h =arrays permuted accordingto army a (see iperm)

~ NO EXTERNAL ROUTINES REQUIRED.
c
c----------------------------------------------------------------------------------------------------------- ———
impficit real*8(a-h,o-z)

real*8 a(*),b(*),c(*),d(*),e(*),f(*),g(*),h($)
c
c The dimensions for It and ut have to be at least log (base 2) n
c

integer lt(64),ut(64),ij,k,m,p,q
c
c Initialim
c

j = ie
m= 1
i = ib
iring = iperm+l
if (iperm.gt.7) iring=l

c
c If this segment has more than two elements we spfit it
c
10 if(j-i-1) 100,90,15

c
c p is the position of an arbhmry element in the segment we choose the middle element. Under certain circumstances it may be
c advantageous to choose p at random.
c
15 p = (j+i)/2

ta = a(p)
a(p) = a(i)
go to (21,19,18,17,16,161,162,163),iring

163 /h = h(p)
h(p) = h(i)

162 tg = g(p)
g(p) = g(i)

161 tf = f(p)
f(p) = f(i)

16 te = e(p)
e(p) = e(i)

17 td =d(p)
d(p) = d(i)

18 tc=C(p)
c(p) = c(i)

19 tb = b(p)
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b(p) = b(i)
21 continue

c
c Startat the beginningof the segment, search fork such that a(k)>t
c

q=j
k=i

20 k = k+l
if(k.gt.q) go to 60
if(a(k).le.ta) go to 20

c
c Such an element has now been found now search for a qsuch that a(q)ct starting at the end of the segment.
c
30 continue

if(a(q).lt.ta) go to 40
q=q.l
if(q.gt.k) go to 30
go to 50

c
c a(q) has now been found. we interchange a(q) and a(k)
c
40 xa = a(k)

a(k) = a(q)
a(q) = xa
go to (45,44,43,42,41,41l,412,413),inng

413 xh =h(k)
h(k) = h(q)
h(q) = xh

412 xg =g(k)
g(k) = g(q)
g(q) = W

411 xf = f(k)
f(k) = f(q)
f(q) = Xf

41 xe = e(k)
e(k) = e(q)
e(q) = xe

42 xd = d(k)
d(k) = d(q)
d(q) = xd

43 XC = c(k)
c(k) = c(q)
c(q) = xc

44 xb = b(k)
b(k) = b(q)
b(q) = xb

45 continue
c
c Update q and search for another pair to interchange
c

q=q-l
go to 20

50 q = k-1
60 continue

c
c The upwards search has now met the downwards search
c

a(i)a(q)
a(q)=ta
go to (65,64,63,62,61,61l,612,613),iring

613 h(i) = h(q)
h(q) = th

612 g(i) = g(q)
g(q) = R

611 f(i) = f(q)
f(q) = tf

61 e(i) = e(q)
e(q) = te

212



I
i’

62 d(i)= d(q)
d(q) = td

63 C(i)= c(q)
c(q) = tc

64 b(i)= b(q)
b(q) = tb

65 continue
c
c The segment is now divided in three parts (i,q-1),(q),(q+l J) store the position of the largest segment in It and ut
c

if (2*q.le.i+j) go to 70
k(m) = i
ut(m) = q- I
i=q+l
go to 80

70 It(m)= q+l
ut(m) = j
j=q-1

c
c Update m and split the new smaller segment
c
80 m= m+l

go to 10
c
c We arrive here if the segment has two elements we test to see if the segment is properly ordered if noL we pefiomr an interchange
c
90 continue

if (a(i).le.a(j)) go to 100
xa=a(i)
a(i)=a~)
a(j)=xa
go to (95,94,93,92,91,91l,912,913),iring

913 xh = h(i)

. . . . . .

h(i) = h(j)
ho) = xh

912 xg =g(i)
g(i) = g(j)
g(j) = Xg

911 Xf = f(i)
f(i) = f(j)
f(j) = Xf

91 xe =e(i)
e(i) = e~)
e(j) = xe

92 xd = d(i)
d(i) = do)
d(j) = xd

93 xc = c(i)
c(i) = c(j)
c(j) = xc

94 xb = b(i)
b(i) = b(j)
b(j) = xb

95 continue
c
c If k and ut contain more segments to be sorted repeat process
c
100 m=m-1

if (m.le.0) go to 110
i = It(m)
j = ut(m)
go to 10

110 continue
return
end
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subroutine beyond(ncu~cu~cdf,zmin,zmax,Itail,ltpar,utail,utpar,
+ zval,cdfval,ierr)

c----------------------------------------------------------------------------------------------------------------------------------------------------------
c
c Go Beyond a Discrete CDF
c ************************

c
c This subroutine is a general purpose subroutine to interpolate within and extrapolate beyond discrete points on a conditional CDF. If
c the Z value “zval”is specified then the corresponding CDF value “cdfval”will be computed, if the CDF value “cdfvat”is specified
c the correspondingZ value “zval”will be computed.
c
c
c
c INPUT/OUTPUTVARIABLES:
c
c ncut number of cutoffs defining the global CDF
c Cuto real array of the ncut cutoffs
C cdfo real array of the global cdf values
c
c zmin,znrax minimum and maximum allowabIe data values
c hail option to handle values in lower tail
c Itpar parameter required for option Itail
c utail option to handle values in uppet tail
c utpar parameter required for option utail
c
c zval interesting cutoff (if -1 then it is calculated)
c cdfval interesting CDF (if-1 then it is calculated)
c
c ierr error flag O-no problem
c 1- both zval or cdfval can not be
c defined or undefined
c 2- invafidparameters
c
c
c Originak C.V. Deutsch October 1991

.

c------------------------------------------------------------------------------------------------------------------------------------------------------------

impticit reaI*8(a-h,o-z)
parameter(EPSLON=LOd-20,UNE.ST=-l.OdO)
d~~ion cut(ncut),cdf(ncut)

utpar,ltpar,lambda
integer Itail,utail

c
c Figure out what part of dks-ibrrtion ipart = 0- lower tail
c ipart’= 1- middle
c ipart= 2- upper taiI

ipart = 1
if(cdfval.le.cdf(l)) ipart = O
if(cdfval.ge.cdf(ncut)) ipart = 2

c
c ARE WE INTHE LOWER TAIL?
c

if(ipart.eq.0) then
if(ltail.eq.l ) then

c
c Stmight Linear Interpolation
c

POW = 1.OdO
zval = powint(O.OdO,cdf(l),zmin,cut( 1),cdfvai,powr)

else if(Itail.eq.2) then
c
c Power Model interpolation to lower limit “zmin”?
c

Cpow= l.odo / kpar

zval = powint(O.OdO,cdf(1),zmin,cut( 1),cdfval,cpow)
eke

c
c Error situation - unacceptable option:
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c
ierr = 2
return

endif
endif

c
c FfNISHEDTHE LOWER TAIL, ARE WE fNTHE MIDDLE?
c

if(ipart.eq.I) then
c
c Linear interpolationbetween the resealed global calf?
c

call Iocate(cdf,ncut,1,ncut,cdfval,ilow)
ihigh = ilow + I
POW = 1.OdO

zval = powint(cdf(ilow),cdf(ihigh),cut(ilow),cut(ihigh),
+ cdfval,powr)
endif

c
c FfNISHEDTHE MfDDLE, ARE WE fN THE UPPER TAIL?
c

if(ipart.eq.2)then
if(utail.eq.1) then

pow = I.odo

zval = powirrt(cdf(ncut),l.dO,cut(ncut),zmax,cdfval,powr)
else if(utail.eq.2) then

c
c Power interpolation to upper fimit “utpar”?
c

CPOW= l.OdO/ UtpU
zval = powint(cdf(ncut),1.dO,cut(ncut),zmax,cdfvaI,cpow)

c
c Fh a HyperbolicDhribution?
c

else if(utaiLeq.4) then
c
c Flgurc out “Iambct#’and required info
c

lambda= (cut(ncut)**utpar)*(l.OdO-cdf(ncut))
zval = (lambda/( LOdO-cdfval))**(l.OdO/utpar)

else
c
c Error situation - unacceptable option:
c

ierr = 2
return

endif
endif
if(zval.gt.zmax)zval = zmax

c
c All finished - return:
c

return
end

reaI*8 functionpowint(xlow,xhigh,ylow,yhigh,xval,pow)

c
c Power interpolate the value of y between (xlow,ylow) and (xhigh,yhigh) for a value of x and a power pow.
c

implicit real*8(a-h,o-z)
parameter(EPSLON=l .Od-20)
powint = ylow + (yhigh-ylow)”
+ (((xvaI-xIow)/amaxl(EPSLON,(xhigh-xIow)))**pow)
return
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end

reaI*8 function ginv(p,ymean,ystd,itrans)
c------------------------------------------------------------------------------------------------------------------------------------------------------------
c
c Computes the inverse of the standard normal cumulative dMribution function with a numerical approximation from: Abramovkz,
c M. and Stegun, 1., 1972,bandbook of mathematical finrctions, 10tbprinting, National Bureau of Standards, p.933.
c
c------------------------------------------------------------------------------------------------------------------------------------------------
c
c Coefficients of approximation
c

implicit rca1*8(a-h,wz)
data cO/2.515517d0/,cU.802853d0/,c2/.OlO328dO/
data all/l .432788d0/,d2/.189269d0/,d3/.0013O8dO/

c
c Values for+ and - infinity
c

data gneg/-5.0dO/,gpoti5.OdO/
c
c Check for probability= Oor 1
c

if(p.le.O.OdO)then
ginv = gneg

else if(p.ge.1.OdO)then
ginv = gpos

c
c Approximate the functiom.
c

else
PP=P
!f(pp.ge.O.5dO)pp = 1.OdO- pp
t = dsqrt(dIog(l.dO/(pp*pp)))
Q = [*t
Cl = Q*t
ginv = t - (cO+cl*t+c2*t2)/(l+dl *t+d2*t2+d3*t3)
if(p.eq.pp) ginv=-ginv

endif
if (itmns.ge.1) then

ginv=dexp(ystd*ginv+ymean)
end if

c
c Return with ginw
c

return
end

subroutine getlag
c-----------------------------------------------------------------------------------------------------------------------------------------------------------
c Establish the number and Iocation of the lags to consider
c *****************************$***************************

c
c
c
c Author C.V. Deutsch Date April 1992
c------------------------------------------------------------------------------------------------------------------------------------------------

include ‘metro.inc’
reaI*8 maxcov

c real*8 dist(maxlag)
logical covaf

c
c Compute maximum covariance
c

covaf = .tme.
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maxcov = cova3(O.OdO,O.OdO,O.MO,O.WO,O.OdO,O.OdO,nst,cO,it,
+ crnax,cc,aa,angl ,ang2,ang3,anis1,anis2,covaf)
covaf = false.

c
c Initialize the variogmm and lag arrays:
c

do 1 i=l,nlag
varmod(i) = 1.0d+20

c dist(i) = l.Od10
ixl(i) = O
iyI(i) = O
izl(i) = O

1 continue
c
c Calculate the Experimental Variograrn
c

na =0
nxl = nx/2
nyl = ny/2
nzl = nti2
do 20 ix=tl,nxl
do 20 iy=-nyl,nyl
do 20 iz=-nzI,nzI

if(ix.eqO.and.iy.eq.O.and.inq.0) go to 2
if(ix.eq.O.and.iy.le.O.and.iz,Ie.0) go to 2
dx = dble(ix) * xsiz
dy = dble(iy) * ysiz
dz = dble(iz) * zsiz

c dxyz=sqdist(O.dO,O.dO,O.dO,dx,dy,dz,angLang2,
c +ang3,anisI ,anis2)

vario = nraxcov- cova3(0.OdO,O.OdO,O.OdO,dx,dy,dz,nst,cO,it,
+ cmax,cc,aa,angl ,ang2,ang3,anisl,
+ anis2,covaf)

c

c

if(na.cq.nlag.and.vario.gt.varmcd(na))go to 2
c if(na.eq.nlag.and.dxyz.gt.dist(na))goto 2
c
c Consider this sample (it will be added in the correct location):
c

if(na.k.nlag) na = na + 1
c do no=l,na
c if (vario.eq.varmod(no)) goto 20
c if (dxyz.cq.dist(no))goto 20
c end do

ixl(na) = ix
iyl(na) = iy
izI(na) = iz
varmod(na) = vario

c dist(na)=dxyz
if(na.eq.1) go to 2

c
c Sort samples found thus far in increasing order of distance
c

nl =na-1
do3 ii=l,nl

k=ii
if(vario.lt.varmod~l)) then

if(dxyz.lt.dist(ii)) then
jk=O
do 4J=k,nl

j =nl-jk
jk=jk+l
jl =j+l
varmod~ 1) = varmod@
dist(jl)=dist~)

ixl(jl) = ixl(j)
iyl(jl) = iyl(j)
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c

izl(jl) = izl(j)
continue
varmod(k) = vario
dist(k)=dxyz

ixl(k) = ix
iyl(k) = iy
izl(k) = iz.
go to 2

endif
3 continue

c
c 1/2297 : ‘lTiefollowing debugging information are added by Tai-Sheng LIOUto see how lags are chosen
c

2 if (na.eq.nlag.and.vario.gt.varmcd(na))goto20
C2 if (na.eq.rdag.and.dxyz.gt.dist(na))goto 20

20 continue
c minus=]

c
c
c

c
c
c

c

c
c

c

do i=l ,nlag
iyl(i)=iyl(i)*(-1)**minus
rninus=minus+l
dx=ixl(i)*xsiz
dy=iyl(i)*ysiz
dz=izl(i)*zsiz
vamti(i~mxcov+ova3(O.OdO,O.OdO,O.OdO,dx,dy,dqnst,cO,iL

+ crnax,cc,aa,arrgl,ang2,ang3,anisl,
+ anis2,covaf)

end do

c
c Debugging information:
c

write(ldbg,100) rdag
100 format(rClosest ‘,i3/ lag.x Lag number variogmm offsets’)

do 10 i=l,nlag
write(ldbg,lOl) i,varrrsod(i),ixI(i),iyl(i),izI(i)

c
c 1/22/97 : The following line is added by Tai-Sheng Lieu

c write(7788,101) i,varmod(i),ixl(i),iyI(i),izl(i)
c

101 forrnat(i2,1x,f12.4,3i3)
10 continue

c
c Retrim with the closest lags
c

return
end

subroutine gridxyz(iseed)
c----------------------------------------------------------------------------------------------------------------------------------------------------------
c
c This subroutine generate a sample that honors the input mean and variance of the variabIeon the non-conditioning points. The
c probability dishibution of tie variable is assumed to be log-normal.
c
c brput :
c ymezn: Mean of In(x) [y=ln(x)]
c ystd : S.T.D. of In(x)
c isced: Wltial seed number
c
c output :
c var(nx,ny,nz) : Image of the random field in the grid
c
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c Remark:
c noncond = # of data points that are not conditioning &ta
c
c-----------------------------------------------------------------------------------------------------------------------------------------------

include ‘metro.inc’
real*8 xtry(maxx,maxy,rnaxz),xsave(50),pasp(50)
logical image

c
c Generate the initial image in the grid
c me condkioning data is not changed)
c

p=gekand(iseed)
isccd=O
nxyz=nx*ny*nz

c
c 2/10/97 : Define xcut,i.e., the cutoff value of z
c (1) itrans=l : z’=max(z-xcut,xcutO)
c (2) itmns=2: z’=max(z,xcutO)
c xcrrto=rninimumPM (or Ks) value
c
c i.e. if itrans=l and xcut.ne.0, use input value as cutoff PM value
c if itrans=l and xcut=o, xcut=LN-1(pcut,ymean,ystd)
c if itrans=2, the cutoff PM vahse(xcut)is defaulted as 0.0
c

c
c-----Reset cutoff PM (or Ks) vatue (xcut) to zero if itmns=2
c If itrans=l and xcut=o => iterate until pasp=ptarget
c [f itrans=l and xcrrbtl => no iterations, transform z’=max(z-xcut,xcrrto)
c

if @rans.eq.2) xcut=O.O
crrtsave=xcut
write(*,20) xcut
write(*,*~*********************************************`

20 format(’Irdtial PM cutoff = ‘,f7.4)

c
c Check again the type of simrdatiorx
c

write(*,*)
write(ldbg,*)
if(igarrss.eq.0)then

write(*,*) ‘Youare using a non-parametric distribution ...’
write(Idbg,*)‘Youare using a non-parametric dkribution ...’

elseif (igauss.eq.1) then
inquire(fik=imageinfl,exist=image)
if (.not.image) then
write(*,*) ‘Youare simulating standard normal deviates ...’
write(ldbg,*) ‘Youare simulating standard normal deviates ...’
end if

end if

c
c 2/13/97 : Define the value of asperity contact.
c (a) The lowest possible of LN variate, i.e., ginv(O.0,...)
c (b) A very small value defined by user, e.g., 1.Oe-4
c
C 7/14/!?7: kerate the generating process untiI the proportion of asperity contact reaches the target proportion, ptarget
c

Xcrrto=aspcut
do i=I,50

pasp(iter)=O.dO
xsave(iter)=O.dO

end do
itcr=l
psave=O.dO
pdif=l.dO
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smean=O.dO
smeanhr=O.dO

c
if (hrans.eo.2) then

17

13

c
c
c
c

. .
if(pcut.eq.ptarget)then
do 17 i=l,nx
do 17j=l,ny
do 17 k=l,nz

if(.noLcond(iJ,k))then
p=getrarrd(iseed)
var(iJ,k)=ginv(p,ymean,ystd,itrans)
do wfrile(var(i,j,k).gLzrnax.or.var(ij,k).lt.zrnin)

p=getrand(iseed)
va~l~,k)=ginv(p,ymean,ystd,itrans)

end do
end if
smearr=smean+var(i,j,k)

continue
else
nop=nxyz*(1.dO-pcut)
dowhile(nop.gt.nxyz*(ptarget-pcut))

i1 = int(getrand(seed)*nx)+l
jl = int(getrand(seed)*ny)+l
kl=l
if(va<ll j l,kl).ne.O.O.or.cond(il j 1,kl)) go to 13
p=getrand(iseed)
var(i1j 1,kl)=ginv(p,ymean,ystd,itrarrs)

do while(var(iljl ,kl).gt.zmax.or.vr@l jl,kl).lt.zrnin)
p.getrand(iseed)
var(i1j 1,kl )=ginv(p,ymean,ystd,itmns)

end do

if(var(i1j 1,kl).gt.zruax)var(i1j 1,kl )=zmax
if(va~ll j 1,kl).lt.zmax)var(i1,j1,kl)=zrrrin
smean=smcan+var(il j I,kl )
nop=nop-1

end do
end if

else
if(xcuLeq.@hen
DOWHILE(pdif.gt. 1.Od-3)
smearr=O.OdO
smeanln=CLdO
if(iter.eq.2) then

xsave(iter)=ginv(pcuLymean,ystd,itrans)
ekeif(iter.gL2) then

xsave(iter)=(ptarget-pasp(1))*xsave(iter-1)/
+ (Pw(iter-l)-pmp( l))

end if
if(iter.ge.2)xcut=xsave(iter)
do 1 i=] ,nx
do 1j=l,ny
do 1 k=l,nz

p=getrand(iseed)
if (.not.cond(i,j,k)) then
xtry(ij.k)=ginv(p,ymmn ,ystd,itrans)
var(ij,k)=arrraxl (xtry(i,j,k)-xcu~xcrrto)
if(var(ij,k).gt.zmax)var(i j,k)=zmax
if(var@,k).lt.zmin)var(i j,k)=zmin

else
var(ij,k)=xcuttl

end if
if(var(ij,k).cq.xcutO) pasp(iter)=pasp(iter)+l .dO
smean=smean+var(ij,k)
if(var(ij,k).gt.O.dO)smeanhr=smeanln+dlog(va~lj,k))

1 continue
pasp(iter)=pasp(iter)/dble(nxyz)
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write(*,3) iter,xcut,ptarge~pasp(iter)
paspsave=pasp(iter)

3 forrrsat(’iter=’,i2: cut=’,f7.4: ptarget=’,f6.2; pasp=’,
+ e20.9)

psave=pasp(iter)
iter=iter+l
pdif=abs(ptarget-psave)
if (ptarget.eq.O.dO)pdif=O.dO
END DO
else
do 111i=l,nx
do 111j=l,ny
do 111k=l,nz

p=getmnd(iseed)
if (.not.cond(iJ,k)) then
xq(ij,k)=ginv(p,ymem,ystd,itrans)
var(i~,k)=amaxl (xtsy(i,j,k)-xcut,xcuto)
if(var(ij,k).gt, zmax)var(iJ,k)=zrnax
if(var(ij,k).lt.zmin)var(ij,k)=zmin

else
var(ij,k)=xcutO

end if
if(var(iJ,k).eq.xcutO)pasp(iter)=pasp(iter)+l .dO
smcan=smcan+var(i~,k)
if(var(iJ,k).gt.O.dO)smcanln=smmn1n+dlog(v@,j,k)),

I 11 continue
end if

end if

2

c

c

smean=smeaddble(nxyz)
smeanln=smeanhr/dblc(nxyz)
sstd=O.OdO
sstdht=O.dO
do 2 i=l,nx
do 2j=l,ny
do 2 k=l,nz

sstd=sstd+(var(iJ ,k)-smean)*(var(i,j,k)-smerm)
if(var(i,j,k).~.O.dO)sstdln=std1n+(dIog(vmfi,j.k))-

* smeanln)*(dIog(var(i,j,k))-smeanln)
continue

sstd=dsqrt(sstdl(dble(nxyz)-1.dO))
sstdln=dsqrt(sstdhr/(dble(nxyz)-1.dO))
write(*,*)
write(*,60) smeanIn,sstdln*sstdhr
write(*,70) smean,sstd*sstd
write(ldbg,*)
write(ldbg,60) smeanhrx,sstdlnx*sstdInx,

write(1dbg,70)smean,sstd%std
if(imageoutfl(I: 10).ne.’nodata.@t) then

write(lirnageout,*)Tnitial image data’
write(lirnageouL*)5
write(limagcmrt,*)‘X location’
write(lirnagcou$*)‘Y location’
write(lirnageout,*)‘Z location’
write(lirnageout,*)‘kbefore the cutoff
wrhe(limagcms4*)‘kafter the cutoff

c change ymn to yini for output using DEPTH as the vertical dkarsce
c

do 40 i=l,rsx
do40 j=l,ny
do 40 k=l,nz

xx=xmn+xsiz*dbIe(i-1)
yy=ynrn+ysiz”dble(j-1)
zz==mn+zsiz*dble(k-1)
write(lhrrageout,30)xx,yy,zz,xtry(i,j,k),var(i,j,k)
if (var(iJ,k).eqxcutO) then

if(.not.cond(i~,k))then
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wnte(550,30) xx,yy.zqO.O
end if

end if
40 continue

end if
close(timageout)

30 fomrat(3(f6.2,2x),2f10.4)
60 fomrat(’Genemted statistics of In(PM): mean= ‘,e12.4: Var =‘,

+ e12.4)
70 forrnat(’Generated statistics of PM : mean= ‘,e12.4,’Var =‘,

+ e12.4)

return
end

subroutine etapdf(iseed)
c----------------------------------------------------------------------------------------------------------------------------------------------------------------
c
c This subroutine generates a sample that uses user-specified pdf (CDF) with the foIlowing three options
c
c Case 1: log-normal (see gridxyz above)
c
c Case 2 :(Exponential)
c f(x)= 0.25 d(x) X<=o
c f(x)= hrmda*exp(-hrmda*x) x>O
c
c Case 3: step-wise uniform
c f(x)= 0.25 d(x) X<=o
c f(x)= 0.1 Ou<l
c f(x)= 0.0625 Icx=5
c f(x)= 0.02 5CX<1O
c f(x)= 0.01 1CKX<=25
c f(x)= 0.004 25cxc=50
c f(x)= 0.001 “50CX<=IO0
c
c----------------------------------------------------------------------------------------------------------------------------------------------------------------

inchrde‘metro.inc”
rcal*8 xtry(maxx,maxy,maxz),xsave(50),pasp(50)
real*8 hrmbda

c
c Generate the initial image in the grid
c me conditioning data is not changed)
c

smcan=O.OdO
p=getrand(iseed)
isced-~
nxyz=nx*ny*nz

c
c Set non-conditioningdata to 0.000
c

3

c

nocond=tl
do 3 i=l,nx
do 3 j=l,ny
do 3 k=] ,nz

if (.not.cond(i,j,k)) var(ij,k)=O.OdO
if (cond(i~,k))nocond=nocond+l

continue

c Check again the type of simulation
c

write(*,*)
wrhe(ldbg,*)
if(igauss.gt.2) then

icas=igauss- 1
write(*,*) ‘Youare using ‘,icase,’-th kind of CDF
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wnte(ldbg,*) ‘Youare using ‘,icase; -th kind of CDF
end if

c
c 6/30/97: Generate initial permeability field using
c user-defined CDF
c

nop=o
nopmax=lOOOO*(l.dO-ptarget)
icase=igauss-1
if(icase.eq.2)then

c
c Case 2-- 25% exponentially decayed pdf with
c
c p(x)=hrmda*exp(-hrmda*x),CDF(x)=0.25+0.75*(l-exp(-hrmbda*x))
c hrmbda=l/(mean of PM)

hrmbda=O.065
write(ldbg,*) ‘Iumbda=’,lumbda
write(ldbg,*) ‘nop= ‘,nop
write(ldbg,*) ‘ptarget=’,ptarget
write(Idbg,*)‘nopmax=’,nopmax
write(ldbg,*) ‘xcutO=’,xcutO
if (pcut.eq.ptarget)then

c
c Assign pm values to grid blocks sequentially if fraction of conditioning data is exactly ptarget
c

c

+

100

do 100i=l,nx
do Itlllj=l,ny
do 100z=l,nz

if(.not.cond(i,j,k))then
do while(var(i,j,k).eq.xcutO)
.or.var(i~,k).gt.zmax.or.var(ij,k).k.zmin)
p=getmnd(iseed)
lf(p.gt.ptarget)var(ij,k)=dlog( 1.dO-(p-ptarget)/
(1.dO-ptarget))/hrmbda

end do
if(var(i,j,k).gt.zmax)var(i,j,k)=zmax
if(var(i,j,k).lt.zmin)var(ij,k)=zmin
end if
continue

else
c
c Assign pm values to grid blocks randomly if fraction of conditioning data is less than ptarget
c

do while(nop.lt.nopmax)
6 i=int(getrand(ise@ *nx)+l

~~(getrand(iseed)*ny)+l

if(var(i,j,k).ne.xcutO.or.cond(i,j,k))goto6
do while(var(Lj,k).eq.xcutO)

c .or.var(ij,k).gt.zmax.or.var(i ~,k).lt.zmin)
p=getrand(iseed)
if(p.gt.ptarget)var(i,j,k)=dlog(l .dO-(p-ptarget)/

+ (1.dO-ptarget))/hsmbda
end do
if(var(ij,k).gt.zmax)var(i,j,k)=zmax
if(var(i,j,k).lt.zrrrin)var(ij,k)=zrrtin
if(p.gLptarget)nop=nop+l

end do
write(*,*) ‘Endof generating sample data’

end if
c
c Case 3-- 25% of total asperity contacts
c

elseif(icase.eq.3)then
if(pcut.eq.ptarget)then
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c
c Assign pm values to grid blocks sequentially if fraction of conditioning data is exactly ptarget
c

do 200 i=l ,nx
do 200j=l ,ny
do 200 k=l ,nz
do while (p.1t.0.25.0r.p.gt.1.dO)
p=getmrd(iseed)
if(p.gt.O.25.and.p.le.O.35)var(i,j,k)=(p-O.25)/O.ldO
if(p.gt.0.35.and.p.Ie.O.60)v~t,j,k)=l .+(p-0.35)/6.25d-2
if(p.gt.O.6O.and.p.le.O.7O)vmfi~,k)=5.+(p-O.6O~2.d-2
if(p.~.O.7O.and.p.le.O.85)va<1,j,k)=lO.+(p-O.7O)/ld-2
if(p.gt.0.85.md.p. Ie.0.95)va~lj,k)=25 .+(p-O.85)/4.Od-3
if(p.gt.0.95.arrd.p.le.1.00)var(i,j,k)=50.+(p-O.95)/ld-3

end do
200 continue

else
c
c Assign pm values to grid blocks randomly if fraction of condkioning data is 1sssthan ptarget
c

do while (nop.lt.nopmax)
7 i = int(getrand(seed)*nx)+l

~;i;t(getmnd(secd)*ny)+l

if(var(@).ne.O.O.or.cond(ij,k)) go to 7
p=getrand(iseed)
if(p.gt.O.25.and.p.le.O.35)var(i,j,k)=(p-O.25)/O.ldO
if(p.gt.0.35.and.p.Ie.0.60)v@ij,k)= l.+(p-O.35~6.Md-2
if(p.gt.0.60.and.p.le.O.70)var(iJ,k)=5.+(p-O.60j12.d-2
if(p.@.0.70.md.p.Ie.0.85)v@lj,k)= IO.~p-O.7O)/l.d-2
if(p.~.O.S5.and.p.le.O.95)v@ij,k)=%.+(p-O.85)/4.Od-3
if(p.gt.0.95.and.p.le.1.00)var(ij,k)=50.+(p-O.95)/ld-3
if(p.gt.0.25.and.p.Ie.1.0) nop=nop+l

c elseif@ase.eq.4) then
c
c Case 4-- 30% of total asperity contacts
c
c if(p.gtO.25.and.p.le.O.30)var(ij,k)=(p-O.25)/O.05d0
c if(p.gLO.30.and.p.le.O.40)var(iJ,k)=l.+(p-0.30)/2.5d-2
c if(p.gLO.4O.and.p.le.O.45)var(ij,k)=5.+(p-O.4O)/ld-2
c if(p.gL0.45.and.p.Ie.0.55)v@J,k)= lO.+(p-O.45~6.66667d-3
c if(p.@0.55.and.p.le.0.65)va~ij,k)=M.+(p-O.55~4.Od-3
c if(p.gL0.65.and.p.Ie.O.75)v~1j,k)4W(p-O.65)/4.d-3
c if(p.gLO.75.and.p.le.l.00)va@~,k)=75.+(p-O.75)/l.d-2
c if(p.gLO.25.and.p.le.1.0)nop=nop+l

end do
end if
end if

smean=O.O
do 5 i=l,nx
do 5 j=l ,ny
do 5 k=l,nz

smcan=smcarr+var(ij,k)
5 continue
10 write(*,*)

write(*,*) ‘nop= ‘,nop
smean=smeaddble(nxyz)
sstd=O.OdO
do 2 i=l,nx
do 2j=l,ny
do 2 k=l ,nz

sstd=sstd+(var(i,j,k)-smean)*(var(i,j,k)-smearr)
2 continue

sstd=sqrt(sstd/(dble(nxyz)-1.dO))
write(*,*)
write(ldbg,*)
write(*,70) smean,sstd*sstd
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write(ldbg,70)smcan,sstd*sstd
c
c change ymn to yini for output using DEPTH as the vertical distance
c
c yinit=-(ysiz*dble(ny)-ysiz/2.dO)

if(imageoutfl(l: 10).ne.’ncdata.dat’)then
write(Iimageout,*)‘Iuitialimage data’
write(limagecnst,*)5
write(lirnageout,*)‘X location’
write(Iimageout,*)‘Y location’
wnte(limageout,*) ‘Z location’
write(limageout,*) ‘kbefore the cutoff
write(limageout,*) “kafter the cutoff
do 40 i=l ,nx
do 40 j=l ,ny
do 40 k=l,nz

xx=xmn+xsiz*dble(i-1)
yy=ymn+ysiz*dble(j-1)
Z-znm+zsiz*dbIe(k-1)
write(lirnageout,30)xx,yy,zz,var(ij, k),O.O
if (var(i,j,k).eq.O.dO)then

if(.not.cond(i,j,k))then
c yy=yinit+ysiz*dble~-1)

write(550,30) xx,yy,zz,O.O
end if

end if
40 continue

end if
close(limageout)

30 format(3(f6.2,2x),2f10.4)
60 forrnat(’Generated statistics of In(PM) : mean= ‘,f7.3,’Var =‘,

+ fl 1.3)
70 forma((’Generated statistics of PM : mean= ‘,f7.3,’Var =‘,

+ fll.3)

return
end
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(3) Sample input file

Parametersfor SASIM
********************

START OF PARAMETERS:
nodata.&t
image.dat
asperity.dat
1203
-1.0e21 1.0e21
nodata.dat
30
0.0 100.0
1 1.0
4 2.0
case.dat
var.dat
varh.dat
varv.dat
3 500000025000000
case.dbg
nodata.dat

1.00.950.05.03 1.Od-7
1
112063
1
1000.1 0.2
100-19.9 0.2
1 0.5 1.0
14 3
1 0.00
2 0.2 190.0
0.00.00.0 1.0 1.0
0 4.0
1 ).0
1.0 1.5 1
0.100.00.00.25
0
2

tinput initial inrage tile
hrtput initial image file
\corrditioningdati (if any)
\colursmx x,y,z,vr
Wata trimming limits O=rronparamerrk l=Gaussiaw 2=left open; 3=Exp 4=step-wise uniform)
Irronparametric distribution
kohrmnx vr,wt
hninimum and maximum data values
vower tail option and parameter
\upper tail option and parameter
\output Fde for simulation
\output File for variogram
\outprrtfile for hori. variogram
kmrtputfile for ver. vario~m
kiebug level, reporting interval
\orstputfile for debugging
\orstputfile for lag information
kmmcalingschedule? (O-3with O=usersupplied, l=defarrl~ 2=fast, 3=very fast)
knanual schedule tO,lambda,ka,k,e,Omin
\l or 2 past objective function
hrdom number seed
husmberof simulations
krx,xnm,xsiz
by,ymn,ysiz
UrLzmn,zsiz
hnax lags for conditioning
bsL nugget, (l=rerrormalize)
VLaa,cc STRUCTURE 1
bngl, ang2, ang3, anisl, anis2
Vedge(l:ycs, O:no),wedge
Ucond(l:yes, O:no),wcond
knlnk,stdhsk,itrans
\pcut ,aspcut(xcutO),xcut, ptarget
\Ostandard, I:moditied Metropolis algorithm
\l:first hbhd, 2second nbhd
Umod(different perturbation mechanisms)
Wield (l(0)=do(not) generate evolving files of PM and serni-variogram fields)

Notes:

itrarrs=o not transform to LN data, itran.sM, transform to LN data
itrans=l z’=max(z-PMCUT,ssspcut)where PMCUT=xcut, if xcut .ne. O or PMCUT=LN-1(ymean,ystd,pcut) if xcut=O
itrans=2 z’=max(z,aspcut),i.e., PMCUT=O(without shifting)
aspcut=PM value of asperity contact
xcut=cutoff permeability (O=defuak)
pcut=cutoff probabitity=ratio of asperity contact to total rock volume and is used to calcuIate xcut

(4) Sample output file

Permeability fieId from simtdatcd anrreating
4

X location NX= 100 DX= 0.10 DX= 0.20
Y location NY= 100 DY=-19.90 DY= 0.20
Z location NZ= 1 D= 0.50 DZ= 1.00
Permeability field
O.1ooo -19.9000 0.5000 36.1209
0.7000-19.9000 0.5000 2.7844

19.7000 -0.looo 0.5000 0.0000
19.9000 -0.1Om 0.5000 2.7400
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Appendix D. CaIcuIation of effective permeability
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(A) Horizontal effective permeability

To calculate the horizontal effective permeability, attach two boundary elements,
‘rhs 1’ and ‘lhs 1’ to the entire right and left hand side boundaries, respective y, and let the
element ‘lhs 1’ be inactive such that primary variables in that element will not be changed
during simulation. Inject water from ‘rhs 1’ and turn the gravity off. Run the simulation
under single-phase conditions then the pressure in element ‘rhs 1’ will increase and reach
to a constant value after a short transient, i.e., the steady state is reached. Calculate the
horizontal effective permeability according to Darcy’s law, i.e.,

k Wl_.Wl— _
‘“’h= pAVP x]

(D-1)

where ~ [Pas] is water viscosity, q [kg/s] is injection rate, p [kg/m3] is water density, A

[m2] is the contact area of ‘rhs 1’ to the entire right hand side boundary, and AP [Pa] and
Ax [m] are the pressure difference and horizontal distance between ‘rhs 1’ and ‘lhs 1’,
respective y.

(B) Vertical effective permeability

Vertical effective permeability can be obtained by following the same procedures
as in (A) but attaching two boundary elements, ‘top 1’ and ‘bet 1’, to the entire top and
bottom boundaries, respectively. Let the element ‘bet 1’ be inactive and inject water from
‘top 1’. Gravity is sill turned off in this case. Therefore, the vertical effective permeability
is calculated according to

k m_P4— _
‘ff’v= pAVP ‘=)

(D-2)

where ~, q, and p are the same as in (A), A is the contact area of the element ‘top 1’ to the
entire top boundary, AP is the pressure difference between ‘top 1’ and ‘bet 1’, and AZ is
the vertical distance between ‘top 1’ and ‘bet 1’.
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