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Introduction 
Shear bands and faults are ubiquitous features of brittle rock deformation at a 
variety of length scales. Despite the prevalence of these features, understanding 
of their inception remains rudimentary. Laboratory experiments suggest a casual 
association of localization of deformation (faulting) with peak stress, but more 
detailed examination reveals that localization can precede or follow the peak. 

Rudnicki and Rice (1975, hereafter abbreviated as RR) have suggested a the- 
ory of the inception of localization as a bifurcation or nonuniqueness of the so- 
lution for homogeneous deformation. They predict a strong dependence of local- 
ization on deformation state. In particular, they predict that localization can occur 
prepeak for deformation states near deviatoric pure shear and does not occur until 
well after peak for axisymmetric compression. This prediction is roughly in ac- 
cord with the true triaxial experiments of Mogi (1967, 1971). More recently, Ord 
et al. ( 199 1) and Wawersik et al. (199 1) have reported observations of localization 
prior to peak stress in plane strain experiments. 

The predictions of RR depend strongly on the constitutive properties of the 
rock and detailed comparison has been impeded by inadequate knowledge of those 
properties. Even the idealized constitutive model used by RR requires knowledge 
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of the evolution of the constitutive properties with inelastic deformation that is not 
readily obtainable from the typical axisymmetric compression test. Although it is 
conceptually advantageous to consider inelastic deformation at fixed mean stress, 
the mean stress changes throughout the axisymmetric compression test. 

In this paper, we present a synthesis of a number of axisymmetric compres- 
sion tests to extract a detailed implementation of the constitutive framework used 
by RR. The resulting constitutive relation is then used to .predict the response for 
plane strain. Conditions for localization of deformation derived by RR are evalu- 
ated for both plane strain and axisymmetric compression. 

2 Theoretical Background 

2.1 Constitutive Framework 
The constitutive framework used here is that o RR who generalized the type of 
relation used for metal plasticity. In particular, they included pressure dependence 
of the yield condition and inelastic volume change. 

The yield condition is the surface in the space of stress components a;j that is 
the boundary of those stress states for which the response is elastic; for those stress 
states on the yield surface, the response is inelastic. In general, the yield surface is 
not fixed but evolves with one or more parameters that characterize accumulated 
inelastic (or plastic) deformation. It will be convenient to decompose the stress 
into a deviatoric part sij and a mean normal contribution CT 

~ i j  = sij + abij (1) 
where Si, (= 1, if i = j ,  = 0, if i # j )  is the Kronecker delta, a = ( 1 / 3 ) a k k ,  and 
the repeated subscript implies summation. Plastic strain increments are similarly 
decomposed 

The yield condition is assumed to be of the following form 
r - f (O ,” i )  = 0 

where 7 = d-, and the accumulated plastic shear strain 

(3) 
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is the sole parameter used to keep track of the history of inelastic deformation. (The 
superposed dot indicates the derivative with respect to time or any monotonically 
increasing parameter). The requirement that the stress state remain on the yield 
surface for continuing inelastic deformation is the consistency condition: 

where p(o, 7’) = 6 f /aa is a friction coefficient, and h(a, qp)  = a f / a y P  is a 
plastic hardening modulus. 

Expressions for the plastic portion of the strain increments are specified by the 
flow rule 

where r = .i. - g( 0. T P )  is the plastic potential function and dX 2 0. Taking the 
deviatoric part of (6) and substituting for the plastic potential yields 

Sij dcyj = dX - 
27 (7) 

Using (7) in (4) reveals that dX = dTP and the inelastic volume strain can be 
written as 

where $(a, q p )  = i?g/6a (and the minus sign appears because stresses and strains 
are taken to be positive in compression). From the consistency condition, the 
increment in accumulated plastic shear strain is given by 

Since C l T P  >_ 0, (9) applies for increments tending to make d? > p d o  ( h  > 0); for 
increments tending to make d7 5 p d u ( h  > 0 ) ,  d7P = 0, and the material 
unloads elastically. Substituting the definitions for 7 and o, and recombining the 
deviatoric and volumetric plastic strain increments yields 
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Figure 1: Geometric interpretation of the parameters h (a) and p and p (b). The 
slope of the vector ( ~ E P ,  d T P )  is -p. 

Minus signs in ( I O  are the result of choosing compressive stress to be positive, 
opposite to the choice made in RR. The total strain increment is the sum of (IO) 
and an elastic increment. For isotropic elasticity the latter is: 

where Gis  the shear modulus and v is Poisson’s ratio. Figure l a  shows the ge- 
ometric interpretation of h in a sketch of the shear stress versus shear strain at 
constant mean stress. Figure Ib shows that p is the local slope of the yield sur- 
face in the space f versus 0 and that the plastic strain increment vector ( & P ,  d T P )  

would be perpendicular to the yield surface if /3, the negative of the ratio of the 
volume and shear plastic strain increments, were equal to p. 

2.2 Shear Localization 
RR proposed that faulting could be described as bifurcation from homogeneous 
deformation. That is, they examined the conditions for which non-uniform de- 
formation in a planar band was an alternative to homogeneous deformation. For- 
mation of the band was required to be consistent with a continuous velocity field 
and equations expressing continuing equilibrium. These requirements result in a 
condition depending on the parameters of the constitutive relation and the orien- 
tation of the band. Then RR determined the orientation of the band for which this 
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condition is first met. For the constitutive framework introduced in the preced- 
ing section, this condition can be expressed as a critical value of the hardening 
modulus at which localization is first possible. The result is 

where p, p, C; and 11 are as defined earlier and N is the negative of the intermediate 
principal deviatoric stress divided by 7. (As discussed in more detail by RR, the 
expression (12) neglects terms of order T/G; typically, these are small.) 

The parameter !V specifies the deviatoric stress state and ranges from -l/a 
for axisymmetric extension, through 0 for deviatoric pure shear to l/d for ax- 
isymmetric compression, using the convention that compressive stress is positive. 
The maximum value of h,, occurs for N = - (p + p) /3 and is positive if p # p. 
RR evaluate the condition (12) for various constant values of N ,  p, and p, as have 
a number of others, but, in general, these parameters evolve during a program of 
loading. In general, the value of N evolves during plane strain, but for an incom- 
pressible material, !V = 0 during plane strain. For N = -/3/3, the intermediate 
principal value of the inelastic strain rate is zero and, to the neglect of elastic 
strains, this corresponds to plane strain. 

3 Implementation for Tennessee Marble 
To implement the constitutive framework, it is necessary to choose a specific yield 
function f(?P, a )  and plastic potential g(a, 7’) (or, equivalently, the dependence 
of the dilatancy Factor on a and TP). A form that is tractable, yet suffices to 
describe the Tennessee marble data adequately, is the following: 

where 

and 
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represents the initial yield surface and its mean stress dependence. In (13-15), 
ro, ho, h,, po: and 00 are positive constants. The normalizing strain 7:(a) is 
assumed to depend linearly on the mean stress 

In the fitting proccdure we actually used the slightly different form Tool = yol/ao. 
Because a0 is a fitted parameter, this form must be used in reproducing the data 
fit to get the same functional relationship. 

The hardening modulus and friction coefficient can be derived using (13) and 
the expressions following (5) .  The results are 

where HIS) is the Heaviside step function. Because h(0,a) = ho, rather than 
becoming unbounded, the slope of the shear stress versus shear strain curve (at 
constant a) is discontinuous at 7 P  = 0. In reality, the transition from purely 
elastic behavior is smooth but this feature of the model is inconsequential. 

At peak shear stress, h = 0 and from (17) the equivalent plastic strain at peak 
shear stress (ppeu ’  ), is found to be 

Note that because the equivalent plastic shear strain at peak shear stress depends 
on the mean stress. the locus of the peak shear stress in the 7 vs. a plane is not a 
yield surface as is commonly assumed. The peak shear stress, for constant mean 
stress, is given by 

Tp = 7; + T a  
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Figure 2 illustrates the graphical interpretation of the parameters. Figure 2a 
sketches the shear stress 5 as a function of the equivalent plastic shear strain V P  for 
constant values of the mean stress (T. Figure 2b sketches yield surfaces (surfaces 
of constant T p )  in the 7 vs. a plane. 

An expression for the dilatancy factor was developed by writing the accumu- 
lated plastic volume strain as E P  = E(;F,p, a).  Because EP depends on stress path, it 
cannot, in general. be represented in a functional form such as this. The introduc- 
tion of E is, however, simply a device for representing the data for the particular 
stress path of axisymmetric compression and only the increments of plastic strain 
enter the constitutive formulation. An increment of inelastic volume strain is given 
by 

The negative of the coefficient in the first term is the dilatancy factor. (Note that 
E is related to the Bow potential by dg/da  = -aE/67.P.) The second term rep- 
resents inelastic compaction, that is, inelastic volume strain due to mean stress. 
Here this term is deleted since the RR formulation assumes that all inelastic vol- 
ume change is related to inelastic shearing. A more general representation would 
include a term representing inelastic compaction, although there is no reason to 
expect that the coefficients of the two terms can necessarily be expressed as partial 
derivatives of a single function. A form of the function E( 
gammd', a )  suggested by the data is 

where 

and Po. a,, cot c I .  and B are constants. The dilatancy factor is given by 

Thus, the dilatancy factor at T P  = 0 is PO - B(a/aoand P approaches Boo - 
B(o/ao) as 7 P  - 03. Figures 3a and 3b sketch and EP = E as a function of 
;i;P for two values of mean stress. Numerical values for these coefficients are in 
Table 1 .  
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Figure 2: Key parameters used to model the dependence of ,u and h on rp (a) and 
c (b). 

4 Determination of Model Parameters 
Determining the model parameters is a several step process, beginning with ac- 
quisition of a data set, determining 7, cy T P  and 9 and finally fitting the model pa- 
rameters to the processed data set. Experimental results from conventional triaxial 
tests on 5 cm diameter cylinders of Tennessee marble were analyzed to obtain r P  

and E P .  The elastic strains were removed by using a least squares fitting pro- 
cess to simultaneously determine G and u from the initial portions of the loading 
curves. Although G and u change with inelastic deformation, the change is small 
for Tennessee marble and was neglected here (see Table 1 for values). Twelve 
experiments, conducted at confining pressures from 0 to 100 MPa, were analyzed 
to produce a data set consisting of values for ?, cry T P  and e p .  Our goal was to find 
values for the model parameters listed in Table 1 which would minimize a suitable 
measure of the difference between the experimental and modeled values for 5 and 
@. A simplex algorithm was used to solve the minimization problem. 

Although the downhill simplex method is not a particularly efficient algorithm, 
it is appealing for solving minimization problems because it is easy to implement, 
requires no differentiation and readily allows inclusion of constraints. Nelder and 
Mead (1965) first described the downhill simplex method, but a more accessible 
reference may be Numerical Recipes (Press et al., 1986, pp. 289). A simplex 
in two dimensions is a triangle (three vertices), in three dimensions a tetrahe- 
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a. b. 
E P  

Figure 3: 9 ;is a function of rp (a) and parameters used in the model (b) 

dron (four vertices) and so on to an object with N+1 vertices in N dimensions 
corresponding to the N unknowns of the minimization problem. Each vertex cor- 
responds to an N-tuple of possible values for the sought-after set of parameters 
that minimize the appropriate measure of error. In our problem, the unknowns 
are the 12 parameters listed in Table 1. The error function to be minimized was 
the L2 norm of the difference between the experimental values of .T- or EP and 
the corresponding values calculated from Equations 13 and 22. The procedure 
was implemented with the constraint that ,LL < a, the slope of the .T versus CT 
trajectory in a conventional triaxial test. 

To begin the process, N+l starting vectors are chosen that define the vertices 
of the initial simplex in the N-dimensional space of unknowns. At each vertex, the 
error function is evaluated, by calculating the value of T for the several hundred 
experimental data points, using the experimental values of T P  and CT and the N- 
tuple of paramete-r values that are the vertex coordinates. Then the simplex shape 
is modified to move it towards regions of the parameter space that give lower 
values for the error functions. The simplest movement is away from the vertex 
with the highest \,slue of the error function, accomplished by reflecting that vertex 
across to the other side of the simplex. In two dimensions the process is easily 
visualized as an amoeba-like series of stretchings, contractions and crawling that 
moves the triangular simplex as a whole towards smaller and smaller error values. 
When a minimum lies within the simplex, further movement ceases to lower the 
error and a series of contractions are instituted that shrink the simplex until some 
specified convergence criterion is met. There is no guarantee that the minimum 
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Table 1 : Numerical Values of Coefficients 

is not just a local minimum, so it is standard practice to restart the simplex at 
different regions of the parameter space to determine whether the same minimum 
is found. 

Two separate minimizations were carried out: one to obtain the parameters 
necessary to describe the hardening modulus and the friction coefficient and the 
other for the parameters in the model of the dilatancy parameter. As Figures 2 
and 3 show, the parameters could be found by choosing values from individual 
tests at special points. However, fitting all of the triaxial test data avoided overem- 
phasizing any oiic test or portion of a test. Another approach would have been to 
model (he hardening modulus, friction factor and dilatancy parameter directly. 
This would have required differentiating the experimental stress-strain curves, 
which would inevitably produce a noisy data set to be fit. By modeling 7 and 
EP as functions of < p  and CT , we were able to carry out the differentiations required 
to obtain h, p. and .3 on smooth analytic functions. 

Once determined, the parameters in Table 1 can be used to calculate the re- 
sponse for different stress paths by substituting the expressions for p, /3 and h into 
(IO) and numericdly integrating. A comparison of experiment and calculations 
for all of the fitted triaxial tests is shown in Figure4. This comparison confirms the 
suitability of the l'orms adopted for l? (6) and E (22). Calculations were checked 
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by comparing thc results from a direct integration of Equation 10 with the out- 
put from a radial return algorithm. Care was required in the direct integration to 
keep the stress 011 the yield surface. Frequent correction steps had to be included 
to eliminate a tendency to wander away from the yield surface. Once properly 
corrected, the agrcement between the two solution algorithms was excellent. 
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Figure 4: Comparison of experimental results used to derive the model parameters 
with the stresses and strains calculated from using the fitted parameters. 

Calculated yield surfaces for several values of T P  are shown in Figure 5a and 
shear stress versus shear strain at several values of mean stress are shown in Figure 
5b. Also shown ill Figure 5a is the peak stress as a function of mean stress. As dis- 
cussed earlier, the curve of peak stress cuts across the yield surfaces (not shown) 
and, hence, is not itself a yield surface. This result is not model-dependent, as any 
model that predicts the observed plastic shear strains would give essentially the 
same result. Since the peak stress is, in general, neither a yield surface nor the 
stress at which localization occurs, the prominence given this parameter may be 
more due to its ease of observation than any fundamental significance. 
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Figure 5: Results of modeling yield surfaces (a) and shear stress as a function of 
plastic shear strain -;IP at constant mean stress (b). The curve marked Feak/ro in 
(a) shows peak stress as a function of 0. From numerical results the locus of peak 
stresses crosses the yield surfaces, indicating that peak stresses do not constitute 
a yield surface. 

5 Localization Under Axisymmetric Compression 
Using the constitutive relations described earlier, we have examined the localiza- 
tion criterion (Equation 12) for axisymmetric compression tests. Figure 6 shows 
the evolution of the hardening modulus (17) and of the critical hardening modulus 
needed for localization (12) for the cases 0 2 2  = 0-3~ = 5 and 20 m a .  Results for 
other confining stresses are similar: the hardening modulus decreases but never 
becomes sufficiently negative to equal the critical value. The minimum attainable 
value of h in the constitutive model is negative (-hm, see Equation (17)), as is 
the critical value .predicted for localization. However, h, is predicted to be a sub- 
stantial fraction of the elastic shear modulus G, exceeding the possible values for 
h. 

As discussed by RR (and by Rice (1976)), the strongly negative values of hcrit 
predicted for localization in axisymmetric compression are related to the overly 
stiff response of ;I smooth yield surface model to the abrupt change in the pattern 
of deformation required for localization. Essentially, localization into a planar 
band is simihr to a plane-strain mode of deformation; when the pre-localization 
field is axisyinmctric, the formation of a band requires an abrupt change in the 
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Figure 6: Calculation of the critical hardening modulus and the material harden- 
ing modulus, ploited as a function of normalized plastic shear strain for triaxial 
load paths at confining pressures ~ 2 2  = ~ 3 3  = 5 and 20 MPa, showing that the 
localization criterion is never met. The calculation was done using G = 30 GPa 
andv = 0.3 

. ratio of components of inelastic strain increments. RR note that the overly stiff 
response to this abrupt change predicted by smooth yield surface models is allevi- 
ated by models that  have a vertex at the current stress point. This class is predicted 
for a wide range of microstructural models (Hill, 1967) and evidence for the for- 
mation of a yield surface vertex has been observed in compression-torsion tests 
on Tennessee marble (Olsson, 1992). Because post-test examination of the sam- 
ples revealed localization, in the form of through-going fractures, it appears that a 
more elaborate constitutive formulation, possibly including a yield surface with a 
corner. is needed to accurately predict localization in axisymmetric compression. 

6 Simulations of Plane Strain 
We have also usecl the constitutive relation to simulate-the results of a plane strain 
test (zero strain in the 2 2  direction) with constant in-plane compressive stress 
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( c T ~ ~  = ‘120 MPa). Results for the stresses, ull and a 2 2  versus ell are shown in 
Figure 7. Dashed lines are the results obtained from the model and solid lines 
are experimental data. Note that the hardening in plane strain is augmented, by 
comparison with that in axisymmetric compression, because of the more rapid 
increase of mean stress in plane strain. 

- 

350 
Tennessee Marble _ Plane Stra‘in, 20 MPa : .: ................. .: ................ ................................................... 

0’ 
0 0.002 0.004 0.006 0.008 0.01 

I I I 1 I 

el I 

Figure 7: Comparison of the calculated (dashed lines) and experimental (solid 
lines) stresses as a function of total strain ell for a plane strain test on Tennessee 
marble. Using the convention that compressive stress is positive, cll and C T ~ ~  are 
the maximum and intermediate compressive stresses, respectively. 

Modeling reproduced the stresses quite well. Note that the test included un- 
loading loops (tiie small ticks off the main load line) that were not included in 
the modeling. Model calculations were extended to much higher values than were 
observed, in order to reach predicted localizaton. Experimental data indicate a 
nearly linear response of 0’22 as would be expected if the material remained elas- 
tic. Figure 8 confirms that, experimentally, elastic strain along the out-of-plane 
axis was small. Because total strain e22 = + E ; ~  = 0 was constrained to be 
exactly zero (plane strain), = - E ; ~ .  Thus a small elastic strain component 
implies an equally small plastic strain component of opposite sign. In contrast 
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to the experimental results, the modeled results for e22 in Figure 8 show a large 
compressive, elastic strain, and thus a large, extensive, plastic strain. 

The discrepancy appears to be caused by the way in which dilatancy is mod- 
eled (Equation (8)): An increment of inelastic deviatoric strain, in any direction, 
contributes to d T p  and causes equal increments of inelastic normal strain in all 
directions. In actuality, dilatancy in the x2-direction is likely to be suppressed 
because shearing occurs principally in the x I - x ~  plane and because the opening 
of microcracks in the 2 2 -  direction is opposed by the increasing normal stress in 
this direction. Inclusion of this effect would require an anisotropic model and 
indicates the difficulties of constructing a constitutive model from (even many) 
results for a single deformation state. 

* 

350 - 

300 - 
- 250- a a z. 200- 
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Figure 8: Comparison of calculated (dashed lines) and experimental (solid lines) 
elastic strains vs 0-11 for a plane strain test on Tennessee marble. The in-plane 
strain components (cyl and were well described by the model, but the out-of- 
plane component ( E ; * )  was not. 

Evolution of the constitutive parameters h, h,, p and p as a function of T P  

during the course of the plane strain test is shown in Figure 9. Values resulting 
from the integration of the model (IO) are shown as dashed lines. An alternative 
approach is to calculate ?P, P, and (T from the test data and then, using Equations 
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rP 
Figure 9: Comparison of calculated (dashed lines) and experimental (solid lines) 
values of h, It,,., ,O and ,u as a function of T P  for a plane strain test on Tennessee 
marble. 

12, 17 and 24, calculate h, h,,, ,l? and ,h directly (solid lines). Values obtained this 
way are, in a sense, the experimental values, to be compared with the model values 
obtained by integration. Agreement was quite good over the range of plastic shear 
strain reached in the experiment. At the end of the experimental loading, discussed 
in detail below, h /G was still positive at about 0.2, while h,, was negative and 
decreasing. The dilatancy parameter p increased by about a factor of 3 from 0.4 
to about 1.2, while the friction parameter, after an initial sharp increase from near 
zero, remained relatively constant at 0.5. 

The test was conducted using servo-hydraulic control of the load frame to 
maintain the strain rate constant for e33, the strain in the minimum compresive 
stress direction, ensuring that stability was maintained as localization was occur- 
ring. As a result, it was possible to observe what we interpreted to be the oc- 
currence of localization; oll: the maximum compressive stress began to decrease 
spontaneously (unload) as e33 continued to increase (see enlarged portion of Fig- 
ure 7.) This implies the onset of a process that caused the strain rate in the min- 
imum compressive stress (3) direction to increase rapidly. Only by reducing 011 
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and thus its contribution to &, under the automatic control of the servo-hydraulic 
system, was it possible to maintain the specified strain rate. Localization is the 
likely cause of the change in behavior that occurred at 011 = 255 MPa. 

This observation is compared with the prediction of localization made by plot- 
ting the evolution of the hardening modulus (divided by G) and the evolution of 
the critical hardening modulus (given by (12)) against T P  (Figures 9 and enlarged 
in IO). Model results indicate that the critical hardening modulus was initially 
negative but increased during the test, resulting in the satisfaction of the localiza- 
tion criterion h = h, when the decreasing h = h, M 0. This is in contrast 
to the case for axisymmetric compression where it was found that the predicted 
localization criterion required a large negative h. 

The evolution of hcr is due to changes of p, ,O and the deviatoric stress state 
parameter, 3.. which is plotted against the total axial strain in Figure 11. At the 
onset of loading, N M 0.15 as required for the elastic solution to plane strain 
loading. During the test, N evolves toward axisymmetric compression and then 
back towards pure shear ( N  = 0). 
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Figure 10: From modeling, localization is predicted to occur for plane strain con- 
ditions when h = hcr = -2.5 x (dashed lines) at T P  = 0.0117. This is 
significantly different from the experimental results (solid lines) which were in- 
terpreted to show localization at approximately h = 0.2. 
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Figure 1 1 : Evolution of N during the course of a plane strain test as a function of 
ell, the strain along the maximum compressive stress axis, showing the evolution 
towards an axisymmetric stress state and back towards pure shear. 

It is misleading to draw conclusions about the sign of h from the local shape of 
stress-strain curves at localization as was done by Ord et. al, 1991. They argued 
that the observation of localization during increasing stress implied that h was 
positive, i.e. that localization had occurred "pre-peak". This argument is only 
valid for constant mean stress tests. For a constant mean stress test (a = 0) h = 0 
implies that the peak shear stress and the peak of the stress-strain curves has been 
reached. In the case where 0 is not constant, which includes most commonly 
performed tests, it is not possible to determine the sign of h at any given point by 
examining stress-krain curves. For example, as Figure 12 shows, at the predicted 
localization point (TP = 0.0117), the shear stress is still increasing, even though 
h = -2.5 x is already slightly negative (see Figure 10). Only by a detailed 
calculation, similar to the one carried out here, can the value of h be determined, 
allowing an assessment of whether localization occurred for positive or negative 
h, that is, in the hardening or softening regime. 

to illuniinate this important point; localization can be predicted to occur under ris- 
ing load, i.e.. the slope of 0 1 1  vs. €11 is positive, even when h < 0. In particular, 

A simpler, constructed example, devoid of the computational complexity, serves 
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Figure 12: Comparison of calculated (dashed lines) and experimental (solid lines) 
plastic strains vs T P  for a plane strain test on Tennessee marble. As a result of 
changing mean stress, the stress-strain curve appears to show hardening, even 
though h was already slightly negative, in the softening regime. 

because of the rapid increase of mean stress in the plane strain test, it is possible 
for h to be negative while the slope of oll vs cll is positive. Such an example is 
shown in Figure 13. 

Here, the yield condition is given by 

5 = ~ 0 - 0 . 0 2 G y ~  -0.70 

In addition, it is assumed that P = 0 and the lateral confining stress is zero. Thus, 
h has the constant value 4 2 / 5 0 ,  and p has the constant value 0.7. The resulting 
pure shear response (constant (T) is bilinear: an elastic portion with slope G until 
the shear stress reaches ro followed by a descending portion with slope -G/49. 
Similarly, the modeled axial stress versus axial strain response in axisymmetric 
compression is also bilinear. For Poisson's ratio v = 0.2, the slope is E = 2.4G, 
until the axial stress reaches 5.ro/fi, and then the slope is -12G/115. 

For plane strain, however, the response is nonlinear. As shown in Figure 13a, 
even though h = 4 / 5 0  c 0 as soon as inelastic deformation occurs, the curve 
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of ull 'us. e l l  continues to rise until peak load (indicated by the triangle). In this 
example, h,,/G = O.OG53 for deviatoric pure shear ( N  = 0) and -0.3127 for 
axisymmetric compression. Thus, localization is predicted to occur for deviatoric 
pure shear but not for axisymmetric compression. For plane strain, h,/G evolves 
with deformation (Figure 13b) because of the changing value of N (Figure 13c). 
Localization is predicted to occur at the point indicated by the box, when h, has 
risen to equal the constant value of h = -G/50 (Figure 13b). The increase of the 
critical value of h,y in this case is due entirely to the evolution of the deviatoric 
stress state from near: axisymmetric compression(N = l/fi), for which h, 
is very negative, towards deviatoric pure shear ( N  = O),for which h, is less 
negative. Thus, observation of localization under rising load in plane strain does 
not necessarily mean that h is positive. 

* 

7 Conclusion 
Beginning from experimental data for axisymmetric compressive testing on Ten- 
nessee marble, we determined all the parameters required for the RR theory of 
localization as a function of plastic shear strain and mean stress. Numerical tech- 
niques were used to integrate the incremental plastic strain expressions for com- 
parison with original axisymmetric test data and for prediction of the results of 
plane strain tests. A feature that emerges from the data analysis is that the peak 
stress is not a yield surface as is conventionally assumed. This result is model- 
independent; i t  will be the case whenever the data indicate that the inelastic strain 
at peak stress depends on the mean stress. 

In addition to the basic calculations of stress and strain, predictions of the lo- 
calization criterion were made and compared with experimental results. Under 
axisymmetric loading, localization is observed to occur post-peak in experiments 
as is predicted by the bifurcation theory. The predicted values of h required for 
localization are, however, so negative that the modeled axisymmetric tests never 
reached the localization criterion. A more sophisticated treatment, including the 
effects of vertices on the yield surface, appears to be necessary to predict accu- 
rately the strain (or hardening modulus) at localization in the axisymmetric case 
(Rudnicki and Rice, 1975). 

Localization was predicted to occur when (h  x 0) for the plane strain test 
(i22 = 0) that was modeled. The predicted localization stress was significantly 
higher than the experimental observation of spontaneous unloading (decreasing 
all) that we interpreted to coincide with the formation of a shear zone. Results of 
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modeling the test and from a simpler, constructed example, show that the sign of 
h, the hardening modulus cannot be determined from examination of the stress- 
strain curves. An important prediction of RR is the possibility of pre-peak (h > 0) 
localization. Testing this prediction in plane strain requires the use of a model to 
calculate h. 

Modeling captured the behavior of 011, a 2 2 ,  el l  and e33 well, but did not do as 
well with e 2 2 .  The poor prediction of the out-of-plane strain behavior is attributed 
to an over prediction of ti2 due to absence of anisotropy in the model. 

. 
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Figure 13: An example showing that h can be negative at localization under plane 
strain conditions while the apparent hardening in positive. (a) Curve of axial stress 
(all) vs. axial strain (ell) for plane strain loading, continues to rise until the peak 
stress (triangle) even though h/G = -0.02. Localization (square) is predicted 
occur when h,,/G rises to equal h/G = -0.02. (b) Evolution of h, is due to 
evolution of (c) toward pure shear ( N  = 0). 
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