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Abstract. 

In this paper a new line search for a 
Newton Rhapson learning control algorithm is 
presented. Theorems and rigorous proofs of its 
increased robustness over existing line searches 
are provided, and numerical examples are used to 
further validate the theorems. Also, the 
previously posed open question of whether robust 
optimal trajectory learning is possible is also 
addressed. It is shown that the answer is 
generally no, at least for gradient-based learning 
control algorithms. 

1. Introduction 

Learning control is a method of control 
that feeds the system inputs for a specific task 
repetitively and uses the actual on-line measured 
response of the system to evaluate the quality or 
goodness of the input. The actual responses are 
used in a feedback loop in which the inputs are 
adjusted to reduce measured errors in the output. 
Example applications include robotics and 
manufacturing where a certain output tracking 
task is to be performed repeatedly. Usually the 
output is the position or velocity history of the 
robot's joints although sometimes it also includes 
measured forces at the end effector (see Cheah 
and Wang [3]). 

Learning control has a history dating 
back to 1984 (see Arimoto et a1 [I]) when it was 
first applied to robot motion control. Horowitz [7] 
gives a nice history of the development and usage 
of learning controllers for (rigid) robot 
manipulators. He compares and contrasts 
different learning algorithms and also provides an 
experimental demonstration of a robot that learns 
to make its end effector track a circular trajectory. 
He insightfully points out that an open area of 

research is in finding methods for robust optimal 
(e.g., minimum energy, minimum vibration, or 
minimum time) trajectory learning, as opposed to 
only finding a control history that meets output 
requirements. In Section 5 of the present paper, 
the question of whether this is possible will be 
addressed. Examples of work that have 
empirically investigated approaches to this 
problem include Gorinevsky ([4], [5], and [6]), 
who considered the use of the Levenberg- 
Marquardt optimization method for least squares, 
and Sadegh and Driessen [8] who considered the 
use of gradient-based algorithms for constrained 
optimization. 

Herein we will present a new line search 
for a Newton Rhaphson learning control 
algorithm in Section 2, discuss applications in 
Section 3, demonstrate its advantages over 
existing line searches on a numerical example in 
Section 4, discuss whether robust optimal 
trajectory learning is possible in Section 5, and 
finally end with conclusions in Section 6. 

2. On the Robustness Against Erroneous 
Constraint Jacobean of a New Line Search for 
a Newton Rhaphson Learning Control 
Algorithm 

This section will prove that the modified- 
line-search Newton Rhaphson algorithm, to be 
presented shortly, is robust to erroneous constraint 
gradients. We will show that, under a very weak 
requirement on the accuracy of the constraint 
Jacobean, the Newton Rhaphson algorithm, with 
the newly proposed line search, is guaranteed to 
create a sequence of iterates whose constraint 
error goes to zero. Then we will show that the 
standard existing line search fails under the same 
requirements. 

* Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for 
the United States Department of Energy under Contract DE-AC04-94AL85000. 

http://sandia.gov
mailto:nader.sadegh@me.gatech.edu
http://sandia.gov


DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or use- 
fulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any spe- 
cific commercial product, process, or service by trade name, trademark, manufac- 
turer, or otherwise docs not necessarily constitute or imply its endorsement, recom- 
mendation, or favoring by the United States Government or any agency thereof. 
The views and opinions of authors exptessed herein do not necessarily state or 
refiect those of the United Statu Government or any agency thereof. 

._ 



DISCLAIMER 

Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best available original 
document. 



Theorem 2.1: Consider the problem to 
find a solution X, X E R", that satisfies equation 
(2.1) below 

wherefmaps from R" to R". Let J(x) denote the 
n by n Jacobean offat x: 

f (x) = 0 (2.1) 

(2.2) f 3 f  (x) J (  x) = - 
f3X  

Suppose, that for any x, the value of Ax) is 
available, but we have only an inaccurate estimate 
j(x) of the true Jacobean J(x) . Suppose that the 
merit function for the algorithm is z(x) given by 
equation (2.3) below 

1 
z (x)  = yf'(x)f(x> (2.3) 

which is half the sum of the squares of the 
constraint violations. Let z, (x) = - 
= J'(x)f(x). Suppose that for all iterates x, and 
x,+~ of the algorithm, the Hessian of z is norm- 
bounded so that there exists a G>O such that 

f3z(x) 
f3X 

z(x,+, 1 - z(x, 1 I 
f'& )J(x, )(X,+I -x, )+ GIIXk+I - Xk [ I 2  

Xt 7 xk+l  (2.4) 
Suppose that for all iterates X, , there exist a y > 0 
for which 

min(eigenvulue$jr3>) 2 y >  o 

and that for all iterates xt there exists a 6> 0 
such that 

(2.5) 

min(eigenvulues(J.Y' / 2 + 

Suppose that for every iterate x,, the 
j - ' JT /2 ) )26>O (2.6) 

search direction p ,  is calculated by: 
Pk = -j-' (x, 

and that x,+' is chosen by: 

xk+l = (+r Pk + x k  (2.8) 

where m is the smallest nonnegative integer such 
that 

Then, the sequence z ( x , )  + 0 as k + 00, 
implying f( x, ) + 0. 

Proof of Theorem 2.1: We will prove 
that if z(x,) is lower bounded away from zero, 

2 

i.e., z(x,)2 q > O  Vk, then ~z(~,+~)-z(x~)~ is 
lower bounded away from zero. So, suppose 
z ( x , )  2 q > 0 Vk . From (2.7) and (2.8), we have 

(2.10) 
Substituting (2.10) into (2.4) gives 

Vxk 7 x k + 1  (2.1 1) 
If we choose m so that the right hand side of 
(2.11) is I the right hand side of (2.9), then 
clearly this is sufficient for such an m to satisfy 
the line search (2.9). So, let us write out this 
sufficient condition. (Note: for conciseness we 
will omit the arguments x, (e.g., f ( x , )  will be 
written f and J(x,) will be written J ) ) .  After a 
tiny amount of algebra, we have 

where Z is given in (2.13) below and fix(*) is the 
smallest nonnegative integer2 * . 

m 2 f i x ( E ) + l  (2.12) 

(2.13) 
By hypothesis (2.5), the largest possible 
eigenvalue of Gj-'? + I  is G /  y+l  so that 
f'(G.?-'? + Z ) f I ( G /  y+l)f'f; and, by 
hypothesis (2.6), f'J.?-'f I W'f. Therefore, 
m I mmax where mmax is given below 

mmax =ln( (G/y+l ) /F) / ln(2)  (2.14) 
If we substitute the associated value of m, 

( m  = m' = fix(m,,)+l), into (2.9) and the 
current assumption that z ( x , ) 2  q > O  V k ,  we 

- 

obtain 

(2.15) 
2m' 2m' 

-(2)(i) z ( x , ) I - m ( i )  q 

Thus, z(x, ) 2 q > 0 implies 
2 m* 

z(x,+, >-z(x, 15 -(2)( 3) q (2.16) 

Now, since the sequence z(x,) is 
monotonically decreasing and z(x,  ) 2 0, the 



sequence z(x,) must converge. We now prove 
that there cannot exist a p > O  such that 
z(x, ) 2 pVk . If there did exist such a p , then 

z(x,+,)-z(x,)<-(2) - p for all k, implying 

that z(x,) decreases indefinitely, which is 
impossible. Therefore, no such p exists and 
z(x, ) -+ 0 as k + 00. This completes the proof of 
Theorem 2.1. QED. 

Theorem 2.2: Consider the hypotheses 
of Theorem 2.1, but with the following standard 
Armijo line search (see Bazarra [2], page 307) 
replacing the line search (2.9): 

(;Im* 

(2.17) 

with a E ( 0 , l ) .  Then, the Newton Rhaphson 
algorithm can fail to cause z(x,) to converge to 
zero. 

Proof of Theorem 2.2: Again, choosing 
rn so that the right hand side of (2.11) is 2 the 
right hand side of (2.17) would be sufficient to 
guarantee that line search (2.17) is satisfied. 
Writing this sufficient condition gives, after a tiny 
amount of algebra 

2"( f ' J j - l f  - @f) 2 Gf '.?-'j-' f 
(2.18) 

We see that if a is chosen too large (i.e., a2 6) ,  
then the left hand side of (2.18) could be negative. 
Then, even if G=O, there would not exist a 
nonnegative integer m satisfying (2.18). Thus, the 
line search could fail. This completes the proof of 
Theorem 2.2. QED. 

The advantages of line 
search (2.9) over the standard Armijo line search 
(2.17) are twofold. First, since 6 is not known, 
one could easily choose a 2 6 by accident, thus 
causing the standard Armijo line search to fail 
while line search (2.9) would not fail. Second, 
even if a conservative value of 6 were known, 
this value is surely going to be over conservative, 
leading to the use of a much smaller value of a 
than would actually be required for convergence 
to occur. Such an over conservative Armijo 
parameter a could lead to unnecessarily slow 
convergence of the algorithm. 

Remark 2.2: The reader may be 
wondering why we do not just calculate J(x)  by 
numerically differentiating Ax). The reason is as 
follows. Let N be the number of time steps in a 

Remark 2.1: 

digitally controlled system; then, the number of 
variables (length of the vector x) is proportional to 
N .  Such numerical differentiation would take 
Order(N*) time. The number of variables is on 
the order of 100's to 1OOOO's. Thus, the numerical 
differentiation would not be practical. Banded 
matrix methods that use the model of the system, 
on the other hand, allow the user to calculate an 
approximate Newton Rhaphson search direction 
p ,  in Order(N) time. Thus, while the model- 
based calculation of the search direction is 
practical, the numerical differentiation approach 
is not. 

3. Overview of Learning Control 

Learning control is a method of output 
tracking that does not make any assumptions 
about whether the system is minimum-phase or 
non-minimum-phase nor any assumptions about 
knowledge of the system's order (number of state 
variables). The method uses the actual measured 
system's response to an input in a feedback loop, 
in order to obtain tracking robustness in the 
presence of large model mismatch. 

Example applications include robotics 
and manufacturing where a certain output 
tracking task is to be performed repeatedly. An 
initial guess of the inputs to the system can be 
obtained off-line by using an approximate model 
of the system. Then, in the learning feedback 
loop, the actual output response errors are 
measured. The gradients of these output errors 
with respect to the inputs can be obtained from 
strictly the approximate model or can be improved 
in accuracy by calculating gradients based on the 
model but evaluated along the actual measured 
trajectory of the system (see Sadegh and Driessen 
[8]). The learning feedback loop is continued at 
least until the actual system's output error is zero. 

However, the learning feedback loop is 
often continued after zero output error is achieved, 
in order to obtain output tracking robustness 
against slowly varying dynamics of the actual 
system. For example, the dynamic properties of 
the joints of a robot may be changing over time, 
and the learning feedback loop will maintain zero 
output error in spite of these time-varying system 
properties. 

Mathematically, the learning control 
problem considered herein can be viewed as the 
Newton Rhaphson problem illustrated in (3.1) 
below 

3 



U +(System) 4 P (3.1) 
where 0 denotes a vector of input values that 
define the input over the time interval of interest 
and P denotes an output vector which we desire 
to be zero. For example, 0 may be parameters 
that define a spline of the input history over the 
interval. The inaccuracy of the Jacobean 
J = d%u is a result of the fact that we never 
have a perfect model of the dynamic system. 

4. Numerical Example 

In this section we demonstrate the 
robustness advantage of the proposed line search 
over an existing Armijo line search. The 
proposed line search yields convergence of the 
output error to zero while the existing Armijo line 
search fails to do so. This numerically supports 
Theorems 2.1 and 2.2. 

The dynamic system considered is a two- 
massltwo-spring system. The springs are 
nonlinear. The spring forces are given by 

where 6 is the deflection of the spring, F, the 
spring force, and k and a constants. If we let q1 
and q2 denote the positions of the masses, 
measured from equilibrium positions, and relative 
to an inertial reference frame, and let each mass 
value be m and let both springs be equivalent and 
let there be control forces u1 and u2 on the first 
two masses, then the equations of motion are 

F, = -k6-  a63 (4.1) 

m i ,  =~(q , -q , )+a(q2-q l )3 -kq , -aq13+ul  

mi2 =-k(q2 -41) -4q2  -4d3+u2  (4.3) 
(4.2) 

The inputs u l ( t )  and u2(t) will be 
approximated by 2-node linear splines. Thus, 0 
in (3.1) is a 4-vector, Le., U'=(u,(O), ul(tr), 
u,(O),  u 2 ( t f ) ) .  The output is the difference 
between the state ~ ~ ( q l , q 2 , q 3 , q , , q 2 , q 3 ) '  at the 
final time t = tr and the desired value of Z(tr ) , 
denoted by (q1d,q2d,q3d,0,0,0)', where qld=O.l 
and qZd=0.1. The true values of m, k, and a are 
1.0, 0.1, and 0.001. The model values are 1.5, 
1.42, and 0.001, (a percentage error of 50% in m 
and 1300% in k). A final time of tf=2.0 seconds 
and 100 Euler integration steps were used. The 
initial guess was 0'=(1.3179, -1.6680, -0.5748, 
0.79 17). 

Using the proposed line search, the 
solutions for u1 (t) and u2 (t) were successfully 
found. On the other hand, the existing Armijo 
line search locked up andfailed to converge to the 
solution. The reason was precisely the one stated 
in the proof of Theorem 2.2. Namely, 
f'J.?-'f - af'f (see equation (2.18)) was less 
than zero so that no integer m existed that would 
satisfy the standard Armijo line search criterion 
(2.17). Yet, all the requirements for convergence 
with the newly proposed line search were satisfied 
so that it yielded successful convergence. 

5. Can Robust Optimal Trajectory Learning 
Be Accomplished? 

We note that the title of this section is 
essentially the research question posed by 
Horowitz [7]. The discussion of this section will 
point out that in general the answer to the posed 
question is no, at least for gradient-based learning 
schemes. We will see that for such schemes, 
convergence to a truly optimal trajectory cannot 
be guaranteed. The reason is very simple. If we 
have an approximate (erroneous) gradient, 
denoted in this section by Vz, which is "close" to 
the true gradient, denoted in this section by Vz, 
then the search direction is null if Vz = 0 (even if 
Vz f 0). Thus, while convergence of Vz to zero 
may be provable under mild assumptions, the 
convergence of the true gradient Vz to zero 
clearly cannot be guaranteed. In summary, unlike 
robust learning control for output tracking, 
gradient-based optimal trajectory learning 
schemes cannot be guaranteed to converge to a 
stationary point. 

It is worthwhile to point out that similar 
problems hold for the case when the cost function 
z is a sum of the squares of measurable outputs for 
the case of more outputs than inputs. Namely, the 
same problem of obtaining a null search direction 
at point(s) where the true gradient is not zero 
occurs in such over-determined least squares 
problems where the erroneous gradient is given by 
.?'f wherefis the (measured) error vector and j 
its approximate (erroneous) Jacobean with respect 
to the input vector. Of course the true gradient is 
J'f where J is the exact Jacobean. With such 
least squares problems J T  has fewer rows than 
columns and thus has a null space of non-zero 
dimension, and a tiny difference between J^ and 

A 
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J can renderfin the null space of j even though Sadegh, N. and Driessen B., "Minimum Time 
f is not in the null space of J ,  thus, again, Trajectory Learning," American Control 

rendering Vz zero even though Vz f 0. 

8. 

A Conference, Seattle, Washington, June, 1995. 

6. Conclusion 

This work presented a new line search 
for a Newton Rhaphson based robust learning 
control method, where output measurements are 
available but the system model is known only 
approximately. The mild conditions that 
guarantee the convergence of the proposed 
method were given and the associated 
convergence proof provided. Existing Armijo line 
searches were proven to be susceptible to locking 
up under these mild conditions, which reveals that 
the newly proposed line search is more robust. A 
numerical example was presented that 
demonstrated these facts. 
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