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Abstract

The full spaceZ = {Z;-,, ~.} of independent variables defining a stellarator
configuration is large. To find attractive design points in this space, or to un-
derstand operational flexibility about a given design point, one needs insight into
the topography ir-space of the physics figures of meHt which characterize
the machine performance, and means of determining those directi@aspace
which give one independent control over theg as well as those which affect
none of them, and so are available for design flexibility. The control matrix (CM)
approach described here provides a mathematical means of obtaining these. In
this work, we describe the CM approach and use it in studying some candidate
Quasi-Axisymmetric (QA) stellarator configurations the NCSX design group has
been considering. In the process of the analysis, a first exploration of the topogra-
phy of the configuration space in the vicinity of these candidate systems has been
performed, whose character is discussed.

PACS #s: 52.55.Hc, 52.25.Fi, 52.35.Py
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. Introduction

The full spaceZ = {Z;-; n.} of independent variables defining the shape
of a stellarator configuration is large. To find attractive design points in this
space, or to understand operational flexibility about a given design point, one
needs insight into the topography fspace of various physics figures of merit
P = {P(Z)}(: = 1,..M,) which characterize the machine performanes(
transport, kink stabilityetc).

An important new means for stellarator design made possible by advances in
physics codes and computational power is the use of automated optimizers. For
example, the NCSX design group has made extensive use of an optimizer in de-
veloping candidate configurations for an attractive QA stellarator (QAS) désign.
The optimizer conducts a search iZapace describing the stellarator boundary,
using an objective functiod'(P) which is a function of theP; of the configu-
ration. While a powerful tool, the optimizer is searching a large space whose
topography has been essentially unknown, and there is limited understanding of
why the optimizer arrives at the design poits it does. Deeper insight into
this would enhance our ability to locate attractive design pomt, (by reduc-
ing the dimensionality of th&-space, or by recognizing topographical features
which point to superior ‘valleys’ of'(P) in theZ space), and to examine opera-
tional flexibility about those points. Such insight can be used both to better focus
the operation of an optimizer, as well as to enhance human understanding of the
configurations being studied.

The control matrix (CM) approach discussed here helps provide this insight.

The approach we discuss has both local and global aspects. As narrowly defined,



the CM is simply the matrix’;; = dP,/07; of first derivatives at any poir#, in

Z space, and so can give topographical information only locally. One may provide
more information by expanding to second and higher orders, and most globally,
one may investigate the full nonlinear variation over ranges where a power-series
expansion is not practical. But even to compute the derivatives needéd;for
correctly, one needs to know the characteristic scales on which thg thery

in Z, so more global knowledge is important even for the local problem. And as
already indicated, the more global information may also be important in locating
genuinely different stellarator optima. Thus, this paper addresses both the more
local and more global sides of this topographical exploration.

In Sec. Il we describe the mathematical basics of the CM method, and discuss
the means we use to reduce the dimensionali® space. Implementing the CM
procedure requires exploring the scales of variation offthie Z in the vicinity
of a design poin#,, for which we choose “C10”, a candidate NCSX configura-
tion. This is done in Sec. Ill. Our topographical study here finds that within an
appreciable domain (variations in tt#e of order 1 cm) about C10, thE may
be well approximated by simple quadratic expressions, and in addition, we are
able to reduce the dimensionality of thespace we need consider from an initial
N, = 78 t0 8. As a result, in Sec. IV we apply the machinery of the local CM
analysis to a greatly reduced parameter space, and within that space can compute
guantities of interest using analytically tractable quadratic expressions féY.the
We then provide the ‘proof of principle’ of the CM method, demonstrating that
the CM mathematics correctly produces perturbatgnsith which we can in-
dependently vary th&;, and ‘nullspace’ perturbations which produce different

configurations, but with unchanged values of theWe discuss some of the fea-



tures of these perturbations. In Sec. V we move to a more global exploration of
Z space, applying some of the same machinery used in earlier sections to study
the variation of theP’; en route to candidate QAS configurations other than C10.
Sec. VI summarizes the findings of the earlier sections, and discusses applications

of the CM approach now in progress or planned for the near future.

II. Formulation

A single stellarator configuration may be described by a set of Fourier ampli-
tudes X = {Xj=1..n, } = (Bnys Znys Buy, oo+ 5 Zny, ,,) Which define the plasma
boundary[R(9, (), Z(0,¢)]. Here,n = (n = n/N,, m) are toroidal and poloidal
modenumbers per period, witki, equal to the number of field periods. For C10
and C82, two candidate NCSX configuratidme shall consider in this paper, the
number of Fourier amplitudes 1§, = 78 corresponding to maximum modenum-
bers offi,.. = 3, andm,,... = 5. PG1, a third QAS configuratidrdiscussed in
Sec. V, hasV, = 32. Fig. 1 shows poloidal cross sections of the plasma boundary
for these three configurations.

Various measures of stellarator transport and stability are used as figures of
merit in the cost function of the full configuration optimiZeithe evaluation of
all figures of merit require the calculation of an MHD equilibrium, performed
using the VMEC code. To evaluate the transport, the magnetic fields output by
VMEC in a non-straight coordinate system are re-expressed in terms of the Boozer
coordinate system using the JMC cod&he various measures of transport used
by the optimizer are then easily expressed in terms of the Fourier components,

B..», of the magnitude of the magnetic field. For stability, both internal ballooning



and free-boundary kink modes are evaluated using the TERPSICHORE code.

In this paper, we use the same suite of codes employed by the optimizer, and
computeM = M, = 5 figures of meriP® = (i, x3, W1, Wz, ). P,_, are 4 mea-
sures of the ripple strength, and hence the level of nonaxisymmetric transport one
may expect, and’; is a measure of stability. More specifically; , = x*(s1.2),
wherex*(s) = X,...z0 Bh,./Bg ands;; label two magnetic surfaces within
the plasma volume containing a fixed amount of toroidal flux. The selected val-
ues ofs (normalized to unity at the plasma edge) are= 0.5, ands, = 0.71.

W12 = W(s, ) is the ‘water functior? ats, ,, measuring the average ripple—well
depth along afield line. The fifth figure of meritds = A = w?, the most unstable

kink eigenvalue computed by TERPSICHORE (negative for unstable modes). We
consider four QA-associated figures of merit for purposes of comparison among
them. A single one may be used for purposes of configuration analysis, and we
shall do so at appropriate points in the paper. Other figures of merit might be use-
fully added to the present set, such as ballooning growth rate, surface quality, or
coil complexity, and the same formal machinery employed to study any such set.

N, = 78 is a large space to search, and one important objective here is to
reduce this number to a more manageable value. That is, we seek a ‘reduced
space’Z contained inX, with dimensionalityV = N. < N, which is as small as
possible while retaining the most important physics. We discuss means by which
this can be done in Sec. Il B. We think @fas the space of ‘control knobs’ at our
disposal, to which the CM machinery is applied, and thus its exact relation to the
concrete specification & already given may change, depending on application.
For example, in Sec. VI we také to be a set of amplitudes describing the coil

currents, for considerations of coil design or operational flexibility. However,



for most of this paperZ will be a linear subspace X, given by amplitudes

specifying the plasma boundary.

A. Control Matrix Basics

In the reduced space, expandiR¢Z = Z, + z) = P(Z,) + p aboutZ =
Z,, one has (writing in component-form, with summation over repeated indices

assumed, unless otherwise indicated)
1
Pi(Zo +2) = Cij(Zo)2j + 5 Hijp(Zo)zjze + (h.0), 1)

with linear coefficients given by th&/ x N ‘control matrix’ C;;, quadratic co-
efficients given by the ‘Hessianf,;;, andh.o. = higher—order terms. For small

enoughz that only linear terms are needed, one has the matrix equation
p= CO " Z, (2)

with Cy = C(Z,) the control matrix at design poif#t,. This may be inverted,

using the Singular Value Decomposition (SVD) theotem
Cuxn = Unixn - Envun - Vi €)
with U, V unitary matrices, an@ a diagonal matrix whose diagonal elements
o, are the ‘singular values’ of the problem. This theorem permits one to obtain a
‘pseudo-inverseC™ of the nonsquare matri&, and provides bases spanning its
range and nullspace.
Taking the particular basis set="" in the targefP-space to be the set of unit

vectors with 1 in the'* position and 0 elsewhere, one has the corresponding set

¢' of displacements iZ-space
§=Cf-n, 4)
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whereC, = C(Z,). The¢' physically represent displacements which change a
single physics parametét by unity, leaving the others unchanged. These span
the range ofC. The(N — M) vectorsv'(i = M + 1,..N) spanning the nullspace

of C (which change the configuration without modifying any of ¢ are the
orthonormal set formed by those columns\oiwvith : such that; = 0. These are
also important, permitting one to find different stellarator boundaries which have
the same physics performance, giving flexibility for other critegig, improved

=M gndv=M+1-N spanZ.

coil design. Togetheg
For somewhat larger, but still small enough that only up t#;;, need be kept

in Eq.(1), one can compute the control matrix &myZ in this region, via
Cij(Z) = 0pi(2)]0z; = Cij(Zo) + Hijpzy, (5)

and from this, find the corre@ at anyZ, along with simple linear expressions
for the extrema* of the P;, etc. We shall find that this ‘quadratic model’ is valid
in an appreciable neighborhood about C10, and shall explicitly compute and make
use ofC;; and H;;;, in Sec. lII.

The z' are easily solved for using Eq.(5). For ahywe may writef/;;; in
matrix notation ad;, which is a square, symmetrid, x N matrix, invertible by

standard means. Then from Eq.(5), one has
Zi = _Hi_l ) Cév (6)

where vectok}, is thei'* row of matrix C,, and no summation overis implied.
Similarly, taking our objective function to be a linear combination of ghevith
weightsw;, F(P) = w; P, (summation implied), one can readily solve for the
extremumz’ of F'(P):

z" = —H;' cf, @)
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with Hr = wH; andc) = w;ci. Expression (7) thus gives the design point
sought by an optimizer. However, as for Eq.(6), for it to be corrg€tmust

fall within the domain of validity of the quadratic model for ti#&(Z). An op-
timizer using a steepest—descent method would step opposite the direction of the
Z-space gradienidz ' = 0F/07;. For the chosen form fof', thisisdF/07; =
(OFJOP)(OP;]07Z;) = w;Cy; = wi(c'); = (e!);. Using this with (5) gives

8ZF:cF:c0F—|—HF-Z. (8)

From this and Eq.(7), one sees thatat z'" one hasiz /' = 0, as one expects.
Additionally, using Egs. (4) and (8), one finds that the componerg af the
direction of this gradient i8z F - £&' = w;.

The P;(Z) provide M coordinates of a special global coordinate system on
Z-space, chosen to characterize the physics performance of the stellarator. One
may imagine supplementing these by a further{$gtZ)},(: = M + 1,..N)
of functionally independent quantities to fully parametr#zealso chosen on the
basis of their physical relevance or independence from stellarator performance.
Obtaining the (nonlinear) transformation between the control krigband the
performance parametefs and(@); lies at the core of stellarator design. At each
point Z, the basis sef&'="+" v=M+1.-N1 coming from the CM formulae in-
troduced here provides a local description of this performance—based coordinate
system, with the’ performing a role akin to that of the reciprocal basis vectors
e; of the contravariant representatidre; of any vectorA, pointing in a direction

normal to the gradients of alf; but that with the specified



B. Reducing the dimensionality ofZ

The CM framework just described may be applied to the #yll= 78 dimen-
sion spaceX, or to any subspacs of that space. Before applying the method in
the vicinity of configuration C10, it is useful to begin reducing the dimensionality
N, of Z. In this paper, we shall use 2 methods to accomplish reductions:
(a) First, as pointed out by Hirshman and Bresfathere is a redundancy in the
X-specification, with many perturbatiorf X modifying therepresentatiorof
the boundary, rather than the boundary shape itself. The equivalent nonredundant
representation we present in this section produces a reduction of a factor of 2,
yielding a nonredundant subspa¥eC X of dimensionV, = 39 for the C10-
C82 family.
(b) In Sec. lll, we further reducé’, from 39 to 8, by selecting only the pertur-
bations most effective in varying the of interest, resulting in an approximate
‘reduced-model’ description of configuration space.

Regarding reduction (a), independent variationgjn, and~,,,, produce not
just changes in the physical shape of the plasma boundary, but also changes in the
poloidal angle variable, which is not uniquely defined. A nonredundant bound-
ary deformation is made by instead prescribing the linear combinations of the
R..., Zmn that definenormaldisplacements (at eagiplane) to the plasma bound-

ary. For a plasma boundary in real spdé@lefined by

X(0.¢) = R(0,9)R(6) + Z(0. )2, (9)
a general displacementfé = 6X = SRR + §ZZ, and a normal displacement
isll
. X 0X IR a7
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Multiplying by cos (m# + n¢) and integrating ovef and¢ yields a matrix equa-
tion in the form
Y=Y B;X;. (11)
j

Here, as earlielX = {X,=;_n, } is the set of Fourier expansion coefficients of
bothéz andéZ, while'Y = {Y,_; ,} is the set of Fourier coefficients of the
normal displacement to the plasma boundary, Bnds the N, x N, rectangular
influence matrix that relates the two. To compute ¥erequired by VMEC in
terms of theY;, we employ the same SVD decomposition as in Eq.(3) to invert
the matrixB;;. In Fig. 2 is shown the deformation produced by a typicalfor
n; = (1,0), plotted in poloidal cross-section at several value$ ef N,( across
a period of the machine.

Before we can apply the approximate reduction method (b) or take the numer-
ical derivatives needed to carry out the CM prescription, we need to ascertain the
scales of variation of thé’, in the X or Y space. This is done in the following

section.

[ll. Topography of Z-space near C10

The validity of Egs. (1) or (2) depends on the typical scales of variation in
Z-space of the’;, which previously have been largely unknown. In the vicinity
of the C10 family of configurations, we have assessed this variation foP;the
presently being used for all 78; as well as for the nonredundant amplitudés

Some typical results in the spaZe= Y are shown in Fig. 3, showing the
variation of theP; computed from VMEC and TERPSICHORE with deformation
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amplitudez; = 67; (in meters) of the giver¥; = Y;. Four harmonics; are
shown. The top two are fai = {(1,0),(—3, 1)}, to which the QA measuré;

is sensitive, and the bottom two are for= {(1,3),(2,4)}, to which the kink
eigenvaluePs is relatively sensitive. The size of the domain show¥( = +.01

m) is appreciable, large enough to encompass C82 as well as C10 (see Sec. VA).

Probably because of the symmetrizing action of the optimizer in creating C10,
most directionsZ; resemble the top pair: the fractional variatibp;, of P (Z;)
is much larger than that foPs (reflecting the near-optimal value of the unper-
turbedPy, in the denominator), ang, is a parabolic curve, with vertex often near
z; = 0. For all Z;, the variation of both¥; is smooth and rather unstructured,
approximable by the quadratic expansion (1) over all or most of this domain.

Given this knowledge, in Fig. 4 are shown histograms of the fractional sensi-
tivity (P,/ P, — 1) over the(n, m)—plane (hence showing all;), fori = 1 — 3
and 5, and for a fixed valu€Z = .002 m for eachz;, a modest fraction of th&;
scale length just shown in the plots of Fig. 3. (The 4 histogram is not shown
simply to conserve space.)

Though the QA measure_;_, are linearly independent, their histograms
are quite similar, and these are markedly different from that for the kink measure
Ps.

With the information in the sensitivity histograms, we can apply reduction
method (b) introduced in Sec. Il. We rank the harmonics, selecting the 4 to which
P, is most sensitive, and the 4 to whiéh is most sensitive, resulting in a final
reduced model witlV, = 8 harmonics. We have chosen a single one of the 4 QA-
associated’; as representative of QA measures, confirmed from the similarity of

the curves forP,—;_, in Fig. 3. The choice of 4 harmonics for each is somewhat
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arbitrary, chosen to produce a relatively simple system on which to develop the
CM machinery, yet rich enough to display the control flexibility we are seeking.
We have examined twd/, = 8 reduced models, whose difference comes from
somewhat different ranking criteria. The models were found to possess similar
properties. The criterion for the model presented here is simply taking the har-
monics with the largest values @,/ P,, — 1|. The 8 harmonics of this model are
accordinglyn; = {(1,0),(2,0),(3,0),(—3,1);(1,3),(1,4),(2,4),(1,5)},

with the first 4 most affecting’;, and the last 4 most affecting. One notes
that the P, set (affecting QA-ness) have small and a range ofi, while the P;
set have: ~ 1 or 2 and a range of.. The top 2 plots of Fig. 3 are seen to belong
to the P, set, and the bottom 2 to the set.

V. CM Analysis of the Reduced Model

Having now established the scales of variatiofYirspace, and selected from
sensitivity histograms th&; comprising our reduced model, we are in a position
to evaluate the CM tensofs; and /;;, and from these the vectoes, ¢, andv’
introduced in Sec. Il, and to demonstrate that these have the intended properties
described in that section. In addition to the base configuraipmvhich we take
to be C10,2N? perturbed point¥ must be evaluated for computing tfig,,,
including2 N, points also needed for the,;. For N, = 8, this gives2N? = 128
points to which VMEC, JMC, and TERPSICHORE must be applied, an apprecia-

ble but manageable computational task.
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A. Quadratic Model

Performing the evaluation af;; and H,;;, in Fig. 5 we provide a first check
that the resultant quadratic model of th€Z ) is behaving as it should, plotting
andPF; versus the same4; as shown in the numerical results of Fig. 3. One notes
the good agreement. The increment for the required first and second derivatives
wasdZ = .002 m, which predicts well the values of th& for displacements over
the rangeAZ = .02m shown in Fig. 3 or 5. Even fan = (1,3), whereF; in
Fig. 3 cannot be approximated by a quadratic over thezfulange shown, the
quadratic model does well over about the half of the full range near €16 ().

Using C;; and H,;;,, one readily computes the from Eq.(6). One finds, for
examplez! = {0.15, —0.38, —0.20, —0.14, —2.11, —14.5,2.29,7.66} x 10~3, and
z° = {—5.35,1.61,0.19,0.26,0.33, —3.39,4.97, —4.48} x 10~ (meters).

In Fig. 6 we visualize the topography in the vicinity of C10, with contour plots
of P, (left) and /5 (right) from the quadratic model over a plane of 2 chosgen
The top plots are for 2 QA-related, and the contours for these are elliptical. The
bottom plots are for 1 QA-related and 1 kink-relatedand one notes here that
is almost independent at, while P; is almost independent of. It is somewhat
fortuitous that this property is nearly obeyed for individuglit need be exactly
obeyed only for variations in thg! andé&® directions.

Applying the SVD-algorithm to inver€’;;, we use Eq.(4) to compute tig¢
andV from Eq.(3) in obtaining/‘. As opposed to the', the values of these de-
pend on the how many of thé one chooses to keepdr;. One may keep only’
andPs, yielding anM, = 2 problem with a nullspace of, — M, = 8—2 = 6 v'’s,
or solve the more—constrained problem increasifig(up to 5, here). Here, we
consider the/l, = 2 problem, obtaining' = {—3.92,9.82,5.99, —1.19, 0.29, 0.55,
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—0.56,0.22}, andé® = {0.09, —0.78,0.03, —0.11,2.77,2.05, —2.53, —4.10}. One
notes that the first 4 componentsgf(the QA-related ;) are dominant, while the
last 4 components dominategn. While this might be expected, it is not neces-
sary: an independence &f.§) P from £° could arise from a cancellation of the

effects of appreciable componentsinof the QA-related:;.

B. ‘Proof of Principle’ of the CM method

Having obtained thé' andv?, we can now test the crucial properties discussed
in Sec. Il of these directions i# spaceyiz., showing that the boundary pertur-
bations the¢’ describe actually permit independent control of fhe and that
those of thev’ actually leave theé’, unchanged. In this section we provide this
key demonstration, and examine some of the features of the deformations these
vectors produce.

The demonstration needed is agreement between the analytically—expected
variation of theP; obtained from the quadratic model in the direction §f ar v*,
and the variation numerically—obtained from a sequence of equilibria perturbed
from C10 in that direction. This comparison is provided in Fig. 7 for perturba-
tionsag’ (left) andaé’ (right), and in Fig. 8 for perturbationsv?® (left) andav®
(right). Here« is a scaling parameter, with value specified on the horizontal axis.
The analytic expections are on the top row, and the numerical results on the bot-
tom row. One notes that the variations are as expected. Perturbations&h the
direction do in fact vary?, while leavingP; unchanged, and similary f@r. For
the & perturbation, there is somewhat more wobble visible infheurve than
for the Ps curve for the¢' perturbation, because of the greater sensitivityPpf

to mostz;. KeepingP, constant therefore requires a more delicate balance of the
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harmonics contributing ig®.

We visualize these perturbations in Figs. 9-10. Fig. 9 shows contour and sur-
face plots over théd, f)-plane of perpendicular displacemegitsand £% (top),
andv} andvf (bottom). 7 is seen to vary more rapidly withand less rapidly
with ¢ than¢! , consistent with the harmonic contributions in the sensitivity his-
tograms in Fig. 4. The effect of these perturbations on the boundary are shown in
poloidal cross-section in Fig. 10. In particular, one notes ghdor diminishing
the kink produces an indentation of the outboard side at the half—periedr,
enhancing the (negative) triangularity which that cross-section possesses. This is
consistent with the earlier empirical observatitimat kink stability can be helped
by providing such an indentation. Here, this finding emerges simply from the CM
calculation foré®. However, one also notes that indentatioq at = alone is not
enough to stabilize the kink:} also causes an indentation. However, its variation
with ¢ is markedly different from that af} , having am: = 1 character, in contrast

to then = 0 character fot; .

V. Global Topography: Other QAS Design Points

C10 and C82 (see Fig. 1) were arrived at along an involved path of human
interaction with the optimizer, and it is unclear that other regionZ-Gjpace,
which would have been reached from different starting points, might not yield
superior configurations. Thus, in this section we initiate an exploration of regions
of Z space further from C10. As guideposts to promising regions to explore, one
can look near other proposed QAS configuratidngith the same methods. Here,

we consider the variation of the as one moves from one such reference point
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Z to another.

A. The path from C10 to C82

We begin by considering thg along a straight-line trajectorf = Z¢10 +
a(Zess — Zero) connecting C10 with C82, as runs from 0 to 1. These two
configurations are fairly close ifi-space. We may quantify this by introducing the
simple normX| = (¥; X2)/2. With this definition|X¢s; — Xc1o| ~ .041 m, in
comparison with the much larger ‘distance’ to PG1 (see bel®)¢1 — X 10| ~
228 m

C82 was obtained from C10 in an effort to stabilize the kink. The level of
QA-ness was slightly degraded in compensation. This is borne out b, ¥he
along the straight-line path i-space, shown in Fig. 11. While the kink growth
rate falls off to an acceptably low valug{s>/ 10 =~ .05), P; actually moves to a
somewhat lower value (better quasisymmetry) about midway along the trajectory,
and then rises at C82 to a value slightly larger than for C10. One notes that the
quadratic approximation would be adequate to describe the variation d@f, the

along this trajectory.

B. The path from C10 to PG1

Configuration PG1 (see Fig. 1) is characterized tych better kink stability
(A > 0) than C10 or C82, but substantially worse quasisymmetry, due mainly to a
large mirror fieldB,,—o z=1 present to assure ballooning stability.

As indicated above, its separation from C10Zrspace is far greater than

that of C82, and is generally considered to be in a quite different regiéh of
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Nevertheless, as one sees in Figs. 12, even over this relatively large distance the
P; do not fluctuate greatly, but instead vary smoothly, and almost monotonically,
in a manner consistent with the qualitative description of the physics differences
given just above between the 2 stellarators.

Applying the same tools to PG1 as described above for C10, one finds sensitiv-
ity histograms for the&' which resemble those for C10. Again, thoseifer 1 —4
are similar to each other (and to those for C10), and differ from that$ob. &°,
which reduces the kink growth rate, is found to enhancetistivetriangularity
which PG1 possesses in the half—-perjod 7, consistent with tokamak-based in-
tuition on kink stabilization, an effect opposite that found for C10, which as noted

earlier has negative triangularity @t= .

VI. Discussion and Summary

In the foregoing sections we have described and applied the CM approach,
mostly in the vicinity of the C10—C82 family of stellarators to which an optimizer
has led the NCSX group. For the first time, we are getting a picture of the to-
pography of the configuration spa&ein which the NCSX optimizer has been
searching for good QA stellarators. The local CM method would be applicable
and useful even in &-space where th&, were highly involuted, but instead we
find that these are rather smooth and unstructured, even over distarftggim
erally considered large. In an appreciable neighborhood of G1) ¢ 1cm) the
P; may be modeled by a quadratic functionzof Z — Zj,.

From this topographical information, we have produced a restricted configu-

ration space which reduces the dimensionality fl¥m= 78 to 8 while retaining
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much of the interesting physics in the vicinity of C10, and within this space ob-
tained the first and second-order coefficigtitsand H;;;, describing the simple
quadratic variation of th&;. This permits one to compute quantities of interest for
the CM formalism using analytically tractable expressions. We have demonstrated
that the CM method produces perturbatighsn Z with which one can indepen-
dently vary theP;, and perturbations’ producing different configurations with
unchanged values df,.

For both C10 and PG1, the sensitivity histogramsfer 1 — 4 resemble one
another, and differ from that far= 5. Correspondingly, th¢' for the 4 different
QA-associated figures of merit € 1 — 4) are similar in appearance, and these
differ from that for the kink { = 5).

For C10,£° manifests the outboard indentation previously empirically ob-
served to stabilize the kink, enhancing C10’s negative triangularity,gt= ,
while for PG1,£° enhances its positive triangularity, consistent with tokamak in-
tuition on kink stabilization.

The work discussed in this study has taken as its free ‘control kriiobdis-
placements of the plasma boundary. However, exactly the same procedures may
be used to study how a given set of coil currents described by amplifuddq; }
could produce a range of physics behadrwith the specializatior¥;, — 1,.

Here, thel; may represent eithét,, , the Fourier amplitudes of the current poten-

tial K(0,¢), for coil design, ot/;, the amount of current in thg” coil of a given

coil set, to study operational flexibility. Then tti&(Z) can be computed almost

as done in the present study, but using free-boundary instead of fixed-boundary

VMEC.

It will also sometimes be useful to extend theandZ; beyond the sets spec-
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ified thus far.E.g, to study startup scenarios, the = .J; could be supplemented
to also includeZ; = (/3), and perhaps a parameter characterizing the peakedness
of the pressure profile. Then, for example, the relative sizé;db the other/;
in the v¢ would specify how the coil currents should be raised /@sis during
startup in order not to change the QA-ness or kink stability of the machine. For
coil design, the; could be supplemented to include a measure of coil complexity,
e.g, one already used by the NCSX grolip,

Ps =Y, mPH K2/ mP K2, with p = 1-4. Then applying the CM method
just as in the present stud§/, would describe perturbations which would reduce
the coil complexity, while maintaining the same physics performance. These and

other such applications are planned for future work.
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Figures

FIG. 1. Poloidal cross—sections of the boundaries of reference QAS configura-
tions C10, C82, and PG1, at= 0, 7 /2, andr.

FIG. 2. Poloidal cross—sections of C10 boundaries, unperturbed (solid curve) and

perturbed by01Y;,_( ¢y, at toroidal positiong = 0,7 /2, and.

FIG. 3. Variation ofP,_,_5 computed from VMEC and TERPSICHORE, of equi-
libria with deformation amplitude; (in meters), for representative harmonics

n; ={(1,0),(=3,1)} (top) and{(1, 3),(2,4)} (bottom).

FIG. 4. Histograms of the fractional variatiét/ P,, — 1 for: = 1 — 3 and 5 over
the full (n, m)—plane for C10, for a fixed variatiat¥ = .002 m in amplitudes
Z..

FIG. 5. Variation of , = x{ and Ps = \ with deformation amplitude; for the
same harmonics as in Fig. 3, but computed from the quadratic approximation
of Eq.(1).

FIG. 6. Contour plots of” (left) and Ps (right) over the(z4, z,) plane (top) and

(z1, z3) plane (bottom).

FIG. 7. Comparison of the analytical (top row) versus numerical (bottom row)
variation of P, 5 for perturbationsv¢' (left) anda&” (right), confirming that

these displacements provide independent control Bvand Fs.

FIG. 8. Comparison of the analytical (top row) versus numerical (bottom row)
variation of P, 5 for perturbationsyvv?® (left) andav® (right), confirming that

these nullspace displacements have no effedt,oor Fs.
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FIG. 9. Contour and surface plots over (I&ef)-plane of perpendicular displace-

ments{] and¢é’ (top), andv andof (bottom).

FIG. 10. Poloidal cross—sections of boundaries of C10 (solid curve) and C10 per-
turbed by.002¢"° and.01v>® at toroidal positiong = 0, andr.

FIG. 11. Plot of the fractional variatioR; / P, for i = 1 — 5 along a straight-line
path inZ-space from C104 = 0) to C82 (» = 1). These have aX-space

distance between them d@fi1 m.

FIG. 12. (a) Plot of the fractional variatiaf / P,;, for: = 1 — 5 along a straight-
line path inZ-space from C10( = 0) to PG1 ¢« = 1). These have an
X-space distance between them.2#8 m. (b) As (a), but with blowup of

vertical scale, to show more clearly the variationin
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