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Abstract

The full spaceZ � fZj=1;::Nzg of independent variables defining a stellarator

configuration is large. To find attractive design points in this space, or to un-

derstand operational flexibility about a given design point, one needs insight into

the topography inZ-space of the physics figures of meritPi which characterize

the machine performance, and means of determining those directions inZ-space

which give one independent control over thePi, as well as those which affect

none of them, and so are available for design flexibility. The control matrix (CM)

approach described here provides a mathematical means of obtaining these. In

this work, we describe the CM approach and use it in studying some candidate

Quasi-Axisymmetric (QA) stellarator configurations the NCSX design group has

been considering. In the process of the analysis, a first exploration of the topogra-

phy of the configuration space in the vicinity of these candidate systems has been

performed, whose character is discussed.

PACS #s: 52.55.Hc, 52.25.Fi, 52.35.Py
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I. Introduction

The full spaceZ � fZj=1;::Nzg of independent variables defining the shape

of a stellarator configuration is large. To find attractive design points in this

space, or to understand operational flexibility about a given design point, one

needs insight into the topography inZ-space of various physics figures of merit

P = fPi(Z)g(i = 1; ::Mp) which characterize the machine performance (e.g.,

transport, kink stability,etc.).

An important new means for stellarator design made possible by advances in

physics codes and computational power is the use of automated optimizers. For

example, the NCSX design group has made extensive use of an optimizer in de-

veloping candidate configurations for an attractive QA stellarator (QAS) design.1

The optimizer conducts a search in aZ-space describing the stellarator boundary,

using an objective functionF (P) which is a function of thePi of the configu-

ration. While a powerful tool, the optimizer is searching a large space whose

topography has been essentially unknown, and there is limited understanding of

why the optimizer arrives at the design pointsZ0 it does. Deeper insight into

this would enhance our ability to locate attractive design points (e.g., by reduc-

ing the dimensionality of theZ-space, or by recognizing topographical features

which point to superior ‘valleys’ ofF (P) in theZ space), and to examine opera-

tional flexibility about those points. Such insight can be used both to better focus

the operation of an optimizer, as well as to enhance human understanding of the

configurations being studied.

The control matrix (CM) approach discussed here helps provide this insight.

The approach we discuss has both local and global aspects. As narrowly defined,
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the CM is simply the matrixCij � @Pi=@Zj of first derivatives at any pointZ0 in

Z space, and so can give topographical information only locally. One may provide

more information by expanding to second and higher orders, and most globally,

one may investigate the full nonlinear variation over ranges where a power-series

expansion is not practical. But even to compute the derivatives needed forCij

correctly, one needs to know the characteristic scales on which the thePi vary

in Z, so more global knowledge is important even for the local problem. And as

already indicated, the more global information may also be important in locating

genuinely different stellarator optima. Thus, this paper addresses both the more

local and more global sides of this topographical exploration.

In Sec. II we describe the mathematical basics of the CM method, and discuss

the means we use to reduce the dimensionality ofZ space. Implementing the CM

procedure requires exploring the scales of variation of thePi in Z in the vicinity

of a design pointZ0, for which we choose “C10”, a candidate NCSX configura-

tion. This is done in Sec. III. Our topographical study here finds that within an

appreciable domain (variations in theZj of order 1 cm) about C10, thePi may

be well approximated by simple quadratic expressions, and in addition, we are

able to reduce the dimensionality of theZ space we need consider from an initial

Nz = 78 to 8. As a result, in Sec. IV we apply the machinery of the local CM

analysis to a greatly reduced parameter space, and within that space can compute

quantities of interest using analytically tractable quadratic expressions for thePi.

We then provide the ‘proof of principle’ of the CM method, demonstrating that

the CM mathematics correctly produces perturbations�i with which we can in-

dependently vary thePi, and ‘nullspace’ perturbationsvi which produce different

configurations, but with unchanged values of thePi. We discuss some of the fea-
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tures of these perturbations. In Sec. V we move to a more global exploration of

Z space, applying some of the same machinery used in earlier sections to study

the variation of thePi en route to candidate QAS configurations other than C10.

Sec. VI summarizes the findings of the earlier sections, and discusses applications

of the CM approach now in progress or planned for the near future.

II. Formulation

A single stellarator configuration may be described by a set of Fourier ampli-

tudes,X = fXj=1;���;Nxg � (Rn1; Zn1; Rn2; � � � ; ZnNx=2) which define the plasma

boundary[R(�; �); Z(�; �)]. Here,n � (~n = n=Np;m) are toroidal and poloidal

modenumbers per period, withNp equal to the number of field periods. For C10

and C82, two candidate NCSX configurations2 we shall consider in this paper, the

number of Fourier amplitudes isNx = 78 corresponding to maximum modenum-

bers of~nmax = 3, andmmax = 5. PG1, a third QAS configuration3 discussed in

Sec. V, hasNx = 32. Fig. 1 shows poloidal cross sections of the plasma boundary

for these three configurations.

Various measures of stellarator transport and stability are used as figures of

merit in the cost function of the full configuration optimizer.1 The evaluation of

all figures of merit require the calculation of an MHD equilibrium, performed

using the VMEC4 code. To evaluate the transport, the magnetic fields output by

VMEC in a non-straight coordinate system are re-expressed in terms of the Boozer

coordinate system using the JMC code.5 The various measures of transport used

by the optimizer are then easily expressed in terms of the Fourier components,

Bmn, of the magnitude of the magnetic field. For stability, both internal ballooning
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and free-boundary kink modes are evaluated using the TERPSICHORE code.6

In this paper, we use the same suite of codes employed by the optimizer, and

computeM �Mp = 5 figures of meritP = (�2
1; �

2
2;W1;W2; �). P1�4 are 4 mea-

sures of the ripple strength, and hence the level of nonaxisymmetric transport one

may expect, andP5 is a measure of stability. More specifically,�2
1;2 � �2(s1;2),

where�2(s) =
P

m;n 6=0B
2
mn=B

2
00 and s1;2 label two magnetic surfaces within

the plasma volume containing a fixed amount of toroidal flux. The selected val-

ues ofs (normalized to unity at the plasma edge) ares1 = 0:5, ands2 = 0:71.

W1;2 � W (s1;2) is the ‘water function’7 ats1;2, measuring the average ripple–well

depth along a field line. The fifth figure of merit isP5 � � = !2, the most unstable

kink eigenvalue computed by TERPSICHORE (negative for unstable modes). We

consider four QA-associated figures of merit for purposes of comparison among

them. A single one may be used for purposes of configuration analysis, and we

shall do so at appropriate points in the paper. Other figures of merit might be use-

fully added to the present set, such as ballooning growth rate, surface quality, or

coil complexity, and the same formal machinery employed to study any such set.

Nx = 78 is a large space to search, and one important objective here is to

reduce this number to a more manageable value. That is, we seek a ‘reduced

space’Z contained inX, with dimensionalityN � Nz � Nx which is as small as

possible while retaining the most important physics. We discuss means by which

this can be done in Sec. II B. We think ofZ as the space of ‘control knobs’ at our

disposal, to which the CM machinery is applied, and thus its exact relation to the

concrete specification ofX already given may change, depending on application.

For example, in Sec. VI we takeZ to be a set of amplitudes describing the coil

currents, for considerations of coil design or operational flexibility. However,
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for most of this paper,Z will be a linear subspace ofX, given by amplitudes

specifying the plasma boundary.

A. Control Matrix Basics

In the reduced space, expandingP(Z = Z0 + z) = P(Z0) + p aboutZ =

Z0, one has (writing in component-form, with summation over repeated indices

assumed, unless otherwise indicated)

pi(Z0 + z) = Cij(Z0)zj +
1

2
Hijk(Z0)zjzk + (h.o.); (1)

with linear coefficients given by theM � N ‘control matrix’ Cij, quadratic co-

efficients given by the ‘Hessian’Hijk, andh.o.� higher–order terms. For small

enoughz that only linear terms are needed, one has the matrix equation

p = C0 � z; (2)

with C0 � C(Z0) the control matrix at design pointZ0. This may be inverted,

using the Singular Value Decomposition (SVD) theorem8

CM�N = UM�N ��N�N �VT
N�N ; (3)

with U;V unitary matrices, and� a diagonal matrix whose diagonal elements

�i are the ‘singular values’ of the problem. This theorem permits one to obtain a

‘pseudo-inverse’C+ of the nonsquare matrixC, and provides bases spanning its

range and nullspace.

Taking the particular basis set�i=1;M in the targetP-space to be the set of unit

vectors with 1 in theith position and 0 elsewhere, one has the corresponding set

�i of displacements inZ-space

�i � C+
0 � �

i; (4)
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whereC0 � C(Z0). The�i physically represent displacements which change a

single physics parameterPi by unity, leaving the others unchanged. These span

the range ofC. The(N �M) vectorsvi(i = M +1; ::N) spanning the nullspace

of C (which change the configuration without modifying any of thePi) are the

orthonormal set formed by those columns ofV with i such that�i = 0. These are

also important, permitting one to find different stellarator boundaries which have

the same physics performance, giving flexibility for other criteria,e.g., improved

coil design. Together,�i=1;::M andvi=M+1;::N spanZ.

For somewhat largerz, but still small enough that only up toHijk need be kept

in Eq.(1), one can compute the control matrix foranyZ in this region, via

Cij(Z) � @pi(Z)=@zj = Cij(Z0) +Hijkzk; (5)

and from this, find the correct�i at anyZ, along with simple linear expressions

for the extremazi of thePi, etc.We shall find that this ‘quadratic model’ is valid

in an appreciable neighborhood about C10, and shall explicitly compute and make

use ofCij andHijk in Sec. III.

The zi are easily solved for using Eq.(5). For anyi, we may writeHijk in

matrix notation asHi, which is a square, symmetric,N �N matrix, invertible by

standard means. Then from Eq.(5), one has

zi = �H�1
i � ci0; (6)

where vectorci0 is theith row of matrixC0, and no summation overi is implied.

Similarly, taking our objective function to be a linear combination of thePi with

weightswi, F (P) = wiPi (summation implied), one can readily solve for the

extremumzF of F (P):

zF = �H�1
F � cF0 ; (7)
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with HF � wiHi andcF0 � wic
i
0. Expression (7) thus gives the design point

sought by an optimizer. However, as for Eq.(6), for it to be correct,zF must

fall within the domain of validity of the quadratic model for thePi(Z). An op-

timizer using a steepest–descent method would step opposite the direction of the

Z-space gradient@ZF � @F=@Zj. For the chosen form forF , this is@F=@Zj =

(@F=@Pi)(@Pi=@Zj) = wiCij � wi(ci)j � (cF )j. Using this with (5) gives

@ZF = cF = cF0 +HF � z: (8)

From this and Eq.(7), one sees that atz = zF one has@ZF = 0, as one expects.

Additionally, using Eqs. (4) and (8), one finds that the component of�i in the

direction of this gradient is@ZF � �i = wi.

The Pi(Z) provideM coordinates of a special global coordinate system on

Z-space, chosen to characterize the physics performance of the stellarator. One

may imagine supplementing these by a further setfQi(Z)g; (i = M + 1; ::N)

of functionally independent quantities to fully parametrizeZ, also chosen on the

basis of their physical relevance or independence from stellarator performance.

Obtaining the (nonlinear) transformation between the control knobsZj and the

performance parametersPi andQi lies at the core of stellarator design. At each

point Z, the basis setf�i=1;::M ;vi=M+1;::Ng coming from the CM formulae in-

troduced here provides a local description of this performance–based coordinate

system, with the�i performing a role akin to that of the reciprocal basis vectors

ei of the contravariant representationAiei of any vectorA, pointing in a direction

normal to the gradients of allPi but that with the specifiedi.
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B. Reducing the dimensionality ofZ

The CM framework just described may be applied to the fullNx = 78 dimen-

sion spaceX, or to any subspaceZ of that space. Before applying the method in

the vicinity of configuration C10, it is useful to begin reducing the dimensionality

Nz of Z. In this paper, we shall use 2 methods to accomplish reductions:

(a) First, as pointed out by Hirshman and Breslau,10 there is a redundancy in the

X-specification, with many perturbationsx of X modifying therepresentationof

the boundary, rather than the boundary shape itself. The equivalent nonredundant

representation we present in this section produces a reduction of a factor of 2,

yielding a nonredundant subspaceY � X of dimensionNy = 39 for the C10–

C82 family.

(b) In Sec. III, we further reduceNz from 39 to 8, by selecting only the pertur-

bations most effective in varying thePi of interest, resulting in an approximate

‘reduced-model’ description of configuration space.

Regarding reduction (a), independent variations inRmn andZmn produce not

just changes in the physical shape of the plasma boundary, but also changes in the

poloidal angle variable, which is not uniquely defined. A nonredundant bound-

ary deformation is made by instead prescribing the linear combinations of the

Rmn; Zmn that definenormaldisplacements (at each� plane) to the plasma bound-

ary. For a plasma boundary in real space~X defined by

~X(�; �) = R(�; �)R̂(�) + Z(�; �)Ẑ; (9)

a general displacement is~Y = Æ ~X = ÆRR̂ + ÆZẐ, and a normal displacement

is11

~Y �
@ ~X

@�
�
@ ~X

@�
= R

�
@R

@�
ÆZ �

@Z

@�
ÆR
�
: (10)
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Multiplying by cos (m� + n�) and integrating over� and� yields a matrix equa-

tion in the form

Yi =
X
j

BijXj : (11)

Here, as earlier,X � fXj=1;::Nxg is the set of Fourier expansion coefficients of

both ÆR andÆZ, whileY � fYi=1;::Nyg is the set of Fourier coefficients of the

normal displacement to the plasma boundary, andBij is theNy �Nx rectangular

influence matrix that relates the two. To compute theXj required by VMEC in

terms of theYi, we employ the same SVD decomposition as in Eq.(3) to invert

the matrixBij . In Fig. 2 is shown the deformation produced by a typicalYi, for

ni = (1; 0), plotted in poloidal cross-section at several values of~� � Np� across

a period of the machine.

Before we can apply the approximate reduction method (b) or take the numer-

ical derivatives needed to carry out the CM prescription, we need to ascertain the

scales of variation of thePi in theX or Y space. This is done in the following

section.

III. Topography of Z-space near C10

The validity of Eqs. (1) or (2) depends on the typical scales of variation in

Z-space of thePi, which previously have been largely unknown. In the vicinity

of the C10 family of configurations, we have assessed this variation for thePi

presently being used for all 78Xj as well as for the nonredundant amplitudesYj.

Some typical results in the spaceZ = Y are shown in Fig. 3, showing the

variation of thePi computed from VMEC and TERPSICHORE with deformation
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amplitudezj � ÆZj (in meters) of the givenZj = Yj . Four harmonicsnj are

shown. The top two are forn = f(1; 0); (�3; 1)g, to which the QA measureP1

is sensitive, and the bottom two are forn = f(1; 3); (2; 4)g, to which the kink

eigenvalueP5 is relatively sensitive. The size of the domain shown (�Zj = �:01

m) is appreciable, large enough to encompass C82 as well as C10 (see Sec. VA).

Probably because of the symmetrizing action of the optimizer in creating C10,

most directionsZj resemble the top pair: the fractional variationP=P0 of P1(Zj)

is much larger than that forP5 (reflecting the near-optimal value of the unper-

turbedP10 in the denominator), andP1 is a parabolic curve, with vertex often near

zj = 0. For all Zj, the variation of bothPi is smooth and rather unstructured,

approximable by the quadratic expansion (1) over all or most of this domain.

Given this knowledge, in Fig. 4 are shown histograms of the fractional sensi-

tivity (Pi=Pi0 � 1) over the(~n;m)–plane (hence showing allZj ), for i = 1 � 3

and 5, and for a fixed valuedZ = :002 m for eachzj, a modest fraction of theZj

scale length just shown in the plots of Fig. 3. (Thei = 4 histogram is not shown

simply to conserve space.)

Though the QA measuresPi=1�4 are linearly independent, their histograms

are quite similar, and these are markedly different from that for the kink measure

P5.

With the information in the sensitivity histograms, we can apply reduction

method (b) introduced in Sec. II. We rank the harmonics, selecting the 4 to which

P1 is most sensitive, and the 4 to whichP5 is most sensitive, resulting in a final

reduced model withNz = 8 harmonics. We have chosen a single one of the 4 QA-

associatedPi as representative of QA measures, confirmed from the similarity of

the curves forPi=1�4 in Fig. 3. The choice of 4 harmonics for each is somewhat

11



arbitrary, chosen to produce a relatively simple system on which to develop the

CM machinery, yet rich enough to display the control flexibility we are seeking.

We have examined twoNz = 8 reduced models, whose difference comes from

somewhat different ranking criteria. The models were found to possess similar

properties. The criterion for the model presented here is simply taking the har-

monics with the largest values ofjPi=Pi0 � 1j. The 8 harmonics of this model are

accordinglynj = f(1; 0); (2; 0); (3; 0); (�3; 1); (1; 3); (1; 4); (2; 4); (1; 5)g,

with the first 4 most affectingP1, and the last 4 most affectingP5. One notes

that theP1 set (affecting QA-ness) have smallm and a range of~n, while theP5

set have~n � 1 or 2 and a range ofm. The top 2 plots of Fig. 3 are seen to belong

to theP1 set, and the bottom 2 to theP5 set.

IV. CM Analysis of the Reduced Model

Having now established the scales of variation inY-space, and selected from

sensitivity histograms theYj comprising our reduced model, we are in a position

to evaluate the CM tensorsCij andHijk and from these the vectorszi, �i, andvi

introduced in Sec. II, and to demonstrate that these have the intended properties

described in that section. In addition to the base configurationZ0, which we take

to be C10,2N2
z perturbed pointsZ must be evaluated for computing theHijk,

including2Nz points also needed for theCij. ForNz = 8, this gives2N2
z = 128

points to which VMEC, JMC, and TERPSICHORE must be applied, an apprecia-

ble but manageable computational task.
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A. Quadratic Model

Performing the evaluation ofCij andHijk, in Fig. 5 we provide a first check

that the resultant quadratic model of thePi(Z) is behaving as it should, plottingP1

andP5 versus the same 4Zj as shown in the numerical results of Fig. 3. One notes

the good agreement. The increment for the required first and second derivatives

wasdZ = :002 m, which predicts well the values of thePi for displacements over

the range�Z = :02m shown in Fig. 3 or 5. Even forn = (1; 3), whereP5 in

Fig. 3 cannot be approximated by a quadratic over the fullzj range shown, the

quadratic model does well over about the half of the full range near C10 (zj = 0).

UsingCij andHijk, one readily computes thezi from Eq.(6). One finds, for

examplez1 = f0:15;�0:38;�0:20;�0:14;�2:11;�14:5; 2:29; 7:66g�10�3, and

z5 = f�5:35; 1:61; 0:19; 0:26; 0:33;�3:39; 4:97;�4:48g � 10�3 (meters).

In Fig. 6 we visualize the topography in the vicinity of C10, with contour plots

of P1 (left) andP5 (right) from the quadratic model over a plane of 2 chosenzj.

The top plots are for 2 QA-relatedzj, and the contours for these are elliptical. The

bottom plots are for 1 QA-related and 1 kink-relatedzj, and one notes here thatP1

is almost independent ofz8, whileP5 is almost independent ofz1. It is somewhat

fortuitous that this property is nearly obeyed for individualzj; it need be exactly

obeyed only for variations in the�1 and�5 directions.

Applying the SVD-algorithm to invertCij, we use Eq.(4) to compute the�i

andV from Eq.(3) in obtainingvi. As opposed to thezi, the values of these de-

pend on the how many of thePi one chooses to keep inCij. One may keep onlyP1

andP5, yielding anMp = 2 problem with a nullspace ofNz�Mp = 8�2 = 6 vi’s,

or solve the more–constrained problem increasingMp (up to 5, here). Here, we

consider theMp = 2 problem, obtaining�1 = f�3:92; 9:82; 5:99;�1:19; 0:29; 0:55;
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�0:56; 0:22g, and�5 = f0:09;�0:78; 0:03;�0:11; 2:77; 2:05;�2:53;�4:10g. One

notes that the first 4 components of�1 (the QA-relatedzj) are dominant, while the

last 4 components dominate in�5. While this might be expected, it is not neces-

sary: an independence of (e.g.) P1 from �5 could arise from a cancellation of the

effects of appreciable components in�5 of the QA-relatedzj.

B. ‘Proof of Principle’ of the CM method

Having obtained the�i andvi, we can now test the crucial properties discussed

in Sec. II of these directions inZ space,viz., showing that the boundary pertur-

bations the�i describe actually permit independent control of thePi, and that

those of thevi actually leave thePi unchanged. In this section we provide this

key demonstration, and examine some of the features of the deformations these

vectors produce.

The demonstration needed is agreement between the analytically–expected

variation of thePi obtained from the quadratic model in the direction of a�i orvi,

and the variation numerically–obtained from a sequence of equilibria perturbed

from C10 in that direction. This comparison is provided in Fig. 7 for perturba-

tions��1 (left) and��5 (right), and in Fig. 8 for perturbations�v3 (left) and�v8

(right). Here,� is a scaling parameter, with value specified on the horizontal axis.

The analytic expections are on the top row, and the numerical results on the bot-

tom row. One notes that the variations are as expected. Perturbations in the�1

direction do in fact varyP1 while leavingP5 unchanged, and similary for�5. For

the�5 perturbation, there is somewhat more wobble visible in theP1 curve than

for theP5 curve for the�1 perturbation, because of the greater sensitivity ofP1

to mostzj. KeepingP1 constant therefore requires a more delicate balance of the
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harmonics contributing in�5.

We visualize these perturbations in Figs. 9–10. Fig. 9 shows contour and sur-

face plots over the(�; ~�)-plane of perpendicular displacements�1? and�5? (top),

andv3? andv8? (bottom). �5? is seen to vary more rapidly with� and less rapidly

with ~� than�1?, consistent with the harmonic contributions in the sensitivity his-

tograms in Fig. 4. The effect of these perturbations on the boundary are shown in

poloidal cross-section in Fig. 10. In particular, one notes that�5 for diminishing

the kink produces an indentation of the outboard side at the half–period~� = �,

enhancing the (negative) triangularity which that cross-section possesses. This is

consistent with the earlier empirical observation1 that kink stability can be helped

by providing such an indentation. Here, this finding emerges simply from the CM

calculation for�5. However, one also notes that indentation at~� = � alone is not

enough to stabilize the kink:v8? also causes an indentation. However, its variation

with ~� is markedly different from that of�5?, having an~n = 1 character, in contrast

to the~n = 0 character for�5?.

V. Global Topography: Other QAS Design Points

C10 and C82 (see Fig. 1) were arrived at along an involved path of human

interaction with the optimizer, and it is unclear that other regions ofZ-space,

which would have been reached from different starting points, might not yield

superior configurations. Thus, in this section we initiate an exploration of regions

of Z space further from C10. As guideposts to promising regions to explore, one

can look near other proposed QAS configurations3,9 with the same methods. Here,

we consider the variation of thePi as one moves from one such reference point
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Z0 to another.

A. The path from C10 to C82

We begin by considering thePi along a straight-line trajectoryZ = ZC10 +

�(ZC82 � ZC10) connecting C10 with C82, as� runs from 0 to 1. These two

configurations are fairly close inZ-space. We may quantify this by introducing the

simple norm:jXj � (
P

j X
2
j )

1=2. With this definition,jXC82�XC10j ' :041 m, in

comparison with the much larger ‘distance’ to PG1 (see below),jXPG1�XC10j '

:228 m

C82 was obtained from C10 in an effort to stabilize the kink. The level of

QA-ness was slightly degraded in compensation. This is borne out by thePi’s

along the straight-line path inZ-space, shown in Fig. 11. While the kink growth

rate falls off to an acceptably low value (�C82=�C10 ' :05), P1 actually moves to a

somewhat lower value (better quasisymmetry) about midway along the trajectory,

and then rises at C82 to a value slightly larger than for C10. One notes that the

quadratic approximation would be adequate to describe the variation of thePi

along this trajectory.

B. The path from C10 to PG1

Configuration PG1 (see Fig. 1) is characterized by3 much better kink stability

(� > 0) than C10 or C82, but substantially worse quasisymmetry, due mainly to a

large mirror fieldBm=0;~n=1 present to assure ballooning stability.

As indicated above, its separation from C10 inZ-space is far greater than

that of C82, and is generally considered to be in a quite different region ofZ.
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Nevertheless, as one sees in Figs. 12, even over this relatively large distance the

Pi do not fluctuate greatly, but instead vary smoothly, and almost monotonically,

in a manner consistent with the qualitative description of the physics differences

given just above between the 2 stellarators.

Applying the same tools to PG1 as described above for C10, one finds sensitiv-

ity histograms for the�i which resemble those for C10. Again, those fori = 1�4

are similar to each other (and to those for C10), and differ from that fori = 5. �5,

which reduces the kink growth rate, is found to enhance thepositivetriangularity

which PG1 possesses in the half–period~� = �, consistent with tokamak-based in-

tuition on kink stabilization, an effect opposite that found for C10, which as noted

earlier has negative triangularity at~� = �.

VI. Discussion and Summary

In the foregoing sections we have described and applied the CM approach,

mostly in the vicinity of the C10–C82 family of stellarators to which an optimizer

has led the NCSX group. For the first time, we are getting a picture of the to-

pography of the configuration spaceZ in which the NCSX optimizer has been

searching for good QA stellarators. The local CM method would be applicable

and useful even in aZ-space where thePi were highly involuted, but instead we

find that these are rather smooth and unstructured, even over distances inZ gen-

erally considered large. In an appreciable neighborhood of C10 (�Zj � 1cm) the

Pi may be modeled by a quadratic function ofz = Z� Z0.

From this topographical information, we have produced a restricted configu-

ration space which reduces the dimensionality fromNz = 78 to 8 while retaining
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much of the interesting physics in the vicinity of C10, and within this space ob-

tained the first and second–order coefficientsCij andHijk describing the simple

quadratic variation of thePi. This permits one to compute quantities of interest for

the CM formalism using analytically tractable expressions. We have demonstrated

that the CM method produces perturbations�i in Z with which one can indepen-

dently vary thePi, and perturbationsvi producing different configurations with

unchanged values ofPi.

For both C10 and PG1, the sensitivity histograms fori = 1 � 4 resemble one

another, and differ from that fori = 5. Correspondingly, the�i for the 4 different

QA-associated figures of merit (i = 1 � 4) are similar in appearance, and these

differ from that for the kink (i = 5).

For C10,�5 manifests the outboard indentation previously empirically ob-

served to stabilize the kink, enhancing C10’s negative triangularity atNp� = �,

while for PG1,�5 enhances its positive triangularity, consistent with tokamak in-

tuition on kink stabilization.

The work discussed in this study has taken as its free ‘control knobs’Zj dis-

placements of the plasma boundary. However, exactly the same procedures may

be used to study how a given set of coil currents described by amplitudesI � fIjg

could produce a range of physics behaviorP, with the specializationZj ! Ij.

Here, theIj may represent eitherKnj , the Fourier amplitudes of the current poten-

tial K(�; �), for coil design, orJj , the amount of current in thejth coil of a given

coil set, to study operational flexibility. Then thePi(Z) can be computed almost

as done in the present study, but using free-boundary instead of fixed-boundary

VMEC.

It will also sometimes be useful to extend thePi andZj beyond the sets spec-
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ified thus far.E.g., to study startup scenarios, theZj = Jj could be supplemented

to also includeZ� � h�i, and perhaps a parameter characterizing the peakedness

of the pressure profile. Then, for example, the relative size ofZ� to the otherZj

in thevi would specify how the coil currents should be raised ash�i is during

startup in order not to change the QA-ness or kink stability of the machine. For

coil design, thePi could be supplemented to include a measure of coil complexity,

e.g., one already used by the NCSX group,12

P6 �
P
nm

p+1K2
n
=
P
nm

pK2
n
, with p = 1–4. Then applying the CM method

just as in the present study,�6 would describe perturbations which would reduce

the coil complexity, while maintaining the same physics performance. These and

other such applications are planned for future work.
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Figures

FIG. 1. Poloidal cross–sections of the boundaries of reference QAS configura-

tions C10, C82, and PG1, at~� = 0; �=2, and�.

FIG. 2. Poloidal cross–sections of C10 boundaries, unperturbed (solid curve) and

perturbed by:01Yn=(1;0), at toroidal positions~� = 0; �=2, and�.

FIG. 3. Variation ofPi=1�5 computed from VMEC and TERPSICHORE, of equi-

libria with deformation amplitudezj (in meters), for representative harmonics

nj = f(1; 0); (�3; 1)g (top) andf(1; 3); (2; 4)g (bottom).

FIG. 4. Histograms of the fractional variationPi=Pi0� 1 for i = 1� 3 and 5 over

the full (~n;m)–plane for C10, for a fixed variationdZ = :002 m in amplitudes

Zj .

FIG. 5. Variation ofP1 = �2
1 andP5 = � with deformation amplitudezj for the

same harmonics as in Fig. 3, but computed from the quadratic approximation

of Eq.(1).

FIG. 6. Contour plots ofP1 (left) andP5 (right) over the(z1; z2) plane (top) and

(z1; z8) plane (bottom).

FIG. 7. Comparison of the analytical (top row) versus numerical (bottom row)

variation ofP1;5 for perturbations��1 (left) and��5 (right), confirming that

these displacements provide independent control overP1 andP5.

FIG. 8. Comparison of the analytical (top row) versus numerical (bottom row)

variation ofP1;5 for perturbations�v3 (left) and�v8 (right), confirming that

these nullspace displacements have no effect onP1 or P5.
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FIG. 9. Contour and surface plots over the(�; ~�)-plane of perpendicular displace-

ments�1? and�5? (top), andv3? andv8? (bottom).

FIG. 10. Poloidal cross–sections of boundaries of C10 (solid curve) and C10 per-

turbed by:002�1;5 and:01v3;8 at toroidal positions~� = 0, and�.

FIG. 11. Plot of the fractional variationPi=Pi0 for i = 1� 5 along a straight-line

path inZ-space from C10 (� = 0) to C82 (� = 1). These have anX-space

distance between them of:041 m.

FIG. 12. (a) Plot of the fractional variationPi=Pi0 for i = 1 � 5 along a straight-

line path inZ-space from C10 (� = 0) to PG1 (� = 1). These have an

X-space distance between them of:228 m. (b) As (a), but with blowup of

vertical scale, to show more clearly the variation inP5.

23



-1

-0.5

0

0.5

1

0.5 1 1.5 2 2.5
-1

-0.5

0

0.5

1

0.5 1 1.5 2 2.5

Z

R R

-1

-0.5

0

0.5

1

0.5 1 1.5 2 2.5

Z

R

π/2 π/2

π/2

π π

π

C10 C82

PG1

ζ=0
~

ζ=0
~

ζ=0
~

Figure 1:

24



R R

R

Z

Z

ζ=0
~

ζ=π/2
~

ζ=π
~

Figure 2:

25



P
 /P i  

 i0
P

 /P i  
 i0

i=1

3
2 4

5

2

i=1 3

4

5

i=1

i=1

2

3

4

5

3

32

2

4
4

5

5

Figure 3:

26



-1  0    1   2    3-1  0    1   2    3

   0.0       1.0-.1    0.0    .1    .2

n ~

mm

m m

P /P  -1
i   i0P /P  -1

i   i0

(i=
1)

(i=
2)

(i=
3)

(i=
5)

(-3,1)

(1,0)
(2,0)

(3,0)

(1,5)

(2,4)

n ~ n ~
n ~

F
ig

u
re

4
:

2
7



P
 /P i  

 i0
P

 /P i  
 i0

i=1

5

i=1

5

i=1

5

i=1

5

Figure 5:

28



z
1

z
1

z
2

 -.01                          0.0                          .01
 -.01                          0.0                          .01

 -.01                            0.0                            .01

 -.01                            0.0                            .01

 -.01                          0.0                          .01

 -.01                            0.0                            .01

 -.01                          0.0                          .01

 -.01                            0.0                            .01

z
8

z
1

z
1

F
ig

u
re

6
:

2
9



P
 /P i  

 i0
P

 /P i  
 i0

α ξ

i=1

i=1

^ 1

α ξ̂ 1

α ξ̂ 5

α ξ̂ 5

i=5

i=5

3

2

4

i=5

4

23

i=1

i=1

i=5

Figure 7:

30



P
 /P i  

 i0
P

 /P i  
 i0

α v̂ 3

α v̂ 3

i=1

i=1
i=5

i=5

2
4

3

i=1

i=5

i=5, 2

i=1
4

3

α v̂ 8

α v̂ 8

Figure 8:

31



ζ / π
~

ζ / π
~ ζ / π

~

ζ / π
~ζ / π

~

0
2 22

2

0
2

2

2
0

0

ζ / π
~

ζ / π
~

ζ / π
~

θ / π θ / π

θ / π θ / π

θ 
/ π

θ 
/ π

Figure 9:

32



R R

R R

Z
Z

ξ 5

ξ 1

ξ 5

ξ 1

v 3 v 8
v 8

v 3

Figure 10:

33



P
 /P i  
i0

i=

α
C10 C82

Figure 11:

34



P
 /P i  
i0

α
C10 PG1

P
 /P i  
i0

α

C10 PG1

Figure 12:

35


