
Kristi A. Morgansen
Frangois G. Pin

ORNMM-12816

Enhanced Code for the Full Space
Parameterization Approach to Solving

Underspecified Systems of
Algebraic Equations

Version 1.0

This report has beon reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and
Technical Information, P.O. Box 62. Oak Ridge, TN 37831; prices available
from (615) 576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

NTIS price codes-Printed Copy: A03 Microfiche A 0 1

~~ ~~ ~

This report was prepared as an account of work sponsored by an agency of
the United States Government, Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus, product, or process dis-
closed. or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process. or service by
trade name, trademark. manufacturer, or otherwise. does not necessarily consti-
tute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United Stales
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

ORNL/TM-12816

Robotics and Process Systems Division

ENHANCED CODE FOR THE
FULL SPACE PARAMETERIZATION APPROACH TO

SOLVING UNDERSPECIFIED SYSTEMS OF
ALGEBRAIC EQUATIONS

VERSION 1.0

Kristi A. Morgansen and Francois G. Pin

DATE PUBLISHED - March 1995

,

Prepared by the
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831
managed by

MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the

U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-840R21400

.
c

Contents
ABSTRACT V

1 INTRODUCTION 1

2 CONDITIONS FOR EXISTENCE AND INDEPENDENCE OF SO-
LUTION VECTORS 5

3 CLASSIFICATION OF REDUNDANCY 7

4 REDUCTION OF A 9

5 SOLUTION SPACE CALCULATION 13
5.1 Solution space parameterization . 13
5.2 Solution component vectors calculation 14

6 EXAMPLES: THE MOBILE MANIPULATOR 17
6.1 Typical J and dx . 17
6.2 J with restrictions . 18
6.3 Completely restricted J . 19
6.4 J with loss of row rank . 19
6.5 Trajectory . 20

7 CONCLUSION 25

8 ACKNOWLEDGMENT 27

A USER’S GUIDE 31

B CODE LISTINGS 33

...
111

List of Figures
Flow chart for reduction of A .
Flow chart for creation of rn . n + 1 solution vectors
Starting end effector position . 21
Final end effector position . 21
First intermediate platform motion 22
Second intermediate platform motion
Third intermediate platform motion
Complete platform motion . 23

9
15

22
23

.

.

iv

ABSTRACT

This paper describes an enhanced version of the code for the Full Space Parame-
terization (FSP) method that has recently been presented for determining optimized
(and possibly constrained) solutions, x, to underspecified systems of algebraic equa-
tions b = Ax. The enhanced code uses the conditions necessary for linear indepen-
dence of the m - n + 1 vectors forming the solution as a basis for an efficient search
pattern to quickly find the full set of solution vectors. A discussion is made of the
complications which may be present due to the particular combination of the matrix
A and the vector b. The first part of the code implements the various methods
needed to handle these particular cases before the solution vectors are calculated so
that computation time may be decreased. The second portion of the code implements
methods which can be used to calculate the necessary solution vectors. The respective
expressions of the full solution space, S , for the cases of the matrix A being full rank
and rank deficient are given. Finally, examples of the resolution of particular cases
are provided, and a sample application to the joint motion of a mobile manipulator
for a given end-effector trajectory is presented.

V

1 INTRODUCTION
A common problem in mathematics and engineering which has been the focus of

attention in the past few years is determining an inverse solution for

when A has fewer rows than columns. Since the system in Eq. 1 is under-specified,
there will be a possible infinity of solutions. In order to choose among these solutions,
an optimization approach is generally chosen. In many cases, this optimization must
also take into account constraints on the system. If A has n rows and rn columns,
then typically rn - n constraints (and in some cases more) may be applied to the
system without preventing the determination of a satisfactory solution.

The method most commonly used for solving Eq. 1 is the Moore-Penrose pseudo-
inverse [12] which gives the solution for the least-norm of x. An extension of this
method is the Gradient Projection in which a single cost function, Z(x), is projected
onto the null space of A according to

x = A t b + [I-AtA]Z (2)

where At is the pseudo-inverse At = AT(AAT)-’. Some examples of applications
for the gradient-projection method have been obstacle avoidance [111) manipulability
[13], and maximization of criteria for a seven degree-of-freedom robot in [2]. Until
now the only other unique approach to solving Eq. 1 for x has been to create a square
matrix, A,, of size rn x rn which can then be used in

to find the desired vector x. Baillieul [l] suggests adding rn - n rows to A using
vectors corresponding to the components of the gradient of a constraint equation.
The derivatives are taken in the directions of a set of independent vectors spanning
the null space of A. A more general approach to this type of method is task space
augmentation [9] in which a set of rn - n linearly independent functions of x are ap-
pended to A. These functions can be chosen so that the system meets either physical
constraints (e.g. see [5]) or follows user-specified time-dependent functions (e.g. see
[lo]). Obstacle avoidance using task space augmentation has been demonstrated by
Sciavicco and Siciliano in [9]. One of the key drawbacks with the methods presented
above occurs when more than one optimization criterion and/or constraint is to be
applied: extending the particular solution optimization method with homogeneous
solutions will not necessarily produce the optimal solution for the combination of the
optimization criteria and constraints. A typical example of this “task prioritization”
problem is that a least norm solution which is also to minimize torque will not actually
produce the lowest torque with smallest change in joint angles. Part of the reason

1

for this difficulty is that the single-criterion/constraint methods were developed to
simply produce a desired solution without examining the entire range of possibilities.

Recently a new method, Full Space Parameterization (FSP) [6, 71, has been de-
veloped that produces, in parameterized form, the entire space of possible solutions
to the problem shown in Eq. 1. A more thorough treatment and proof of the results
which will be shown in this article can be found in [6, 71. The key aspect of FSP is
that any vector b and matrix A which has n rows and m columns, where n 5 m, have
a solution space which can be constructed as a hyperplane of a space spanned by a set
of (typically m - n + 1) linearly independent solution vectors gk, k = 1 . . . m - n + 1.
These vectors are easily found solutions of submatrices of A. The results of the proofs
in [6, 71 will be used to find a pattern to aid in determining which columns of the
matrix A should be blocked in order to quickly find the submatrices of A that lead
to m - n + 1 linearly independent solution vectors.

The FSP solution code and related algorithms presented in the remainder of the
article will be demonstrated through application to the problem of redundancy reso-
lution in robotic systems. The kinematic equations for a robotic system are typically
described by the equation

x = F(q) (4)
in which X represents the position and orientation of some point in the system,
and q represents the joint orientations for the system. Since joint displacements are
necessary to control the system, we are more interested in the time derivative

X = J(q)q (5)

where J is the system Jacobian with components Jij = dF;/dq,. Usually, Eq. 5 is
highly nonlinear, so a first-order linearized version is generally utilized for control of
the system. The linear discretized form of Eq. 5 is

AX Aq - x Jat- At At

where Jat is the Jacobian assumed constant over the time step At. At each time
step in the trajectory, Eq. 6 is solved by treating the system as a set of algebraic
equations. When the Jacobian, J, has more columns than rows (n < m), the system
is said to be redundant and typically is solved using an optimization method. Of
course, constraints may be included in the optimization method as appropriate.

The next section discusses how the proofs from [6, 71 are used to find a pattern
among the m - n + 1 solution vectors. The third section of the article contains
a discussion of difficulties which may occur due to possible combinations of matrix
A and vector b configurations. Section four presents an algorithm for simplifying
the matrix A in order to decrease computation time. Section five presents the main
algorithm for computing the vectors used to parameterize the entire space of solutions
for a given A and b. The sixth section gives some examples of the FSP method

2

applied to particular cases of matrix A and vector b configurations and to the joint
motion planning problem for a mobile manipulator system. Concluding remarks will
be presented in section seven, and a listing of the FSP code together with a brief
user’s guide are given in the appendices.

3

2 CONDITIONS FOR EXISTENCE AND IN-
DEPENDENCE OF SOLUTION VECTORS

The first step in finding rn - n + 1 vectors spanning the solution space of A-lb
is to find an initial square (n x n if A is of rank n) invertible submatrix Al of A.
Once this submatrix has been found, A is reordered so that the n columns form-
ing the submatrix are numbered 1. . . n, and the remaining columns are numbered
n + 1 . . . m. The first solution vector is found by inverting the submatrix formed from
the first n columns, multiplying b by the result, and adding zeros to the components
corresponding to columns n + 1 . . . m. An important point to note at this time is that
although reordering the columns does not affect the invertibility of a submatrix (and
is important for quickly finding the complete set of solution vectors), the positions of
components in the solution vectors must correspond to the original locations of the
columns of A.

With the columns of A rearranged as specified, each of the m - n columns not
in the first invertible submatrix will be linearly dependent upon some combination
of the first n columns. To find the second solution vector, a new submatrix of A is
formed by replacing one of the n columns in the first submatrix by column n + 1.
Since the original A has at most rank n, column n + 1 must be dependent on some
combination of q, i E { 1 . . . n}. Whichever column c; in A1 is replaced by c,+1 must
be part of the linear decomposition of c ~ + ~ . We can then write

j E {I . . . , h,. . .n> (7)

This second submatrix is guaranteed to be invertible as long as the column which is
replaced by n + 1 is in the linear decomposition of n + 1 since the linear combination
of columns will not be complete without both columns n + 1 and the replaced column
(see [6] or [7]). Because the replaced column is linearly dependent on c,+l and possibly
some columns which were not replaced, c,+2 is guaranteed to be linearly dependent
on some combination of the columns in this second invertible submatrix. Following
the method used to find the second submatrix, submatrices three through m - n + 1
can be found by systematically substituting each of the remaining columns (3 through
m - n + 1) for one in the previous submatrix. The resulting pattern of blocked and
unblocked columns will then resemble the following diagram.

5

where each row corresponds to the blocking pattern for a single solution, X marks a
column which is in the square submatrix of A, and @ marks a column which is not
in the submatrix.

Now we would like to know the conditions for the linear independence of the
solution vectors gk, k = 1 . . . m - n + 1. To determine conditions for g' and g2 to be
linearly independent, look at the equations

i E {l ... n} (8) 1* b = g; ci

2* b = gi ci + g%,c,+l i E (1.. .n} - { h } (9)
where g'* are the solution components of Al'b, and g;* are the solution components
of Az'b. g' and g'* differ in that g' contains the zero components corresponding
to the m - n columns blocked in order to form AI. The index h corresponds to the
column of Al that was replaced by c,+1. Now subtract Eq. 8 from Eq. 9:

0 = (g,'* - g;2*)c; + gpch - gn+lcn+l 2* i E {I ... n} - { h } (10)

Several cases exist for which this equality is satisfied. For simplification rename the
quantity (g'* - g;*) as pi. Then, consider the case where every p; is 0. Eq. 10 reduces
to

(11) 2* g;*ch - gn+lcn+l = 0

If gi* = 0, then the only solution is g z l = 0. Since each pi is zero, solutions g1
and g2 are identical. Such a pair of vectors is not acceptable, so another choice of
submatrices must be made for which g p # 0. Next, consider again that all ,B; are
0, and g p in Eq. 11 is not zero. The only solution for Eq. 11 will be that the
decomposition of c,+1 contains only the column ch which implies g:+l # 0. In this
case g1 and g2 are independent. Finally, consider that at least one pi is nonzero. If
gk = 0, then the only solution to Eq. 10 is if c,+1 is dependent on a combination of
the columns c; not including c h . This violates Eq. 7, hence gi will not be zero. So
to satisfy linear independence we are left with the case that at least one of the p; is
nonzero and gi is nonzero. Let's rewrite Eq. 10 and include gi - 0 in the pi:

Since A1 is nonsingular, c;p; # 0, i = (1 . . . n} implying g;+, # 0. In summary,
if two vectors g1 and g2 are to be linearly independent, then the component of gl
corresponding to ch (the column being replaced) must be nonzero, and consequently
the component of g2 corresponding to c,+1 is guaranteed to be nonzero. Linear
independence of the remaining vectors g3 through gm-n+l follows similarly.

6

3 CLASSIFICATION OF REDUNDANCY

Under certain conditions, combinations of A and b will form a system that cannot
be immediately solved with standard methods. A well-known example is when the
matrix A has two or more dependent rows. A less-known example is the possible
restriction of x components due to the specific combination of A and b. One of the
important features of the FSP method is that it is capable of dealing with such cases
quite easily. Before any difficulties can be handled, the key features of each set of A
and b leading to complications in solution determination should be identified.

The types of cases that may be encountered will be grouped into two categories.
In the first category, difficulties will be encountered due to the loss of row rank in A.
The second category contains systems where the problems arise due to the specific
combination of the matrix A and the vector b. In the latter case, the dimension
of the solution space will be at most m - n + 1. Depending on the specifics of the
combination of A and b, however, the exact calculation method used to find vectors
forming the space will differ.

To recognize when rows of A are dependent, methods such as Singular Value De-
composition (SVD) can be used to identify which rows (if any) form the nullspace. If
the nullspace of the rows is not empty (i.e. two or more rows are linearly dependent),
then a constraint must be used when finding the final solution using the FSP method.
Since invertible square submatrices of rank n cannot be found when A is rank defi-
cient, one of the dependent rows must be eliminated from A during the calculation
of the vectors forming the solution space of the system. Eliminating rows of A will,
however, require that additional vectors be found to span the space. For example, if
two rows of A are dependent and one is eliminated in order to calculate the solution
space, a total of m - n + 2 rather than m - n + 1 independent vectors must be found
since the reduced A matrix is (n- 1) x m rather than n x m. The change in dimension
of the solution space due to the addition of vectors to the space will be resolved by
the use of the mentioned constraints.

In order to find the solution space for a case in which the particular combination
of A and b has caused a complication, the exact problem must be found. To reach
this end, the idea of restricted vector components will be introduced. In the case of
a standard well-conditioned A and b set, each component of b can be produced by
contributions from at least two separate components in the corresponding row of A.
Such a b component will be referred to as unrestricted. On the other hand, a restricted
component occurs when a row of A has only one nonzero value. When a restricted
component occurs, the element of gk will be identical in each of the k = 1 . . . m - n + 1
solution vectors. For example, if A;j # 0 for only one j , then g: = bi/Adj. This row,
i, is then removed from the matrix, the column j is back-substituted, removed from
the matrix, and the search pattern is repeated for the remaining (n - 1) x (rn - 1)
matrix. In some cases fixing the value of gk corresponding to one column may reveal
another element of b as being restricted in the remaining (n - 1) x (m - 1) matrix.

7

The corresponding row must in turn be handled as previously explained. Hence, the
matrix A and vector b must be examined carefully to determine if, and how many,
restrictions exist.

A particular type of restriction which may occur is that all nonzero elements of b
are restricted. Since the unrestricted b components are zero, all combinations of the
columns of A which do not correspond to the restricted columns must form null space
solutions. The algorithm which is used to deal with such a case will be discussed in
the next section.

The last case to be identified is when either rows or columns of A are composed
completely of elements that are substantially smaller than the other values in the ma-
trix. Columns of small values imply that the corresponding component of the solution
is almost inactive in the system (in robotic terms, that joint does not contribute to
the motion of the end effector). The case of a row of small elements may be dealt
with in the same manner as A having dependent rows, but it is much easier to simply
eliminate that row and the corresponding element of b (assuming that it is also zero)
and solve the resulting problem (which will require m - n + 2 vectors rather than
m - n + 1).

One final check that should be made is that the vector b is actually in the range
of the matrix A. Methods do exist which can be used to make this check before
any attempt is made to calculate solution vectors. However, in typical robotics path
planning applications (for which the code was originally written), b can be assumed
to always be in the range of A. Based upon this assumption, the current version of
the code does not check to see if b is actually in the range of A.

8

4 REDUCTION OF A
For any rectangular matrix A which has fewer rows than columns, the total num-

ber of unique square submatrices possible will be Cg-n. If the inverse solution to Eq.
1 is to be found using a computer, we would like to minimize the computation time as
much as possible. One way to do this is to decrease the total number of submatrices
of A which need to be searched. Whenever a set b and A have a restriction, we know
that one element must be fixed in all of the solution vectors. Hence, including the
restricted b element and A row in the solution calculation algorithm will be unnec-
essary. If, when a restriction is found, the element b; and row A; are removed from
the system, then the total number of square submatrices which exist is reduced to
Cz:;, and calculation time will decrease accordingly. For example, if A originally
has six rows and ten columns a total number of 210 submatrices exist. However, if A
has two restrictions, then it can be reduced to a matrix having four rows and eight
columns and a total of only 70 submatrices. Preprocessing restricted elements thus
eliminates the need to examine unnecessary submatrices. Once the vectors spanning
the solution space have been found from a reduced matrix, the fixed elements of each
gk are included in to form the final, correct solution x.

The flow chart in Fig. 1 shows the algorithm that is currently being used to reduce
the size of the matrix A. The main part of the reduction algorithm is dedicated to

~

Figure 1: Flow chart for reduction of A.

eliminating the restricted elements of A. Starting with the first row, the number of
nonzero elements are counted in each of the n rows of A. Any rows that have only zero
elements are marked so that the row dimension of the system will be decreased in the
final reduced matrix. If only one nonzero element is found, then the corresponding

9

element of b is restricted. The appropriate element of x is calculated, then the
corresponding column is multiplied by this value and back-substituted to create a
modified b vector. After back-substitution, all values in the column are set to zero
(to enable the computer to recognize restricted elements in other rows), and a record
is made to track which x values correspond to restricted A values. Since the number
of nonzero elements in some rows will decrease when column elements are set to zero,
the search must be repeated until an entire cycle from first through last rows produces
no restricted elements.

Next, the system is searched for any columns of zeros that did not occur from
eliminated restrictions. Because of machine round-off errors, a threshold must be
set to determine how small a number must be to be considered zero. This number
is determined in the procedure which reduces the A matrix before any other calcu-
lations are made. To set a value for the threshold value, a search is made to find
the largest magnitude value in A. This value is then divided by 1000 to set the zero
threshold. Another problem which needs to be dealt with in the future, but which
has not been addressed in this code, is the presence of columns of matrix elements
which are all substantially larger than the other elements of the matrix A. Columns
which have values that are all much larger than other values in the matrix will not
generate invertible square submatrices, since the maximum singular value of such
square submatrices would be more than ten times as large as the smallest singular
value causing the condition number larger than the acceptable maximum.

The final step in the reduction algorithm is to determine whether any rows of the
matrix A are linearly dependent. The row dependencies can be checked by calculating
the nullspace of the matrix AT. A simple method for finding nullspace vectors without
needing to invert any matrices is the Singular Value Decomposition (SVD) method.
When a matrix is decomposed using SVD, it is rewritten in the following form

A = USVT

where S contains the singular values of the system, and U and V are orthogonal
matrices. The nonzero elements of the nullspace vectors of the columns of the matrix
A correspond to those columns of the matrix V which produce zero singular values.

When using a computer to determine nullspace vectors with this type of method,
two difficulties must be recognized and avoided. First, as mentioned in the previous
paragraph, machine round-off errors require that a zero threshold value be set. For
the examples to be given in section six, the singular value threshold value was set at
1.0 x loF5. Also, consideration must be given to the overall condition number of the
matrix. The condition number is the ratio of the largest to smallest singular values.
If this ratio is excessively large, then inclusion of the column corresponding to the
smallest singular value causes the matrix to be nearly singuldr. Hence for matrices
with large condition numbers, the smallest singular value should be regarded as zero,
and the appropriate column of VT should be considered a nullspace vector. In the
current version of the code which calculates the nullspace vectors, the inverse of the

10

condition number (i.e. ratio of smallest to largest singular values) is used to determine
whether or not the smallest singular value should be considered to be zero. In the
examples, the maximum allowable condition number has been set to a value of 10.

11

5 SOLUTION SPACE CALCULATION
5.1 Solution space parameterization

The possible cases of combinations of A matrices and b vectors that will be
encountered after matrix reduction can be placed in three categories: completely
restricted, completely unrestricted, and loss of row rank. Cases in which A originally
had both restricted and unrestricted components in combination with b will have
been reduced to one of these three cases through the algorithm given in the previous
section. We would now like to know how to create the necessary m - n + 1 vectors
(where m and n now respectively refer to the number of columns and rows of the
reduced system) to generate the solution space.

First, consider the case where the system is completely restricted. After elim-
inating all of the restrictions, we are left with a vector b which will be composed
completely of zeros and a rectangular A matrix with decreased dimensions. In this
situation, where b is zero, we do not need to try to find invertible square submatrices
since any inverse multiplied by b would always be zero. As shown in the previous sec-
tion, the SVD provides a direct method for finding nullspace vectors without needing
to invert any matrices:

So for a rectangular matrix of rank n which has n rows and m columns where n < m,
we know that the SVD of the matrix A will produce a nullspace that must contain
m - n linearly independent vectors. The final vector needed to form a set of m - n + 1
solution vectors will be left as all zeros until the restricted elements are included.
When the fixed x components are inserted into these m - n + 1 vectors, we will have
m - n + 1 linearly independent vectors.

The next case, and the one which will occur most often, is where the reduced
matrix A is completely unrestricted. The algorithm used to find the necessary solution
vectors will be given later in this section. As long as the system has not lost row rank,
the solution space of the system, S, is given by:

A = USVT (1 4)

I i=l k=l I
The final case to be dealt with is that in which the matrix A has dependent rows.

In this situation, one of the dependent rows is eliminated from A before the solution
vectors are calculated. Eliminating a row increases the total number of vectors to
be found by one. However, the eliminated row constitutes a constraint that must be
kept in the system and creates a solution space of the appropriate dimension. The
m-n+2 vectors will be found as described in the method below. With the additional
constraint applied to restrict it, the solution space, S, is given by:

I i= l k = l i=l I

13

To express this constraint for a system with dependent rows, first write the row that
was eliminated in the solution-finding algorithm as

bj = Ajx. (17)

The constraint for a dependent row is then

so that in Eq. 16 '

Now, for the specific constraint necessary for a system where A has lost row rank, we
must solve the appropriate equations given in [6, 71. In these equations, Z, = 0 and
H = 0. Since we only have one constraint, the equations reduce to:

.=-(1 + vTbl
a)

t* = -pG- 'vp

where G has
and t* is a vector of scalars.

omponents G;j = g iTg j . a , b l , c1, d l l , All , v, and p ar- all sc

5.2 Solution component vectors calculation
The flow chart for the algorithm to find a set of linearly independent solution

vectors for an unrestricted matrix A is shown in Fig. 2. The algorithm is initialized
by blocking the first rn - n columns of A, and then iterating through choices of
blocked columns until a first invertible submatrix is found. A blocked column (or
block) is a column, cat which is not included in the n x n submatrix of A and whose
corresponding solution component g; is set to zero. The columns are next reordered
(keeping a record of the order) so that the n columns forming the first submatrix are
the first n columns in the matrix. This matrix is used to solve for the solution vector,

14

change block i to
next cot in ordenng

change block i
to one col past
prev block in
ordenng pattern

send result (-) to s o h finding

Incrementation algorithm Solution-finding algorithm

Figure 2: Flow chart for creation of m - n + 1 solution vectors.

gl. The remaining m - n vectors are found using the pattern discussed in section 2.
This pattern shows that each vector shares m - n - 1 of its blocked columns with the
previous vector. The block which is not shared corresponds to whichever of the last
m - n columns will be used to create the next submatrix and solution vector. For
example, if a solution vector has the following form:

1 2 3 4 5 6 7 8 9 10
g3 = [x x 63 63 x x x x 63 63 IT

Then the following vector, g', would have columns blocked as follows:

1 2 3 4 5 6 7 8 9 10
g4 = [€90 x 63 I T

where column 9 is being used to form a new submatrix for g' so that block is not
shared with g3. The missing block will replace one of the unmarked columns which is
in its linear decomposition and for which the corresponding component of the previous
solution is nonzero. In the current version of the code, a square submatrix of A is
formed from the n vectors in the previous invertible submatrix along with the next
column to be added in. SVD is used to calculate the nullspace vector of these n + 1
columns, and this vector is used to determine which of the columns in the previous
submatrix are in the linear decomposition of the new column and may be replaced.
If none of the options for the final block in a given solution is satisfactory, then the
blocking in the previous solution must be changed. In some cases it may be required

15

for the algorithm to return to the first solution and find a completely new blocking
configuration for the entire set. However, as long as the matrix is of rank n, the total
n - rn + 1 vectors will be found to fit the given pattern.

16

6 EXAMPLES: THE MOBILE MANIPULATOR
This section gives examples of the different cases discussed in section 3 as applied

to the system of a mobile manipulator which has a seven degree of freedom (d.0.f)
arm and three d.0.f. base. For this system a total of

m - n + l = 1 0 - 6 + 1
= 5

solution vectors must be found.

6.1 Typical J and dx
Let's first consider a typical case found when calculating the joint displacements

dq necessary for a Cartesian displacement, dx, of the end effector along a trajectory
according to

The Jacobian, J, and dx vector are
dx = Jdg

J =

0.371 -0.635 -0.015 0.001 -0.000 -0.006 0.000 1.0 0.0 -0.245
-0.860 -0.011 0.880 0.000 0.000 0.343 0.000 0.0 1.0 -0.528
0.000 -0.867 0.000 -0.851 -0.343 0.000 0.000 0.0 0.0 0.000
0.000 0.000 -0.021 0.000 0.000 0.000 -1.000 0.0 0.0 0.000
0.000 -1.000 -0.000 -1.000 -1.000 0.000 -0.001 0.0 0.0 0.000
1.000 0.000 -1.000 -0.000 -0.000 -1.000 -0.000 0.0 0.0 1.000

dx = [0.009 0.000 0.001 -0.000 0.000 0.018 I T (31)
None of the elements of dx are restricted, no rows of J are dependent, and J has no
rows or columns of zeros. The first solution is found after only three incrementations
of the final block. The blocking pattern for the entire set of solutions is shown below

@ @ @ @ X X X X X X
@ @ @ X X X X @ X X
@ @ X @ X X X @ X X
@ X @ @ X X X @ X X
X @ @ @ X X X @ X X

In this case, the final four solutions were found immediately from the first correct
solution.

0.000 0.000 -0.052 -0.002 0.002 0.000 0.001 0.000 0.028 -0.031

0.000 0.000 0.000 -0.002 -0.002 0.000 0.000 0.013 0.010 0.018
0.000 0.000 0.000 -0.002 0.002 -0.053 -0.000 0.000 -0.000 -0.031

0.000 -0.021 0.000 0.020 0.001 0.000 0.000 0.000 0.009 0.018
0.022 0.000 0.000 -0.002 0.002 0.000 0.000 0.000 0.017 -0.004

From the vectors gk a least norm solution can be found (see 16, 71) as

dq = [0.004 -0.003 -0.002 0.001 0.002 -0.007 0.000 0.007 0.010 0.004 1' (33)

17

6.2 J with restrictions

Next consider the case where some elements of J are restricted:

- 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

- 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 5.0

J = (34)

T
dx = [1.0 2.0 3.0 0.0 5.0 6.0] (35)

After eliminating the restrictions and the row of zeros, the system has reduced to:

J = [1.0000 2.0000 3.0000 4.0000 5.0000 3
dx = 6.0000

from which the blocking pattern is immediately determined to be

The solution vectors without the restricted components

T [gil gi2 gi3 gi4 g', I T = [2.0 -1.0 3.0 0.0 -1.0]
are

6.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.2
0.0 0.0 0.0 1.5 0.0
0.0 0.0 2.0 0.0 0.0
0.0 3.0 0.0 0.0 0.0

(36)

(37)

i = (1 ... 53
(38)

(39)

The solution space, S , is again given by Eq. 14 and the least-norm solution in
this case (see [6, 71) is:

d q = [2.0 -1.0 3.0 0.0 -1.0 0.109 0.218 0.327 0.436 0.546 I T (40)

18

6.3 Completely restricted J
The next system involves a J and dx pair that are completely restricted:

J =

- 1.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.00 0.0 1.0 0.0 0.0 0.0 -0.5 0.0 0.0 -0.6
0.00 0.0 0.0 1.0 0.0 0.0 0.0 1.3 0.0 0.0
0.01 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.00 0.0 0.0 0.0 1.0 0.0 0.0 0.0 4.0 -3.0
0.00 0.0 0.0 0.0 0.0 1.0 0.0 2.0 3.0 0.4

T
dx = [0.00 0.00 0.00 0.01 0.00 0.00]

After eliminating restrictions, the system is

1 1.0 0.0 0.0 0.0 -0.5 0.0 0.0 -0.6
0.0 1.0 0.0 0.0 0.0 1.3 0.0 0.0

0.0 0.0 0.0 1.0 0.0 2.0 3.0 0.4
0.0 0.0 1.0 0.0 0.0 0.0 4.0 -3.0 J = [

dx = [0.00 0.00 0.00 0.00]

(43)

(44)
Since the system is completely restricted, the solution vectors must be found from the
nullspace. The nullspace only generates m - n vectors, so the final vector is composed
of all zeros except for the restricted components. For this system, the solution vectors
without the restricted components

[gil gi2] = [0.0 0.1] i = {1 ... 5} (45)
are

(46) 1 0.0000 -0.0241 0.6047 -0.5454 -0.4355 0.0185 0.1210 0.3629
0.0000 0.2132 -0.7183 -0.5454 -0.1516 -0.1640 0.2713 0.1263
0.0000 -0.6331 -0.1001 -0.4593 0.2671 0.4870 -0.1119 -0.2226

-0.5087 -0.1942 -0.1843 0.2010 -0.7285 0.1494 -0.1345 -0.2408
~ ~ ~ ! = [

g5* 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Again using Eq. 14 and the least norm optimization to determine the final solution:
T

dq = [0.000 0.100 -0.127 -0.160 -0.100 -0.337 -0.262 0.123 0.030 0.007] (47)

6.4 J with loss of row rank
This example shows the results of finding a solution vector x for a matrix A which

has dependent rows.

J =

1.00 2.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00 0.00 -0.50 0.00 0.00 -1.00
0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00
1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 4.00 -3.00
0.00 0.00 0.00 0.00 0.00 1.00 0.00 2.00 3.00 0.00

-T

-

19

T
dx = [1.00 0.00 0.00 1.00 0.00 0.00] (49)

After eliminating the first row, the rn - n + 2 = 6 solution vectors are found to
be:

- 0.00 1.00 0.00 -1.00 0.00 0.00 0.00 -0.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00 0.00 -1.78 -1.00 0.66 0.88
0.00 1.00 0.00 0.00 0.00 1.99 0.00 -1.00 0.00 -0.00
0.00 1.00 0.00 0.00 -2.67 0.00 0.00 -1.00 0.67 0.00
0.00 1.00 0.89 0.00 0.00 0.00 0.00 -1.00 0.67 0.89
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

For this example, a single-constraint optimization must be used. The p values are
calculated from Eq. 18 to be:

T p = [1.000 1.000 1.000 1.000 1.000 1.000 3 (51)

The solution space is given by Eq. 15, and the final least norm solution found
(see [6, 71) is then:

x = [0.6273 0.3727 0.0197 -0.2547 -0.0373 0.0683 -0.0268 -0.1180 0.0559 0.0621 1' (52)

6.5 Trajectory
The final example involves a complete trajectory that was formed using a least norm
optimization to find a single solution out of the entire space. Figs. 3 and 4 show
the user-specified starting and target end effector position/orientation. The final
joint angles are simply used to position the end-effector and are not intended to be
reached in the final configuration of the platform and manipulator. Figs. 5-8 show
the motion of the system as it moves from the initial to final configuration for the
end effector. The end effector moves smoothly along its specified path to reach the
desired configuration. The diagrams were made with an XWindows graphics modeling
program created by Derek Carlson.

20

Figure 3: Starting end effector position

Figure 4: Final end effector position

21

Figure 5: First intermediate platform motion

Figure 6: Second intermediate platform motion

22

23

7 CONCLUSION
This article has discussed the enhanced code for the recently developed Full Space

Parameterization (FSP) method. The proof in [6] for existence of the m - n + 1
vectors necessary to form the solution space S (for system A and b where A has m
columns and n rows) was augmented with a discussion of the conditions necessary to
ensure that the m - n + 1 vectors will be linearly independent. Also, a pattern was
shown to exist among the columns that are chosen to form the submatrices. This
pattern has been used to speed up the search for the complete set of solution vectors.
The possible complications that could arise between a matrix A and a vector b were
discussed and placed into two categories: those in which A has lost row rank, and
those in which the specific combination of A and b causes restricted elements. In the
first case an additional constraint must be included in the solution space S. Specific
cases of restrictions were also discussed. An algorithm was presented and discussed to
eliminate from the system the dependent rows and restricted elements of A and b in
order to decrease computation time. One of the main features of the presented code
is the algorithm given to speed up the search for the set of m - n + 1 solution vectors
for any matrix A and vector b. The respective parameterizations of the solution
space, S, for the cases of the matrix A being full rank and rank deficient were given.
Examples of the different combinations of A and b (from a mobile manipulator) were
presented with final solution vector sets and least norm solutions x. Also a complete
trajectory was shown with solutions found using the FSP method with least norm
optimization. The code from which these examples were made as well as directions
for using the code as either a stand-alone program or as an included procedure have
been included in the Appendices.

25

8 ACKNOWLEDGMENT
This research was supported in part by the U.S. Air Force Air Combat Command,

Munition Material Handling Equipment Focal Point, under Interagency Agreement
2146-HO55-Al between the U.S. Air Force San Antonio Air Logistic Center and the
U.S. Department of Energy.

27

7

References
[11 Baillieul, J. and D. P. Martin “Resolution of Kinematic Redundancy,” in

Robotics: Proceeding of Symposia in Applied Mathematics. Providence, RI:
American Mathematical Society, 1990, pp. 49-90.

[a] Dubey, R.V., J. A. Euler, and S. M. Babcock “An Efficient Gradient Projection
Optimization Scheme for a Seven-Degree- of-Freedom Redundant Robot with
Spherical Wrist,” Proc. 1988 International Conf. Robot. Automat., IEEE Com-
puter Society Press, Washington, pp. 28-36.

[3] Maciejewski, A. A. and C. A. Klein “The Singular Value Decomposition: Com-
putation and Applications to Robotics”, International Journal of Robotics Re-
search, Vol. 8, No. 6, pp. 63-79, 1989.

[4] Press, W. H., S. A. Teukolsky, W. T. Velterling, and B. P. Flannery Numerical
Recipes in C, Cambridge University Press, second edition, 1992.

[5] Oh, S.Y., D. Orin, and M. Bach “An Inverse Kinematic Solution for Kinemati-
cally Redundant Robot Manipulators,” Journal of Robotic Systems, Vol. 1, No.
3, pp. 235-249, 1984.

[6] Pin, F. G. et al. “A New Solution Method for the Inverse Kinematic Joint Veloc-
ity Calculations of Redundant Manipulators”. Proc. IEEE Int. Conf. on Robotics
and Automation, pp. 96-102, 1994.

[7] Pin., F. G. “The Full Space Parameterization (FSP) Method for Solution of Un-
derspecified Systems of Algebraic Equations: Theory and Application to Redun-
dant Manipulator Control with Changing Criteria and Constraints,’. in review for
publication at Oak Ridge national Laboratory Technical Report No. ORNL/TM-
12510, 1993.

[SI Pin, F. G., J. C. Culioli, and D. B. Reister “Using Minimax Approaches to
Plan Optimal Task Commutation Configurations for Combined Mobile Platform-
Manipulator Systems”. IEEE Trans. Robotics and Automation, Vol. 10, No. 1,
pp. 44-54, 1994.

[9] Sciavicco, L. and Siciliano, B. “A Solution Algorithm to the Inverse Kinematic
Problem for Redundant Manipulators,” IEEE Journal of Robotics and Automa-
tion, Vol. 4, No. 4, pp. 403-410, 1988.

[101 Seraji, H. “Configuration Control of Redundant Manipulators: Theory and Im-
plementation,” IEEE Transactions on Robotics and Automation, vol. 5 , No. 4,
pp. 472-490, 1989.

29

[ll] Vukobratovic, M. and Kircanski, M. “A Dynamic Approach Nominal Trajec-
tory Synthesis for Redundant Manipulators,” IEEE Trans. Syst., Man, Cybern.,
SMC-14, no. 4, pp. 580-586, 1984.

[12] Whitney, D.E. “Resolved Motion Rate Control of Manipulators and Human Pros-
theses,” IEEE Trans. Man-Machine Systems, MMS-10, pp. 47-53, 1969.

[13] Yoshikawa, T. “Manipulability of Robotic Mechanisms’,. International Journal
of Robotics Research, Vol. 4, No. 2, pp. 3-9, 1985.

30

+-

A USER’S GUIDE

The code which will be given in Appendix B can be used either as a stand-alone
program or as a procedure called by another program. In the first case the matrix
A and the vector b are read from a user-specified file while in the second case they
are passed in as arguments. For A and b to be read correctly from the file, A must
be listed first row by row followed by b. In either case, all user-defined parameters
are specified in the program header file. Procedures LeastNorm and RankLostSoln
have been included as examples of solution techniques for unconstrained least norm
optimization and single-constraint least norm optimization as discussed in the article.
The version of the program which has been provided utilizes routines from Numerical
Recipes in C. The user will either need to provide the files nruti1.c and svdcmpx
(from [4]) or provide suitable alternatives and alter the code accordingly. All other
necessary procedures are given in Appendix B. As a note, the given files have not
been optimized in any way, and ample room is available for improvement.

The code, as given in Appendix B, is set up to be used as an independent program.
No modifications need to be made to the file FSP.c. In the file FSP.h, the user must
choose values for K2-BND. K2-BND determines the maximum allowable condition
number (ratio of largest to smallest singular values of a matrix) which the algorithm
will consider acceptable. The file from which the matrix A and vector b are to be
read must be set on the line where the variable infile is defined. The size of infile
should also be set appropriately. For example if the file where A and b are stored is
name “TestData”, the line should read:

char infile[8] = “TestData”;

The user must specify the diagnostic output filename in the same way as the in-
put filename and size were given. Also, the size of the matrix must be set with the
variables M and N.

To modify the code so that it run as a procedure inside another program, the
‘char infile ...’ line must be removed from the FSP.h file. As with the stand-alone
version, the values for M, N, K2_BND, and outfile must be set as the user desires.
Both the variable declarations and the memory freeing lines for Aorig and borig must
be removed from the code. Also the procedure call to read in the matrix A and
vector b must be removed. The procedure itself can also be removed from the end
of the code, however, this step is not absolutely necessary. The line main () must be
changed to

void FSP (struct MATRIX “Aorig, struct MATRIX “borig)

where FSP can be renamed to whatever procedure name the user desires. Aorig and
borig are the matrix A and the vector b which will be used to calculate the solution

31

x and must be defined in the program which calls FSP.c using the variable declaration

struct MATRIX "Aorig, "borig;

and the commands

Aorig = mat malloc(N,M)
borig = matmalloc(N,l)

in order to allocate memory space of the appropriate dimension. N and M are respec-
tively the number of rows and columns of the matrix A. When the variables Aorig
and borig are no longer needed by the program the memory must be freed using the
commands

mat free(Aorig)
mat free(borig)

The files matrix.h and matrix.c must be present in the same directory as the files
FSP.h and FSP.c in order for the necessary matrix functions such as the nullspace
calculation to be found. The file in which FSP.c is called as a procedure must also have

#include "matrix. h"

at the beginning in order for the function calls matmalloc and matfree to be found.

32

B CODE LISTINGS

33

(FSP. h)

/* This File contains the size of the A , where A
/* as located, where to write the output data, and.
/* user-defined threshold values

*I
*/
*/

int
int

N = 6;
M = 10;

/* number of rows
/* number of cols

*/
*/

char
char

infile[lO] = " t e s t f ile6";
outfile[lO] = "datab";

/* user-defined file
/* user-defined file

*/
*I

10

#define K2-BND 10 /* user-defined value *I

#define TRUE 1
#define FALSE 0

int CheckB (struct MATRIX *b, int m, float SMALL);

13158 Feb 16 1995 Page 1 of F5'P.h

main (FSP.c)

.
I*
/*
I*
I*
I*
I*
/*
/*
/*
/*
I*
/*
/*
/*
I*
/*
/*

This program is the independent version of the code which uses the
FSP method to find a set of vectors spanning the solution space of
the problem:

The final solution, x, is found from the user-specified optimization
method.

x = A^(- l) * b

Kristi A . Morgansen
Robotics and Process Systems Division
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, TN 37831-6304

August 26, 1994

*/
*/
*/
*/
*/

*I
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

10

.
20

#include <stdio.h>
#include <math.h>
#include "matrix. hi'
#include "FSP . hiq

main ()

FILE *check;
{

struct MATRIX *Aorig, /* original A
Ared, / reduced A
Asub, / submatrix from square submatrix is found
Asqr, / square submatrix
g, / array of solution vectors
borig, / desired movement in work space coordinates
bred, / reduced b
block, / locations of blocked columns for each s o h
n, / null space vectors
n-vec, / mtx of nullspace vectors for all s o h vectors
n-temp,/ used t o reorder the nullspace vectors
Xelim, / comps of final X that were elim. in reduction
X; / final solution for joint space movement

/* condition number of first solution

/* min acceptable value for nonzero nspace comp

/* check fo r completely zero bred
/* which of four possible blocks is being moved
/* how many loop cycles have been executed
/* vector number being searched for

float K2, /* matrix condition number: sv-max/sv-min
K2-0,
SMALL, /* threshold for zero
N B N D ;

bcheck,
ChangeBlock,
Loopcount,
NextToFind,

int i, j , k, I , /* loop counters

*I
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/

main

30

40

50

19:31 Feb 27 1995 Page 1 of FSP.c

main (FSP.c)

ColElim[M], /* marks columns eliminated from original A
RowElim[N], /* which rows are to be eliminated from the A
Ordering[M], /* columns are indexed for efic, soln finding
index, /* used with the Ordering[] variable
nullity, /* dimension of null space
SystemComplete, /* marks when all necessary vecs have been found
binrange, /* marks i f b as in the range of the A
Nred , /* number of rows in reduced A
Mred; /* number of columns in reduced A

Aorig = mat,-malloc(N,M); /* allocate memory space for variables */
Ared = mat-malloc(N,M);
borig = mat-malloc(N,l);
bred = mat-malloc(N,l);
Xelim = mat-malloc(M,l);
X = mat-malloc(M, l) ;

SystemComplete = FALSE;
LoopCount = 0;

GetData(Aorig, borig);
check = fopen(outfile, "w");

ReduceA(Aorig, Ared, borig, bred, Xelim, N, M, &Nred, &Mred,

/* receive the A and b vector from a file
/* file where rslts of this prog are stored

/* Eliminate all the nonredundancies from the A and b */

ColElim, RowElim, &SMALL);

g = mat-malloc(Mred-Nred+l,M);

for (j=O; j<M; j++)
for (i=O; i<(Mred-Nred+l); i++)

g->p[i]b] = 0.OeO;
n = mat-malloc(Mred,Nred);
n-temp = mat-malloc(Mred,l);

fprintf(check, ORIGINAL SYSTEM\n\n");
PrintA(check, Aorig, borig, N, M);
fprintf(check, REDUCED SYSTEM\n\n");
PrintA(check, Ared, bred, Nred, Mred);
fflush(check) ;

bcheck=CheckB(bred, Nred, SMALL);
if (bcheck == 0)

X=Xelim;
fprintf(check, "GIVEN MATRIX IS COMPLETELY RESTRICTED\n\n");

{

Asub = mat-malloc(Nred,Mred);
for (i=O; i<Nred; i++)

for (j=O; j<Mred; j++)
Asub->p[i]b] = Ared->p[i]Ij];

mat-null(Asub, &nullity, n, &K2); I

*/
*/
*/
*/
*/

*/
*I
*/

*/

*/
*/

60

70

80

90

100

Page 2 of FSP.c

main (F S P. c)

c

/* set the solution vectors fo r a completely
/* restricted system

for (i=O; i<Mred; i++)
for (j=O; j<(Mred-Nred); j++)

g->pGj][i] = n->p[i]Gj];

g->p[Mred-Nred][i] = 0.0;
for (i=O; i<Mred; i++)

Loopcount = 1;
SystemComplete = TRUE;
1
{

else

if (Nred != N)
{

I

fprintf(check, "GIVEN HATRIX IS RESTRICTED FOR %d 'I, N-Nred);
fprintf(check, "OUT OF %d VECTOR COMPONENTS\n\n", N);

block = mat-malloc(Mred-Nred+l,Mred-Nred);
Asub = mat-malloc(Nred ,Nred+ 1);
Asqr = mat-malloc(Nred,Nred);
nyec = mat-malloc(Mred-Nred+1 ,Mred);

ChangeBlock = Mred-Nred-1;
NextToFind = 0;

/* the smallest acceptable value for a ndlspace
/* component is set t o be slightly less than
/* I / (# of components in nullspace vector)

NBND = O.S/(Nred+l.O);

/* initialize the blocking positions for the first solution vector */
for (i=O; i<(Mred-Nred); i++)

for (i=O; i<Mred; i++)

index=block->p[O][Mred-Nred- 13 ;

block->p[O][i] = i;

Ordering [i] =i;

k=O; I=O;
for (i=O; i<Mred; i++)

if (block->p[O]F] != i)
{
for (j=O; j<Nred; j++)

I++;
1
k++;

Asqr- >pb] [I] = Ared- >plj] [i] ;

else

mat-null(Asqr, &nullity, n, &K2);
Loopcount = 1;

/* loop anti1 an acceptably well-conditioned first

*/
*I

110

*/
*/
*/

*/

120

130

140

150

19:31 Feb 27 1995 Page 3 of FSP.c

/* solution is found */
while (((nullity != 0) 1 1 (fabs(K2) > K2-BND)) && (block->p[O][O]<Nred))

{
Loopcount++;

while (block- >p[O] [ChangeBlock] > (Nred+ChangeBlock- 1))
ChangeBlock-- ;

if (block->p[O][O]==Nred)
ChangeBlock=O ;

block- >p [O] [ChangeBlock]++; /* change column being blocked */

for (i=ChangeBlock+ 1; i< (Mred-Nred) ; i++)
block->p[O][i] = block->p[0][ChangeBlock]+i-ChangeBlock;

/* set all following blocks */

for (i=O; i<Mred; i++)
Ordering[i]=i;

index = block->p[O][Mred-Nred-11;
ChangeBlock = Mred-Nred-1;

k=O; 1=0;
for (i=O; i<Mred; i++)

if (block->p[O][k] != i)
{
for (j=O; j<Nred; j++)

I++;
}

Asqr->pb][I] = Ared->plj][i];

else
k++;

main(FSP.c)

160

170

180

190

if (block->p[0][0] <= Nred)
mat-null(Asqr, &nullity, n, &K2);

K2-0 = K2;

200

.
/* Find the M-N+l solution vectors according to the pattern */
/* given in the article associated with this algorithm. */
. *************I

/* look fo r the s o h vectors until either all combinations of
/* blocked columns have been tried or the complete set is found

*/
*/

while ((block->p[O][O] <= Nred) && (!SystemComplete) && (K2-0 < K2-BND))
{
BLOCK-COL-FIND-X(b1ock->p[NextToFind] ,g->p[NextToFind],

fprintf(check, "gvector %2d : ", NextToFind);
bred,Ared,Mred,Nred,check);

210

19:31 Feb 27 1995 Page 4 of FSP.c

main (FSP. c)

L.

for (i=O; i<Mred; i++)

fprintf(check, "\n\n");
fprintf(check, "%8.6f 'I, g->p[NextToFind][i]);

if (NextToFind < (Mred-Nred)) /* check if not all solns found */

NextToFind++ ;

for (i=O; i<(Mred-Nred-NextToFind); i++)

block->p[NextToFind][Mred-Nred-11 =

for (i=(Mred-Nred-NextToFind); i<(Mred-Nred-1); i++)

{

/* set initial blocking for next s o h */

block->p[NextToFind] [i] = block->p[NextToFind- 11 [i];

block- >p[NextToFind- 11 [Mred-Nred-NextToFind] ;

block->p[NextToFind][i] = block->p[NextToFind-l][i+l];

/* set column ordering for next soln */
for (i=O; i<(Mred-Nred); i++)

Ordering[i] = block->p[NextToFind][i];

Set-Ordering(Ordering, Mred, Nred);

index = Mred-Nred-1;

/* find column dependencies for next sola*/
for (i=O; i<Nred+l; i++)

for (j=O; j<Nred; j++)
Asub->plj] [i] = Ared->pi] [Ordering[i+(Mred-Nred-l)]] ;

mat-null(Asub, &nullity, n, &K2);

Loopcount++;

for (i=O; i<(Mred-Nred-1); i++)

for (i=(Mred-Nred-1); i<Mred; i++)
n-temp->p[i][O] = 0;

n-temp->p[i][O] = n->p[i-(Mred-Nred-l)] [O] ;

for (i=O; i<Mred; i++)

} /* if NTF < Mred-Nred */
n-vec->p[NextToFind][Ordering[i]] = n-temp->p[i][O];

else /* all solns have been found */
I
SystemComplete = TRUE;
fprintf(check, "BLOCKIWG\n");
for (i=O; i<(Mred-Nred+l); i++)

for (j=O; j<(Mred-Nred); j++)

fprintf(check, Ig\n");

{

fprintf(check, "%7.4f I*, block->p[i]b]);

1

220

230

240

250

260

c

19r31 Feb 27 1995 Page 5 of F5'P.c

main (FS P. c)

if (!SystemComplete)
{
ChangeBlock=Mred-Nred-1;
if (NextToFind != 0)

index++;
}

/* check that the blocking configuration
/* meets the criterion for the next solution
/* do be independent from the previous solns
/* if it is not, cycle until an acceptable
/* configuration is found
/* previous solns may have t o be rejected

while

*I
*/
*I
*/
*/
*/

2 70

280

(
(

(NextToFind==O) && (block->p[O][O] <= Nred) &&
(

)

II
(

1

((nullity != 0) 11 (fabs(K2) > K2-BND))

290
1

(NextToFind!=O) && ((index>= Mred) I I ((fabs(n-vec->p[NextToFind][Ordering[index]]) < N-BND) I I
(fabs(g->p[NextToFind-l][Ordering[index]]) < (SMALL/10))

)

if (NextToFind == 0) /* find a new first solution */
{
while (block->p[0] [ChangeBlock] > (Nred+ChangeBlock- 1))

ChangeBlock--;

if (block->p[O][O]==Nred)
ChangeBlock=O ;

block->p[O][ChangeBlock]++; /* change column being blocked */

for (i=ChangeBlock+l; i<(Mred-Nred); i++)
block->p[O][i] = block->p[0][ChangeBlock]+i-ChangeBlock;

/* set all following blocks */

300

310

for (i=O; i<Mred; i++)
Ordering[i]=i;

index = block->p[O][Mred-Nred-11;
ChangeBlock = Mred-Nred-1;

19:31 Feb 27 1995 Page 6 of FSP. c

k=O; I=O;
for (i=O; i<Mred; i++)

if (block->p[O][k] != i)
{
for (j=O; j<Nred; j++)

I++;
1
k++;

Asqr->plj][I] = Ared->plj][i];

else

if (block->p[O][O] <= Nred)
{
mat-null(Asqr, &nullity, n, &K2);
K2-0 = K2;
LoopCount++;
1

} /* i f (MTF == 0) */
else /* find a new soln other than the first */

{
index++;

while (index >= Mred)

NextToFind--;
if (NextToFind != 0)

for (i=O; i<(Mred-Nred); i++)
Ordering [i]=block- >p[NextToFind- 1 J [i] ;

Set-Ordering(Ordering, Mred, Nred);

index=Mred-Nred;
while (block->p[NextToFind][Mred-Nred-1] != OrderingEindexJ)

index++;
} /* if (MTF !=O) */

index++;

else

for (i=O; i<Mred; i++)
Ordering[i]=i;

main (FSP. c)

index = block->p[O][Mred-Nred-11;
} /* else i f (MTF != 0) */

} /* i f (index == Mred) */
} /* else if (M T F == 0) */

} /* while (nullity != 0) ... */

/* set the final block fo r a new solution */
block- >p[NextToFind] [Mred-Nred-1] = Ordering[index];

} /* end while !SystemComplete */

320

330

340

350

360

370

19:31 Feb 27 1995 Page 7 of F5’P.c

main (FS P. c)

mat-free(block);
mat-free(Asqr);
mat_free(n-vec) ;
} /* else if Nred == 0 */

/* print diagnostic info */
380

fprintf(check, "\nXelim\n");
for (i=O; i<M; i++)

fprintf(check, "\n");
fprintf(check, " X i ' . 4f 'I, Xelim->p[i][O]);

/* check if the eliminated b elements in bred can be

/* ie check that b is in the range of A

*/

*/
/* produced from the g vectors and the reduced A matrix */

if (!SystemComplete)

fprintf(stderr,"System did not complete ! \n");
fprintf(check,"System did not complete ! \n");

{

1
/* check that the original b was not all zeros (special case) */

bcheck = CheckB(borig, M, SMALL);

/* check whether the original A had dependent rows */
if (SystemComplete && (bcheck != 0))

{
1 = 0;
j = 1;
while ((i<N) && (j != 0))

{
if (RowElim[i] != 2)

else
i++;

/* user-defined procedure */
RankLostSoln(g, X, Aorig, Mred, Nred, Xelim, ColElim, RowElim,

j = 0;
borig, check);

fprintf(check, "\nFINAL SOLUTION : \n");
for (i=O; i<M; i++)

fprintf(check, "X7.4f 'I, X->p[i][O]);
fprintf(check, *'\n8I);

binrange = CheckRange(borig, Aorig, X, RowElim, Mred, check);
if (binrange != 1)

{

1

fprintf(check, "INACCURATE FINAL SOLUTION\n");
fprintf(check, 'I B NOT I N RANGE OF A\n\n");

390

400

410

420

19:31 Feb 27 1995 Page 8 of FSP.c

if

1
else

if

fprintf(check, "Loopcount f o r final solution: %4d\n", Loopcount);
1

1
{

(j == 1)

/* user-defined procedure */
LeastNorm(X, g, Mred, Nred, Xelim, ColElim);

main (FSP.c)

430

fprintf(check, "\nFINAL SOLUTION : \n");
for (i=O; i<M; i++)

fprintf(check, "%7.4f)I, X->p[i][O]);
fprintf(check, la\nl8);

fprintf(check, "Loopcount for final solution: %4d\n", Loopcount);
1

440

(K2 > K2-BND)

fprintf(check, "\n\nNO WEU-CONDITIONED SUBMATRICES FOUND\n");
fprintf(check, "If result seems incorrect I the maximum allowable\n");
fprintf(check, "condition number can be increased by changing the\n");
fprintf(check, "value of K2-BND in the file FSP .h. \n");

{

I
else if (bcheck != 0)

else
fprintf(check, "\n\nB NOT IN RANGE OF A\n");

{
fprintf(check, "\n\nSPECIAL CASE\@ IS ZERO VECTOR\n");
fprintf(check, "CONSTRAINED OPTIMIZATION MUST BE USED\n");

/* insert appropriate equations here */
1

mat-free(Aorig) ;
mat_free(Ared);
mat_free(Asub);
mat-free(borig);
mat_free(bred);
mat-free(Xelim) ;
mat_free(X) ;
mat_free(n) ;
mat-free(n-temp) ;
mat-free(g) ;

/* free up all variable m e m o r y space */

fclose(check) ;
1

...
/* calculate a g vector based upon a A and given column blocking * I
.

BLOCK-COL-FIND-X (float *ColToBlock, float *g,
struct MATRIX *b, struct MATRIX *A,

450

460

470

19:31 Feb 27 1995 Page 9 of F5'P.c

main(FSP.c)

int Mred, int Nred, FILE *check)
{
int Acol, Tcol, r , I, i, j ;
float blocktemp[Mred-Nred], temp;
struct MATRIX *Atemp, *gtemp, *btemp;

Atemp = mat-malloc(Nred,Nred);
gtemp= mat-malloc(Nred, 1);
btemp = mat-malloc(Nred,l);

for (k 0 ; i<Nred; i++)
b t emp - >p [i] [O] = b- >p [i] [O] ;

/* the columns blocked need to be listed from smallest to largest */
for (i=O; i<(Mred-Nred); i++)

blocktemp [i] =ColToBlock [i] ;
for (i=(Mred-Nred-1); i>O; i--)

for (j=i-l; j>=O; j--)
if (blocktemp[i] < blocktemplj])

temp=blocktemp [i] ;
blocktemp[i]=blocktemp[j];
blocktemp b] =temp;
1

j=O;
Acol=O;
for (Tcol=O; Tcol<=(Nred-1); Tcol++)

{
for (r=O; r<=(Nred-1); I++)

if (Acol != blocktempGj])

else
Atemp- > p[r] [Tcol]=A- >p [I] [Acol] ;

{
Acol++;
r-=1;
j++;
1

Acol++;
1

matgseudoinv(Atemp) ;

gtemp = mat_mul2(Atemp, btemp);

/*Mow add a zero to where column was blocked */

j=O;
I=O;
for (i=O; i<Mred; i++)

if (i==blocktemp b])
I
g[i]=O.OeO;

480

490

500

510

520

530

19:31 Feb 27 1995 Page 10 of FSP.c

j++;
I++;
I

else
g [i] =gtemp - >p [i -I] [O];

mat_free(Atemp) ;
mat-free(gtemp) ;
mat-free(btemp);
I

.
/* dot product of two jloat vectors */
..

double ROW-DOT-PRODUCT (float *a, float *b, int n)

int i;
double result=O;
for (i=O; i<n; i++)

result+=a[i]*b[i];
return(resu1t) ;

{

I

.
/* Restricted work space motions can be identified by rows of the */
/* A which only have one nonzero element. */
/* corresponding column must be present in all final joint space */
/* solutions, the appropriate joint space motion will be calculated
/* before any redundancy resolution is performed, and the */
/* appropriate motions and joints will be removed from the */
/* work space and A respectively */ .

Since the

*/

ReduceA (struct MATRIX *Aorig, struct MATRIX *Ared, struct MATRIX *borig,
struct MATRIX *bred, struct MATRIX *Xelim, int N, int M, int *Nred,
int *Mred, int *ColElim, int *RowElim, float *SMALL)

main (F S P. c)

540

550

560

{
int i, j , k, m, /* loop counters *I

StillChecking, */
LastNred,
nullity,
Restriction, */
NonZeroCol; */

/* flag to mark when all nonredundancies are gone

/* num of joints which contrib to a work space d.0.f.
/* column which has nonzero element for give row

double btemp [N] ;
float N-B N D ,

/* holds the b vector as it is modified by backsub
/* zero threshold for nullspace vector componenets

*/
*/

K2; /* matrix condition number: su-max/sv-min */
struct MATRIX *n,

*Atemp,
*Atrans;

570

580

Atemp = mat-malloc(N,M); J

Atemp = mat_cp2(Aorig);

19:31 Feb 27 1995 Page 11 of F5’P.c

main(FSP.c)

Atrans = mat-malloc(M,N);
n = mat-malloc(M,N);

*Nred = N;
*Mred = M;
N-BND = 0.9/(N+l);
Stillchecking = 1;

/* number of rows in the reduced A
/* number of columns in the reduced A

/* initialize variables */
for (i=O; i<N; i++)

Row Elim[i] =O ;
btemp [i] = borig- > p [i] [01 ;
1
{

1

for (i=O; i<M; i++)

Xelim->p[i] [O]=O;
ColElim[i]=O;

*/
*/

590

600

/* determine the value for SMALL based on the largest element of A */
*SMALL = 0;
for (i=O; i<N; i++)

for (j=O; j<M; j++)
if (fabs(Atemp->p[i]Gj]) > *SMALL)

*SMALL = fabs(Atemp- >p[i] Jj]);
*SMALL = *SMALL/1000;

/* Check each row for the number of nonzero elements.
/* element is nonzero, solve for the joint space motion, and
/* modify the b vector so that the appropriate row and column
/* can be eliminated from the A . After a row is eliminated
/* the remaining A must be rechecked for any new restrictions

If only one

while (StillChecking)
{
LastNred = *Nred;
for (i=O; i<N; i++)

{
j=-1;
Restriction=O;

/* check for nonzero row elements */
while ((j<(M-1)) && (Restriction < 2))

{
j++;
if (fabs(Atemp->p[i]Ij]) > *SMALL)

{

1

Restriction++;
NonZeroCol = j;

1
/* i f a row only has one nonzero element, eliminate it from */

610

*/
*/
*/
*/
*/

620

630

19:31 Feb 27 1995 Page 12 of FSP.c

/* the A */
if ((Restriction == 1) && (RowElim[i] != 1))

{
Xelim- >p [NonZeroCol] [O] =btemp[i]/Atemp- >p [i] [NonZeroCol] ;
for (k=O; k<N; k++)

btemp[k]=
btemp [k]-Atemp- >p [k] [NonZeroCol]*Xelim- > p[NonZeroCol][O] ;

for (k=O; k<N; k++)
Atemp- >p[k] [NonZeroCol]=O.O;

ColElim[NonZeroCol] = 1;
RowElim[i]= 1 ;
*Nred=*Nred-l;
*Mred=*Mred-1;

/* row of all zeros, also eliminated */
1

else
if ((Restriction == 0) && (RowElim[i] != 1))

{

1

RowElim[i]=l;
*Nred=*Nred- 1;

} /* for (id ... */
if (*Nred == LastNred)

StillChecking = 0;
} /* while (StillChecking) */

main (FSP. c)

640

650

660

/* check for columns of zeros */
for (i=O; i<M; i++)

{
j = O ;
while ((j<N) && (fabs(A0rig->pb][i]) < *SMALL))

j++;
670

if (j==N)
{

1

*Mred=*Mred- 1 ;
ColElim[i]= 1;

1
/* check for dependent rows */

for (i=O; i<Aorig->rows; i++)
for (j=O; j<Aorig->cols; j++)

mat-null(Atrans, &nullity, n, &K2);
for (i=O; i<nulIity; i++)

Atrans- >pb] [i] = Aorig->p[i] b];

{
j = O ;
while (fabs(n->pb][i]) < NBND)

if (RowElimb] != 1)
j++;

{

19:31 Feb 27 I995

680

Page 13 of FSP.c

RowElimb] = 2;
*Nred=*Nred-1;
1

1
/* store the reduced A in the variable Area, and the
/* modified b in bred

j=-1;
for (i=O; i<N; i++)

if (RowElim[i] == 0)
{
j++;
bred- >p b] [O] = b temp[i] ;
m=-1;
for (k=O; k<M; k++)

if (ColElimF] == 0)
{

1

m++;
Ared->pb][m] = Aorig- >p[i][k] ;

mat_free(Atemp) ;
mat-free(Atrans) ;
1

main-PrintA(FSP.c)

690

*/
*/

.
/* Check that after reducing the A , not all requested *I
/* workspace motions are zero (trivial motion). */ .

int CheckB

int i;

(struct MATRIX *b, int m, float SMALL)
{

1=0;

while ((i<m) && (fabs(b->p[i][O]) < SMALL))
/* stop checking b when a nonzero element is found */

i++;

if (i==m)

else
ret urn(0) ;

return(m) ;
1

...
/* Print the A and b vector t o f i le */
...

PrintA (FILE *check, struct MATRIX *A, struct MATRIX *b, int m, int n)

700

710

720

730

740

Print A

19:31 Feb 27 1995 Page 14 of FSP.c

L

1
int i, j ;

fprintf(check, A\n\n") ;

for (i=O; i<m; i++)
{
for (j=O; j<n; j++)

fprintf(check, "\n");
fprintf(check, %"4f # I , A->p[i]Gj]);

1
fprintf(check, "\n\n b\n\n") ;

for (i=O; i<m; i++)
fprintf(check, "%7.4f 'I, b->p[i][O]);

fprintf(check, "\n\n\n\n");
1

Print A-Set-Ordering(FSP.c)

750

760

.
/* Create the look-up table which holds the order in which the */
/* columns of the A should be blocked to f o r m square sub-As */
..

Set-Ordering (int *Ordering, int Mred, int Nred) Set-Ordering
{
int temp[Mred-Nred],

i, j , k,
hold;

for (i=O; i<(Mred-Nred); i++)
temp[i] =Ordering[i] ;

for (i=(Mred-Nred); i>O; i--)
for (j=O; j<(i-1); j++)

if (templj] > templj +I])
{
hold = tempb+l];
tempGj+l] = templj];
tempb] =hold;
1

k=Mred-Nred- 1;
for (i d ; i<temp[O]; i++)

{
k++;

1
Ordering F] =i;

for (i=O; i<(Mred-Nred-1); i++)
for (j=temp[i]+l; j<temp[i+l]; j++)

{

770

780

790

19r31 Feb 27 1995 Page 15 of FSP.c

Set-0 rdering (FSP. c)

k++;
Ordering[k]=j ;
3

for (i=(temp[Mred-Nred-l]+l); i<Mred; i++)
{
k++;
Ordering[k]=i;
1

.
/* check that the original b is in the range of the A */
.

int CheckRange (struct MATRIX *b, struct MATRIX *Aorig, struct MATRIX *XI
int *RowElim, int Mred)

{
int i, j , k;
float CheckValue,

temp[Aorig- >cols] ;

for (i=O; i<(Aorig->rows); i++)
if (RowElim[i] == 2)

{
for (j = 0; j < Aor ig - > cols ; j + +)
CheckValue = ROW-DOT-PRODUCT(Aorig->p[i], temp, Aorig->cols);
if (fabs(b->p[i] [O] -Checkvalue) > fabs(b- >p[i] [O] / 10))

temp6j]=X->pb] [O];

ret urn(0);
1

800

810

820

return(1);
1

830

.
/* This procedure calculates the final solution based on */
/* the least norm */ .

LeastNorm (struct MATRIX *XI struct MATRIX *g, int Mred, int Nred,
struct MATRIX *Xelim, int *ColElim)

{
struct MATRIX *G, /* Grammian formed of solution vectors

/* weighting factors, one for each vector
/* dummy variable for calculations
/* vertical vector of ones
/* horizontal vector of ones

/* used in calculation of X

*t ,
*x,
*e 1

*eT;

denominator;
float Xtemp [MI, /* used to replace eliminated X components

int i, j , k, M;

19:31 Feb 27 1995

*/
*/
*/
*/
*/
*/
*I

840

Page 16 of FSP.c

Set-Ordering (FSP. c)

t = mat-malloc(Mred- Nred+ 1,l);
x = mat-malloc(Mred-Nred+1,1);
e = mat-malloc(Mred-Nred+l,l);
eT= mat-malloc(1 ,Mred-Nred+l);
G = mat-malloc(Mred-Nred+l,Mred-Nred+l);

for (i=O; i<(Mred-Nred+l); i++) /* initialize the vectors of ones */
{

1

e->p[i] [0]=1 .OeO;
eT- >p [O] [i] = 1. OeO ;

for (i=O; i<(Mred-NredSl); i++)
for (j=O; j<(Mred-NredSl); j++)

G->p[i]lj]=ROW-DOT-PRODUCT(g->p[i], g->plj], Mred);

matgseudoinv(G) ;
t=mat_mul2(G ,e);
x=mat_mul2 (eT ,G) ;
x=mat_rnul2(x,e);
denominator= (1 /x- >p [O] [0]) ;
mat-sca(t ,denominator);

for (i=O; i<M; i++)
Xtemp[i] = O.OeO;

for (i=O; i<Mred; i++)
for (j=O; j<(Mred-Nred+l); j..

850

870

k = 0;
for (j=O; j<M; j++)

if (ColElimlj] == 1)

else
X- >PI] [O]=Xelim- >pi] [O] ;

{

1

X->plj][O]=Xtemp[k];
k++;

860

mat-free(eT) ;
mat-free(e);
mat-free(G);
mat-free(t);
mat-free(x) ;

I

880

890

.
/* Least norm solution for case in which A has lost row rank */
.

RankLostSoln (struct MATRIX *g, struct MATRIX *X, struct MATRIX *A, 900

int Mred, int Nred, struct MATRIX *Xelim,

19:31 Feb 2'7 1995 Page 17 of FSP.c

Set-Ordering(FSP.c)

int *ColElim, int *RowElim, struct MATRIX *b, FILE *check)
{
struct MATRIX *G,

*e,
*eT,
*x ,
*beta,
*betaT,
*t;

double a, bscalar, c, d, Ascalar, num, sum;
double nhu, mu, Xtemp[M];
int i , j , k, M;

t = mat-malloc(Mred-Nred+l,l);
x = mat-malloc(Mred-Nred+l,l);
e = mat-malloc(Mred-Nred+l,l);
eT= mat-malloc(1 ,Mred-Nred+l);
G = mat-malloc(Mred-Nred+l,Mred-Nredf l);
beta = mat-malloc(Mred-Nred+l,l);
betaT = mat-malloc(1,Mred-Nred+l);

for (i=O; i<(Mred-Nred+l); i++) /* initialize the vectors of ones */
{
e->p[i][O]=l.OeO;
eT->p[O] [i]=l .OeO;
1

/* construct Grammian and inverse */
for (i=O; i<(Mred-Nred+l); i++)

for (j=O; j<(Mred-Nred+l); j++)
G->p[i]Ij]=ROW-DOT-PRODUCT(g->p[i], g->pb], Mred);

matgseudoinv(G) ;
fprintf(check, "\n\nGrammian inverse : \n");
for (i=O; i<(Mred-Nred+l); i++)

{
for (j=O; j<(Mred-Nred+l); j++)

fprintf(check, "\n");
fprintf(check, " % I O .4f *I, G->p[i]lj]);

I

/* calculate beta values */
j = O ;
while (RowElimlj] != 2)

for (i=O; i<(Mred-Nred+l); i++)
j++;

1
num = ROW-DOT-PRODUCT(A->pIj], g->p[i], M);
beta->p[i] [O] = num/b->pIj][O];
beta?'->p[O] [i] = beta->p[i][O];
1

19:31 Feb 27 1995

910

920

930

940

950

Page 18 of FSP.c

Set-Ordering(FSP.c)

fprintf(check, "\nbeta values : \n");
for (i=O; i<(Mred-Nred+l); i++)

fprintf(check, 'I \ne') ;
fprintf(check, "%7.4f " , beta->p[i] IO]);

960

x = mat_mul2(eT,G);
x = mat_rnul2(x,e);
a = x->p[O][O];
x = mat_mul2(eT,G);
x = rnat_mul2(x,beta);
bscalar = x->p[O][O];
x = mat_mul2(G,e);
x = mat_mul2(betaT,x);

x = mat_mul2(G,beta);
x = mat_mul2(betaT,x);
d = x->p[O][O];

c = x->p[O][O];
970

Ascalar = c*bscalar - a*d;

nhu = (a-c)/Ascalar;

mu = - (l+nhu*bscalar)/a;

fprintf(check, "\nscalar values : \n");
fprintf(check, "a: %7.4f b: %7.4f c : %7.4f d: %7.4f \n", a, bscalar, c, d);
fprintf(check, "A: %7.4f mu: %7.4f nhu: %7.4f\n", Ascalar, mu, nhu);

t = mat_mu12(G,e);
mat-sca(t ,mu);
x = mat-mula(G,beta);
mat-sca(x,nhu) ;
for (i=O; i<(Mred-Nred+l); i++)

t->p[i][O] = -t->p[i][O] - x->p[i][O];

fprintf(check, "\nt values : \n");
for (i=O; i<(Mred-Nred+l); i++)

fprintf(check, "\n");
sum = t - >p[01 [o] +t - >p [11 [o] +t - >p [2] [O] +t- >p [3] [O] +t - >p [4] [O] +t - >P [SI (01 ;
fprintf(check, "sum: %7.4f\n", sum);

fprintf(check, "%7.4f ' I , t->p[i][O]);

sum = 0;
for (i=O; i<(Mred-Nred+l); i++)

sum += beta->p[i][O]*t->p[i][O];

fprintf(check, "\nsum beta i* t i : %7.4f \n", sum);

for (i=O; i<M; i++)
Xtemp[i] = O.OeO;

for (i=O; i<Mred; i++)
for (j=O; j<(Mred-Nred+l); j++)

980

990

1000

19:31 Feb 27 1995 Page 19 of FSP.c

Set-Ordering-GetData(FSP.c)

k = 0;
for (j=O; j<M; j++)

if (ColElimlj] == 1)

else
X- >p b] [01 =Xelim - >pL] [01 ;

{
X - > p b] [O] =Xt emp [k] ;
k++;
1

mat-free(eT) ;
mat-free(e);
mat-free(G) ;
mat-free(t) ;
mat-free(x) ;
mat-free(beta);
mat-free(beta?') ;

}

.
/* read in A and b vector to be used for testing the code */
.

GetData (struct MATRIX *A, struct MATRIX *b)

FILE *fpin;
int i, j;

{

1010

1020

1030

GetData

fpin = fopentinfile, lb.-l8);
1040

for (i=O; i<N; i++)
for (j=O; j<M; j++)

fscanf(fpin, "%f &A->p[i]Ij]);

for (i=O; i < N ; i++)
fscanf(fpin, V,f 'I, &b->p[i][O]);

fclose(fpin) ;
1

1050

19:31 Feb 27 1995 Page 20 of FSP.c

(matrix.h)

.
/* This is the header fi le for the matrix procedures that */
/* are necessary for FSP.c. The procedure files and header */
/* files from Numerical Recipes an C are necessary in order */
/* for the code t o find everything that it needs. *I
/* following procedures were taken from a file created b y *I
/* Ode H. Dorum at Oak Ridge National Laboratory: *I
I* mat-malloc *I
/* mat-mu12 *I
I* mat f ree *I
/* mat-sca *I
/* matjseudoinv */
/* mat-cp2 *I
I* m a t j r *I .

The

struct MATRIX *mat-malloc(); /* Matrix allocation */

struct MATRIX *mat_cp2(); /* copy one matrix to another *I
struct MATRIX *mat_mul2(); /* mult two matrices and return result */

void svdcmp(); /* Singular Value Decomposition *I
void mat_free(); /* Free matrix pointer *I
void mat-sca(); /* Scale a matrix by a factor *I

void mat-null(); /* Find the matrix null space *I
void matqr(); /* print a matrix *I

void matpseudoinv(); /* Inverse or pseudoinverse using SVD */

struct MATRIX

float **p; /* Pointer to array of pointers to matrix rows. */
int rows; /* Row dimension of the matrix. *I
int cols; /* Column dimension of the matrix. *I

10

20

30

10149 Feb 5 1995 Page 1 of matr2x.h

(matrix.c)

.
*
* This f i le contains the matrax procedures necessary
* to run the program FSP.c.
* for more information.

Please see the header file

*
.

#include <stdio.h>
#include <stdlib.h>
#include <math .h>

#include "matrix. h"

#define SVD-THRESHOLD 1.0e-6
#define SV-SMALL 1.0e-4

#define SWAP(a,b) {float temp = (a); (a) = (b); (b) = temp;}
#define MAX(a,b) ((a) > (b) ? (a) : (b))
#define PrintIfBiggerThan 0
#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))

10

20

static float at, bt ,ct ;
#define PYTHAG(a,b) ((at=fabs(a)) > (bt=fabs(b)) ? \
(ct=bt/at,at*sqrt(l.O+ct*ct)) : (bt ? (ct=at/bt,bt*sqrt(l.O+ct*ct)): 0.0))

.

30

struct MATRIX *mat-malloc(rows, cob)
int rows, cols;

int i;
float *mat, **row;
struct MATRIX *matrix;

{

/* Allocate space for structure, elements and pointers.
*
* Note, that the allocated number of row pointers is MAX(row, cols)
* because it facilitates transposing rectangular matrices.
*/

mat = (float *) malloc(rows * cols * sizeof(float));
row = (float **) malloc((MAX(rows, cols)) * sizeof(float *));
matrix = (struct MATRIX *) malloc(sizeof(struct MATRIX));

if(!mat 1 1 !row 1 1 !matrix)

fprintf(stderr, "Matrix a l loca t ion f ailed\n");
return(NULL);

{

1

40

50

19:39 Feb 27 1995 Page 1 of matrix.c

(matrix.c)

matrix->p = row;
matrix->rows = rows;
matrix->cols = cols;

/* The Nth element of the array row points t o the 1st element
* on the Nth row. Thus, **m = *m[O] = m[O][O]

* Calculate the addresses of the pointers pointing to the
* rows of the matrix

*

*/
for(i = 0; i < rows; i++)

row[i] = mat;
mat += cols;

{

1
return(matrix) ;

1

.

.
/* The 'e' matrix must already be declared f loat of size: arows x bcols. */

void mat-mul(a, b, c)
struct MATRIX *a, *b, *c;

int i , j , k;
{

for (k = 0; k < b-xo l s ; k++)
for (i = 0; i < a->rows; i++)

c->p[i]F] = 0;
for (j = 0; j < a->cols; j++)

{

c->p[i][k] += a->p[i]b]*b->pb]p];
1

1

60

70

80

90

.
/* dimension. The pointer t o .this matrix structure is returned.
.
/* The function will automatically create the result matrix of correct */

*/
struct MATRIX *mat_mul2(a, b)
struct MATRIX *a, *b;

struct MATRIX *c;
{

100

c = mat-malloc(a->rows, b->cols);

mat-mul(a, b, c);

return(c);
1

1$:39 Feb 27 1995 Page 2 of matrix.^

(matrix.c)

.
/* The pseudoinverted matrix wall still reside in a. In the case of a */
/* square matrix, the result will actually he the inverted matrix. If */
/* the matrix is rectangular, the pseudoinverse will have the correct */
/* dimension. */ .

void matgseudoinv(a)
struct MATRIX *a;

struct MATRIX *q2, *z, *tmp;
struct MATRIX *qlt, *q2t, *zt, *qq, *qq2;
float **A, **Q2, *Z;
float z-min, z-max;
int M, N, i, j ;
float **conv-2-nricgtr();

{

M = a->rows; N = a->cols;

/* Allocate space for q2 matrix, vector Z[l..N], z and tmp

q2 = mat-malIoc(N, N);
z = mat-malloc(N, N);
Z = vector(1, N);

*/

/* Create pointers to a and q2 conforming with Num-Rec-in-C format.

A = conv_2_nricgtr(a);
Q2 = conv_2_nricgtr(q2);

*/

/* Compute A[l..M][l..N]'s singular value decomposition (SVD): A = Ql*Z*Q2-tra
*
* Q l will replace A, and the diagonal value of singular values Z is output
* as a vector Z[l..N]. The matrix Q2 (not the transpose Q2-tra) is output
* as Q2[1..N][l..N]. M must he greater than or equal t o N; I f at is smaller,
* then A should be filled up t o square with zero rows.
*/

svdcmp(A, M, N, Z, Q2);

/* (Singular values = squareroot of the eigenvalues), find maximum.

z-max = 0.0;
for (i = 1; i <= N; i++) if (Z[i] > z -ma) z-max = Zp];

*/

/* Set threshold value of the minimum singular value allowed
* to be nonzero.
*/

z-min = z-max*SVD-THRESHOLD;

/* Invert while copying from the Z vector into the zs matrix, and weed out
* the too small singular values.
*/

19:39 Feh 27 1995

110

c

120

130

140

150

Page 3 of matrix.^

for (i = 0; i < 11; i++)
for (j = 0; j < N ; j++)

z->p[i]Ij] = ((i == j) && Z[i+1] > z-min) ? l.O/Z[i+l] : 0.0;
/* z->p[i]b] = l.O/Z[i+l];*/

(mat rix.c)

160

/* * Ajseudoinv = Q2 * Z-pseudoinv * Ql-tra

* Returned matrix A from svdcmp() is actually Q l , therefore:
*

*/
/* printf("Testing the inverse:\n");*/
q l t = mat_tra2(a);
qq = mat_mul2(a,qlt);
/*printf("Qlt*ql = \n");
m a t P r h d l - * 1

mat-tra(a); /* Transpose Q l t o Ql-tra */
tmp = mat_mul2(z, a); /* tmp = Z_pseudoinv * Ql-tra */
mat-mul(q2, tmp, a); /* Apseudoinv = QZ * tmp = QZ * Zjseudo * Ql-tra */

q2t = mat_tra2(q2);
qq2 = mat_rnu12(q2,q2t);

/* printf("QZt*Q2 = \n");
mat_pdq@);*l

mat_free(42) ;
mat_free(z) ;
mat-free(tmp);
free-vector(Z, 1, N);
free((char *) A);
free((char *) Q2);

.

.
/* Return the null space of a matrix using svd */

void matpull(a, n-rank, n, K2)
struct MATRIX *a, *n;
int *n-rank;
float *K2;

struct MATRIX *a-sqr,
*v,
&-temp;

{

170

180

190

200

210

float **U, *S, **V,
*vector(),

19:39 Feb 27 1995 Page 4 of matrix.&

(matrix.c)

**conv-2-nricg t r () ;

float s-min, s-max, temp;

void free-vector(),
free-ivec t or() ;

int i, j , R, C, *order;
int *ivector () ;

R = . a->rows;
C = a->cols;

v = mat-malloc(C,C);
V = conv-2-nricgtr(v);
S = vector(1,C);
S-temp = mat-malloc(C+l,l);
order = ivector(1,C);

if (R < C)
{
a-sqr = mat-malloc(C,C);
for (i=O; i<R; i++)

for (j=O; j<C; j++)
a-sqr->p[i] lj] = a-->p[i] ljl;

for (i=R; i<C; i++)
for (j=O; j<C; j++)

a-sqr->pl;]lj] = 0.0;
1
{
a-sqr = mat-malloc(R,C);
a-sqr = mat_cp2(a);
1

else

U = conv-2-nricgtr(a-sqr);

svdcmp(U ,C,C,S ,V) ;

for (i=l; i<(C+l); i++)
i
S-temp->p[i][O] = S[il;
order[i] = i;
1

for (i=C; i>l; i--)
for (j=i-I; j>=l; j--)

if (fabs(S-temp->p[i] [O])>fabs(S-temp->plj] [O]))

temp = S-temp->p[i][O];
S-temp- >p [i] [O] = S-temp - >p b] [O] ;
S-temp- >plj] [O] = temp;
temp = order[i];
order[i] = orderlj];

220

230

240

250

260

19:39 Feb 27 1995 Page 5 of rnat7-ix.c

(matrix.c)

orderlj] = temp;
1

if (R<=C)

else

s-max = fabs(S-temp- >p[11 [O]) ;

s-min = fabs(S-temp->p[R][O]);

s-min = fabs(S-temp->p[CJ[O]);

*n-rank = 0;
while (fabs(S-temp->p[C-*n-rank] [O]) < SV-SMALL)

{
for (j=1; j<=C; j++)

*n-rank = *n-rank + 1;
n->p6j- 11 [*n-rank] = Vfi] [order[C-*n-rank]];

1
if ((fabs(s-min)>=SV-SMALL) && (fabs(s-min/s-ma) < SV-SMALL))

{
for (j=1; j<=C; j++)

*n-rank = *n-rank+l;
n- >plj - 11 [*n-rank] = V[order b]] [C-*n-rank] ;

1

270

280

*K2 = s-max/s-min;
290

mat-free(a-sqr) ;
free-vector(S, 1 ,C);
mat_free(S-temp) ;
mat-free(v) ;
free((char *) V);
free((char *) U);

1

..

..
/* T h e m a t r i x 'a' is scaled by the f a c t o r 'e' */

void mat-sca(a, c)
s t ruc t MATRIX *a;
float c;

float *p;
int i;

{

p = *a->p;

for (i = a->rows*a->cols; i--;)
*p++ *= c;

1

.
/* T h e copied m a t r i x 'cpy' must already be declared float of */

300

310

19:39 Feb 27 1995 Page 6 of matrix.^

(matrix.c)

/* same sire as 'a'.
. */

void mat-cp(a, cpy)
struct MATRIX *a, *cpy;

float *pl *q;
int i;

{

p = *a->p; q = *cpy->p;

for (i = a->>rows*a->cols; i--;)
*q++ = *p++;

1

.

/* structure is returned. */ .

/* The function will automatically create the result matrix of correct
/* dimension which will be the transpose of A . The pointer to this matrix */

*/

struct MATRIX *mat_tra2(A)
struct MATRIX *A;

int i , j ;
struct MATRIX *At;

{

At = mat-malloc(A->cols, A->rows);

for (i = A->rows-l; i--;)
for (j = A->cols-1; j > i; j--)

At->p[i]lj] = A->pGj][i];

return(At);
1

.

..
/* The transposed matrix still resides in 'a' after transposition */

void mat-tra(a)
struct MATRIX *a;

int i, j , temp;
float *p;

{

if (a->rows == a->cols)

for (i = a->rows-1; i--;)
{

for (j = a->cois-l; j > i; j--)
SWAP(a->p[i]lj] a->plj] [i]);

1
{
else

/* Square matrix */

/* Rectangular matrix */

320

330

340

350

360

370

19:39 Feb 27 1995 Page 7 of matr2x.c

(matrix.c)

temp = a->rows;
a->rows = a->cols;
a->cols = temp;

/* Recompute pointers to the new rows of the matrix

p = *a->p;
for(i = 0; i < a->rows; i++)

*I

{

1

a->p[i] = p;
p += a->cols;

/* No need to swap elements i f the matrix has only one row or column.

if (!((a->rows == 1) 1 1 (a->cols == 1)))
*/

1
s t ruc t MATRIX *m;

/*...otherwise put elements in tempora y matrix and
* copy from it into the columns of the transposed mairix.
* I

m = mat-malloc(a->rows, a->cols);
mat-cP(a,m);
p = *m->p;

for (j = 0; j < a->cols; j++)
for (i = 0; i < a->rows; i++)

a->p[i]Ij] = *p++;

mat_free(m) ;
1

1
1

.
/* dimension . The pointer to this matrix structure is returned.
.
/* The functaon will automatically create the result matrix of correct */

*I
struct MATRIX *mat_cp2(a)
struct MATRIX *a;

int i;
float *p, *q;
struct MATRIX wpy;

{

cpy = mat-malloc(a->rows, a->cols);

return(cpy) ;
}

380

390

400

410

420

19:39 Feb 27 1995 Page 8 of matr2x.c

(matrix.c)

/****************************f**********$******$$$*****$$$$$$$$$****$$$$$$/

/* Returns an pointer which points to an array of pointers to matrix row */
/* elements in a way so that the matrix a->p[O..n][O..m] can be accessed */
/* from [l..n-l][l..m-11 which as required b y the Numerical Rec. i C. */
/*******tt********f****$*$$$$***********++$*********************************/

float **conv-2-nricgtr(a)
struct MATRIX *a;

float **newgtr-2-row;
int i;

/* Allocate space for an array of OFFSET pointers.

newgtr-2-row = (float **) maHoc((a->rows + 1) * sizeof(float *));
*/

/* The array of pointers t o row must be offset b y -1

for (i = 0; i < a->rows; i++)
$1
newgtr-2-row[i+l] = a->p[i] - 1;

/$ To not have element[O]fl dangling, let il point t o a->p[O][O].

newgtr-2-row[O] = a->p[O];
*/

return(new-ptr-2-row);
1

void mat-free(m)
struct MATRIX *m;

free((char *) *m->p);
free((char *) m->p);
free((char *) m);

1

void matgrf(a)
struct MATRIX *a;

int i, j ;
{

printf (I' \n") ;
for (i = 0; i < a->rows; i++)

for (j = 0; j < a->cols; j++)

print f (I' \t X f , a- > p [i] E]) ;
{

1
printf("\nl');

430

440

450

460

470

19:39 Feb 27 1995 Page 9 of matrix.^

1
printf(ii\ni*);

1

void matgr(a)
struct MATRIX *a;

int i , j;
{

printf("\n");
for (i = 0; i < a->rows; i++)

for (j = 0; j < a->cols; j++)
{

if (abs(a->p[i]Ij]) >= 0.005)

else

{

printf("\t% . X I ' , a->p[i]Ij]);

printf("\t - ");
1

printf("\n") ;
1
printf('*\n");

1

19:39 Feb 27 1995

(matrix.c)

480

490

500

Page 10 of matrix.^

ORNLmM-128 16

INTERNAL DISTMBUTION

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

17-21.
22.

E. C. Bradley
B. L. Burks
J. B. Chesser
W. E. Dixon
J. V. Draper
V. B. Graves
D. C. Haley
W. R. Hamel
J. N. Herndon
J. F. Jansen
R. L. Kress
C. T. Kring
D. S. Kwon
E. D. Miller
M. W. Noakes
C. E. Oliver
F. G. Pin
K. E. Plummer

23.
24.
25.
26.
27.
28.
29.
30.
31.

32-33.
34.
35.
36.
37.
38.

A. H. Primm
B. S. Richardson
S. L. Schrock
S. Shekhar
D. M. Speaks
K. U. Vandergriff
V. K. Varma
B. S. Weil
H. R. Yook
Laboratory Records
Laboratory Recored-ORNL RC
RPSD Publications Office
ORNL Patent Section
Central Research Library
Document Reference Section

EXTERhW5 DISTRIBUTION

39. Dr. John Baillieul, Boston University, Department of Aerospace and Mechanical
Engineering, 110 Cummington Street, Boston, Massachusetts 02215.

40. Dr. Matthew Berkemeir, Boston University, Department of Aerospace and Mechanical
Engineering, 1 10 Cummington Street, Boston, Massachusetts 0221 5.

41. Dr. Roger Brockett, Harvard University, Harvard Robotics Laboratory, Pierce Hall, 29
Oxford Street, Cambridge, Massachusetts 02 138.

42. Capt. Brian Cassiday, Robotics and Automation Center of Excellence, San Antonio Air
Logistics Center, Kelly Air Force Base, Texas 7824 1.

43. Dr. David Castanon, Boston University, Department of Electrical, Computer, and
Systems Engineering, 44 Cummington Street, Boston, Massachusetts 0221 5.

44. Dr. Pierre Dupont, Boston University, Department of Aerospace and Mechanical
Engineering, 110 Cummington Street, Boston, Massachusetts 0221 5.

45. Dr. Michael Gevelber, Boston University, Department of Manufacturing Engineering, 44
Cummington Street, Boston, Massachusetts 022 15.

46. Dr. Michael Leahy, 17 15 Hamlet Court, Montgomery, Alabama 36 1 17- 1757.

47. S. R. Martin, Jr., Acting Program Manager, Fusion and Nuclear Technology Branch,
Energy Programs Division, Department of Energy, X-10 Site, Post Office Box 2008,
Oak Ridge, Tennessee 3783 1-6269.

48-52. Kristi Morgansen, Harvard Robotics Laboratory, Pierce hall, 29 Oxford Street, Harvard
University, Cambridge, Massachusetts 02 138.

53. Dr. Ann Stokes, Boston University, Department of Aerospace and Mechanical
Engineering, 110 Cummington Street, Boston, Massachusetts 0221 5.

54. SMSG Tom Turner, AFSEO/SKZ, 207 W. D. Avenue, Suite 303, Eglin Air Force Base,
Florida 32542.

55. Office of Assistant Manager for Energy Research and Development, Oak Ridge
Operations Office, Department of Energy, Post Office Box 2008, Oak Ridge, Tennessee
3783 1-6269.

56. Office of Scientific and Technical Information, Post Office Box 62, Oak Ridge,
Tennessee 3783 1.

	ABSTRACT
	1 INTRODUCTION
	LUTION VECTORS

	3 CLASSIFICATION OF REDUNDANCY
	4 REDUCTION OF A
	5 SOLUTION SPACE CALCULATION
	5.1 Solution space parameterization
	5.2 Solution component vectors calculation

	6 EXAMPLES: THE MOBILE MANIPULATOR
	6.1 Typical J and dx
	6.2 J with restrictions
	6.3 Completely restricted J
	6.4 J with loss of row rank
	6.5 Trajectory

	7 CONCLUSION
	8 ACKNOWLEDGMENT
	A USER™S GUIDE
	B CODE LISTINGS
	Flow chart for reduction of A
	Flow chart for creation of rn n + 1 solution vectors
	Starting end effector position
	Final end effector position
	First intermediate platform motion
	Second intermediate platform motion
	Third intermediate platform motion
	Complete platform motion

