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ABSTRACT 

This paper describes an enhanced version of the code for the Full Space Parame- 
terization (FSP) method that has recently been presented for determining optimized 
(and possibly constrained) solutions, x, to underspecified systems of algebraic equa- 
tions b = Ax. The enhanced code uses the conditions necessary for linear indepen- 
dence of the m - n + 1 vectors forming the solution as a basis for an efficient search 
pattern to quickly find the full set of solution vectors. A discussion is made of the 
complications which may be present due to the particular combination of the matrix 
A and the vector b. The first part of the code implements the various methods 
needed to handle these particular cases before the solution vectors are calculated so 
that computation time may be decreased. The second portion of the code implements 
methods which can be used to calculate the necessary solution vectors. The respective 
expressions of the full solution space, S ,  for the cases of the matrix A being full rank 
and rank deficient are given. Finally, examples of the resolution of particular cases 
are provided, and a sample application to the joint motion of a mobile manipulator 
for a given end-effector trajectory is presented. 
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1 INTRODUCTION 
A common problem in mathematics and engineering which has been the focus of 

attention in the past few years is determining an inverse solution for 

when A has fewer rows than columns. Since the system in Eq. 1 is under-specified, 
there will be a possible infinity of solutions. In order to choose among these solutions, 
an optimization approach is generally chosen. In many cases, this optimization must 
also take into account constraints on the system. If A has n rows and rn columns, 
then typically rn - n constraints (and in some cases more) may be applied to the 
system without preventing the determination of a satisfactory solution. 

The method most commonly used for solving Eq. 1 is the Moore-Penrose pseudo- 
inverse [12] which gives the solution for the least-norm of x. An extension of this 
method is the Gradient Projection in which a single cost function, Z(x), is projected 
onto the null space of A according to 

x = A t b +  [I-AtA]Z (2) 

where At is the pseudo-inverse At = AT(AAT)-’. Some examples of applications 
for the gradient-projection method have been obstacle avoidance [ 111) manipulability 
[13], and maximization of criteria for a seven degree-of-freedom robot in [2]. Until 
now the only other unique approach to solving Eq. 1 for x has been to create a square 
matrix, A,, of size rn x rn which can then be used in 

to find the desired vector x. Baillieul [l] suggests adding rn - n rows to A using 
vectors corresponding to the components of the gradient of a constraint equation. 
The derivatives are taken in the directions of a set of independent vectors spanning 
the null space of A. A more general approach to this type of method is task space 
augmentation [9] in which a set of rn - n linearly independent functions of x are ap- 
pended to A. These functions can be chosen so that the system meets either physical 
constraints (e.g. see [5]) or follows user-specified time-dependent functions (e.g. see 
[lo]). Obstacle avoidance using task space augmentation has been demonstrated by 
Sciavicco and Siciliano in [9]. One of the key drawbacks with the methods presented 
above occurs when more than one optimization criterion and/or constraint is to be 
applied: extending the particular solution optimization method with homogeneous 
solutions will not necessarily produce the optimal solution for the combination of the 
optimization criteria and constraints. A typical example of this “task prioritization” 
problem is that a least norm solution which is also to minimize torque will not actually 
produce the lowest torque with smallest change in joint angles. Part of the reason 

1 



for this difficulty is that the single-criterion/constraint methods were developed to 
simply produce a desired solution without examining the entire range of possibilities. 

Recently a new method, Full Space Parameterization (FSP) [6, 71, has been de- 
veloped that produces, in parameterized form, the entire space of possible solutions 
to the problem shown in Eq. 1. A more thorough treatment and proof of the results 
which will be shown in this article can be found in [6, 71. The key aspect of FSP is 
that any vector b and matrix A which has n rows and m columns, where n 5 m, have 
a solution space which can be constructed as a hyperplane of a space spanned by a set 
of (typically m - n + 1) linearly independent solution vectors gk, k = 1 . . . m - n + 1. 
These vectors are easily found solutions of submatrices of A. The results of the proofs 
in [6, 71 will be used to find a pattern to aid in determining which columns of the 
matrix A should be blocked in order to quickly find the submatrices of A that lead 
to m - n + 1 linearly independent solution vectors. 

The FSP solution code and related algorithms presented in the remainder of the 
article will be demonstrated through application to the problem of redundancy reso- 
lution in robotic systems. The kinematic equations for a robotic system are typically 
described by the equation 

x = F(q) (4) 
in which X represents the position and orientation of some point in the system, 
and q represents the joint orientations for the system. Since joint displacements are 
necessary to control the system, we are more interested in the time derivative 

X = J(q)q ( 5 )  

where J is the system Jacobian with components Jij = dF;/dq,. Usually, Eq. 5 is 
highly nonlinear, so a first-order linearized version is generally utilized for control of 
the system. The linear discretized form of Eq. 5 is 

AX Aq - x Jat- At At 

where Jat is the Jacobian assumed constant over the time step At. At each time 
step in the trajectory, Eq. 6 is solved by treating the system as a set of algebraic 
equations. When the Jacobian, J,  has more columns than rows (n  < m),  the system 
is said to be redundant and typically is solved using an optimization method. Of 
course, constraints may be included in the optimization method as appropriate. 

The next section discusses how the proofs from [6, 71 are used to find a pattern 
among the m - n + 1 solution vectors. The third section of the article contains 
a discussion of difficulties which may occur due to possible combinations of matrix 
A and vector b configurations. Section four presents an algorithm for simplifying 
the matrix A in order to decrease computation time. Section five presents the main 
algorithm for computing the vectors used to parameterize the entire space of solutions 
for a given A and b. The sixth section gives some examples of the FSP method 

2 



applied to  particular cases of matrix A and vector b configurations and to the joint 
motion planning problem for a mobile manipulator system. Concluding remarks will 
be presented in section seven, and a listing of the FSP code together with a brief 
user’s guide are given in the appendices. 
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2 CONDITIONS FOR EXISTENCE AND IN- 
DEPENDENCE OF SOLUTION VECTORS 

The first step in finding rn - n + 1 vectors spanning the solution space of A-lb 
is to find an initial square ( n  x n if A is of rank n)  invertible submatrix Al of A. 
Once this submatrix has been found, A is reordered so that the n columns form- 
ing the submatrix are numbered 1. .  . n, and the remaining columns are numbered 
n + 1 . . . m. The first solution vector is found by inverting the submatrix formed from 
the first n columns, multiplying b by the result, and adding zeros to the components 
corresponding to columns n + 1 . . . m. An important point to note at this time is that 
although reordering the columns does not affect the invertibility of a submatrix (and 
is important for quickly finding the complete set of solution vectors), the positions of 
components in the solution vectors must correspond to the original locations of the 
columns of A. 

With the columns of A rearranged as specified, each of the m - n columns not 
in the first invertible submatrix will be linearly dependent upon some combination 
of the first n columns. To find the second solution vector, a new submatrix of A is 
formed by replacing one of the n columns in the first submatrix by column n + 1. 
Since the original A has at most rank n, column n + 1 must be dependent on some 
combination of q, i E { 1 . . . n}. Whichever column c; in A1 is replaced by c,+1 must 
be part of the linear decomposition of c ~ + ~ .  We can then write 

j E {I . .  . , h,.  . .n> ( 7 )  

This second submatrix is guaranteed to be invertible as long as the column which is 
replaced by n + 1 is in the linear decomposition of n + 1 since the linear combination 
of columns will not be complete without both columns n + 1 and the replaced column 
(see [6] or [7]). Because the replaced column is linearly dependent on c,+l and possibly 
some columns which were not replaced, c,+2 is guaranteed to be linearly dependent 
on some combination of the columns in this second invertible submatrix. Following 
the method used to find the second submatrix, submatrices three through m - n + 1 
can be found by systematically substituting each of the remaining columns (3 through 
m - n + 1) for one in the previous submatrix. The resulting pattern of blocked and 
unblocked columns will then resemble the following diagram. 
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where each row corresponds to the blocking pattern for a single solution, X marks a 
column which is in the square submatrix of A, and @ marks a column which is not 
in the submatrix. 

Now we would like to know the conditions for the linear independence of the 
solution vectors gk, k = 1 . . . m - n + 1. To determine conditions for g' and g2 to be 
linearly independent, look at the equations 

i E {l ... n}  (8) 1* b = g; ci 

2* b = gi ci + g%,c,+l i E (1.. .n}  - { h }  (9) 
where g'* are the solution components of Al'b, and g;* are the solution components 
of Az'b. g' and g'* differ in that g' contains the zero components corresponding 
to the m - n columns blocked in order to form AI.  The index h corresponds to the 
column of Al that was replaced by c,+1. Now subtract Eq. 8 from Eq. 9: 

0 = (g,'* - g;2*)c; + gpch - gn+lcn+l 2* i E {I ... n}  - { h }  ( 10) 

Several cases exist for which this equality is satisfied. For simplification rename the 
quantity (g'* - g;*) as pi. Then, consider the case where every p; is 0. Eq. 10 reduces 
to 

(11) 2* g;*ch - gn+lcn+l = 0 

If gi* = 0, then the only solution is g z l  = 0. Since each pi is zero, solutions g1 
and g2 are identical. Such a pair of vectors is not acceptable, so another choice of 
submatrices must be made for which g p  # 0. Next, consider again that all ,B; are 
0, and g p  in Eq. 11 is not zero. The only solution for Eq. 11 will be that the 
decomposition of c,+1 contains only the column ch which implies g:+l # 0. In this 
case g1 and g2 are independent. Finally, consider that at least one pi is nonzero. If 
gk = 0, then the only solution to Eq. 10 is if c,+1 is dependent on a combination of 
the columns c; not including c h .  This violates Eq. 7, hence gi will not be zero. So 
to satisfy linear independence we are left with the case that at least one of the p; is 
nonzero and gi  is nonzero. Let's rewrite Eq. 10 and include gi - 0 in the pi: 

Since A1 is nonsingular, c;p; # 0, i = (1 . . . n}  implying g;+, # 0. In summary, 
if two vectors g1 and g2 are to be linearly independent, then the component of gl 
corresponding to ch (the column being replaced) must be nonzero, and consequently 
the component of g2 corresponding to c,+1 is guaranteed to be nonzero. Linear 
independence of the remaining vectors g3 through gm-n+l follows similarly. 
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3 CLASSIFICATION OF REDUNDANCY 

Under certain conditions, combinations of A and b will form a system that cannot 
be immediately solved with standard methods. A well-known example is when the 
matrix A has two or more dependent rows. A less-known example is the possible 
restriction of x components due to the specific combination of A and b. One of the 
important features of the FSP method is that it is capable of dealing with such cases 
quite easily. Before any difficulties can be handled, the key features of each set of A 
and b leading to complications in solution determination should be identified. 

The types of cases that may be encountered will be grouped into two categories. 
In the first category, difficulties will be encountered due to the loss of row rank in A. 
The second category contains systems where the problems arise due to the specific 
combination of the matrix A and the vector b. In the latter case, the dimension 
of the solution space will be at most m - n + 1. Depending on the specifics of the 
combination of A and b, however, the exact calculation method used to find vectors 
forming the space will differ. 

To recognize when rows of A are dependent, methods such as Singular Value De- 
composition (SVD) can be used to identify which rows (if any) form the nullspace. If 
the nullspace of the rows is not empty (i.e. two or more rows are linearly dependent), 
then a constraint must be used when finding the final solution using the FSP method. 
Since invertible square submatrices of rank n cannot be found when A is rank defi- 
cient, one of the dependent rows must be eliminated from A during the calculation 
of the vectors forming the solution space of the system. Eliminating rows of A will, 
however, require that additional vectors be found to span the space. For example, if 
two rows of A are dependent and one is eliminated in order to calculate the solution 
space, a total of m - n + 2 rather than m - n + 1 independent vectors must be found 
since the reduced A matrix is (n- 1) x m rather than n x m. The change in dimension 
of the solution space due to the addition of vectors to the space will be resolved by 
the use of the mentioned constraints. 

In order to find the solution space for a case in which the particular combination 
of A and b has caused a complication, the exact problem must be found. To reach 
this end, the idea of restricted vector components will be introduced. In the case of 
a standard well-conditioned A and b set, each component of b can be produced by 
contributions from at least two separate components in the corresponding row of A. 
Such a b component will be referred to as unrestricted. On the other hand, a restricted 
component occurs when a row of A has only one nonzero value. When a restricted 
component occurs, the element of gk will be identical in each of the k = 1 . . . m - n + 1 
solution vectors. For example, if A;j # 0 for only one j ,  then g: = bi/Adj. This row, 
i, is then removed from the matrix, the column j is back-substituted, removed from 
the matrix, and the search pattern is repeated for the remaining (n  - 1) x (rn - 1) 
matrix. In some cases fixing the value of gk corresponding to one column may reveal 
another element of b as being restricted in the remaining ( n  - 1) x (m  - 1) matrix. 
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The corresponding row must in turn be handled as previously explained. Hence, the 
matrix A and vector b must be examined carefully to determine if, and how many, 
restrictions exist. 

A particular type of restriction which may occur is that all nonzero elements of b 
are restricted. Since the unrestricted b components are zero, all combinations of the 
columns of A which do not correspond to the restricted columns must form null space 
solutions. The algorithm which is used to deal with such a case will be discussed in 
the next section. 

The last case to be identified is when either rows or columns of A are composed 
completely of elements that are substantially smaller than the other values in the ma- 
trix. Columns of small values imply that the corresponding component of the solution 
is almost inactive in the system (in robotic terms, that joint does not contribute to 
the motion of the end effector). The case of a row of small elements may be dealt 
with in the same manner as A having dependent rows, but it is much easier to simply 
eliminate that row and the corresponding element of b (assuming that it is also zero) 
and solve the resulting problem (which will require m - n + 2 vectors rather than 
m - n + 1). 

One final check that should be made is that the vector b is actually in the range 
of the matrix A. Methods do exist which can be used to make this check before 
any attempt is made to calculate solution vectors. However, in typical robotics path 
planning applications (for which the code was originally written), b can be assumed 
to always be in the range of A. Based upon this assumption, the current version of 
the code does not check to see if b is actually in the range of A. 
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4 REDUCTION OF A 
For any rectangular matrix A which has fewer rows than columns, the total num- 

ber of unique square submatrices possible will be Cg-n. If the inverse solution to Eq. 
1 is to be found using a computer, we would like to minimize the computation time as 
much as possible. One way to do this is to decrease the total number of submatrices 
of A which need to be searched. Whenever a set b and A have a restriction, we know 
that one element must be fixed in all of the solution vectors. Hence, including the 
restricted b element and A row in the solution calculation algorithm will be unnec- 
essary. If, when a restriction is found, the element b; and row A; are removed from 
the system, then the total number of square submatrices which exist is reduced to 
Cz:;, and calculation time will decrease accordingly. For example, if A originally 
has six rows and ten columns a total number of 210 submatrices exist. However, if A 
has two restrictions, then it can be reduced to a matrix having four rows and eight 
columns and a total of only 70 submatrices. Preprocessing restricted elements thus 
eliminates the need to examine unnecessary submatrices. Once the vectors spanning 
the solution space have been found from a reduced matrix, the fixed elements of each 
gk are included in to form the final, correct solution x. 

The flow chart in Fig. 1 shows the algorithm that is currently being used to reduce 
the size of the matrix A. The main part of the reduction algorithm is dedicated to 

~ 

Figure 1: Flow chart for reduction of A. 

eliminating the restricted elements of A. Starting with the first row, the number of 
nonzero elements are counted in each of the n rows of A. Any rows that have only zero 
elements are marked so that the row dimension of the system will be decreased in the 
final reduced matrix. If only one nonzero element is found, then the corresponding 
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element of b is restricted. The appropriate element of x is calculated, then the 
corresponding column is multiplied by this value and back-substituted to create a 
modified b vector. After back-substitution, all values in the column are set to zero 
(to enable the computer to recognize restricted elements in other rows), and a record 
is made to track which x values correspond to restricted A values. Since the number 
of nonzero elements in some rows will decrease when column elements are set to zero, 
the search must be repeated until an entire cycle from first through last rows produces 
no restricted elements. 

Next, the system is searched for any columns of zeros that did not occur from 
eliminated restrictions. Because of machine round-off errors, a threshold must be 
set to determine how small a number must be to be considered zero. This number 
is determined in the procedure which reduces the A matrix before any other calcu- 
lations are made. To set a value for the threshold value, a search is made to find 
the largest magnitude value in A. This value is then divided by 1000 to set the zero 
threshold. Another problem which needs to be dealt with in the future, but which 
has not been addressed in this code, is the presence of columns of matrix elements 
which are all substantially larger than the other elements of the matrix A. Columns 
which have values that are all much larger than other values in the matrix will not 
generate invertible square submatrices, since the maximum singular value of such 
square submatrices would be more than ten times as large as the smallest singular 
value causing the condition number larger than the acceptable maximum. 

The final step in the reduction algorithm is to determine whether any rows of the 
matrix A are linearly dependent. The row dependencies can be checked by calculating 
the nullspace of the matrix AT. A simple method for finding nullspace vectors without 
needing to invert any matrices is the Singular Value Decomposition (SVD) method. 
When a matrix is decomposed using SVD, it is rewritten in the following form 

A = USVT 

where S contains the singular values of the system, and U and V are orthogonal 
matrices. The nonzero elements of the nullspace vectors of the columns of the matrix 
A correspond to those columns of the matrix V which produce zero singular values. 

When using a computer to determine nullspace vectors with this type of method, 
two difficulties must be recognized and avoided. First, as mentioned in the previous 
paragraph, machine round-off errors require that a zero threshold value be set. For 
the examples to be given in section six, the singular value threshold value was set at 
1.0 x loF5. Also, consideration must be given to the overall condition number of the 
matrix. The condition number is the ratio of the largest to smallest singular values. 
If this ratio is excessively large, then inclusion of the column corresponding to the 
smallest singular value causes the matrix to be nearly singuldr. Hence for matrices 
with large condition numbers, the smallest singular value should be regarded as zero, 
and the appropriate column of VT should be considered a nullspace vector. In the 
current version of the code which calculates the nullspace vectors, the inverse of the 
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condition number (i.e. ratio of smallest to largest singular values) is used to determine 
whether or not the smallest singular value should be considered to be zero. In the 
examples, the maximum allowable condition number has been set to a value of 10. 
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5 SOLUTION SPACE CALCULATION 
5.1 Solution space parameterization 

The possible cases of combinations of A matrices and b vectors that will be 
encountered after matrix reduction can be placed in three categories: completely 
restricted, completely unrestricted, and loss of row rank. Cases in which A originally 
had both restricted and unrestricted components in combination with b will have 
been reduced to one of these three cases through the algorithm given in the previous 
section. We would now like to know how to create the necessary m - n + 1 vectors 
(where m and n now respectively refer to the number of columns and rows of the 
reduced system) to generate the solution space. 

First, consider the case where the system is completely restricted. After elim- 
inating all of the restrictions, we are left with a vector b which will be composed 
completely of zeros and a rectangular A matrix with decreased dimensions. In this 
situation, where b is zero, we do not need to try to find invertible square submatrices 
since any inverse multiplied by b would always be zero. As shown in the previous sec- 
tion, the SVD provides a direct method for finding nullspace vectors without needing 
to invert any matrices: 

So for a rectangular matrix of rank n which has n rows and m columns where n < m, 
we know that the SVD of the matrix A will produce a nullspace that must contain 
m - n linearly independent vectors. The final vector needed to form a set of m - n + 1 
solution vectors will be left as all zeros until the restricted elements are included. 
When the fixed x components are inserted into these m - n + 1 vectors, we will have 
m - n + 1 linearly independent vectors. 

The next case, and the one which will occur most often, is where the reduced 
matrix A is completely unrestricted. The algorithm used to find the necessary solution 
vectors will be given later in this section. As long as the system has not lost row rank, 
the solution space of the system, S, is given by: 

A = USVT ( 1 4 )  

I i=l k=l  I 
The final case to be dealt with is that in which the matrix A has dependent rows. 

In this situation, one of the dependent rows is eliminated from A before the solution 
vectors are calculated. Eliminating a row increases the total number of vectors to 
be found by one. However, the eliminated row constitutes a constraint that must be 
kept in the system and creates a solution space of the appropriate dimension. The 
m-n+2 vectors will be found as described in the method below. With the additional 
constraint applied to restrict it, the solution space, S, is given by: 

I i= l  k = l  i=l I 
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To express this constraint for a system with dependent rows, first write the row that 
was eliminated in the solution-finding algorithm as 

bj = Ajx. (17) 

The constraint for a dependent row is then 

so that in Eq. 16 ' 

Now, for the specific constraint necessary for a system where A has lost row rank, we 
must solve the appropriate equations given in [6, 71. In these equations, Z, = 0 and 
H = 0. Since we only have one constraint, the equations reduce to: 

.=-(  1 + vTbl 
a ) 

t* = -pG- 'vp 

where G has 
and t* is a vector of scalars. 

omponents G;j = g iTg j .  a ,  b l ,  c1, d l l ,  All ,  v, and p ar- all sc 

5.2 Solution component vectors calculation 
The flow chart for the algorithm to find a set of linearly independent solution 

vectors for an unrestricted matrix A is shown in Fig. 2. The algorithm is initialized 
by blocking the first rn - n columns of A, and then iterating through choices of 
blocked columns until a first invertible submatrix is found. A blocked column (or 
block) is a column, cat which is not included in the n x n submatrix of A and whose 
corresponding solution component g; is set to zero. The columns are next reordered 
(keeping a record of the order) so that the n columns forming the first submatrix are 
the first n columns in the matrix. This matrix is used to solve for the solution vector, 
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change block i to 
next cot in ordenng 

change block i 
to one col past 
prev block in 
ordenng pattern 

send result (-) to s o h  finding 

Incrementation algorithm Solution-finding algorithm 

Figure 2: Flow chart for creation of m - n + 1 solution vectors. 

gl. The remaining m - n vectors are found using the pattern discussed in section 2. 
This pattern shows that each vector shares m - n - 1 of its blocked columns with the 
previous vector. The block which is not shared corresponds to whichever of the last 
m - n columns will be used to create the next submatrix and solution vector. For 
example, if a solution vector has the following form: 

1 2  3 4 5 6 7 8 9 10 
g3 = [ x x 63 63 x x x x 63 63 IT 

Then the following vector, g', would have columns blocked as follows: 

1 2  3 4 5 6 7 8 9 10 
g4 = [ €90 x 63 I T  

where column 9 is being used to form a new submatrix for g' so that block is not 
shared with g3. The missing block will replace one of the unmarked columns which is 
in its linear decomposition and for which the corresponding component of the previous 
solution is nonzero. In the current version of the code, a square submatrix of A is 
formed from the n vectors in the previous invertible submatrix along with the next 
column to be added in. SVD is used to calculate the nullspace vector of these n + 1 
columns, and this vector is used to determine which of the columns in the previous 
submatrix are in the linear decomposition of the new column and may be replaced. 
If none of the options for the final block in a given solution is satisfactory, then the 
blocking in the previous solution must be changed. In some cases it may be required 
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for the algorithm to return to the first solution and find a completely new blocking 
configuration for the entire set. However, as long as the matrix is of rank n, the total 
n - rn + 1 vectors will be found to fit the given pattern. 
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6 EXAMPLES: THE MOBILE MANIPULATOR 
This section gives examples of the different cases discussed in section 3 as applied 

to the system of a mobile manipulator which has a seven degree of freedom (d.0.f) 
arm and three d.0.f. base. For this system a total of 

m - n + l  = 1 0 - 6 + 1  
= 5  

solution vectors must be found. 

6.1 Typical J and dx 
Let's first consider a typical case found when calculating the joint displacements 

dq necessary for a Cartesian displacement, dx, of the end effector along a trajectory 
according to 

The Jacobian, J,  and dx vector are 
dx = Jdg 

J =  

0.371 -0.635 -0.015 0.001 -0.000 -0.006 0.000 1.0 0.0 -0.245 
-0.860 -0.011 0.880 0.000 0.000 0.343 0.000 0.0 1.0 -0.528 
0.000 -0.867 0.000 -0.851 -0.343 0.000 0.000 0.0 0.0 0.000 
0.000 0.000 -0.021 0.000 0.000 0.000 -1.000 0.0 0.0 0.000 
0.000 -1.000 -0.000 -1.000 -1.000 0.000 -0.001 0.0 0.0 0.000 
1.000 0.000 -1.000 -0.000 -0.000 -1.000 -0.000 0.0 0.0 1.000 

dx = [ 0.009 0.000 0.001 -0.000 0.000 0.018 I T  (31) 
None of the elements of dx are restricted, no rows of J are dependent, and J has no 
rows or columns of zeros. The first solution is found after only three incrementations 
of the final block. The blocking pattern for the entire set of solutions is shown below 

@ @ @ @ X X X X X X  
@ @ @ X X X X @ X X  
@ @ X @ X X X @ X X  
@ X @ @ X X X @ X X  
X @ @ @ X X X @ X X  

In this case, the final four solutions were found immediately from the first correct 
solution. 

0.000 0.000 -0.052 -0.002 0.002 0.000 0.001 0.000 0.028 -0.031 

0.000 0.000 0.000 -0.002 -0.002 0.000 0.000 0.013 0.010 0.018 
0.000 0.000 0.000 -0.002 0.002 -0.053 -0.000 0.000 -0.000 -0.031 

0.000 -0.021 0.000 0.020 0.001 0.000 0.000 0.000 0.009 0.018 
0.022 0.000 0.000 -0.002 0.002 0.000 0.000 0.000 0.017 -0.004 

From the vectors gk a least norm solution can be found (see 16, 71) as 

dq = [ 0.004 -0.003 -0.002 0.001 0.002 -0.007 0.000 0.007 0.010 0.004 1' (33) 
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6.2 J with restrictions 

Next consider the case where some elements of J are restricted: 

- 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 
0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

- 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 5.0 

J =  (34) 

T 
dx = [ 1.0 2.0 3.0 0.0 5.0 6.0 ] (35) 

After eliminating the restrictions and the row of zeros, the system has reduced to: 

J = [ 1.0000 2.0000 3.0000 4.0000 5.0000 3 
dx = 6.0000 

from which the blocking pattern is immediately determined to be 

The solution vectors without the restricted components 

T [ gil gi2 gi3 gi4 g', I T  = [ 2.0 -1.0 3.0 0.0 -1.0 ] 
are 

6.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 1.2 
0.0 0.0 0.0 1.5 0.0 
0.0 0.0 2.0 0.0 0.0 
0.0 3.0 0.0 0.0 0.0 

(36) 

(37) 

i =  (1 ... 53 
(38) 

(39) 

The solution space, S ,  is again given by Eq. 14 and the least-norm solution in 
this case (see [6, 71) is: 

d q =  [ 2.0 -1.0 3.0 0.0 -1.0 0.109 0.218 0.327 0.436 0.546 I T  (40) 
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6.3 Completely restricted J 
The next system involves a J and dx pair that are completely restricted: 

J =  

- 1.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.00 0.0 1.0 0.0 0.0 0.0 -0.5 0.0 0.0 -0.6 
0.00 0.0 0.0 1.0 0.0 0.0 0.0 1.3 0.0 0.0 
0.01 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.00 0.0 0.0 0.0 1.0 0.0 0.0 0.0 4.0 -3.0 
0.00 0.0 0.0 0.0 0.0 1.0 0.0 2.0 3.0 0.4 

T 
dx = [ 0.00 0.00 0.00 0.01 0.00 0.00 ] 

After eliminating restrictions, the system is 

1 1.0 0.0 0.0 0.0 -0.5 0.0 0.0 -0.6 
0.0 1.0 0.0 0.0 0.0 1.3 0.0 0.0 

0.0 0.0 0.0 1.0 0.0 2.0 3.0 0.4 
0.0 0.0 1.0 0.0 0.0 0.0 4.0 -3.0 J =  [ 

dx = [ 0.00 0.00 0.00 0.00 ] 

(43) 

(44) 
Since the system is completely restricted, the solution vectors must be found from the 
nullspace. The nullspace only generates m - n vectors, so the final vector is composed 
of all zeros except for the restricted components. For this system, the solution vectors 
without the restricted components 

[ gil gi2 ] = [ 0.0 0.1 ] i =  {1 ... 5} (45) 
are 

(46) 1 0.0000 -0.0241 0.6047 -0.5454 -0.4355 0.0185 0.1210 0.3629 
0.0000 0.2132 -0.7183 -0.5454 -0.1516 -0.1640 0.2713 0.1263 
0.0000 -0.6331 -0.1001 -0.4593 0.2671 0.4870 -0.1119 -0.2226 

-0.5087 -0.1942 -0.1843 0.2010 -0.7285 0.1494 -0.1345 -0.2408 
~ ~ ~ ! = [  

g5* 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Again using Eq. 14 and the least norm optimization to determine the final solution: 
T 

dq = [ 0.000 0.100 -0.127 -0.160 -0.100 -0.337 -0.262 0.123 0.030 0.007 ] (47) 

6.4 J with loss of row rank 
This example shows the results of finding a solution vector x for a matrix A which 

has dependent rows. 

J =  

1.00 2.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 
0.00 0.00 1.00 0.00 0.00 0.00 -0.50 0.00 0.00 -1.00 
0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 
1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 4.00 -3.00 
0.00 0.00 0.00 0.00 0.00 1.00 0.00 2.00 3.00 0.00 

-T 

- 
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T 
dx = [ 1.00 0.00 0.00 1.00 0.00 0.00 ] (49) 

After eliminating the first row, the rn - n + 2 = 6 solution vectors are found to 
be: 

- 0.00 1.00 0.00 -1.00 0.00 0.00 0.00 -0.00 0.00 0.00 
0.00 1.00 0.00 0.00 0.00 0.00 -1.78 -1.00 0.66 0.88 
0.00 1.00 0.00 0.00 0.00 1.99 0.00 -1.00 0.00 -0.00 
0.00 1.00 0.00 0.00 -2.67 0.00 0.00 -1.00 0.67 0.00 
0.00 1.00 0.89 0.00 0.00 0.00 0.00 -1.00 0.67 0.89 
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

For this example, a single-constraint optimization must be used. The p values are 
calculated from Eq. 18 to be: 

T p = [ 1.000 1.000 1.000 1.000 1.000 1.000 3 (51) 

The solution space is given by Eq. 15, and the final least norm solution found 
(see [6, 71) is then: 

x = [ 0.6273 0.3727 0.0197 -0.2547 -0.0373 0.0683 -0.0268 -0.1180 0.0559 0.0621 1' (52) 

6.5 Trajectory 
The final example involves a complete trajectory that was formed using a least norm 
optimization to find a single solution out of the entire space. Figs. 3 and 4 show 
the user-specified starting and target end effector position/orientation. The final 
joint angles are simply used to position the end-effector and are not intended to be 
reached in the final configuration of the platform and manipulator. Figs. 5-8 show 
the motion of the system as it moves from the initial to final configuration for the 
end effector. The end effector moves smoothly along its specified path to reach the 
desired configuration. The diagrams were made with an XWindows graphics modeling 
program created by Derek Carlson. 
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Figure 3: Starting end effector position 

Figure 4: Final end effector position 
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Figure 5: First intermediate platform motion 

Figure 6: Second intermediate platform motion 
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7 CONCLUSION 
This article has discussed the enhanced code for the recently developed Full Space 

Parameterization (FSP) method. The proof in [6] for existence of the m - n + 1 
vectors necessary to form the solution space S (for system A and b where A has m 
columns and n rows) was augmented with a discussion of the conditions necessary to 
ensure that the m - n + 1 vectors will be linearly independent. Also, a pattern was 
shown to exist among the columns that are chosen to form the submatrices. This 
pattern has been used to speed up the search for the complete set of solution vectors. 
The possible complications that could arise between a matrix A and a vector b were 
discussed and placed into two categories: those in which A has lost row rank, and 
those in which the specific combination of A and b causes restricted elements. In the 
first case an additional constraint must be included in the solution space S. Specific 
cases of restrictions were also discussed. An algorithm was presented and discussed to 
eliminate from the system the dependent rows and restricted elements of A and b in 
order to decrease computation time. One of the main features of the presented code 
is the algorithm given to speed up the search for the set of m - n + 1 solution vectors 
for any matrix A and vector b. The respective parameterizations of the solution 
space, S, for the cases of the matrix A being full rank and rank deficient were given. 
Examples of the different combinations of A and b (from a mobile manipulator) were 
presented with final solution vector sets and least norm solutions x. Also a complete 
trajectory was shown with solutions found using the FSP method with least norm 
optimization. The code from which these examples were made as well as directions 
for using the code as either a stand-alone program or as an included procedure have 
been included in the Appendices. 
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A USER’S GUIDE 

The code which will be given in Appendix B can be used either as a stand-alone 
program or as a procedure called by another program. In the first case the matrix 
A and the vector b are read from a user-specified file while in the second case they 
are passed in as arguments. For A and b to be read correctly from the file, A must 
be listed first row by row followed by b. In either case, all user-defined parameters 
are specified in the program header file. Procedures LeastNorm and RankLostSoln 
have been included as examples of solution techniques for unconstrained least norm 
optimization and single-constraint least norm optimization as discussed in the article. 
The version of the program which has been provided utilizes routines from Numerical 
Recipes in C. The user will either need to provide the files nruti1.c and svdcmpx 
(from [4]) or provide suitable alternatives and alter the code accordingly. All other 
necessary procedures are given in Appendix B. As a note, the given files have not 
been optimized in any way, and ample room is available for improvement. 

The code, as given in Appendix B, is set up to be used as an independent program. 
No modifications need to be made to the file FSP.c. In the file FSP.h, the user must 
choose values for K2-BND. K2-BND determines the maximum allowable condition 
number (ratio of largest to smallest singular values of a matrix) which the algorithm 
will consider acceptable. The file from which the matrix A and vector b are to be 
read must be set on the line where the variable infile is defined. The size of infile 
should also be set appropriately. For example if the file where A and b are stored is 
name “TestData”, the line should read: 

char infile[8] = “TestData”; 

The user must specify the diagnostic output filename in the same way as the in- 
put filename and size were given. Also, the size of the matrix must be set with the 
variables M and N. 

To modify the code so that it run as a procedure inside another program, the 
‘char infile ...’ line must be removed from the FSP.h file. As with the stand-alone 
version, the values for M, N, K2_BND, and outfile must be set as the user desires. 
Both the variable declarations and the memory freeing lines for Aorig and borig must 
be removed from the code. Also the procedure call to read in the matrix A and 
vector b must be removed. The procedure itself can also be removed from the end 
of the code, however, this step is not absolutely necessary. The line main () must be 
changed to 

void FSP (struct MATRIX “Aorig, struct MATRIX “borig) 

where FSP can be renamed to whatever procedure name the user desires. Aorig and 
borig are the matrix A and the vector b which will be used to calculate the solution 
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x and must be defined in the program which calls FSP.c using the variable declaration 

struct MATRIX "Aorig, "borig; 

and the commands 

Aorig = mat malloc( N,M) 
borig = matmalloc(N,l) 

in order to allocate memory space of the appropriate dimension. N and M are respec- 
tively the number of rows and columns of the matrix A. When the variables Aorig 
and borig are no longer needed by the program the memory must be freed using the 
commands 

mat free( Aorig) 
mat free( borig) 

The files matrix.h and matrix.c must be present in the same directory as the files 
FSP.h and FSP.c in order for the necessary matrix functions such as the nullspace 
calculation to be found. The file in which FSP.c is called as a procedure must also have 

#include "matrix. h" 

at the beginning in order for the function calls matmalloc and matfree to be found. 
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B CODE LISTINGS 
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(FSP. h) 

/* This File contains the size of the A ,  where A 
/* as located, where to  write the output data,  and. 
/* user-defined threshold values 

*I 
*/ 
*/ 

int 
int 

N = 6; 
M = 10; 

/* number of rows 
/* number of cols 

*/ 
*/ 

char 
char 

infile[lO] = " t e s t f  ile6"; 
outfile[lO] = "datab"; 

/* user-defined file 
/* user-defined file 

*/ 
*I 

10 

#define K2-BND 10 /* user-defined value *I 

#define TRUE 1 
#define FALSE 0 

int CheckB (struct MATRIX *b, int m, float SMALL); 

13158 Feb 16 1995 Page 1 of F5'P.h 



main (FSP.c) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I* 
/* 
I* 
I* 
I* 
I* 
/* 
/* 
/* 
/* 
I* 
/* 
/* 
/* 
I* 
/* 
/* 

This program is the independent version of the code which uses the 
FSP method to find a set of vectors spanning the solution space of 
the problem: 

The final solution, x, is  found from the user-specified optimization 
method. 

x = A^(- l )  * b 

Kristi A .  Morgansen 
Robotics and Process Systems Division 
Oak Ridge National Laboratory 
P.O. Box 2008 
Oak Ridge,  TN 37831-6304 

August 26, 1994 

*/ 
*/ 
*/ 
*/ 
*/ 

*I 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

*/ 

10 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
20 

#include <stdio.h> 
#include <math.h> 
#include "matrix. hi' 
#include "FSP . hiq 

main () 

FILE *check; 
{ 

struct MATRIX *Aorig, /* original A 
*Ared, /* reduced A 
*Asub, /* submatrix from square submatrix is found 
*Asqr, /* square submatrix 
*g, /* array of solution vectors 
*borig, /* desired movement in work space coordinates 
*bred, /* reduced b 
*block, /* locations of blocked columns for  each s o h  
*n, /* null space vectors 
*n-vec, /* mtx of nullspace vectors for  all s o h  vectors 
*n-temp,/* used t o  reorder the nullspace vectors 
*Xelim, /* comps of final X that were elim. in reduction 
*X; /* final solution for joint space movement 

/* condition number of first solution 

/* min acceptable value for nonzero nspace comp 

/* check fo r  completely zero bred 
/* which of four possible blocks is being moved 
/* how many loop cycles have been executed 
/* vector number being searched for  

float K2, /* matrix condition number: sv-max/sv-min 
K2-0, 
SMALL, /* threshold for  zero 
N B N D ;  

bcheck, 
ChangeBlock, 
Loopcount, 
NextToFind, 

int i, j ,  k, I ,  /* loop counters 

*I 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

*/ 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

*/ 

*/ 

main 

30 

40 

50 
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main (FSP.c) 

ColElim[M], /* marks columns eliminated from original A 
RowElim[N], /* which rows are to be eliminated from the A 
Ordering[M], /* columns are indexed for  efic, soln finding 
index, /* used with the Ordering[] variable 
nullity, /* dimension of null space 
SystemComplete, /* marks when all necessary vecs have been found 
binrange, /* marks i f  b as in the range of the A 
Nred , /* number of rows in reduced A 
Mred; /* number of columns in reduced A 

Aorig = mat,-malloc(N,M); /* allocate memory space for  variables */ 
Ared = mat-malloc(N,M); 
borig = mat-malloc(N,l); 
bred = mat-malloc(N,l); 
Xelim = mat-malloc(M,l); 
X = mat-malloc( M, l ) ;  

SystemComplete = FALSE; 
LoopCount = 0; 

GetData(Aorig, borig); 
check = fopen(outfile, "w"); 

ReduceA(Aorig, Ared, borig, bred, Xelim, N,  M, &Nred, &Mred, 

/* receive the A and b vector from a file 
/* file where rslts of this prog are stored 

/* Eliminate all the nonredundancies from the A and b */ 

ColElim, RowElim, &SMALL); 

g = mat-malloc(Mred-Nred+l,M); 

for (j=O; j<M; j++) 
for (i=O; i<(Mred-Nred+l); i++) 

g->p[i]b] = 0.OeO; 
n = mat-malloc(Mred,Nred); 
n-temp = mat-malloc(Mred,l); 

fprintf(check, ORIGINAL SYSTEM\n\n"); 
PrintA(check, Aorig, borig, N,  M); 
fprintf(check, REDUCED SYSTEM\n\n"); 
PrintA(check, Ared, bred, Nred, Mred); 
fflush( check) ; 

bcheck=CheckB(bred, Nred, SMALL); 
if (bcheck == 0) 

X=Xelim; 
fprintf(check, "GIVEN MATRIX IS COMPLETELY RESTRICTED\n\n"); 

{ 

Asub = mat-malloc(Nred,Mred); 
for (i=O; i<Nred; i++) 

for (j=O; j<Mred; j++) 
Asub->p[i]b] = Ared->p[i]Ij]; 

mat-null(Asub, &nullity, n, &K2); I 

*/ 
*/ 
*/ 
*/ 
*/ 

*/ 
*I 
*/ 

*/ 

*/ 
*/ 

60 
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main (F S P. c )  

c 

/* set the solution vectors fo r  a completely 
/* restricted system 

for (i=O; i<Mred; i++) 
for (j=O; j<(Mred-Nred); j++) 

g->pGj][i] = n->p[i]Gj]; 

g->p[Mred-Nred][i] = 0.0; 
for (i=O; i<Mred; i++) 

Loopcount = 1; 
SystemComplete = TRUE; 
1 
{ 

else 

if (Nred != N) 
{ 

I 

fprintf(check, "GIVEN HATRIX IS RESTRICTED FOR %d 'I, N-Nred); 
fprintf(check, "OUT OF %d VECTOR COMPONENTS\n\n", N); 

block = mat-malloc(Mred-Nred+l,Mred-Nred); 
Asub = mat-malloc( Nred ,Nred+ 1); 
Asqr = mat-malloc(Nred,Nred); 
nyec = mat-malloc(Mred-Nred+1 ,Mred); 

ChangeBlock = Mred-Nred-1; 
NextToFind = 0; 

/* the smallest acceptable value for  a ndlspace 
/* component is set t o  be slightly less than 
/* I / ( #  of components in nullspace vector) 

NBND = O.S/(Nred+l.O); 

/* initialize the blocking positions for the first solution vector */ 
for (i=O; i<(Mred-Nred); i++) 

for (i=O; i<Mred; i++) 

index=block->p[O][Mred-Nred- 13 ; 

block->p[O][i] = i; 

Ordering [i] =i; 

k=O; I=O; 
for (i=O; i<Mred; i++) 

if (block->p[O]F] != i) 
{ 
for (j=O; j<Nred; j++) 

I++; 
1 
k++; 

Asqr- >pb] [I] = Ared- >plj] [i] ; 

else 

mat-null(Asqr, &nullity, n, &K2); 
Loopcount = 1; 

/* loop anti1 an acceptably well-conditioned first 

*/ 
*I 

110 

*/ 
*/ 
*/ 

*/ 

120 

130 

140 

150 
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/* solution is found */ 
while (((nullity != 0) 1 1  (fabs(K2) > K2-BND)) && (block->p[O][O]<Nred)) 

{ 
Loopcount++; 

while (block- >p[O] [ChangeBlock] > (Nred+ChangeBlock- 1)) 
ChangeBlock-- ; 

if (block->p[O][O]==Nred) 
ChangeBlock=O ; 

block- >p [O] [ChangeBlock]++; /* change column being blocked */ 

for (i=ChangeBlock+ 1; i< (Mred-Nred) ; i++) 
block->p[O][i] = block->p[0][ChangeBlock]+i-ChangeBlock; 

/* set all following blocks */ 

for (i=O; i<Mred; i++) 
Ordering[i]=i; 

index = block->p[O][Mred-Nred-11; 
ChangeBlock = Mred-Nred-1; 

k=O; 1=0; 
for (i=O; i<Mred; i++) 

if (block->p[O][k] != i) 
{ 
for (j=O; j<Nred; j++) 

I++; 
} 

Asqr->pb][I] = Ared->plj][i]; 

else 
k++; 

main(FSP.c) 

160 

170 

180 

190 

if (block->p[0][0] <= Nred) 
mat-null(Asqr, &nullity, n, &K2); 

K2-0 = K2; 

200 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* Find the M-N+l solution vectors according to the pattern */ 
/* given in the article associated with this algorithm. */ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  *************I 

/* look fo r  the s o h  vectors until either all combinations of 
/* blocked columns have been tried or the complete set is found 

*/ 
*/ 

while ((block->p[O][O] <= Nred) && (!SystemComplete) && (K2-0 < K2-BND)) 
{ 
BLOCK-COL-FIND-X(b1ock->p[NextToFind] ,g->p[NextToFind], 

fprintf(check, "gvector %2d : ", NextToFind); 
bred,Ared,Mred,Nred,check); 

210 
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main (FSP. c) 

L. 

for (i=O; i<Mred; i++) 

fprintf(check, "\n\n"); 
fprintf(check, "%8.6f 'I, g->p[NextToFind][i]); 

if (NextToFind < (Mred-Nred)) /* check if not all solns found */ 

NextToFind++ ; 

for (i=O; i<(Mred-Nred-NextToFind); i++) 

block->p[NextToFind][Mred-Nred-11 = 

for (i=(Mred-Nred-NextToFind); i<( Mred-Nred-1); i++) 

{ 

/* set initial blocking for next s o h  */ 

block->p[NextToFind] [i] = block->p[NextToFind- 11 [i]; 

block- >p[NextToFind- 11 [Mred-Nred-NextToFind] ; 

block->p[NextToFind][i] = block->p[NextToFind-l][i+l]; 

/* set column ordering for next soln */ 
for (i=O; i<(Mred-Nred); i++) 

Ordering[i] = block->p[NextToFind][i]; 

Set-Ordering(Ordering, Mred, Nred); 

index = Mred-Nred-1; 

/* find column dependencies for  next sola*/ 
for (i=O; i<Nred+l; i++) 

for (j=O; j<Nred; j++) 
Asub->plj] [i] = Ared->pi] [Ordering[i+(Mred-Nred-l)]] ; 

mat-null(Asub, &nullity, n, &K2); 

Loopcount++; 

for (i=O; i<(Mred-Nred-1); i++) 

for (i=(Mred-Nred-1); i<Mred; i++) 
n-temp->p[i][O] = 0; 

n-temp->p[i][O] = n->p[i-( Mred-Nred-l)] [O] ; 

for (i=O; i<Mred; i++) 

} /* if NTF < Mred-Nred */ 
n-vec->p[NextToFind][Ordering[i]] = n-temp->p[i][O]; 

else /* all solns have been found */ 
I 
SystemComplete = TRUE; 
fprintf(check, "BLOCKIWG\n"); 
for (i=O; i<(Mred-Nred+l); i++) 

for (j=O; j<(Mred-Nred); j++) 

fprintf(check, Ig\n"); 

{ 

fprintf(check, "%7.4f I*, block->p[i]b]); 

1 

220 

230 

240 

250 

260 

c 
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main (FS P. c )  

if (!SystemComplete) 
{ 
ChangeBlock=Mred-Nred-1; 
if (NextToFind != 0) 

index++; 
} 

/* check that the blocking configuration 
/* meets the criterion for the next solution 
/* do be independent from the previous solns 
/* if it is not, cycle until an acceptable 
/* configuration is found 
/* previous solns may have t o  be rejected 

while 

*I 
*/ 
*I 
*/ 
*/ 
*/ 

2 70 

280 

( 
( 

(NextToFind==O) && (block->p[O][O] <= Nred) && 
( 

) 

II 
( 

1 

( (nullity != 0) 11 (fabs(K2) > K2-BND) ) 

290 
1 

(NextToFind!=O) && ( (index>= Mred) I I ( (fabs(n-vec->p[NextToFind][Ordering[index]]) < N-BND) I I 
(fabs( g->p[NextToFind-l][Ordering[index]]) < (SMALL/10)) 

) 

if (NextToFind == 0) /* find a new first solution */ 
{ 
while (block->p[0] [ChangeBlock] > (Nred+ChangeBlock- 1)) 

ChangeBlock--; 

if (block->p[O][O]==Nred) 
ChangeBlock=O ; 

block->p[O][ChangeBlock]++; /* change column being blocked */ 

for (i=ChangeBlock+l; i<(Mred-Nred); i++) 
block->p[O][i] = block->p[0][ChangeBlock]+i-ChangeBlock; 

/* set all following blocks */ 

300 

310 

for (i=O; i<Mred; i++) 
Ordering[i]=i; 

index = block->p[O][Mred-Nred-11; 
ChangeBlock = Mred-Nred-1; 
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k=O; I=O; 
for (i=O; i<Mred; i++) 

if (block->p[O][k] != i) 
{ 
for (j=O; j<Nred; j++) 

I++; 
1 
k++; 

Asqr->plj][I] = Ared->plj][i]; 

else 

if (block->p[O][O] <= Nred) 
{ 
mat-null(Asqr, &nullity, n, &K2); 
K2-0 = K2; 
LoopCount++; 
1 

} /* i f  (MTF == 0) */ 
else /* find a new soln other than the first */ 

{ 
index++; 

while (index >= Mred) 

NextToFind--; 
if (NextToFind != 0) 

for (i=O; i<(Mred-Nred); i++) 
Ordering [i]=block- >p[NextToFind- 1 J [i] ; 

Set-Ordering(Ordering, Mred, Nred); 

index=Mred-Nred; 
while (block->p[NextToFind][Mred-Nred-1] != OrderingEindexJ) 

index++; 
} /* if (MTF !=O) */ 

index++; 

else 

for (i=O; i<Mred; i++) 
Ordering[i]=i; 

main (FSP. c )  

index = block->p[O][Mred-Nred-11; 
} /* else i f  (MTF != 0) */ 

} /* i f  (index == Mred) */ 
} /* else if ( M T F  == 0) */ 

} /* while (nullity != 0) ... */ 

/* set the final block fo r  a new solution */ 
block- >p[NextToFind] [Mred-Nred-1] = Ordering[index]; 

} /* end while !SystemComplete */ 

320 

330 

340 

350 

360 

370 
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main (FS P. c )  

mat-free( block); 
mat-free( Asqr); 
mat_free( n-vec) ; 
} /* else if Nred == 0 */ 

/* print diagnostic info */ 
380 

fprintf(check, "\nXelim\n"); 
for (i=O; i<M; i++) 

fprintf(check, "\n"); 
fprintf(check, " X i ' .  4f 'I, Xelim->p[i][O]); 

/* check if the eliminated b elements in bred can be 

/* ie check that b is in the range of A 

*/ 

*/ 
/* produced from the g vectors and the reduced A matrix */ 

if (!SystemComplete) 

fprintf(stderr,"System did not complete ! \n"); 
fprintf(check,"System did not complete ! \n"); 

{ 

1 
/* check that the original b was not all zeros (special case) */ 

bcheck = CheckB(borig, M, SMALL); 

/* check whether the original A had dependent rows */ 
if (SystemComplete && (bcheck != 0)) 

{ 
1 = 0; 
j = 1; 
while ((i<N) && (j != 0)) 

{ 
if (RowElim[i] != 2) 

else 
i++; 

/* user-defined procedure */ 
RankLostSoln(g, X, Aorig, Mred, Nred, Xelim, ColElim, RowElim, 

j = 0; 
borig, check); 

fprintf(check, "\nFINAL SOLUTION : \n"); 
for (i=O; i<M; i++) 

fprintf(check, "X7.4f 'I, X->p[i][O]); 
fprintf(check, *'\n8I); 

binrange = CheckRange(borig, Aorig, X, RowElim, Mred, check); 
if (binrange != 1) 

{ 

1 

fprintf(check, "INACCURATE FINAL SOLUTION\n"); 
fprintf(check, 'I B NOT I N  RANGE OF A\n\n"); 

390 

400 

410 

420 
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if 

1 
else 

if 

fprintf(check, "Loopcount f o r  final solution: %4d\n", Loopcount); 
1 

1 
{ 

(j == 1) 

/* user-defined procedure */ 
LeastNorm(X, g, Mred, Nred, Xelim, ColElim); 

main (FSP.c) 

430 

fprintf(check, "\nFINAL SOLUTION : \n"); 
for (i=O; i<M; i++) 

fprintf(check, "%7.4f )I, X->p[i][O]); 
fprintf( check, la\nl8); 

fprintf(check, "Loopcount for final solution: %4d\n", Loopcount); 
1 

440 

(K2 > K2-BND) 

fprintf(check, "\n\nNO WEU-CONDITIONED SUBMATRICES FOUND\n"); 
fprintf(check, "If result seems incorrect I the maximum allowable\n"); 
fprintf(check, "condition number can be increased by changing the\n"); 
fprintf(check, "value of K2-BND in the file FSP .h. \n"); 

{ 

I 
else if (bcheck != 0) 

else 
fprintf(check, "\n\nB NOT IN RANGE OF A\n"); 

{ 
fprintf( check, "\n\nSPECIAL CASE\@ IS ZERO VECTOR\n"); 
fprintf( check, "CONSTRAINED OPTIMIZATION MUST BE USED\n"); 

/* insert  appropriate equations here */ 
1 

mat-free(Aorig) ; 
mat_free(Ared); 
mat_free( Asub); 
mat-free(borig); 
mat_free(bred); 
mat-free( Xelim) ; 
mat_free(X) ; 
mat_free(n) ; 
mat-free(n-temp) ; 
mat-free(g) ; 

/* free up  all variable m e m o r y  space */ 

fclose( check) ; 
1 

..................................................................... 
/* calculate a g vector  based upon a A and given column blocking * I  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

BLOCK-COL-FIND-X (float *ColToBlock, float *g, 
struct MATRIX *b, struct MATRIX *A, 

450 

460 

470 
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main( FSP.c) 

int Mred, int Nred, FILE *check) 
{ 
int Acol, Tcol, r ,  I, i, j ;  
float blocktemp[Mred-Nred], temp; 
struct MATRIX *Atemp, *gtemp, *btemp; 

Atemp = mat-malloc(Nred,Nred); 
gtemp= mat-malloc(Nred, 1); 
btemp = mat-malloc(Nred,l); 

for ( k 0 ;  i<Nred; i++) 
b t emp - >p [i] [O] = b- >p [i] [O] ; 

/* the columns blocked need to be listed from smallest to largest */ 
for (i=O; i<(Mred-Nred); i++) 

blocktemp [i] =ColToBlock [i] ; 
for (i=(Mred-Nred-1); i>O; i--) 

for (j=i-l; j>=O; j--) 
if (blocktemp[i] < blocktemplj] ) 

temp=blocktemp [i] ; 
blocktemp[i]=blocktemp[j]; 
blocktemp b] =temp; 
1 

j=O; 
Acol=O; 
for (Tcol=O; Tcol<=(Nred-1); Tcol++) 

{ 
for (r=O; r<=(Nred-1); I++) 

if (Acol != blocktempGj]) 

else 
Atemp- > p[r] [Tcol]=A- >p [I] [Acol] ; 

{ 
Acol++; 
r-=1; 
j++; 
1 

Acol++; 
1 

matgseudoinv( Atemp) ; 

gtemp = mat_mul2(Atemp, btemp); 

/*Mow add  a zero to where column was blocked */ 

j=O; 
I=O; 
for  (i=O; i<Mred; i++) 

if (i==blocktemp b]) 
I 
g[i]=O.OeO; 

480 

490 

500 

510 

520 

530 
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j++; 
I++; 
I 

else 
g [i] =gtemp - >p [i -I] [O]; 

mat_free(Atemp) ; 
mat-free(gtemp) ; 
mat-free(btemp); 
I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* dot product of two jloat vectors */ 
.......................................... 

double ROW-DOT-PRODUCT (float *a, float *b, int n) 

int i; 
double result=O; 
for (i=O; i<n; i++) 

result+=a[i]*b[i]; 
return(resu1t) ; 

{ 

I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* Restricted work space motions can be identified by rows of the */ 
/* A which only have one nonzero element. */ 
/* corresponding column must be present in all final joint space */ 
/* solutions, the appropriate joint space motion will be calculated 
/* before any redundancy resolution is performed, and the */ 
/* appropriate motions and joints will be removed from the */ 
/* work space and A respectively */ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Since the 

*/ 

ReduceA (struct MATRIX *Aorig, struct MATRIX *Ared, struct MATRIX *borig, 
struct MATRIX *bred, struct MATRIX *Xelim, int N, int M, int *Nred, 
int *Mred, int *ColElim, int *RowElim, float *SMALL) 

main (F S P. c )  

540 

550 

560 

{ 
int i, j ,  k, m, /* loop counters *I 

StillChecking, */ 
LastNred, 
nullity, 
Restriction, */ 
NonZeroCol; */ 

/* flag to  mark when all nonredundancies are gone 

/* num of joints which contrib to  a work space d.0.f. 
/* column which has nonzero element for give row 

double btemp [N] ; 
float N-B N D , 

/* holds the b vector as it is modified by backsub 
/* zero threshold for  nullspace vector componenets 

*/ 
*/ 

K2; /* matrix condition number: su-max/sv-min */ 
struct MATRIX *n, 

*Atemp, 
*Atrans; 

570 

580 

Atemp = mat-malloc(N,M); J 

Atemp = mat_cp2(Aorig); 
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main(FSP.c) 

Atrans = mat-malloc(M,N); 
n = mat-malloc(M,N); 

*Nred = N; 
*Mred = M; 
N-BND = 0.9/(N+l); 
Stillchecking = 1; 

/* number of rows in the reduced A 
/* number of columns in the reduced A 

/* initialize variables */ 
for (i=O; i<N; i++) 

Row Elim[i] =O ; 
btemp [i] = borig- > p [i] [ 01 ; 
1 
{ 

1 

for (i=O; i<M; i++) 

Xelim->p[i] [O]=O; 
ColElim[i]=O; 

*/ 
*/ 

590 

600 

/* determine the value for SMALL based on the largest element of A */ 
*SMALL = 0; 
for (i=O; i<N; i++) 

for (j=O; j<M; j++) 
if (fabs(Atemp->p[i]Gj]) > *SMALL) 

*SMALL = fabs(Atemp- >p[i] Jj]); 
*SMALL = *SMALL/1000; 

/* Check each row for  the number of nonzero elements. 
/* element is nonzero, solve for the joint space motion, and 
/* modify the b vector so that the appropriate row and column 
/* can be eliminated from the A .  After a row is eliminated 
/* the remaining A must be rechecked for any new restrictions 

If only one 

while (StillChecking) 
{ 
LastNred = *Nred; 
for (i=O; i<N; i++) 

{ 
j=-1; 
Restriction=O; 

/* check for nonzero row elements */ 
while ((j<(M-1)) && (Restriction < 2)) 

{ 
j++; 
if (fabs(Atemp->p[i]Ij]) > *SMALL) 

{ 

1 

Restriction++; 
NonZeroCol = j; 

1 
/* i f  a row only has one nonzero element, eliminate it from */ 

610 

*/ 
*/ 
*/ 
*/ 
*/ 

620 

630 
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/* the A */ 
if ((Restriction == 1) && (RowElim[i] != 1)) 

{ 
Xelim- >p [NonZeroCol] [O] =btemp[i]/Atemp- >p [i] [NonZeroCol] ; 
for (k=O; k<N; k++) 

btemp[k]= 
btemp [k]-Atemp- >p [k] [NonZeroCol]*Xelim- > p[NonZeroCol][O] ; 

for (k=O; k<N; k++) 
Atemp- >p[k] [NonZeroCol]=O.O; 

ColElim[NonZeroCol] = 1; 
RowElim[i]= 1 ; 
*Nred=*Nred-l; 
*Mred=*Mred-1; 

/* row of all zeros, also eliminated */ 
1 

else 
if ((Restriction == 0) && (RowElim[i] != 1)) 

{ 

1 

RowElim[i]=l; 
*Nred=*Nred- 1; 

} /* for (id ... */ 
if (*Nred == LastNred) 

StillChecking = 0; 
} /* while (StillChecking) */ 

main (FSP. c )  

640 

650 

660 

/* check for columns of zeros */ 
for (i=O; i<M; i++) 

{ 
j = O ;  
while ((j<N) && (fabs(A0rig->pb][i]) < *SMALL)) 

j++; 
670 

if (j==N) 
{ 

1 

*Mred=*Mred- 1 ; 
ColElim[i]= 1; 

1 
/* check for dependent rows */ 

for (i=O; i<Aorig->rows; i++) 
for (j=O; j<Aorig->cols; j++) 

mat-null(Atrans, &nullity, n, &K2); 
for (i=O; i<nulIity; i++) 

Atrans- >pb] [i] = Aorig->p[i] b]; 

{ 
j = O ;  
while (fabs(n->pb][i]) < NBND) 

if (RowElimb] != 1) 
j++; 

{ 
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RowElimb] = 2; 
*Nred=*Nred-1; 
1 

1 
/* store the reduced A in the variable Area, and the 
/* modified b in bred 

j=-1; 
for (i=O; i<N; i++) 

if (RowElim[i] == 0) 
{ 
j++; 
bred- >p b] [O] = b temp[i] ; 
m=-1; 
for (k=O; k<M; k++) 

if (ColElimF] == 0) 
{ 

1 

m++; 
Ared->pb][m] = Aorig- >p[i][k] ; 

mat_free( Atemp) ; 
mat-free(Atrans) ; 
1 

main-PrintA(FSP.c) 

690 

*/ 
*/ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* Check that after reducing the A ,  not all requested *I 
/* workspace motions are zero (trivial motion). */ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

int CheckB 

int i; 

(struct MATRIX *b, int m, float SMALL) 
{ 

1=0; 

while ((i<m) && (fabs(b->p[i][O]) < SMALL)) 
/* stop checking b when a nonzero element is found */ 

i++; 

if (i==m) 

else 
ret urn( 0) ; 

return( m) ; 
1 

............................................. 
/* Print the A and b vector t o  f i le */ 
............................................. 

PrintA (FILE *check, struct MATRIX *A, struct MATRIX *b, int m, int n) 

700 

710 

720 

730 

740 

Print A 
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L 

1 
int i, j ;  

fprintf(check, A\n\n") ; 

for (i=O; i<m; i++) 
{ 
for (j=O; j<n; j++) 

fprintf(check, "\n"); 
fprintf(check, %"4f # I ,  A->p[i]Gj]); 

1 
fprintf( check, "\n\n b\n\n") ; 

for (i=O; i<m; i++) 
fprintf(check, "%7.4f 'I, b->p[i][O]); 

fprintf(check, "\n\n\n\n"); 
1 

Print A-Set-Ordering( FSP.c) 

750 

760 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* Create the look-up table which holds the order in which the */ 
/* columns of the A should be blocked to f o r m  square sub-As */ 
.................................................................... 

Set-Ordering (int *Ordering, int Mred, int Nred) Set-Ordering 
{ 
int temp[Mred-Nred], 

i, j ,  k, 
hold; 

for (i=O; i<(Mred-Nred); i++) 
temp[i] =Ordering[i] ; 

for (i=(Mred-Nred); i>O; i--) 
for (j=O; j<(i-1); j++) 

if (templj] > templj +I]) 
{ 
hold = tempb+l]; 
tempGj+l] = templj]; 
tempb] =hold; 
1 

k=Mred-Nred- 1; 
for ( i d ;  i<temp[O]; i++) 

{ 
k++; 

1 
Ordering F] =i; 

for (i=O; i<(Mred-Nred-1); i++) 
for (j=temp[i]+l; j<temp[i+l]; j++) 

{ 

770 

780 

790 
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Set-0 rdering ( FSP. c) 

k++; 
Ordering[k]=j ; 
3 

for (i=(temp[Mred-Nred-l]+l); i<Mred; i++) 
{ 
k++; 
Ordering[k]=i; 
1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* check that the original b is in the range of the A */ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

int CheckRange (struct MATRIX *b, struct MATRIX *Aorig, struct MATRIX *XI 
int *RowElim, int Mred) 

{ 
int i, j ,  k;  
float CheckValue, 

temp[Aorig- >cols] ; 

for (i=O; i<(Aorig->rows); i++) 
if (RowElim[i] == 2) 

{ 
for (j = 0; j < Aor ig - > cols ; j + + ) 
CheckValue = ROW-DOT-PRODUCT(Aorig->p[i], temp, Aorig->cols); 
if (fabs( b->p[i] [O] -Checkvalue) > fabs( b- >p[i] [O] / 10)) 

temp6j]=X->pb] [O]; 

ret urn( 0); 
1 

800 

810 

820 

return( 1); 
1 

830 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* This procedure calculates the final solution based on */ 
/* the least norm */ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

LeastNorm (struct MATRIX *XI struct MATRIX *g, int Mred, int Nred, 
struct MATRIX *Xelim, int *ColElim) 

{ 
struct MATRIX *G, /* Grammian formed of solution vectors 

/* weighting factors, one for each vector 
/* dummy variable for  calculations 
/* vertical vector of ones 
/* horizontal vector of ones 

/* used in  calculation of X 

*t , 
*x, 
*e 1 

*eT; 

denominator; 
float Xtemp [MI, /* used to replace eliminated X components 

int i, j ,  k, M; 
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t = mat-malloc(Mred- Nred+ 1,l); 
x = mat-malloc(Mred-Nred+1,1); 
e = mat-malloc(Mred-Nred+l,l); 
eT= mat-malloc( 1 ,Mred-Nred+l); 
G = mat-malloc(Mred-Nred+l,Mred-Nred+l); 

for (i=O; i<(Mred-Nred+l); i++) /* initialize the vectors of ones */ 
{ 

1 

e->p[i] [0]=1 .OeO; 
eT- >p [O] [i] = 1. OeO ; 

for (i=O; i<(Mred-NredSl); i++) 
for (j=O; j<(Mred-NredSl); j++) 

G->p[i]lj]=ROW-DOT-PRODUCT(g->p[i], g->plj], Mred); 

matgseudoinv( G) ; 
t=mat_mul2(G ,e); 
x=mat_mul2 (eT ,G) ; 
x=mat_rnul2(x,e); 
denominator= ( 1 /x- >p [O] [0]) ; 
mat-sca( t ,denominator); 

for (i=O; i<M; i++) 
Xtemp[i] = O.OeO; 

for (i=O; i<Mred; i++) 
for (j=O; j<(Mred-Nred+l); j.. 

850 

870 

k = 0; 
for (j=O; j<M; j++) 

if (ColElimlj] == 1) 

else 
X- >PI] [O]=Xelim- >pi ]  [O] ; 

{ 

1 

X->plj][O]=Xtemp[k]; 
k++; 

860 

mat-free( eT) ; 
mat-free(e); 
mat-free(G); 
mat-free(t); 
mat-free(x) ; 

I 

880 

890 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* Least norm solution for case in  which A has lost row rank */ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

RankLostSoln (struct MATRIX *g, struct MATRIX *X, struct MATRIX *A, 900 

int Mred, int Nred, struct MATRIX *Xelim, 
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int *ColElim, int *RowElim, struct MATRIX *b, FILE *check) 
{ 
struct MATRIX *G, 

*e, 
*eT, 
*x , 
*beta, 
*betaT, 
*t; 

double a, bscalar, c, d, Ascalar, num, sum; 
double nhu, mu, Xtemp[M]; 
int i ,  j ,  k, M; 

t = mat-malloc(Mred-Nred+l,l); 
x = mat-malloc(Mred-Nred+l,l); 
e = mat-malloc(Mred-Nred+l,l); 
eT= mat-malloc( 1 ,Mred-Nred+l); 
G = mat-malloc(Mred-Nred+l,Mred-Nredf l); 
beta = mat-malloc(Mred-Nred+l,l); 
betaT = mat-malloc(1,Mred-Nred+l); 

for (i=O; i<(Mred-Nred+l); i++) /* initialize the vectors of ones */ 
{ 
e->p[i][O]=l.OeO; 
eT->p[O] [i]=l .OeO; 
1 

/* construct Grammian and inverse */ 
for (i=O; i<(Mred-Nred+l); i++) 

for (j=O; j<(Mred-Nred+l); j++) 
G->p[i]Ij]=ROW-DOT-PRODUCT(g->p[i], g->pb], Mred); 

matgseudoinv( G) ; 
fprintf(check, "\n\nGrammian inverse : \n"); 
for (i=O; i<(Mred-Nred+l); i++) 

{ 
for (j=O; j<(Mred-Nred+l); j++) 

fprintf(check, "\n"); 
fprintf(check, " % I O  .4f *I, G->p[i]lj]); 

I 

/* calculate beta values */ 
j = O ;  
while (RowElimlj] != 2) 

for (i=O; i<(Mred-Nred+l); i++) 
j++; 

1 
num = ROW-DOT-PRODUCT(A->pIj], g->p[i], M); 
beta->p[i] [O] = num/b->pIj][O]; 
beta?'->p[O] [i] = beta->p[i][O]; 
1 
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fprintf(check, "\nbeta values : \n"); 
for (i=O; i<(Mred-Nred+l); i++) 

fprintf( check, 'I \ne') ; 
fprintf(check, "%7.4f " , beta->p[i] IO]); 

960 

x = mat_mul2(eT,G); 
x = mat_rnul2(x,e); 
a = x->p[O][O]; 
x = mat_mul2(eT,G); 
x = rnat_mul2(x,beta); 
bscalar = x->p[O][O]; 
x = mat_mul2(G,e); 
x = mat_mul2(betaT,x); 

x = mat_mul2(G,beta); 
x = mat_mul2(betaT,x); 
d = x->p[O][O]; 

c = x->p[O][O]; 
970 

Ascalar = c*bscalar - a*d; 

nhu = (a-c)/Ascalar; 

mu = - (l+nhu*bscalar)/a; 

fprintf(check, "\nscalar values : \n"); 
fprintf(check, "a: %7.4f b: %7.4f c :  %7.4f d: %7.4f \n", a, bscalar, c, d); 
fprintf(check, "A: %7.4f mu: %7.4f nhu: %7.4f\n", Ascalar, mu, nhu); 

t = mat_mu12(G,e); 
mat-sca( t ,mu); 
x = mat-mula(G,beta); 
mat-sca(x,nhu) ; 
for (i=O; i<(Mred-Nred+l); i++) 

t->p[i][O] = -t->p[i][O] - x->p[i][O]; 

fprintf(check, "\nt values : \n"); 
for (i=O; i<(Mred-Nred+l); i++) 

fprintf(check, "\n"); 
sum = t - >p[01 [o] +t - >p [ 11 [o] +t - >p [2] [O] +t- >p [3] [O] +t - >p [4] [O] +t - >P [SI (01 ; 
fprintf(check, "sum: %7.4f\n", sum); 

fprintf(check, "%7.4f ' I ,  t->p[i][O]); 

sum = 0; 
for (i=O; i<(Mred-Nred+l); i++) 

sum += beta->p[i][O]*t->p[i][O]; 

fprintf(check, "\nsum beta i* t i :  %7.4f \n", sum); 

for (i=O; i<M; i++) 
Xtemp[i] = O.OeO; 

for (i=O; i<Mred; i++) 
for (j=O; j<(Mred-Nred+l); j++) 

980 

990 

1000 
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k = 0; 
for (j=O; j<M; j++) 

if (ColElimlj] == 1) 

else 
X- >p b] [ 01 =Xelim - >pL] [ 01 ; 

{ 
X - > p b] [O] =Xt emp [k] ; 
k++; 
1 

mat-free(eT) ; 
mat-free(e); 
mat-free( G) ; 
mat-free( t ) ; 
mat-free( x) ; 
mat-free(beta); 
mat-free( beta?') ; 

} 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* read in  A and b vector to be used for testing the code */ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

GetData (struct MATRIX *A, struct MATRIX *b) 

FILE *fpin; 
int i, j; 

{ 

1010 

1020 

1030 

GetData 

fpin = fopentinfile, lb.-l8); 
1040 

for (i=O; i<N; i++) 
for (j=O; j<M; j++) 

fscanf(fpin, "%f &A->p[i]Ij]); 

for (i=O; i < N ;  i++) 
fscanf(fpin, V,f 'I, &b->p[i][O]); 

fclose(fpin) ; 
1 

1050 

19:31 Feb 27 1995 Page 20 of FSP.c 



(matrix.h) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* This is the header fi le for the matrix procedures that */ 
/* are necessary for FSP.c. The procedure files and header */ 
/* files from Numerical Recipes an C are necessary in order */ 
/* for the code t o  find everything that it needs. *I 
/* following procedures were taken from a file created b y  *I 
/* Ode H. Dorum at Oak Ridge National Laboratory: *I 
I* mat-malloc *I 
/* mat-mu12 *I 
I* mat f ree *I 
/* mat-sca *I 
/* matjseudoinv */ 
/* mat-cp2 *I 
I* m a t j r  *I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

The 

struct MATRIX *mat-malloc(); /* Matrix allocation */ 

struct MATRIX *mat_cp2(); /* copy one matrix to  another *I 
struct MATRIX *mat_mul2(); /* mult two matrices and return result */ 

void svdcmp(); /* Singular Value Decomposition *I 
void mat_free(); /* Free matrix pointer *I 
void mat-sca(); /* Scale a matrix by  a factor *I 

void mat-null(); /* Find the matrix null space *I 
void matqr();  /* print a matrix *I 

void matpseudoinv(); /* Inverse or pseudoinverse using SVD */ 

struct MATRIX 

float **p; /* Pointer to array of pointers to matrix rows. */ 
int rows; /* Row dimension of the matrix. *I 
int cols; /* Column dimension of the matrix. *I 

10 

20 

30 
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(matrix.c) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* 
* This f i le  contains the matrax procedures necessary 
* to run the program FSP.c. 
* for  more information. 

Please see the header file 

* 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

#include <stdio.h> 
#include <stdlib.h> 
#include <math .h> 

#include "matrix. h" 

#define SVD-THRESHOLD 1.0e-6 
#define SV-SMALL 1.0e-4 

#define SWAP(a,b) {float temp = (a); (a) = (b); (b) = temp;} 
#define MAX(a,b) ((a) > (b) ? (a) : (b)) 
#define PrintIfBiggerThan 0 
#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a)) 

10 

20 

static float at, bt ,ct ; 
#define PYTHAG(a,b) ((at=fabs(a)) > (bt=fabs(b)) ? \ 
(ct=bt/at,at*sqrt(l.O+ct*ct)) : (bt ? (ct=at/bt,bt*sqrt(l.O+ct*ct)): 0.0)) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

30 

struct MATRIX *mat-malloc(rows, cob) 
int rows, cols; 

int i; 
float *mat, **row; 
struct MATRIX *matrix; 

{ 

/* Allocate space for structure, elements and pointers. 
* 
* Note, that the allocated number of row pointers is MAX(row, cols) 
* because it facilitates transposing rectangular matrices. 
*/ 

mat = (float * ) malloc(rows * cols * sizeof(float)); 
row = (float **) malloc((MAX(rows, cols)) * sizeof(float *)); 
matrix = (struct MATRIX *) malloc( sizeof( struct MATRIX ) ); 

if(!mat 1 1  !row 1 1  !matrix) 

fprintf(stderr, "Matrix a l loca t ion  f ailed\n"); 
return(NULL); 

{ 

1 

40 

50 
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(matrix.c) 

matrix->p = row; 
matrix->rows = rows; 
matrix->cols = cols; 

/* The Nth element of the array  row points t o  the 1st element 
* on the Nth row. Thus, **m = *m[O] = m[O][O] 

* Calculate the addresses of the pointers pointing to the 
* rows of the matrix 

* 

*/ 
for(i = 0; i < rows; i++) 

row[i] = mat; 
mat += cols; 

{ 

1 
return(matrix) ; 

1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* The 'e' matrix must already be declared f loat  of size: arows x bcols. */ 

void mat-mul(a, b, c) 
struct MATRIX *a, *b, *c; 

int i ,  j ,  k; 
{ 

for (k = 0; k < b-xo l s ;  k++) 
for (i = 0; i < a->rows; i++) 

c->p[i]F] = 0; 
for (j = 0; j < a->cols; j++) 

{ 

c->p[i][k] += a->p[i]b]*b->pb]p]; 
1 

1 

60 

70 

80 

90 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* dimension. The pointer t o  .this matrix structure is returned. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* The function will automatically create the result matrix of correct */ 

*/ 
struct MATRIX *mat_mul2(a, b) 
struct MATRIX *a, *b; 

struct MATRIX *c; 
{ 

100 

c = mat-malloc(a->rows, b->cols); 

mat-mul(a, b, c); 

return( c); 
1 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* The pseudoinverted matrix wall still reside in a. In the case of a */ 
/* square matrix, the result will actually he the inverted matrix. If */ 
/* the matrix is rectangular, the pseudoinverse will have the correct */ 
/* dimension. */ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

void matgseudoinv( a) 
struct MATRIX *a; 

struct MATRIX *q2, *z, *tmp; 
struct MATRIX *qlt, *q2t, *zt, *qq, *qq2; 
float **A, **Q2, *Z; 
float z-min, z-max; 
int M, N,  i, j ;  
float **conv-2-nricgtr(); 

{ 

M = a->rows; N = a->cols; 

/* Allocate space for q2 matrix, vector Z[l..N], z and tmp 

q2 = mat-malIoc(N, N); 
z = mat-malloc(N, N); 
Z = vector(1, N);  

*/ 

/* Create pointers to a and q2 conforming with Num-Rec-in-C format. 

A = conv_2_nricgtr(a); 
Q2 = conv_2_nricgtr(q2); 

*/ 

/* Compute A[l..M][l..N]'s singular value decomposition (SVD): A = Ql*Z*Q2-tra 
* 
* Q l  will replace A, and the diagonal value of singular values Z is output 
* as a vector Z[l..N]. The matrix Q2 (not the transpose Q2-tra) is output 
* as Q2[1..N][l..N]. M must he greater than or equal t o  N; I f  at is smaller, 
* then A should be filled up t o  square with zero rows. 
*/ 

svdcmp(A, M, N, Z, Q2); 

/* (Singular values = squareroot of the eigenvalues), find maximum. 

z-max = 0.0; 
for (i = 1; i <= N; i++) if (Z[i] > z -ma)  z-max = Zp]; 

*/ 

/* Set threshold value of the minimum singular value allowed 
* to be nonzero. 
*/ 

z-min = z-max*SVD-THRESHOLD; 

/* Invert while copying from the Z vector into the zs matrix, and weed out 
* the too small singular values. 
*/ 
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for (i = 0; i < 11; i++) 
for (j = 0; j < N ;  j++) 

z->p[i]Ij] = ((i == j )  && Z[i+1] > z-min) ? l.O/Z[i+l] : 0.0; 
/* z->p[i]b] = l.O/Z[i+l];*/ 

(mat rix.c) 

160 

/* * Ajseudoinv  = Q2 * Z-pseudoinv * Ql-tra 

* Returned matrix A from svdcmp() is actually Q l ,  therefore: 
* 

*/ 
/* printf("Testing the inverse:\n");*/ 
q l t  = mat_tra2(a); 
qq = mat_mul2(a,qlt); 
/*printf("Qlt*ql = \n"); 
m a t P r h d l - *  1 

mat-tra(a); /* Transpose Q l  t o  Ql-tra */ 
tmp = mat_mul2(z, a); /* tmp = Z_pseudoinv * Ql-tra */ 
mat-mul(q2, tmp, a); /* Apseudoinv = QZ * tmp = QZ * Zjseudo  * Ql-tra */ 

q2t = mat_tra2(q2); 
qq2 = mat_rnu12(q2,q2t); 

/* printf("QZt*Q2 = \n"); 
mat_pdq@);*l 

mat_free( 42) ; 
mat_free(z) ; 
mat-free( tmp); 
free-vector(Z, 1, N); 
free( (char *) A); 
free( (char *) Q2); 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* Return the null space of a matrix using svd */ 

void matpull(a, n-rank, n, K2) 
struct MATRIX *a, *n; 
int *n-rank; 
float *K2; 

struct MATRIX *a-sqr, 
*v, 
&-temp; 

{ 

170 
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float **U, *S, **V, 
*vector(), 
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**conv-2-nricg t r () ; 

float s-min, s-max, temp; 

void free-vector(), 
free-ivec t or() ; 

int i, j ,  R, C,  *order; 
int *ivector () ; 

R = . a->rows; 
C = a->cols; 

v = mat-malloc(C,C); 
V = conv-2-nricgtr(v); 
S = vector(1,C); 
S-temp = mat-malloc(C+l,l); 
order = ivector(1,C); 

if (R < C) 
{ 
a-sqr = mat-malloc(C,C); 
for (i=O; i<R; i++) 

for (j=O; j<C;  j++) 
a-sqr->p[i] lj] = a-->p[i] ljl; 

for (i=R; i<C; i++) 
for (j=O; j<C; j++) 

a-sqr->pl;]lj] = 0.0; 
1 
{ 
a-sqr = mat-malloc(R,C); 
a-sqr = mat_cp2(a); 
1 

else 

U = conv-2-nricgtr(a-sqr); 

svdcmp( U ,C,C,S ,V) ; 

for (i=l;  i<(C+l); i++) 
i 
S-temp->p[i][O] = S[il; 
order[i] = i; 
1 

for (i=C; i>l; i--) 
for (j=i-I; j>=l; j--) 

if (fabs(S-temp->p[i] [O])>fabs(S-temp->plj] [O])) 

temp = S-temp->p[i][O]; 
S-temp- >p [i] [O] = S-temp - >p b] [O] ; 
S-temp- >plj] [O] = temp; 
temp = order[i]; 
order[i] = orderlj]; 

220 
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orderlj] = temp; 
1 

if (R<=C) 

else 

s-max = fabs( S-temp- >p[ 11 [O]) ; 

s-min = fabs(S-temp->p[R][O]); 

s-min = fabs(S-temp->p[CJ[O]); 

*n-rank = 0; 
while (fabs(S-temp->p[C-*n-rank] [O]) < SV-SMALL) 

{ 
for (j=1; j<=C; j++) 

*n-rank = *n-rank + 1; 
n->p6j- 11 [*n-rank] = Vfi] [order[C-*n-rank]]; 

1 
if ((fabs(s-min)>=SV-SMALL) && (fabs(s-min/s-ma) < SV-SMALL)) 

{ 
for  (j=1; j<=C; j++) 

*n-rank = *n-rank+l; 
n- >plj - 11 [*n-rank] = V[order b]] [C-*n-rank] ; 

1 

270 

280 

*K2 = s-max/s-min; 
290 

mat-free( a-sqr) ; 
free-vector(S, 1 ,C); 
mat_free( S-temp) ; 
mat-free( v) ; 
free((char *) V); 
free((char *) U); 

1 

................................................ 

................................................ 
/* T h e  m a t r i x  'a' is scaled by the f a c t o r  'e' */ 

void mat-sca(a, c) 
s t ruc t  MATRIX *a; 
float c; 

float *p; 
int i; 

{ 

p = *a->p; 

for (i = a->rows*a->cols; i--;) 
*p++ *= c; 

1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* T h e  copied m a t r i x  'cpy' must already be declared float of */ 

300 

310 
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/* same sire as 'a'. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  */ 

void mat-cp(a, cpy) 
struct MATRIX *a, *cpy; 

float *pl *q; 
int i; 

{ 

p = *a->p; q = *cpy->p; 

for (i = a->>rows*a->cols; i--;) 
*q++ = *p++; 

1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/* structure is returned. */ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/* The function will automatically create the result matrix of correct 
/* dimension which will be the transpose of A .  The pointer to this matrix */ 

*/ 

struct MATRIX *mat_tra2(A) 
struct MATRIX *A; 

int i ,  j ;  
struct MATRIX *At; 

{ 

At = mat-malloc(A->cols, A->rows); 

for (i = A->rows-l; i--;) 
for (j = A->cols-1; j > i; j--) 

At->p[i]lj] = A->pGj][i]; 

return(At); 
1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

.................................................................... 
/* The transposed matrix still resides in 'a'  after transposition */ 

void mat-tra(a) 
struct MATRIX *a; 

int i, j ,  temp; 
float *p; 

{ 

if (a->rows == a->cols) 

for (i = a->rows-1; i--;) 
{ 

for (j = a->cois-l; j > i; j--) 
SWAP(a->p[i]lj] a->plj] [i]); 

1 
{ 
else 

/* Square matrix */ 

/* Rectangular matrix */ 
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temp = a->rows; 
a->rows = a->cols; 
a->cols = temp; 

/* Recompute pointers to the new rows of the matrix 

p = *a->p; 
for(i = 0; i < a->rows; i++) 

*I  

{ 

1 

a->p[i] = p; 
p += a->cols; 

/* No need to swap elements i f  the matrix has only one row or column. 

if (!((a->rows == 1) 1 1  (a->cols == 1))) 
*/ 

1 
s t ruc t  MATRIX *m; 

/*...otherwise put elements in  tempora y matrix and 
* copy from it into the columns of the transposed mairix. 
* I  

m = mat-malloc(a->rows, a->cols); 
mat-cP(a,m); 
p = *m->p; 

for (j = 0; j < a->cols; j++) 
for (i = 0; i < a->rows; i++) 

a->p[i]Ij] = *p++; 

mat_free(m) ; 
1 

1 
1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* dimension . The pointer to this matrix structure is returned. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* The functaon will automatically create the result matrix of correct */ 

*I  
struct MATRIX *mat_cp2(a) 
struct MATRIX *a; 

int i; 
float *p, *q; 
struct MATRIX wpy; 

{ 

cpy = mat-malloc(a->rows, a->cols); 

return( cpy ) ; 
} 

380 

390 

400 

410 

420 

19:39 Feb 27 1995 Page 8 of matr2x.c 



(matrix.c) 

/****************************f**********$******$$$*****$$$$$$$$$****$$$$$$/ 

/* Returns an pointer which points to an array of pointers to matrix row */ 
/* elements in a way so that the matrix a->p[O..n][O..m] can be accessed */ 
/* from [l..n-l][l..m-11 which as required b y  the Numerical Rec. i C. */ 
/*******tt********f****$*$$$$***********++$*********************************/ 

float **conv-2-nricgtr(a) 
struct MATRIX *a; 

float **newgtr-2-row; 
int i; 

/* Allocate space for an array  of OFFSET pointers. 

newgtr-2-row = (float **) maHoc((a->rows + 1) * sizeof(float *)); 
*/ 

/* The array of pointers t o  row must be offset b y  -1 

for (i = 0; i < a->rows; i++) 
$1 
newgtr-2-row[i+l] = a->p[i] - 1; 

/$ To not have element[O]fl dangling, let il point t o  a->p[O][O]. 

newgtr-2-row[O] = a->p[O]; 
*/ 

return( new-ptr-2-row ); 
1 

void mat-free(m) 
struct MATRIX *m; 

free( (char *) *m->p); 
free( (char *) m->p); 
free( (char *) m); 

1 

void matgrf(a) 
struct MATRIX *a; 

int i, j ;  
{ 

printf ( I' \n" ) ; 
for (i = 0; i < a->rows; i++) 

for (j = 0; j < a->cols; j++) 

print f ( I' \t X f , a- > p [i] E]) ; 
{ 

1 
printf( "\nl'); 
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1 
printf( ii\ni*); 

1 

void matgr(a) 
struct MATRIX *a; 

int i ,  j; 
{ 

printf( "\n"); 
for (i = 0; i < a->rows; i++) 

for (j = 0; j < a->cols; j++) 
{ 

if (abs(a->p[i]Ij]) >= 0.005) 

else 

{ 

printf("\t% . X I ' ,  a->p[i]Ij]); 

printf("\t - "); 
1 

printf( "\n") ; 
1 
printf( '*\n"); 

1 

19:39 Feb 27 1995 
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