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ABSTRACT 

In large-aperture laser amplifiers such as those envisioned for the National Ignition 
Facility (NIF) and Laser Megajoules (LMJ) lasers, the geometry is such that the front and 
back faces of the laser slab are heated unevenly by the pump process. This uneven hating 
results in a mechanical deformation of the laser slaband consequent internal stresses. The 
deformation and stresses, along with a temperature-dependent refractive index variation, 
result in phase variations across the laser beam (so-called pump-induced wavefront 
distortions). These phase variations lead to beam steering which may affect frequency 
conversion as well as energy-on-target. We have developed a model which allows us to 
estimate the pump-induced wavefront distortion for a given amplifier configuration as well 
as the spatially-resolved depolarization. The model is compared with experiments taken in 
our amplifier development laboratory, AMPLAB. 

1. Introduction 

We are currently developing large-aperture amplifiers for the National Ignition 
Facility (ND?) and Laser Megajoules (LMJ) lasers. These multi-segment amplifiers are of 
the flashlamp-pumped, Nd:Glass type and are designed to propagate a nominally 36 cm 
square beam. The apertures within a particular amplifier bundle are arranged in a four-high 
by two-wide configuration and utilize two side flashlamp arrays and a central flashlamp 
array for pumping, see Fig. 1. As shown in the figure, the slabs are oriented at 
Brewster’s angle and are pumped on both sides by arrays of flashlamps, denoted as central 
arrays (lamps which pump both slabs) and side arrays. The geometry of the amplifier 
results in one end of the slab situated closer to the lamps than the other side. 
Consequently, the amount of heat deposited in the slab (primarily from the quantum defect 
of the broad-band pump light) is uneven front-to-back as well as side-to-side. 

This uneven pumping results in a warping of the laser slab, indicated by the dashed 
lines in Fig. 1. As a result, an initially plane wavefront incident on such a slab will not 
remain planar upon exit. Ultimately, wavefront distortion is due to differences in the 
optical path (defined as the refractive index times the physical path length) at one point in 
the aperture vs another. We have seen one source of these optical path differences (or 
OPDs) - namely the mechanical distortion of the laser slab. There is another source of 
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OPD, namely the spatially-varying refractive index to which temperature and sress 
contribute. 

We have developed a model which takes all of the above effects into account and 
which allows us to predict the pump-induced wavefront distortion for these large-aperture 
amplifiers. In this paper, will describe various aspects of the model and present 
comparisons between the model and experimental data taken on AMPLAB, our amplifier 
test laboratory. 

2. Pump-induced-wavefront-distortion model 

2.1 Description of model 

As mentioned in the introduction, the non-uniform deposition of heat in the laser 
slab is responsible for slab distortions and aberrations of any plane wavefront incident on 
it. Thus, the fundamental ideas may be summarized as follows: The non-uniform heat 
deposition results in a distortion of the laser slab and accompanying stresses. The 
distortion of the laser slab, in conjunction with the temperature and stress-induced 
refractive index variations result in the OPDs and consequent wavefront distortion. 

In order to calculate the various effects listed above, we use a suite of computer 
codes: TOPAZ3D1 to calculate the temperature distribution within the laser slab, NKE3D’ 
to calculate the displacements and stresses from the temperature field given by TOPAZ3D, 
and OPL, which calculates the OPDs given the results from NIKE3D. The codes NIKE3D 
and TOPAZ3D are 3-dimensional finite element analysis codes which have been in use at 
LLNL for over ten years. The optics code OPL is an in-house code based on the BREW 
code developed by Said Doss and Robert Gelinas3 

2.2 Determination of temperature 

The first step in calculating the wavefront distortion is to determine the temperature 
distribution within the laser slab. In order to do this, we need to specify the thermal source 
function as a function of position and time. In general, this thermal source function is an 
arbitrary function of position and time. For purposes of this model, however, we have 
assumed a separable source function, i.e.: 

where S(X) denotes the vertical variation of the pump profile, g,, (y) denotes the horizontal 
variation of the pump profile at z=O,h respectively,f(z) denotes’the pump profile through 
the thickness of the slab, and Q,is the thermal source term for the edge cladding. The 
units for this source function are W/cm3. In Eq. (l), h is the thickness of the slab and A is a 
constant multiplier. Each of these terms will now be described. 

In the multisegment amplifiers envisioned for use in the ND?, there is strong vertical 
symmetry. The flashlamps are oriented vertically, and there are silver-coated metal 
reflectors at the top and bottom of the pump cavity. As a result, we have taken the function 
S(X) to be a constant. In reality, the reflectors are not perfect and so there is a slight roll-off 
in pump light at the extreme top and bottom of the pump cavity. We have found that this is 
a small effect insofar as calculating the pump-induced wavefront distortion is concerned, 
and so have elected to keep s(x) a constant. 

As mentioned above, the geometry of the pump cavity results in a roll-off of the 
pump radiation from one side of the aperture to the other. We used our 2-D+ ray-trace 
code to claculate the distribution of pump light across the laser slab. An example of the 



functions so obtained is shown in Fig. 2. Because these functions can be rather 
convoluted, no curve fitting is done. Instead, TOPAZ3D uses g(y) as is and interpolates to 
return values for Q for any y. 

The thermal energy deposition through the thickness of the slab is given by the 
functionfiz). This function is calculated using our Lamp Model code,’ which calculates 
the energy deposition profile as a function of slab geometry, doping density, and lamp 
operating level. The profile so obtained is a spectrally-integrated thermal energy 
deposition profile, which we then fit to a double exponential: 

f(z) = e+‘l’ + c eep2’ 

where &, &, and c are the fit coefficients. A plot of the energy deposition profile and the 
corresponding fit is shown in Fig. 3. 

for u(t). 
To describe the temporal behavior of the pump pulse, we use an analytic expression 

We first need to describe the temporal behavior of the electrical input power to the 
lamp. Since the flashlamp is a non-linear circuit element, the acutal pulse shape is 
described by a non-linear differential equation.‘j We have found, however, that an excellent 
approximation to the shape is given by the function: 

~(0 = t Exp[-(t-a)*/?] (3) 

where a and z are fit parameters. A plot of the electrical input power as determined from a 
numerical integration of the circuit equation and the approximation given by Eq. (3) is 
shown in Fig. 4. With the electrical input power so determined, we then need to calculate 
the optical output power from the flashlamp. The output power, u(t), may be calculated 
from the following equation:7 

dum = [q@&(t) - u(t)]lz, 

where q(u) is the instantaneous radiant efficiency of the flashlamp (corrected for arc- 
expansion effects), and zR is radiative recombination time of the plasma (approx. 30 l,ts). 

* Since q(u) is a non-linear function of u, Eq. (4) is likewise non-linear.7 We have found, 
however, that an excellent approximation is to take 77(u) to be a constant, parametric in the 
pulsewidth: 

77(u) = .653 + 2.33~10-~2,, 2oo<z,,<5oops (3 

where z,~ is the full-width-tenth-max time of the electrical input power pulse. In Figure 5 
we show the comparison between the numerical solution to Eq. (4) and the solution using 
the approximation given by Eq. (5). We see that over the time range specified, the 
agreement is quite good. Using Eqs. (3)-(5) an analytic expression for u(t) may be 
obtained. 

At this point in time, we do not have a good ab initio calculation for the heat 
deposited in the laser slab. Present calculations disagree with measurements by about a 
factor of two; the cause of this discrepancy is currently not known. Thus, we have 
included a scale factor, A in Eq. (l), to scale our results to experimental measurements. It 
should be pointed out that once this factor is determined (say, e.g., from AMPLAB 
measurements), then that factor is held constant for all succeeding calculations. 



The last term in Eq. (1) represents the heat deposited into the edge claddings which 
surround the laser glass. This term is composed of two parts: 

Qec = Qec,pump + Qec.~s~ (6) 

where Qec pump ASE represents the heat deposited into the edge claddings by the pump, ASE 
respectively. The source term is broken up in such a manner because the time dependence 
of the two parts is different. For Qec,pum,, the time dependence is just u(t), described 
above. For Qec,ASE the time dependence is different due the fact that the peak of the ASE 
pulse occurs at the time of peak gain, not at the time of peak pump power. The relationship 
between the output power from the flashlamp and the stored energy density, p(t), is given 
in Ref. 7. Once p(t) is determined, it may be shown that the time dependence of the ASE, 
@f(t) may be written as:8 

e(t) oc p(t) 1 a + b{Exp[p(t)l - 1 }I (7) 
where a and b are constants. With Eq. (7) describing the time dependence of the ASE, we 
then have, for example, for the edge cladding at x = const.: 

Q ec,ASE (8) 

where p is the edge-cladding absorption coefficient, and Tis the incident fluence. At 
present, we do not have an accurate ab initio calculation of the ASE fluence on the edge 
cladding. However, based on measurements with the Beamlet laser, we estimate a fluence 
of 4 J/cm* for ASE and another 2.5 J/cm* due to the pump light. 

Equations (l)-( 8) are used in TOPAZ3D to determine the temperature distribution 
in the laser slab. Due to the shortness of the pump pulse (a few hundred psec), adiabatic 
boundary conditions are used on all faces of the slab. The result of this calculation is used 
in the code NIKE3D to calculate the displacements and stresses, as described in the next 
section. 

2.3 Determination of displacements and stresses 

As mentioned above, we use the temperature distribution in the slab to calculate the 
displacements and stresses. Since the displacements are very small (on the order of lp), 
we are in the linear elastic regime and the problem is a standard one in thermoelasticity. 
Consequently, we use a thermo-elastic material model and specify Poisson’s Ratio, 
Young’s Modulus and thermal expansion coefficient.g These parameters are taken to be 
constants, independent of temperature , insofar as the maximum temperature rise is on the 
order of one degree Celsius. 

At this point in the calculation, the mechanical boundary conditions for the slab are 
specified. In reality, the slab sits on a Marcel spring - a sinusoidally varying metal strip. 
While the capability exists to model the spring as it actually exists, we have found that a 
satisfactory substitution is to have the slab sit on a region of metal one element thick. The 
nodes in the glass material are joined to the nodes in the metal so no slipping can occur. 
The bottom of the metal region is simply supported and we also fix the displacements at 
two additional comers to eliminate rigid-body motion. The rest of the slab surfaces are 
assumed to be free. 



NIKE3D calculates the displacements and stresses as a function of time during the 
course of the pump pulse. Typically, the code is run up to the time of peak gain as the 
wavefront distortion at that time is what is usually requested. However, it is a simple 
matter to run the code for times longer than the time of peak gain in order to compare with 
experiments. 

2.4 Determination of OPDs 

The last part of the calculation involves computing the OPDs through the laser slab. 
For this, we use our in-house code OPL. The optical path length of a ray through the slab 
may be written as: 

OPL = I r+,y,z) ch (9) 

where II is the (spatially-varying) refractive index and s is the distance along the ray path. 
There are two main sources of OPD in the laser slab: 1) Variations in path length caused by 
mechanical motion of the slab, and 2) Variations in path length caused by refractive index 
changes. 

The variations in path length caused by mechanic al motion of the slab are caused 
by the spatially-varying displacements calculated in NIJSE3D; i.e. a point x,y,z on the slab 
gets translated to: 

x i, x + u(x,y,z,t) 

y + y + Vkym) (10) 

2 + 2 + w(x,y,z,t) 
We take two effects into account to calculate the spatially-varying refractive index: 

1) The variation of refractive index with temperature, and 2) the variation of refractive 
index with stress (stress-optic effect), i.e.: 

nkYJ) = no + (dn/dT)AT(x,y,z) + (dn/do)A@x,y,z) W) 

where n,is the isotropic refractive index, dn/dT denotes the change of refractive index with 
temperature, and we have symbolically written the change in refractive index due to stress 
as (dn/do). Note that in general, AT and Ao’are functions of time. However, for the 
purposes of calculating the OPD, we select one point in time for the calculation. This is 
permissible since the time duration of the laser pulse is at most 20 ns. On this time scale, 
all thermal and mechanical motion is frozen. 

The sequence of events in calculating the OPD is as follows. The OPL code reads 
in the finite-element geometry from the NIKE3D plot file. We then go through the mesh 
and break up each finite-element “brick” into six four-node tetrahedra and generate a 
connectivity matrix for these tetrahedra. We then use Eq. (11) to calculate the refractive 
index at each node in the mesh. Within each tetrahedra. we linearize the refractive index: 

n(x,y,z> = a + bx + cy + dz (12) 



The four unknowns in Eq. (12) are uniquely determined by the values of the refractive 
index at the four nodes of a given tetrahedron. With the refractive index linearized as in 
Eq. (12), we can then analytically solve the Eikonal equation” for the ray path within a 
tetrahedron: 

d dr’ =Vn 
znz ( 1 (13) 

where s is the distance along the ray path and r is the position vector of the ray. The 
connectivity matrix helps us determine which tetrahedron the ray will enter and 
consequently at which nodes to evaluate the refractive index in order to calculate the 
unknowns in Eq. (12). We then track the ray as it propagates through all the tetrahedra, all 
the while accumulating the distance that the ray propagates. 

In addition to calculating the OPD for the ray, we can also calculate the 
depolarization a ray experiences as it propagates through the optic. We do this by 
assuming each tetrahedron acts as a linear retarder and calculate the Jones matrix” for 
each tetrahedron. The final amount of retardation (and hence depolarization) is given by the 
product of all the individual Jones matricies for a given ray path. 

A typical result from this calculation is shown in Fig. 6. The calculation was 
performed for the AMPLAB amplifer in the Diamond configuration. In Fig. 6 (a) we show 
the OPD for all effects (displacement, temperature, and stress) combined. It is often useful 
to examine each component indivudually and this is done in Figs. 6(b), (c), and (d). In 
Fig. 6(b) we show the contribution to the OPD due solely to mechanical deformation. 
Comparison with Fig. 6(a) shows that for AMPLAB, the wavefront distortion is due 
mainly to the mechanical deformation of the slab. In Figs. 6(c) and (d) we show the 
contriubtion to the OPD from temperature and stress effects on the refractive index. As 
may be seen, these effects play a relatively minor role in determining the overall OPD. 
Finally, in Fig. 6(e) we show the P to S depolarization. As expected, the greatest amount 
of depolarization occurs in the comers, where the two pieces of edge cladding meet; it is 
there where the greatest amount of stress occurs. Nevertheless, the overall amount of 
depolarization is small, well within its specification of .05% averaged over the aperture. 

2.5 Error analysis 

In this section, we will estimate the error in our calculation of the OPD. For the 
amplifier conditions considered in this report,the dominant contribution to the OPD is the 
mechanical deformation of the laser slab (c$ Figs. 6(a) and (b)). Consequently, it makes 
sense to closely analyze the uncertainties associated with mechanical motion. 

For simplicity, assume the laser slab is a simply-supported thin plate, with the thin 
dimension along the z-axis. We will neglect any time dependence in this analysis. It may 
be shown that the equation for w, the displacement in the z-direction, is given by:‘* 

V2$>Y) = - 
(14) 

where the thermal moment, defined as:‘* I 



&‘-(x,y) = a E s h 
o (z-WT(x,y,z)dz 

is the source function for the displacement. In Eqs. (14,15) v is Poisson’s Ration, a is the 
thermal expansion coefficient, and E is Young’s modulus. 

On the time scales of interest, one may neglect diffusion. Consequently, T(x,y,z) 
0~ Qcx,y,zJ If one substitutes Eq. (1) into Eq. (14) using Eq. (2), one finds that the 
thermal moment is proportional to the diflerence in pump profiles, i.e. MT = go(y) - g,,(y). 
Consequently, small uncertainties in the values of go and g,, can lead to large uncertainties 
in the thermal moment, and hence the amount of deformation. Since the steering of the 
laser beam is driven by the curvature of the laser slab, it follows that the phase front, which 
is the integral of the beamsteering, is proportional to the gradient of the displacement, or the 
integral of the thermal moment. 

With our 2-D ray-trace code, we can match the gain profile across the aperture to 
within 1%. Because of ASE within the laser slab, we can vary the pump profile by 2% and 
still be within 1% in the gain coefficient. Consequently, if we take the pump profiles 
shown in Fig: 1, and assume a worse-case uncertainty of 2%, it can be shown that the 
variation in the peak-to-valley value for the phase front can be as much as _+15%. 

3. Comparison with AMPLAB experiments 

In this section, we present comparisons of experiments performed in AMPLAB 
with the model described in the previous section. Unless otherwise mentioned, all 
comparisons are done at the time of peak gain at an explosion fraction of 0.2. As shown in 
Fig. 6, the OPD is calculated over the entire aperture. However to facilitate making 
comparison with the data, we shall show horizontal lineouts of calculations and 
experiments. These lineouts were taken at the vertical midplane of the aperture. 

In Figs. 7(a) and (b), we show the comparison between the calculated and 
measured phasefront (essentially the negative of the OPD) for the Diamond and X 
configurations in AMPLAB. Also indicated on the experimental curve is a typical value for 
the error in the measurement. As may be seen, there is excellent agreement in both 
configurations over the entire aperture. 

In Figs. 7(c) and (d), we show the calculated and measured phase front for the 
three-slab-long and interior configurations respectively. As indicated on the graph, the data 
for the interior configuration was interpolated from the measured Diamond, X, and 3-long 
data using the following algorithm: 

(16) 

where $3 is the measured 3-slab-long phase in waves and all other phases are in 
waves/slab/pass. As can be seen from the figure, there is excellent agreement between 

c calculation and measurement over the entire aperture. 

Another check on the model is to calculate the wavefront distortion at times other 
than the time of peak gain. The resuls of these calculations, and comparison with the 
measurement, is shown in Figs. 8(a)-(f) (Fig. 8(b) repeated for ease of comparison). In 



these experiments, we measured the prompt wavefront distortion at 100,200,300, and 
500 ps after the time of peak gain. As may be seen, the amount of wavefront distortion 
continues to increase after the time of peak gain up to 500 l.t.s. In fact, the peak-to-valley 
value of the wavefront distortion is about 3x greater at tpeak gain I- 500 l.ts than at tpe, gain. 
The agreement of the model with the measurement is excellent, matching both the 
magnitude and the shape of the wavefront at all times. 

4. Summary and conclusions 

We have presented the results of detailed analysis and modeling of the AMPLAB 
data. The table below summarizes our analysis of the AMPLAB data: 

Configuration Meas. $ - horiz. Calc. I$ - horiz. 
component (wave/slab/pass - 

(waves/slab/pass) LG-770) 

Diamond .22 1. .03 .21 zk .03 

X .29 -t .03 .27 31 .04 

Interior . .18 ?-: .03 .16 zk .02 

We have also presented a description of our prompt pump-induced wavefront 
model. This model calculates the wavefront distortion due to mechanical deformation and 
refractive index changes due to temperature and stress. We have benchmarked the code 
against AMPLAB measurements and will be using it to predict the wavefront distortion for 
the NIF amplifiers. 
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Flashlamps 

Fig. 1 Plan view of multi-segment amplifer showing geometry 
of Brewster-angle laser slabs. Surface distortions (greatly 
exaggerated) caused by uneven pumping. 
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Fig. 7: Measured and calculated wavefront, horizontal component - AMPLAB: 
(a) Diamond configuration, (b) X configuration. Error bar shows typical 
error for measurement. 
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(b) t = tpeak gain + 0.1 ms 
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