Update on Terrestrial Ages of Antarctic Meteorites

K.C. Welten, K. Nishiizumi and M.W. Caffee

This article was submitted to 31st Lunar and Planetary Science Conference Houston, TX March 13-17, 2000

January 14, 2000

U.S. Department of Energy

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information P.O. Box 62, Oak Ridge, TN 37831 Prices available from (423) 576-8401 http://apollo.osti.gov/bridge/

Available to the public from the National Technical Information Service U.S. Department of Commerce 5285 Port Royal Rd., Springfield, VA 22161 http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department's Digital Library
http://www.llnl.gov/tid/Library.html

update on terrestrial ages of antarctic meteorites. K. C. Welten¹, K. Nishiizumi¹ and M. W. Caffee², ¹Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450, USA (e-mail: kcwelten@uclink4.berkeley.edu), ²CAMS, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA.

Introduction: Terrestrial ages of Antarctic meteorites are one of the few parameters that will help us to understand the meteorite concentration mechanism on blue-ice fields. Traditionally, terrestrial ages were determined on the basis of ³⁶Cl in the metal phase, which has an uncertainty of about 70 ky. For young meteorites (<40 ky), the terrestrial age is usally and most accurately determined using ¹⁴C in the stone phase. In recent years two methods have been developed which are independent of shielding effects, the ¹⁰Be-³⁶Cl/¹⁰Be method and the 41Ca/36Cl method [1,2]. These methods have reduced the typical uncertainties in terrestrial ages by a factor of 2, to about 30 ky. ³⁶Cl/¹⁰Be method is quite dependent on the exposure age, which is unknown for most Antarctic meteorites. We will therefore also attempt to use the relation between ²⁶Al and ³⁶Cl/²⁶Al to derive a terrestrial age less dependent on the exposure age. We have measured the concentrations of cosmogenic ¹⁰Be, ²⁶Al and ³⁶Cl in the metal phase of ~70 Antarctic meteorites, from more than 10 different ice-fields, including many new ones. We will discuss the trends in terrestrial ages of meteorites from different ice-fields.

The three terrestrial age methods discussed above are all based on the metal phase. Some meteorites do not contain metal or the metal has mostly been converted to weathering products [3]. For these meteorites, the stone fraction can be used to determine the terrestrial age, but in recent years, the concern has grown that even Antarctic meteorites are not a closed system with respect to cosmogenic nuclides. For instance, in the case of ¹⁴C, it has proven important that meteorite finds are treated with phosphoric acid to remove terrestrial carbonate weathering products [4]. It was also shown that the cosmogenic nuclide record can be altered dramatically for extremely weathered chondrites from Roosevelt County, New Mexico [5]. These weathering effects do not only include leaching of ³⁶Cl from the stone fraction, but also a concentration effect of ¹⁰Be and ²⁶Al, which are retained in the weathering products, whereas major elements, such as Si and Mg. are lost [4]. Such dramatic weathering effects are not expected for Antarctic meteorites, but it has been speculated that some Antarctic meteorites may be contaminated with meteoric (atmospheric) 10Be, absorbed from meltwater during exposure of meteorites on the ice surface [6]. We started some leaching experiments on Antarctic meteorites to evaluate the concerns of possible contamination with meteoric ¹⁰Be.

Experimental Procedures: For the leaching experiment, we analzyed an exterior and an interior chip of ALH 83100, a 3 kg CM2 chondrite. This meteorite was selected because of it low ¹⁰Be content of 2.8 dpm/kg and its near-absence of metal. Samples of about 100 mg were first leached for 10 min. in an ultrasonic bath with 0.1N HNO₃, then with 1.5 N HNO₃ in an ultrasonic bath for 30 min. Following each leaching step, the meteorite sample was rinsed with deionized water and ethanol in an ultrasonic bath. For each leaching step, we added about 0.75 mg Be carrier. After leaching, aliquots were taken (of the solution) for chemical analysis, and the Be, Al and Cl fractions were separated and purified. The concentrations of ¹⁰Be, ²⁶Al and ³⁶Cl were measured at the LLNL-AMS facility [7].

The ²⁶Al-³⁶Cl/²⁶Al Method: We used our existing ²⁶Al and ³⁶Cl data, measured in iron meteorites and in the metal phase of stony and stony-iron meteorite falls as well as data from finds with known terrestrial ages, (e.g. [2]). The combined dataset gives a relatively good correlation (R=0.87), which shows a little more scatter than the the correlation of ³⁶Cl/¹⁰Be vs. ¹⁰Be [8]. The scatter in Fig. 1 is mainly observed for iron and stony-iron meteorites and may be attributed to the contribution of phosphorus to the ²⁶Al production. The best fit polynomial line follows the relation: ³⁶Cl/²⁶Al= 7.82 + 0.22*(²⁶Al) - 0.17*(²⁶Al)².

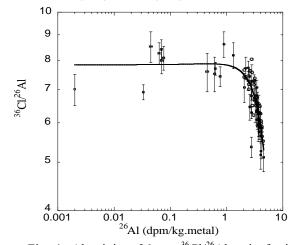


Fig. 1. Aluminium-26 vs. 36 Cl/ 26 Al ratio for iron meteorites and metal phases of stony and stony-iron meteorites. For meteore finds, measured 36 Cl and 26 Al concentrations were corrected for terrestrial age.

We will use this relation to determine the terrestrial ages of Antarctic meteorites. In order to get reliable values for ²⁶Al in the metal phase we measured the concentration of Mg in the dissolved samples by atomic absorption spectroscopy. In this way, we could estimate the silicate contamination and correct for the amount of ²⁶Al from silicates.

Terrestrial Ages: For most Antarctic meteorites, the $^{36}\text{Cl}/^{26}\text{Al}$ ages agree well with the $^{36}\text{Cl}/^{10}\text{Be}$ ages. For meteorites with short exposure ages, the $^{36}\text{Cl}/^{10}\text{Be}$ ages are lower than the $^{36}\text{Cl}/^{26}\text{Al}$ ages. The $^{26}\text{Al}/^{10}\text{Be}$ ratio in the metal phase gives a first estimate of the exposure age, which leads to more consistent terrestrial ages. For 48 out of 67 Antarctic meteorites the terrestrial age is below 100 ky (Fig. 2).

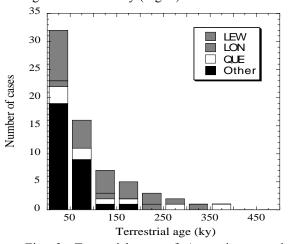


Fig. 2. Terrestrial ages of Antarctic meteorites from Lewis Cliff, Lonewolf Nunatak, Queen Alexandra Range and other stranding areas.

Meteorites older than 200 ky are only found on the Lewis Cliff (LEW), the Foggy Bottom (QUE) and the Lonewolf Nunatak (LON) stranding areas. The high terrestrial ages of LEW meteorites confirm earlier measurements [6,9]. The high terrestrial ages (up to 400 ky) of OUE meteorites are not surprising, since this stranding area is close to the LEW area and in the past decade several thousand meteorites have been recovered from the moraines and ice-fields near the Queen Alexandra Range. However, the high terrestrial ages of the LON meteorites (3 out of 4 are older than 100 ky), are most interesting, since so far only 10 meteorites were recovered from this stranding area, which is located about halfway between the Allan Hills and Lewis Cliff stranding areas. The high terrestrial ages and the fact that all of these meteorites were quite large (between 100 g and 10 kg), suggests that many more smaller meteorites may be recovered from this relatively new stranding area, which was visited only once, in 1994.

Leaching experiments. The first preliminary results of the leaching experiment are shown in Table 1. The data show a slight excess of ¹⁰Be in all leach fractions, relative to the bulk value of 2.8 dpm/kg. However, this may be due to leaching of ¹⁰Be from small silicate grains, which did not completely dissolve, so it is not necessarily an indication of meteoric ¹⁰Be. This is confirmed by the fact that the leach fractions from the exterior sample do not show higher ¹⁰Be than those from the interior sample. AMS measurements of ²⁶Al and ³⁶Cl are in progress, whereas additional leaching experiments with milder reagents and other meteorites are being planned.

Acknowledgments. This work was supported by NASA grant NAG5-4992, NSF grant OPP-9316272 and was performed under the auspicies of the D.O.E. by LLNL under contract W-7405-ENG-48.

References: [1] Nishiizumi K. and Caffee M. W. (1998) *Meteoritics & Planet. Sci., 33,* A117. [2] Lavielle B. et al. (1999) *Earth Planet. Sci., 107,* 93-104. [3] Welten K. C. (1999) *Meteoritics & Planet. Sci., 34,* 259-270. [4] Bland P. A. et al. (1998) *Geochim. Cosmochim. Acta* 62, 3169-3184. [5] Welten K. C. et al. (2000) LPI Tech. Rpt. (in press), [6] Welten K. C. et al. (1999) *Meteoritics & Planet. Sci., 34,* 559-569. [7] Davis J. C. et al. (1990) Nucl. Instr. Meth. B52, 269-272. [8] Nishiizumi K. et al. (1997) *Meteoritics & Planet. Sci., 32,* A100. [9] Nishiizumi K. (1995) LPI Tech. Rpt. 95-02, 53-55.

Table 1. Concentrations of ¹⁰Be in a bulk sample as well as in leaching fractions of interior and exterior samples of ALH 83100.

Sample	Leach	Dissolved	10 Be
ALH83100	solution	(mg)	(dpm/kg)
#191 (ext.)	$0.1N\ HNO_3$	12	3.5 ± 0.1
#191 (ext.)	$1.5N\ HNO_3$	60	3.2 ± 0.1
#192 (int.)	$0.1N\ HNO_3$	18	3.6 ± 0.1
#192 (int.)	$1.5N\ HNO_3$	35	4.0 ± 0.1
#76	bulk	926	2.8±0.1