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The algebraic multilevel it,eration method, AMU, is a recursively defined method 
to construct. spectrally equivalent preconditioners to a sequence of symmetric and 
positive definite matrices, corresponding to a number of levels with increasing de- 
grees of freedom, such as arises for a sequence of nested finite element meshes, The 
matrix sequence is connected by the assumption that, the Schur complement., fol 
t.he corresponding two by two partitioning of t,he matrix on any level, is spectrally 
equivalent t,o t.he matrix on the next lower level with bounds which hold uniformly 
for any number of levels. It was originally presented for matrices for which there 
exists a hierarchical basis matrix form with an explicitly given transformation ma- 
rrix between the standard form and the hierarchical form. This case allowed for 
arbitrary perturbations of the matrix block, corresponding t,o the added degrees of 
freedom, independent of the Schur complement. 
For more general matrices, the spectral equivalence still holds if the perturbat.ion 
of the above block diagonal matrix sat,isfies a cert,ain spectral relation t,o the Schur 
complerncnt. By solving the arising syst,ems for this block with sufficient accuracy 
one can come arbit,rary close t,o the condition number for the two-level method 
with exact such blocks. 

el Introduction 

The computa.tional complexity when solving large sparse systems of linear 
equa.tions ca.n grow rapidly with problem size unless a proper solution method 
is used. Ideally, we want a solution method whose complexity grows propor- 
tionally to the order n of the system, i.e. is of optimal order. To solve a, linear 
system -4~ = b, where .4 is symmetric and positive semidefinite, we shall 
consider the case where A is the final nmtrix .AcJo) in a. sequence of matrices 
{A(“)}, .-I(“) E L(R’lk, R.‘““), lc = 0, 1,. . , Jo for a number of Jo levels and 
718 > 71&l . 011 each level, the matrix is partitioned in a. two by two block 
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form 

A(k) = .4(,“) A(,;) [ 1 } nk - nkel 
4!“) A!“) } 7tk-1 

21 2 

of dimensions as indicated. Note tha,t 4p’ has the sa.me dimension as Ack--l). 
In certa.in finite element a.pplications the matrices a.re constructed for a se- 
quence of nested meshes while in other applications the nmtrices must be 
constructed algebra,ically during a preprocessing phase. The matrices in the 
sequence are connected via the Schur complements 

as the ba.sic assumption made is that SA(~.) on level k: is spectrally equivalent 
to the matrix A(“-‘) on level Ic - 1, with spectral equivalence bounds which 
hold uniformly for all levels. To solve systems with .4(k) we shall use the 
algebraic multilevel iteration (AMLI) method. The Ah/IL1 method wa,s first 
proposed in [lo, 111. 

The method is based on a. preconditioner Jr (‘) which is constructed as 
an approximation of the block factoriza.tion 

where ;1\“’ is replaced with a. preconditioner AI,‘“’ and S/L(k., is a.pproximated 
with a certain ma,trix polynomial, involving the preconditioner M(“-‘1 to the 
previous level matrix ‘4ck-‘). In this way, the preconditioner is not defined 
explicitly but only by recursion via the given levels. The preconditioner is 
normally used with the conjuga.te gradient method. 

In the original papers the method was presented for finite element mat,rices 
and basis functions for which a. strengthened form of the Cauchy inequality 
holds, 

4% u) F ?{a(% u)a(v, u)) $7 for all u E T,i.- 1 a.nd ZJ E Vk \&- 1, 

where Vk denotes the finite element space on level k, and n(., .) is the symmet- 
ric bi1inea.r form corresponding to the given differential operator. Here and in 
what follows, by VA. \ Vj-1 we will denote a complementary spa.ce cr/,, i.e., a. 
spa.ce such that VA. = Vk-1 @ Wk. 

It wa.s shown t1la.t the method had a.n optimal order under quite general 
conditions. In this ca,se there is no restriction on the perturbations Ad,(“) of 
AI”). Here a. survey of this method is given and it is then shown how it can 



be extended to more general positive definite matrices. In the latter case the 
perturbations n/I,(“) must satisfy a certain rela.tion to the Schur complements. 

e2 The strengthened Cauchy inequality 

In the original version, a sequence of symmetric positive definite sparse 
rrmtrices {14(k)}$, were given and related variationally, i.e., 24(k-1) = 

J’.“’ 
(I~~,)*~4(“)1~~, where 1:-i = ri41 , 

[. I 
where Ik-i sta.nds for the identity 

operator a.t level k-l and Jji’ is typically an interpolation opera.tor from 
the current coarse to the new components of the solution vector on the next 
finer level. A common example of such ma.trices are sta.nda.rd finite element 
nmtrices, defined via a. bilinear form a(~, u), U, v E H’ (0) and basis functions 
{pi}, wi E H’(O). 

For the a.nalysis of the method we will need the transformed matrices 

‘i(“) = JTA(“)J, where J = [i”’ fj’1-j = [ [ :*‘I ,lkpl] and I,(“) is iden- 

tity operator on the a.dded vector spaces. It follows tha.t Lz(k) has the following 
two-level block form, 

jp) = Ai”) ii;“,’ 1 1 j-g”’ d(k-1) ’ 
21 d 

(1) 

-(k) _ where .4,, - Ai2 + AlI J,, . (L) Since the lower left block of a;?(k) equals L4(k-1), 
the transformed ma.trices are called two-level hierarchical basis (HB) ma.trices. 
An elementary computation shows tha.t S,b,, = SAC”.), where S,b&.) is the 

Schur complement of Lz(k), Sk,,, = a4(k-1) - .xyr).-l\‘)-‘.T’,t’. Therefore, the 
following relations hold, 

d(k) = p 
1 

*p’ = ‘*4(h-l) 
2 (2) 

q&k, = SAP.) 

The hierarchical basis ma,trices a.dmit the following strengthened Cauchy- 
inequality, 

VTz;n(“)W 5 y VT $6.) ( . v) + (Ww)w)+, forallv= [;‘I, w= [“VI, 

(3) 
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for some y, 0 2 y < 1. 
For finite element stiffness ma,trices A ck) it turns out that the consta.nt y ca.n 
be determined locally, elementwise, see 114, 1, 7, 17, 51. For such matrices, 
corresponding to tria.ngulations obtained by successive refinement genera.ting 
geometrically similar elements, one can prove that y remains strictly less than 
one, independently of the refinement levels Je > 1. Actually, in the analysis 
one needs the following readily proven rela.tion, 

(l-,-+;A(“-‘)v2 <_ v.~S/,(+~ 2 v.~A(“-‘)v2, for ah vz. (4) 

To illustrate values taken by y consider piecewise linear (p = 1) and quadratic 
(I-, = 2) b.. ’ f t dsrs UIK ions a.nd the bi1inea.r form corresponding to a diffusion 
problem, on a tria.ngula,r reference element E, 

where Er = 2, Zq = 7J, 0 < 5 < 1, 0 < c < 1 and the coefficients “ij (where 
aij = eji) depend on the coordirmtes, i.e., equivalently on the a.ngles in the 

triangulation and on the given diffusion matrix 
ii,, z&p [ I zi2, 222 . 

Theorem 2.1 [3]. C o,nsider a sequ.ence of piecewise linear and piecewise 
qu.ndmtic finite element methods for nested meshes. Then the comtnrlt y in 

th,e strengthened CBS inequ.ality satisfies 

ad 7:;' = $7; for p = 2, where ?iij = n+j/(allazz)f and Z = 7ill + El:, + &. 
In particular, $ 5 $ < P for any triangu,lation,. 

Theorem 2.1 ca.n be used in particular to show how y” depends on the 
a.ngles in the triangula.tion. Using a,n algebraic deriva.tion such a. result was 
derived alrea.dy in [17], for the differential opera.tor $$ + $ and a general 
triangular mesh. For a triangle T with a.ngles Si(r), arr = 1, a22 = 1, ~12 = 0, 
using a. different method of deriva.tion, it was shown tha.t 

3 3-g 
+ = 4 - 2[(4g - 3); + 31’ 

where g = rnaxc: cos’ 0i. Hence i 5 g < 3, so $ 5 7: < i. The upper 
bound 7; = 2 is taken only for a degenerate tria.ngle where the maximum angle 
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equals K, so g = 3. The value y’ = i is taken for any right angled triangle, 
including a degenerate with a zero angle. The sma.llest value y” = ,$-is taken 
for equilateral triangles where g = $. Our result shows more generally that 
these bounds hold for an arbitrary second order elliptic operator. The upper 
bound follows from ?;‘ta < 1 and the lower bound is taken when I’ll = Zg2 = 1 
and ?ill = -$. 

e3 The two-level preconditioning methods 

There a.re two major preconditioning schemes to solve the block pa.rtitioned 
algebraic system. 
(i) M&$icative scherrle [7] 
This is ba.sed on the exact, block matrix factorization 

Here -41 is replaced with some a.pproximation Ml, by (2), S equals 

and is replaced with some spa.rse approximation M.J,, such as A(“-‘) and the 
preconditioning takes then the form 

The action of II”,~:~ requires two inversions of Ml, an inversion of Ail, and a. 
multiplica.tion with L412 and ‘421 . 

(ii) Additive scheme [14], [7] 
To be efficient this requires the use of the transformation ma.trix .I and the 
iterations are performed via. the hierarchical basis fmlction matrix (which, 
however, need not be formed explicitly) 

where .TI = ‘41 22 = .4(k-1) and dia,g (-T,, .$;i,) is spectrally equivalent to *?. 
Here Al may de replaced by MI a,nd A ‘- (’ I) by some approximation M, to 
form the preconditioner 
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Clea,rly, the action of n/r,-,‘, requires a, single inversion of the blocks MI and 
A/12. The following spectral relations hold. 

Theorem 3.1 Assame, thut the following condikions are satisfied: 

V:‘A,Vl 5 vp!L*vl < (1 + Sr)v;rArv, for all v1 

v:fA2v2 5 v~A!I~v,, < (1 + &)vTA2v2 for all v2, 

wh,ere 61 and 82 o.re sorme positive constants. Then the following inequalities 
hold: 

C,,,,[V:l’AV 5 VTAI,IL,fV 5 C,,L,,VTAV for all v, 

GdrlV _ TAV < VTM& v < CflddvTAv _ for all v, 

where 

cm/f = 1, 

C nrlrl = ,--)’ J- { 1 + $ [6, + 62 + J(&-S# + 4(l+sI)(l+sf)y’]} . 

Frequently, ,Ar is similar to a mass matrix and AJr may then correspond to 
a simple smoother, possibly even A/r, = diag(Ar ). By performing a. sufficient 
number of such smoothing steps, 61 can be made arbitra.rily small. M2 corre- 
sponds normally to an approximation of A(“-‘), possibly defined recursively 
via. a. multilevel a.pproach. By making iVf2 sufficiently close to A(“-‘), & be- 
co~nes arbitrarily small. When br = 62 = 0 Theorem 3.1 shows tha.t the 
condition numbers become 

For a triangular mesh a.nd a general second order diffusion opera.tor with 
constant coefficients on each element of the coarsest mesh, as follows from 
Theorem 2.1 these condition numbers sa,tisfy 

1.6 5 &l < 4, 4.16 /Q < 14. 

Remark 3.1 Icn many practical problems Al is not well-conditioned with re- 
spect to so’me problem parameters sv.ch as anisotropic di@sion coeficients or 
rrearly-degenerate triangles. In such cases one mu.st constrxct more sophisti- 
cated approximations Ml of ‘41, see [9] f or a discussion of this topic. 
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e4 Extension to the Multilevel Case. Polynomial 
Stabilization Procedures 

The two-level methods could be extended to multilevel methods by simple 
recursion, letting M.jk) = M(k-l) or some polynomial function of M(“-l). 
However, a.s will be seen in Section 5, this does not necessarily preserve the 
a.dvantageous condition numbers given in Theorem 3.1, which permitted ar- 
bitra.ry perturbations of the matrix block /l\“‘. One way to ha,ndle this is to 
base the method on hiera.rchical basis function ma.trices or, at, least, let the 
transformation matrix J be involved in the method. 

Let then {I/k} be a sequence of finite element spaces corresponding to a. 
ncst,ed sequence of finite element meshes. 

Since the hierarchica. matrices are less spa.rse than the standard basis 
function matrices, it is desirable to still use the latter in the a.ctual implernen- 
tation of the method. This ca.n be achieved a.s follows. 

Multiplicative rrdtilevel preconditioner 

Definition 4.1 

l Let AI(O) = A(O). 

l For Ic = 1,2,. . , Jo, assw.rning that A@ 
A$“- 1) 

k-1) has been, defined, define first 

f 

l Tiler1 

where 

(5) 

Here n/r(‘-‘) is an approxima,tion of AtkP1)-‘. It follows tl1a.t the precondi- 
tioner Ad(“) is only implicitly (recursively) defined. 

Further, P,,k are given polynomials of degree uk which are normalized, 
P,,, (0) = 1 and should be chosen such tha,t max IP,,& 1 is as small as possible 
011 t,he spectrum of Ad tk--l)-‘~4tk--l). Clea.rly, the sma.ller the norm of P,,, 
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on the a.bove spectrum, as closer Gck-‘) is t,o .4ckP1) and, hence, to the 
two-level method. As it turns out, there is no loss of efficiency by choosing 
0 5 P,,k (t) .< 1 with max PVk (t) a.s small as possible on the spectrum. With 
this choice and a.ssuming vrM,(“)vl 2 vy.-l(“)vl, for all v1 E R”L,-‘Lk,-~, it 
follows 

vTA4(“)v > v7’A(“)v, for all v E R”“. (6) 
If v,+ = 1, we let then Pu, (t) = 1 - t. 

The rea.son for perturbing the off-diagonal block matrices as done in (5) 
is t,ha.t in this way 

Aj$k) - J(# Alt”‘J(“) 

ta,kes the form 

(7) 

which follows from an element,ary computa.tion. Hence n?(“) can be considered 
as a. precoftditiorier to -Stk) and the extreme eigenvalues of Arc”)-’ .A(“) equal 
those of Al(“)-’ 2?;l^(k). Since the off-dia.gonal blocks in G(k) equal those in 
‘T(k) the estima.te of the extreme eigenvalues of s(L)-‘LT(L) ca.n be readily 
done and although the preconditioner A4 CA’) does not involve tnatrices in the 
hierarchical ba.sis, the condition number of A1 tk)-’ ‘4(“) can now be estimated 
via the hierarchical matrix, see Theorem 4.1. 

Additicve multilevel scheme 

Definition 4.2 

where 
j$“-1, = [I _ pyk, (Ad+“-+-l))] A(k-l)-’ 

With the same assumption vTA!l(“)vl > vF.41vl we have as before 

vTAl(“)v 2 vTa4(“)v for all v E R’L,. 

For P, we take a. shifted and sca.led Chebyshev polynomial, 
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where 

E,(x) = f [(:c + &i)” + (x - J;cl>J 

i.e., T,, is the Chebyshev po1ynomia.l of the first kind. Further LII, cy > 0 is a. 
lower bound of the eigenvalues of A.l (k--L)-‘A(k--L). By (6) the upper bound 
of these eigenva,lues is bounded by t,he unit number. We ha,ve 

Assume now first tha.t IQ = V, i.e. is fixed on ea.ch level. Then the following 
holds for the multiplicative version. 

Theorem 4.1 Let A{,‘“’ be spectrally equivalen,t O.pproziinations to A(,“) such 

that, Irnifol-rnly in k, one has 

V:‘A(,“)Vl < v:‘M, (k)~l < (1 + b)v:‘,3(lb’)v~, for all VI. 

Let v > (1 - y2)-+ ~71~1 p E (0,l) h e a solution of the inequality, 

Thesn, the correspon&~,g AMLI preconrll.tionl.ng matrix M ck) is spectrally 
eqrr%velent to Atk) with the following hou.rds: 

v“d(“)v < v“@)v < - _ & (,, (J3J) P.-l(“‘Jv 

< ~v~,~(~)v, - for all v. 
a 

($ (hp)’ -t b) /(l- 72). 

Due to the fa.ctor (Y in cub, the same bound for v holds for any b as for 
b = 0, i.e., the inequality (8) ha.s a. solution 0 E (0,l) if v > (1 - r’)-+. 

It can be shown that for the additive version the same bounds hold as in 
Theorem 4.1 when we repla.ce & with 2. 
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Remark 4.1 (Growth of the computational complexity) 
Since P,,(O) = 1, it is readily seen that each action of M(‘-‘)-’ requires v-l 
wctions of =1(“-1) and v actions of iM(“-‘)-I . Therefore, to get an optimel 
order, O(n), n = nJ, of computationul com,plexity of each action of IdJo) 

the polynomial degree chosen mv.st be bou.nded above and reloted to the ratio 
no. / nk- l of the degrees of freedom. For a unifor-rn recursive trinngulation, of a 
plane domuin where on each new level each triangle is divided in few parts, 

it holds u < 4. On the oth,er hand, as we have seen, to get an. optimal order 

condition number, cond(AI(“)-’ .4(“)) = 0( 1) whz’ch is bo?l.nded as k + co, (we _ 
rnd ch,oose u sQ%ently large. 

It follows from the above t1~a.t the following bounds must hold to get a 
method of optimal order of computational complexity for a uniform pa.rtition- 
ing of a. mesh in a d-dimensional space, d = 2 or d = 3, 

1 1+-r 

Jr-q 
<v<2”, ___ 

J- 1-Y 
< u < 2” 

for the multiplicative and additive met,hods, respect,ively. Since y’ < i for any 
tria.ngula.tion a.nd any diffusion operator it suffices to take v = 2 when rl = 2 

for the first method. For the second method we musty choose a triangulation 
a,nd restrict the diffusion operator so tha,t, y < 2, in which ca.se we ca.n take 
v = 3. For problems in 30, the restrictions are more severe. 
The value v = 2 corresponds to wl1a.t in the context of multigrid methods are 
called a M.-cycle and v = 1 corresponds to a 1 V-cycle. 

As was not,ed in [19], [G] and [15], tS 0 re1a.x the a.bove restrictions on v 01 

y one can better let v = 1 on most levels and stabilize the condition number 
on ccrta.in levels using polynomials of sufficicnt,ly high degree there. The use 
of such polynomials correspond to using inner iterations. .4s was shown in 
[3], [4], [9], it is th en most efficient, to let t,he levels (k,) where stabilization, 
or inner iterations, will take place be determined as follows, 

k s+l = (1 + fi’sk, 

where ci,+l = *rj, s = ko,ko + 1,. . s ,J - 1. Here q = h loga/logpO, 
where po is a lower bound on the a.verage increase of degrees of freedom, i.e. 
(nk,+, /nk,) l’(ka+l-L”) > po, and 

is the average condition number between the two levels. Here Ad(“~+l~“‘s) 
denotes the block dia.gonal preconditioner between levels k,?+l and ,&. 

) AMLI’erlrrrrrcl,th: submitted to World Scientific on December, 1, 1999 111 



From the definition of MC’;) it follows tha.t the computa.tional complexity of 
one action of the corresponding preconditioner from level k,?+l to k, is 

Here c is a consta.nt which depends on the sparsity of the matrices ,4(“), i.e. c 
is a.11 upper bound of the a,verage number of nonzeros per row in .4\“) for all Ic. 
As shown in [3], [4], [9], if q < 1 it follows that, 01~ + 0 and the computational 
complexity becomes asymptotically of optima.1 order. 

In general, (T is not known but can be approximated using values for a. 
regular mesh refinements, where both po a.nd y a.re known. Furthermore, it 
turns out that the method is quite insensitive to the choice of stabilization 
levels, see [9]. Alt,ernatively, one may use the parameter-free AMLI method 
of additive type as proposed in [12]. 

e5 The AMLI method for more general positive definite 
matrices 

In this section we consider the construction of an Al\,ILI method for genera.1 
positive definite ma,trices, i.e., without assuming any underlying hierarchy 
of meshes and thus avoiding a.ny (implicit or explicit) transfornmtion to a 
corresponding HB block structure of the matrices. It will be shown that in 
order to construct an optimal order preconditioner the approximations BI”) 
to -4;“” must be related to the Schur complement,s S,.L(k.j in a certain way. 
It, suffices to consider the two level form of the method a.s the multilevel 
extension can be done as shown in Section 1 For convenience, we delete 
then t,he superscripts (Ic). 

Consider the preconditioner in the block mat,rix factored form 

where B1 is an approximation of 41 a.nd Sn is an approximation of 5’~. Note 
that 

so SB is the Schur complement of B. 
We assume t,ha.t 131 is spectrally equivalent to -41 and S,j to S,.l a.nd that the 



following inequalities hold for some ,L3 2 1, 71 2 1. 

/hTAp, 2 v’;B,vl > vl. T d1 vI, for all v1 E R”k-‘Lk-l 

qv~S,lva 2 vTS~v2 2 vTS,~V~, for all vz E R”&-l, 

(10,i) 

(10,ii) 

We shall a.lso assume tha.t 

CYV~S,~V~ >_ vTSavz > vrS~v2, for a,11 ~2, (10,iii) 

where Q 2 1 a.nd the left, inequality is sharp, i.e., there exists a vector 72 such 
t11a.t 

&S,& = q!+$G,. 

The right inequality in (iii) follows from the right incqua,lity in (i), beca.use 

(i) implies v TaTv 2 vT,4v for all v = v1 
[ I Vz 

, and hence vrS,qv.~ 2 v~S,~v2. 

As we shall see, 71 will be a lower bourld for the estimate of the condition 
number of B-‘=1. The value of 71 taken will depend on both the accura.cy of 
t,he a.pproxima,tion of SO to 5’~ and of Bl to ‘41. More precisely, the latter 
dependence follows from 

I) > 1 + sup 
qsj$ - S;r)v2 > 1 + ~$4~~ (A;’ - B;‘).-l,p’a 

(11) 
V? vg,.,v,, - v$s,p’2 

where v’:! is the cigenvector for the smallest eigenvaluc of S,.r. 
In general, mlless SB = S,q, a strict inequality cy < 71 holds. Further 0 = 1 if 
b = 1 and 0 is rclatcd to /3 in the following way. By (lO,iii), 

where 

1 AMLI’enurnatlr: sulmitted to World Scientific 07). Dece7rrbe7~ 1, 1999 13 1 



Here q ca.n ta.ke la,rgc va.lues for some vector, typica.lly for a “smooth” vector 
close to the lowest ha.rmonic vector. However, for the pa,rticular vector 7.2 it 
ca.n be expected tha.t q ta,ke moderate values. 
It is further seen from (11) that for (ii) to hold for a not to0 large consta,nt 
7, Bl must be rela.ted to -41 so tha.t 

01 

for some “smooth” vector v2 such a.s the eigenvector to the smallest, cigenvalue 
of S,.I . Otherwise 

v;(s,q - SA)v2 
vTs,,va 

z q(v.j)(l - p-‘) 

where q(vp) is large, because v.~S,~v~/v:f‘v~ is small. In this ca.se 77 would 
be much larger than 1 - p-‘. The conclusion is that in order for B in (9) to 
be an efficient preconditioner for a general spd ma.trix z4, the approximation 
Bl of -ill must be related to the Schur complement S,A, a.nd in particular, the 
action of B,’ must be close t,o t,he act,ion of -4;’ for “smooth” vectors. 

The inequa.litics (lO,i-iii) imply the following spectral relation between =I 
a.nd B, see [13]. 

Theorem 5.1 Let (lO,i-iii) /rold. Then 

v7’*4v 5 V’BV < KV?4V, for (111 v 

K 5 /? + ~[7/--l+(tr-2)(/j-l)]+~J[7]--1+(~--2)(ijj--)j2+3P((y--l)(io-l). 

Consider now t,he case where the opposite inequalities hold, i.e 

P- k:‘.41v1 5 lqB,v* _ , < vTa41vl, for all v1 E R,‘lb-‘lb--l (W) 

11 -1v~s,~v2 < v:sBvj 5 v~sJ~v~, for all vs E R”“-’ (13,ii) 
(.-I 7 v2 S,.lv2 2 vTS,$v2 5 vTS,qv.~, for all v2 E R’+l, (13,iii) 
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where fi 2 1, 71 2 1 and (Y 2 1. Here the la.tter inequality is sharp for a vector 
Gz, i.e. 

a-l”T 
v.j 5,,92 = q-S,qG,,. 

The following spectral relation between 4 and B holds (see [13]). 

Theorem 5.2 Assume that (13,i-iii) hold. Then 

Pi -lvT.4v < v?‘Bv < V’AV: for all v 

where 

K 5 p + &[7j-1+ ((l--N-‘)7]-l)@-1)]+ 
&/[q-1 + ((1-a-‘)v-l)(P-l)]” + 4p(l-rY-l)7j(p-l). 

Further K < 71 if /3 = 1 and K < rj/J if cr = r]. If cy < 11 th,en K < r/p. 

Remark 5.1 The bound 710 has been derived earlier in [18] 
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