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Abstract 
Risk assessment methodologies are ready to enter their third generation. In this next 
generation, assessment will be based on a “whole system” understanding of the system to 
be assessed. To realize this vision of risk management, we have begun development of 
an extensible software tool kit. This tool kit breaks with the traditional approach to 
assessment by having the analyst spend the majority of the assessment time building an 
explicit model that documents in a single framework the various facets of the system, 
such as the system’s behavior, structure, and history. Given this explicit model of the 
system, a computer is able to automatically produce standard assessment products, such 
as fault trees and event trees. This brings with it a number of advantages relative to 
current risk management tools. Among these are a greater sense of completeness and 
correctness in assessment results and the ability to preserve and later employ lessons 
learned. 
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Abstract 
Risk assessment methodologies are ready to enter their third generation. In this next generation, 
assessment will be based on a “whole system” understanding of the system to be assessed. To 
realize this vision of risk management, we have begun development of an extensible s o h a r e  
tool kit. This tool kit breaks with the traditional approach to assessment by having the analyst 
spend the majority of the assessment time building an explicit model that documents in a single 
framework the various facets of the system, such as the system’s behavior, structure, and history. 
Given this explicit model of the system, a computer is able to automatically produce standard 
assessment products, such as fault trees and event trees. This brings with it a number of 
advantages relative to current risk management tools. Among these are a greater sense of 
completeness and correctness in assessment results and the ability to preserve and later employ 
lessons learned. 
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Introduction 
If one examines the computer security literature over the last 25 years, the methods and practices 
employed for information system risk management have changed dramatically. In her paper 
presented to the 1995 New Security Paradigms Workshop [F95], Dr. Sharon Fletcher asserted 
that risk management has gone through two generations and needs to enter its third. First 
generation approaches to risk management grew up in the era of centralized mainframes. These 
approaches assumed a fixed threat environment and measured a computing facility’s security by 
assessing how well the facility adhered to a prescribed set of safeguards. 

As LANs proliferated and computing environments became more distributed, first generation 
approaches were rendered obsolete. Distributed computing gave adversaries greater access to an 
organization’s computing resources. Second generation thinking - typified by the general risk 
framework developed in the NIST workshops IN951 - formalized six concepts in risk analysis: 
(1) assets, (2) vulnerabilities, (3) threats, (4) impacts, (5) likelihoods, and (6) safeguards. Tools 
based on this approach codify expert knowledge about relationships between these six concepts. 
To assess a given system, the analyst applies the tool’s encapsulated expert knowledge against a 
catalog of system assets to obtain a list of issues that need to be addressed. Thus, second 
generation systems began to allow the analyst to tailor assessments on a system-by-system basis. 

Third generation approaches, Dr. Fletcher suggests, should take a “whole system” approach to 
assessment. These methods, and the tools that will embody them, define systems more broadly, 
and will apply over a system’s entire life cycle. Rather than a system being merely a collection 
of assets, third generation tools will document the system’s purpose and behavior, structure, 
relationship to its environment, and history all in a common framework. Rather than supporting 
the assessment of operational systems only, Dr. Fletcher asserts that these tools will help system 
stakeholders “build the right thing, build it well, and protect it appropriately.” 

To implement Dr. Fletcher’s vision of a third generation analysis paradigm requires that we 
rethink our approach to risk management and the tools that support it. The questions of “What 
capabilities should such these tools possess?’ and “How would these tools be structured?’ 
require significant new thought and planning. Since the Fall of 1996, our organization has 
sponsored an internal research and development project aimed at answering these questions. The 
goal of this project is to produce an extensible tool kit for the support of third generation risk 
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management. Members of the research team are drawn from both the information security and 
the risk and reliability assessment communities, and the framework is intended to be usable for 
the assessment of many types of complex2 systems. This paper first summarizes our approach to 
the third generation analysis framework, and then describes how it is planned to be implemented 
in a software tool. 

A Framework for Risk Management 
The starting point for understanding the third generation approach is to define a framework that 
captures the various activities that can occur during the risk management life cycle. As this 
framework is meant to be encompassing, an activity’s presence in the framework means that it is 
used in sume assessments, but not that it will be used in every assessment. Whether or not an 
activity is used depends on what the goal of the assessment and on the nature of the system being 
assessed. In presenting this framework, we acknowledge that none of the tasks presented here is 
new. In fact, many of the tasks are taken from work done for the Commission of the European 
Communities [G92]. What is different here from what is generally found in the literature is the 
notion that all of these tasks would be performed in the context of a single system assessment. 

The framework that we use is as follows: 
Understand the system 

Understand Its Behavior 
Understand Its Physical Structure 

0 

0 

0 

Establish Surety3 Objectives 
0 Identify Stakeholders 

Elicit Surety Objectives 
Understand Component Vulnerabilities 
Characterize Threat Agents 
Assess the System 
Rank Assessment Findings 
Safeguard the System 

Understand Its Environment and Spatial Relationships 
Understand the Role of Timing in the System 
Understand the History of the System’s Components 
Understand Which System Elements Serve Protective Functions 

0 Identify Constraints on Safeguards 
0 Evaluate and Rank Candidate Safeguards 

Understand the System 
Sound assessment is medicated on the analvst understanding the svstem being assessed. 
Depending on the nature of the assessment,-the analyst mayneed to unders&d the system from 
different points of view. These include knowing what the system does and why, knowing what 
elements are used to build the system, knowing the nature of the environment in which the 
system operates, and knowing where each component in the system has been prior to its 
inclusion in the system being assessed4. 

’ By “complex”, we mean systems composed of diverse sets of technologies - not just information systems, but 
information systems AND electronics AND pumps and pipes AND ... . 

This is a term used to mean the combination of safety, security, and reliability. 
Much of our thinking regarding “understanding the system” has been influenced by the work being done at the 

Queensland University of Technology. See [C92, A94, K961. 
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Understand Its Behavior -- In many systems, the analyst’s first understanding of the system is in 
terms of the functionality that the system delivers. This understanding can be largely 
independent of knowing specifically how this functionality is delivered. This view of a system is 
particularly useful for identifying potential places to attack or protect in the system5. Questions 
addressed by the analyst in documenting this view of the system include: 

0 

0 

What functions does the system perform, and how are they aggregated? 
What “stufp’ flows6 between blocks of functionality? 
Is the functionality invariant or does it change as a result of various conditions? 

Understand Its Physical Structure -- The second view of the system documents the system’s 
physical structure. This is the classic “identify the assets” view prescribed in many fmt  and 
second generation approaches to risk management. The assets can be computing hardware, 
software, data items, people, or anything that would qualify as the product of an implementers 
hand. Once these assets and their interrelationships have been defined, the analyst specifies how 
these components relate to the functional view. Thus, the analyst must specify which flows and 
blocks of hctionality are embodied in each physical component. Note that this mapping of 
function to structure can be dynamic. For instance, in some distributed computing environments, 
a given process can move amongst several computers depending upon service conditions. 
Questions addressed by the analyst in documenting this view of the system include: 

Of what things is the system composed, and how are they interconnected? 
What are the relationships between these components? Which components exist in peer 
relationships? In systedsubsystem relationships? In “ X supports Y” relationships? 
In what physical component(s) is a given block of functionality embodied? 
Is this always the case or can this functionality move fiom one physical component another? 

Understand Its Environment and Spatial Relationships - Every physical system exists in a 
context. The nature of the environment in which a system operates can significantly impact the 
system’s surety. For this reason, an analyst may need to document the environment in which a 
system exists. This documentation consists of defining named regions in the system‘s 
environment and identifying what things populate these regions. Note that a single component 
(e.g., a cable) can exist in multiple regions of the environment, and a given region can host 
multiple components. Physical form and spatial relationships between elements can also be 
important (e.g., in a communications analysis, “Can this signal be detected at this point in 
space?’). Spatial relationships are particularly important for physical security assessments. 
Questions typically addressed in this task include: 

Is there a significant partitioning of the environment in which the system operates? 
What are the relationships that exist between these partitions? 
What elements (both inside and outside the system) populate each partition? 
What are the dimensions of each element? How do they relate to each other in space? 

0 Can the environmental and spatial relationships change over time? If so, under what 
conditions does this occur? 

Understand the Role of Timing in the System - Depending on the nature of the system being 
assessed, timing issues can play a role in determining the surety of the system. To address this, 
the analyst documents the normal, minimum, and maximum “propagation delays” associated 

This view is also usefbl when the system is completely abstract, such as in the early stages of a system’s design. 
While flows in the system may be information, they may also be material or energy. Our experience has shown 

that, in complex systems, all three types are usually represented. 
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with the various functions in the system. This information can then be used in analyses to 
determine if “race conditions” can drive the system toward undesirable outcomes. 

Understand the History of the System’s Componenfi - In some applications, the analyst needs 
to know what has happened to a component prior to its inclusion in the system being assessed 
because actions that occurred in one stage of a component’s life cycle can adversely affect its 
performance in subsequent stages. To account for these issues, the analyst can document and 
analyze a component’s life cycle. Questions that the analyst asks in this task may include: 

Could a given component in the system being assessed have been subverted prior to the 
component’s inclusion in this system? 
If so, at what points in the component’s life cycle could this have occurred? 
What is the nature of the system at each of these points (this can cause the analyst to ask for 
this new system the entire set of questions asked to understand the main system)? 
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Understand Which System Elements Serve Protective Functions - In existing systems, some 
system elements may exist solely to safeguard the system. If the analyst wishes to compare the 
effectiveness of existing safeguards with proposed changes, he may wish to remove the existing 
safeguards fiom the model and analyze a “bare” system as a “baseline” case. During the 
safeguards assessment, the existing safeguards can then be reintroduced as one of a number of 
safeguard suites to be evaluated. 

Establish Surety Objectives 
In addition to understanding the system being assessed, the analyst needs to identify the system 
surety objectives. These come in two flavors: those things that must be prevented (e.g., the 
unauthorized disclosure of a given piece of information) and those things that must be assured 
(e.g., a specified level of system availability). In defining these objectives, the analyst may first 
need to identify stakeholders, elicit objectives from each stakeholder, and then combine and 
prioritize the list of objectives. 

Identijjj Stakeholders - Since a single system can impact multiple individuals or organizations, 
an analyst may need to collect surety objectives fiom more than one stakeholder. Thus, the first 
step in establishing system surety objectives is to identi@ stakeholders. Note that the definition 
of a stakeholder can vary from system to system. In general, stakeholders can include system 
users, persons affected by the system, people who monitor or regulate its use, or entities that pay 
for the system’s development or operation. 

Elicit Surety Objectives - For each element of the system model, the analyst asks each 
stakeholder what objectives exist for that element. While some objectives will be expressed in 
terms of the physical structure of the system or its environment, most (but not all) can be traced 
back to the functional view of the system. The objectives then need to be compiled and 
prioritized. Conflicting objectives are brought back to the stakeholders for discussion and 
resolution. The objectives can be prioritized on the basis of either explicit cost metrics or simple 
negotiation among the users. Questions that the analyst asks in this task may include: 

For this element or flow, are there any things that we must prevent or assure? If so, why? 
Which of these objectives are mandatory, and which are optional? 
Do any of the collected objectives conflict? If so, how will conflicts be resolved? 
What is the relative importance of the various objectives? Why? 

Understand Component Vulnerabilities 
Just as the analyst must understand a system as it is supposed to exist, the analyst must also 
understand how its individual elements can fail or be subverted. As the system can be 



understood from different points of view (hctional, physical, etc.), this task inherently spans all 
views. In looking at the functional view, the analyst asks questions regarding the characteristics 
of abnormal flows or the effects of corrupting given chunks of functionality. In the physical 
view, the analyst catalogs weaknesses in the components and considers what other aspects of the 
physical component bear on the system’s behavior. In the environmental view, the analyst 
considers how changes in the structure or relationships between environmental elements can 
affect their behavior. Questions that the analyst asks in this task include: 

How can a flow be perturbed? How can this perturbation be caused? 
How can relationships (e.g., peer, systedsubsystem) between system elements be altered? 
What is the effect of each perturbation or change on the system and its associated elements? 

0 Can an element exist in a fault state? How does the fault state affect the element’s behavior? 
0 What immediate influences could cause the element to enter a fault state? 
0 Can a system element respond to any other flows that are not part of the normal system 

model but that cause the element to fail or be subverted? 

Characterize Threat Agents 
Once the model of the system has been elaborated to include the fault behaviors of each system 
element, the analyst has a basis for identifLing and characterizing potential threat agents. In 
identifling potential threat agents, the analyst considers each flow in the system and asks, “What 
agent is capable of producing or influencing this flow?”. Both “passive” and “active” threats 
must be considered. Passive threats often have their genesis in the environment (e.g., fire, flood, 
etc.), while active threats exhibit intelligence. While these are typically humans, they can also be 
non-living entities, such as software agents. In characterizing threat agents, the analyst always 
documents the agents’ capabilities. For active threats, the analyst also documents factors such as 
motivation and risk aversion. Questions asked by the analyst in this task include: 

What agent is capable of producing or influencing a flow or system element? 
Which elements (inside or outside the system model) could be this agent? 
What are capabilities of this threat agent?’ 
If this is an active threat agent, what are its characteristics (objectives, risk aversion, 
knowledge of the system, etc.)? 
If a threat agent has any capabilities that are not currently modeled in the system description, 
could these capabilities be significant to the functioning of the system? 

Assess the System 
Given that the analyst understands the system, knows how the components can fail or be 
subverted, and has identified system surety objectives, the analyst can assess the surety of the 
system as a whole. Assessment approaches available to the analyst come in four varieties: 
deductive logic techniques, inductive logic techniques, heuristic searching, and simulation. 

Deductive Logic Techniques - In deductive logic techniques, the analyst selects a given surety 
objective and then chains backwards (against system flows) starting from the point in the system 
where the objective manifests itself. Here the analyst seeks to determine what event sequence(s) 
could cause the objective to be subverted. Fault tree analysis is typical example of this approach. 

Inductive Logic Techniques - In inductive logic techniques, the analyst specifies one or more 
initiating events and then chains forward (in the direction of the system flows) in order to 
determine the universe of possible system outcomes to which the events can lead. Event tree 
analysis and Failure Modes and Effects Analysis are typical examples of this approach. 

’ This is done to identify those capabilities that an agent may possess but that are not documented in the set of 
capabilities defined during the cataloging of threat agents 
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Heuristic Searching - In heuristic searching, the analyst defines a threat agent that is to attack 
the system. The agent has an initial set of capabilities, some degree of access to the system, and 
one or more goals to reach. Given this, the agent begins interacting with the system model in an 
attempt to gain additional capabilities and to increase its level of system access until its goals are 
reached. 

Simulation - Simulation is used to give the analyst more insight into the system than might be 
gained through static models of the system. In simulation, the analyst sets the initial state of the 
various system elements and then “starts” the system model. The analyst can then alter specified 
parameters in the model and observe the associated outcomes. 

Rank Assessment Findings 
The results of an assessment generally consist of a set of “incident scenarios”. In the classic 
probabilistic approach to ranking, each scenario is associated with a consequence and likelihood 
of occurrence. The consequence measures (“costs”) are identified by the stakeholders (often 
through an iterative process), and are often based upon actual dollar loss values, although other 
metrics, such as lives lost or ecological damage, may be more appropriate for some systems. The 
likelihood of occurrence helps provide a context for the consequence measure. This measure 
may be either qualitative or quantitative, conditional or unconditional. It may be an actual 
frequency of occurrence or simply the relative difficulty that an attacker would have in executing 
the scenario (determined based on relationships between the threat agents and the elements that 
they attack). The consequence and likelihood values are then used to determine the risk’ each 
event sequence represents to the system. Alternatively, the analyst can choose other approaches 
to establishing an ordering of the assessment finding. Different decision theoretic approaches, 
combinations of approaches, or even “expert judgement” can be used in each situation as 
appropriate. Questions associated with this task may include: 

What are the costs associated with failure to meet this objective? 
How important is one cost relative to other costs in the system? 
In relative terms, which outcome is most at risk? 
What system elements or flows contribute most to the aggregate system risk? 
Which system element is found in the greatest number of undesirable outcomes? 

Safeguard the System 
Once a ranked list of system problems exists, the analyst can begin the process of selecting 
safeguards. This process consists of identifying any constraints that might be levied on the 
safeguards process, of identifying candidate safeguards and evaluating their effectiveness, and 
then ranking safeguard results to identify the best options. 

IdentiB Constraints on Safeguards - Typically, constraints are levied that specify some aspect 
of the safeguards that can be applied to a system. These constraints can include limitations on 
the amount of money to be spent on safeguards, constraints on reduction in system performance 
introduced by safeguards, usability requirements, power and space requirements, and legal 
requirements. The process of identifying these constraints is much like the process of setting 
surety objectives: stakeholders are identified, constraints are solicited, and a final prioritized list 
is produced through negotiation among the stakeholders. Questions addressed in this task are: 

Risk is a h c t i o n  of likelihood and consequence. Originally the simple product of likelihood and consequence, it 
is now most fiequently viewed as a more general (possibly nonlinear) function that more accurately expresses the 
stakeholders’ tangible and intangible values related to the system under analysis. It can be thought of as being 
similar to the utility function in an optimality analysis. 
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Who is impacted by the use of a safeguard at a given point in the system? How? 
What resources (money, bandwidth, CPU cycles, space, power, manpower, etc.) can be used 
in a system element to design, purchase, operate and maintain elements that support surety? 
What legal, regulatory or political constraints apply to the safeguards process? 
How firm are each of these constraints, and how will conflicts between them be resolved? 
What is the relative importance of the various constraints? Why? 

Evaluate and Rank Candidate Safeguards - Given the ranked list of problems to be solved and 
the ranked list of constraints, the analyst identifies candidate suites of safeguards to be applied to 
the system. If the system being assessed already had safeguards that were stripped out before 
assessment, then these safeguards are considered to be one candidate safeguard suite and are 
evaluated like any other suite. For each of the suites applied to the system, the analyst runs the 
same system assessments that were performed on the bare system in order to create a consistent 
basis for comparison. The ranking techniques applied to the bare system are then applied to the 
safeguarded systems. The relative mitigation effects are then assessed by the analyst, and a 
specific suite selected for implementation. Questions addressed in this task include: 

An Open Tool Kit 
To our knowledge, there is no tool available today that supports the full set of tasks specified in 
the framework. In particular, we have not found any that adopt a “whole system” approach to 
understanding the system’ nor have we found any that allow us to deal with complex systems. 
For this reason, we began our research and development project aimed at producing a tool that 
would deliver the capabilities that we have described. 

We discovered in the course of our research that concepts found in the object-oriented analysis 
arena go a long way to meeting our needs. In particular, “objects” can be used to document a 
system’s behavior, its structure, its environment, and how these different views of the system 
relate to one another. With proper structuring, objects can be used to document component life 
cycles, to capture the information needed for timing analysis, and to model the fault mechanisms 
and vulnerabilities found in system components. In fact, with the exception of those aspects of a 
model related to a system element’s physical dimensions, orientation, and location, we have 
found the language elements found in object-oriented analysis to constitute a suitable language 
for development of our risk management tool. 

Which safeguards will address the ranked system problems within the identified constraints? 
How should these individuaI safeguards be combined into suites to achieve the best 
mitigation effect subject to the constraints? 
What are the relative strengths and weaknesses of each suite? 
Which suite gives the best overall reduction in system risk? 
Which suite gives the most balanced approach to security? 

In the developing this tool, we have adopted two main philosophies. First, the tool should permit 
an analyst to use the right methods at the right time. Just as a hammer is not always the right tool 
for the job at hand, a specific assessment method will never be universally applicable. This has 
lead us to implement a “tool kit” instead of a monolithic tool. Our intent is to permit tools in the 
tool kit will be used in mix-and-match fashion and to minimize the effort required to add new 
tools in the future. Second, we believe that the folks at QUT are correct when they assert that “it 
is more productive to perform a relatively simple analysis on a comprehensive [system] model 
than to undertake sophisticated analysis of a simplistic one” [K96]. Because of this, the starting 
point of an assessment using our tool kit is the development of an explicit system model. 

The “Risk Data Repository” being developed at Queensland comes closest to what we are looking for. 9 

Page 7 



With respect to this second point, we have found that if the analyst takes the time to explicitly 
document what he understands about the system being assessed, several benefits are realized. 
First, the requirement to “hand tool” each assessment disappears or is minimized. For example, 
in fault tree analysis, the analyst begins by defining a top-level event and then works backwards 
through the cause-and-effect links to determine what chain(s) of events could result in the top- 
level event. In current manual assessment methods, each time the analyst defines another top- 
level event, he must again go through the process of tracing the causal chains back to their 
initiating events. In contrast to this, if an explicit system model has been developed, the 
generation of the fault trees can be done automatically by a computer. All the analyst needs to 
do is to identify the top-level events of interest and the computer does the rest. In fact, the 
computer can use the same model base with a range of assessment techniques. We are currently 
convinced that given a single explicit model of a system, we can automatically develop the 
assessment models for a range of techniques including fault tree analysis, event tree analyses, 
HAZOP analysis, failure modes and effects analyses, and vital areas analysis. 

The second benefit to using an explicit system model is that many of the features that people 
have wanted in assessment tools are finally realizable. In particular: 

assessmenf results become i raceabfe - a person can see how the analyst got to a particular 
set of conclusions 
there is a sense of completeness to the assessment - the use of an explicit model makes it 
possible to see what has been investigated and what has not 
it is possible to assess the correctness of the assessment - since the model is explicit, it is 
easier for system stakeholders to determine whether or not the models reflect reality 

In traditional assessment approaches most of what the analyst understands about the system 
exists only in the analyst’s head; consequently, assessment details, like how the analyst linked 
attacks to outcomes, are often hidden. Similarly, if issues seem to be missing from the 
assessment results, it is not clear whether the analyst understood these issues and considered 
them inconsequential or whether the analyst was simply oblivious to the critical facts underlying 
these issues. 

The third benefit is that management of assessment information becomes an easier task for the 
analyst. Even in small systems, the number of facts that need to be gathered and retained can be 
overwhelming. While no one fact may be difficult to understand, the sheer volume of facts can 
often make understanding the “big picture” difficult. To address this problem, object-oriented 
analysis approaches permit a system to be modeled in hierarchical fashion. When needed, the 
analyst can view a component as nothing more than a block that interacts with other blocks in a 
system. How the component operates internally is hidden when not relevant to the analysis 
being performed at the moment. At the same time, when the details of how the component 
works need to be understood, the analyst can “open” the component to investigate these details 
and, if appropriate, ignore the details of how the system outside the component operates. 

Fourth, the use of an explicit object-oriented model organized makes it possible to preserve 
“lessons learned”. In our approach to modeling, the system’s functionality and its structure are 
modeled as separate objects. For instance, a computer responsible for supporting a portion of a 
distributed application would be modeled as two collections of components: those that document 
the behavior of that portion of the application that resides on the computer and those that model 
the computer. The reason for this is that the vulnerabilities that exist in the computer and that put 
the application at risk are really properties inherent to the computer and not the application that 
the computer happens to support. By separating an application’s behavior from the components 
used to deliver that behavior, we can encapsulate what we know about component vulnerabilities 
within the components themselves and then reuse this knowledge in analyses of other systems 
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built with the same components. For example, if Windows NT is running on a computer that 
controls a manufacturing process, the analyst may discover that it is possible to corrupt the 
process by attacking the interprocess communications (IPCs) in a specific way. The effect in the 
system is to corrupt some portion of the manufacturing process, with the result that products are 
destroyed and money lost. The analyst may later assess another system that uses Windows NT 
and the same types of IPC. When the analyst adds the Windows NT component to the model of 
this new system, it brings with it knowledge of the IPC attack gained in the previous system 
assessment. Any assessment that then trace their way to cooperating processes on the NT 
platform will end up automatically linking in the IPC attack thread. 

In developing a system model, the analyst defines a network of cooperating objects. An object in 
this network can represent a block of functionality delivered by the system, a component from 
which the system is composed, or an element in the system’s environment (such as a building 
that contains system objects or a threat agent that attacks the objects). Within a view of the 
system (e.g., the system’s functions or its structure) and across views, objects communicate with 
each other. The communications within a view represent real flows in the system. 
Communications between views tend to represent “supports” relationships but can represent 
other things. For instance, a connection between two objects in the physical view of the system 
indicates that “stuff’ flows between these objects. On the other hand, the connection between a 
functional object and a physical object, like a computer, indicates that the physical object 
supports that functionality. If the computer is lost, then so is the functionality that it supports. 
Objects in a system model can also be hierarchically decomposed into constituent objects. As 
discussed above, this permits an analyst to hide details about an object within the object when 
not needed for whatever problem is currently being considered. It also makes it possible for the 
analyst to conduct an assessment without having to have all of the details about the system 
before beginning to derive results. By modeling a system in hierarchical fashion, the analyst can 
create a top-level model of the system and assess it to get an initial feel for where problems 
might exist. The objects in the system that seem to be problematic can then be decomposed and 
developed more fully as the analyst explores the details of these components. 

In our approach to modeling, when an object receives something from another object, it responds 
in some fashion. This response can include ignoring the communication, outputting its own 
communications, a n d  or changing its internal state. To capture this knowledge about an object, 
we use state charts, data flow diagrams, attributes, attribute values, and decision tables. State 
charts are used to document the fact that the way that the an object responds to communications 
can vary with time. The way in which an object acts at a specific point in time is documented 
with data flow diagrams. Decision tables are used to document the behavior of processes in the 
data flow diagrams. Attributes and their associated values are used to describe the 
communications that flow between objects and to document the internal state of the object. 

Given this type of system model, we have found that we can use the same language constructs to 
specify surety objects, to describe system vulnerabilities, to model threat agents, and to create the 
building blocks of assessment structures, such as events in a fault tree. It is this fact that permits 
us to create the tool kit in such a way that products of one tool can be manipulated by other tools. 

By the time this paper is presented, we expect to have completed a first version of the tool kit. In 
this initial incarnation, we intend to use the Rose CASE tool from Rational Software to support 
modeling of the system’s functional, physical structure, and environmental views. Custom 
applets will be used to specify system objectives and to control assessments. A risk analysis 
engine called ARRAMIS will be used to analyze fault trees and event trees pulled from the 
models developed in Rose. The process steps that address safeguarding the system will not be 
addressed due to limits on time and manpower. In this version of the tool kit, the model base 
created by Rose will serve as the tool kit’s model repository. The custom applets and ARRAMIS 
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will read from and write to this model base. In subsequent versions of the tool, we intend to 
create a separate, stand-alone repository. We have already acquired the Versant object-oriented 
database for this purpose. 

Conclusion 
Risk assessment methodologies are ready to enter their third generation. By taking a broader 
view of what constitutes a system, these methodologies increase the workload levied on the 
analyst; therefore, automation support will be a necessity. We believe that techniques developed 
in object-oriented analysis world and embodied in CASE tools can be used effectively to develop 
the explicit systems models from which standard assessment mechanisms can be automatically 
derived. One of the primary benefits of this approach will be the ability to deliver higher quality 
assessments than is possible now. This approach also makes it possible to retain (and even 
exchange) expert knowledge regarding component vulnerabilities and failure mechanisms. A 
tool intended to embody this approach to assessment is in development and an initial version of it 
should be available by the end of the current fiscal year. 
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