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Abstract 

This is the fmal report of a three-year, Laboratory Directed Research and 
Development (LDRD) project at the Los Alamos National Laboratory 
(LANL). The main objectives of this project involved deriving new 
capabilities for analyzing biological sequences. We focused on tabulating 
the statistical properties exhibited by Human coding DNA sequences and on 
techniques of inferring the phylogenetic relationships among protein 
sequences related by descent. 

Background and Research Objectives 

for the analysis of biological sequences is better insight into Human health. If you are 
lucky, a sequence of interest will closely resemble a sequence of known function, but one 
cannot count on this felicity and one must be prepared to look deeper into the 
“organization” of the sequence at hand. Similarly, it is useful to know about the different 
types of organization exhibited by various classes of sequences. 

Biological sequences are inherently difficult to analyze. An important goal 

*Principal Investigator, e-mad: dct @lanl.gov 
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Prior to our work it was not known how to capture, from examples, all of the ways 
in which coding sequences distinguish themselves from other classes of DNA sequences. 
There are a large number of ways in which sequences can be organized, and in this project 
we developed techniques for surveying these possibilities. 

There has always been a well-justified concern that there might be additional 
statistical properties of Human coding sequences than are manifest in, say, codon 
frequencies, or found by neural networks. The identification of these properties should 
improve the accuracy of gene prediction---a natural application for our results. Our 
techniques are also applicable whenever the objective is to learn the statistical properties of 
a class of sequences from example sequences. For example, computational modeling of 
many phenomena employ a \ource of “random numbers”, numbers which are supposed 
to have joint properties approximating those of independent trials. The technique we 
developed allows the measurement of the departures of the sequence of “random numbers” 
from sequences that would be obtained from independent trials. 

Based upon our rewlrs. i t  will be possible for any sample of biological sequences 
to be used as effectively ah po\\ible to learn the statistical properties of the corresponding 
class of sequences. This hnov\ ledge will enable the identification of related sequences in 
databases, even if they have little sequence similarity to the sequences in the sample. 

Importance to LANL’s Science and Technology Base and National R&D 
Needs 

This project provides supporting research for the Human Genome Project. We 
have derived new techniques that are useful for the analysis of biological sequences. 
Aspects of the functions of novel biological sequences can be inferred from insights 
derived from our techniques. Many pharmaceutical companies are searching large 
collections of molecules to find candidates for new pharmaceuticals, and there is also a 
component of rational drug design that is furthered by our techniques of sequence analysis. 

Scientific Approach and Accomplishments 

triangles, etc. In order to analyze them, it is beneficial to use combinatorial techniques--- 
well suited to the analysis of arrangements. The use of curnulants, themselves 
combinatorial quantities, is recommended for the analysis of sequences. Cumulants are 
polynomials of the moments. Cumulants of two digits equal their covariance, and 
cumulants of more digits can reasonably be thought of as “higher-order” covariances. 

Sequences are a special type of mathematical object, just like real numbers, or 
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We completed a full characterization of the stationary statistical properties of Human 
coding DNA sequences. This characterization was achieved using the sample cumulants of 
a dataset containing in-frame, nonredundant sequences, totaling over 500,000 bases. 

A with 1 1, C with 1-1, G with -1 1 and T with -1-1. This encoding maintains all of the 
information present in the sequences. With this encoding, it is reasonable to use cumulants 
on digit positions to characterize the statistical properties of a sample of sequences. For 
example, we illustrate the cumulants of four digits, where the first two digits and the last 
two digits correspond to bases from specified positions within codons. (Recall that codons 
are triples of bases for the genetic code, used to encode one of the 20 amino acids occurring 
in proteins). Figure la pertains to first bases of codons, Figure l b  pertains to middle bases 
of codons, and Figure I C  pertains to last bases of codons. Although the figures depict the 
cumulants with inter-base spacings of up to 100 bases, non-zero asymptotes obtain for 
larger spacings, a remarkable feature of DNA sequence data. The magnitude of the 
cumulant is largest for the cumulant of Figure IC, involving two third bases, because these 
are the “silent” bases of the degenerate genetic code. The cumulants for two second bases 
include a small peak at about a 10 base separation, perhaps due to correlations of 
hydrophobic amino-acids in alpha helices. It should be noted that non-coding sequences 
could exhibit only one type of base-base cumulant because there are no codons, whereas 
coding sequences exhibit nine distinct types of cumulants---the three depicted plus the 
“cross-base” cumulants. 

To accomplish this result, the bases of DNA were encoded into binary, as follows: 

In Figure 2, we depict the covariance of the third digit of a codon with the same 
digit from another codon. (Codons, having three bases, have six digits. This is the third 
digit from the left). The structure present in this trace---its peaks and valleys---would be 
impossible to obtain from any simple statistical model, such as a Markov model, but they 
are easily incorporated in our model. 

most of these involve only a few digit positions. For example, at large separations, the 
cumulants with six digits drawn from three codon bases have zero for their asymptotes. 
This parsimoniousness is the principal advantage of using cumulants to represent the 
statistical properties of coding sequences. In addition, the cumulants capture all of the 
statistical properties of coding sequences. 

We derived an expression for the probabilities of all sequences of a given 
length as a function of the cumulants of the probability distribution. This can be used to 
derive probabilities that a sequence belongs to a class of sequences---the likelihood of a 
sequence arising within each class---given the example sequences. 

Coding sequences exhibit hundreds of distinctive types of cumulants. Fortunately, 
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Hidden Markov Models have been used effectively to fit biological sequence data. 
We have studied the identifiability of such models, i.e., determining which combinations of 
models and initial conditions are inequivalent. These results should be essential for 
deriving parameters of the models from sequence data, and should be useful for related 
objectives. 

We have also developed a new, distance-based phylogeny reconstruction program. 
Molecular phylogenies (or evolutionary trees) have many uses in biology, but we are 
especially interested in using them in the statistical analysis of protein alignments to model 
protein structure and function. Existing methods are either hopelessly slow (likelihood 
methods, e.g. DNAML) or strikingly inaccurate (neighbor-joining, or NJ) for this 
application. 

but aims to approximate the likelihood function as closely as possible without greatly 
sacrificing computational speed. We have found that much of the correlation structure in 
the problem occurs in simple-weighted least-squares expressions with reduced variances, 
reflecting only the "non-additive noise" in the distance fluctuations. 

called WEIGHBOR. WEIGHBOR is much faster (> 100 times for 6 taxa) than the fastest 
likelihood progam ("FASTDNAML"), and currently has a computational complexity 
scaling as N4, N being the number of sequences analyzed. An N3 implementation, which 
would be comparable in speed to NJ, should be possible. 

Our new approach is similar in spirit to the neighbor-joining and BIONJ methods, 

Our new Weighted Neighbor-Joining method is being implemented in a program 

The performance highlights so far are: 
(1) No detectable bias in the unresolved 4 taxon case. This is also true of the 

likelihood methods, whereas NJ shows a marked bias. 
(2) Statistically significant improvement over NJ on resolved 4 taxon case. This is 

gratifying because a recent attempt by another group to improve on NJ, called BIONJ, is 
equivalent to NJ for 4 taxa. 

some 5 taxa results on 5000 simulated trees, showing the fraction of trees correctly 
recovered: 

(3) Notable improvements over NJ, BIONJ and FITCH for 5 and 6 taxa. Here are 

NJ 69.1 % 
BIONJ 77.0% 
FITCH 77.8% 
WEIGHBORl.9 8 1.6% 
FASTDNAML 81.8% 
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Recall that FASTDNAML is too slow for most applications. With 6 taxa WEIGHE3OR 
beat the other distance methods by an even greater margin, but also fell behind 
FASTDNAML by a greater amount. We are currently working on a new version 
(WEIGHBOR2.2), which we expect will close some of that gap. 

obeys the molecular clock model of evolution. Although real data do not obey this model, 
it is considered a reasonable approximation, and it tends to reduce the differences between 
the performances of the foregoing methods. 

(4) Notable improvements over NJ, BIONJ, and FITCH on an 8 taxon tree that 
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Figure 1. Cumulants of coding sequences for three selected pairs of bases are plotted in 
Figures la, lb, and IC, as functions of the spacing between the bases. The data were 
partitioned into five equal-sized blocks, enabiing the determination of the average sample 
cumuiants and standard deviations. The averages are marked with circies and oue standard 
deviation, in both directions, is indicated by the vertical lines through the circles. Figutc 1 a 
pertains to first bases of codons, Figure ib pertains to middle bases of c o d o ~ ~ ,  and Figure 
IC pertains to last bases of codons. 
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Figure 2. The cumulants of coding sequences for a seiected pair of digits is plotted as a 
function of the spacing between the bases. These are both third digits from codons: third 
from the left. The data were panitioned into five equal-sized blocks, enabling the 
determination of the average sample cumulants and standard deviations. The averages are 
marked with circles and one standard deviation, in both directions, is indicated by the 
vertical lines through the circles. 
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