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INTRODUCTION
Zirconolite is one of the major host phases for actinides in various wasteforms [1] for

immobilizing high level radioactive waste (HLW). Over time, zirconolite’s crystalline matrix is
damaged by u-particles and energetic recoil nuclei recoil resulting from u-decay events. The
cumulative damage caused by these particles results in amorphisation. Data from natural
zirconolites suggest that radiation damage anneals over geologic time and is dependant on the
thermal history of the material [2]. Proposed HLW containment strategies rely on both a suitable
wasteform and geologic isolation. Depending on the waste loading, depth of burial, and the
repository-specific geothermal gradient, burial could result in a wasteform being exposed to
temperatures of between 1OO-45O”C. Consequently, it is important to assess the effect of
temperature on radiation damage in synthetic zirconolite.

Zirconolite containing wasteforms are likely to be be hot pressed at or below 1473 K
(1200°C) and/or sintered at or below 1623 K (1350”C) [3]. Zirconolite fabricated at temperatures
below 1523 K ( 1250°C) contains many stacking faults [4]. As there have been various attempts to
link radiation resistance to structure [5, 6, 7], we decided it was also pertinent to assess the role of
stacking faults in radiation resistance.

In this study, we simulate u-decay darnage in two zirconolite samples by irradiating them with
1.5 MeV Kr+ ions using the High Voltage Electron Microscope-Tandem User Facility (HTUF) at
Argonne National Laboratory (ANL) and measure the critical dose for amorphisation (DC) at several
temperatures between 20 and 773 K. One of the samples has a high degree of crystallographic
perfection, the other contains many stacking faults on the unit cell scale. Previous authors proposed
a model for estimating the activation energy of self annealing in zirconolite and for predicting the
critical dose for amorphisation at any temperature [8]. We will discuss our results and earlier
published data in relation to that model.

EXPERIMENTAL PROCEDURE
Two zirconolite samples ,were prepared via the alkoxide route [9]. One was hot-pressed at

1473 K ( 1200°C) for 2 hours (1200 sample) and the other was sintered at 1723 K ( 1450°C) for 1
week (1450 sample). TEIM specimens were prepared by crushing material under ethanol then
passing holey carbon grids through the suspension and collecting fine particles on the carbon film.
All girds were cleaned in an Ar plasma for 5 min. using a South Bay PC 150 plasma cleaner.
Zirconolite is not the sole phase present in the fabricated material. Therefore the positions of
zirconolite grains on grids were mapped on secondary electron images (SEIS). In situ ion irradiation
of the TEM specimens was performed using a i.2 MeV modified Kratos/AEI EM7 electron
microscope (operated at 300kV) interfaced with a NEC ion accelerator in the HVEIM-Tandem User
Facility at Argonne National Laboratory. At all temperatures apart from room temperature,
temperature variation was no more than 3 K. At room temperature, the temperature was 302 K
during HVEM examination and rose to 328 K during ion irradiation. Grains selected for ion
irradiation showed many maxima in their selected area electron diffraction (SAD) patterns.
Specimens were irradiated with 1.5 MeV Kr’ ions using the procedure described by Smith et al.
[10]. For each monitored grain, between 8 and 20 negatives were taken at incremental doses. The
average of the dose at which all Bragg reflections had disappeared and the dose immediately prior
to that dose was taken to be the critical dose for arnorphisation, DC.

RESULTS
The 1450 sample basically has the zirconolite-2M polytype structure with a high level of

crystallographic perfection. The 1200 sample also predominantly has the zirconolite-2M polytype
structure but contains many stacking filLIIIS and twins on the scale of the unit cell. In spite of this
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difference in microstructure, the temperature dependence of the critical dose for amomhisation,- S
similar t’or both samples shows (see figures 1 and 2). DCis almost constant Lipto temperatures ne: r

, the critical temperature for amorphisation TC (above which recrystallisation is complete over the
entire cascade volume), then it rises rapidly.

According to current theory [8], the temperature dependence of the amorphisa(ion dose D,,
can be expressed by the following equation

‘L”=’-exp[fi+-+)l ““”””””-””
where DCis the critical dose for amorphisation, DOis the amorphisation dose extrapolated to O K, E,,
is the activation energy for self annealing, TC is the critical temperature above which
recrystallisation is complete over the entire cascade volume, k is Boltzmann’s constant and T is
temperature (T and TC are in degrees Kelvin). A least squares analysis of our experimental data
according to this equation yields the broken curves shown in figures 1 and 2, E,, vaiues 0.14 & 0.04
and 0.15 & 0.06 eV and TC values 637 A 22 and 680 A 27 K for the 1200 and 1450 samples
respectively. The E, and TCvalues of the 1200 and 1450 samples are the same within experimental
error.

DISCUSSION
S.X. Wang et al. [11] measured the critical dose of 1 MeV Kr+ ions for amorphisation of six

zirconolites of various compositions and state that their data for end-member zirconolite
(CaZrTizO,) indicate a two stage dependence. However, their contention hinges on the reliability of
only one data point, the datum at 375 K. Unfortunately S .X. Wang et al. [11] do not show error bars
or give an estimation of the reliability of their data points. Our data may or may not support a two
step dependence of DC on temperature. We will collect addtional data points and provide a full
analysis in the extended paper.

White et al. [12] measured the critical dose of 1 MeV Kr+ ions for amorphisation of
zirconolite at 20, 300 and 475 K and found it to be 7.1, 10 and 340, in units of 10IJ ions/cmz
respective y and from these data, they calculated an E. value of 0.129 eV. At any temperature, the
DCvalues White et al. [12] measured are much greater than both ours and those of S.X. Wang [6].
The reasons why White et al. [12] measured such large critical dose values are not clear and are
exacerbated by the fact that White et al. [12] did not estimate their errors.

Clinard [13] found that radiation damage induced swelling in Pu-substituted zirconolite and
that the final volume depended on the temperature at which samples were stored (not on total
storage time). At room temperature and 575 K, Pu-substituted zirconolite specimens swelled by to 5
and 4 percent respectively , while at 875 K specimens showed <0.5 percent swelling even after 600
days. In agreement with the findings of Clinard [13], the TCvalues calculated both in this study and
by S.X. Wang et al. suggest that self annealing will occur at temperatures at approximately 650 K.

Fabrication temperature and/or stacking fault disorder does not significantly affect the
response of end-member zirconolite to radiation damage. This result is significant, if it holds for
bulk samples, because it is anticipated that titanate wasteforms will be hot pressed at or below
1473 K ( 1200°C) and/or sintered at or below 1623 K (1350°C). Consequently the constituent
zirconolite in wasteforms will contain many stacking faults.
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Figures 1 and 2 show Dc vemus temperature data for 1200 and MSO samples
respectively. Dashed curves show least squares fits of data.
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