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ABSTRACT

The use of mechanical energy absorbers as an alternative to conventional hydraulic and mechanical
snubbers for piping supports has attracted a wide interest among researchers and practitioners in the nuclear
industry. The basic design concept of energy absorbers (EA) is to dissipate the vibration energy of piping
systems through nonlinear hysteretic actions of EA's under design seismic loads. Therefore, some type of
nonlinear analysis needs to be performed in the seismic design of piping systems with EA supports.

The equivalent linearization approach (ELA) can be a practical analysis tool for this purpose, particularly
when the response spectrum approach (RSA) is also incorporated in the analysis formulations. In this paper,
the following ELA/RSA methods are presented and compared to each other regarding their practicality and
numerical accuracy: '

— Response spectrum approach using the square root of sum of squares (SRSS) approximation (denoted
RS in this paper).
~ Classical ELA based on modal combinations and linear random vibration theory (denoted CELA in this

paper).
~ Stochastic ELA based on direct solution of response covariance matrix (denoted SELA in this paper).

New algorithms to convert response spectra to the equivalent power spectral density (PSD) functions are
presented for both the above CELA and SELA methods. The numerical accuracy of the three ELA/RSA's
are studied through a parametric error analysis. Finally, the practicality of the presented analysis methods
is demonstrated in two application examples for piping systems with EA supports.
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INTRODUCTION

The use of mechanical energy absorbers as an alternative to
conventional hydraulic and mechanical snubbers for piping supports
has attracted 3 wide interest among rescarchers and practitioners in the
nuclear industry (e.g., Ref. [1] and {2]). The basic design concept of
energy absorbers (EA) is to dissipate the vibration energy of piping
systems through nonlinear hysteretic actions of EA's under design
seismic loads. Therefore, some type of nonlinear analysis needs to be
performed in the seismic design of piping systems with EA supports.

The equivalent lincarization approach (ELA) can be a practical
analysis tool for this purpose, particularty when the response spectrum
approach (RSA) is also incorporated in the analysis formulations. In
this paper, the following ELA/RSA methods are presented and
compared to each other regarding their practicality and numerical
accuracy:

— Response spectrum approach using the square root of sum of
squares (SRSS) approximation (denoted RS in this paper).

~ Classical ELA based on modal combinations and linear random
vibration theory (denoted CELA in this paper).

— Stochastic ELA based on direct solution of response covariance
matrix (denoted SELA in this paper).

New algorithms to convert response spectra to the equivaient power
spectral density (PSD) functions are presented for both the above
CELA and SELA methods. The numerical accuracy of the three
ELA/RSA’s are studied through a parametric error analysis. Finally, the
practicality of the presented analysis methods is demonstrated in two
application examples for piping systems with EA supports.

EQUIVALENT LINEARIZATION APPROACHES

RS Method. According to the classical study by Caughey (1963), the
equivalent stiffness, k,, of a hysteretic system is obtained based on the

slowly-varying assumption on the nonlinear oscillation, as
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in which, U is the peak displacement amplitude; F(u) is the nonlinear
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displacement, u.

For the equivaient modal damping, h,,, the formulation proposed by
Tansirikongkol and Pecknold (1980), which is a slight modification of
the formulation proposed by Caughey (1963), is used in this study.
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h,, = clastic modal damping
@, = frequency for r-th mode
= equivalent frequency
M, = modal mass
€, = modal strain of component-i
S; = normalized hysteresis area of component-i
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...for bilinear system

A = area of a hysteresis loop

p = ductlity factor of the response

The SRSS approximation is used in the iterative solfution scheme,
in which the above k,, and h,, are updated, followed by a new
cigenvalue analysis of the cquivalent linear system.




CELA Method. The method is based on the linear random
vibration theory and a modified Kryloff-Bogoliubov equivalent
linearization approach. A displacement component, u,, in  piping
system is expressed as,
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in which, q, is the r-th normal mode responasc; ¢, is the eigenvector of
the fixed-based system; X is the differential displacement at the m-th
fixed degree of freedom; and ¢, is the displacement mode due to the
m-th differential displacement. Assuming stationality of responses, the
covariance for a pair of displacements, u; and u,, are obtained as,

LOICEDIPIL IR SR 35 2L AL NS )

in which, R, is the covariance for the r-th and s-th normal mode

responses; and R, is the covariance for the m-th and n-th differential
dispiacements.
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in which, C,, is the correlation coefficient for the k-th and kth
excitations;, {, is the r-th participation factor for the k-th excitation;
H{w) is the transfer function for the r-th mode; and S\(w) is the k-th
PSD function.

The equivalent component stiffness, k,, , and modal damping, h,,,
can be defined using the peak distribution functions, p,(u, @,) and p,(u,
a,), as,

Ky - f K (u) - p,(u, o) du D
°

h, - f h(w) - p(u, 0,)du ®
(-]

in which, o, is the standard deviation of the strain response. The
foregoing cgs. (1) and (2) can be used for the peak response dependent

stiffness and damping, K, (u) and h, (u).

For the above peak distribution functions, p, and p,, various
mathematical models have been suggested in the past (e.g.. Refs. [}
and {6]). In this study, the peak distribution functions, p, and p,, are
determined in a purcly empirical manner based on the observation of
the past simulation studies on bilinear hysteretic systems (¢.g., Ref. [5]
and {7]). The details of the distribution functions are given in an
Appendix to this paper.

SELA Method. The method is the direct solution of the response
covariance matrix based on the stochastic equivalent lineartzation
approach proposed by Atalik and Utku (1976). This approach may be
onc of the most popular research topics in this area, and has been
applied to hysteretic systems with a relatively small number of degrees
of freedom (¢.g., Refs. [9] and [10]). According to Wen (1980), the
nonlinear restoring force, q, is expressed as,

=aKu+(1-a)XZ ®
1=f(8,2) (10)

in which u and 4 = the relative displacement and velocity; K = the
initial stiffness; a = the postyield stiffness ratio; and Z = the hysteretic
component with the unit of displacement. According to Ref. [11], the
above hysteretic function, f{8, Z), for a bilinear system is expressed as,

2=0-0.50H,(Z)- 0.5 |8 H,(2) an
where
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H,@)=U(Z-4)-U(-Z-4)

in which U(x) = unit step function; and A = the yicld displacement.
Ancther class of hysteretic models are obtained by smoothing these
functions, Hy(Z) and Hy(Z), as follows:
a
H,(Z) - 1215
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More detailed description on the practical application of this

approach to nonlinear piping systems, including the determination of
the maxamum response statistics, can be found in Refs. [12], and [13].



RESPONSE SPECTRUM APPROACHES

RS Method. It is one of the significant advantages of this approach
that the response spectra can be used directly as the excitation input.
However, as the modal damping values change during the iteration
according (o ¢q. (2), an interpolation/extrapolation scheme is neccssary
for converting the response spectral values for an arbitrary damping
value, h. In this study, the following empirical formulations are used
Ref. [14]):

S(h) 1

- for 0.02<h<0.053
S (h- 0)  1.10h

as)
S(h) . 2.25

for 0.05<h<0.2
S$(h-0.03) 1.75.10h

CELA Method, Since the method is based on linear random
vibration theory, the input response spectra should be converted to an
equivalent PSD function. A high accuracy direct conversion method
has been developed. recently for this purpose (Ref. [15] ). The
conversion afgorithm is summarized below.

The objective here is to obtain an equivalent PSD function, S(w),
given a target acceleration response spectrum, R(w, h), and a
modulating envelope function, I(t ), which can be represented by the
cffective duration, T,.

The mkmwnPSDﬁmchon is discretized at radial frequencies, w;,
and expressed as the sum of a series of discretized power components,
P, s,

in which, 8(w) is the Dirac delta function; and A w; is the incremental
radial frequency.

Using the above discretized power components, p; , the target
response spectrum at radial frequencies, @, , can be approximated by
a superposition of the component response spectra as,
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in which, R, ; represents the peak acceleration response of an SDOF
sysicm with a vibration frequency of w, , and a viscous damping of h,
which is excited by an extremely narrow-banded process whose PSD
function is 3(w;). UsmgﬂnpeakfactouppromuhonbyDnvenpoﬁ
(1963), Ry mdetcmmedas,
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in which, v; =w; /2%, and x = ©;/w, . Given a modulating function,
1I(t), the equivalent duration, T, , can be defined as,

(13)

t
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The above power components, p; , can be obtained by solving a
standard least squares problem as,
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Mathematical libraries to solve the above least squares probiem is
widely available (c.g., IMSL programs). The equivaient PSD function
is directly obtained as,

S{w)=p/Aw, j=lm @y

The method was applied to response spectra with steep siopes and
sharp tuming points; one is the Reg. Guide 1.60 spectrum (Ref. {18]),
and the other is a Newmark-Hall type spectrum (Ref. [19D. The

ing modulating function was assumed to determine the effective
duration, T, of 16.8 scc.

I~/ 3} t<3 sec.
=10 3<t<16 sec. @)
g3 8-16)/13 16 <t <20 sec.

To discretize both the PSD and response spectrum functions, 100
frequency points between 0.15Hz and 50Hz, equally spaced on a
Jogarithmic scale, were used (e, m = a = 100). The comparisons with
the Monte Carlo simulations (S00 samples) are shown in Fig. 1 and the
obtained PSD functions are shown in Fig. 2. The simulations were
performed by using the modulating function of eq. (22) and the PSD
functions of Fig. 2. The sirulation results slightly overestimate the
zero-period acceleration (ZPA) values in both cases. Otherwise,




TABLE 1. CALCULATED COMPONENT PARAMETERS

REG. 1.60 NEWMARK-HALL
COMPONENT
G b, Py fo Py
(Hz) (%) (INY/S’) (Hz) (%) AN'/S")

1 9.4 29 1120 10.5 20 619
2 6.1 20 81 7.0 20 215
3 43 2 51 438 20 61
4 3.6 20 26 33 20 25
5 29 20 92 22 20 84
6 23 24 172 1.5 18 3.1
7 0.9 20 0.17 0.78 20 0.08

a close match between the target and simulated response spectra can
be observed.

It may be fair to point out here that the results presented above are
based on the characterization of the earthquake motions by a single
damping value, which would not guarantee an equal fit to other
damping values. A further study may be necessary for resolving this
multiple damping issue.

SELA Method, In this analysis scheme, the input excitation can
only be given by shot noise processes (Ref. [9] and [13]). The
frequency characteristics of the ground motion are included by means
of additional equations of motion, ¢.g., an additional mass-spring
system inserted between the input shot-noise excitations and the
structural model, such as the use of the Tajimi-Kanai spectrum. To
overcome this limitation, a new analysis scheme is proposed. The
method converts an arbitrary response spectrum to a PSD function
which represents a linear combination of SDOF response processes
(Ref. [13]).

First, consider a secismic acceleration process, X, , which is
approximated by a linear combination of mutually independent
filtered shot-noise processes, x; , i.c.,

The above "component” processes, X , represent the displacement
responses of SDOF systems subjected to mutually independent shot
noise processes, f£(t).

X » 2hy; g X; u” X -
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=0 for i=»]j

in which, h,; and w,; are the component filter parameters; p, is the
component power intensity; and I(t) is the deterministic modulating
function with a unit maximum value (i.¢., I, = 1.0). In the above,
the displacemnent responses rather than the acceleration responses are
used to model the input motions. This is to account for the fact that
most response spectra or floor spectra possess a predominantly low-
passing frequency characteristic (see Fig. 2).

The power spectrum of the approximated process, S, (w), is
cxpressed as,

k

j-1

1
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Sj (w) = @n

Therefore, the corresponding acceleration response spectrum,

ﬁ,(m, . hy ), for the approximated process is expressed by the
following relationship:

} 4
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The component power intensities, p; , are obtained by following
the same procedure given in eq. (20), while the filter parameters, o,
andh“,mdetmnmedthroughasensmwtyuulyasonﬁw
calculated numerical error defined by eq. (20). Therefore, an iterative
procedure is necessary to obtain the optimal filter parameters.

The foregoing response spectra were used as application
eampiles. The calculated component power intensities and the filter
parameters are tabulated in Tabie 1, and obtained response spectra
and PSD functions are given in Figs. 3 and 4. Since only seven (7)
components were used for these exampies, the calculated PSD
functions are not as smooth as the ones in Fig. 2.



TABLE 2. MAJOR CAUSES OF NUMERICAL ERRORS IN ELA

TYPE OF ELA

CAUSE OF NUMERICAL ERROR

All ELA's « Inability to reproduce "drift" response due to accumulation of plastic deformation.

¢ Under/Overshooting detuning effects.

RS ¢ Over estimation of equivalent damping.

* Interpolation/Extrapolation of responsc spectral values to account for damping changes.
s SRSS approximation.

» Conversion from response spectra to PSD functions.

CELA o Sclection of peak distribution functions to determine k, and h,.
* Errorin RSA.
SELA  Gaussian assumption on nonlinear response statistics (particularly hysteretic components).

+ Evaluation of maximum response statistics.

ERROR ANALYSIS

ELA's are subjected to various forms of numerical errors; some are
due to the intrinsic deficiencies in the ELA itself, and others are
attributed to the unique approximation schemes adopted in an
analysis approach. Both qualitative and quantitative evaluations of
numerical errors associated with ELA's are necessary for a successful
application to practical engineering problems. Table 2 lists major
causes of numerical errors that have been identified in the past
numerous studies in this area.

The error due to "drifting”, or the accumulation of permanent
plastic deformation, is one of the most serious numerical errors that
i associated with any form of an ELA. However, a past simulation
study (Ref. {11]) indicates that this error can be negligible when the
postyieid stiffness ratio, & (ratio of the postyicld stiffness to the initial
stiffness), is higher than 0.04 to 0.05, regardless of the other factors
such as the level of nonlincarity and the type of hysteretic models.

It is beyond the scope of this paper to single out and quantitatively
evaluate cach of the items listed in Table 2. Rather, the combined
numerical errors associated with the three ELA's are evaluated under
structural and loading conditions which can be encountered in a
typical scismic analysis. ’

A simpie SDOF system with a bilinear or a smoothed modei of eq.
(14)(n = 1) is used. The viscous damping is assumed to be 5% and
the postyield stiffness ratio is chosen to be 0.05. The foregoing
Newmark-Hall type response spectrum is used as the seismic
* excitation model. As illustrated in Fig. 5, three initial vibration
frequencies, 1Hz, 7THz and 20Hz, arc considered. Due to the
detuning in the nonlinear responses, the system may move into the
peak (20Hz), stay on the top of the peak (7Hz), or move away from
the peak (1Hz). For both the CELA and SELA analyses, the
foregoing equivalent response spectrum modei of Figs. 1(b) and 3(b)
are used without any modifications.

The calculated response results are compared with Monte Carlo
simulations (MCS), in which the equivalent PSD function in Fig.
2(b) was used to generate SO0 samples of acceleration time histories.

The calculated results are summarized in Figs. 6(a) through 6(d),
in which the abscisa represents the normalized excitation amplitude
(ratio of zero-period acceleration to the yield strength of the SDOF
system) and the ordinate represents the calculated peak ductility
factor, gy

The results for the RS approach indicate that the method tends to
underestimate the responses up to a ductility factor of 3 to 4 in all the
cases. For the case of f = 7Hz, in which the system stays on the top
of the flat spectral peak, the analysis tends to overshoot at the higher
nonlinear response range as indicated in Figs. 6(b) and 6(c).

The results from the CELA method slightly underestimate or
overestimate the simulation resuits depending on the relative position
of the vibration frequency to the spectral peak. Up to a ductility
factor of 6 to 8, the observed numerical crrors are not significant in
comparison with other methods.

The response results by the SELA method, on the other hand, are
unsatisfactory. In all the cases the analysis underestimates the peak
response values, particularly for higher frequency cases (sec Fig.
6(a)). This probably is attributed to the deficiency in the
mathematical model to calculate the maximum response statistics. It
should be noted that the numerical errors in the evaluation of
variance responses are not significant in the presented cases since the
error due to the Gaussian assumption is already accounted for using
an error comection scheme from Ref. [11], and the error due to
drifting is negligible when the postyicld stiffness ratio is higher than
0.04 10 0.05. A further study is necessary to improve the accuracy in
estimating the maximum response statistics for the SELA method.
Currently, there exist no widely acceptable mathematical modeis for
this purpose.

Among the items in Table 2, the numericat error due to the SRSS
approximation in the RS approach is not accounted for in the above
error analysis. This is discussed in the following application
exampies.

APPLICATION EXAMPLES

As examples of the practical application of the ELA's to nonlinear
piping systems, two piping systerns supported by EA's, as illustrated
in Figs. 7 and 8, werc analyzed. The outside diameter and wall
thickness of the main pipes are 216.3mm and 10.3mm for the
Feedwater (F)-line, and 267.4mm and 12.7mm for the Main Steam
(M)-line, respectively. These piping systems are the scaled models
(scale factor is about 1/2.5) of actual piping in PWR and BWR
nuclear power plants, and will be tested using Nuclear Power
Engineering Corporation's (NUPEC) large shaking table at Tadotsu




TABLE 3. EQUIVALENT FREQUENCIES AND DAMPING OF M-LINE

ELASTIC MODEL RS CELA
MODE
Frequency (Hz) Damping (%) Frequency (Hz) | Damping (%) Frequency (Hz) Damping (%)
1 795 25 6.32 205 6.10 17.7
2 9.65 2.5 7.93 13.9 8.33 74
3 11.35 2.5 9.67 113 9.58 54
4 13.6 2.5 10.7 228 119 113
5 154 25 11.9 4.1 14.4 3.0
TABLE 4. EQUIVALENT FREQUENCIES AND DAMPING OF F-LINE
ELASTIC MODEL RS CELA
MODE
Frequency Damping Frequency Damping Frequency Damping
(Hz) (%) (Hz) (%) (Hz) (%)
1 132 25 943 214 9.73 16.5
2 139 25 116 115 11.8 71
3 174 2.5 15.1 3.8 15.6 5.5
4 21.1 2.3 194 53 15.7 43
5 236 2.5 2.8 33 231 29
TABLE 5. COMPARISON OF PEAK RESPONSES OF M-LINE

ITEMS LOCATION NTH RS CELA

Disp. u(mm) Node-150 542 5.46 5.64

Accel A, (8) Node-150 3.09 5.64 2.89

EA Deform. (mm) LED-2 498 4.52 4.69

Pipe Stress (kg/mm?) Eim.<3) 333 2.42 3.49

TABLE 6. COMPARISON OF PEAK RESPONSES OF F-LINE

ITEMS LOCATION NTH RS CELA

Disp. u(mm) Node-330 6.11 5.65 591

Accel. A, (g) Node-330 2.83 3.36 2.79

EA Deform (mm) EAB-2 6.90 4.68 6.05

Pipe Stress (kg/mm?) Elm.<(1) 2.46 2.16 25

Engineering Laboratory in Shikoku, Japan.

The piping systems are subjected to horizontal (in the x-direction)
and vertical (in the z-direction) acceleration motions as illustrated in
Fig. 9, which are the calculated floor responses of a PWR nuclear
power piant The response spectra and the PSD function for the
horizontal component are shown in Figs. 10 and 11. The PSD
function in Fig. 11 represents an equivalent stationary process with
an effective duration, T,. The effective duration was defined by the
time interval n which the power of the accelerogram attains 5% and
95% of the total power. The amplitude of the PSD functions were
adjusted to reproduce the peak acceleration values, which were
estimated using the Gumbef's type-I distribution function.

In this paper, the foregoing RS approach (based on SRSS

approximation) and CELA method (based on linear random vibration
theory) are used to comnpare with conventional nonlinear time history
analyses. The application of the SELA method (based on stochastic
equivalent linearization) is not attempted herein mainly because the
size of the response covariance matrices are excessively large
(approximately 1300 x 1300) for these finite clement models. In
applying the CELA method, the cquivalent PSD function in Fig. 11
was directly used (effective duration is 15.7 sec.). In modeling the
piping systems, straight and circular curved beam elements were used
for the pipes, and axial springs with the smoothed hysteretic model
(eq. 14 with n=2) were used to model three EA's for each piping
system (i.c., EAB-1, 2, 3 for the F-linc an LED-1, 2, 3 for the M-
fine).



First. a convenuonal nonlinear ime history (NTH) analysis was
performed for both the piping systems. An example of the calculated
responses of the EA supports is given in Fig. 12. Then. the foregoing
RS and CELA analyses were performed; in the analyses, the
cigenvalue solutions were updated four (4) times, assuming a cutoff
frequency of 50 Hz (i.c., 13 modes for the M-line and 16 modes for
F-line were used in the analyses).

The calculated equivalent vibration frequencies and damping for
the first 5 modes are tabulated in Tables 3 and 4. A few calculated
response results are also compared in Tables 5 and 6. In gencral, the
response results by both the RS and CELA methods correlate
reasonably well with the time history analysis results, although the
CELA method gives a better agreement than the RS method. Based
on a more detailed evaluation of the calculated response resuits, the
SRSS approximation used in the RS method is considered to be a
major cause of the observed differences between the RS and CELA
analyses.

An example of an acceleration transfer function is shown in Fig.
13 for the F-line. This transfer function was calculated using the
CELA mecthod as a ratio of PSD functions.

H(w)* = Sf(w¥S{w) 29

in which, Sp(w) and S{w) are the response and input acceleration
PSD functions. There is a significant broad-banded peak at around
10 Hz in the transfer function of Fig. 13. This reflects not only the
higher damping values for the lower modes (see Table 4), but also the
fact that the first two modes are "merged” into one combined mode.

SUMMARY AND CONCLUSIONS

Three types of equivalent linearization approaches were presented
and compared to each other regarding their practicality and numerical
accuracy. For a practical application, all the mecthods were
formulated into the response spectrum approach. Two types of
conversion schemes were presented to obtain the equivalent PSD
functions which were consistent with the prescribed response spectra.
The application examples to nonlinear piping systems with energy
absorbing supports indicate that the RS method (based on the SRSS
approximation) and the CELA method (based on linear random
vibration theory) are practical analysis tools for evaluating the seismic
response of complex nonlinear piping system with reasonable
accuracy. A comparison with the conventional time history analysis
results indicates that the CELA method, after some improvements on
the definitions of the equivalent component stiffness and the modal
damping values, gives a better correiation than the RS method.
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APPENDIX. PEAK DISTRIBUTION FUNCTIONS

In most of the previous shudics, the Rayleigh distribution was used
in determining both the equivalent stiffness and damping, i.c., p, and
p; of eqs. (7) and (8). In this study, the use of three different
distribution models are recommended for p, and p,, as well as for the
maximum response statistics. For determining the equivaient modal
damping value in eq. (8), the following Rayleigh distribution is used;

2
a, 20,

2
p,;(u,0,) - lz exp [_ u ] @)

Whereas for the equivalent component stiffness in eq. (7), the
Gumble type I distribution is used as,

py(u)=exp[-exp {-a,(u-1)} ] @D

in which, the extreme distribution parameters, u, and «,, arc
determined based on the above Rayleigh distribution as,

%
F(un)-f—%exp[-k—z}d;\-l-i 32)

2
[} 20‘

2
&, - Mg - f(u,) - MT:‘ exp | - u‘z

o, 20,

X))

n which, My 18 the equivalent mean number of peaks delined as,

Oy

M; -

2% o, G4

where, g, is the standard deviation of the 2nd derivative of the strain
response.

For evaluating the maximum response statistics, the same Gumble
type-I distribution of eq. (31) i8 used; in which, the parameters «, and
u, are determined from the mean number of peaks per unit time, N,
(u), as

ToNgfu)- 10, @, --= (TN ()

hose @9)

s e,

Based on the Gaussian assumption on the response variables of
the equivalent linear system, the following approximate sofution is
available for No(u):

N(,).fi(i'_vz){l_,f__l___.},

‘RG, s, vz(l . vz)
] 2
i ap | - —“'; G6)
2l 20,

2

[ 2 2
where , v «+ ——, o - Ele?], o:-E{' ], o:-E["]
0,0, € €

The selection of the above peak distribution functions is purely
empirical and based on the past simulation studies on hysteretic
systems (e.g., Refs. [5], [7] and [11].
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