PNNL-13228

Evaluation of Elevated Tritium Levels in Groundwater Downgradient from the 618-11 Burial Ground Phase I Investigation

P. E. DreselR. M. SmithB. A. WilliamsC. J. ThompsonJ. C. EvansJ. C. EvansPacific Northwest National Laboratory

L. C. Hulstrom CH2M Hill Hanford, Inc.

May 2000

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830

Pacific Northwest National Laboratory Richland, Washington 99352

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned Reference herein to any specific commercial riahts. product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Summary

This report describes the results of the preliminary investigation of elevated tritium in groundwater discovered near the 618-11 burial ground, located in the eastern part of the Hanford Site. Tritium in one well downgradient of the burial ground was detected at levels up to 8,140,000 pCi/L.

The 618-11 burial ground received a variety of radioactive waste from the 300 Area between 1962 and 1967. The burial ground covers 3.5 hectare (8.6 acre) and contains trenches, large diameter caissons, and vertical pipe storage units. The burial ground was stabilized with a native sediment covering. The Energy Northwest reactor complex was constructed immediately east of the burial ground.

The Phase I investigation consisted of sampling existing monitoring wells in the vicinity of the 618-11 burial ground. The sampling included wells upgradient of the burial ground, downgradient wells, Energy Northwest water supply wells, and Energy Northwest monitoring wells. The samples were analyzed for a variety of radionuclides and chemicals including water quality parameters and potential contaminants. Sampling was conducted in February 2000.

The Phase I investigation confirmed the elevated tritium levels in a single well downgradient of the burial ground. Other wells contained tritium at lower levels similar to levels in the plume emanating from the 200 East Area. The well with the elevated tritium contained no other contaminants at levels that could be clearly tied to a source in the burial ground. Constituents detected at elevated levels in the sampling area include nitrate, uranium, technetium-99, and carbon tetrachloride. Levels of technetium-99 and carbon tetrachloride were below the drinking water standards. The nitrate and uranium does not appear to be related to the 618-11 burial ground, based on the distributions and chemical correlations. Insufficient information is available to define the source of technetium-99, but it is a known contaminant within the plume from the 200 East Area.

The distribution of tritium points strongly to a probable source within the 618-11 burial ground. Other sources considered include the tritium plume from the 200 East Area and Energy Northwest operations. However, the tritium levels are too high to be explained by either of these sources. The distribution is inconsistent with the 200 East Area plume. Similarly, the high tritium is located upgradient of the Energy Northwest WNP-2 reactor, so known discharges from Energy Northwest are unlikely to be the source.

Potential tritium source materials and source locations within the 618-11 burial ground have not been identified. Possible source materials include fission products and activation products from nuclear operations. In particular, there is a possibility that the tritium is related to tritium production research carried out at the Hanford Site in the 1960s. Although that link has not been established, the hypothesis is consistent with what is known about the research and about burial ground operations.

The investigation did not define the extent of the elevated tritium levels in groundwater. The available data suggest the plume is narrow. Data on vertical extent of the contamination are sparse. No tritium was detected in the confined aquifer samples.

Contents

Sum	mary.		iii
1.0	Intro	duction	1.1
	1.1	Site Description	1.1
	1.2	History of Site Investigations	1.2
	1.3	Hydrogeologic Setting	1.3
2.0	Phas	e I Sampling and Analysis	2.1
	2.1	Sampling Design	2.1
	2.2	Sampling Activities	2.3
3.0	Resu	Its of Phase I Sampling	3.1
	3.1	Radionuclide Results 3.1.1 Tritium 3.1.2 Uranium and Gross Alpha 3.1.3 Gross Beta, Technetium-99, and Strontium-90 3.1.4 Other Radionuclides	3.1 3.1 3.2 3.2 3.3
	3.2	Chemical Results 3.2.1 Nitrate 3.2.2 Other Anions 3.2.3 Cations 3.2.4 Major Ion Water Types 3.2.5 Organic Constituents	3.3 3.4 3.4 3.4 3.5 3.6
	3.3	Quality Control	3.6
4.0	Disc	ussion	4.1
	4.1	 Relationship to the 200 East Area Tritium Plume	4.1 4.1 4.3 4.4 4.5
	4.2	 Relationship to Tritium Discharges from WNP-2 4.2.1 Intake Water 4.2.2 Wastewater from the Sanitary Waste Treatment Facility 4.2.3 Storm Drain Outfall 4.2.4 Discharge Water 	4.5 4.6 4.6 4.7 4.7

v

		4.2.5 4.2.6	Groundwater Summary	4.7 4.7
	4.3	Relati	onship to the 618-11 Burial Ground	4.8
5.0	Conc	lusions		5.1
6.0	Refe	rences.		6.1
Appe	ndix /	A - Sam Triti	ple and Analysis Instructions for Special Sampling of High Concentration um and Surrounding Wells Near the 618-11 Burial Ground, Rev. 1	A.1
Appe	endix I	8 - Groi 618	andwater Sampling Reports for Phase I Evaluation of the 11 Burial Ground	B.1
Appe	endix (C - Ana 618-	lytical Results for the Phase I Evaluation of the 11 Burial Ground	C.1
Appe	endix I	O - Qua	lity Control Sample Definitions	D.1

Tables

2.1	Wells Sampled for the Phase I Sampling Event	2.4
3.1	Comparison of Uranium Isotopic Concentrations to Gross Alpha and Total Uranium Concentrations	3.9
3.2	Field Quality Control Samples	3.9

Figures

1.1	Location of the 618-11 Burial Ground, Hanford Site, Washington	1.6
1.2	Tritium Concentrations at the Top of the Unconfined Aquifer, Hanford Site, Fiscal Year 1999	1.7
1.3	Generalized Hydrogeologic and Geologic Stratigraphy	1.8
1.4	Hydrologic Units Present at the Water Table, 1998	1.9
2.1	Groundwater Well Locations in the Vicinity of the 618-11 Burial Ground	2.5

ð

3.1	Tritium Concentrations for February 2000 Sampling Near the 618-11 Burial Ground	3.10
3.2	Calculated Uranium Concentrations for February 2000 Sampling Near the 618-11 Burial Ground	3.10
3.3	Uranium Concentration Trend in Well 699-13-3A	3.11
3.4	Gross Alpha Concentration Trend in Well 699-13-3A	3.11
3.5	Gross Beta Concentration Trend in Well 699-13-3A	3.12
3.6	Nitrate Concentrations Expressed in mg/L as N for February 2000 Sampling Near the 618-11 Burial Ground	3.12
3.7	Piper Diagram for Major Ions in the Phase I Samples	3.13
3.8	Piper Diagram for Major Ions in the Phase I Samples Including Nitrate with the Chloride Component	3.14
3.9	Relationship Between the Percentage of Anion Milliequivalents in Selected Wells Near the 618-11 Burial Ground	3.15
4.1	Tritium Concentration Trends in Wells 699-13-1A and 699-13-1B	4.10
4.2	Well Construction and Lithology for Wells 699-13-1A and 699-13-1B	4.11
4.3	Tritium Plume as Reported in 1972	4.12
4.4	Tritium Plume as Reported in 1973	4.13
4.5	Tritium Plume as Reported in 1979	4.14
4.6	Tritium Plume as Reported in 1980	4.15
4.7	Tritium Plume Reported in 1980 Redrawn to Correct Incorrectly Contoured Points	4.16
4.8	Digital Terrain Map of the Hanford Site and Surrounding Areas	4.17
4.9	Tritium Concentration Trends in Selected Wells Upgradient and Near the 618-11 Burial Ground	4.19
4.10	Comparison of Tritium vs. Iodine-129 for the 200 East Area Plume and Well 699-13-3A	4.21
4.11	Comparison of Tritium vs. Nitrate for the 200 East Area Plume and Well 699-13-3A	4.21

vii

1.0 Introduction

The 618-11 burial ground is located in the eastern part of the U.S. Department of Energy (DOE) Hanford Site (Figure 1.1). Groundwater monitoring well 699-13-3A was installed immediately downgradient of the 618-11 burial ground to determine if the burial ground had affected groundwater quality. A groundwater sample collected from this well in January 1999 contained 1,860,000 pCi/L of tritium.¹ A sample collected in January 2000 contained 8,140,000 pCi/L of tritium. After the January 2000 sampling, an investigation of the extent of tritium in this vicinity was initiated.

This report summarizes the results of Phase I of this investigation. Phase I consisted of sampling available wells in the vicinity of the burial ground for an extended group of constituents, interpretation of the sampling results, and an initial assessment of geologic, hydrologic, and historical data.

1.1 Site Description

The 618-11 burial ground received waste between March 1962 and December 1967 (Demiter and Greenhalgh 1997). The site consists of three trenches, two to five large-diameter caissons, and fifty vertical pipe storage units. The site covers an area of 3.5 hectare (8.6 acre) and is located approximately 300 m (1,000 ft) west of Energy Northwest Plant 2 (WNP-2). The trenches are 274.3 m (900 ft) long by 15.2 m (50 ft) wide. The vertical pipe units are five 208-L (55-gal) drums welded together end-to-end and are approximately 4.6 m (15 ft) long by 55.9 cm (22 in.) in diameter. The caissons are 2.4-m- (8-ft) diameter metal pipe, 3 m (10 ft) long, buried vertically 4.6 m (15 ft) below grade, connected to the surface by offset 91.4-cm- (36-in.) diameter pipe with a dome-type cap. All vertical pipe units and caissons were capped with concrete and covered with native sediment as they were filled.

Waste was sent to the 618-11 burial ground from the 324, 325 and 327 Building hot cells and the Plutonium Recycle Test Reactor in the 300 Area. Inventories of the waste do not specifically mention that tritium was disposed to the burial ground, though hydrogen gas (a possible misnomer) was identified.

Shortly after the site was closed, it was covered with 1.2 m (4 ft) of soil. In 1983, the surface of the site was stabilized with an additional 0.6 m (2 ft) of clean material and planted with wheatgrass. The bottoms of the trenches and caissons are estimated to be approximately 9.1 m (30 ft) below grade, while the bottoms of the vertical pipe units are estimated to be 6.4 m (21 ft) below grade. The site perimeter is fenced and marked with concrete markers. Plants in the area show no obvious signs of vegetative stress that would indicate radiological or chemical constituent uptake from either the waste site or the unplanned releases that have occurred at the site.

Groundwater contamination from the 200 East Area extends through the location of the 618-11 burial ground. Contamination from the 200 East Area consists predominantly of tritium with associated nitrate and iodine-129. However, near the burial ground the iodine-129 is generally below detection limits. An

¹ In this report analytical results will be rounded to 3 significant digits.

area of anomalously low tritium has been noted east of the burial ground when compared to the surrounding plume from the 200 East Area (Figure 1.2).

The Energy Northwest reactor complex was constructed east of the 618-11 burial ground. The WNP-2 reactor initially went critical in January 1984 (Washington Public Power Supply System 1985). Construction was not completed on two other power plants, WNP-1 and WNP-4. Some tritium is produced during reactor operations by ternary fission. Several instances of release of tritium and other radionuclides to the environment have been documented (Washington State Department of Health 1999). Release locations include the WNP-2 Sanitary Waste Treatment Facility and the storm drain outfall.

The relationship of the tritium in groundwater to these three potential sources, the 618-11 burial ground, the 200 East Area, and WNP-2, is discussed in Section 4 of this report.

1.2 History of Site Investigations

In 1978, Pacific Northwest Laboratory conducted both geophysical surveys and core drilling and sampling near the 618-11 burial ground (Phillips et al. 1980). According to Phillips et al. wells "were located to enable drilling beneath the structure where radiocontaminated leachate, if present, would be intercepted, rather than drilling into the structure." Two soil samples were collected from depths of 8.8 and 9.4 m (29 and 31 ft). Gross alpha, gross beta, and other natural occurring radionuclides were reported to be within background range. A small concentration of cesium-137 (0.16 pCi/g) was found at a depth of 8.8 m (29 ft) but was not judged to be a concern.

An Environmental Impact Statement (EIS) was issued in 1987. The EIS analyzed the impact of strategies for the final disposal of high-level, transuranic, and tank waste generated during national defense activities and stored at the Hanford Site (DOE 1987). The EIS also evaluated waste that was disposed at the Hanford Site prior to 1970, before the transuranic category was established, that would otherwise be considered as transuranic if generated today. Because the 618-11 burial ground was used between 1962 and 1967 for disposal of laboratory waste (including remote-handled hot cell waste) from 300 Area operations, it was specifically included in the scope of the EIS under the classification of "pre-1970 Buried Suspect Transuranic-Contaminated Solid Wastes."

Several disposal alternatives were studied in the EIS (DOE 1987). Based on the conclusions of that study, a preferred alternative for deferral of disposal decisions pending additional development and evaluation was selected for the single-shell tanks, transuranic-contaminated soil sites, and the pre-1970 buried suspect transuranic-contaminated solid waste sites. Prior to decisions on final disposition of these wastes, alternatives would be analyzed in subsequent environmental documentation, including a supplement to the EIS. These decisions were documented in a corresponding Record of Decision (ROD) (53 FR 12449) and implementation plan (DOE-RL 1988). The EIS and associated ROD included one exception to the preferred alternative, the 618-11 burial ground. A decision was made to proceed with removal and processing of waste from the 618-11 burial ground based on

- its location outside of the 200 Area plateau
- concerns over a potential for flooding
- a DOE desire to consolidate the pre-1970 buried transuranic-contaminated waste to the 200 Area plateau at a reasonable cost.

In 1992, the U.S Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology) directed that an engineering evaluation/cost analysis be performed to consider Expedited Response Action (ERA) alternatives for the 618-11 burial ground. The evaluation analyzed options that included no action, increased monitoring, removal and monitored storage, and a demonstration/feasibility study. The proximity of buried waste to the water table in the area and the potential for migration of contaminants were of concern based on the limited information known about waste inventory.

Increased monitoring was the selected option as documented in the ERA proposal (DOE-RL 1993). A removal action was eliminated as an immediate need based on the absence of data to identify a threat to human health and the environment and the lack of operating facilities to receive, process, and/or dispose of excavated high-activity transuranic material. To support the ERA recommendation, a new well (699-13-3A) was installed in 1995 to monitor groundwater adjacent to the burial ground. Groundwater samples from this well were analyzed for radioactive and hazardous chemical constituents of concern on an annual basis.

Tritium was not identified as a constituent of concern for the burial ground, so it was not included in the analyte list until January 1999. No follow-on action was taken regarding the 1,860,000 pCi/L result from the January sampling (reported in May 1999) until January of 2000. The high tritium value from the January 1999 and January 2000 samples triggered an off normal event report, RL-PNNLBOPER-2000-0003, submitted on February 3, 2000.

1.3 Hydrogeologic Setting

The 618-11 burial ground and the Energy Northwest nuclear power plant complex are constructed on suprabasalt sediments of Miocene to Pleistocene age (Figure 1.3). The stratigraphic column includes in ascending order from oldest to most recent, the Columbia River Basalt Group, Ringold Formation, and Hanford formation and Pre-Missoula gravel. In addition, a thin, regionally discontinuous veneer of Holocene alluvium and eolian sediment overlies the principal geologic units.

The information currently available to describe the hydrogeology of the area is regional in nature and does not provide the details necessary to delineate and accurately predict groundwater flow conditions near the WNP-2 plant and 618-11 burial ground. Lindsey (1995) describes the regional geology of the Hanford Site. The hydrogeologic description of the Hanford Site is provided in Hartman (2000).

The suprabasalt sediments are the hydrogeologically most significant units in terms of contaminant transport beneath the area because these units form the uppermost aquifer system. This aquifer system is the primary groundwater contaminant pathway to the Columbia River. The upper aquifer system consists of an upper unconfined aquifer and deeper confining to semi-confining aquifer conditions. The Elephant Mountain Member basalt forms the bottom of this uppermost aquifer system and is located at a depth greater than 150 m (500 ft) beneath the surface. Confined aquifer conditions exist beneath the Elephant Mountain Member basalt. The confined aquifer system is used for water supply at WNP-1 (two wells) and for emergency supply at WNP-2 (one well). Information obtained from well drilling records, and in recent water-level measurements, confirm that the basalt-confined aquifers have a higher water level (potentiometric surface) than the uppermost unconfined aquifer, resulting in upward flow if any leakage occurs between the two aquifers. This condition significantly reduces the possibility of a downward movement of tritium into the lower, deeper confined aquifer.

The Pliocene-age Ringold Formation, which overlays the Elephant Mountain Member basalt, is composed of a mix of variably cemented and consolidated gravel, sand, silt and clay. Overlying the Ringold Formation is the Hanford formation and pre-Missoula Gravel.

The Hanford formation units consist of mostly unconsolidated gravel, sand, and silt. Fluvial pre-Missoula (flood) gravel underlies the Hanford formation in some areas of the Hanford Site. The pre-Missoula gravel is difficult to distinguish from Hanford gravel and is commonly grouped together.

Hydraulic data have not been evaluated for this report. However, comparisons of aquifer testing data and well completion pumping results from similar lithologies west of the burial ground indicate that the Hanford formation is significantly higher in permeability (possibly by several orders of magnitude) than the underlying Ringold Formation sediment.

An accurate structure map of the Ringold Formation is key to understanding groundwater and tritium flow paths to the river because of the differences in permeability between the Ringold Formation and the Hanford formation sediment. The geologic unit at the water table varies from Hanford/pre-Missoula to Ringold Formation in the vicinity of the 618-11 burial ground because of structural features created on the top of the Ringold Formation by cataclysmic flooding, fluvial reworking, and erosion by the Columbia River. Areas where saturated Hanford formation sediments are thin or absent are expected to provide barriers to flow or to significantly decrease groundwater velocity.

In most of the area west and north of the 618-11 burial ground, the Ringold Formation sediments lie saturated beneath the present day water table. Most of the tritium (and associated contaminants) from the 200 East Area is presumed to be moving within the Hanford/Pre-Missoula sediments (Figure 1.4). Ringold Formation sediments are interpreted to be above the water table in the area east of the 618-11 burial ground. Limited data suggest that these Ringold Formation sediments may be exposed above the

water table east of the burial ground to the river. The areal extent of this Ringold exposure is not accurately known but has been confirmed by outcrop evaluation along the river and in examination of excavations and drill cuttings during WNP-2 plant construction.

The water table surrounding the 618-11 burial ground has been elevated over 4.6 m (15 ft) due to years of large volume artificial recharge to the aquifer in the 200 Areas located west of the site. Early water-level measurements are available from wells drilled in the 1950s. It is presumed that these old water-level measurements reflect a more regionally stable and natural condition that stabilized near the top of the Ringold Formation contact with the overlying Hanford/Pre-Missoula gravel and sand sequences. It is assumed this condition existed because the water table could not be sustained above this contact unless there was a significant flux in recharge, such as that which resulted from Hanford Site operations.

Figure 1.1. Location of the 618-11 Burial Ground, Hanford Site, Washington

Figure 1.2. Tritium Concentrations at the Top of the Unconfined Aquifer, Hanford Site, Fiscal Year 1999

RG98120214.14

Figure 1.3. Generalized Hydrogeologic and Geologic Stratigraphy

Figure 1.4. Hydrologic Units Present at the Water Table, 1998

2.0 Phase I Sampling and Analysis

The Sample and Analysis Instructions for Special Sampling of High Concentration Tritium and Surrounding Wells Near the 618-11 Burial Ground, Revision 1, outlined the plan for this Phase I investigation (Appendix A). These instructions were based on a statement of data quality objectives that are included in the instructions.

The problem statement for the Data Quality Objectives is:

"In January 1999 a tritium level of 1,860,000 pCi/L was detected in well 699-13-3A, located near the 618-11 burial ground, just west of the Energy Northwest complex. This value was confirmed by reanalysis. A sample from January 2000 contained approximately 8,000,000 pCi/L of tritium. These levels are of concern because they are far above levels reported in the large tritium plume that extends from the 200 East Area through the area of the Energy Northwest complex.

The immediate task is to determine the extent of the anomalously high tritium concentrations and to provide data to distinguish the source."

2.1 Sampling Design

The Phase I investigation was designed to provide pertinent information as rapidly as was practicable. The investigation was restricted to sampling existing groundwater monitoring wells in the vicinity of the burial ground. Wells that needed significant remediation prior to sampling were excluded from the sampling. Phase I was restricted to a single round of sampling. The sampling concentrated on wells completed at the top of the unconfined aquifer, but some additional wells, including some confined aquifer wells, were included. Wells chosen for sampling are listed in Appendix A. Several of the wells could not be sampled as discussed in Section 2.2. The wells actually sampled are listed in Table 2.1 and are shown on Figure 2.1. The wells sampled include monitoring and water supply wells owned by Energy Northwest. These wells have not yet been assigned Hanford well names (i.e., "699" numbers), but unique well ID numbers have been assigned, corresponding to the Hanford well inventory. In this report, the well ID numbers and names used by Energy Northwest will be used to describe the wells. For example, Energy Northwest monitoring well MW-9 is associated with well ID C3079.

Radioactive analytes of interest include

- tritium
- strontium-90
- technetium-99
- iodine-129
- plutonium isotopes

- gamma scan (reported radionuclides include beryllium-7, potassium-40, cobalt-60, ruthenium-106, antimony-125, cesium-134, cesium-137, europium-152, europium-154, and europium-155)
- gross alpha
- gross beta
- uranium (total and isotopic)
- plutonium isotopes (plutonium-238, plutonium-239/240).

Total activity screens were measured on a sample from well 699-13-3A where previous data indicated that the activity was near or above the Department of Transportation Shipping Limits for radionuclides and, thus, required special shipping papers. Total activity screens were also collected on wells where insufficient data were available to determine if the samples would need to be shipped as radioactive.

Chemical analytes of interest include

- alkalinity
- anions (including bromide, chloride, nitrate, and sulfate)
- filtered metals (including major cations such as calcium, magnesium, potassium, sodium, contaminants of interest such as chromium and other metals)
- semivolatile organic compounds (including tributyl phosphate and other compounds).
- volatile organic compounds (including carbon tetrachloride, trichloroethene, and other compounds).

Field parameters pH, specific conductance, temperature, and turbidity were measured in all wells at the time of sampling.

The analytes for each well in the Phase I sampling are listed in the Sampling and Analysis Instructions (see Appendix A). The analyte list depended on the proximity to the burial ground, the monitored interval, and historical information from the wells. Only wells in the immediate vicinity of the 618-11 burial ground were sampled for volatile and semivolatile organic compounds. Plutonium isotopes, strontium-90, and total uranium were analyzed only in selected wells. Confined aquifer wells were sampled only for tritium.

Analysis of radiological constituents was performed by Quanterra Analytical Services, Richland Washington. A split sample from well 699-13-3A was sent to Thermo NUtech Laboratories, Richmond California, for tritium analysis. Chemical analyses were performed by Quanterra Analytical Services, St. Louis, Missouri. All analyses for well 699-13-3A were requested on a priority 7-day turn around time. Tritium analyses from other wells were requested on a 7-day turn around time and remaining analyses on a 14-day turn around time. In actuality, these turn around times were not met for all analyses as discussed in the following sections. Total activity screens were measured at the Waste Sampling and Characterization Facility laboratory on the Hanford Site and were reported in less than 24 hours.

Additional radiological analyses were performed by Pacific Northwest National Laboratory. Screening sampling of strontium-90 and technetium-99 was performed using extraction with Empore® disks followed by gas proportional counting. In addition, technetium-99 was measured using inductively coupled plasma/mass spectrometry (ICP/MS) because of disagreement between the different technetium-99 measurements and the gross beta measurements.

Several other groups collected split samples for independent analysis. These included Energy Northwest (tritium only), Washington State Department of Health, and Washington State Department of Ecology.

2.2 Sampling Activities

The sampling and analysis instructions were issued on Friday, February 4, 2000. Sampling began on Monday, February 7, 2000. The Phase I sampling was completed on February 15, 2000. Field records for the sampling were completed on Groundwater Sampling Report forms, which are included as Appendix B of this report.

The original sampling instructions listed 27 wells to be sampled, of which 22 wells actually were sampled. It was discovered that well 699-12-2A no longer exists. Well 699-14-E6T could not be sampled because of an obstruction. Wells 699-2-E14 and 699-15-E13 are confined aquifer wells that would require modification to collect representative samples. Therefore, they were removed from the Phase I sampling. Well 699-20-E12 was not sampled for several reasons. The annulus of the well was considered difficult or impossible to sample because of the presence of several piezometers. The uppermost piezometer had been removed, and, therefore, could not be sampled. The well was listed as requiring containment of purgewater, but the access road was not suitable for a purgewater truck. For these reasons, well 699-20-E12 was deleted from the Phase I sampling.

The results of the total activity screens for the sampling are listed in Appendix C. The only samples that required shipping as radioactive material (greater than 2.0 nCi/g or 2,000,000 pCi/L) were the samples from well 699-13-3A. The total activity screens also provide a useful comparison to laboratory results discussed in Section 3.

It is likely that decontamination water was left in the 90 m (300 ft) pump tubing attached to the portable pump during sampling of Energy Northwest well MW-7 (C3077). The specific conductance measured was low compared to that expected for groundwater samples. This well is located down-gradient from a storm-water discharge that could have some impact on the specific conductance, but it is not felt that this would explain the unusual chemistry. For this reason, all data from sampling well MW-7 are considered suspect. Energy Northwest well MW-9 (C3079) is located upgradient of the storm-water discharge and closer to the 618-11 burial ground, so the data from MW-7 are not critical to the Phase I analysis.

2.3

Well	Location	Ритр Туре	Casing/ Screen Diameter (in.)	Open Interval Top (ft BGS)	Open Interval Bottom (ft BGS)	Hydrogeologic Intervał	Comments
699-10-E12	Near River	Electric Submersible	8	60	75.9	Top unconfined	Perforated casing
699-12-4D	At burial ground (upgradient)	Electric Submersible	8	65	145	Top unconfined	Perforated casing
699-13-1A	Former WNP-2 Supply Well	Portable Grundfos	8	79	199.5	Unconfined	Multiple screens
699-13-1B	Former WNP-2 Supply Well	Portable Grundfos	8 .	83	229.5	Unconfined	Multiple screens
699-13-1C	WNP-2 Backup Supply Well	Turbine	6	506	695	Confined	3 Screens set in open hole
699-13-3A	At burial ground (downgradient)	Portable Grundfos	4	55.94	76.28	Top unconfined	
699-15-15B	Upgradient	Electric Submersible	6	141	154.7	Top unconfined	
699-17-5	Upgradient	Electric Submersible	8	45	62.5	Top unconfined	Perforated casing
699-21-6	Upgradient	Electric Submersible	6	43	66	Top unconfined	Screen inside perforated casing
699-8-17	Upgradient	Electric Submersible	8	109	139.3	Top unconfined	Screen inside perforated casing
699-9-E2	Energy Northwest	Electric Submersible	8	15	60	Top unconfined	Perforated casing
ENW-31	WNP-1 Supply Well	Turbine	12	247	3,41.5	Confined	Multiple screens
ENW-32	WNP-2 Supply Well	Turbine	12	244.25	366	Confined	Multiple screens
ENW-MW1	Energy Northwest	Portable Grundfos	2	57.05	67.05	Top unconfined	
ENW-MW2	Energy Northwest	Portable Grundfos	2	55.00	65.00	Top unconfined	
ENW-MW3	Energy Northwest	Portable Grundfos	2	49.05	59.05	Top unconfined	
ENW-MW4	Energy Northwest	Portable Grundfos	2	63.50	73.50	Top unconfined	
ENW-MW5	Energy Northwest	Portable Grundfos	2	60.02	75.02	Top unconfined	
ENW-MW6	Energy Northwest	Portable Grundfos	2	36.37	46.37	Top unconfined	
ENW-MW7	Energy Northwest	Portable Grundfos	2	17.66	27.66	Top unconfined	
ENW-MW8	Energy Northwest	Portable Grundfos	2	25.17	35.17	Top unconfined	
ENW-MW9	Energy Northwest	Portable Grundfos	2	26.85	36.85	Top unconfined	

Table 2.1. Wells Sampled During the Phase I Sampling Event

Figure 2.1. Groundwater Well Locations in the Vicinity of the 618-11 Burial Ground

3.0 Results of Phase I Sampling

Analytical results for the Phase I sampling are tabulated in Appendix C. These results must be considered preliminary because not all formal data packages were received from the laboratory at the time this report was prepared. Well 699-13-3A continued to have elevated tritium compared to the surrounding 600 Area at 7,229,700 pCi/L (a replicate analysis indicated 6,894,100 pCi/L of tritium). Tritium levels in other wells are all less than 60,000 pCi/L. This means that well 699-13-3A remains the primary focus of the investigation. The results of radionuclide sampling will be summarized first. Then the results of the chemical constituent sampling will be described. Only the primary result will be discussed where replicate analyses are available unless there is a significant difference between replicates.

3.1 Radionuclide Results

3.1.1 Tritium

Tritium results are shown in Figure 3.1. As stated above, well 699-13-3A was the only well with extremely high tritium results (7,230,000 pCi/L). The maximum concentration detected in the other wells in this sampling event was 54,400 pCi/L in well 699-8-17, which is located upgradient of the 618-11 burial ground.

Well 699-12-4D, located immediately upgradient of the burial ground, contained only 1,850 pCi/L of tritium. Well 699-12-4D is an older well, with perforated casing, that extends 28 m (92 ft) below the water table. Thus, the sample may be subject to some dilution by mixing in the borehole.

Other wells that are located upgradient or cross-gradient from the 618-11 burial ground include wells 699-8-17, 699-15-15B, 699-17-5, and 699-21-6. These wells are not believed to be effected by any potential release from the burial ground because of their location. Therefore, they provide information on the regional tritium plume. Tritium concentrations in these wells ranged from non-detect up to 54,400 pCi/L. Although these data bound the regional plume concentrations, the rather large variation complicates detailed interpretation.

The nearest wells downgradient of well 699-13-3A are wells 699-13-1A, 699-13-1B, and 699-13-1C. Well 699-13-1A contained the highest tritium levels of the group, 23,300 pCi/L, while tritium was barely detected in well 699-13-1B at 300 pCi/L. Tritium was not detected in well 699-13-3C, which is completed in the uppermost basalt-confined aquifer. These wells were drilled as water supply wells and do not represent conditions at the top of the aquifer. Wells 699-13-1A and 699-13-1B have multiple open intervals, none across the water table. These wells were sampled with a portable pump. The pump was set in the middle of the uppermost screen. The great difference in tritium concentrations between wells 699-13-1A and 699-13-1B suggests that the samples came predominantly from different intervals.

Tritium concentrations in monitoring wells located near WNP-2 ranged up to 14,100 pCi/L. These monitoring wells are roughly downgradient from the 618-11 burial ground.

Wells currently designated ENW-31 (C3080) and ENW-32 (C3081) are water supply wells for WNP-1 that are completed in the uppermost basalt confined aquifer. Tritium was not detected in these wells.

Well 699-10-E12 is located approximately downgradient of the 618-11 burial ground and roughly 1.5 km (0.9 mi) from the Columbia River. It contained 23,200 pCi/L of tritium, within the range of values for upgradient wells.

3.1.2 Uranium and Gross Alpha

The only radionuclides other than tritium detected in well 699-13-3A were uranium, technetium-99, gross alpha, and gross beta (see Appendix C). The gross alpha measurements agree with the uranium isotopic measurements with the possible exception of Energy Northwest well MW-1 (C3071) where the total uranium concentration was over 5 pCi/L greater than the gross alpha concentration (Table 3.1). Thus, the uranium is the only significant alpha emitter in the groundwater. The uranium isotopic data can be compared to the total uranium measurements by converting the individual isotope activity-concentration to mass concentration using the specific activity of the isotopes. The sum of the isotopic mass is in agreement with the measured uranium concentrations where both analyses were performed.

The calculated uranium concentrations are shown in Figure 3.2. Uranium concentrations were greater than the proposed maximum contaminant level of 20 μ g/L in monitoring wells Energy Northwest wells MW-2 (C3072), MW-3 (C3073), and MW-9 (C3079). The uranium concentration in well 699-13-3A was measured at 10.3 μ g/L and calculated from the individual isotopes to be 10.7 μ g/L. This value is somewhat higher than the immediately upgradient well 699-12-4D, where the calculated concentration is 5.7 μ g/L but well within the range of data from surrounding wells. The uranium concentration in well 699-13-3A is comparable to previous results (Figure 3.3). The gross alpha measurements are also similar to previous results (Figure 3.4).

The cause of elevated uranium in groundwater in the study area is unclear. The concentrations are spatially variable and do not form distinct plumes. There is no obvious relationship to the 618-11 burial ground or any other potential source.

The uranium concentrations in these samples are generally too low to develop an isotopic signature from the activity ratios. This is particularly true of the uranium-235, which was below the detection limit for several samples. It is possible to measure more precise isotopic ratios using other techniques.

3.1.3 Gross Beta, Technetium-99, and Strontium-90

Strontium-89 and strontium-90 were not detected in the total-beta radiostrontium analyses from any of the samples. Technetium-99 is a low energy beta emitter, so it is undercounted in the gross beta measurements. The energy of the technetium-99 beta is only 0.294 MeV compared to 0.546 MeV for strontium-90 and 2.281 MeV for yttrium-90, a short lived daughter of strontium-90. At the Hanford Site, a rule of thumb is that a gross beta measurement will be approximately one-third of the technetium-99 concentration where technetium-99 is the major beta-emitter present.

Technetium-99 results reported by the primary analytical laboratory for well 699-13-3A are considered suspect because they do not agree with the gross beta measurements and the results do not agree with technetium-99 measurements reported using different methods by Pacific Northwest National Laboratory. The primary analytical laboratory reported 18,600 pCi/L of technetium-99 with a duplicate value of 13,600 pCi/L, compared to the gross beta measurement of 15 pCi/L with a duplicate value of 20.8 pCi/L. The technetium-99 concentration of 54.5 pCi/L (by the Empore disk measurement at Pacific Northwest National Laboratory) is in agreement with the gross beta measurement. Additional technetium-99 measurements were made at Pacific Northwest National Laboratory using inductivelycoupled plasma/mass spectrometry because of the discrepancies between other analyses. The inductivelycoupled plasma/mass spectrometry results were 0.004 μ g/L with a duplicate of 0.005 μ g/L that correspond to 68 pCi/L and 85 pCi/L respectively. These results confirm the Empore disk measurements but are less precise because the results were near the detection limits (approximately 0.001 μ g/L). The inductively-coupled plasma/mass spectrometry analysis was performed on filtered samples rather than the standard unfiltered samples because there was insufficient unfiltered samples remaining for analysis. The primary analytical laboratory results are being investigated, and it appears that the tritium may have interfered with the measurement. The conclusion is that there are no major beta-emitting radionuclides that were not included in the analyte list.

Gross beta results from the February 2000 sampling of well 699-13-3A were considerably lower than results from the preceding sampling. Concentrations of gross beta had risen in this well, reaching 36.6 pCi/L in January 2000. However, the February result was 15.0 pCi/L with a duplicate sample reported as 20.8 pCi/L (Figure 3.5). The reason for this decline is unclear, as is the reason for the previously increasing trend. It is possible that the pump was placed at a different depth in the February sample and resulted in changes in concentration. However, the drop in gross beta is proportionally greater than the drop in tritium concentration. Tritium is not detected in the gross beta measurement because the gross beta sample is first evaporated onto a planchet.

3.1.4 Other Radionuclides

No radionuclides were detected in the gamma-scan from any of the wells. Gamma-emitting radionuclides reported as non-detect include beryllium-7, potassium-40, cobalt-60, ruthenium-106, antimony-125, cesium-134, cesium-137, europium-152, europium-154, and europium-155. Other radionuclides would be reported if detected.

Iodine-129 was not detected in any of the samples. Even the wells upgradient of the 618-11 burial ground are outside the area of the detectable iodine-129 plume from 200 East Area so this is not unexpected.

Plutonium isotopes were not detected in any of the samples.

3.2 Chemical Results

Anion, filtered metal, and alkalinity measurements were made at all wells sampled in February 2000. Volatile organic compounds and semivolatile organic compounds were measured in wells 699-12-4D,

699-13-1A, 699-13-3A, and 699-10-E12. The charge balance calculated from the anion, major cations, and alkalinity was within 6% with the exception of Energy Northwest well MW-7 (C3077), which had a charge balance of -13.55%. As discussed in Section 2.2, the data from this well are suspect due to incomplete purging of decontamination rinse from the pump tubing.

3.2.1 Nitrate

The nitrate distribution in the vicinity of the 618-11 burial ground is shown in Figure 3.6. The highest nitrate concentration detected was 32.5 mg/L (as N) in Energy Northwest monitoring well MW-9 (C3079). The drinking water standard maximum contaminant level for nitrate is 10 mg/L as N. The nitrate concentration in well 699-13-3A was also over twice the maximum contaminant level at 22.8 mg/L as N. Well 699-17-5, located north of the burial ground also contained nitrate at levels above the maximum contaminant level (16.4 mg/L as N). Thus the nitrate contamination is relatively widespread and does not correspond to the tritium contamination. Monitoring well 699-12-4D, located west (upgradient) of the 618-11 burial ground contained 6.3 mg/L (as N) nitrate, a much lower concentration than well 699-13-3A.

3.2.2 Other Anions

Traces of nitrite were detected in wells 699-17-5 (0.097 mg/L as N) and 699-21-6 (0.044 mg/L as N). The presence of nitrite indicates slightly reducing conditions in these wells. The nitrite is less than the maximum contaminant level of 1 mg/L and appears unrelated to the high tritium concentration in well 699-13-3A. Nitrite was not detected in the other wells sampled.

Sulfate was detected at 259 mg/L in Energy Northwest monitoring well MW-9 (C3079), a level slightly above the 250 mg/L secondary maximum contaminant level. Sulfate varied greatly throughout the study area, ranging from 2 mg/L in uppermost basalt-confined aquifer well 699-13-1C, to the 259 mg/L in Energy Northwest well MW-9 (C3079).

3.2.3 Cations

No metals were detected at levels above primary maximum contaminant levels. All metal analyses were performed on samples filtered through 0.45 μ m filters in the field. Aluminum was detected at an extremely high level of 1,060 μ g/L in well 699-13-1A. It is not plausible that aluminum at this level is present in solution at the sample pH of 8.06, so this result is considered suspect. This aluminum level is greater than the secondary maximum contaminant level.

Iron was detected in well 699-21-6 at 378 μ g/L, above the secondary maximum contaminant level of 300 μ g/L. Manganese in well 699-21-6 was also slightly above the 50 μ g/L secondary maximum contaminant level at 50.1 μ g/L. The only other well with concentrations of manganese above the secondary maximum contaminant level was well 699-13-1B with 94.2 μ g/L. The manganese concentration in well

699-13-1A was slightly below the secondary maximum contaminant level at 49.2 μ g/L. The presence of iron and manganese may be related to slightly reducing conditions because the solubility is greater under reducing conditions.

3.2.4 Major Ion Water Types

The relationships between the major ions in groundwater are commonly used to distinguish waters of distinct geochemical types and to infer the history and evolution of groundwater chemistry. The Piper diagram is one method used to graph the relationships between cations and anions in groundwater (Piper 1944). The Piper diagram illustrates the relative proportion of cations and of anions (in milliequivalents per liter).

A Piper diagram for the samples analyzed in the Phase I investigation is shown in Figure 3.7. On this figure the black circles are samples from the top of the unconfined aquifer, except for well 699-13-3A, which is shown in red for emphasis. The samples from deeper in the unconfined aquifer (former water supply wells 699-13-1A and 699-13-1B) are shown in blue, and samples from the confined aquifer (former water supply well 699-13-1C and Energy Northwest water supply wells at WNP-1, ENW-31 (C3080) and ENW-32 (C3081) are shown in green.

The diagram shows a distinct difference among the three intervals, particularly with regard to the cations. The samples from the top of the unconfined aquifer are dominated by calcium with approximately equal proportions of sodium and magnesium. The confined aquifer samples are dominated by sodium with lesser amounts of calcium and magnesium. The samples from deeper in the unconfined aquifer are intermediate in composition between the top of the unconfined and the confined aquifer.

Nearly all the samples contain bicarbonate as the major anion (nitrate is not considered in the Piper diagram presented in Figure 3.7). Carbonate is insignificant at the pH of the samples. The confined aquifer, deeper unconfined aquifer, and some samples from the top of the unconfined aquifer contain over 80 % bicarbonate. The samples from the top of the unconfined aquifer show considerable variation in the proportion of sulfate and bicarbonate present with only minor variation in the chloride. If nitrate is included in the Piper diagram by combining it with chloride, then the samples from the top of the unconfined aquifer scatter more with respect to anions (Figure 3.8). Well 699-13-3A has an elevated proportion of chloride plus nitrate relative to most samples.

Multivariate plots (also called spider diagrams or radar diagrams) provide an alternate way to compare groundwater chemistry between wells. An advantage of spider diagrams is that they can include as many individual ions as required. They can be plotted in absolute concentrations or as percents of the total. A disadvantage is that they can become quite complicated if many wells are included.

The spider diagram shown in Figure 3.9 illustrates several distinct ratios of anions in unconfined aquifer wells near the 618-11 burial ground. Wells 699-12-4D and Energy Northwest well MW-1 (C3071) are typical of most wells in the area, with high bicarbonate and low sulfate, nitrate, and chloride. Energy Northwest well MW-2 (C3072) is unique because it has somewhat elevated chloride. Energy Northwest well MW-9 (C3079) contains a distinctly high proportion of sulfate and nitrate, unlike any

other wells sampled. The high sulfate raises questions regarding the relationship between elevated nitrate concentrations seen in well 699-13-3A and Energy Northwest well MW-9 (C3079). The ratio of the anions in well 699-13-3A is nearly identical to the ratio in well 699-17-7, located to the north suggesting a similar origin unrelated to the 618-11 burial ground.

3.2.5 Organic Constituents

Organic constituents were measured in selected wells during the Phase I sampling and analysis. The samples measured for Appendix IX list volatile and semivolatile organic constituents are well 699-12-4D, located immediately upgradient of the burial ground, well 699-13-3A, immediately downgradient of the burial ground, well 699-10-E12, located several kilometers downgradient of the burial ground (see Figure 2.1).

Methylene chloride was detected in both samples from well 699-13-3A at a concentration of 3 to 3.4 μ g/L. However, contamination was detected also in the laboratory blanks associated with these samples. A trace of methylene chloride, 0.68 μ g/L, was detected also in the sample from well 699-13-1A. The maximum contaminant level for methylene chloride (dichloromethane) is 5 μ g/L. Methylene chloride was detected in several field transfer and equipment blanks. Laboratory contamination is suspected because methylene chloride is a common laboratory contaminant.

Traces of carbon tetrachloride, 0.24 μ g/L, were detected in the duplicate samples from well 699-13-3A. Trichloroethene was detected in one of the two duplicates at a level of 0.32 μ g/L. Trichloroethene was also detected at a level of 0.21 μ g/L in an equipment blank associated with this well.

Chlorobenzene was detected at 0.41 μ g/L in well 699-12-4D. This value is near the method detection limit. The MCL for chlorobenzene is 100 μ g/L.

The only semivolatile constituent identified in the samples was a detection of an estimated 1.4 μ g/L of bis(2-ethylhexyl) phthalate in one of the duplicates from well 699-13-3A. The compound bis(2-ethylhexyl) phthalate is considered to be a common laboratory contaminant.

3.3 Quality Control

Quality control data for the 618-11 burial ground investigation includes the results from field blanks, field duplicates, split samples, and several types of laboratory-generated quality control samples. These latter samples include method blanks, laboratory control standards, matrix duplicates, matrix spikes, and matrix spike duplicates. Definitions of the different types of quality control samples are provided in Appendix D. This discussion focuses mainly on the field quality control results; however, a brief summary of the laboratory quality control data is provided near the end of this section.

Table 3.2 lists the number and types of field quality control samples that were collected for the Phase I investigation. Three types of field blanks were included to check for contamination resulting from field activities and/or bottle preparation. Two field duplicates were collected to provide a measure

of the overall sampling and analysis precision. A split sample was also collected for additional confirmation of previous elevated tritium results from well 699-13-3A.

A total of 208 results were generated from the field blanks. Forty-nine results were above the detection limits, and 32 results were greater than the quality control limit for field blanks (generally 2 times the method detection limit for chemistry methods and 2 times the total propagated uncertainty for radiochemistry methods). Except for one potassium-40 result (133 pCi/L; 2 times the minimum detectable activity), no radionuclides were detected in any field blanks. The constituents with out-of-limit results were bromodichloromethane, calcium, chloride, chloroform, iron, sodium, and zinc. Most of the out-of-limit results were 10 to 20 times lower than the lowest concentrations measured in groundwater samples from the Phase I investigation. However, iron and zinc were detected in field blanks at levels similar to those in groundwater samples. Iron was found in 4 field blanks at concentrations ranging from 55.3 μ g/L to 371 μ g/L. Zinc was detected in 6 field blanks; the results ranged from 6.7 μ g/L to 26.1 μ g/L. Levels of iron and zinc up to 89.8 μ g/L were also detected in laboratory method blanks. Bromodichloromethane and chloroform were measured in both equipment and full trip blanks at levels up to 23 μ g/L, but neither compound was detected in groundwater samples. Based on previous groundwater-monitoring-project data, the source of these trihalomethanes is suspected to be the reagent water used to prepare the field. blanks. Overall, the field blank results suggest that sample contamination was not significant for the Phase I investigation.

Field duplicate results are evaluated using the relative percent difference statistic, which is calculated for each pair of matching results. In general, field duplicates with at least one result greater than 5 times the method detection limit or minimum detectable activity must have a relative percent difference less than 20% to be considered acceptable. The two field duplicate samples for the Phase I investigation were analyzed for alkalinity, anions, metals, and several radionuclides to produce a total of 71 result pairs. Ninety-four percent of the field duplicate results were within quality control limits; thus, sampling and analysis precision was excellent overall. Four pairs of results had quantifiable results that exceeded the quality control limits. Iron had results of 71.7 µg/L and 262 µg/L for samples from Energy Northwest well MW-9 (C3079); the relative percent difference was 114%. Two of the zinc results (33 μ g/L and 21.7 μ g/L) from well 699-13-3A had a relative percent difference of 41%. Both of these metals were detected in field and method blanks; thus, the poor precision may have resulted from sample contamination. The relative percent difference for gross beta and technetium-99 in samples from 699-13-3A was 32% (15.0 pCi/L and 20.8 pCi/L) and 31% (13,600 pCi/L and 18,600 pCi/L), respectively. The reason for the variability in these results is unknown, but it should be noted that the technetium-99 results appear to be unreasonably high based on the relatively low gross-beta concentrations. The technetium-99 matrix spike result for the 699-13-3A sample was also very high (211% recovery); thus, a matrix interference may have biased the results.

The split sample results for tritium in well 699-13-3A were 7,230,000 pCi/L and 7,410,000 pCi/L, indicating agreement between laboratories. These values, along with the field duplicate result of 6,890,000 pCi/L, confirm the elevated result of 8,140,000 pCi/L measured at this well in January 2000.

Most of the laboratory quality control results were within acceptance limits, indicating the analyses were generally in control, and the results are reliable. The following observations summarize the laboratory quality control results:

- Four constituents exceeded the quality control limits for method blanks: aluminum, chloride, iron, and zinc. Two method blanks had aluminum results (63 µg/L and 89 µg/L) that were greater than the levels measured in most of the groundwater samples taken during the Phase I investigation. As noted previously, iron and zinc were also detected at levels comparable to groundwater-sample concentrations.
- All laboratory-control-sample results were within acceptance limits.
- Four matrix duplicates with quantifiable results had a relative percent difference greater than 20%. Three of the out-of-limit result pairs were for uranium-234. The largest relative percent difference for uranium-234 was 24.3%; thus, the data was not significantly compromised. Gross alpha in laboratory duplicates from Energy Northwest well MW-8 (C3078) had results of 6.3 and 22 pCi/L. The reason for the poor precision in these samples is unknown.
- Most matrix spike results were within acceptance limits; thus, sample-matrix effects did not appear to have a significant impact on data quality. Six matrix spike recoveries were high; the results were for chloride, fluoride, nitrite, technetium-99, and uranium. However, only the chloride and technetium-99 recoveries were significantly out-of-limit (i.e., >140%). Both results were associated with samples from well 699-13-3A. The chloride recovery was 204%, and the technetium-99 recovery was 211%. In both cases, the associated sample results may be biased high.

Well	Sample Number	U-234 (pCi/L)	U-235 (pCi/L)	U-238 (pCi/L)	Total Uranium (pCi/L)	Gross Alpha (pCi/L)	Calculated Total Uranium (µg/L)	Measured Total Uranium (µg/L)
699-10-E12	B0XK02	2.37	0.09	1.43	3.90	3.71	4.30	5.15
699-12-4D	B0XJW0	1.80	0.02	1.91	3.74 -	3.44	5.70	5.87
699-13-1A	B0XJW9	2.77	-0.01	1.29	4.05	4.16	3.83	
699-13-3A	BOXJT8	4.35	0.29	3.55	8.18	6.06	10.70	10.32
699-15-15B	B0XK20	3.39	0.12	2.28	5.79	4.22	6.84	
699-17-5	B0XK15	1.36	0.11	0.99	2.46	2.48	2.98	
699-21-6	B0XK23	1.56	-0.01	0.96	2.51	2.08	2.85	
699-8-17	B0XK12	1.53	0.04	1.32	2.89	3.83	3.95	
699-9-E2	B0XJY4	1.28	0.07	1.13	2.48	1.98	3.40	
C3071/ENW-MW1	B0XKC1	5.93	0.34	5.09	11.36	5.23	15.31	
C3072/ENW-MW2	B0XKC2	12.20	0.58	10.90	23.68	22.10	32.71	
C3073/ENW-MW3	B0XKC3	7.67	0.79	7.96	16.42	18.40	24.06	
C3074/ENW-MW4	B0XKC4	2.01	0.19	2.57	4.77	6.50	7.74	
C3075/ENW-MW5	B0XKC5	1.45	0.02	0.93	2.39	3.51	2.77	-
C3076/ENW-MW6	B0XKC6	4.14	0.22	4.36	8.72	7.66	13.08	
C3078/ENW-MW8	B0XKC8	3.00	0.18	2.96	6.14	6.32	8.89	
C3079/ENW-MW9	B0XKC9	12.60	0.52	12.30	25.42	22.10	36.85	
C3079/ENW-MW9	B0XKD0	13.70	0.42	11.40	25.52	22.80	34.13	
C3080/ENW-31	B0XKD1	1.05	0.18	0.25	1.48	1.19	0.82	
C3081/ENW-32	B0XKD2	1.12	0.03	0.59	1.74	1.19	1.78	
Italicized values are less than the minimum detectable activity								

Table 3.1. Comparison of Uranium Isotopic Concentrations to Gross Alpha and TotalUranium Concentrations

Table 3.2 . F	Field O	uality (Control	Samples
----------------------	---------	----------	---------	---------

Sample Type	Number of Samples	Associated Wells	Comments					
Equipment Blanks	4	699-13-3A ^(a) , 699-13-1B, ENW-MW5	Sampled with portable					
		· ·	Grundfos pump					
Full Trip Blanks	2	699-13-3A, 699-21-6						
Field Transfer Blanks	3	699-13-3A, 699-13-1A, ENW-MW6	Volatile organic					
			analysis only					
Field Duplicates	2	699-13-3A, ENW-MW9						
Split Samples	1	699-13-3A	Tritium analysis only					
(a) Two equipment bla	anks were colled	cted at 699-13-3A; the first was collected b	before the well was					
sampled, and the second was collected after the well was sampled.								

Figure 3.1. Tritium Concentrations for February 2000 Sampling Near the 618-11 Burial Ground

Figure 3.2. Calculated Uranium Concentrations for February 2000 Sampling Near the 618-11 Burial Ground

Figure 3.3. Uranium Concentration Trend in Well 699-13-3A

Figure 3.4. Gross Alpha Concentration Trend in Well 699-13-3A

Figure 3.5. Gross Beta Concentration Trend in Well 699-13-3A

Figure 3.6. Nitrate Concentrations Expressed in mg/L as N for February 2000 Sampling Near the 618-11 Burial Ground

Figure 3.7. Piper Diagram for Major Ions in the Phase I Samples

Figure 3.8. Piper Diagram for Major Ions in the Phase I Samples Including Nitrate with the Chloride Component

Figure 3.9. Relationship Between the Percentage of Anion Milliequivalents in Selected

Wells Near the 618-11 Burial Ground

•

4.0 Discussion

The most important result of the Phase I sampling is that the extremely elevated tritium levels remain restricted to only well 699-13-3A, immediately downgradient of the 618-11 burial ground. Well 699-12-4D, upgradient of the burial ground, contained 1,850 pCi/L of tritium. Any explanation of the tritium contamination must consider the much lower levels in surrounding wells. The explanation must also consider the lack of co-contaminants with the possible exception of nitrate and minor levels of technetium-99.

In the following sections the results will be discussed with respect to possible sources in the 200 East Area, Energy Northwest operations, and the 618-11 burial ground. A detailed discussion of the historical tritium concentrations in the plume emanating from the 200 East Area and in the vicinity of the 618-11 burial ground is included in order to evaluate the possibility of a source from the 200 East Area.

4.1 Relationship to the 200 East Area Tritium Plume

4.1.1 Historical Plume Conditions

The tritium plume from the 200 East Area has been mapped since the 1960s. Historical maps show the plume expanded into the vicinity of the 618-11 burial ground in approximately 1979. However, this interpretation is heavily influenced by data from wells 699-13-1A and 699-13-1B that were drilled in 1973. Thus, concentrations in this area were not established earlier and no clear breakthrough curve was recorded. A reinterpretation of the historical data highlights some problems and unknowns regarding the details of the plume migration into this area.

Samples collected from wells 699-13-1A and 699-13-1B have historically contained elevated levels of tritium (Figure 4.1). In the first year it was sampled, 1973, tritium concentrations in well 699-13-1A averaged 121,000 pCi/L and rose to a maximum of 390,000 pCi/L in 1974. In 1975 and 1976, tritium concentrations dropped to a low of 8,800 pCi/L, after which they began to rise in the last half of 1976 to another high of 200,000 pCi/L in 1977. Beginning in 1978, tritium concentrations fluctuated, ranging from 12,000 to 1,100,000 pCi/L in 1978 alone. These fluctuations occurred from 1978 through 1980 reaching a maximum value of 1,400,000 pCi/L. The well was not sampled after June 1981 until February 2000. Tritium concentrations in well 699-13-1B are similar to those in well 699-13-1A, but the rise in tritium concentrations in 1974 and 1975 is absent in well 699-13-1B, and peak tritium concentrations in well 699-13-1A.

Before the source of historical tritium in wells 699-13-1A and 699-13-1B is discussed, well construction and history need to be considered. The wells were drilled in 1973, approximately 112 m (370 ft) apart and approximately 425 m (1,400 ft) from the 618-11 burial ground. Both wells were constructed to supply water for construction of facilities for Energy Northwest (formerly know as Washington Public Power Supply System). The wells are 20 cm (8 in.) in diameter, 72 and 75 m (235 and 245 ft) deep, respectively, with multiple screened sections and extending approximately 55 m (180 ft) below the water table. Well construction drawings of the wells are presented in Figure 4.2. Well 699-13-1A was constructed with three screen sections, the upper section 5 m (15 ft) long and the lower two each 3 m (10 ft) long. The top of the upper screen section was located approximately 6 m (20 ft) below the water table at the time it was drilled. Well 699-13-1B has four screen sections with the upper section 6 m (20 ft) long and lower three each 3 m (10 ft) long. The top of the upper screen was located approximately 8 m (25 ft) below the water table.

Details of the historical use of wells 699-13-1A and 699-13-1B for water supply are unknown. The location of the pump in the wells during their use and sampling, the volumes of water and rate at which it was withdrawn, and the continuity of withdrawals is also unknown. In addition, the effects of the pumping on the direction and velocity of groundwater flow in the area are unknown. It is likely that the wells were used on a demand basis that resulted in a variable pumping schedule. A fluctuating withdrawal schedule could be responsible for the fluctuating tritium concentrations in the two wells. If tritium concentrations are generally higher in the upper portion of the groundwater system and the pumps were set in the middle or lower screen sections, as might be expected for a water supply well, high tritium concentrations could have been drawn into the well from the upper part of the aquifer when the well was pumped at a high rate. As the pumping rate dropped, more of the water could have been produced from the lower screened sections where the pump was located and where tritium concentrations were low. This would explain the tritium levels that were high during the active reactor construction period and that dropped to low levels at the end of construction when withdrawals would likely have been reduced.

Reactor WPN-2 began operation in January 1984. It is probable that a major Columbia River water supply was developed in the early 1980s to support the need for WNP-2 reactor cooling water, eliminating the need for these two water supply wells. This may be the reason they were not sampled after mid-1981. Currently WNP-2 uses the Columbia River for its water supply. Whatever the source of tritium, historical tritium fluctuations in wells 699-13-1A and 699-13-1B could be explained by the variable pumping history of the two wells.

The tritium plume that extends southeast from 200 East Area has its source in early separations operations in 200 East Area. Historical interpretations of the growing Hanford sitewide tritium plume show a slow migration of the tritium plume to the east and southeast until approximately 1972 (Kipp 1973). Figure 4.3 shows the plume in 1972 consisting of a northern and a southern lobe with the highest concentrations in the northern lobe.

The slow eastern and southern migration of the southern lobe was believed to have continued until 1973 when the plume apparently reached well 699-13-1A, as shown in Figure 4.4 (Kipp 1975). It is unknown if tritium was present in this area prior to 1973 because well 699-13-1A was not drilled until 1973. Between 1973 and 1978, the depiction of the extent and distribution of the tritium plume changed little on this southern boundary. In reality, tritium levels were peaking at 390,000 pCi/L in well 699-13-1A, but the annual average values were less than the 300 pCi/mL (300,000 pCi/L) contour level. As a result, the plume maps do not indicate this rise until 1979 (Figure 4.5), at which time the average reached 905,000 pCi/L (Eddy and Wilbur 1980). The 1978 plume map should have indicated that well 699-13-1A was greater than 300,000 pCi/L because the reported mean was 301,000 pCi/L. This value would have been much higher (460,000 pCi/L) had a reported value of 1,100,000 pCi/L been included.

The high data point resides in the HEIS database and in project records, but was not included in the evaluation. Regardless, the 1979 interpretation extended the 300,000 pCi/L tritium contour beyond well 699-13-1A.

Interpretations of tritium plume distributions differed between 1979 and 1980 in a very important and fundamental way. However, they were based on a common assumption. The common assumption was that there was a continuum of contamination between the well 699-20-20 area and the vicinity of the 618-11 burial ground. Because there are no data in the intervening area, this assumption cannot be verified. The major difference is the flow path that connected the two areas. Because the investigators connect these two areas of high tritium concentration, it is reasonable to conclude that the authors had no indication that another source of tritium existed near wells 699-13-1A and 699-13-1B. The 1979 plume was based on the notion that contamination in the vicinity of well 699-13-1A migrated into the area through the southern lobe of the plume, south of well 699-15-15B and north of well 699-8-17. There are no intermediate control points along this narrow flow path to support this interpretation. The 1980 data were interpreted in Eddy and Wilbur (1981) to indicate that contamination was reaching the area through a narrow flow path from the northwest, east of well 699-15-15B and west of well 699-17-5, both of which had lower tritium concentrations (Figure 4.6). As in the 1979 interpretation, there are no intermediate wells along this flow path to support the interpretation.

The problem with the depiction of the 1980 plume is that three critical data points were incorrectly accounted for in the interpretation. Data for wells 699-20-20 (583 pCi/ml) and 699-15-26 (250 pCi/ml) were incorrectly included in regions of lower concentration and the mean tritium concentration for well 699-13-1A was determined to be 297 pCi/ml (297,000 pCi/L), slightly below the 300 pCi/ml contour. If these data are factored into the plume depictions, a significantly different plume geometry results (Figure 4.7). If this flow path is correct, wells upgradient of the 618-11 burial ground area should have contained tritium concentrations at least as high or higher than 1,100,000 pCi/L. One well (699-26-15A) in this flow path and upgradient contained tritium as high as 1,600,000 pCi/L in 1970 and remained above 1,000,000 pCi/L until 1979. This indicates that a source of tritium existed at levels sufficient to explain high levels that appeared later in wells 699-13-1A.

4.1.2 Geologic Constraints on the Tritium Plume Migration

Geologic and well completion data must be used to help judge the merits of either interpretation. In 1979, data from wells 699-15-15B and 699-17-5 may have been used to infer an apparent barrier to southern migration of the plume. This interpretation is supported by the geology at these locations. Both wells are screened across the water table but the water table is near the Hanford formation/Ringold Formation contact. The wells recover slowly after removing water, indicating that the hydraulic conductivity is low, consistent with the Ringold Formation characteristics. The 1979 interpretation is consistent with an assumption that the low hydraulic conductivity region is continuous between wells 699-15-15B and 699-17-5, forming a hydrologic barrier to groundwater flow and contaminant migration. The 1980 interpretation may have assumed that the low conductivity regions are isolated to the vicinity of the wells and a higher conductivity zone exists between the two wells. The Ringold Formation has a shallow dip from east to west through the area and it outcrops along the eastern bank of the Columbia River east of the area. Recent interpretations as presented in Hartman (1999) show the Ringold

Formation at the water table in an area east of the Energy Northwest reactors (see Figure 1.4). However, because the saturated part of the Hanford formation is thin and the dip of the contact is shallow, the zone of lower transmissivity may extend for a considerable distance to the west. As contaminants moved southeast out of the 200 East Area, via a flow path through highly transmissive sediments, they reached this lower transmissive Ringold sediment contact, which in effect diverted most of the flow, splitting it into two separate flow paths.

The Ringold Formation is not encountered at the water table in shallow wells located north of the Energy Northwest complex, apparently due to erosion associated with either catastrophic flooding and/or the ancestral Columbia River. The ancestral Columbia River migrated across this area, in a southeast to southerly direction and may have resulted in eroding or reworking the older Ringold Formation gravel, which is now replaced and filled in with younger, more transmissive Hanford formation deposits. Some of these erosional events are illustrated as the topographic features that can be seen on the ground surface across the area (Figure 4.8). The top of the Ringold Formation was probably eroded to a lower elevation north of wells 699-15-15B and 699-178-5 by these erosional forces. Erosional features typical of braided stream environments are most likely the structural pattern developed on the Ringold surface. At present no detailed evaluation has been completed to determine the nature and extent of the erosionally controlled flow paths. For example, if the river eroded into the Ringold sediment between well 699-15-15B and 699-17-5, a transmissive zone may exist, allowing the tritium plume to continue migrating toward the 618-11 burial ground. This scenario, however, is speculative.

The conceptual models are based on the information that well 699-17-5 is in an area of low transmissivity and, therefore, not a dynamic portion of the groundwater flow system. This explains why historical tritium concentrations in the well have been low. A major anomaly is that the well has consistently contained elevated levels of nitrate. The sitewide tritium and nitrate plumes had a common source and emanated from 200 East Area together with little chance that they would be separated by natural reactions in the groundwater system. Because tritium concentrations have been low in the well, the nitrate must be from a different source that contained no tritium. At the current time, there are no explanations for this observation.

4.1.3 Current Plume Conditions

The highest tritium concentrations detected in wells upgradient of the 618-11 burial ground were 1,600,000 pCi/L in 1969 in well 699-26-15A and 1,100,000 pCi/L in 1974 in well 699-27-8 (Figure 4.9). These levels are clearly lower than the recent values of 7,230,000 to 8,140,000 pCi/L in well 699-13-3A. The discrepancy in concentration is even greater when you consider that approximately 2 ½ half-lives of decay have occurred in the intervening years.

The current distribution of tritium shown in the Phase I results (see Figure 3.1) is also inconsistent with a source from the 200 East Area. A plume from the 200 East Area would be expected to result in similar concentrations throughout the study area. However, the presence of considerably lower concentrations in wells other than well 699-13-3A indicates a local source.

Further support for a local source for the tritium contamination comes from the relationship of tritium to co-contaminants. Iodine-129 was not detected in the samples from well 699-13-3A. Although the detectable iodine-129 plume does not extend as far as the tritium plume, the iodine-129 is consistently detected within the area of the plume from 200 East Area when tritium concentrations are high (Figure 4.10). In contrast, the iodine-129 for the Phase I sampling of well 699-13-3A was extremely low compared to the 200 East Area plume. For the purpose of the figure the non-detect iodine-129 value for well 699-13-3A was graphed at the minimum detectable activity value of 0.2 pCi/L.

Nitrate in well 699-13-3A is also considerably lower than would be expected for at source from the 200 East Area (Figure 4.11). Although nitrate is higher in well 699-13-3A than in surrounding monitoring wells (see Figure 3.6), the nitrate levels do not approach the levels found in the highest tritium concentration samples from the 200 East Area. Thus, it is difficult to explain the chemistry by invoking a 200 East Area source.

4.1.4 Summary

The current high levels of tritium in well 699-13-3A are not consistent with the levels seen in surrounding wells and thus suggest a local source for the contamination. The tritium contamination level is higher than currently seen anywhere else in the plume from the 200 East Area. It is conceivable that elevated tritium levels seen in water supply wells in the late 1970s are related to the 200 East Area tritium plume. However, the presence of low permeability sediments in the vicinity may inhibit transport of contamination from the 200 East Area. Further investigation of the geology would be needed to determine if erosional features provide a lower permeability pathway to the vicinity of the 618-11 burial ground.

4.2 Relationship to Tritium Discharges from WNP-2

Energy Northwest operations use large volumes of water, some of which is disposed to the environment. Operation of WNP-2 uses primary and secondary cooling water loops. The primary loop is contained within the facility and the water has become highly radioactive. Because this loop contains valves and other structures that may leak, the atmosphere of the reactor containment building can become radioactive. The building contains an exhaust system that prevents the release of such contaminants. The secondary loop consists of 25 million liters (6.5 million gallons) of cooling water that is cycled at 2.3 million liters (600,000 gallons) per minute. The secondary cooling water passes through the cooling towers where approximately 49,000 liters (13,000 gallons) per minute is lost to the atmosphere as evaporate. Cooling tower blowdown is removed from the secondary system, at a rate of 5,700 liters (1,500 gallons) per minute and represents discharge water that is released directly to the Columbia River. The rest of the secondary cooling water is recovered and recycled. Secondary coolant makeup water represents the bulk of the intake water and is about 57,000 liters (15,000 gallons) per minute.

4.5

Five types of water samples are collected as part of Energy Northwest's environmental monitoring program. The types of water samples collected include

- intake water from the Columbia River
- wastewater from the sanitary waste treatment facility (SWTF)
- storm drain outfall (released to a ditch and pond)
- discharge water that is released back into the Columbia River
- groundwater (three wells sampled).

The intake water represents "background" tritium concentrations for water used by Energy Northwest. The other four water types represent conditions of liquid streams affected by Energy Northwest operations as they are released back to the environment.

4.2.1 Intake Water

Tritium concentrations in intake water reflect levels present in precipitation and tritium that has entered the Columbia River from groundwater sources through the Hanford Reach of the river. Tritium is naturally formed in the upper atmosphere where highly energetic cosmic rays collide with nitrogen, resulting in the formation of tritium. The tritium atom is incorporated into a water molecule where it then falls to earth in precipitation. Davis and DeWiest (1966) reported that prior to major atmospheric testing of nuclear weapons beginning in 1952, tritium concentrations in rainfall were as high as 30 pCi/L. Groundwater entering the Columbia River, just downstream of the Hanford Townsite, resulted in maximum tritium concentrations of 4,100 pCi/L in the river at 1998 in near shore locations with an average transect level of 730 pCi/L (Dirkes et al. 1999). Tritium concentrations at the 300 Area dropped to an average of 42 pCi/L. Energy Northwest intake water averaged 120 pCi/L in 1998 (McDonald et al. 1999). Therefore, the Energy Northwest intake water has a low tritium concentration.

4.2.2 Wastewater from the Sanitary Waste Treatment Facility

This waste stream consists of sanitary wastewater from WNP-2 operations and from Fast Flux Test Facility sanitary wastewater. The average tritium concentration in this waste stream in 1998 was 3,723 pCi/L with a maximum sample concentration of 20,000 pCi/L (McDonald et al. 1999). In the previous 14 years of operation, this stream averaged 497 pCi/L with a maximum value of 6,700 pCi/L. This increase is due to the addition in 1998 of sanitary wastewater from the Fast Flux Test Facility that contained an average tritium concentration of 8,008 pCi/L to the stream. Fast Flux Test Facility process water is pumped from one primary groundwater well and two backup wells if the primary well cannot be used. This water supply contains tritium at the levels found in the wastewater. This level rose to 20,000 pCi/L when the backup wells were used when the primary well was taken offline for pump maintenance.

4.2.3 Storm Drain Outfall

The 1998 average tritium concentration in the storm drain outfall was 325 pCi/L with a high of 3,700 pCi/L (McDonald et al. 1999). In the previous 14 years, the average tritium concentration for this waste stream was 5,704 pCi/L with a high of 270,000 pCi/L. The high levels were measured in 1992 when it was found that moisture in building exhaust ventilation condensed on surrounding buildings where it then entered the storm drains. This problem was corrected and levels dropped to current levels in the first half of 1993 (Washington Public Power Supply System 1996).

4.2.4 Discharge Water

Discharge water refers to all water discharged directly into the Columbia River; it is sampled before it is discharged to the river. This stream consists mainly of cooling tower blowdown. The 1998 average tritium concentration in the discharge water was 803 pCi/L with a high of 1,600 pCi/L (McDonald et al. 1999). In the previous 14 years, the average tritium concentration was 1,907 pCi/L with a high of 12,000 pCi/L. This discharge is permitted with a National Pollutant Discharge Elimination System (NPDES) permit. The permit level has not been exceeded.

4.2.5 Groundwater

Energy Northwest samples three groundwater supply wells for their environmental surveillance program, well 699-13-1C, northeast of WNP-2, and wells designated ENW-31 (C3080) and ENW-32 (C3081) on the northeast side of WNP-1. These wells are all completed in the confined aquifer. Historically, the tritium concentrations in these wells have been near or below the detection limit of the analytical method. Reported tritium concentrations have ranged from less than detection to 324 pCi/L (McDonald et al. 1999). These numbers agree with values from the Phase I sampling where tritium was not detected at any of these locations.

From 1996 through 1998, Washington State Department of Health sampled five Energy Northwest monitoring wells for tritium. They also sampled the water supply wells discussed above. The Washington State Department of Health data for tritium are in general agreement with the Phase I sampling results reported here. The maximum concentration detected in the Washington State Department of Health data was 18,600 pCi/L in Energy Northwest monitoring well MW-5 (C3075).

4.2.6 Summary

In summary, Energy Northwest environmental monitoring data indicate that liquid waste streams generated by Energy Northwest operations, and DOE in the case of the 400 Area sanitary wastewater, contained average tritium concentrations at less than 6,000 pCi/L and a maximum of 270,000 pCi/L. This information is corroborated by data from the Washington State Department of Health (1999). The highest tritium concentrations were related to a condition that was corrected shortly after it was detected. The result was that tritium concentrations dropped to previous low levels. These data indicate that Energy Northwest operations are not responsible for the high tritium concentrations in well 699-13-3A.

4.3 Relationship to the 618-11 Burial Ground

The 200 East Area and Energy Northwest power plant are unlikely sources of the tritium at levels seen in well 699-13-3A. The 618-11 burial ground source is, however, consistent with the spatial distribution of tritium shown in Figure 3.1. Tritium levels in well 699-12-4D, located immediately upgradient from the burial ground, are considerably lower. The markedly lower tritium levels in other downgradient wells is consistent with a narrow plume that could be expected from a near-by source. A burial ground source would not be expected to be associated with large volumes of water, which is also consistent with a localized plume.

The presence of tritium bearing waste disposed to the 618-11 burial ground has not been established. A possible source is tritium present as a product of nuclear fission. Tritium is produced in nuclear reactors through several processes. Some tritium is produced through neutron capture on deuterium in the cooling water, but this is not expected to have a significant effect on other waste streams. In ternary fission, a fissionable atomic nucleus, such as uranium-235, is split into three nuclei. Ternary fission occurs much less frequently than binary fission. Tritium from reactor operations may also be produced through irradiation of trace impurities in the fuel, cladding materials or other reactor materials. Thus, some tritium can be expected to be present in materials that have been cycled through a nuclear reactor. Irradiated fuel and other radioactive materials were studied in the 300 Area and waste disposed to the 618-11 burial ground. The tritium content of the waste is generally not documented, and little is known about the potential tritium release to the environment from these waste forms. However, significant tritium contamination has not been identified with other radioactive solid-waste burial grounds. A possible exception is the 118-F-1 burial ground where tritium concentrations up to 180,000 pCi/L have been detected in a downgradient well.

A potentially larger source of tritium is from tritium production carried out at the Hanford Site. Although most of the U.S. government tritium production occurred at the Savannah River Site, significant tritium production and production research occurred at the Hanford Site during two time periods. The first time period was approximately 1949 to 1952 when tritium was produced by irradiation of lithium containing targets and processed in the 100 B Area. This campaign was called the P-10 project.

The second time period for recorded tritium production at the Hanford Site was a mid-1960s project know as the Hanford Coproduct Program. Information associated with that work was declassified in the early 1970s. In its early stages, which began in 1963, the project was intended to provide comprehensive engineering data on the optimal characteristics of lithium based irradiation targets to be used for tritium production in parallel with plutonium and electrical energy production at the Hanford N Reactor. This work is documented in numerous unclassified reports. A good summary of the activities performed can be found in Johnson et al. 1976.

Initial irradiation for the Hanford Coproduct Program was performed in one of the K Reactors using aluminum-lithium rods similar to those used in the P-10 Project. All subsequent irradiation was performed at N Reactor during 1965 to 1967, culminating with a full-scale test involving more than 1,500 lithium aluminate target columns containing on the order of 17 tons of lithium aluminate. Tritium production associated with that test was calculated to be on the order of 70 million curies of tritium per

year. Following irradiation, the entire target load was shipped to Savannah River for extraction, so it is unlikely that the production run itself was responsible for significant tritium releases at the Hanford Site. However, research activities involving smaller but still significant quantities of tritium production are almost certain to have generated some major waste products. All research activities, including tritium extraction performed in support of the Coproduct Program, were performed in the Hanford 300 Area through 1967.

The fate of any waste generated by the Coproduct Program research activities, including the extracted tritium itself, remains unknown. However, because the work was performed during the time period for which the 618-11 burial ground was used as the primary site for disposal of waste from 300 Area operations, it is quite possible that some, if not all, of the Coproduct Program research waste was routed to that location. The limited records associated with the 618-11 burial ground do, in fact, list aluminum-lithium as having possibly been disposed to the burial ground. While lithium aluminate and other related materials are not specifically enumerated separately, it is unlikely that the minor difference in terminology is significant. For lack of additional details, it would be prudent to assume that the term is used as a generic reference to tritium production target materials. It is, however, unclear whether the aluminum-lithium material, if present, was actually irradiated and what amount of tritium could have remained in the material after study. Hydrogen gas is also included on the same list. Because it seems unlikely that actual high pressure cylinders of hydrogen would be placed in a burial ground intended for low-level radioactive waste, it is possible that this is an oblique reference to gaseous tritium waste associated with the target extractions. Tritium is a very labile material with the ability to eventually diffuse through most materials and reactively exchange with normal hydrogen in water and some organics. Unless specifically packaged for long-term storage, it is quite likely that tritium containing materials disposed to a landfill would pose an eventual potential for groundwater contamination.

The potential rate of release of tritium from the waste and the travel time through the vadose zone have not been established. There is no record of disposal of liquids to the 618-11 burial ground. Thus, tritium transport would probably have occurred under natural recharge conditions or with recharge enhanced by some anthropogenic process. Water was applied over the burial ground when the wheat-grass cover was established in 1983 (Demiter and Greenhalgh 1997). This could have enhanced recharge and contaminant transport in the vadose zone. However, enhanced recharge in 1983 would not explain the elevated tritium levels seen in the late 1970s in well 699-13-1A.

It is fairly well established that the downward migration of the leading edge of the tritium bomb-pulse through the vadose zone is faster than the bulk water velocity. This is attributed to exchange between the aqueous and vapor phases in the soil and vapor phase transport (Phillips et al. 1988). The implications of the vapor transport effect on travel time to the water table for tritium at the 618-11 burial ground has not been quantified.

The relatively shallow depth to groundwater and the lack of deep rooted vegetation, such as sagebrush, on the burial ground suggest that there has most likely been sufficient time for tritium transport to the water table. The exact timing of any transport and the mass flux cannot be ascertained with any certainty at this point. It is unclear, for instance, if vadose transport would have been sufficiently rapid to allow the high levels of tritium to arrive in well 699-13-1A in the 1970s.

Figure 4.1. Tritium Concentration Trends in Wells 699-13-1A and 699-13-1B

Figure 4.2. Well Construction and Lithology for Wells 699-13-1A and 699-13-1B

Figure 4.5. Tritium Plume as Reported in 1979 (Eddy and Wilbur 1980)

Figure 4.6. Tritium Plume as Reported in 1980 (Eddy and Wilbur 1981)

Figure 4.7. Tritium Plume Reported in 1980 Redrawn to Correct Incorrectly Contoured Points

I

I

Т

1

Figure 4.8. Digital Terrain Map of the Hanford Site and Surrounding Areas

4.19

Figure 4.10. Comparison of Tritium vs. Iodine-129 for the 200 East Area Plume and Well 699-13-3A

5.0 Conclusions

The lack of high tritium concentrations upgradient from the 618-11 burial ground suggests that the burial ground is the source of the tritium. A local source is also suggested by the lack of correlation with downgradient wells. Currently the plume at concentration levels greater than seen in the regional tritium plume from the 200 East Area has only been identified in well 699-13-3A. This indicates a fairly narrow plume that cannot be tracked by the current well coverage. The levels of contamination do not appear explainable by either a source in the 200 East Area or from Energy Northwest activities. Iodine-129 and nitrate concentrations are low compared to the tritium concentration in well 699-13-3A producing a signature distinctly different from the 200 East Area plume. The lack of co-contaminants, with the possible exception of nitrate and minor amounts of technetium-99, suggests that the specific source either does not contain co-contaminants or that the tritium is migrating significantly faster than other contaminants. The identification of the burial ground as the probable source of tritium is consistent with circumstantial evidence of the history of tritium production research at the Hanford Site and the possible disposal of materials that may have been used in that research. However, it is possible that other transuranic materials known to have been disposed to the burial ground may have contained tritium impurities.

The source of the tritium at concentrations greater than 1,000,000 pCi/L seen in this vicinity in the late 1970s is still not unequivocally defined. However, the timing and magnitude of the arrival of tritium in water supply wells 699-13-1A and 699-13-1B are approximately what would be expected if the source of the tritium was in the 200 East Area. The presence of low-permeability sediments and historically low tritium concentrations in wells upgradient from the 618-11 burial ground, indicate geologic constraints on the transport of tritium into this area. A local source for the tritium seen in the 1970s must be considered a possibility since the current concentrations in well 699-13-3A indicate a source of tritium at the 618-11 burial ground. However, further assessment would be needed to determine if the possible release rate of tritium from the waste and travel time through the vadose zone and groundwater are rapid enough to account for the arrival of tritium in wells 699-13-1A and 699-13-1B in the late 1970s – approximately 15 years after the burial ground was used.

Gross beta measured in well 699-13-3A, located immediately downgradient of the 618-11 burial ground, was increasing slowly prior to the Phase I sampling. Gross beta measurements for the Phase I sample were somewhat lower. The gross beta content appears to be attributable to technetium-99 that is present in the regional plume from the 200 East Area. Thus, no causal relationship to the burial ground has been established.

No co-contaminants have been clearly associated with the tritium plume. Nitrate is present in this area at concentrations that are elevated compared to the regional tritium plume from the 200 East Area. The extent of the nitrate and the proportions of major anions in different wells indicate that the nitrate source probably is not the 618-11 burial ground. The region of elevated nitrate extends for considerable distance north of the burial ground. The source of the nitrate has not been determined.

A low level of carbon tetrachloride and trichloroethene in groundwater may also have a source in the 618-11 burial ground, but further monitoring is needed to rule out contamination issues and to establish a trend. The only semivolatile organic constituent detected, bis(2-ethylhexyl) phthalate is likely attributable to laboratory contamination.

Uranium was detected at levels above the proposed maximum contaminant level of 20 μ g/L in several wells, but the distribution does not indicate a source in the 618-11 burial ground. Further monitoring would be needed to establish a source and to understand the variations in natural uranium concentrations that may result from lithologic variation in the area.

The wells sampled in this phase of the investigation place only rough boundaries on the extent of tritium contamination. The downgradient and lateral extent will be addressed in follow-on work. The Phase I investigation did not assess the vertical extent of contamination and that will also be addressed in subsequent work. The Phase I investigation was not designed to address specific sources within the burial ground. A strategy for investigating whether the tritium contamination can be tied to specific parts of the burial ground is being developed.

6.0 References

53 FR 12449. 1988. "Disposal of Hanford Defense High-Level, Transuranic, and Tank Waste, Hanford Site, Richland, Washington; Record of Decision (ROD)," *Federal Register*, Vol. 53, No. 72, pp. 12449.

BHI-00184. See Lindsey, K. A. 1995.

Davis, S. N., and R.J.M. DeWiest. 1966. *Hydrogeology*. John Wiley & Sons, Inc. New York, New York.

Demiter, J. A., and W. O. Greenhalgh. 1997. Characterization of the 618-11 Solid Waste Burial Ground, Disposed Wastes, and Description of the Waste Generating Facilitates. HNF-EP-0649, Waste Management Federal Services, Inc., Richland, Washington.

Dirkes, R. L., R. W. Hanf, and T. M. Poston (eds). 1999. Hanford Site Environmental Report for Calendar Year 1998. PNNL-12088, Pacific Northwest National Laboratory, Richland, Washington.

DOE. 1987. Final Environmental Impact Statement, Disposal of Hanford Defense High-Level, Transuranic, and Tank Wastes. DOE/EIS-0113, U.S. Department of Energy, Washington, D.C.

DOE-RL. 1988. Implementation Plan for the Record of Decision for Disposal of Hanford Defense High-Level, Transuranic, and Tank Wastes. DOE/RL-88-13, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

DOE-RL. 1993. 618-11 Burial Ground Expedited Response Action Proposal. DOE/RL-93-49, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

Eddy, P. A., and J. S. Wilbur. 1980. Radiological Status of the Ground Water Beneath the Hanford Project January - December 1979. PNL-3346, Pacific Northwest Laboratory, Richland, Washington.

Eddy, P. A., and J. S. Wilbur. 1981. Radiological Status of the Ground Water Beneath the Hanford Site January - December 1980. PNL-3768, Pacific Northwest Laboratory, Richland, Washington.

Hartman, M. J. (ed.). 1999. *Hanford Site Groundwater Monitoring for Fiscal Year 1998*. PNNL-12086, Pacific Northwest National Laboratory, Richland, Washington.

Hartman, M. J. (ed.). 2000. Hanford Site Groundwater Monitoring: Setting, Sources and Methods. PNNL-13080, Pacific Northwest National Laboratory, Richland, Washington.

Johnson, A. B., T. J. Kabele, and W. E. Gurwell. 1976. *Tritium Production from Ceramic Targets: A Summary of the Hanford Coproduct Program*. BNWL-2097, Battelle-Northwest Laboratories, Richland, Washington.

Kipp, K. L., Jr. 1973. Radiological Status of the Groundwater Beneath the Hanford Reservation January – June 1973. PNL-1737, Pacific Northwest Laboratory, Richland, Washington.

Kipp, K. L., Jr. 1975. Radiological Status of the Groundwater Beneath the Hanford Reservation January – December 1973. PNL-1860, Pacific Northwest Laboratory, Richland, Washington.

Lindsey, K. A. 1995. Miocene- to Pliocene-Aged Suprabasalt Sediments of the Hanford Site, South-Central Washington. BHI-00184, Bechtel Hanford, Inc., Richland, Washington.

McDonald, J. E., L. S. Schleder, and C. A. Mendola. 1999. Nuclear Plant 2, 1998 Annual Radiological Environmental Operating Report, January 1 to December 31, 1998. Washington Public Power Supply System, Richland, Washington.

Phillips, F. M., J. L. Mattick, T. A. Duval, D. Elmore, and P. W. Kubik. 1988. "Chlorine 36 and tritium from nuclear weapons fallout as tracers for long-term liquid and vapor movement in desert soils." *Water Resource Research* Vol. 24, pp. 1877-1891.

Phillips, S. J., L. L. Ames, R. E. Fitzner, G. W. Gee, G. A. Sandness, and C. S. Simmons. 1980. *Characterization of the Hanford 300 Area Burial Grounds, Final Report, Decontamination and Decommissioning*. PNL-2557, Pacific Northwest Laboratory, Richland, Washington.

Piper, A. M. 1944. "A graphic procedure in the geochemical interpretation of water-analysis." *American Geophysical Union Trans.* Vol. 25, pp. 914-923.

PNL-8971. See Thorne, P. D. et al. 1993.

Thorne, P. D., M. A. Chamness, F. A. Spane, Jr., V. R. Vermeul, and W. D. Webber. 1993. *Three-Dimensional Conceptual Model for the Hanford Site Unconfined Aquifer System, FY 93 Status Report*. PNL-8971, Pacific Northwest Laboratory, Richland, Washington.

Washington Public Power Supply System. 1985. Preoperational Environmental Radiological Monitoring Program WNP-2. Washington Public Power Supply System, Richland, Washington.

Washington Public Power Supply System. 1996. Nuclear Plant 2, 1995 Annual Report, January 1 to December 31, 1995, Radiological Environmental Monitoring Program. Washington Public Power Supply System, Richland, Washington.

Washington State Department of Health. 1999. Environmental Radiation Program 1992-1994 Annual Report. Washington State Department of Health, Division of Radiation Protection. WDOH/320-021, Washington State Department of Health, Olympia, Washington.

Appendix A

Sample and Analysis Instructions for Special Sampling of High Concentration Tritium and Surrounding Wells Near the 618-11 Burial Ground Revision 1

Sample and Analysis Instructions For Special Sampling of High Concentration Tritium and Surrounding Wells Near the 618-11 Burial Ground

Revision 1

April 17, 2000

Revision 1 updates the attachments to the plan and includes minor editorial corrections.

Prepared by:

P. Evan Dresel Hanford Groundwater Project Date

Jane V. Borghese Groundwater Vadose Integration Project

Date

Approval:

Stuart P. Luttrell Groundwater Monitoring Task Lead Hanford Groundwater Project

Date

Date

James G. Bush Group Leader Field Hydrology and Geochemistry Group Pacific Northwest National Laboratory

A.1

Introduction

In January, 1999 a tritium level of 1,860,000 pCi/L was detected in well 699-13-3A, located near the 618-11 burial ground, just west of the Energy Northwest complex. This value was confirmed by reanalysis. A sample from January 2000 contained approximately 8,000,000 pCi/L of tritium. These levels are of concern because they are far above levels reported in the large tritium plume that extends from the 200 East Area through the area.

The immediate task is to determine the extent of the anomalously high tritium concentrations and to provide data to distinguish the source. Three potential sources are to be investigated:

- A large scale tritium plume extends from the 200 East Area through this vicinity. Other contaminants in this tritium plume include iodine-129, nitrate, and low levels of technetium-99. Cobalt-60 has been detected in this plume in the past, but levels are currently near or below the detection limit. The sampling will include a broad range of radionuclides, and nitrate to look for signatures indicative of a 200 Area source.
- Some tritium is released from reactor operations at Energy Northwest. Some of the tritium is discharged to ground with storm water run off or through other systems. This tritium is not expected to contain the other contaminants found in the large plume but full research of the concentrations and distribution of the tritium from Energy Northwest has not been performed. The sampling will provide information on spatial distribution and levels to compare to what may be possible from this source.
- The 618-11 burial grounds received a variety of transuranic and other radioactive waste from the 300 Area. The waste may have included tritium and organic compounds. The sampling will include a wide range of radionuclides to look for materials which may indicate a source in the burial ground and to support the definition of possible exposure scenarios.

Sampling will be restricted to existing wells that do not require rehabilitation activities prior to sampling. Wells with no dedicated pump will be sampled with a portable pump, bailer, or air-lift. The sampling will concentrate on wells completed at the top of the unconfined aquifer, but selected deeper wells will be screened for tritium. Wells downgradient and upgradient from the burial ground will be included.

This plan is the initial effort of what is expected to be a more complete evaluation of the contaminant distribution around the 618-11 burial round. Additional plans will control these activities. This plan will be considered a supplement to the Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project (September 1999, PNNL-11989, Rev. 1). This plan was developed according to the attached data quality objectives Process documentation (Attachment 1).

Task Organization

These instructions were developed by the Hanford Groundwater Project at Pacific Northwest National Laboratory and the Environmental Restoration Contract Groundwater Vadose Integration Project. Coordination and scheduling of the sampling activity is performed by the Hanford Groundwater Project Sampling and Analysis Task. Environmental Restoration Contractor Field Support Group will provide support services. Sampling services will be provided by Waste Management Technical Services under contract to Pacific Northwest National Laboratory.

Analytes of Interest

The constituents for which sampling will be conducted and a brief rationale for their selection follows, not all constituents will be analyzed in all wells.

Tritium – This is the target constituent and has been detected at high levels. The concentrations in the surrounding area typically range between less than 1,000 to 80,000 pCi/L.

Iodine-129 – This is a co-contaminant in the 200 East Area tritium plume but typically is found at less than 1 pCi/L in the surrounding area.

Gross alpha – This is a general screen for alpha emitting radionuclides. It may also provide a quality control check on the measurement of specific alpha emitters such as uranium included in the analyte list.

Gross beta – This is a general screen for beta emitting radionuclides. It may also provide a quality control check on the measurement of specific beta emitters such as strontium-90 and technetium-99.

Gamma scan – This provides data on the potential presence of cobalt-60 and other gamma emitters. This will help to characterize sources and will provide assurance that other fission products are not being transported in groundwater.

Strontium-90 – This is indicative of reactor operations in some situations but is not expected from the 200 Area plumes.

Technetium-99 – Minor amounts of technetium-99 are found in the plume from the 200 East Area and will help define sources.

Uranium isotopes – The measurement of concentrations of the different uranium isotopes may help define sources of contamination because the different sources may have different isotopic ratios. For example, depeleted uranium has been found in the vicinity of the 618-10 burial ground, which received similar waste to the 618-11 burial ground. Plutonium isotopes – Plutonium generally has a low mobility in Hanford groundwater. However, since the disposal at the burial ground included transuranic waste, plutonium will be included in the analyte list for selected near-by wells.

Anions – These constituents provide nitrate and general water quality data. Nitrate is known to occur in the plume from the 200 East Area.

Filtered metals – These constituents provide general water quality data, a screen for trace hazardous metals (e.g. chromium) and quality control on analysis through calculation of charge balance.

Alkalinity – Analysis for alkalinity provides general water quality data and quality control on analysis through calculation of charge balance.

Volatile Organic Compounds – These constituents may be present in the burial ground. Samples from wells in the immediate vicinity of the burial ground will be analyzed for these constituents.

SemiVolatile Organic Compounds – These constituents may be present in the burial ground. Samples from wells in the immediate vicinity of the burial ground will be analyzed for these constituents.

Samples will be analyzed for the above constituents under the Hanford Site Analytical Contract. See Attachment 2 for the Sample Analytical Form. Detection limits are specified in the contract for the primary analytical laboratory.

Field measurements will be performed for parameters, pH, specific conductance, temperature, dissolved oxygen, and turbidity.

Wells will be purged and sampled per documented procedures implemented by Waste Management Technical Services (WMNW-CM-004. 1998. Operational Environmental Monitoring. Waste Management Federal Services, Northwest Operations, Inc., Richland, Washington).

Target Wells

The wells to be sampled are included in Table 1, which also lists the analytes to be included with each well. Wells in Table 1 are grouped according to similar location and purpose. The grouping is for information only. As-built diagrams or other well construction information are available for many of the wells to be sampled and are attached as Attachment 3 to these instructions. The well locations are shown in Figures 1 and 2.

Schedule

The monitoring defined in this plan is for a one-time sampling event. Future monitoring will be based on the results of this sampling. In addition, well 699-13-3A will be sampled monthly for selected constituents until further notice.

Quality Control Samples

Quality control samples will be generated to evaluate aspects of the sampling and analysis process that may impact the reliability of groundwater data. For example, field blanks are collected and analyzed to assess the potential for sample contamination and false detection of constituents. Similarly, field duplicates and split samples provide measures of sampling and analysis precision and data comparability. Additional quality control samples such as method blanks, laboratory control samples, and matrix spikes are also prepared and analyzed by analytical laboratories to help to ensure that laboratory measurements are accurate and reliable.

For the 618-11 burial ground sampling event, field quality control samples shall include two full-trip blanks, two field duplicates, one split sample, and several field transfer and equipment blanks. In general, the field quality control samples shall be analyzed for all constituents monitored at the associated well. The split sample will be analyzed for tritium only and the field transfer blank is applicable only to volatile organic compounds. The split sample and one of the field duplicates shall be collected from well 699-13-3A to provide additional confirmation of previous elevated tritium measurements. At least two equipment blanks shall be collected for each type of nondedicated sampling equipment (e.g. portable pump, bailer, Kabis sampler) that is used for groundwater sampling to help ensure that groundwater samples are not contaminated from sampling equipment. One equipment blank shall be collected before sampling well 699-13-3A which will be sampled with a portable pump. A second equipment blank will be collected after the sampling of well 699-13-3A to ensure there is no transfer of contamination to sample collection at other wells. One additional portable pump equipment blank will be collected where the portable pump is used on other wells. One field transfer blank will be collected on each day where wells are sampled for volatile organic compounds. The field transfer blanks are used to check for sample contamination caused by conditions at the sampling site (e.g. exhaust fumes from vehicles).

Cosampling of wells by Washington State Department of Health, Washington State Department of Ecology, and Energy Northwest will be performed as requested.

Health and Safety

Subcontractors will follow their established health and safety procedures for groundwater sampling activities. Although higher than usual levels of tritium have been found in this area, the levels do not require additional actions to reduce exposure or additional monitoring of the work site.

Data Quality Objectives for initial follow-up sampling for high tritium levels detected near the 618-11 burial ground

1) Problem Statement

In January 1999 a tritium level of 1,860,000 pCi/L was detected in well 699-13-3A located near the 618-11 burial ground, just west of the Energy Northwest complex. This value was confirmed by reanalysis. A sample from January 2000 contained approximately 8,000,000 pCi/L of tritium. These levels are of concern because they are far above levels reported in the large tritium plume that extends from the 200 East Area through the eastern part of the Hanford Site.

The immediate task is to determine the extent of the anomalously high tritium concentrations and to provide data to distinguish the source.

2) Specify the Decision

Does the high level tritium extend beyond the known well and are co-contaminants present which point to one of three possible sources for the contamination:

- the PUREX plume
- the 616-11 burial ground
- the Energy Northwest reactor operations

3) Identify the Inputs to the Decision

Inputs include analytical results from samples collected in groundwater wells and results of field parameters measured in groundwater wells. Also water level measurements will be taken in wells.

4) Boundaries

The spatial and temporal boundaries on this initial investigation are as follows:

- Existing monitoring wells
- Downgradient from the burial ground to the river
- Nearby upgradient wells
- Wells which can be sampled immediately
- Emphasis in unconfined aquifer with possible screening in confined aquifer and lower unconfined.

5) Decision Rule

If the high-level tritium plume extends to other wells sampled, then use this information in defining locations for further monitoring and for evaluating transport rates. If the chemical signatures indicate a source in the burial ground, then use this information to plan further evaluation of the site. If the signatures indicate a source at Energy Northwest, inform that company. If the signatures indicate a 200 Area source, then investigate the transport mechanism and sources that would lead to this occurrence and implications for site decisions.

Screening samples in deeper aquifers will be for tritium only.

6) Specify Tolerable Limits on Decision Errors

All analytical results will be performed by standard methods and procedures in order to provide defensible data. No statistical evaluation of well sampling location is required. The data are not immediately expected to be evaluated using a statistical approach.

7) Optimize the Design

The design is developed in the sampling and analysis plan.

·

Attachment 2

Sample Authorization Form
PNNL

SAMPLING AUTHORIZATION FORM

SAF Number: <u>Y00-001</u>	
Program Type <u>SURV</u>	Project ID PRIFEB00
Project Type Characterization	Operable Unit <u>N/A</u>
Task ID	Round Number <u>0</u>
SAF Title SITEWIDE SURVEILLANCE PRIORIT	Y GW, FEBRUARY 2000
Task Manager STEWART, DL	Requester <u>HENRY, PS</u>
Charge Codes-	
Analytical Services F08921	
Project Coordinator STEWART. DL	
Estimated Start Date 02/01/00	Estimated Completion Date 02/29/00
SampleArea Hanford Site	Estimated Number of Samples 43
Sampling Organizations	
WMFS, WW Operations	
Laboratory/Turnaround/Data Deliverable	Matrix Water
Primary: 300 Analytical Services/ 15 Days/Single	e Sheet Summary
Primary: Field Analysis Activities/ Field/Field	
Primary: Quanterra Incorporated/ 7 Days/Single	Sheet Summary
Primary: Quanterra St. Louis/ 7 Days/Single She	et Summary
Primary: TMA/RECRA/ 7 Days/Single Sheet Su	mmary
Primary: Waste Sampling & Characterization/ 24	1 Hours/Single Sheet Summary

SAF Comment

PRIORITY TURNAROUND 7 DAYS FAX/45 DAYS SUMMARY AND 15 DAY FAX/45 DAYS SUMM. SEE COC FOR SPECIFIC TURNAROUND TIMES. TOTAL ACTIVITY EXEMPTION DOES NOT APPLY FOR ALL SAMPLES **REPORT TRI-BUTYL PHOSPHATE W/SEMI-VOA 8270** Submit invoices & deliverables to DL STEWART, PNNL. BATCH ALL SAMPLES SUBMITTED UNDER THIS SAF INTO ONE SDG, NOT TO EXCEED PRIORITY TURNAROUND TIME.

COC Comments

PRIORITY TURNAROUND 7 DAYS FAX/45 DAYS SUMMARY AND 15 DAY FAX/45 DAYS SUMM. SEE COC FOR SPECIFIC TURNAROUND TIMES.

Date 02/05/00 BHI-EE-002 (12/94)

SAFStatus: Final

2/4/00 10:30:00 PM

<u>0</u>

PNNL

SAMPLING AUTHORIZATION FORM

SAF Number: Y00-001

Rev: <u>0</u>

TOTAL ACTIVITY EXEMPTION DOES NOT APPLY FOR ALL SAMPLES REPORT TRI-BUTYL PHOSPHATE W/SEMI-VOA 8270 Submit invoices & deliverables to DL STEWART, PNNL. BATCH ALL SAMPLES SUBMITTED UNDER THIS SAF INTO ONE SDG, NOT TO EXCEED PRIORITY TURNAROUND TIME.

Date 02/05/00 BHI-EE-002 (1294)

A.12

SAFStatus: Final

Field Sampling Requirements

PNNL

Laboratory Analysis

Laboratory: 300 Analytical Services

Matrix: <u>Water</u>

Parameter / Analysis	Reference Method	Container / Volume	VolReq	Preservation	Holding Times
Technetium-99	TC99_SEP_LSC	P 4000 mL	Minimum	HCI to pH <2	6 Months
Technetium-99		·.			· · · · · · · · · · · · · · · · · · ·

Key to Container Types

G = Glass Gs = Glass w/ septum cap Gs*= Glass w/septum cap-

no head space in container P = Plastic (Polyethylene) aG = Amber Glass aGs = Amber Glass w/ septum cap aGs*= Amber Glass w/septum capno head space in container

FSR Comment:

SAF Number: Y00-001 8HI-EE-001 (12/94) Rev: 0

Page 1 SAF Status: Final

PNNL

Field Sampling Requirements Laboratory Analysis

Laboratory: Field Analysis Activities				Matrix: Water		
Parameter / Analysis Reference Method Container / Volume VolR			VolReq	Preservation	Holding Times	
DISSOLVED OXY Dissolved Oxy	GEN Igen	360.1_OXYGEN_FLD	None	None	ASAP	
CONDUCTIVITY Conductivity		120.1_CONDUCT_FLD	None	None	None	
TEMPERATURE Temperature		170.1_TEMP_FLD	None			
TURBIDITY Turbidity		180.1_TURBIDITY_FLD	None	•	-	
pH ANALYSIS pH Measurem	ient	PH_ELECT_FLD	None	None	None	

Key to Container Types

G = Glass Gs = Glass w/ septam cap Gs*= Glass w/ septam capno head space in container P = Plastic (Polyethylene) aG = Amber Glass aGs = Amber Glass w/ septum cap aGs*= Amber Glass w/ septum capno head space in container

FSR Comment:

.

SAF Number: Y00-001 BHI-EE-001 (12/94) Rev: 0

Page 2 SAF Status: Final

PNNL

Field Sampling Requirements

Laboratory Analysis

Laboratory: Quanterra incorporated				Matrix:	<u>Water</u>
Parameter / Analysis	Reference Method C	Container / Volume	VolReq	Preservation	Holding Times
906.0_H3_LSC: Tritium (1) Tritium	906.0_H3_LSC	P 1000 mL	Full QC	None	6 Months
9310_ALPHABETA_GPC: Alpha + Gross alpha, Gross beta	9310_ALPHABETA_GPC	C P 1000 mL	Full QC	HNO3 to pH <2	6 Months
Activity Scan No CAS	ACTIVITY_SCAN	P 20 mL	Minimum	None	6 Months
GAMMA_GS: List-1 (9) Antimony-125, Beryllium-7, Ces	GAMMA_GS sium-134, Cesium-137, Col	G/P 4000 mL balt-60, Europium-18	Full QC 54, Europium-	HNO3 to pH <2 155, Potassium-40, Ruthenium-10	6 Months 06
1129_SEP_LEPS_GS: I-129 (1) lodine-129	1129_SEP_LEPS_GS	G/P 4000 mL	Full QC	None	6 Months
PUISO_PLATE_AEA: Pu-238 + 23 Plutonium-238, Plutonium-239/	PUISO_PLATE_AEA 240	G/P 1000 mL	Full QC	HNO3 to pH <2	6 Months
SRTOT_SEP_PRECIP_GPC: Total Total beta radiostrontium	SRTOT_SEP_PRECIP_GI	PC G/P 3x1000 mL	Full QC	HNO3 to pH <2	6 Months
TC99_ETVDSK_LSC: Tc-99 (1) Technetium-99	TC99_ETVDSK_LSC	P 500 mL	Full QC	HCI to pH <2	6 Months
UISO_PLATE_AEA: List-1 (3) Uranium-234, Uranium-235, Ura	UISO_PLATE_AEA anium-238	G/P 1000 mL	Full QC	HNO3 to pH <2	6 Months
UTOT_KPA: Uranium (1) Uranium	UTOT_KPA	G/P 500 mL	Full QC	HNO3 to pH <2	6 Months

Key to Container Types

 $G \approx Glass$ Gs = Glass w/ septum cap Gs*= Glass w/septum cap-

no head space in container P = Plastic (Polyethylene)

aG = Amber Glass aGs = Amber Glass w/ septum cap aGs*= Amber Glass w/septum capno head space in container

FSR Comment:

SAF Number: Y00-001 BHI-EE-001 (12/94)

Rev: 0

SAF Status: Final Page 3

Field Sampling Requirements

PNNL

Laboratory Analysis

•

~

Laboratory: Quanterra St. Louis			Matrix: <u>Water</u>			
Parameter	r / Analysis	Reference Method	Container / Volume	VolReq	Preservation	Holding Times
8260_VOA_GCM	S: List-2 (55)	8260_VOA_GCMS	aGs* 3x40 mL	Full QC	HCI or H2SO4 to pH <2 Cool 4C	14 Days
1,1,1,2-Tetrac 1,2,3-Trichlor 1,4-Dioxane, 3 Bromochlor alcohol, Meth Trichloromon Dichloroethyle	chloroethane, 1,1, opropane, 1,2-Dit 2-Bytanone, 2-He Bromomethane, Diboro comethane, Diboro acrylonitrile, Meth ofluoromethane, 1 ene, trans-1,3-Dic	1-Trichloroethane, 1,1,2,2 promo-3-chloropropane, 1, ixxanone, 4-Methyl-2-Penta arbon disulfide, Carbon te momethane, Dichlorodifiud yimethacrylate, Methylen Vinyl acetate, Vinyl chlorid chloropropene, trans-1,4-di	2-Tetrachloroethane, 1 ,2-Dibromoethane, 1,2 anone, Acetone, Aceto brachloride, Chlorober brachloride, Chlorober bromethane, Ethyl cya brochloride, Styrene, Te le, Xylenes (total), cis- ichloro-2-butene	,1,2-Trichlon -Dichloroeth nitrile, Acrok 1zene, Chlon nide, Ethyl n strachloroeth 1,2-Dichloro	bethane, 1,1-Dichloroethane, 1,1- ane, 1,2-Dichloroethene(Total), 1, ein, Allyl chloride, Benzene, Brom bethane, Chloroform, Chlorometh nethacrytate, Ethylbenzene, Iodon ene, Toluene, Trichloroethene, ethylene, cis-1,3-Dichloropropene	Dichloroethene, 2-Dichloropropane, odichloromethane, ane, Chloroprene, nethane, Isobutyl , trans-1,2-
6010_METALS_H Aluminum, Ar Silver, Sodiur	CP: List-1 (19) ntimony, Barium, n, Strontium (eler	6010_METALS_ICP Beryllium, Cadmium, Calc nental), Vanadium, Zinc	G/P 500 mL sium, Chromium, Cobe	Full QC alt, Copper, I	HNO3 to pH <2 ron, Magnesium, Manganese, Nic	6 Months kel, Potassium,
300.0_ANIONS_I Chioride, Flux	C: List-1 (5) oride, Nitrogen in	300.0_ANIONS_IC Nitrate, Nitrogen in Nitrite,	P 500 mL , Sulfate	Full QC	Cool 4C	28 Days/48 Hours
310.1_ALKALINI Alkalinity	TY: Alkalinity (1)	310.1_ALKALINITY	G/P 500 mL	Full QC	Cool 4C	14 Days
Activity Scan No CAS		ACTIVITY_SCAN	P 20 mL	Minimum	None	ASAP
Semi-VOA - 8270	DA (App IX)	8270_SVOA_GCMS	aG 4x1000 mL	Full QC	Cool 4C	7/40 Days
1,2,4,5-Tetra Naphthylamit Dimethylpher Chlorophenol dinitrophenol Aminobiphen 4-Nitroaniline Acatophenon Benzo(k)tituo Chlorobenzila Dimethoate, i Hexachlorobe cd)pyrene, is Nitrosodi-n-b Nitrosomorpi	chlorobenzene, 1, ne, 2,2-Oxybis(1- nol, 2,4-Dintrophe I, 2-Methylnaphth: (DNBP), 3,3-Dict I, 4-Nitrophenol, 4 ke, Aniline, Anthra ranthene, Benzyl - date, Chrysene, Di- Dimethyl phthalat enzene, Hexachlo odrin, Isophorone utylamine, N-Nitrosop	2,4-Trichlorobenzene, 1,2 chloropropane), 2,3,4,6-Té and, 2,4-Dinitrotoluene, 2, alene, 2-Methylphenol (cre korobenzidine, 3,3'-Dimeti phenyl ether, 4-Chloro-3- -Nitroquinoline-1-oxide, 5- iccene, Aramite, Benzo(a)a alcohol, Bis(2-Chloroethoo n-butylphthalate, Di-n-oct e, Diphenylamine, Disulfo robutadiene, Hexachloroc a, Isosafrole, Kepone, Meti sosodiethylamine, N-Nitross uperidine, Naphthalaten, Ni	Dichlorobenzene, 1,3 strachlorophenol, 2,4,6 6-Dichlorophenol, 2,4,6 asol, o-), 2-Naphithytar hylbenzidine, 3-Methyl methylphenol, 4-Chlo Nitro-o-toluidine, 7,12 unthracene, Benzo(a)p ky)methane, Bis(2-chk ylphthalate, Diallate, D ton, Ethyl methacrylat syclopentadiene, Hexa hapyrilene, Methyl methacrylat itrobenzene, Nitrosop	-Dichlorober 5-Trichloroph Dinitrotoluer nine, 2-Nitro cholanthrene roaniline, 4-C -Dimethyber yrene, Benzo croethyl) eth bibenz[a,h]ar e, Ethyl mett chloroethane thanesulfons rosodiphenyy molidine, O,	nzene, 1,4-Dichlorobenzene, 1,4-I lenol, 2,4,6-Trichlorobenzene, 1,4-I enol, 2,4,6-Trichlorophenol, 2,4-Di e, 2-Acetylaminofluorene, 2-Chlo aniline, 2-Nitrophenol, 2-Picoline, a, 3-Nitroaniline, 4,6-Dinitro-2-met chlorophenylphenyl ether, 4-Methy zajanthracene, Acenaphthene, / ay(b)fluoranthene, Benzo(ghi)peryla r, Bis(2-ethylhexyl) phthalate, Bur thracene, Dibenzofuran, Diethylpi nanesultonate, Famphur, Fluorant b, Hexachlorophene, Hexachlorop te, Methyl parathion, N-Nitroso-di lamine, N-Nitrosomethylethylamin O,O-Triethyl phosphorothioate, O,	Naphthoquinone, 1- hichiorophenol, 2,4- ronaphthalene, 2- 2-secButyl-4,6- hylphenol, 4- /phenol (cresol, p-), Acenaphthylene, ane, tylbenzylphthalate, hthalate, hene, Fluorene, ropene, Indeno(1,2,3- n-dipropylamine, N- ie, N- O-Diethyl O-2-

pyrazinyl phosphorothioate, Parathion, Pentachlorobenzene, Pentachloroethane, Pentachloronitrobenzene (PCNB), Pentachlorophenol, Phenacetin, Phenanthrene, Phenol, Phorate, Pronamide, Pyrene, Pyridine, Safrol, Tetraethyl dithiopyrophosphate, alpha,alpha-Dimethylphenethylamine, m-Cresol, m-Dinitrobenzene, o-Toluidine, p-Dimethylaminoazobenzene, p-Phenylenediamine, sym-Trinitrobenzene

Key to Container Types

Page 4

G = Glass Gs = Glass w/ septum cap Gs*= Glass w/septum capno head space in container P = Plastic (Polyethylene)

aG = Amber Glass aGs = Amber Glass w/ septum cap aGs*= Amber Glass w/septum capno head space in container

FSR Comment:

SAF Number: Y00-001 BHI-EE-001 (12/94) Rev: 0

SAF Status: Final

PNNL

Field Sampling Requirements

Cool 4C

Laboratory: Quanterra St. Louis

Semi-VOA 8270A (App IX Add-C	8270_SVOA_GCMS	aG 0x
Tributyl phosphate		

S 0x1000 mL Full QC

Matrix: <u>Water</u>

7/40 Days

Laboratory Analysis

Key to Container Types

G = Glass Gs = Glass w/septum cap Gs*= Glass w/septum capno head space in container P = Plastic (Polyethylene) aG = Amber Glass aGs = Amber Glass w/ septum cap aGs*= Amber Glass w/septum capno head space in container

FSR Comment:

SAF Number: Y00-001 BHI-EE-001 (12/94) Rev: 0

Page 5 SAF Status: Final

2/4/00 10:30:00 PM

Field Sampling Requirements

Laboratory Analysis

Laboratory: TMA/REC	RA			Matri	x: <u>Water</u>
Parameter / Analysis	Reference Method	Container / Volume	VoiReg	Preservation	Holding Times
Activity Scan No CAS	ACTIVITY_SCAN	P 20 mL	Minimum	None	6 Months
Tritium - H3 Tritium	TRITIUM_DIST_LSC	P 250 mL	Full QC	· None	6 Months

Key to Container Types

G	=	Glass
Gs	=	Glass w/ septum cap
Gs ¹	-	Glass w/septum cap-
		no head man in container

= Plastic (Polyethylene)

aG = Amber Glass aGs = Amber Glass w/ septum cap aGs*= Amber Glass w/septum cap-no head space in container

FSR Comment:

SAF Number: Y00-001 BHI-EE-001 (12/94)

Rev: 0

SAF Status: Final Page 6

2/4/00 10:30:00 PM

÷

PNNL

Field Sampling Requirements

Matrix: Water

PNNL

Laboratory Analysis

Laboratory: Waste Sampling & Characterization

Parameter / Analysis	Reference Method	Container / Volume	VolReq	Preservation	Holding Times
Activity Scan No CAS	ACTIVITY_SCAN	P 20 mL	Minimum	None	6 Months

Key to Container Types

Page 7

G = Glass Gs = Glass w/ septum cap Gs*= Glass w/septum cap-

P

no head space in container = Plastic (Polyethylene) aG = Amber Glass aGs = Amber Glass w/ septum cap aGs*= Amber Glass w/septum capno head space in container

FSR Comment:

SAF Number: Y00-001 8HI-EE-001 (12/94) Rev: 0

SAF Status: Final

2/4/00 10:30:00 PM

. -# •

Attachment 3

Well Construction Information

No Well Information Available for Well 699-12-2A

WELL CONSTRUCTION AND	COMPLETION SUMMARY
Drilling Air rotary(0+347-ft) Sample Air returns/ Method: <u>Core (347+1,139-ft)</u> Method: <u>Core (347+1,139-ft)</u> Method: <u>Wireline core</u> AdditivesDrillingAdditivesFluid Used: <u>Drilling mud</u> Used: <u>Not documented</u> Lic Nr: <u>Not documented</u> Drilling Air=Soil Sampling Company: <u>Core=Boyles Bros</u> DateLocation: <u>Spokane, WA</u> DateComplete: <u>Core 100ct73</u> Complete: <u>Core 01Apr81</u>	WELL TEMPORARY Corehole NUMBER: 699-2-E14 A8124 WELL NO: Hanford Coordinates: N/S N 1.633 E/W E 13.572 State Coordinates: N N 1.663 E / 2.308.893.10 Start Card #:Not_documented T11N R28E_ S 1401 Elevation Ground surface:388.44-ft Brass_cap S 1401
Depth to water: <u>3.6-ft 1978</u> (Ground surface) GENERALIZED Geologist's STRATIGRAPHY -Log 0-5: Light brown SILT 5-75: Cse GRAVEL w/SAND & SILT 75-79: Med-cse SAND & SILT 75-79: Med-cse SAND w/SILT 79-80: Brown SILT w/wood fragments 80-140: GRAVEL w/med-cse SAND 140-145: GRAVEL w/med-cse SAND 140-145: GRAVEL w/green CLAY 145-165: Green SAND 165-170: Green CLAY 170-180: Green SAND 180-225: Med-cse GRAVEL w/green SAND 225-295: SILT. CLAY & SAND 225-297: IVF [Gable Mountain BASALT 613-618: SANDSTONE [Selah Interbed] 613-672: Esquatzel BASALT. flow II 672-679: TUFF [Gable Mountain Interbed] 613-672: Esquatzel BASALT. flow II 672-752: Esquatzel BASALT. flow I 732-976: Umatilla BASALT 976-1.020: Tuffaceous SANDSTONE [Mabton Interbed] 1.020->1.139: Priest Rapids BASALT 1.020-1.104: Lolo flow 1.104->1.139: Rosalia flow	<pre>Elevation of reference point: [<u>391.40-ft</u>] (top of 6-in casing) Height of reference point above[<u>2.96-ft]</u> ground surface seal Type of surface seal [<u>-300-347-ft]</u> Type of surface seal: [Cement grout between 4 and 6-in casings 6-in ID carbon steel casing (6%-in OD) <u>+0.5*325.0-ft</u> 4-in ID carbon steel casing (4½-in OD) <u>+1.0*347.0-ft</u> Hole diameter. <u>0*325.0-ft, 7-in nominal</u> <u>325*347-ft, 6-in nominal</u> <u>347*1,030-ft, 3.937-in</u> 1.030*1,139-ft, 3.032-in</pre>
DRILLING NOTES: DB-1 was drilled and cored to 990-ft in 1973. A removable piezometer tube was set @ 942-ft. In 1981 the tube was removed and the hole extended by coring to 1.030-ft using a workover rig. 3.5-in casing was set @ 1.030-ft and the hole was extended to 1.139-ft by coring. BWIP borehole reclamation in 1988+89 cut the 3.5-in casing @ 1.000-ft and removed it. The remnant casing and open hole below the casing (1.032+1.139-ft) were then cemented.	Borehole drilled depth: $[1,139-ft]$
Drawing By: <u>RKL/6N2E14.ASB</u> Date : <u>12Sep94</u> Reference : <u>HANFORD WELLS</u>	1.64-57 12/30/93

SUMMARY OF CONSTRUCTION DATA AND FIELD OBSERVATIONS RESOURCE PROTECTION WELL - 699-2-E14

WELL DESIGNATION	:	699-2-E14
CRA FACILITY	:	Not applicable
CFRCLA UNIT		Not applicable
HANFORD COORDINATES		N 1 633 E 13 572 [Aug85-Plant]
LAMBERT COORDINATES		N 406 971 10 E 2 308 893 10 [Aug85-NA027]
DATE DRILLED	:	Dec73/Extended Apr81
	:	000 0 ft /Extended 1 120 ft
VERTH UNILLED (US)	•	Net desuperted
MEASURED DEPTH (GS)	:	NOL GOCUMENTED
DEPTH TO WATER (GS)	:	3.0-TL, 19/8
CASING DIAMETER	:	6-1n, carbon steel, +0.5+325.0-ft
		4-in. carbon steel, +1.0+347.0-ft
		3.5-in carbon steel, 1.000+1.030-ft
ELEV TOP CASING	:	391.40-ft. (6-in) [15Jan74-Not documented]
ELEV GROUND SURFACE	:	388.44-ft. Brass cap [Aug85-Not documented]
PERFORATED INTERVAL	:	Not applicable
SCREENED INTERVAL	•	Not applicable - open 347+1,030-ft
COMMENTS		FIFLD INSPECTION
0011121110	•	OTHER -
AVATLABLE LOGS		Geologist
TV SCAN COMMENTS	:	Not applicable
DATE EVALUATED	:	Not applicable
	:	Not applicable
EVAL RECOMMENDATION	:	Not applicable
LISTED USE	:	waste management/BwiP geonydrologic investigation
CURRENT USER	:	PNL sitewide w/1 monitoring,
PUMP TYPE	:	None documented
MAINTENANCE	:	

SUMMARY OF CONSTRUCTION DATA AND FIELD OBSERVATIONS RESOURCE PROTECTION WELL - 699-8-17

WELL DESIGNATION	:	699-8-17
RCRA FACILITY	:	Not applicable
CERCLA UNIT	•	Not applicable
HANFORD COORDINATES		N 8,200 W 17,125 [HANFORD WELLS]
LAMBERT COORDINATES		N 413 458 F 2 278 179 FHANCONV1
DATE DRILLED	:	Mav50
DEPTH DRILLED (GS)	:	200 0-ft
MEASUDED DEDTH (GS)	:	130 3 - ft 2/(Son93)
DEDTH TO WATED (CS)	:	$124 \text{ A}_{\text{ff}} = 22 \text{ Jun 67}$
DEFIN TO WATER (057	•	124.0-10; 220007 122.2 ft 01 Jun 01
CASTNO DIAMETED		$\frac{123.2-10}{10}$, 01000174 P in carbon stool +2 0-200 ft (nominal)
	:	$C^{-}\Pi$, Calbun Steel, $\tau 2.0^{-}200^{-}\Pi$ (number)
ELEV TUP CASING	•	522.44-10, LOANFORD WELLSJ
ELEV GRUUND SURFACE	•	DZU.4-IL. ESLINIALEU
PERFURATED INTERVAL	:	
SUREENED INTERVAL	:	IVI#158-TU [HANFUKD WELLS]
COMMENTS	:	FIELD INSPECTION, 24Sep93.
		8-in carbon steel casing. Lapped and locked
		Has 4-TL by 4-TL pad, no posts or permanent identification.
		NOT IN FACIATION ZONE.
		UIHER;
AVAILABLE LUGS	:	Uriller
IV SCAN CUMMENTS	:	Not applicable
DATE EVALUATED	:	Not applicable
EVAL RECOMMENDATION	:	Not applicable
LISTED USE	:	Sitewide annual water level measurement, 01May91+01Jun94;
CURRENT USER	:	WHC ES&M w/l monitoring.
		PNL sitewide sampling and characterization
PUMP TYPE	:	Electric submersible
MAINTENANCE	:	

SUMMARY OF CONSTRUCTION DATA AND FIELD OBSERVATIONS RESOURCE PROTECTION WELL - 699-9-E2

699-9-E2 WELL DESIGNATION CERCLA UNIT Not applicable Not applicable N 8,577 E RCRA FACILITY 2.324 [HANFORD WELLS] HANFORD COORDINATES : LAMBERT COORDINATES : N 413,885 E 2,297,627 [HANCONV] DATE DRILLED Jan58 DEPTH DRILLED 454-ft (GS) 57.6-ft, 190ct93 30-ft, 17Jan58 MEASURED DEPTH (GS) : DEPTH TO WATER (GS) : 45.2-ft, 01Jun93 8-in, +0.6-424-ft CASING DIAMETER ELEV TOP CASING 418.09-ft. [HANFORD WELLS] 416.1-ft. Estimated ELEV GROUND SURFACE : PERFORATED INTERVAL : 15+255-ft SCREENED INTERVAL-Not applicable COMMENTS FIELD INSPECTION, 190ct92. 8-in carbon steel casing. Capped and locked No pad. posts or permanent identification. Not in radiation zone. OTHER: AVAILABLE LOGS Driller TV SCAN COMMENTS Not applicable DATE EVALUATED Not applicable EVAL RECOMMENDATION Not applicable LISTED USE Sitewide semiannual water level measurement. 11Jun91+01Jun93, CURRENT USER WHC ES&M w/1 monitoring. PNL w/l monitoring PUMP TYPE Electric submersible MAINTENANCE

WELL CONSTRUC	WELL CONSTRUCTION AND COMPLETION SUMMARY					
Drilling Sample Drive bas Method: Cable tool Method: Hard tool Drilling Additives Fluid Used: Water Used: Not document Driller's WA State Name: Jacobson Lic Nr: Not document Drilling Company: Company: I Haden Drilling Co Date Started: 06Jul62 Complete: 17Aug62	WELL TEMPORARY NUMBER: 699-10-E12 A5065 WELL NO: Hanford Coordinates: N/S N 10.000 E/W E 12.000 state Coordinates: N 415.333 E 2.307.299 Start Jumented Card #:Not documented T 11N R 28E S 10J1 Elevation Ground surface: 428.9-ft Estimated					
Depth to water: 74.0-ft 17Aug62 (Ground surface) 71.5-ft 01Jun93 GENERALIZED Driller's STRATIGRAPHY - Log 0-2: Gray SAND 2-10: 205 GRAVEL to fine SAND 10-35: Cemented GRAVEL 35-60: GRAVEL w/10-35% SAND 60-75: GRAVEL & JOADD 10-35: Cemented GRAVEL 35-90: Cse SAND w/SLT binder 90-95: 60%SAND, GRAVEL w/SILT binder 100-140: 15-65% SAND, GRAVEL w/SILT binder 140-175: Brown or gray CLAY. 10% GRAVEL & 30-60% SAND. 175-210: GRAVEL & 30-60% SAND. 175-210: GRAVEL & 30-60% SAND. 210-220: GRAVEL & 30-60% SAND. 210-220: GRAVEL w/SAND, trace CLAY 240-255: White micaceous SAND 230-240: GRAVEL w/SAND, trace CLAY 240-255: Gray CLAY w/GRAVEL & SAND 235-260: White SAND, w/blgrn GRAVEL 260-265: GRAVEL w/SAND, trace CLAY 210-265: GRAVEL w/SAND, trace CLAY 210-265: GRAVEL w/SAND, trace CLAY 210-265: GRAVEL w/SAND, trace CLAY 210-255: Gray CLAY w/GRAVEL, some SAND 203-300: Green CLAY w/GRAVEL, some SAND 203-300: Green CLAY w/GRAVEL, some SAND 203-310: Green SAND 300-315: Black and blue CLAY 310-315: Black CLAY 310-316: Green SAND 350-358: Basalt GRAVEL & black SAND 358-368: BASALT rock cuttings REMEDIATION/REHABILITATIONS: Not documented - installed piezometer Jan76 by M. Bultena Removed piezometers on 1.5-in tubing. Drawing By: <u>RKL/6NIOE12.ASB</u> Date : <u>128cP094</u> Reference : HANFORD WELLS	Elevation of reference point: [430.86-ft] (top of casing) Height of reference point above[-2.0-ft] ground surface 2 Depth of surface seal [ND] No surface seal documented: 8-in ID carbon steel casing. +2.2-358-ft 9-in nominal hole. <u>0-358-ft</u> 8-in casing perforations. 100-139-ft. 4 cuts/rd/2-ft 100-139-ft. 6 cuts/rd/2-ft 100-139-ft. 6 cuts/rd/2-ft 100-335-ft. 6 cuts/rd/2-ft 100-335-ft. 6 cuts/rd/2-ft 100-335-ft. 6 cuts/rd/2-ft 100-355-ft. 9 cuts/rd/1ft 1100-340-ft 120-237.92 ft 12[6 [su 120-237.92 ft 12[6 [su 120-236-ft 120-236-ft 120-236-ft 120-236-ft 120-236-ft 120-236-ft 120-236-ft 120-236-ft 120-236-ft 120-236-ft 120-24 1995 120-24 1995 120-25 100-2					

SUMMARY OF CONSTRUCTION DATA AND FIELD OBSERVATIONS RESOURCE PROTECTION WELL - 699-10-E12

699-10-E12 WELL DESIGNATION CERCLA UNIT Not applicable RCRA FACILITY Not applicable HANFORD COORDINATES : LAMBERT COORDINATES : DATE DRILLED : N 10.000 E 12.000 [HANFORD WELLS] N 415.333 E 2.307.299 [HANCONV] Aug62 DEPTH DRILLED (GS) : 368-ft 368-tt 75.9-ft, 180ct93 74.0t, 17Aug62 71.5-ft, 01Jun93 8-in, +2.2*358-ft 430.86-ft, [HANFORD WELLS] 428.9-ft, Estimated MEASURED DEPTH (GS) : DEPTH TO WATER (GS) : CASING DIAMETER ELEV TOP CASING ELEV GROUND SURFACE : PERFORATED INTERVAL : 60++355-ft Q piezometer. 95+100-ft. #60-slot. P piezometer. 360+365-ft. #60-slot FIELD INSPECTION. 180ct93. 8-in carbon steel casing. Capped and locked SCREENED INTERVAL 1 COMMENTS : No pad, posts or permanent identification. Not in radiation zone. OTHER: AVAILABLE LOGS Driller TV SCAN COMMENTS Not applicable DATE EVALUATED Not applicable EVAL RECOMMENDATION : Not applicable LISTED USE Sitewide semiannual water level measurement, 01May91+01Jun93. CURRENT USER WHC ES&M w/l monitoring. PNL sampling, w/l monitoring and characterization PUMP TYPE Electric submersible MAINTENANCE

WELL CONSTRUCTION AND	COMPLETION SUMMARY
Drilling Sample Drive barrel Method: Cable tool Method: Button bit Drilling Additives Fluid Used: Not documented Driller's WA State Name: J. Bultena Drilling Company Company: Not documented Date Date Started: 16Mar82	WELL TEMPORARY NUMBER: 699-12-4D A8252 Hanford Coordinates: N. 12,290 State Coordinates: N. 12,290 State Coordinates: N. 12,290 Coordinates: N. 12,290 E/W. W. 3,962 State Coordinates: N. 417,582 Card #:Not documented TRS Elevation Ground surface:
Depth to water: <u>65.0-ft 23Mar82</u> (Ground surface) GENERALIZED Driller's STRATIGRAPHY -Log 0-3: Brown SAND 3-14: Brown SAND. COBBLES and BOULDERS 14-52: Black SAND. small amount GRAVEL 52-150: RINGOLD Developed well with turbine pump 2.5-hrs @ 1,000gpm 16May84 D. Garcia removed pump	<pre> Elevation of reference point: [_ND] (top of casing) Height of reference point above[_ND] ground surface Depth of surface seal [_ND] No surface seal documented: 8-in ID carbon steel casing. +-0.6+150_0-ft 9-in nominal hole. 0+150-ft 9-in casing perforations. 65+145-ft_8 cuts/rd/6-in</pre>
Drawing By: <u>RKL/6N12W04D.ASB</u> Date : <u>13Sep94</u>	U ES OCT 2 4 1995

SUMMARY OF CONSTRUCTION DATA AND FIELD OBSERVATIONS RESOURCE PROTECTION WELL - 699-12-4D

WELL DESIGNATION RCRA FACILITY CERCLA UNIT HANFORD COORDINATES LAMBERT COORDINATES DATE DRILLED DEPTH DRILLED (GS) MEASURED DEPTH (GS) DEPTH TO WATER (GS) CASING DIAMETER ELEV TOP OF CASING ELEV GROUND SURFACE PERFORATED INTERVAL SCREENED INTERVAL COMMENTS

AVAILABLE LOGS : TV SCAN COMMENTS : DATE EVALUATED : EVAL RECOMMENDATION : LISTED USE : CURRENT USER : PUMP TYPE : MAINTENANCE : REMEDIATIONS :

699-12-4D Not applicable Not applicable N 12,290 W 3.962 [HANFORD WELLS] N 417,582 E 2,291,331 [HANCONV] Apr82 150-ft Not documented 65.0-ft, 23Mar82 8-in. carbon steel. +-0.6+150.0-ft Not documented Not documented 65+145-ft Not applicable FIELD INSPECTION, OTHER: Driller Not applicable Not applicable Not applicable Drilled as 618-11 Burial Ground cleanup water supply well PNL sitewide rehabilitation Electric submersible

Well # 699-13-1A (WNP-2 Well #1)

trich antochilcally

The Original and First Copy with the Division of Water Resources Second Copy — Ovingr's Copy Date Copy — Ovingr's Copy	IL REPORT
	ABBLINGTON Permit Se 51-701421
(1) OWNER: Name Washington Public Power Supply	Active 301 Sth. Richland, WA 99352
(2) LOCATION OF WELL Comer Benton	K <u>SH k see 5 - 11 x x 28 w</u> s
Bearing and Simmar trem section or nubsivenes corner Hanford Gris	4 <u>N. 12.830</u> <u>W. 1.340.25</u>
(3) PROPOSED USE: Determine () Industrial () Manufact ()	(10) WELL LOG:
Irrigetion () Ten Well [] Other 33	Permatent: Describe by caler, sharecter, ant of meneral and structure, an
	strange sensured, such a last one outry for each change of formalier
(4) IITE OF WORLS (16 Paret that dit)	MATERIAL FROM TO
Desenant Cable X 2 Derves C Besterfiteent C Return C James C	Loose, Brown, Sliphtly Silty, 10 2.4
(5) DIMENSIONS: Diaman et val	Medium demse to very dense, tray 1 2,4 1 43.5
	medium to coarse sand with traces:
6) CONSTRUCTION DETAILS:	of time gravel (clean and dry) i i
Casing installed: _ 9 - Diam sum _ 440 - a w 195.5 a	
Threated () Diate. (Net 2. 14 2.	Very dense, gray sand and fire enty 43.5 47.5
Weise Q	Very inner any to have fine to 67 51 77 5
Perforations: You O No Q	course cand with scattered fine 1
Type of patients and	gravel i i
	i I
	Time to coarse gravel 1 77 51 05
Alen Dien 8" Slar Size - 250.5 To 240.3	
Screens: Ye CK No C	course sand with scattered fine
Staipless Steel New New New	stravel i i
2100 3101 111 200 361-5 = + 346-5 =	i i
Diam Siet size Frem 100.5 m to 200.5 m	Very ins. gray sandy fine to 98.01107.1
Gravel packed: ye or No C Sup of gravel: - 3/4"	
Grevel planet tren 425 R to 400 - 2	
Surface sealt yes a No C To what denth? 1 C 3	147 silt sand and stay corgion. 107.01117.
Manarial most is sent Cement Grout	
Did any minia costain unumatic water? Yet C NoZ	Yerr ins gray siler sand and grawi17 5 141.
Method of stating state of	with complex (cemented and mery
7) PUBIP: Manufacturers Never 1908 - 30919-	Sano 1776
	1
B) WATER LEVELS: LANG ANTICA MARTINE AND	Very mrs. eray, silty sand and reaviel.5 167
tremen pressureibs. per sentre ibst. Dete	-0mper)
AFMEAD WHEF IS CONTRUCT BY	
WELL TESTS: Drawoore is anount water invet is	······································
as a pump test mader Yes Ct. No C. U yes, by many DELLER	Wort Harten
leid: 200 callmin, with T th arawhern after 3 tre.	WELL DRILLER'S STATEMENT:
	This well was drilled inner my jurisdiction and this report. The is the part of my knowledge and sense.
THE STATE OF STATES SALES WINT SHEET STATES	
Bassured from weij top to Water level)	NAME Eston Drilling Company
66 30 Win - 63 07 - 50 Vin - 53 -58	(Person, Srill, ac euripersuant) (7598 42 37543)
<u> </u>	Address 2. At AL. Richten ge
<u> </u>	
Date of test	[Signee]Well Driders
RENT TO A THE CONTRACT OF A TH	17/
'emperature of water	Litrase No Jate Jate Jate 13
LF. Ne. 135-Rev. 2481-246-311. 4316.	TTTS & NECESSARY)

Well # 699-13-1B (WNP-2 Well #2)

Note: Carbon paper not nor. 17, as farme are inspreciated with chemics 'lick automatically reproduces the written _sterial on each undertying copy.

File Grigginal and First Copy with the Division of Water Econymi Second Copy - Owner's Copy Three Copy - Owner's Copy Application No. 63-20142 WATER WELL REPORT Permit No. 63-20142P STATE OF WASHINGTON (1) OWNER: None Wash. Pub Power Supply System Addres 301 Sth. Bichland, Vd. 99352 1 XV 1 5 5 - 11 + 28 Wie (2) LOCATION OF WELL: Comp Benton Bauring and dismost from sortion or subdivision conver Banford Grid N. 12.525 W. 1.130 (3) PROPOSED USE: Demante C Internet & Maniaton C (10) WELL LOG: Dringslan (] Tun Wall () Other 2) Permanian: Danowher by sales, character, and of material and there Standards of apparent and the bank and the same of the s and the standards of the same of the (4) TEPE OF WORK. Owner's summer at well II MATERIAL I TRONI I 70 And: Dur C Bernd C Cable E Driven C Return C Zottad C New well C Me Despendent C Reconctionent C Loose brn silr fine sand 1.5 1 0 1 Medium to due light has to gray- 1 1 5 14 0. ban becoming hik, fine to course 1 DIMENSIONS: Depart of weil ______ (5) DIMENSIONS: • sand and grant mith cobble (6) CONSTRUCTION DETAILS: Perforations: Tet C No E Very das, erzymin, fine to coarse Type of purposed work. sandy gray with cobales (dry to 60!) 43.0 62.0 ------_ _ _ _ - #-Very das, ever-hon time to coarse: - 2 _ = * -- 2 sand and gray with occasional -57.0 : 41.5 Screenst Ten C Xe C 218 co 254 208 cabbles and boulders Manufacturers Name <u>Superior</u> Manufacturers Name <u>Superior</u> Type Startless Sceel <u>week Na</u> Diss. <u>8"</u> Stat see <u>____</u> rea <u>354.5 s.</u> <u>334.5 s.</u> Diss. <u>3"</u> Stat see <u>____</u> rea <u>311.5 s.</u> <u>303.5 s.</u> 1.81 E 1110.0 Sandy, fine gray -one Very ins grayment fine to coarse 110.01174.5 Sand and gray Tith occasional cobbles and boulders . . 2 Bard, Catenora, fine sandy cil- beronias sile fine sand with denth 114 51 178 A Did uny stram contact unstable woory Type of Wilger Ye 🖸 NeX 179.0! 175.3 Sandy yrave! Method of unling space of... Very das, tan, vellow-bra, bk and 115.5 115.0 slight'y clayer, siley. 2727. fine to costse sandy grave! (8) WATER LEVELS: Line-surface envertion 437.5 -Sand Silmy tine sand APARAM WHERE IS CONSIDER BY----Cap. VALVE. ME.J (9) WELL TESTS: Drawsown is amount water level is interesting the state of the state o Vier a prime time maner Yes CT No CT yes by memory atter 19 bit Vier a prime time maner Yes CT No CT yes by memory 2010 con the Viere: 200 courteen with 10 - 50 ct. drawsown atter 9 bit WELL DRULLER'S STATEMENT: 202 33.00 This well was drilled under my jurnstiction and this report is true to the best of my knowledge and bench. -----. . Recovery data (Ume taken as tere which pump tarnet ed) (water persented from whit tep to water seven) NAME JALON DELECTE COMMONNET TOP OF STATE
 Main
 State
 State
 Lower
 Time
 Weiter
 Lower
 Main
 State
 Lower
 <thLowe</th>
 <thLowe</th>
 <thLowe</th>
 3. 3. 200 741. 21 cm and a state Aadress_ 10 " "<u>56</u><u>50</u>"<u>56.1</u> Dele of test <u>10-19-7</u> (Signed) 20_" __IL draweawn after. Antenan Sale ______ Antenan ______ A

(USE ADDITIONAL SHEETS D' NELESSART)

S. F. No. 138-Rev. 1461-1-46-336. 4216.

WF L COMPLETION REFORT			
WPPSS WA	1P-2 We	11 #3	Well Number <u>699–13–1C</u> Former Designation Computer Number
SURVEY DATA Coordinates Casing Elevation Date Surveyed	Completion De Static Water De	COMPLI pth 695 epth 57.5	ETION DATA Date Drilled to Date Modified to Date Destroyed
DRILL METHOD Air Rotary Mud Rotary Cable Tool Auger Core Other	Hatch		CASING DEPTH 4" 6" 8" 10 10"
PERFORATION Type <u>None</u> Depths Schedule	SCREEN Type Johnson #55 Length <u>35' (6")</u> Slot Size <u>#55</u> Depths <u>506 - 521</u> <u>563 - 573</u>		GROUT 12"cassing growted into top of based (Son Dorth) Volume
ROCK SAMPLES Interval 5' Analyses <u>Rockwell</u> Logged by Data Custodian Storage Location <u>Rockw</u>	Battelle ell(Coo.Last)	Inter Ana Data Samples	WATER SAMPLES rval lyses a Custodian taken during punp test
WELL PURPOSE potable water during plant open and fire protection	<u>stion</u>	COMMENTS 6 diameter serven section was busered into open hole and then gravel packed with Monteney Sand Co. Aqua 8 (interval 506-69	
	Name Section	WEL	L CUSTODIAN Department Company

PUMP SITE N 12830 699-13-14 • W 1320 N 12525 694-13-18 • 10 1130 Lien will exprose 100'E, 150'S of 13-18 (Give Distance Between All Wells)	LOCATION Pumped Well <u>LUPPSS WNP-Z Well #3</u> Observation Wells <u>Noxe</u>
Date Conducted <u>11-18-78</u> to <u>11-14-</u> Drawdown E Recovery E Variable Discharge Rates Constant Discharge Rate <u>275 grom</u> Injection Volume	TEST DATA 76 Aquiter Tested 100 of basact. Elephant Mtm and Rattlisanter Risign Percent Penetration 100% Initial Water Level Static Final Water Level 57.8' Pescults attached
DISCHARGE MEASUREMENTS WATER Flow Meter X Electric Lin Orifice Weir Other Steel Tape Other Other	e X Type gas - PTO-deep turbine Make Model Setting 240'
IN RESULTS Hydraulic Conductivity Transmissivity Storage Coefficien1	TERPRETATION TECHNIQUE USED
COMMENTS	TEST CONDUCTED BY Name W. Kiel (WPP55) D. Bigham (Harkh) Section/Dept./Co. Name Section/Dept./Co.

PUMP TEST COMPLETION REPORT

WNI-2 Well ->

DATE <u>11-18-7</u> STICK UP <u>2.0'to m.p.</u> START TIME <u>8:30 am</u> STATIC <u>57.5'</u> AVAILABLE DRAWDOWN <u>182.5</u>

35 feet of #55 slot Johnson Well Screen (6" diameter) gravel packed in a 12" open hole with Monterey Sand Company Aqua 8. PAGE 1 of 2

	ELAPSED	PUMPING			
	TIME	LEVEL	DRAWDOWN	<u>G.P.M.</u>	
	. 3:00	178.5	121.0	400	Pump motor maintained
	5:00	208.5	151.0	decreasing	constant RPM (1450)
	10:00	215.5	158.0	300	throughout entire test.
	15:00	217.5	60.0	decreasing	drawdown increased.
	3∞:∞	217.75	160.25	275	Water Temp. 71°F
	1:00:00	220.0	162.5	275	
	1:30:00	220.0	162.5	275	
	2:00:00	220.0	62.5	275	
	2:30:00	220.75	63.25	275	
	3:00:00	220.75	163.25	275	
	3:30:00	220.75	163.25	275	Noon
	5:30:00	220.75	163.25	275	
	7:30:00	221.5	164.0	275	
	9:30:00	221.0	163.5	275	
	11:30:00	221.5	164.0	275	
	13:30:00	221.5	164.0	275	
	15:30:00	221.5	164.0	275	Midnight 11-19-78
	17:30:00	221.5	164.0	275	begin littlet
	19:30:00	221.0	163.5	275	5am 11-19-78 Water 11
	21:30:00	221.0	163.5	275	Sampleling
	23:30:00	220.5	163.0	275	San 11-19-78 Sample (62)
	25:10:00	220.9	163.4	275	Due Shut down
	25:11:00		-	0	See and 7 for
	h:m:s				see page 2 for
					recovery data
1		1	1		

WNP-Z Well #3

DATE <u>11-19-78</u> STICK UP <u>2.0' to m.p.</u> START TIME ____ STATIC <u>57.5'</u>

RECOVERY

PAGE 2 of 2

ELAPSED	(Pumping)	Day sound	CDIA	
0:00	(2209)	(1634)	G.F.M.	0 st the second
	(~~)	(103.7)		25 hours Il min of amoin
				at 275gpm
1:00	150	92.5	,	
2:00	123	65.5		
3:00	105	47.5		
4:00	90	32.5		
5:00	80	22.5		
6:00	+1	13.5		
7:00	69	11.5		
8:00	66.5	9.0		
9:00	64.5	7.0		
10:00	63.5	6.0		
11:00	63.0	5.5		
12:00	62.5	5.0		
13:00	62.5	5.0	~	
14:00	62.1	4.6		
15:00	61.9	4.4		
47:00	60.7	3.2		
1:27:00	60.5	3.0	4	
2:00:00	60.1	2.6		
25:39:00	57.8	0.3		Reading taken Monday
h: m : s				11-20-78
. I				

	- -	<u>300-F</u>	F2_6	99-13-340039154 5.21 th		
WELL SU	MMARY SHEET	م در م مر ابط		Boring or Well No. 62540		
		-		Sheet of		
Location <u>Alest of WIDSS Les</u> Prepared By <u>Edward C. Lefus / Poulo</u> (SigNPrint Name)	Location <u>Alest of WINSS Leverne #2</u> Project <u>Boo - Ft-2</u> , 618-11 Bulice GROWNA Propered By Edward C. Low / Poused C. (Sefficient Name) Data 09/12/45 Reviewed By Mark Darrach Mark Darrach Data 9/25/95 (Sefficient Name)					
CONSTRUCTION DAT		Depth		GEOLOGIC/HYDROLOGIC DATA		
Description	Diegrem	Feet	Graphic Log	Lithologic Description		
4" STRINGES STELL STICKUP-10 I + II type Berney Closer - 12.6 - 2.0' 85. temperary casing set 2 77.6' BENTONIA COUNSIES 53.6-12.6' 34" BENTONIA COUNSES 53.6-49.0' STOCK GEOWARD 120 57.7'/7-4-95 STOCK GEOWARD 120 57.7'/7-4-75 STOCK GEOWARD 120 57		- 0 - 5 - 10 - 15 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20		50-59' georeury Sana (m) 5 52ndy Georee 56 """ 18'-40' georeury Sand g5 """ 18'-40' georeury Sand g5 """ 40'-50' Georee G """ 50'-59' georeury Sana g5 """" 59'-77.9' Sandy Georae 56 """""		
		-	4			
		:	1			

WELL CONSTRUCTION AND COMPLETION SUMMARY Sample Method: <u>Mud return</u> Drilling TEMPORARY WELL NUMBER: <u>699-14-E6T</u> Hanford A5070 WELL NO: 14-E6-T Method: Mud Rotary Drilling Additives Used: <u>Not documented</u> WA State Fluid Used: Mud Coordinates: N/S N 13,869 E/W E 5,500 Driller's Name:<u>Wood/Lovdahl/Varner</u> Drilling State Lic Nr: Not documented Coordinates: N _ 419,185 E 2,300,789 Company Start Company: Not documented Location: Cour d'Alene ID Card #: Not documented T_12N R_28E S_33R5 Date Date Elevation Started: 07Feb66 Complete: 08Feb66 Ground surface: 454.9-ft Estimated Depth to water: <u>96-ft Feb66</u> (Ground surface)<u>-90-ft 14Jun91</u> } Elevation of reference point: [458.38-ft] (top of casing) { Height of reference point above[<u>~3.5-ft</u>] GENERALIZED Driller's STRATIGRAPHY . Log ground surface T Depth of surface seal [_ND 1 0+60: SAND and GRAVEL 60+75: SAND and GRAVEL, few COBBLES 75+90: SAND and GRAVEL, No surface seal documented: COBBLES and BOULDERS 90-105: GRAVEL, COBBLES, BOULDERS 105-122: COBBLES, BOULDERS, GRAVEL 1.5-in ID carbon steel pipe. <u>-+3.5+110-ft</u> 7-in nominal hole. <u>0+122-ft</u> (Hole size not documented) Sand pack. <u>0-81-ft</u> Grout plug, <u>81-101-ft</u> ШШ. Gravel pack. <u>101+122-ft</u> Screen. <u>110+120-ft</u> Borehole drilled depth: 00 ഹ [122.0-ft] UL ED OCT 2 4 1995 Drawing By: RKL/6N14E06T.ASB Date : <u>13Sep94</u> Reference : <u>HANFORD WELLS</u> 92.99 A 6/14/91

SUMMARY OF CONSTRUCTION DATA AND FIELD OBSERVATIONS RESOURCE PROTECTION WELL - 699-14-E6T

699-14-E6T WELL DESIGNATION Not applicable RCRA FACILITY Not applicable N 13,869 E 5,500 [HANFORD N N 419.185 E 2,300,789 [HANCONV] CERCLA UNIT HANFORD COORDINATES : LAMBERT COORDINATES : 5,500 [HANFORD WELLS] DATE DRILLED Feb66 390.0-ft DEPTH DRILLED (GS) MEASURED DEPTH (GS) : DEPTH TO WATER (GS) : Not documented 96-ft, Feb66, -90-ft. 14Jun91 1½-in, carbon steel.(nominal) ~+3.5~110.0-ft 458.38-ft, [HANFORD WELLS] 454.9-ft, Estimated CASING DIAMETER ELEV TOP OF CASING : ELEV GROUND SURFACE : PERFORATED INTERVAL : Not applicable 110-120-ft SCREENED INTERVAL FIELD INSPECTION, 190ct93. 1.5-in galvanized steel casing. Casing is bent. Not capped or locked No pad. posts or permanent identification. COMMENTS Not in radiation zone. OTHER: Apparently has broken casing as noted in water level measurements after 14Jun91 AVAILABLE LOGS Driller TV SCAN COMMENTS Not applicable DATE EVALUATED Not applicable EVAL RECOMMENDATION Not applicable LISTED USE Sitewide semiannual water level measurement, 01May91+14Jun91 WHC ES&M w/l monitoring. CURRENT USER None documented PUMP TYPE MAINTENANCE

SUMMARY OF CONSTRUCTION DATA AND FIELD OBSERVATIONS RESOURCE PROTECTION WELL - 699-15-15B

WELL DESIGNATION : CERCLA UNIT : RCRA FACILITY : HANFORD COORDINATES : LAMBERT COORDINATES : DATE DRILLED : DEPTH DRILLED (GS) : DEPTH TO WATER (GS) : CASING DIAMETER : ELEV TOP CASING : ELEV GROUND SURFACE : PERFORATED INTERVAL : SCREENED INTERVAL : COMMENTS :

AVAILABLE LOGS : TV SCAN COMMENTS : DATE EVALUATED : EVAL RECOMMENDATION : LISTED USE : CURRENT USER : PUMP TYPE : MAINTENANCE : Not applicable Not applicable N 14,831 W 14,991 [HANFORD WELLS] N 420.094 E 2.280.296 [HANCONV] Jun72 163.0-ft Not documented 150.0-ft. 20Jun72 6-in ID carbon steel. +3.0*143.0-ft 548.36-ft. [HANFORD WELLS] 545.4-ft. Estimated Not applicable 141*161-ft. #20-slot FIELD INSPECTION, 08Jul93, 6-in carbon steel casing. Capped and locked No pad. posts or permanent identification. Not in radiation zone. OTHER: Driller Not applicable Not applicable Not applicable Not applicable Not applicable Not applicable None documented PNL sitewide characterization None documented

699-15-15B

LIEU CONSTRUCTION AND	COMDLETTON SUMMADY
WELL CUNSTRUCTION AND	
Drilling Air rotary(0-310-ft) Sample Air returns/ Method: <u>Core (310+1.273-ft)</u> Method: <u>Wireline core</u> Drilling Air rotary=Burns Name: <u>Core=not documented</u> Drilling Air=Soil Sampling Company: <u>Core=Boyles Bros</u> Date Air rotary ND Date Started: <u>Core Nov80</u> Complete: <u>Core Jan81</u>	WELL TEMPORARY Corehole NUMBER: 699-15-E13 A8338 WELL NO: DB-2 Hanford Coordinates: N/S N 15,322 E/W E 12,714 State Coordinates: N 420,656.56 E 2,308,999.94 Start Card #:Not documented T12N R28E S 431 Elevation Ground surface: 410.47-ft Brass cap
Depth to water: 25+31-ft 1971+79	
(Ground surface) GENERALIZED Geologist's STRATIGRAPHY -Log	<pre>[Elevation of reference point: [412.10-ft] (top of casing) Height of reference point above[1.63-ft] ground surface</pre>
0+5: SILT and fine SAND 5+65: Cse GRAVEL w/med+fine SAND 65+70: Brown clayey SILT 70+115: Cse GRAVEL w/SAND & SILT 115+122: SILT & SAND w/medium GRAVEL	Type of surface seal: Type of surface seal: Cement grout between 4 and 6-in casings
122-132: Clayey SILT 132-135: Brown tight CLAY	6-in ID carbon steel casing (6%-in OD) +0.5*310.0-ft
150-172: Cse GRAVEL w/cse SAND 172-175: Brown SILT 175-210: Cse GRAVEL w/SAND & SILT EIII	4-in ID carbon steel casing (4½-in OD)
210+305: SAND. SILT & CLAY 305+417: Elephant Mountain BASALT 417+440: SANDSTONE	
(Rattlesnake Ridge Interbed)	3.937-in hole. <u>364+957-ft</u>
609-605: ESQUATZEI BASALI. TIOW II 656-660: TUFF (Gable Mountain interbed) 660-677: Esquatzel BASALT. flow I 677-680: Tuffaceous SANDSTONE	
680+705: Asotin BASALT 705+708: TUFF (Unnamwed interbed) 708+900: Umatilla BASALT	
900-947: Tullaceous SANDSTORE (Mabton interbed) 947-1.171: Priest Rapids BASALT 947-1.031: Lolo flow	C ET
1.031+1.031.2: Interbed 1.031.2+1.103: Rosalia flow II 1.103+1.171: Rosalia flow I 1.171+1.172: CLAYSTONE (Quincy interbed) 1.172+1.273: Rosa RASALT	OCT 2 4 1995
DRILLING NOTES: DB-2 was cored from 310-924-ft Dec73-feb74. It was extended for BWIP to 1.273-ft by a Shaefer Well Services	
BWIP borehole reclamation in 1988-89	
cut the existing 3.5-in OD casing @ 927-ft and removed it. The remnant casing and open hole below the casing (932-1.273-ft) were then cemented.	3.032-in hole. <u>957+1.273-ft</u>
Drawing By: <u>RKL/6N15E13.ASB</u> Date : <u>13Sep94</u>	
Reference : HANFORD WELLS	17.12 ft 12/6/94

SUMMARY OF CONSTRUCTION DATA AND FIELD OBSERVATIONS RESOURCE PROTECTION WELL - 699-15-E13

WELL DESIGNATION CCRA FACILITY FRCLA UNIT	:	699-15-E13 Not applicable Not applicable
HANFORD COORDINATES	•	N 15.322 E 12.714 [Aug85-Plant]
LAMBERT COORDINATES	:	N 420,656.56 E 2,308,999.94 [Aug85-NAD27] Feb74/Extended 1981
DEPTH DRILLED (GS)	÷	924.0-ft/Extended 1.273-ft
MEASURED DEPTH (GS)	:	Not documented
DEPTH TO WATER (GS)	:	25+31-ft, 1971+79
CASING DIAMETER	:	6-in. carbon steel. +0.5+310.0-ft
		4-10, Carbon Steel, +1.0+304.0-10
FLEW TOP CASTNG		3.3-11, Calbon SLEET, $927-937-11$
FLEV GROUND SURFACE	•	410 47-ft Brass cap [Aug85-Not documented]
PERFORATED INTERVAL	•	Not applicable
SCREENED INTERVAL	:	Not applicable
COMMENTS	:	FIELD INSPECTION.
		OTHER:
AVAILABLE LOGS	:	Geologist
IV SCAN COMMENTS	:	Not applicable
DATE EVALUATED	:	Not applicable
EVAL RECOMMENDATION	:	NOT applicable
	:	waste management/BWIP geonygrologic investigation
	:	Nene decumented
MAINTENANCE	÷	None documented
PRETRIENMENCE		

SUMMARY OF CONSTRUCTION DATA AND FIELD OBSERVATIONS RESOURCE PROTECTION WELL - 699-17-5

WELL DESIGNATION 699-17-5 RCRA FACILITY Not applicable Not applicable N 17.450 W JERCLA UNIT HANFORD COORDINATES : 4.500 [HANFORD WELLS] N 422.740 E 2,290.780 [HANCONV] LAMBERT COORDINATES DATE DRILLED Dec50 105.0-ft 62.5-ft, 08Jul93 62.0-ft, 05Dec50, DEPTH DRILLED (GS) : MEASURED DEPTH (GS) : : DEPTH TO WATER (GS) : 44.0-ft, 02Jun93 CASING DIAMETER 8-in. carbon steel, +1.5+105-ft (nominal) 433.19-ft. [HANFORD WELLS] 431.7-ft. Estimated ELEV TOP CASING ELEV GROUND SURFACE : 45+70-ft 42+52-ft [HANFORD WELLS] PERFORATED INTERVAL : SCREENED INTERVAL COMMENTS FIELD INSPECTION, 08Ju193. 8-in carbon steel casing. Capped and locked No pad, posts or permanent identification. Not in radiation zone. OTHER: AVAILABLE LOGS Driller TV SCAN COMMENTS Not applicable DATE EVALUATED : EVAL RECOMMENDATION : Not applicable Not applicable LISTED USE Sitewide annual water level measurement. 01May91+02Jun93; CURRENT USER WHC ES&M w/l monitoring. PNL sitewide sampling and w/l monitoring PUMP TYPE Electric submersible MAINTENANCE

SUMMARY OF CONSTRUCTION DATA AND FIELD OBSERVATIONS RESOURCE PROTECTION WELL - 699-20-E12

699-20-E12 WELL DESIGNATION CERCLA UNIT Not applicable Not applicable N 20.304 E 12.017 N 425.637 E 2.307.290 RCRA FACILITY HANFORD COORDINATES LAMBERT COORDINATES [HANFORD WELLS] [HANCONV] DATE DRILLED Nov61 (GS) DEPTH DRILLED 357-ft MEASURED DEPTH (GS) Not documented DEPTH TO WATER (GS) : 86.0-ft, 02Nov61 O piezometer - 77.5-ft, 06Jun94. P piezometer - Not documented, O piezometer - 77.9-ft, 06Jun94, R piezometer - 77.9-ft, 06Jun94, S piezometer - 77.7-ft, 06Jun94, CASING DIAMETER ELEV TOP CASING ELEV GROUND SURFACE 8-in, +2.0+344-ft; 437.25-ft, [HANFORD WELLS] 435.2-ft Estimated 65+150 and 220+344-ft PERFORATED INTERVAL SCREENED INTERVAL Not documented FIELD INSPECTION, 160ct93. COMMENTS 8-in carbon steel casing. Capped and locked. No pad, posts or permanent identification. Contains five 1.5-in PVC piezometers; 0=+2.3*100-ft P=+2.5*345-ft Q=+2.5*253-ft R=+2.5*198-ft S=+2.5*138-ft AVAILABLE LOGS Driller TV SCAN COMMENTS Not applicable DATE EVALUATED EVAL RECOMMENDATION Not applicable Not applicable LISTED USE Sitewide annual w/l measurement, 01May91+06Jun94 CURRENT USER WHC ES&M w/l monitoring. PNL sitewide sampling and w/l monitoring PUMP TYPE None documented MAINTENANCE

WELL CONSTRUCTION AND COMPLETION SUMMARY Drilling TEMPORARY Sample WELL Method: Drive barrel NUMBER: 699-21-6 A8438 WELL NO: 699-23-7 Method: Cable tool Additives Drilling Hanford Fluid Used: Not documented Used: No WA State E/W W 6,320 Not documented Coordinates: N/S N 21,085 State Driller's Name: <u>J Bultena</u> Drilling Lic Nr: 0036 Company Coordinates: N N 426.371 E 2,288,951 Start Company: Not documented Card #: Not documented Location: Not documented T 12N R 28E S 30C1 Date Date Elevation Complete: 28Aug79 Ground surface: 434.8-ft_Estimated Started: 16Aug79 Depth to water: <u>48-ft</u>, <u>28Aug79</u> (Ground surface) 1 | Elevation of reference point: [436.81-ft] (top of casing) Height of reference point above[<u>2.0-ft</u> GENERAL IZED Driller's STRATIGRAPHY , Log ground surface ₹. Depth of surface seal [ND 0+10: Cse SAND 10+15: GRAVEL 15+20: Sandy GRAVEL No surface seal documented: 20+30: GRAVEL 30+35: Very cse SAND 35+55: GRAVEL 55+66: Gravelly SAND 66 : SAND -1 7-in nominal hole. <u>0+66-ft</u> 6-in ID carbon steel casing, <u>+2.0+66-ft</u> 6-in casing perforations. 43+66-ft, 1 cut/rd/ft 6-in telescoping screen, <u>40.5-62.0-ft, slot not documented</u> Installation not documented from HANFORD WELLS = 1 Tranta ĨŦĿſĿſĿŦ | Borehole drilled depth: [66-ft TU ED 4-27.95 46.97 \$+ 3/2/94 Drawing By: RKL/6N21W06.ASB Date Reference : HANFORD WELLS

SUMMARY OF CONSTRUCTION DATA AND FIELD OBSERVATIONS RESOURCE PROTECTION WELL - 699-21-6

WELL DESIGNATION : RCRA FACILITY : CERCLA UNIT : HANFORD COORDINATES : LAMBERT COORDINATES : DATE DRILLED : DEPTH DRILLED (GS) : DEPTH TO WATER (GS) : CASING DIAMETER : ELEV TOP CASING : ELEV GROUND SURFACE : PERFORATED INTERVAL : SCREENED INTERVAL : COMMENTS :

AVAILABLE LOGS : DATE EVALUATED : EVAL RECOMMENDATION : LISTED USE : CURRENT USER : PUMP TYPE :

699-21-6 Not applicable Not applicable N 21.085 W 6.320 [HANFORD] N 426.371 E 2.288.951 [HANCONV] 6.320 [HANFORD WELLS] Aug79 66-ft Not documented 48-ft, 28Aug79 6-in. carbon steel. +2.0.66-ft 436.81-ft. [HANFORD WELLS] 434.8-ft. Estimated 43.66-ft 40.5.62.0-ft [HANFORD WELLS] FIELD INSPECTION. OTHER: Driller None Not applicable None documented None documented Electric submersible

.co m .2	SH-2013001 PROJECTSUPPLY	SYSTEM/MA-2 LANDFILL	RFI/WA	h/W }		1 1	1
GA 8697. H	GA MER M. ANDERSON DRUNG METHOD 5 5/8" DIA, AR ROTARY - TUBEX SYSTEM GROUND DLEY. 448.81 MATCH DEPTH 60.08" BCS						
WEATHER S	UNINY /WARM CHILING COMPANY D	INRONMENTAL WEST EXPLO	RATION, INC. COLLAR DLIV.	N/A	THE /DA	TE 0854/05	-18-95
100	70" F Dist Bat MOBI	LE 8-80	SHELDON STARTED 09	45/05-11-	-95	En 1145/05	5-11-95
	A 451777 0 F 191	3402.6 (PLANT COORDIATE	5 - N 11029.0 W 2018 4	ME / MIK		RK (-
		MATERIAL C	INCNTORY				1
	_	MAILKIALS IN	IVENTUKT				
WELL CARD	c x <u>*50.55</u> _	- 14. 101. 10100	. in. <u>in. 10.0</u> . Lt. 100	TONTE MAL	AND HOLE	PLUC_1/	ses
. CASHG TH	C LONGYEAR PVC SCH 40	SCHEDI THELONGY	EAR PVC SCH 40 MST	ALLATION MET	MOD	GRAVITY	[
JOINT THE	FILISH THREAD W/ O-ANN	S_ 207 ST0.010"	MACHINE SLOTTED	ER PACK QTT	(4.0)	100 LB J	22246
allout qua	NONE USED		NONE USED	DE PACK THP	E10/20	2 CSSI S/	UND
GROUT TYP	E NONE USED		NONE USED	ALLATION MET	NOD	GRAVITY	
0.EN./0071	SOR /ROCK DESCRIPTION	WELL	SKETCH	INS	TALLATION	NOTES	
2			r6° dia. steel	Hale drill	ed with tub	es system	,
			locking cop	5 5/8" 0	it. 5.5" te	Theorer v	casing
-	i E		sie coo			wait is a	matine
E			St-1/4" weephole	The fite		and and and d	41
0.00	0.0-47.5 ft Compact to		E.I.	I ING SUTOR	1005 CONS		
t	very dense, dusky brown	100	-protective pad	100 lb.	bogs of CS	Si sond.	-14
F	(5 yr 2/2), course to fine		KA I	bentonite	sedi hydro	ted with	3
E	SAND, little to some fine t			actions o	t. Safeway s	wrifed (sistifea)
Einm			1-6" dia. nominal	water. 1	he borehold		kfilled
E	l E		borehole	to 3' BG	S with 12 b	ocs of B	ariod
F			K I	Hate Pluc	3/8" bent	tonile chi	oz. 6*
Ε	IE			steet cos	ind was ce	mented in	DIOCE
				Dres or	stactive co	**	instatien
F 20.00	F						
E	1 E						
E			PVC riser pipe				
k				[
50.00	I			WETT	DEVELOP	FNT NO	TES
E					Deveeor.		
F				Well days	toted uside	a bailer	<u>en</u>
E			0	05-12-5	95.		
40.00				il			
	I E			[1 Cample		
E			N .	Gallons	Conquestinty	7 7	714
‡	L			10	1080	70.8	7.06
F	47.5-59.0 ft. Very dense.		X	35	1049	73.0	7 07
E	dusky brown (5 yr 2/2).	X	×	37	972	69.6	7.05
È i	fine to coarse sand (Hanfard)			38	953	68.6	7.03
F	FW).	57.05		39	1014	70.0	7.10
E	L		2" dia. SOH 40	-			
60.00	59.0-65.0 ft. Very dense.	388.73' WSL	0.010 sol		ns removed	durina	_
ŧ	4/2), fine to coorse GRAVEL						
E	some to little sond, trocer	87.05	- 131	E			
t	sit (Ringold FW).	18.00	threaded end cop	[]	_		
70.00	L 65.0-70.0 ft. Very dense		77.8	h			· · ·
E	yr 4/2). fine to medium			£		******	
£	SAND, some to little fine			FT	LEGE	ND	
£	FM).	:		[-	
eo.00	Boring termineted at 70.0 ft. below ground surface.				PEA GRAV	EL	
E					NEAT CEN	IENT	
E .							
¥ 90.00					3/8° BEN	TONITE C	HIPS
ŧ					BENTONIT	E SEAL	
100.00					10/20 CS	SI SAND	
E					SLOUGH		
E		E					

Golder Associates

ab a Structured with set of the		4 - 201 1001	SYSTEM ANNO-2 LANDOUL DELANA	MW-2
A. B. S. Constraint and the stand of the stand		ANDERSCH.	JISICH WE Z DEGREE NY WEL WEL WELL	448 93 60 26' 8CS
ALMS Section Count Count <t< td=""><td>CA 149. 2</td><td></td><td>WERNING TAL NEET EVELOPATION INC.</td><td>N/A HATCH OF TH 00.20 503</td></t<>	CA 149. 2		WERNING TAL NEET EVELOPATION INC.	N/A HATCH OF TH 00.20 503
Best	NEATHER 3	THE COMPANY OF LINE COMPANY	TER. 80	
Lacker / Conserving & 1992/19 1.102411 Lacker / Conserving & 1992/19 1.102111 Lacker / Conserving & 1202/11 Lacker / Conserving / C	D#	70 F 0411 NG	CL D-OV DRIFT D. SPELLON STARTED 14	THE / BATE COMPLETED 1300/03-10-95
MATERIALS INVEXTIONT WATERIALS INVEXTIONT WATERIALS INVEXTIONT WATERIALS INVEXTIONT UNDER STATUS	LOCATON /	COORDINATES & 415947.9 C 19	333931 [PCANI COORDIGARS - W 10703.0 - 2028.7	
The case of			MATERIALS INVENTORY	
Land for	WOLL CASES	6 <u></u> A <u></u> _		TOWING SEAK BARROOL HOLE PLUG J/8" CHIPS
event my LIGH INFORM INCOMENDES LOBIC MADE SOTTO FIRE FACE OFF. LIGH INFORMATION Beur Ausert NORE USED OPENATIONE NORE USED NORE USED <td>CASHG TYP</td> <td>C LONGYEAR PVC SCH 40</td> <td>SCHEDI THE LONGTEAR PVC SCH 40 NOT</td> <td>ALLARON METHODGRAVITY</td>	CASHG TYP	C LONGYEAR PVC SCH 40	SCHEDI THE LONGTEAR PVC SCH 40 NOT	ALLARON METHODGRAVITY
Base Part The Proc Free LOCE USED Contractores MORE USED Proc Free LOCE OSE DSUD Base Part The Proc Free LOCE USED MORE USED <t< td=""><td>JOHT THE</td><td>FLUSH_THREAD_W/ OBIN</td><td>CS_ SLOT BOXO OLO" MACKINE SLOTTED FLT</td><td>ER PACK OTT 100 1 BL BAGS</td></t<>	JOHT THE	FLUSH_THREAD_W/ OBIN	CS_ SLOT BOXO OLO" MACKINE SLOTTED FLT	ER PACK OTT 100 1 BL BAGS
Back ADP Int MORE USED Define app Prof. Define app Prof. <thdefine app="" prof.<="" th=""> Define app Prof.</thdefine>	GROUT GUA	NATTY NONE USED -	ODTRAUGURSNONE USEDPLT	R PACK TYPE 10/20_CSSI_SAND
LEV.AE/Tr SELACC SCORE WELL SKETCH INSTALLATION NOTES ALP.AE/TR SELACC SCORES WELL SKETCH INSTALLATION NOTES ALP.AE/TR SELACC SCORES SELACC SCORES INSTALLATION NOTES ALP.AE/TR SELACC SCORES SEE STREET INSTALLATION NOTES ALP.AE/TR SELACC SCORES INSTALLATION NOTES ALP.AE/TR SEE STREET SEE STREET ALP.AE/TR LEW SCORES INSTALLATION NOTES ALP.AE/TR INSTALLATION NOTES INSTALLATION NOTES INSTALLATION NOTES INSTALLATION NOTES INSTALLATION NOTES	CROUT TYP	NONE USED	ORLING HUD TYPENONE USEDNST	ALLATION METHOD GRAVITY
BLCV, ADD'H SRL, ADD'H SRL, ADD'H SRL, ADD'H NELL SKETCH INSTALLATION HOTES 0.00 0.00 1.0 ft, Competition 0.00 1.0 ft, Compe		·		
BRY, MDYN BRANCH 2000 FBN FREIL 3ACT (11) Dist and the set of the set			WELL SKETCH	I INSTALLATION NOTES
10.00 10.00	DLEY./DEPTK	30C/ROX 02308 RD4		INSTALLANCE NOTES
Incluing composed service 5.5 / semposer central 0.00 0.0-1.0 ft. Compact. der, incluing composed service 1.4 * seepher 1.4 * seepher 0.00 1.0-1.3 ft. Compact. der, incluing composed service 1.0 * 1.2 * setting composed service 1.4 * seepher 10.00 1.0-1.3 ft. Compact. der, incluing composed service 1.0 * 1.2 * setting composed service 1.0 * 1.2 * setting composed service 10.00 1.0-1.3 ft. Compact. der, incluing composed service 1.0 * 1.2 * setting composed service 1.0 * 1.2 * setting composed service 1.0 * 1.2 * setting composed service 20.00 1.0 * 1.2 * setting composed service 20.00 1.1 * setting composed service 1.0 * 1.2 * setting composed service 1.0 * 1.2 * setting composed service 1.0 * 1.2 * setting composed service 20.00 1.1 * setting composed service 1.0 * 1.2 * setting composed service 1.0 * setting composed service 20.00 1.1 * setting composed service 1.1 * setting composed service 1.1 * setting composed service 20.00 1.1 * setting composed service 1.1 * setting composed service 1.1 * setting composed service			casing with	Hole drilled with tubes system
Image: State of the product	E		locking cap	5.5/8" bit. 5.5" temporary cosing
Concention Conceni	i			was withdrawn during well installation.
0.00 0.0-1.0 ft. Consect. der transmitter. 0.00 10.0 11, 0-4.35 ft. Compact to transmitter. 10.00 1.0-4.35 ft. Compact to transmiter.	E	CROUND SURFACE		The filter pack consisted of (3) 100 lb.
Image is the second trade of the second s	0.00	0.0-1.0 It. Compact, date 1	100 - Laratective pad	beas of CSS sond Sentonite sed
10.00 Ito some sit, trace coarse is fine some fine some for gravel (Monipor FM). 5° dia, nominal some fine some fine some fine some fine figure ideal for a log field to a log. The coarse is fine figure ideal for a log. SCH 40 20.00 20.00 10-43.5 fit Compact to fit fit in the next fit in hose a figure ideal for a log. SCH 40 2° dis. SCH 40 20.00 10-43.5 fit Compact to fit fit in the next fit in hose a figure ideal for a log. SCH 40 2° dis. SCH 40 20.00 10-10-10-10-10-10-10-10-10-10-10-10-10-1	E i	fine to medium SAND, little		hydrated with 3 gallons of Saleway
10.00 Isena. Austry screen is severale: 5° dia. nominal borenole: Boransis and bogalities to 3 Bogalites to 3 Bogalities to 3 Bogalities to 3 Bog	E	to some silt, trace coorse		purified (distilled) water. The
1.0-4.55 1.0-4.55 1.0 -4	E	sand.	-6" dia. nominal	borehole was bookfilled to 3' BGS
(5, w 2.22), community and first growt (Henjord FM). Image: Solution in the some first growt (Henjord FM). 20.00 10.00 30.00 10.00 40.00 10.00 40.00 10.00 40.00 10.00 40.00 10.00 40.00 10.00 40.00 10.00 40.00 10.00 40.00 10.00 40.00 10.00 40.00 10.00 40.00 10.00 40.00 10.00 40.00 10.00 40.00 10.00 40.00 10.00 40.00 10.00 40.00 10.00 40.00 10.00 50.00 If the communit (10 m and), the communit (1	E	1.0~43.5 fL Compost to	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	with 11 boos of Bariad Hole Plug
SAMO, it the to some fine grave (Moniford FM). Image: Some some some some some some some some s	ŧ .	(5 yr 2/2), course to fine		3/8" bentonite chips. The cosing
20.00 Article Ist Section Section 30.00 Fride Ist Section in the hear of a section in thear of a section in the hear of a sec	Ē	SAND, little to some fine		was very tight in the hole. Very
20.00 10.3 of staugh in the horse 5' statut above strauding around menument. 30.00 -2" did. SCH 40 PVC riser peed 40.00 -3.5-52.0 ft. Dense to very dense duely brown (3.9 / 2.7) fras to come dense. 50.00 -0.00 40.00 -0.00 50.00 -0.00 50.00 -0.00 50.00 -0.00 50.00 -0.00 50.00 -0.00 50.00 -0	ŧ			hard to remove during intellation due
30.00	E 20.00			to 3' of stouch in the hore. 6"
30.00 A0.00 40.00 A1.5=52.0 ft. Danies to way 2/20. The to correct (DAVEL). 100.00 A1.5=52.0 ft. Danies to way 2/20. The to correct (DAVEL). 100.00 A1.5=52.0 ft. Danies to way 2/20. The to correct (DAVEL). 100.00 A1.5=52.0 ft. Danies to way 2/20. The to correct (DAVEL). 100.00 A1.5=52.0 ft. Danies to way 2/20. The to correct (DAVEL). 100.00 A1.5=52.0 ft. Danies to way 2/20. The to correct (DAVEL). 100.00 A1.5=52.0 ft. Danies to way 2/20. The to correct (DAVEL). 100.00 A1.5=52.0 ft. Danies to way 2/20. The to correct (DAVEL). 100.00 A1.5=52.0 ft. Danies to way 2/20. The to correct (DAVEL). 100.00 A1.5=52.0 ft. Danies to way 2/20. The to fire sand. 100.00 A1.5=52.0 ft. Danies to way 2/20. The to fire sand. 100.00 A1.5=52.0 ft. Danies to way 2/20. The to fire sand. 100.00 A1.5=52.0 ft. Danies to way 2/20. The to fire sand. 100.00 A1.5=52.0 ft. Danies to way 2/20. The to fire sand. 100.00 A1.5=52.0 ft. Danies to way 2/20. The to fire sand. 100.00 A1.5=52.0 ft. Danies to way 2/20. The to fire sand. 100.00 A1.5=52.0 ft. Danies to way 2/20. The to fire sand. 100.00 A1.5=52.0 ft. Danies to way 2/20. The to fire sand. 100.00 A1.5=52.0 ft. Danies to way 2/20. The to fire sand. 10/20. CSSI SANO 100.00 A1.5=52.0 ft. Danies to way 2/20. The to fire sand. 100.00 A1.5=52.0 ft. Danies to way 2/20. The to fire sand. 10/20. CSSI SANO A1.5=52.0 ft. Danies to way 2/20. SSI SANO 10.00 A1.5=52.0 ft. Danies to way 2/20. SSI SANO A1.5=52.0 ft. Danies to way 2/20. SSI SANO A1.5=52.0 ft. Danies to way 2/20. SSI SANO	ŧ –		2 dia 501 40	steel above around monument
30.00	Ē		PVC riser pipe	commented in place. Three protective
30.00 40.00 40.00 43.5-52.0 ft. Dense to very 2/20. ft. Dense to reason and the correst CRAVEL 100 ft. 2000 Dense. Guidy Dram 10, ft. 100 Dense 10, ft. 100 Dense. Guidy Dram 10, ft. 100 Dense 10, ft. 100 Dense 10, ft. 100 Dense. Guidy	F			posts were installed around monument.
40.00 43.5-32.0 ft. Dense to very some to very some to the synthese to response to the synthese synthese some to response to the synthese synthese some the synthese some the synthese some the synthese some the synthese some to response to the synthese some the synthese so	£ 30.00	1		
40.00 43.5-52.0 ft. Denise to very sense. Guidy brown (3 x / 1.95 with a Grundlog Rediction for the to receive GAVEL / 100 y / 22, fine to convert GAVEL / 100 y / 22, fine to convert GAVEL / 100 y / 22, fine to convert GAVEL / 100 y / 22, fine to convert for fine and / 100 y / 22, fine to medium send. / 100 y / 22, fi	E			WELL DEVELOPMENT NOTES
40.00 43.5-52.0 ft. Dense to wry and the correst of the source. Putter Line to the source of the correst of the source. In the correst of the source of the source of the correst of the	Ē			Well storted to be developed so
40.00 ⁴ 1.5-52.0 ft. Dense to serve ² 2/2), fine to convert GPA/EL ⁴ 2/2), fine to convert GPA/EL ⁴ 2/2), fine to medium serve ⁴ /2), fine to medium serve	E			05-11-95 with a Grundlos Redi-flow
43.5-52.0 ft. Dense to very came. Guild y brown (5 yr 22), fine to came can Kerker 10, for a badyr. 50.00 Unces sit (Montrow Tu). 32.0-66.35 ft. very came. dark prime and trace sit (Montrow Tu). 52.00 State of mation and trace sit (Montrow Tu). 52.00 State of mation and trace sit (Montrow Tu). 52.00 State of mation and trace sit (Montrow Tu). 52.01 State of mation and trace sit (Montrow Tu). 52.02 State of mation and trace sit (Montrow Tu). 52.02 State of mation and trace sit (Montrow Tu). 52.02 State of mation and trace sit (Montrow Tu). 52.02 State of mation and trace sit (Montrow Tu). 52.03 State of mation and trace sit (Montrow Tu). 52.04 State of mation and trace sit (Montrow Tu). 52.010 State of mation and trace sit (Montrow Tu). 52.010 State of mation and trace sit (Montrow Tu). 53.010 State of mation and trace sit (Montrow Tu). 53.010 State of mation and trace sit (Montrow Tu). 53.010 State of mation and trace sit (Montrow Tu). 55.010 State of mation and trace sit (Montrow Tu). 55.010 State of mation and trace sit (Montrow Tu). 55.010	F 40.00]		2 supmersible oums. Pump burned
S0.00 It before to fire sort State S0.00 It to course GRAVEL	E	ATE 520 B Deres to serve		up impellers. Development finished
2/2), fine to course GRAVEL 50.00 With coorse to fine sond, trace still (Honford FM). 32.0-66.34 ft. Very sones, 4/2), fine to medium sond, 1/2), fine to medium sond, 1/2), fine to medium sond, 1/2). 60.00 60.00 Bering terminated at 70.0 ft. Bering terminated at 70.0 ft. balow ground surface. 90.00 100.00 Bering terminated at 70.0 ft. 100.00 Bering terminated at 70.0 ft. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	ŧ	dense, dusky brown (5 yr	47.00	on 05-12-95 with a bailer
50.00 trace sit (non/ors FM). 52.00 52.00-68.34 ft. Very dense. den yellesint-brown ito y 4/2), fine to medium send. trace sit (Ringoid FM). 60.00 10.00 stot so 10.00	E	2/2), fine to course GRAVEL		
52.0-66.34 ft, Very sama, derived seither same, derived series same, derived seriter same, derived seither same, derived se	50.00	trace silt (Honford FM).		Gations Conductinity T T 2H
60.00 4/2). fine to medium send. trace salt (Ringed Fu). 2' dic. SCH 40 53 1131 70.0 700. 60.00 50.00 51 1131 70.0 700. 70.00 Bering terminates at 70.0 ft. before ground serioss. 53 1014 71 711 70.00 Bering terminates at 70.0 ft. 53 1034 71 711 70.00 Bering terminates at 70.0 ft. 55 1034 71 711 70.00 Bering terminates at 70.0 ft. 55 1034 71 711 70.00 Bering terminates at 70.0 ft. 55 1034 71 711 80.00 368 Bering terminates at 70.0 ft. 55 1034 71 711 90.00 37.8° BENTONITE CHIPS SENTONITE CHIPS SENTONITE SEAL 10/20 CSSI SAND 55 10/20 CSSI SAND 100.00 SLOUGH 10/20 CSSI SAND SLOUGH 10/20 CSSI SAND	E	52.0-66.34 It. Very sense.		57 1 1099 76.5 7.00
60.00 Uncer sat (Ringed PM). # #L 50.25' B03 366 67 MSL 0.010° slot screen 54 1.141 70.1 6.9A 70.00 Bering terminoted at 70.0 ft. before ground surfaces	t i	4/2), fine to medium sand.	2" dia. SCH 40	53 1131 70.0 7.00
60.00 S0.267 MSL 338.67 MSL 107300 Introdeci and cool S5 gollona removed during development 70.00 Bering terminated at 70.0 ft. before ground surface. Introdeci and cool S5 gollona removed during development 80.00 Interminated at 70.0 ft. before ground surface. Interminated at 70.0 ft. S5 gollona removed during development 90.00 Interminated at 70.0 ft. before ground surface. Interminated at 70.0 ft. S5 gollona removed during development. 90.00 Interminated at 70.0 ft. before ground surface. Interminated at 70.0 ft. S5 gollona removed during development. 90.00 Interminated at 70.0 ft. S5 gollona surface. Interminated at 70.0 ft. S5 gollona removed during development. 90.00 Interminated at 70.0 ft. S5 gollona surface. Interminated at 70.0 ft. S5 gollona removed during development. 90.00 Interminated at 70.0 ft. S5 gollona surface. Interminated at 70.0 ft. S5 gollona surface. 90.00 Interminated at 70.0 ft. S5 gollona surface. Interminated at 70.0 ft. S5 gollona surface. 90.00 Interminated at 70.0 ft. S5 gollona surface. Interminated at 70.0 ft. S5 gollona surface. 90.00 Interminated at 70.0 ft. S5 gollona surface. Interminated at 70.0 ft. S5 gollona surface. 90.00 Interminated at 70.0 ft. S5 gollona surface. Interminated at 70.0 ft. S5 gollona surface. <	E	troce sit (Ringord Fid).	10k 010.0	54 1 1141 70.1 6.98
70.00 Bering terminated at 70.0 ft. 80.00 Iteration and comparison and compa	60.00	1	388.67 451	55 1034 71.1 7.11
70.00 Bering terminoted at 70.0 ft. Bering terminoted at 70.0 ft. below ground surface. 80.00 90.00 90.00 100.00 100.00 110.00	E			
70.00 Bering terminoled at 70.0 ft. below ground surface. 80.00 90.00 90.00 100.00 100.00 100.00	ŧ			55 gallons removed during
70.00 Bering terminated at 70.0 ft. t below ground surface. LEGEND 80.00 PEA CRAVEL S0.00 NEAT CEMENT 90.00 3/8° BENTONITE CHIPS 90.00 SENTONITE SEAL 100.00 10/20 CSSI SAND SLOUGH SLOUGH	E		70.00	development
balow ground surface. B0.00 B0.00 B0.00 S0.00 S1.00GH	70.00	Baring terminates at 70.0 ft.	E	
B0.00 IEGEND B0.00 Image: Pea gravel S0.00 Image: Pea gravel S0.00 Solution S0.00 Solution S0.00 Solution S0.00 Solution S0.00 Solution Solution Solution Solution Solution Solution Solution Solution Solution	È i i	below ground surface.		
\$0.00 Image: Peage and Peage	F	4	E	LEGEND
S0.00 PEA GRAVEL PEA GRAVEL NEAT CEMENT S0.00 J/8° BENTONITE CHIPS S0.00 SENTONITE SEAL 100.00 I/20 CSSI SAND S1.00GH SLOUGH	Ē	Į.		
90.00 90.00 100.00 1	F 80.00	1		PEA GRAVEL
90.00 90.00 100.00 110.00 110.00 NEAT CEMENT 3/8" BENTONITE CHIPS SENTONITE SEAL 10/20 CSSI SAND SLOUGH	Ē			
90.00 3/8" BENTONITE CHIPS SENTONITE SEAL 100.00 10/20 CSSI SAND SLOUGH	ŧ		E	NEAT CEMENT
90.00 3/8° BENTONITE CHIPS SENTONITE SEAL 10/20 CSSI SAND SLOUGH 110.00	E		\$	
100.00 SENTONITE SEAL	\$ 90.00		E	3/8" BENTONITE CHIPS
100.00 SENTONITE SEAL	ŧ			
100.00	E		E	BENTONITE SEAL
100.00	ŧ			
	E 100.00		E	10/20 CSSI SAND
	ŧ			E T
	E		E	The source
	£ 110.00		1	<u> </u>

Golder Associates

	54-2013001 PALEET SUPPLY	SYSTEM/WNP-2 LANOFEL REI/WA WELL NO.	WW-3 SEET 1 of T		
CL 307. M	CA NO. M. ANDERSON DELING METHOD \$ 5/8" DIA AIR ROTARY - TUBEX SYSTEM CHUND BLEV. 439.94 WATER DEPTH \$1.46" BGS				
	TRAVER RANNING DELLES COMPANY DIVIRCHMENTAL HEST EXPLORATION, INC. COLLAR BLY. N/A THE/BATE 1345/05-20-95				
		33717.3 (PLANT COORDINATES - H 10442.5 W 1705.1)	ME / Balt COMPLETED 100/05-05-35		
		MATERIALS INVENTORY			
WELL CASH	a2 a527_	LE MOL SCHEDH LE MOL	THE MA BARDO HOLE PLUG 3/8" CHES		
CASHG TYP	C LONGYEAR PVC SOI 40	SCHEDE THE LONGVEAR PVC SCH 40 HIST.	LATION METHODGRAMTY		
JOHT TYPE	FLISH THEEAD W/ O-RIN	ICS_SLOT SZE O.DIO" MACHINE SLOTTEDPLR	R PACK OTT 100 18 BACS		
GROUT QUA	MARTYNONE_USED	COMPALIZONSNONE_USEDPLT	R PACK TYPE CRAVITY		
		HELL CRETCH	INSTALLATON NOTES		
ELLY./GDP 794		TELL SKEICH			
		cosing with lincking cop			
			during well installation. A 1.5' long		
	STOLE SAVAGE	1/4" esephale	stainless steel rod with duct take was		
0.00	0.0-38.0 ft. Compact to	100 B Lerotecthe ad	lost during well installation at gapras.		
	(5 yr 2/2), course to fine		16' BGS. The filer posk summitted of		
	Lo coarse gravel (Hanford		(3) 100 b. best of CSS and A		
10.00	FM).	borehole	J.17 Sentonie sen hydred with 3		
			water. The barenes was backfled to		
			3" BGS with 10 bees of Beriod Hole Plug		
20.00			3/8" bentonite shipe. Above graund		
			monument was committed in place		
		PVC riser side	Three protective posts were installed		
- 30.00					
			WELL DEVELOPMENT NOTES		
	58.0-45.0 ft. Very dense.		Well developed on 05-10-95 with a		
40.00	dusky brown (5 yr 2/2), fine to coarse GRAVEL, with		Grundfas Redi-flow Z submersible		
	cabbies, little coarse to fine sand (Honford FM).		Partie		
È	45.0-48.0 ft. Very dense,		Gations Conductivity T 7 pH		
50.00	4/2), fine to course GRAVEL		30 1237 68.9 6.94		
E	trace sit (Ringeld FM).	+ WL 51.46 865	40 1250 58.6 5.81		
È	48.0-59.0 R. Very conse.		48 1293 98 5.53		
	4/2). fine to medium SAND, ntrace coorse sond, trace	18.05 threaded and cop	50 1286 67.7 6.79		
60.00	silt (Ringale FW).	SI.75 State			
ŧ	dart velouish-brown (10 y		54 pollons remained during		
Ł	little course to fine sond,		development.		
70.00	troce sit (Ringold FM).				
ŧ.	below ground surface.	F			
È i		F			
E no no		El construction de la constructi	150520		
ŧ		£			
ŧ		E	PEA GRAVEL		
		1	THE MEAT OFMENT		
E			I CAN NEAT COMENT		
ŧ			3/8" BENTONITE CHIPS		
E.m.					
E 100.00			E BENIUNITE SEAL		
ŧ			10/20 CSSI SAND		
E 110 00		FI			

Golder Associates

28 10 154-2013001 m	LITET SUPPLY SYS	TEM/NNP-2 LANC	SFUL REI/WA	MD4 H0	WW-4	. SHET 1	<u>of 1</u>
CA NOP M. ANDERSON DE	LINC HETHOD 5 5/8"	DIA. AIR ROTARY	- TUBEX SYSTEM	MOUND ELEV.	454.37		65.94' BCS
WARD SLINNY /WARD	LINE COMPANY ENVIR	CHANENTAL WEST E	OF ORATION INC.	COLLAR D.FV.	N/A	THE OLD 14	53/05-20-95
	LL RIG MOBILE 1 415446.1 E 193376	2.8 (PLANT COORD	B. SHELDON	STARTED _101	0/05-09-95 ME / MR		30/05-09-95
		MATERIAL	S INVENTORY				
NEL CASHE			2	0	SHE SEAL BAR	OD HOLE PLU	<u>c 3/8° 0485</u>
CASHE THE LONGYEA	R PVC SCH 40	SCHEDK TYPE LG	NGYEAR PVC SCH	40	LATION NETHOD	GRA	wty
JOHT THEELISH THE	FAD W/ O-RINGS	3.07 52700	10" MACHINE SLOT		R PACK OTY.	(3.0) 100	LA BAGS
210/1 BUNITY	NONE USED		NONE USED		PACK TYPE	10/20 05	SI SAND
OKNO	NE USED	DISLING MED THE	NONE USEL		LATION METHOD	GR	AVITY

8.EV./0071	SOL/ROCK DESCRIPTION	WELL SKETCH	INSTALLATION NOTES
		6" dia. steel cosing with lacking cap	Hole drilled with tuber system
		10 stip cap	voz withdrawn dering well installation.
0.00	0.0-13.0 ft. Compoct to dense, dark yellowish-brown	100 S Lprotective pod	Ib. bags of CSS sand. A 3.25
	SAND, little sit, trace course sand. (Ealian)		collans of Safeway purified (distilled)
10.00		Borshole	to 3' BCS with 11 bacs of Barioo
Ę	dense, dusky brown (5 yr 2/2), cogree to fine SAND,		Hole Plug 3/8" bentonite chips. A.
20.00	trace to little rise gravel, trace alt. (Hanfard Ful)		manument.
		PVC riser pipe	WELL DEVELOPMENT NOTES
- 30.00			Well developed on 05-10-95 with a
			Grundfas Redi- More 2 submersible
40.00 E			Gallons Congentiaty T.F. pH
È.			0.1 373 70.3 6.79 15 850 64.5 6.75
50.00	S1.0-64.5 11. Danse to very dense, dusky brewn		42 745 74.7 7.01
Ē	Hitle to some course to fine sand. (Hantare Fid)		52 733 • 68.9 7.15
E 60.00	84.5-70.0 ft. Very dense, dark yelowish-brown (10 yr 14/2), fine to coarse GRAVEL		
	Fittle coarse to fine sond, trace sit (Ringold FM)	+ WL 65.94' 8GS = 2" die. SCH 40 388.43' MSL = 0.010° slot 307.997	athers sat for less than 24 hours.
F 70.00	dark yelowish-trown (10 yel 4/2), fine to medium SAND, trace sit, (Ringold)		54 gations removed during
	74.0-76.75 fL Very dense. dort velowish-brown (10		
E 80.00	GRAVEL with cobbies, little fine to medium sond, trace		LEGEND
Ē	(Ringold FM) Baring terminated at 76.75 R		PEA GRAVEL
= 90.00	Dede grann Sinks.		NEAT COMENT
E			3/8" BENTONITE CHIPS
E 100.00			BENTONITE SEAL
E			10/20 CSSI SAND

Golder Associates

Golder Associates

JOB NO. 97	3-9801.001 PROJECT SUPPLY	STSTEM/WWP2/WA		WELL NO		- SHEET _1 OF 1
CA 905P	T. NORTON DRILING WETHOD	OLLOW STEM AUGER		_ GROUND ELEY.	423.5	WATER DEPTH 37.60 FT BGS
WEATHER	COOL/DRIZZLE DRILLING COMPANY	DIVIRCINALDITAL WEST EXP	LORATION, INC.	- COLLAR BEY.	426.29	_DATE /THE 7-30-97/737
TEMP. 74	F DRLL RG FOREMOS	T NOBLE 8-90 DRILLER	R. SHELDON	STARTED	5/72837 RE / 54R	_ COMPLETED 930/7-29-97
LOCATION /	COORDINATES _ # 413,/35.92 E 1	14 1TCD1 14 11	C INVENTOR	<u> </u>		
		MATCRIAL	S INVENTOR	T 101		
WELL CASE			TTAR PUC SCH AN			TREMIE THROUGH AUGERS
CASING ITP	FUISH THEFAD W/ O-RINGS		O" MACHINE STOTTED			4 75-100 18 SACKS
CROUT ONA	WITTY NA	CENTRALIZEDS NA			R PACK THE	10-20 CSSI SRUCA SAND
GROUT TYP	<u></u>	DRILLING WUD TYPE	NA		ALLATION METHOD	TREWIE THROUGH AUGERS
			·			
		u	FIL SKETCH		INSTAL	LATION NOTES
-				Finch die.		
ŧ !			\setminus \checkmark	steel could b	7/8-inch G.D.	a gang 4-inch LD. (7 .) heliov sian queers.
F		2.4		way the stand	selected stan	ford 2-inch split spean
E		0.70		- Weep hele	Augers were t	ethdreen fram barnhale
0.0	0.0-3.0	2.00		T	in conjunction installation.	with manifering will to feel at PVC sursus
3.0	(107R6/2), silly fine SAND,	4.20		E	The film and	stradde the voter table.
Ę	dama (Eslian)			Concrete pod	A. seens of (CSS silice send. 10-50
6.0					th. spoke of the chieve ware as	pervit 3/6" burkenile acad and hydrolad from
F			1/2 1/A-	naminal	the top of the	a serve pack to 2 feet
F 9.0	3.0-18.0			bershele E	locking cap .	es comanted in piece
Ē	brown (10176/2), very fine			Ę	pusts installed	ground the menument.
E 12.0	te medium SAND, trace to tittle fine is centre			. F	The menumen	t was filled with send tale chilled in the
L 15 0.	subrounded gravel, trace silt,			2-inch dia.	monument.	
Ē	and future (unit		1/1 1/1-	PVC Sch. 40 biomk riser		
18.0	Ь. I				-	
F					1	
F 21.0				·		
Ē.		.				
E 24.0	· · ·			F		4. (C)
27.0						
ŧ	Compact, dark yellowish				:[
£ 30.0	brown (10YR4/2), medium to coorne SANO, nome	4.			-	· · · · ·
ŧ	subrounded gravel, truce silt,	11.00				
F 33.0					WELL DE	VELOPMENT NOTES
Ener		36.37			The well was	developed on 7-29-97
F 30-0				\mathbf{Z}_{\perp}	hand putter	ositive displacement
£ 39.0				7.60 7-30-97	Gallara	pectfic TC all
E	39.0-46.8		第 田刻	2-inch dia. Sch. 40.	con	iductivity
÷ 42.0	Compact, dark yellowish brown (10784/2), time to course	H I	※日刻 一	0.010° slot	10	485 18.2 7.65
ŧ	SAND, Fillie to some medium			TT6 3078075	120	486 17.1 7.48 489 17.0 7.44
F 45.0	(Ringeld Fm)	46.37		Threaded	160	494 17.0 7.43
ŧ	Tetat deeth 45.87 ft. beier	46.87		end cap	LECENA	
F *8.0	ground surface					Hart commit
51.0	÷ *	H				
ŧ	Seat	F			17/1	
54.0		Ħ				A 2/2 Bound Design Chips
ŧ					E Frank	
F 57.0		El .			FI 🗠 🖄	10/20 CSSI silica send
F		ŧ			<u>ti</u>	
E 60.0		E .			E	
E 63.0		딕			El .	
Ę		E			FI -	
F	1	<u>11</u>			71	

JOB HO. 97	3-9801.001 MOJECT SUPPLY	STSTEN/WNP2/WA WELL NO	-7
GA 1897	T. NORTON DRILLING WETHOD	HOLLOW STEN AUGER CROWND BLEY.	403.8 WATER DEPTH 20.18 FT BGS
WEATHER _	HOT OPELLING COMPANY	ENVIRONMENTAL WEST EXPLORATION, ME. COLLAR ELEV.	205.45 OATE/THE 7-30-97/1148
TEMP	T CALL NC PORCH	1 935 454 46 (PLANT COORDINATTS & 12 847.55 F 38 22)	1/1-28-3/ COMPLETED 1540/1-28-3/
LOCATION /		MATERIALS INVENTORY	
WELL CASH	c in es20.16	11. WELL SOREN IL SEN	TOM TE SEAL BAROID HOLE PLUG 3/8" CHIPS
CASING TYP	E LONGYEAR PVC SCH 40	SCREEN THE LONGTEAR PVC SCH 40 BIST	ALLATION METHOD TREMIE THROUGH AUGERS
JOINT TYPE	FLUSH THREAD W/ O-RINGS	SIOT SZE NICHNE STOTED FLT	PACK OTY. 475-100 18 SACKS
GROUT QUA	NTTY <u>NA</u>	CENTRALIZERS NA FILT	R PACK TYPE 10-20 CSSI SILICA SAND
GROUT TYPE	· ·····	DRILING MUC THE BAST	ALLATION METHOD TREAS THROUGH ADDRES
CLEV./DEPTA	SOL/ROCK DESCRIPTION	WELL SKETCH	INSTALLATION NOTES
E			Drilled beruhole using 4-inch LD. (7
F			collectual standard 2-inch upill spean
E _	GROLIND SUNFACE		Augura were withdrown from bareholo
- 0.0			in conjunction with monitoring wall installation. 10 feet of PYC parame
20			was placed to stradile the water table. The ritier pack consided of 4.25-100
E		Concrete pad	Ib. sooks of CSSI silics send. 4.5-50
E 4.0			chips ours placed and hydroled from
			bgs. A 5-inch die menument with
Ę	Loose-compact, medium		locking cap was comented in place with three gueral posts installed around
E. 8.0	gray (HS) subrounded to subengular everys SAHS,	2-mm da.	the menument. The monument was filled with send and a vess bale
Ę	little fine to coores subrounded ermoil, trace sill,	bient free	drilled in the manument.
F 10.0	dry to damp (Hanford Fm)		1
E			1
E			
14.0			4
E			
- 16.0]
E 18.0			-
È	14.0-23.0		
E 20.0	Compact, medium-groy (NS) to pale yellowish brown	20,18 7-30-97	
F	(107R6/2), subsequint medium SANO, little to some		
E	medium to course suprounded	Zeinen dia. Sch. 40.	WELL DEVELOPMENT NOTES
24.0	(Henlerd Fm)	0.010 stat	The well was developed an 7-29-97 using a BK positive
ŧ	23.0-28.4 Dense, pale vellouist brown		displacement hand pump.
26.0	(10YRS/2), fine te medium		Galions Specific TC pH conductivity
28.0	subrounded grows, trace silt,	27.65	(centre u)
ŧ –	Tatul death 78 4 44 haire	28.40	55 167 18.3 8.30
F 30.0	Burnug anuare Listen admin Tora III Seisa	H	135 137 16.5 8.08 195 161 16.5 8.10
È	· ·		LEGENG
F 32.0		El la	
= 34.0	1		Please cement
E			
F 36.0		E	
E		E	10/20 55
E		E	
- 40.D		H	
± 42.0		E Contraction of the second se	
F -	1	71	[]

ADE ND. 973-9801.001 PROJECT SUPPLY STSTEM/WNP2/WA	WELL MEL WW-8	SHEET 1 OF 1
GA INSP. T. HORTON DIRLING METHOD HOLLOW STEW AUGER		WATER DEPTH 27.58 FT BCS
WEATHER COOL/DRIZZLE DRILLING COMPANY ENVIRONMENTAL WEST EXPLORATION, INC.	COLLAR DEV. 413.47	DATE/THE 7-30-97/1304
TEMP 74" F DALL NG FOREMOST MOBILE 8-90 DRULER R. SHELDON	STARTED 1040/7-29-97	COMPLETED 1430/7-29-97
LOCATION / COORDINATES N 417,941.34 E 1,935,296.23 (PLANT COORDINATES N 12,694.08	(-120.43)	NE / 84X
MATERIALS INVENTORY	• •	
WELL CASHS I GE 27.45 LT. WELL SCHEEN 2 IL GE 15	LE BENTONTE SEAL	BAROID HOLE PLUG 3/8" CHIPS
CASING TYPE LONGTEAR PYC SCH 40 SCHEDN TYPE LONGTEAR PYC SCH 40		THOUTREMIE THROUGH AUGERS
JONT THE FLUSH THREAD W/ O-RINGS SLOT SZE DOID" MACHINE SLOTTED	FILTER PACK OTY	3.5-100 18 SACKS
GROUT QUANTITY MA CENTRALIZERS MA		E 10-20 CSSI SUCA SAND
CROUT TYPE MA DRILING HAD TYPE		HOD TREME THROUGH AUGERS

	3-9801.001 PHOLECT SUPPLY	SYSTEM/WHP2/WA WELL NO. 4	W-9 SHEET 1 OF 1
GA 9697	T. NORION DIRLING METHOD	HOLLOW STEM AUGER GROLING BLEV	410.1 WATER DEPTH 27.38 FT BG5
WEATHER	HOT DRILING COMPANY	ENVIRONMENTAL WEST EXPLORATION, INC. COLLAR ELEV.	412.71 DATE/THE 7-30-97/1002
TELP TO	DRUL RIG PORENU	TALE B-SU CHALLER R. STRUDOR STARTED 10.	THE / DATE COMPLETED 1335/7-28-97
LOCATION	COORDINATES H GIG, UZL // E	MATERIALS INVENTORY	
	vo 7 in 41n 29.10		THE REAL BARDED MOLE PLATE & AP CHIEFE
CASES THE	E LONGYEAR PYC SCH 40	SCREEN THE LONGTEAR PVC SCH 40	TALLATION METHOD TREMIE THROUGH AUGERS
JOHT THE	FLUSH THREAD W/ O-RINGS		ER PACK OTY. 3.5-100 LB. SACKS
CROUT OUA	NTTY NA	CONTRALIZZOUS	ER PACK TYPE 10-20 CSSI SELCA SAND
CROUT TYP	e <u>NA</u>	DIRLENG MUD TYPE NA	TALLATION METHOD TREMIE THROUGH AUGERS
	·····	<u> </u>	
DEV./0077	SOL/ROCK DESCRIPTION	WELL SKETCH	INSTALLATION NOTES
2		7.80 Sie cas	Diffied berehals unles 4mb 18 (7
È		The cosing	7/8-inch 0.D.) hellow stam sugers,
Ę			ot 10 and 36 feet bas. Autors were
-	GROUND SURFACE		villerum frem beruhale in conjunction
Ē	0.0-2.6 Loost, pole yellowish brown		fast of PVC screen was placed to
F 20	(10YR6/2), fine SAND, Uttle sill,		perk consistent of 3.5-100 b. spaks
k	moca grown, ary (Lolion)		of CSSI alles send. 5-50 B. secto
- · • •	2.6-12.8 Compact, pale without	Line de	placed and hydrated from the tep of
E	brown (10YRS/2), medium	anning anning	Fine sand pack to 2 feet bgs. A
F 6.0	subangular SAND, trace subrounded gravel, demo		was commethed in place and protective
E	(Honford Fm)	2-inch dia	around the manument. The manument
		MC Sch. 40	drilled with send and a usep hele
- 10.0			
Ē			
E 120			
ł			
14.0			
- 19.0			
E 18.0	Compact, modium-gray (NS)		
Ē	to pole yellowish brown		
20.0	SAND, trace to same medium		
F	te coarse subrounded gravel (Hanlard Fm)		
22.0			WELL DEVELOPMENT NOTES
Ē			The well was developed on 7-29-97
F 24.0 .			using a BK peatilive displacement
26.0	22.0-37.8		Gallens i Specific TP 1 -4
E	vellewich brown (10YR4/2),		conductivity
28.0	medium te caerae subangular SAND, Ellie sill, trace to little	27.38 7-30-97	10 <u>1230</u> 17.5 7.44
ŧ	tine subrounded grover, camp	2-inch dia. Sch. 40.	40 1220 17.1 7.44
50.0	(Ringeld Fm)	0.010 stot	100 1190 17.1 7.44
F			LEGEND
- 320 E			
£ 34.0			Neet cement
Ē			777777
36.0			3/8" Baroid sentenite chips
F		10.85 IZIS Internet and cap	The second se
E 38.0	Total depth 37.8 ft. below	37.8	10/20 CSSI silice sand
Ł	ground surface		
40.0			
F			E
- 42.0		F	F
t		FI	FI

RECEIVED

JAN 1 9 1975

S

P.O. Box 46G, Richland, Washington 99352

UNITED ENGINEERS & constructors inc.

WPPSS

January 15, 1976

UEWP-76-5020

File: 2.7

Mr. J. E. Woolsey, WNP 1/4 Site Manager Washington Public Power Supply System 3000 George Washington Way Richland, Washington 99352

Dear Mr. Woolsey:

WPPSS Nuclear Project No. 1 & 4 Well #1 & #2 Boring Logs

Attached are copies of Well #1 & #2 Boring Logs. These are being transmitted to you for your information.

Very truly yours,

Henry W. Phillips Resident Construction Manager

HWP:JCG:jc

in triplicate

cc: JE Woolsey, WPPSS JP Thomas, WPPSS EC Nagle, UE&C JR Schmieder, UE&C

ROUTING N P	184
	INFO
o I Walker	20
THOMAS, J. P.	
ORGAN, C. B.	
DAVIS, J. R.	
TRAPP, O. E.	
HOSLER, A. G.	
HOUDINS TH	
PROJ. ENG. (-1)	
PROJ. COM. RE	V cales
GOMINIT.	
CONTROL	alu
McLEOD, B. K.	1
FILES 1 & 4	<u> </u>
WOOLSEY, J. E.	

119' 7" 10" pipe 380-420 Dark Brown Bottom 10' torch 400-438 Blue clay Broken Basalt and Blue Clay 438-457 cut 457-465 Black sand and broken basalt (water)

Appendix B

Groundwater Sampling Reports for Phase I Evaluation of the 618-11 Burial Ground

GI	ROUNDWAT	ER SAM	PLE F	REPORT	
Project: SURV / 600 DOH		,		¶~£B082000	Page 1 of 3
Sampling FY Quarter: FEB/2000	QC Type:	NA		Calculations:	
Well Number: 699-10-E12	A#: 506	5		42/4 =	+ purge
Total Purge Volume (gal):	Purge Flow F	late (gal/min):	6	'- ' Gee	ments
Pump Type: Electric	Time on: Water: 1340 1341	Purge: Samp.: 1248 1301	Ott: 1318		
· · · · · · · · · · · · · · · · · · ·	SAN	APLES COLLEC	TED		
B0XJV8 300 Analytical	Services	COC No .: YO	0-001-99		
パインション・ション・ション・ション・ション・ション・ション・ション・ション・ション	HCI to pH <2) orporated	COC No.: YO	0-001-101		•
7 ,375 040 1;1000mL;P 906.0_H3_LSC: 1;20mL;P Activity Scan (N B0XJY8 (Filtered) Quanterra St.	Tritium (1) (None) one) Louis	COC No.: YO	0-001-5		
+ 31 80 10 1;500mL;G/P 6010_METALS_	_ICP: List-1 (19) (HNO3 to pH <	2)			

Total No. Bottles: 2	5	Cont	ainment Cod	le: 7	<i>SO</i>		Collecto	n Ku	YO	JNG	
			F	IELD MEA	SUREME	NTS					
Water Level (TOC)	72.85	TOP	Drawdown	пос):73	.11	Oil Sheen	Yes		No	X	
Prev. oH: N/A	-	CASE	Prev. DTW	אזרא:		E-Tape No.:	5	25			
Time	1244	1248	1252	1300	1318	/		·			
рН	7,45	7.40	7.40	2.40	7.38	7					
Temp. (°C)	17.2	17.6	17.6	17.4	17.7					ŀ	
Cond. (us/cm)	595	606	608	409	408			\ ^ج ر ,			•
Turb. (NTU)	52.2	37.3	20,2	4.61	4.13				100		
D. O. (ma/L)									\sum	R.	
										Y	
				×							
			F	TELD OB	SERVATIO	NS					
Weather:	ERLAST	30 -	35°F								
Field Comments:		· · · · · · · · · · · · · · · · · · ·									
				<u> </u>							
POST	Chect	YSI	CAMP	= 4	149		STD	- 445	-ur	,	
Pre Check:	3.09	<u>AT 15.</u> U AT	1501		Post Chec		L//	AT	5.1	-15-0	7
Comments: Neer	river		<u>// (</u>		L		<u> </u>	<u>, C. 7</u>	~/_	/ 5	<u> </u>
Col	let (1) 4L	non pres	erved jog	t of wat	er for b	rept. of	Ecology.	Murk	date,	time +	•
. wel	I number	on cont	niner.	No Col	required						
Well capped and ic	cked: L	es 🛛 No	\bigwedge	Lopp	ook/Pg#: L	vm-SA	WS 1	433	PA	MEJ	<u>!</u>
Samples Surveyed	for Gamma F	adiation by R	T ^{s:} A	res XI N	0			FÉB	08	2000	
Data Recorded by:	BR FOX	(HF3)	++A	\rightarrow	· · // · /		~ 7			<u> </u>	
Data Checked by:	E) Print and slope	HAWORTH	Conserver	-9/1	the An	molth		<u> </u>	9/00	»	

NO DUMP

	G	ROU	NDW/	ATER	SÁM	PLE	REPO	RT		İ
Project: SURV / 60	0		1.24				Date: 2 -	7-00	Page 1	lof 3
Sampling FY Quarte	r. FEB/2000		QC Type:	• .	NA		Calculations			
Well Number: 699-1	2-4D		A#: 8	252	- <u>/</u>		10	11		
Total Purge Volume	^{(gal):} 2	82_	Purge Flo	w Rate (gal/r	^{nin):} 6 9	rm	100			
Pump Type: Elect	~	Time or 1254	n: Water: 7 / 300	Purge:	Samp.:	0#: 1347				
			S	AMPLES	COLLECT	ED		· · ·		
B0XJV6 (Filtered)	Quanterra S	t Louis		с н. с. С.	OC No.: Y00	-001-21				
1;500mL;G/P B0XJV7	Quanterra S	5_ICP: List-1 (t. Louis	19) (HNU3 10 F	₩2) 7; C	OC No.: Y00	-001-21		To	tal A	ctivit
3;40mL;aGs* 8260_VOA_GCMS: List-2 (55) (HCI or H2SO4 to pH <2 Cool 4C) 91530 &0 1;500mL;P 300.0_ANIONS_IC: List-1 (5) (Cool 4C) 9293010 1;500mL;G/P 310.1_ALKALINITY: Alkalinity (1) (Cool 4C) 1/320 +0 1;20mL;P Activity Scan (None) 4:1000mL;aG Semi-VOA - 8270A (App IX Add-On) (Tributyl phosphate) (Cool 4C) \$2(6.7010)										
								-)		
									DTO	
Total No. Bottles: 25	:	Cont	ainment Cor	lo-	220		Collect	~~~	n.i o	
1011110. 201200. 20			F	ELD MEA	SUREME	NTS				
Water Level (TOC):	57 50		Drawdown	(TOC): <	2.12	Oil Sheer	Yes		No 🖵	
Prev. pH:	<u> </u>	NA	Prev. DTW	NR	<i></i>	E-Tape N	0.:			
Time	01510	1312	1716	1719	1325	1330	1235	IRVE	Ν	T
рН	7.94	7.94	2.95	7.94	7.55	2.55	7.94	2.94	\uparrow	1
Temp. (°C)	17.1	17.1	17.1	17.1	12.1	17.1	17.1	172	1×10^{-1}	
Cond. (us/cm)	413	412	412	412	412	412	413	413		
Turb. (NTU)	25,3	20.7	17.8	12.0	11.0	10.2	10.6	5.77		EH ,,
D. O. (ma/L)										2/8/00
	<u> </u>		L				LX.	l		Ŀ
			F	FIELD OB	SERVATIO	DNS				
Weather:	Overca	SFIC	.(d							
	Scott 1	Anthonica From D	l the p	Teologia	be chan	get fre	4 167 to	III qui	lons	
	Edans	+ Funes	Record	From	General	tor Du	et wind	SLIFF	while s	mplize .
Pre Check:	H= 7.01	5/13°	<u>Carlin</u>	= 440 = 445	Post Cried	к. р <u>н 7.1</u> сто	2/14	<u> </u>	<u>いり=43'</u> カルーリー	2
Comments: At Bu	rial Ground/R	equires exter	ded purge		· I		. <u></u>		(10) = 1 12	
Moli concod and in	skad: DV			Inch	ook/Po# •	<u> </u>		-11-5		
Samples Surveyed	for Gamma F	adiation by F		Yes DN	0 0	wr	- 5/16	2 1-1 25	p3.80	
Data Recorded by:	Print and sinn a			<u> </u>	Nun	11	-ik i		·7 - 42	
Data Checked by:	Print and sion r	X PAWORT	H (WANNA)	1 - 4	(hatt)	Han	attz .		8/00	

						·		ſ	Na	Dumo
	' C	ROU		TER	SAM				110 .	<u>ory</u>
Project: SURV / 6	00	nou		41611	SAW	لا حياجا آ	Date: -7	7	Bano	1 of 2
Sampling FY Quart	er: FEB/2000)	QC Type:	NA			Calculations	:	Fage	A25
Well Number: 699-	-13-1A		A#:	VONF			Portab	!/e	-990	- 2.8.00
Total Purge Volume	(gal): /	46	Purge Flo	w Rate (gal/r	$\frac{1}{2}$		lacut	Fac	100	gullons
Pump Type:		Time o	n: Water:	Purge:	Samp.:	Off:	Grina	,		
6/unt	use 14 T	2 09/	<u>5 07/3</u> S	AMPLES	COLLECT	10311 ED		·· · ····		J
BOXJT7	300 Analytic	al Services		ç	OC No.: Y00	-001-98		_		-
1;4000mL;P B0XJW5 (Filtered	Technetium-9 . Quanterra S	9 (HCl to pH < St. Louis	2) \$36	2010	DC No.: Y00	-001-29		707	tal Ac	stivity
1;500mL;G/P B0XJW6	Ouanterra S	S_ICP: List-1 (St. Louis	19) (HNO3 to p	₩@) 911 0	72040 DC No.: YOO	-001-29				•
3;40mL;aGs* 1;500mL;P 1;500mL;G/P 1;20mL;P 4;1000mL;aG	8260_VOA_G 300.0_ANION 310.1_ALKAL Activity Scan Semi-VOA - 8	CMS: List-2 (5 IS_IC: List-1 (5 INITY: Alkalini (None) ~/A 3270A (App IX)	5) (HCl or H2S) (Cool 4C) 1 ly (1) (Cool 4C) - : Semi-VOA 1	04 to pH <2 C 9 Z 9 3 0 / (9 Z 9 3 0 / (9 Z 9 3) 8270A (App IX	ool 4C) グリン ン ターク Add-On) {Tribe	153060 Ityl phosphate)	(Cool 4C) 🎸	265010		
Total No. Bottles: 2	5	Cont	ainment Cod	10: 547			Collect	or:	57.0	
			F	IELD MEA	SUREME	NTS		<u>.</u>	-14.1-5	
Water Level (TOC)	: 57.3	6 TUC	Drawdown	(TOC):	·····	Oil Sheen	Ýes		No 💽	
Prev. pH:	P	A	Prev. DTW	: NA		E-Tape No	.: 99	-5	<u></u>	
Time	0924	0930	0935	0740	0945	0957	1002	1008	1010	1012
вН	7.43	7.63	7.81	7.57	7.42	7.95	7.97	8.08	8.07	8.09
Temp. (°C)	13.5	13.2	13.0	12.8	12.7	17.6	16.3	(74	17.4	17.4
Cond. (us/cm)	286	288	281	292	274	255	300	300	302	307
Turb. (NTU)	8.94	7.80	6.14	4.42	4.28	2.87	2.99	1.42	1.77	1.85-
D. O. (ma/L)			 							
						· · · ·			<u> </u>	x
		1	lF		SERVATIO	L	<u> </u>	I	1	
Weather	Dierch	st 3R	a in inc	41 1	NOW	N 1)			<u> </u>	
Field Comments:	USEIN	16 GAG	NEUSED	PUMP	1473	•				
	SAN REAM	<u>NG FRO</u> 16 Cluico	<u>m 0924</u> f. s:ta	1-70957	10 april	<u>sar cifi</u> bu san a	br sink	Value	wa Pury	a
·										
Pre Check:	1= 7.0 / wu= 2.0.	115	CUND STND=	445	Post Chec	k <u>- 91</u>	1= 7.14/ 1)=7.04	13° con	<u>א בוי (י)</u> באץ בלוט	<u> </u>
Comments: Energ	BY NW	o at i	86.5 7	F./.	-		/			
Well canned and locked: Ves. P. No.										
Samples Surveyed	скес: Ц Y I for Gamma R	es 🖭 No ladiation by F	RPTs: 🗌 '	Yes N	∞w⊮g#: o	WM	- SML -	- H25	•	
Data Recorded hur		J.H. N	EER	1. H. N	er-			2-8-	00	
Data Checked hv	Print and sign ((1010) · · · · · · · · · · · · · · · · · · ·	Glliet	Kaun	th	- 1	Date 2/9	100	
	Print and sign (ame					1	Date /		

	GROU	NDWATER	SAMPLE	REPORT	
Project: SURV / 60	00			Date: 2-8-00	Page 1 of 3
Sampling FY Quarter	ar. FEB/2000	QC Туре: 15	A-EBLIZ3	Calculations:	Dunllungi
Well Number: 699-1	13-1B / EBL 123	A#: NONE		1015	2=50-
Total Purge Volume	(gal): 130	Purge Flow Rate (gal/m	in): 2	Portable	1
Pump Type:	Time on	: Water: Purge: 1 1105 1155	Samp.: Off: 1157 1210	Grund	205
		SAMPLES C	OLLECTED		
B0XJX4 (Filtered)	Quanterra St. Louis	co	C No.: Y00-001-35	225	TOTAL ACTIVITY
1;500mL;G/P B0XJX5	6010_METALS_ICP: List-1 (1 Quanterra St. Louis	9)(HNO310pH≪) 73 CO	8-070 C No.: Y00-001-35	2.7-	REG. TRUCK
1;20mL;P	Activity Scan (None)	+			
1;500mL;G/P	310.1_ALKALINITY: Alkalinity	(1)(Cool 4C) 9793	010		
1;500mL;P	300.0_ANIONS_IC: List-1 (5)	(Cool 4C) 92930	10		

Total No. Bottles: 15	5	Con	tainment Coo	ie: 1087	1		Collect	or:	R.T S	ICKLE
			F	IELD MEA	SUREME	NTS			·	
Water Level (TOC):	54.85	TUC	Drawdown	(TOC):		Oil Sheen	Yes		No 🕑	
Prev. pH:	NA		Prev. DTW	i: N	IA .	E-Tape No	. 9	2-5		
Time	1108	1115	1125	1135	1145	1155	1207	\sum		
рH	8.15	8:21	8.22	8.23	8-23	8.23	8.24			
Temp. (°C)	16.0	17.0.	17.0	17.1	17.1	17.1	16.8		· · · ·	
Cond. (us/cm)	288	287	289	289	289	289	288		EĦ	/
Turb. (NTU)	474	30.9	21.5	18.4	19.0	12.2	36.3		Z/	60
D. O. (ma/L)									· · ×	
				· · · · · · · · · · · · · · · · · · ·		·				
						\times			<u> </u>	
•			ł	FIELD OB	SERVATIO	DNS				
Weather:	Cold fl	ning 3	9°F N	(1						·
Field Comments: _	NELL	25 L	OCATET)	+N F	Sldg 4	0 Fanca	line +	- E	Con e cast	20
	while s	- pline	<u></u>	100 6	(1,2,00)		TI ESERT	Front		
					Deat Chas	1. A				· · · ·
Pre Check:	1- 7. 14/	12-	(ev) =	<u>418</u> 445	FOSLCING	K. 1 <u>4 + . 1</u> STAL STAL	3/13	(~ · · · · · ·	1 440 1 445	
Comments: Energy	NW NW	<i>y</i>	5110 -		1		<i>f</i> · <i>s</i>		<u>- 10</u>	
No	HPT regu	irch per	Suff .	Contex.	PLACE	pump	nt i	92.5 Ħ	, 	
						<u> </u>			-	•
Well capped and lo	cked: 🛛 Ye	es 🗹 No			ook/Pg#:	wm-	SML - 1	425 pg	81	
Samples Surveyed	tor Gamma H		FFR	THES LINE N	U					
Data Recorded by:	Print and sign n	WILL HALL	BTH (WALL	<u>i II Nel</u>			Z	Dato 7		
Data Checked by:	Print and sign n	8/10		<u> </u>	hat A	udth		Dale /	7/00	

Project: SURV / 60	00						Date:	Page 1 of 2	1
Sampling FY Quarte	r: FEB/2000	1	QC Type:	Nit			Calculations:	Fade for 3	┥
Well Number: 699-	13-1C		A#:	Vit	<u> </u>		7		
Total Purge Volume	(gal): 4500	,	Purge Flow	Rate (gal/mi	n): 50	? :			
Pump Type:	àt .	Time on: 1220	Water:	Purge:	Samp.:	0#:	2014		
		<u> </u>	SA	MPLES C	OLLEC	TED	·	······································	-
B0XJX8 (Filtered)	Quanterra St. Lo	uis		CO	C No.: Y0	0-001-41		TOTAL ACTIVITY	
1;500mL;G/P B0XJX9	6010_METALS_ICI Quanterra St. Lo	P: List-1 (19) uis	(HNO3 to pH	 2) 7 ∞ 	318-0 C No.: YO	1 <i>0</i> 0-001-41		-HPT- -REG. TRUCK	R23 2-7-1
1;20mL;P 1;500mL;G/P 1;500mL;P	Activity Scan (None 310.1_ALKALINITY 300.0_ANIONS_IC)) , , , , , , , /: Alkalinity (1 : List-1 (5) (C	i) (Cool 4C) cool 4C)	929 <u>3</u> 929	2010			• •	

Total No. Bottles: 15	i .	Con	tainment Cod	le: ρ_0	人前的		Collect	or:	n.i Si	CKLE
			FI	ELD MEA	SUREME	NTS				
Water Level (TOC):	NUDA	TA	Drawdown	(TOC): No	DATA	Oil Sheen	Yes		No 🗗	
Prev. pH:	^)A	Prev. DTW	: N	A	E-Tape No.	: 97	-3-		
Time	1230	1235	1239	1244	1250	1257	1310			
На	9.16	9.13	8.65	8.48	8.46	8.44	7.19			
Temp. (°C)	17.7	18.6	20.5	20.6	20.4	20.8	20.6			
Cond. (us/cm)	512	1169	338	332	332	330	332		<u>N</u>	
Turb. (NTU)	21.1		117.0	92.7	43.6	30.3	18:2		E#	1
D. O. (ma/L)									Ŕ	/a/
-				-						X">
			F	IELD OB	SERVATIC	NS				
Weather:C	old 3 c	Inly 3	28° F 1	NO WIN	<u>)</u>					•
Field Comments:	N	UDEPTI TI A.	1 TO W	ATEN A	NU AU	ESS PO	Tarte	Scitt_	Says +	-1)
	unf RA	TE 15 9	PM.	SA-1		rum Pr	NC-PV	- 434	VALVE	0
Pre Check:	r = 7.13	1130 0	(D) 1 = 1	0 VY5	Post Chec	c <u> 11.</u>	· 7.08	<u>/13° </u>	Con S S	141
Comments: Energy	v = f. c	·///s=	571015	<u></u>	L		- 7.01/	/3		
No	purge tru	ck or H	PT requi	ich per	Scott	Contex				I
								· ·		
Well capped and locked: Yes No Logbook/Pg#: IVM-SML-HLS JEAL										
Samples Surveyed f	Samples Surveyed for Gamma Hadration by HPIS: LI Yes LI NO									
Data Recorded by:	Print and sinn r		icn /	H.N.	in the second		ب م	2-8 Date - 2	~~~~	
Data Checked by:	Data Checked by: EK HAWORTH (WHANA helligt Atunolly 2/9/00									
									·····	

								NIC		N/D-
	G	ROUI		TER	SAM			DT		
Project: SURV / 60	0 DOH				OAIVI		Date:		Page 1	of E
Sampling FY Quarter	r: FEB/2000		QC Type:	Nucles	in a	m-	Calculations	4-CO	Son la v	
Well Number: 699-1	3-3A / EB	L121	A#: R	-up	2-	6-2000	100 2	= 30	MIN	
Total Purge Volume	(gal):		Purge Flo	w Rate (gal/i	nin): 7		-57		•	
Pump Type:	/X 1	Time or	: Water:	Purge:	Samp.:	Off:				
Gim	fuse	103	2 103	3 1123	<u>//25-</u>	1205		(123)		
B0XJT2 (Filtered)	Quanterra St	. Louis		C	OC No.: YOO	-001-49			TOTAL	ACTIVITY
1;500mL;G/P B0XJT3	6010_METALS Quanterra Si	S_ICP: List-1 (1 L. Louis	19) (HNO3 to p	H≪2) C	9 1820 OC No.: Y00	40 -001-49			REG.	TRUCK
3;40mL;aGs* 8260_VOA_GCMS: List-2 (55) (HCl or H2SO4 to pH <2 Cool 4C) 9/5 ⁻³ 3060 1;500mL;P 300.0_ANIONS_IC: List-1 (5) (Cool 4C) 9/5 ² 2040 1;500mL;G/P 310.1_ALKALINITY: Alkalinity (1) (Cool 4C) 9/5 ² 2040 1;20mL;P Activity Scan (None) A 4;1000mL;aG Semi-VOA - 8270A (App IX): Semi-VOA - 8270A (App IX Add-On) (Tributyl phosphate) (Cool 4C) 52650 (O B0XJT5 TMA/RECRA COC No.: Y00-001-51										
1;20mL;P 1;250mL;P	Activity Scan (Tritium - H3 (N	None) ~/~ ione) L/	2321106	60			•		DTO	
Total No. Bottles: 52		Cont	ainment Cod	le:	255		Collect	or:	n.i S	IUKLE
			FI	ELD MEA	SUREME	NTS				
Water Level (TOC):	61.3	6 TOL	Drawdown	(TOC): A	O DATA	Oil Sheer	n Yes		No 🕑	
Prev. pH:	N	'A	Prev. DTW	:	YA-	E-Tape N	lo.: 9	9-5		
Time	1038	1045	1050	1055	1100	1105	1110	115	1120	1123
pH	7.45	7.65	7.67	7.69	7.68	7.69	7.70	7.70	7.69	7.70
Temp. (°C)	16.6	16.8	16.9	17.0	17.0	17.0	16.9	17.0	17.0	17.1
Cond. (us/cm)	602	629	633	610	621	621	420	629	617	624
Turb. (NTU)	9.22	2.15	8.02	16.8	15.0	8.94	8.71	8.17	5-86	5.19
D. O. (ma/L)	· .						<u></u>	ļ	ļ	
	<u>.</u>									*
	· ·		F	IELD OB	SERVATIO	ONS			•	
Weather: Field Comments:	ercast Purpo	52°F	Now at at a	(INI)						
·			•							······
Pre Check:	1= 7.0 NO= 2.0	1250	CONI) STND=	445	Post Chec	k: <u>ρ</u> μ	17.05/3 NIZ.04/1	<u> </u>	D 440	2 5
Comments: At Bur	ial Ground (Q	C WITH THI	S WELL: DL	P/SPLIT/EE	L121/EBL12	2/ FTB322)				
			•		•					•
Well capped and loc	ked: CY	s 🗋 No		/ Logb	ook/Pg#:	WM	- SML	HZ5,	2480	
Samples Surveyed	for Gamma Ri	adiation by F		Yes 🗆 N	lo					`
Data Recorded by:	Print and sign n	U.FI. IN	<u> </u>	<u>[. н. л.</u>	er .	.#	· ·	2-7 Date	-00,	
Data Checked by:	EX Print and size a	Panoath (((ASTRACION /	_4//	<u>at fan</u>	dh.	•	Date	18/00	

GROU	NDWATER SAMPLE	REPORT
Project: SURV / 600		DEEB 0 8 2000 Page 1 of 3
Sampling FY Quarter: FEB/2000	QC Type: NA	Calculations:
Well Number: 699-15-15B	A#: \$318	- 70 61 12 - 871
Total Purge Volume (gal): 161	Purge Flow Rate (gal/min):	
Pump Type: Time or	n: Water: Purge: Samp.: Off: 9 0959 1008 1013 1022	9 MIN. PURGE
	SAMPLES COLLECTED	· · · · · · · · · · · · · · · · · · ·
B0XK18 (Filtered) Quanterra St. Louis	COC No.: Y00-001-57	PIS TOTAL ACTIVITY
.3/ 8010 1;500mL;G/P 6010_METALS_ICP: List-1 (B0XK19 Quanterra St. Louis	19) (HNO3 to pH <2) COC No.: Y00-001-57	±-1-₽0 REG. TRUCK
1:20mL;P Activity Scan (None) /:500mL;G/P 310.1_ALKALINITY: Alkalinin /:500mL;P 300.0_ANIONS_IC: List-1 (5)	y (1) (Cool 4C)) (Cool 4C)	

Prov pH-	Curt	Prov DTW:	E-Tana No -	K 2	~		
Water Level (TOC): 252.31	TOP	Drawdown (TOC): 254.10	7 Oil Sheen	Yes		No	M
		FIELD MEASUREM	ENTS				
Total No. Bottles: 13	Con	tainment Code: NOVE	•	Collector	K.	J. YO	UNG
	,					•	
		*					

Water Level (TOC)	: 252.31	TOP	Drawdown	(TOC): 2	54.19	Oil Sheen	Yes		No D	3
Prev. DH: N/A		CHIE	Prev. DTW	ב (ע:		E-Tape No.	: 5;	-5		
Time	1002	1005	1008	1012	1022					
DH	8.14	8.01	8.02	7.98	7.92					
Temp. (°C)	18.5	18.7	18.8	15.9	18.4					
Cond. (us/cm)	478	481	480	481	483			2		
Turb. (NTU)	12.8	11.8	5,06	3,44	2.35			ď		
D. O. (ma/L)									2	
									K K	
				×						X
			F	IELD OB	SERVATIO	ONS				$\overline{}$
Field Comments:	ihecta	Ver d	(m) =	447			577) =	441	40	
Pre Check:	,00 €	10.00	AT 2	501	Post Chec	к <u>-</u> ,	07 A	T 15	,9 %	
5102	7,00	HT 25	•		1	510=	- 7.04	AT	1502	<u> </u>
Comments: Upgr No	Comments: Upgradient No HPT required per Scott Contry									
Well capped and locked: Ves INO Logbook/Pg#: wm - SHWS H33, PAGE 2										
Samples Surveyed Data Recorded by:	I for Gamma R	adiation by F		Yes ZN	•			FE	B 0 8	2000
Data Checked by:	Print and sign n	SK HAWOR	TH (WISSAD)	<u>_11</u>	ast fr	molt		Date	7 <i>9/ 0</i>	<u>ð </u>

Project: SURV / 6	00 DOH						DETER D	7 2000	Page 1 c	of 3
Sampling FY Quart	er: FEB/2000		QC Type: UNF 00			00	Calculations	:	······	
Well Number: 699	-17-5		A#: 50.23 2-7			<u>}</u>	sal	88	6=1	4.6
Total Purge Volume	(gal): HPP	<i>WY</i>	Purge Flo	w Rate (gal/r	nin);	. <	210	,	- 15 n	NIN
Pump Type:	TRIL	Time or 1051	n: Water:	Purge:	Samp.: 103	0#	(omr	<i>lents</i>	٦٩	ng
BOYK13 (Eiltered)	Ouenterre S	t Louis	S	AMPLES	COLLECT	EDEA.	Fox 2	7-00		
10 1.500ml .G/P	6010 METAL	5 ICP: List-1 (*	19) (HNO3 to c	ун <i>о</i> р	00110100	-001-00	. (0+01	Hetto	iΗį
B0XK14	Quanterra S	t. Louis		а С	OC No.: Y00	-001-63		REG -	BUCK	5
1;20mL;P	Activity Scan (_		NUCK	
0~;1;500mL;P	300.0_ANION	S_IC: List-1 (5)	(Cool 4C)	•			punp	070 2	NO TH	20
				•		4	WAIGL	10 24	MACE	
							Flow	KATE	- 5	6
				•			per	MINI	へ下そ い 19	23
Total No. Bottles: 1	3	Cont	ainment Coc	e Inco			S #***** Collect	or Kul.	YOUNC	
			F	IELD MEA	SUREME	NTS	Pin	J off	122	<u>-</u>
Water Level (TOC)	: 41. 04	-70	Drawdown	(TOC): / . /	87	Oil Shee	n Yes		No Z	<u> </u>
Prev. pH: Mar	14101	TASE .	Prev. DTW: J/A E-Tar			E-Tape I	No.: 57	<u> </u>		
Time	12/3	1216	1219	1222	1231				Ī	
рН	8.95	8.78	8.69	8.61	8.32					
Temp. (°C)	14.0	17.3	12.6	12.B	12.10		K			
Cond. (us/cm)	356	398	412	425	463					
Turb. (NTU)	14.8	14.6	12.6	10.6	10.9			1		
D. O. (ma/L)								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	No.	
	-				1		1			-
				K						$\overline{\langle \mathbf{T} \rangle}$
		A	F	IELD OB	SERVATIO	ONS			•	1
Weather:	ALT OU	GREAST	- 35.	- 40°F	-			······································	······	
Field Comments:	Purge	<u>1010</u>	ME	HAS	BEEN	REI	uctil 2	70	EB Deci	
REGUE	57 <u>14</u>	TER L	EIL I	LECUVE	<u> </u>	HET	STALLE	LEAN	N DILES	ANG
SAMP	IE WE	= 11, 1	est Che	ct ysi	CONDE	444	570=	4454	r 1	
Pre Check:	.08 HT	15.6	+ <u>(</u> r+1		Post Chec	*:	6.97	AT 17	· 6 ° (15°(
Comments: Lino	7.07	rs poorly	Pum	DAT	NORANA	LC	RATE C	6 CA1	Tons PE	en
j.M	-uTE	PER '	Scott	LONIE	y pla	GHA	\overline{T}	Loss w	ATER	70
<u> </u>	MFACE	AT 10	55 5	hut	Dout	p 1	ECOVER	L WE	<u>'/</u>	
Well capped and l	ocked:	es 🗆 No		Logb	ook/Pg#:	wm-	SAWS 1	4 33 ,	PAGE 1	<u> </u>
Samples Surveyed	I for Gamma R	adiation by F		Yes KLN	0	•		^	5 6000	
		1HP31 \\		1				CCD N	7 7000	

	GROU	INDWATER SAMPL	E REPORT
Project: SURV	/ 600	······································	Date: EED 0 7 2000 Page 1 of 3
Sampling FY Qu	arter: FEB/2000	QC Type TB32 30A	Calculations:
Well Number: 6	99-21-6/FTB 323	A#: 8438	2012.5 = 8 MIN
Total Purge Volu	ume (gal): 56	Purge Flow Rate (gal/min): 2.5	purge
Pump Type:	ELTRIL D9.	on: Water: Purge: Samp.: Off: 55 0955 1003 1007 10	16
,		SAMPLES COLLECTED	
B0XK21 (Filter	ed) Quanterra St. Louis	COC No.: Y00-001-	73 Total Hativity
1;500mL;G B0XK22	/P 6010_METALS_ICP: List-1 Quanterra St. Louis	(19) (HNO3 to pH <2) COC No.: Y00-001-	73 REG TRUCK
1;20mL;P	Activity Scan (None) /P 310.1_ALKALINITY: Alkali	nity (1) (Cool 4C)	

. 318010 (1;500mL;G/P 310.1_ALKALINITY: Alkalinity (1) (Cool 31,500mL;P 300.0_ANIONS_IC: List-1 (5) (Cool 4C)

Total No. Bottles:	13	Cont	ainment Coc	ie: 464	1		Collect	or: K.J.	YOUNG	3	
			F		SUREME		\				
Water Level (TOC	1:42.66	TOP	Drawdown	(TOC): N	DATA	A Oil Sheen Yes No 🕅					
Prev. pH:, v, A		GASE	Prev. DTW	יי יא <i>א</i> איי		E-Tabe No.: 525					
Time	0958	1003	1006	1016							
Hα	7.96	7.95	8.00	7.84						1.	
Temp. (°C)	16.7	17.0	17.1	12.0							
Cond. (us/cm)	332	331	334	349			\backslash				
Turb. (NTU)	4.20	3.49	3.40	4.43			1	2			
D. O. (ma/L)								00	·	2	
									lin		
### <u></u>			*					[
			F	IELD OB	SERVATIC	NS		· · · · · · ·		· ·	
Weather:	sht orti	CAST	35-110	oF							
Field Comments:	WATER	L OAN	ME U	P FA	T, T	HEN S	TOW 1	DOWN	70 2	.5	
GATIONS	PER	MINU	+ <u>F</u> ,	pum	<u>s see</u>	MED	70	Surge	<u>.</u>		
POST	Chect	VSI COIV	1=	44	8	······	570=	4450	25		
Pre Check:	7.00	÷ 10.00	AT 2	.5 * (Post Chec	k _ 7	08	47 15.	6.0		
	= 7:00	ATZS	- 0 (L	\$7	のミニ	2.04	AT 150	(
Comments: Upg	radient			•			•				
2											
Well capped and	locked: TALY	as 🗌 🗖		Loop	ook/Pa#:			477	j).	~~~ I	
Samples Surveye	d for Gamma R	adiation by F		Yes KN	o	um - s	AUS	77 75	1 12	901	
Data Recorded by	RRF	DX (RPS)	≤ 1	\triangle	1			F	EB 0 7 3	2000	
Data Checked by	Print and sign n	ANORTH	(performant	- 4/1	it ba	noth		Date	18/00		
	Print and sign of	ame						Date			

roject: SUHV / 600						Date: B U 8 2000	Page 1 of 2
ampling FY Quarter: FEB/2000		QC Type:		NA		Calculations:	79
ell Number: 699-8-17		A#: 53	37			H7 160 /	5 = 52
otal Purge Volume (gal): 20	0	Purge Flow	Rate (gal/m	nin):	5		PURAE
ump Type: ElECTAIL	Time on: 1049	Water: 1050	Purge: // 2 2	Samp.: 1123	Off: 1/30		

1182

 1;500mL;G/P
 6010_METALS_ICP: List-1 (19) (HNO3 to pH <2)</th>

 B0XK11
 Quanterra St. Louis
 Activity Scan (None) 310.1_ALKALINITY: Alkalinity (1) (Cool 4C) 300.0_ANIONS_IC: List-1 (5) (Cool 4C)

COC No.: Y00-001-77

1;20mL;P 1;500mL;G/P 1;500mL;P

Total No. Bottles:	12	Con	tainment Co	le: 70	0		Collecto	ر السکا	. YOU	NG
			F	IELD MEA	SUREME	NTS				
Water Level (TOC	126.64	TIP	Drawdown	(TOC): N 2	DATA	Oil Sheen	Yes		No 🗹	1
Prev. DH: N/A		CHSE	Prev. DTV	I: NIA		E-Tape No.: 525				
Time	1053	1105	1115	1122	1130					
pH .	8.34	8.16	8.17	8.19	8.19					
Temp. (°C)	12.8	18.0	18.1	18.1	17.7					
Cond. (us/cm)	402	422	424	426	428			`	•	
Turb. (NTU)	1.82	3.27	1.41	1.47	1.71			je		1
D. O. (ma/L)									00	1
									X	m
				X						K
· ·				FIELD OBS	SERVATIO	DNS				1
Weather: DVE	INCAST	RAIN	25 -	21 'F						
Field Comments:	<u> </u>									
	· · · · · · · · · · · · · · · · · · ·		<u> </u>				· · · · ·			
PUST	Chelt	451 G	and =	44	· ?		570 =	445	45	
Pre Check:	7.07	AT 1	5.91	<u> </u>	Post Chec	* 7.	09 A	r 15	1 *(- 44
	$D = -\frac{1}{2}$	9 AT	150(<u>l</u>	570	- 7	04 4	17 15	•(
Comments: Upg	purge true	ck reev	red per	Scott (ler.					•
	·	0			\prec				· · · · ·	
Well capped and	locked: YY	es 🗆 No			xx/Pg#:	wm -	SAW S	H 33	1	PAGE 2
Samples Surveye	d for Gamma R	adiation by F		Yest 54-N	°/			FEB	0 8 201	າດ
Data Recorded by	y: Print and sign r		- <i>\</i>	VĢ				210	+ +	·
Data Checked by	Distant class	EK HAWOR	TH (WMINW	<u> </u>	lut fi	un dit		<i>∂</i> /	19/00	

.

	G	ROU	NDW	ATER	SAM	PLE	REPO	RT		
Project: SITEWID							Date: 2-9	-00	Page	of 2
Sampling FY Quart	er: FEB/2000		QC Type:		NA		Calculations			
Well Number: ENV	V-MW1		A#:	mÉ			10 mii	6-2	- gallons-	-
Total Purge Volume	e (gal): 5.7	= 22	Purge Flo	w Rate (gal/r	nin):				12.11	
Pump Type:	°℃	Time o 115	n: Water:	Purge:	Samp.: 1221	o#: 1232				
			S	AMPLES	COLLECT	ED	·			
BOXK75	Quanterra In	corporated	AN	C	OC No.: Y00	-001-140			TOTAL	ACTIVITY
1:1000mL:P	906.0_H3_LS	C: Tritium (1) (None)	923	36020			2-8-2	REG. TI	RUCK
BOXK87 (Futered)	Quanterra S				UC NO.: YUU	-001-164		10		
1;500mL;G/P B0XK99	6010_METAL	5_ICP: List-1 (t. Louis	19) (HNO3 to p	9H⊲) 7 Ci	718207 OC No.: YOC	/ <i>0</i>)-001-164				
1;20mL;P	Activity Scan (None)								
1;500mL;G/P 1;500mL;P	310.1_ALKAL 300.0_ANION	uvu r: Alkalini S_IC: List-1 (5	ty (1) (Cool 4C)) (Cool 4C)	- 71Y	12040					
-				-717						
1.	2									
Total No. Bottles: 7	5.7	Cont	ainment Cod	le: 116T	LIGEN		Collect	or	B.T SH	CKLE
	-		F	ELD MEA	SUREME	NTS				
Water Level (TOC)	: 63.23	TUC	Drawdown	(TOC):		Oil Shee	n Yes		No 🗗	
Prev. pH:	N	A	Prev. DTW	: NA		E-Tape N	10.: 99	- 5		
Time	1213	1216	1219	1231	\square		1.			·
рН	7.15	7.12	7.13	7.18		\smallsetminus	1			
Temp. (°C)	16.3	16.3	16.4	16.7			$\overline{\mathbf{N}}$			T
Cond. (us/cm)	752	762	827	790	1		\uparrow	RH.		
Turb. (NTU)	24.2	19.2	16.0	16.6		1			1.	1
D. O. (ma/L)	7.15	6.74	6.39	6.22		1				
					1	†		1		\sim
			×		1	†				1
		I		IELD OB	SERVATIO	ONS	_!	L		<u>i.</u>
	10.15					-				
Field Commenter		PUMP	SET	AT 68	fec +					
	AUNFOSE	PUMF	#7							
·							•			
	<u></u>	1 - 4	(, () =		Post Char	k				177
Pre Check:	11= 7.10	112	())	438		<u></u>	$- \frac{7.11}{100}$	1,1-4	$(w_i) = $	<u>225</u>
Comments Ener	The Northwoot		51.00-				7.07	<u>, /></u>	5/14/7-2	172
	Al constants				•					
i	-			=	<u>.</u>	. •	· . ·			
Well capped and k	ocked: DY	es 🗌 No	•	Logb	ook/Pg#:	WM-	SMCHIS	- AC 85		
Samples Surveyed	l for Gamma R	adiation by F	RPTs:	Yes N	lo –			1.7.35	·····	
Data Recorded by		J.H. 1	NEER	O.H.N	en			2-9	i-a ,	
Data Objection 1	Print and sign p	2 HAWORT	H (WMN:Y &	611	riff.	Hanal	T-	Date 2	lintre	
Data Checked by:	Print and sine n	300			an p	populati	G	Date	u e pro	

Project: SITEWIDE	SURVEILLAN	NCE PRIO			;		Date:	- 01	Page	1 of 2
Sampling FY Quarter	FEB/2000		QC Type:		NA		Calculations	:	RECORD	OPY
Well Number: ENW-	MW2		A#: ~~	NE			10/	PROJ.	2802	3
Total Purge Volume	Igail 12 Jo	37	Purge Flow	w Rate (gal/n	nin):		/	CAT.	13.3	,
Pump Type:	PC	Time or	: Water:	Purge:	Samp.:	Off:		VI Q200		
B0XK76 / , / P 1;1000mL;P B0XK88 (Filtered) 1;500mL;G/P 1;500mL;P 1;500mL;C/P 1;500mL;P	Quanterra In $\mathcal{L} \subset \mathcal{T} : \mathcal{L}$ 96.0_H3_LSC Quanterra St 6010_METALS Quanterra St Activity Scan (N 310.1_ALKALII 300.0_ANIONS	corporated 1, f $\psi = \int dt $	S Vone) 19) (HNO3 to p 4 y (1) (Cool 4C) (Cool 4C)	AMPLES α (α (α (α) (α) (α) (α) (α) (α) (α) (α)	COLLECT DC Na.: Y00 723662 DC Na.: Y00 918 204 DC Na.: Y00 00 Na.: Y00	-001-141 -001-165 -001-165 -001-165		An 2-8-2	TOTAL - HPT- هو REG. T	activity RUCK
/ Total No. Bottles: 12	27 (173	Cont	ainment Cod	e: איזע ELD MEA	LISTEL SUREME) NTS	Collect	or:	R.T SI	CKLE
Water Level (TOC):	(7 32	5716	Drawdown		DATA	Oil Sheen	Yes		No 12	/
Prev. pH:	NA NA		Prev. DTW	: /	10	E-Tape No).:	99.	-3	
Time	0845	0849	0852	0854	0859	0903	0918	Ń	1	1
pH	7.01	7.17	7.19	7.20	7.17	7.19	7.14			
Temp. (°C)	IN: 15.9	15.8	15.7	16.0	16.5	17.1	16.6		Χ	
Cond. (us/cm)	5-15	845	851	889	934	927	988		X H	1/,
Turb. (NTU)	128	147	52.4	36.6	39.0	8.62	15.7			VIILOD
D. O. (ma/L)	6.94	5.99	5.88	6.40	6.43	6.26	6.05			
						X				
	1t		F	IELD OB	SERVATIC	ONŚ	• • ••••••••••••••••••••••••••••••••••			-4
Weather:	eard Col U TE	SEINE MPOFF	F. punp ; cond	# 1473 metivity	s Going U	P, Tud	1.147 S	cott Sa	ys Smple	
Pre Check:	H 3.6/25	-0 5	COND STND	445	Post Chec	ik:5	H 7.12	/9° /15~	COND 43 STND 4	5
Well capped and loc	iked: Pre	0005 107 s 🛛 No	- 1000 (2)	r we(/	ook/Pg# :	WN-S	m L ~ H	25 ,	286	· · · · · ·
Samples Surveyed	ior Gamma Ra	idiation by F		res IN	•			¢	,	·
Data Recorded b-	•	Q43 I+ 143		H. Nee	~			2.	10-60	

	G	ROUI	NDW#	ATER	SAM	PLE	REPO	RT		
Project: SITEWIDE	SURVEILLA	NCE PRÍO	··· ÷				Date: 2 -	10-01	Page	l of 2
Sampling FY Quarter	FEB/2000		QC Type:		NA	•	Calculations:	-	· · · ·	
Well Number: ENW-	-MW3		A#: No	WE	1		15/			
Total Purge Volume	(gal): ,835	33	Purge Flo	w Rate (gal/n	nin): /					
Pump Type:	PC	Time or	1: Water.	Purge:	Samp.: 1007	Off: 1019				*
B0XK77 (20 ;11)- 1;1000mL;P B0XK89 (Filtered) 1;500mL;G/P B0XKB1	Quanterra In J c T; 905.0_H3_LSC Quanterra SI 6010_METALS Quanterra SI	Corporated J. 14 Sc M C: Tritium (1) (1 L Louis S_ICP: List-1 (1 L Louis	S None) 19) (HNO3 to p	AMPLES CC ウェンくの: つ (AH (2) ワ CC	COLLECT DC No.: Y00 2 0 DC No.: Y00 18 2 04 C DC No.: Y00	ED -001-142 -001-166 -001-166		activity Ruck		
1;20mL;P 1;500mL;G/P 1;500mL;P	Activity Scan (310.1_ALKALI 300.0_ANION:	None) NITY: Alkalinit S_IC: List-1 (5)	- y (1) (Cool 4C) I (Cool 4C)	71820 71820	240 204 C				·	
Total No. Bottles: 12	?, ETS	Cont	ainment Cod	e: Not	LISTED))	Collecto	or:	R.T.S	SICKLE
· · · · · · · · · · · · · · · · · · ·				ELD MEA	SUREME	NTS				
Water Level (TOC):	57.57		Drawdown		MATA	Oil Sheer	Yes		No 🖸	
Prev. pH:	<u>^</u>)A	Prev. DTW	NA		E-Tape N	0.: 99	7-5	· ·	<u>. </u>
Time	0948	0952	0955	1000	1005	1018			_	
н	7.30	7.10	6.97	6.96	6.95	6.97	-	<u> </u>		
Temp. (°C)	11.5	12.8	16.8	17.1	17.5	17.0			<u> </u>	ļ
Cond. (us/cm)	379	994	1011	1060	1075	1069			EH,	<u>}</u>
Turb. (NTU)	37.5	44.7	16.5	13.5	4.83	1.63			+ $$	Von
D. O. (ma/L)	8.61	6.07	4.40	4.17	4.12	106				\sim
· · · · · · · · · · · · · · · · · · ·					×				-	$ \rightarrow $
			F	IELD OB	ERVATIC	DNS	· ·			<u></u>
Weather:	LEAN	COLD	41° F				· · · · · · · · · · · · · · · · · · ·	• •		· · · · · · · · · · · · · · · · · · ·
Pre Check:	7.12/ 	90 0 11550 110	(1001) 4 (5701) (35	Post Chec	k: <u>P</u> 577	(9° 6/10°	COND = (STND=	435 445
Well capped and loc Samples Surveyed f Data Recorded by:	ked: Ve or Gamma Ra	adiation by R J.H. I	PTS: DY NEER	Logby res DN	vek/Pg#:	wm-	-SML-H	125 2	-1020	
Data Checked by:	Print and sign n	Lime			104 J	-min		Date /	11 100	
	G	ROUN	NDWA	TER	SAM	PLE	REPO	RT		
---	-----------------------------	-------------------------------------	--------------------------------	----------------	----------------------	------------------------	---------------------------------------	----------	---------------	--------------
Project: SITEWIDE	SURVEILLA	ICE PRIO	DOH		·		Date: 2 -//	,-00	Page 1	l of 2
Sampling FY Quarter	: FEB/2000		QC Type:				Calculations:			
Well Number: ENW-	MW4		A#: ~	IONE			15			
Total Purge Volume ((gal): 195	5 38	Purge Flov	w Rate (gal/n	nin): [
Pump Type:	PG	Time or 1045	: Water:	Purge:	Samp.: 1/08	0ff: //고식				
······································			S	AMPLES	COLLECT	ËD				
BOXK78	Quanterra In	corporated	~	C	DC No.: YOO	-001-143		m 1	TOTAL	ACTIVITY
1;1000mL;P	906.0_H3_LSC	: Tritium (1) (N	None)	9230	6020			den	REG. TI	RUCK
B0XK90 (Filtered)	Quanterra St	. Louis		C	OC No.: Y00	-001-167		2-8-10	•	
1;500mL;G/P B0XKB2	6010_METALS Quanterra Si	LICP: List-1 (1 . Louis	19) (HNO3 to p	H<2) 4 Ci	ラノタこの OC No.: YOO	/ <i>0</i> -001-167				
1-20ml -P	Activity Scan (i	None)	A	9182	2040					
1;500mL;G/P 1;500mL;P	310.1_ALKALI 300.0_ANION	NITY: Alkalinit 5_IC: List-1 (5)	y (1) (Cool 4C)) (Cool 4C)	918	2040					
7	35								** * •	
Total No. Bottles: 10	13	Cont	ainment Cod	ie: NUT	LISTED		Collect	or:	K.I 3	NUNLE
			F	ELD MEA	SUREME	NTS				
Water Level (TOC):	69.0	TUC	Drawdown	(TOC): ~0	UATO-	Oil Sheer	Yes		No 🖵	/
Prev. pH:		NK	Prev. DTW	': A	IA .	E-Tape N	io.:	99-5		
Time	1054	1058	1100	1105	1122	\sum				
рН	7.29	7.30	7.30	7.30	7.31		<u> </u>			
Temp. (°C)	15.6	16.0	16.3	16.6	17.2		\square		4 ,	ļ
Cond. (us/cm)	605	605	616	623	619	·		2/12	Alloo-	
Turb. (NTU)	63.9	36.2	29.1	15.0	7.19			$\sum 7$	1	_
D. O. (ma/L)	7.62	7.26	7.12	7.01	6.95	1			<u> </u>	
	ļ			N/.				<u> </u>		
			L				_[\mathbf{L}
			F	FIELD OB	SERVATIO	DNS				
Weather:C	LEAN.	Culd	41°F							•
Field Comments:	U.	EINE	pun	PAT			· · · · · · · · · · · · · · · · · · ·	<u> </u>		
								<u>.</u>		
·								·······		
	2	. 100	<u> </u>	- 4171-	Post Cher	*	PH= 7.	0/1 0	(and) -	42/
Pre Check:	11= <u>-1</u> 20= 7.	* / 7 06 / 10°	STADS	- 733 - 445		····	5720 2 2.	06/100	ETNOS	-735 =405
Commente: Ecom	w Northwest	f								
Comments. Ellerg	il information			- - 						
				1.004			M . C.M .	- 4.5 -	- ACLER	
vveil capped and lo Samples Surveyed	for Gamma R	adiation by I	, RPTs: 🗌	Yes IN	NO	W	ri-sril	-110	1780	
Data Recorded by:		J.H.	NEER	J.H.	Nue			2-1	0-00	/
Data Checked ht	Print and sign r	AWORTH	(WMNW)	4/1	ist dar	att	•	Date	2/11/0	0
Data Grieckeu by:	Print and sign r	ame		- upit			······	Date	11	

B.14

	G	ROUI	NDW/	ATER	SAM	PLE	REPO	RT		
Project: SITEWIDE	E SURVEILLA	NCE PRIO					DFEB 0	9 2000	Page 1	of 2
Sampling FY Quarte	r: FEB/2000		QC Type:	FYR 5	557		Calculations	:		
Well Number: ENW	-MW5 EB	L124	A#: ~	DNE	1		_			
Total Purge Volume	(gal): 3	2	Purge Flo	w Rate (gal/r	nin):		20	Alm Par	5=/ GF	M
Pump Type: /	NU FOS	Time or	n: Water: 9 09イ	2 Purge:	Samp.:	0#:				
•			S	AMPLES	COLLECI	ED				
B0XK79	Quanterra In	corporated		C	DC No.: Y00	-001-144		in		CTIVITY
1:1000mL;P B0XK91 (Filtered)	906.0_H3_LS0 Quanterra S	2: Tritium (1) (I L. Louis	None)	923	60 20 00 No.: Y00	H001-168		2-8-200	REG. TR	IUCK
1;500mL;G/P B0XKB3	6010_METALS Quanterra S	S_ICP: List-1 (t. Louis	19) (HNO3 to p	#≪) 7 C	182040 OC No.: YOO	2 0-001-168				
1;20mL;P 1;500mL;G/P	Activity Scan (310.1_ALKAL) 300.0_ANION	None)	/ A y (1) (Cool 4C) (Cool 4C)	91	82040					·
1,000116,6		0_10. []3. 1 (0,		918	2040					
· •										
Total No. Bottles: 12	1.	Cont	ainment Cod	le: ノリ	TLIST	EIJ	Collect	or: R.T	SICKL	E
			F	IELD MEA	SUREME	NTS				
Water Level (TOC):	66.97	-TOC	Drawdown	(TOC):		Oil Sheer	Yes		No 🕑	
Prev. pH;		NA	Prev. DTW	: NA		E-Tape N	o.: A	9.5		
Time	0446	0950	0953	0957	1001	1014	\mathbf{N}			
Hq	7.09	7.48	7.60	7:72	7.74	7.81				
Temp. (°C)	15.6	17.1	17.3	17.8	17.8	16.7				
Cond. (us/cm)	394	398	398	446	448	449			£41 1	
Turb. (NTU)	19.3	14-6	8.39	4-87	2.68	1.19			Nº/10	/
D. O. (ma/L)	7.14	7.07	7.04	7.00	6.99	7.03				00
							<u> </u>			<u> </u>
			L			<u> </u>				
L			F	HELD OB	SERVATIO	DNS				<u> </u>
Weather:	Smap	Clear	<u>.50° j=</u>	NOW	NO		<u> </u>			
Field Comments: _	DAIE TIME	1620				5.	nature A	R.R. FJY		
· · · · · · · · · · · · · · · · · · ·	PUMPI	[] 中(]	324							
	THE PL	IMP WI	15 DECO	NTAMI	NATE()	IN ACC	URBANCE	WITH	SP 3-2	· 7.1
Pre Check:	1= 7.0/C	<u>5 (</u>	(JNI) =	445		<u>#H</u> STA	= 7.09/12	/ <u>,</u>	$\frac{cons = 4}{rons = 4}$	<u>57</u> 45
Comments: Energ	y Northwest	.			• ·			· ·	11-12	
									•	
Well capped and loc	ked: UYe	s 🗆 No		Logbo	ook/Pg#:	in M.	11m 1-14	125-1	84	
Samples Surveyed	lor Gamma Ra	diation by R		res CIN				FE	B 0 9 20	00
Data Recorded by:	Print and sign fit		ATH WMM	<u>J,H.Ne</u> M	<u>~</u>	th-	# 1	Date	1-1-	
Data Checked by:	Print and sion TH			-4	lfaft-,	Anno	<u>~</u>	Jate 2/1	10/00	

	G	ROUI	NDW/	ATER	SAM	PLE	REPO	RT		
Project: SITEWIDE	SURVEILLA	NCE PRIO	,	·.	5#		Date: 2-9	-a0	Page	1 of 2
Sampling FY Quarter	r. FEB/2000		QC Type:	EB412	14 ##	FXR522	Calculations		•	
Well Number: ENW	-MW6		A#: ~	IONE					,	
Total Purge Volume	(gal): 5.14,5	- 34	Purge Flo	w Rate (gal/n	nin): [15	gullat.	-ise / 16	PM
Pump Type:	С~	Time or	n: Water:	Purge:	Samp.:	0#: 1125			•	
			S	AMPLES	COLLECT	ED				
B0XK80	Quanterra In	corporated		C	DC No.: Y00	-001-145		-h		ACTIVITY
1;1000mL;P B0XK92 (Filtered)	906.0_H3_LS0 Quanterra SI	: Tritium (1) (1 . Louis	None)	1236020 Q	DC No.: YOO	-001-169		2-9-2	REG. TI	RUCK
1;500mL;G/P B0XKB4	6010_METALS Quanterra St	5_ICP: List-1 (1 L Louis	19) (HNO3 to p	H≥) 9 C	182040 DC No.: Y00	-001-169	· .			
1;20mL;P 1;500mL;G/P	Activity Scan (310.1_ALKALI	None) NITY: Alkalinit		9182	040					
1;500mL;P	300.0_ANION:	5_IC: List-1 (5)	(C0014C)	9182	,040					
-	.1.								RT SIC	CKI F
Total No. Bottles: 42	-13	Cont	ainment Coo	le: NUTL	ISTET)		Collect	DF:		• •
			F	IELD MEA	SUREME	NTS				
Water Level (TOC):	41.14	TOC	Drawdown	(ТОС):		Oil Sheen	Yes		No 🗹	
Prev. pH:	μA		Prev. DTW	: ~ A	7	E-Tape N	0.:			
Time	1054	1100	1103	1107	1110	1122				
рН	7.62	7.46	7.47	7.48	7.48	7.18				
Temp. (°C)	14.7	15.8	11.8	17.5	17.5	17.2		\sum		
Cond. (us/cm)	464	677	687	688	1.89	684			₹ <i>4</i>	
Turb. (NTU)	648	0.92	2.31	1.44	1.39	1.37			<u>\</u>	
D. O. (ma/L)	5.15	4.83	4.71	4.67	4.60	4.65	-			60
										\square
					K			1		
			F	FIELD OBS	SERVATIO	DNS				
<u>سک</u> Weather:	ng i Cl	ecr 50	FN	UWINI)					
Field Comments:	PU	<u>A Luin</u>	ENE TO	44 400	: F					
	TIME -	1620	"th	E PURP	ints D	ECNTA	HI LUNI	IN	ACCUMDAN	чĒ
	PUMP 3	FO# 147	3 601	TH SP-	3-Z" (makre	R.R.+	νx		
Pre Check: <u>PH</u>	= 7.09/1	20	CUND	= 434	Post Chec	ќ: <u>р</u>	H = 7.1	0/12	CONI)= 438
STA	1) = 7.04	1/15	57117	= 445	I	5	- <u>7- (</u> W	=6 / 10	STNI) = 445
Comments: Energ	y Northwest			1.1						
	•	- 							•	
Well capped and loc	ked: 🗹 Ye	s 🗆 No		Logb	ook/Pg#:	WM-	SML -	H25		
Samples Surveyed	for Gamma R	adiation by F		Yes IN	•					
Data Recorded by:		J.H. NE	:EK	1.H.N.	en	-		2.9	i- au	

10

Date

HAWORTH (WMNW

27

Print and

Data Checked by:

Project: SITEWI	E SUBVEN I	NCE PRIO		au en	SAM					
Sampling EV Quar			LOCT				2-19	- ·cv	Page 1	of 2
Sampling FT Qua		, 	CC Type:	· · · · · · · · · · · · · · · · · · ·	NA		Calculations		N.	
Well Number: EN	N-MW7		A#: ~~	WE			10/1	12 GPM	t	
Total Purge Volum	e (gal):	5 25	Purge Flo	w Rate (gal/	min): 1/2	GPM				
Pump Type:	PIr #4	Time o	n: Water:	Purge:	Samp.:	0#:		•		
	10 -1		s	SAMPLES	COLLECT	12033 TED				
BOXK81	Quanterra Ir	icorporated	ant	c	OC No.: YO	-001-146			TOTAL A	CTIVITY
1;1000mL;P	906.0_H3_LS	C: Tritium (1) (None)	9230	.020	•		A.	AREG. TRI	UCK
B0XK93 (Filtered) Quanterra S	t. Louis		c	OC No.: Y00	-001-170		23		
1;500mL;G/P B0XKB5	6010_METAL	S_ICP: List-1 (t. Louis	19) (HNO3 to p	¢H<2) ל כ	71 ZS-010 OC No • YO	-001-170				
1.20ml -P	Activity Scan	(None) NF	1					RE	CORD COP	Y
1;500mL;G/P	310.1_ALKAL	INITY: Alkalini	y (1) (Cool 4C)) 918	2040		Pr C/		20023	
1;500mL;P	300.0_ANION	S_IC: List-1 (5)) (Cool 4C)	9/8	5010		W N	ORKING	GCOPY	
								•. •	· · · · · · · · · · · · · · · · · · ·	
	113								KBHULSE	/
Total No. Bottles:	F RAS	Cont	zinment Coo	ie: ハン7	LISTED		Collect	ог. 	·	_ U
		·····	F	IELD MEA	SUREME	NTS			<u> </u>	/
Water Level (TOC	: 24.25	-TOC	Drawdown	(TOC):		Oil Sheen	Yes		No 🗗	<u> </u>
Prev. pH:		NA	Prev. DTW	r: NP	7	E-Tape N	o.: 9	9-5	·	-
Time	0948	0958	1000	1005	1033	\backslash				— Ŭ
oH	7.25	7.17	7.31	7.79	7.16		1			L –
Temp. (°C)	13.5*	14.1	17.8	12.6	12.0					
Cond. (us/cm)	1 11 2	01	0.2	1.00	LICH S		\rightarrow	1.,		<u> </u>
Turb (NTII)	- 110 T	1.09	1 2 2 2	10.0	2.0		1	1 and	4	<u> </u>
D (mail)	0.01	1.01	2.52	1.37	all		+		$ \rightarrow $	
D. O. (IIIQ'L)	103.0	104.7	104.5	102.5	80.5		+		$+ \rightarrow$	
······	<u> </u>		L				<u> </u>		++	\searrow
		L	L		<u> </u>	<u> </u>				
			F	FIELD OB	SERVATIO	DNS				
Weather:		-								
Field Comments:	Phi HI .	np Set	4+30 f	eet;	Problem	with	webl Ru	ning	out of was	ten
	IL NU IF	<u>IL UERY</u> RIEKATA	<u>DIRTY</u>	THE A	AA NA	IJELL	SAM/LE	<u>-0 A</u>	11 <u>2 6 PP</u>	<u></u>
	5 Discovere	The S	mples Ta	her were	DI WAT	En Passi	BLY DUE	TV LOW	COND REA	40205
¥			conistys	<u></u>	Post Chec	k: <u>pr</u>	1= 7.191	12	cunD = 43	3
Pre Check:	H= 7.0/25		STND 44	15	<u> </u>	37	M) =7.04	1150	STND 2 44	15
Pre Check:	H= 7.0/25 WD=7-0/2	٢			•					
Pre Check:	$\frac{H}{2} = \frac{7 \cdot 0}{23}$ $\frac{H}{2} = \frac{7 \cdot 0}{2}$ gy Northwest	٢								
Pre Check:	$H = \frac{7.0}{25}$ $\frac{1}{25} = \frac{7.0}{25}$ gy Northwest	2								
Pre Check:	$H = \frac{2}{2} \sqrt{25}$ $\frac{1}{2} \sqrt{25} = \frac{2}{7} \sqrt{25}$ gy Northwest	<u>ح</u>								
Pre Check:	$H = \frac{2 \cdot o}{2 \cdot s}$ $W_{12} = \frac{2 \cdot o}{2 \cdot s}$ $gy \text{ Northwest}$ $ycked: \qquad \boxed{2} Y_{10}$	25 🗌 No		Logb		wm	SML - HL	ويوم ك	<u>,0</u>	
Pre Check:	$H = \frac{2 \cdot o}{23}$ wij = $\frac{2 \cdot o}{2}$ gy Northwest ocked: \Box Yo for Gamma R	es No adiation by R	PTS: C	Logba Yes IN	 ook/Pg#: o	wM	SML - HL	<u>مرم ح</u> ۶ FF	γ <i>υ</i> R 15 2000	
Pre Check: Comments: Ener Well capped and to Samples Surveyed Data Recorded by:	$H = \frac{2}{7} \cdot \frac{2}{25}$ $\frac{W_{12} = \frac{2}{7} \cdot \frac{2}{5} \cdot \frac{2}{5}$ $\frac{W_{12} = \frac{2}{7} \cdot \frac{2}{5} \cdot \frac{2}{5}$ $\frac{W_{12}}{5} = \frac{2}{5} \cdot \frac{2}{5} \cdot \frac{2}{5}$	es No adiation by R	PTs: D	Logbo Yes IN	00k/Pg#: 0	wm	<u>SML - HL</u>	<u>درمج</u> FE	,. B 15 2000	

B.17

	GROUN	IDWA	TER	SAN	IPLE	REPC	RT	
Project: SITEWIDE S	SURVEILLANCE PRIO	•.	1. A.M.			Date:	1-00	Page 1 of 2
Sampling FY Quarter:	FEB/2000	QC Type:		NA		Calculation	is:	· · · · · · · · · · · · · · · · · · ·
Well Number: ENW-M	IW8	A#: NO	WE			10/ p	HOL REC	28023
Total Purge Volume (ga	al): \$\$ 10 26	Purge Flow	Rate (gal/	nin):	1	/ 'a	AT	3 3
Pump Type:	PC- Time on 11/2	: Water:	Purge:	Samp.: // 7 2	0#: /140	· v	VORKING	COPY
BOXK82 C / 20 m/ P 1;1000mL;P 9 BOXK94 (Filtered) C 1;500mL;G/P 6 BOXK86 C 1;20mL;P A 1;500ml ;G/P 3	Quanterra incorporated $\beta \in T : V : Y + S \in I$ OG.0_H3_LSC: Tritium (1) (N Quanterra St. Louis O10_METALS_KCP: List-1 (1: Quanterra St. Louis Activity Scan (None) ~ A 110.1 ALKALINITY: Alkalinity	SA one) 9) (HNO3 to pH	(MPLES 0 9 2 0 (2) 0 0 0 0	COLLEC OC No.: Y(2 3 6 0 2 OC No.: Y(7 18 2 0 OC No.: Y(0 00 0	2 TED 200-001-147// 	· ·	2-8-24	TOTAL ACTIVITY
1;500mL;P 3	100.0_ANIONS_IC: List-1 (5)	(Cool 4C)	91820	iy 0				

R.T SICKLE

	Cont	ainment Cod	e: ~07	LISTE	<u>D</u>	Collecto)r:			
		FI	ELD MEA	SUREME	NTS					
31.80	s toc	Drawdown	(тос):		Oil Sheen	Yes		No 🛃	_	
. N	A	Prev. DTW	: NA	•	E-Tape No	: 99-	5			
1117	1122	1124	1128	1130	1139	/				
7.17	7.26	7.51	7.66	7.67	7.70	7				
13.2	13.6	147	15.8	15.9	15.9	1	\sum	ļ		
224	226	502	519	520	517			le		
278	68.4	51.3	4.00	2.29	8.05		-	Ke		
8.83	7.70	7.74	7.70	7.72	7.79:			<u> </u>		
									\sum	
				*						
		F	IELD OB	SERVATIC	NS ·					
ver curs	+ ; Cul	41° F	= WINI	5@15	mph SW	1				
JA FO	com En	they n	ENTHWE	STist	hing 1	L Sang	1/c			
KSEING	pumpi	= 1324								
		-			·····					
4 7.0/2		Cowi)	145	Post Chec	k: <u>PH</u>	7.19/9	.5° CO	~D 44	3	
mp 7.0/	25	STWIS Y	45	<u>L.,</u>	472	7.06/	2 00	5~1) 443		
Nonnwest	1.	· .			. *	•				
		•			· ·					
ked: 🛛 Y	es 🗆 No		Logb	ook/Pg#:	WM	-SAL-	+125 p	58F		
or Gamma R	adiation by F	IPTs:	Yes 🖾 N	lo		-			—	
<u> </u>	H. NEE	R /	. M. Ne	\sim			2-11	-00 1		
Print and sign in	WORTH (VVir	<u> </u>	att Hac	ott		2	<u> 4/20</u>		
	3 1. 80 N 1/17 7.17 13.2 22.4 278 8.83 Ver const Northwest Northwest ked: DYn Northwest Ked: DYn Print and SBN	31.80 Torc NA 1117 1122 7.17 7.17 7.26 13.2 13.2 13.2 13.2 13.2 278 68.4 8.83 7.90 9.83 9.70 9.83 9.70 9.83 9.70 9.83 9.70 9.83 9.70 9.70 9.83 9.70 9.70 9.70 9.97	Containment Cod FI 31.80 Torc Drawdown NA Prev. DTW 1117 1122 1124 7.17 7.26 7.51 13.2 13.6 147 224 226 502 278 68.4 51.3 8.83 7.70 7.74 S.83 7.70 7.74 F Ver cast 7 Guld 41° F .T.M FROM EMERCY M USEING PUMP# 1324 H 7.0/25 Con) 1 TND 7.125 STMI Y Northwest Ked: BYes D No or Gamma Radiation by RPTs: D J.H. NEER	Containment Code: $N \circ T$ FIELD MEA 31.80 T2C Drawdown (TOC): MA Prav. DTW: NA 1117 1122 1124 1128 7.17 7.26 7.51 7.66 13.2 13.6 147 15.8 224 226 502 519 278 68.4 51.3 4.00 8.83 7.90 7.74 7.70 278 68.4 51.3 4.00 8.83 7.90 7.74 7.70 9.83 7.90 7.74 7.70 9.83 7.90 7.74 7.70 9.83 7.90 7.74 7.70 9.83 7.90 7.74 7.70 9.85 7.90 7.74 7.70 9.92 2.92 STMINEER NIMI 9.92 9.72 STMIN 9.92 9.92 9.72 STMIN 9.92 9.92 9.72 STMIN 9.92 9.92 9.92 STMIN	Containment Code: 20 of L157E FIELD MEASUREMENT 31.80 72°C Drawdown (TOC): MA Prev. DTW: NA 1117 1122 1124 1128 1130 7.17 7.26 7.51 7.64 7.67 13.2 13.6 147 15.8 15.9 224 226 502 519 540 278 68.4 51.3 4.00 2.29 8.83 7.90 7.92 7.90 7.92 8.83 7.90 7.94 7.90 7.92 8.83 7.90 7.94 7.90 7.92 8.83 7.90 7.92 7.90 7.92 9 7.90 7.92 7.90 7.92 9 7.90 7.92 7.90 7.92 9 7.90 7.92 7.90 7.92 9 7.92 7.91 9.92 9.92 9 7.92 Cold 41° F NIND @ 9 9.25" ST	Containment Code: $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Containment Code: $M ot L15 TED$ Collectic FIELD MEASUREMENTS 31.80 T2C Drawdown (TOC): Oli Sheen Yes MA Prev. DTW: NA E-Tape No.: 99- (117 1122 III 24 III 28 III 30 II 39 7.7 7.26 2.51 7.66 7.67 7.70 7.7 7.26 7.97 7.70 7.7 224 226 5.79 5.20 5.77 2.78 68.4 5.1 7.66 7.77 2.78 68.4 5.1 7.70 7.72 7.79 2.78 68.4 7.79 7.72 7.79 7.70 7.72 7.79 7.72 7.79 <td c<="" td=""><td>Containment Code: $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$</td><td>Containment Code: $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$</td></td>	<td>Containment Code: $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$</td> <td>Containment Code: $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$</td>	Containment Code: $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Containment Code: $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

	G	ROU	VDW/	ATER	SAM	PLE	REPO	RT		Unite
Project: SITEWIDE	SURVEILLA	NCE PRIO	DOH	: -		·	Date: 2//	100	Page 1	of 4
Sampling FY Quarter	FEB/2000		QC Type:	Dup			Calculations	ý.		•
Well Number: ENW-	MW9	• •	A#: N	NE .	1. A		15/	1	•	• •
Total Purge Volume	(gal): 13515	35	Purge Flo	w Rate (gal/r	nin): (· · ·		-		
Pump Type:* PC	5	Time or	1: Water: 2 / 2/8	Purge:	Samp.: 1231	0#: 1253				
	• . •		S	AMPLES	COLLECT	ÊD				
B0XK83 <i>i</i> 20 <i>mi</i> , <i>p</i> 1;1000mL;P B0XK84 <i>i</i> 20 <i>mi</i> , <i>p</i> 1;1000mL;P B0XK95 (Filtered)	Quanterra Ir ACTIVII 906.0_H3_LS Quanterra Ir ACTIVIC 906.0_H3_LS Quanterra S	corporated <i>SCAN</i> C: Tritium (1) (I corporated <i>C</i> : Tritium (1) (I t. Louis	Vone) 92 Vone) 9	C 236020 C 23602 C	DC No.: Y00 DC No.: Y00 DC No.: Y00	+001-148 ~ +001-149 ~ +001-172 ~		2-8-2-	PEG TF	IUCK
1;500mL;G/P B0XK96 (Filtered)	6010_METAL	s_ICP: List-1 (t. Louis	19) (HNO3 to p	H⊲) ¢	718-20 OC No.: Y00	40 +001-173				
1;500mL;G/P	6010_METAL	S_ICP: List-1 (19) (HNO3 to p	H2) 9	18204	6 · · ·			•	•
707 Total No. Bottles: 28	5. 2 5	Cont	ainment Cod	ie: ~0]	-LISTE	70	Collect	or:	R.T SI	CKLE
		•	F	ELD MEA	SUREME	NTS				1. 2.
Water Level (TOC):	31:55	-TUC	Drawdown	(TOC):		Oil Sheen	Yes		No Et	i.
Prev. pH:		VA	Prev. DTW	· NA	7	E-Tape N	o: 99-	5		•
Time	17.21	12.25	1229	1233	1252		·		ц Ч Ч	
На	2.26	7.59	2.58	257	7.58					
Temp. (°C)	14.8	16.6	16.9	11.9	17.0			1.1		
Cond. (us/cm)	570	1175	1181	1179	1160			N.		•
Turb. (NTU)	47.1	4.19	2.18	2.27	6.55			·	N.	
D. O. (mo/L)	7.21	7.07	7.15	7.21	7.83			•		
									· · ·	
	• * •			×				· . · ·	·	
			F	IELD OBS	SERVATIC	DNS				
Weather: 00	ENCAS.	r Scol	d .430	F W	NDRI	15 EW	•		-	
Field Comments:	(LSESINP	unptr	(73	•				· · ·	
				· .						
· · · · · · · · · · · · · · · · · · ·	•			···. ···						
Pre Check: 4	1=7.19	19.50	CUNI) STAIL	443	Post Chec	k <u>Ph</u>	1= 7.18	/11	COND E	439
Comments: Energy	Northwest									
Well capped and loci Samples Surveyed for	ked: 🛛 Yu or Gamma R	es 🗌 No adiation by R	PTS: 🗆 Y	Logbo res 2 N	ook/Pg#:	wm-	SML -1	125 18	88	
Data Recorded by: Data Checked by:	Print and sign n	J.H. N		1. H. N.	in la	unth		<u>2-11</u> Date 21	14/00	
	Print and sign n	eme						Date 7	/	

						ð	m 2-7-2000
	GROUI	NDWATE	ER S	AMPLE	REPOR	T	
Project: SITEWIDE	SURVEILLANCE PRIO	DOH	ł		DEEB (18	2000	Page 1 of 2
Sampling FY Quarte	r: FEB/2000	QC Type:	2-		Calculations:		
Well Number: ENW	-31 (MW31)	A#:		· ·			
Total Purge Volume	(gal):	Purge Flow Rate	(gal/min):				-
Pump Type:	Time or	Water: Pur 0 0930 0	ge: Sa 155 (156 1000			
		SAMP	ES COL	LECTED			······································
B0XK85	Quanterra Incorporated		COCN	o.: Y00-001-150		ha .	TOTAL ACTIVITY
1:1000mL:P	906.0_H3_LSC: Tritium (1) (I	lone) 9234020				an	TREC TRUCK
B0XK97 (Filtered).	Quanterra St. Louis		COC N	o.: Y00-001-174			1.20. 11001
1;500mL;G/P	6010_METALS_ICP: List-1 (19) (HNO3 to pH <2)	731801	>			
B0XKB9	Quanterra St. Louis		COC N	o.: Y00-001-174	Pultura	MA	of h West
1;20mL;P 1;500mL;G/P 1;500mL;P	Activity Scan (None) 310.1_ALKALINITY: Alkalinit 300.0_ANIONS_IC: List-1 (5)	1 (1) (Cool 4C) 918 (Cool 4C)	2040 V		Drint	eing	Water Well

IOTAI NO. BOTTIES: 11	·	Cont	Einment Cod		SUBEME	NTS	Collecto		JNES)
Water Level (TOC):	A/A-		Drawdown		A A	Oil Shoon	Vac		No	- ALA
Bana atta	10/1			1.	<u>//</u>	On Sheen	105	<u> </u>	140 2	<u>- 1017</u> 1/4
Prev. pH:	UN ARA	Nn	Prev. DIW	unk	usun	E-1ape No.:				
Time	0947	0753	1010						ļ	
На	8.02	8.08	8.12							
Temp. (°C)	18.2	18.2	17.7				NR_			
Cond. (us/cm)	353	354	352				×	21.1		
Turb. (NTU)	2.71	1.75	1.30		2			-1810	<i>k</i>	
D. O. (ma/L)	1.09	,91	1.30	21 218	20					
			1.05		· · · · · · · · · · · · · · · · · · ·					
		*								$+ \sim$
			F		SERVATIO	DNS	t		L	
	HARAT	RAAR	nd 24	<i>.</i>						
Field Comments:	<u>i caro</u> ,	- copper					î		-1	1 1
						Con	R. 44	2	stona	ardiyy
	<u> </u>			·····	······································					
	7,4	77 47	- 500	<u> </u>	Post Chec	<u>k</u> .	7	nhar-	200	
		Creli	triste	<u>A</u>		······································	<u> </u>	TATA	500	· · · · <u>· · · · · · · · · · · · · · · </u>
Pre Check:			<u>v</u>	· · · · ·	•					
Pre Check: Comments: ENW	supply well									
Pre Check: Comments: ENW	supply well									
Pre Check: Comments: ENW :	supply well	•	. ,					<u></u>		
Pre Check: Comments: ENW	supply well :ked: PY	es 🗌 No	. ,	Logbo	pok/Pg#:	u:m-Sm	1(-#1	9 4	rge T	18
Pre Check: Comments: ENW Well capped and loc Samples Surveyed	supply well :ked: PYe for Gamma Ri	es 🗌 No adiation by R	iPTs:	Logbo Yes II-N	pok/Pg#:	<u>wm-Sm</u>	1(-#1	9 p	rge "	78
Pre Check: Comments: ENW Well capped and loc Samples Surveyed 1 Data Recorded by:	supply well sked: Pro for Gamma Ri D, Fi	es DNo adiation by F I. BREW		Logbo Ves DN F (), R.	ook/Pg#: Brew	wm-sm nietor	N#1	9 р Feb	1-92 1 0 8 21	7 <i>8</i> 190

B.20

							Y M 2-1-100
	GROUI	NDWA	TER S	SAMPLE	REPOR	Т	
Project: SITEWID	E SURVEILLANCE PRIO	/Дон			FEB 0 8	2000	Page 1 of 2
Sampling FY Quarte	ar: FEB/2000	QC Type:	-0-	~	Calculations:		
Well Number: ENW	1-32 (MW32)	A# :	NA	-			
Total Purge Volume	(gal): NA -	Purge Eloy	Rate (gal/mi	n):>			
Pump Type:	VA Time or 093	v: Water: 0 0930	Purge:	Samp.: Off: 1047 /105			
		S	AMPLES C	OLLECTED			······································
BOXK86	Quanterra Incorporated		CO	C No.: Y00-001-151			-TOTAL ACTIVITY
1;1000mL;P	906.0_H3_LSC: Tritium (1) (None) 9.2.34	620			de	REG. THUCK
B0XK98 (Filtered)	Quanterra St. Louis		CO	C No.: Y00-001-175		U	
1;500mL;G/P	6010_METALS_ICP: List-1 (19) (HNO3 to pi	12) 8125	040 9182040			
BOXKCO	Quanterra St. Louis		CO	C No.: Y00-001-175	EMIA	au U	arthwest
1;20mL;P 1;500mL;G/P 1;500mL;P	Activity Scan (None) 310.1_ALKALINITY: Alkalinit 300.0_ANIONS_IC: List-1 (5)	y (1) (Cool 4C) (Cool 4C)	9182040		Dris	king	Water Well

Drinking Water Well

Total No. Bottles: 11 Containment Code: Collector.											
			F	IELD MEA	SUREME	NTS					
Water Level (TOC):	NA		Drawdown	(TOC): N	'A	Oil Sheen	Yes		No		
Prev. pH: UM	nknow	n	Prev. DTW	: unk	noun	E-Tape No.:	NA	7			
Time	1035	1042	1045	1100			-				
на	7.95	8.07	8.08	8.08		\langle					
Temp. (°C)	17.4	17.0	<u>n.o</u>	16.8			- LEA				
Cond. (us/cm)	351	353	354	350				48/0			
Turb. (NTU)	.95	145	.56	.55					\langle		
D. O. (ma/L)	.15	45	.18	.15						$\overline{\ }$	
		0KB 215	105								$\overline{\ }$
	а 1		X								/
			F	IELD OBS	SERVATIO	NS					
Weather:	ercar	t, app	noy	390							
Field Comments:	·										
			Con	d	444	t ston	los 14	-5			
		······									·
Pre Check:	7.06	ATZ	3.0		Post Check	·	.07 ki	- 22.	<u>[</u>		
Comments: ENM e		o ni a	<u></u>	· · · · · · · · · · ·	L		. <u>U & FI</u>	0.0			· .
Comments. Citre	арру нап					•					
	·						· ·				
Weil capped and loci	ked: CY		_	Logbo	xxk/Pg# :	WM-SA	ML-H	19 p	age.	28	
Samples Surveyed for	or Gamma R	adiation by F	IPTs:	Yes Let N	$^{\circ}\mathcal{O}$. 1		FFR	0.8	0000	
Data Recorded by:	U.R.	BREWI	IGTON.	D.R.	Brey	metto		120			
Data Checked by:	Point and sion o	MARCRIH	(XCLENYF,	_al	with file	whit	5	210	2/9	ld.	2
									· /		

B.21

Appendix C

Analytical Results for Phase I Evaluation of the 618-11 Burial Ground

				Value		Lab	
Constituent	Sample Number	Well Name	Sample Date	Reported	Units	Qualifier ^(a)	
Tritium	BOXJW7	699-10-E12	02/08/2000	2.32E+04	pCi/L		2.73E+02
Tritium	BOXK00	699-12-4D	02/07/2000	1.85E+03	pCi/L		2.71E+02
Tritium	BOXK01	699-13-1A	02/08/2000	2.33E+04	pCi/L		2.57E+02
Tritium ^(b)	BOXK01 DUP	699-13-1A DUP	02/08/2000	2.40E+04	pCi/L		2.57E+02
Tritium	BOXK29	699-13-1B	02/08/2000	3.00E+02	pCi/L	J	2.58E+02
Tritium	BOXK30	699-13-1C	02/08/2000	1.10E+02	pCi/L	U	2.55E+02
Tritium	B0XK47	699-13-3A	02/07/2000	7.23E+06	pCi/L		4.87E+02
Tritium	B0XK48	699-13-3A	02/07/2000	6.89E+06	pCi/L		4.73E+02
Tritium	BOXK49	699-15-15B	02/08/2000	7.00E+01	pCi/L	U	2.57E+02
Tritium	BOXK55	699-17-5	02/07/2000	8.15E+01	pCi/L	U	2.73E+02
Tritium	BOXK57	699-21-6	02/07/2000	2.13E+04	pCi/L		2.73E+02
Tritium	BOXK58	699-8-17	02/08/2000	5.44E+04	pCi/L		2.73E+02
Tritium	BOXK59	699-9-E2	02/10/2000	1.75E+03	pCi/L		2.80E+02
Tritium ^(b)	BOXK59 DUP	699-9-E2 DUP	02/10/2000	1.67E+03	pCi/L		2.82E+02
Tritium	BOXK75	C3071/ENW-MW1	02/09/2000	1.04E+04	pCi/L		2.72E+02
Tritium ^(b)	BOXK75 DUP	C3071/ENW-MW1 DUP	02/09/2000	1.00E+04	pCi/L		2.72E+02
Tritium	BOXK76	C3072/ENW-MW2	02/10/2000	1.85E+03	pCi/L		2.79E+02
Tritium	BOXK77	C3073/ENW-MW3	02/10/2000	1.16E+03	pCi/L		2.82E+02
Tritium	BOXK78	C3074/ENW-MW4	02/10/2000	1.20E+04	pCi/L		2.79E+02
Tritium	BOXK79	C3075/ENW-MW5	02/09/2000	1.41E+04	pCi/L		2.72E+02
Tritium	BOXK80	C3076/ENW-MW6	02/09/2000	3.79E+03	pCi/L		2.73E+02
Tritium	B0XK81	C3077/ENW-MW7	02/15/2000	5.10E+01	pCi/L	U	2.69E+02
Tritium ^(b)	B0XK81 DUP	C3077/ENW-MW7 DUP	02/15/2000	6.48E+01	pCi/L	U	2.73E+02
Tritium	B0XK82	C3078/ENW-MW8	02/11/2000	3.51E+02	pCi/L	J	3.09E+02
Tritium ^(b)	B0XK82 DUP	C3078/ENW-MW8 DUP	02/11/2000	5.02E+02	pCi/L		3.04E+02
Tritium	B0XK83	C3079/ENW-MW9	02/11/2000	2.43E+03	pCi/L		3.01E+02
Tritium	B0XK84	C3079/ENW-MW9	02/11/2000	2.84E+03	pCi/L		3.03E+02
Tritium	BOXK85	ENW-31	02/08/2000	-3.98E+01	pCi/L	U	2.74E+02
Tritium	BOXK86	ENW-32	02/08/2000	-3.51E+01	pCi/L	U	2.72E+02
	L	Quality C	Control Samples	S	<u>.</u>	L	
Tritium ^(c)	BOXK60	EBL 121/699-13-3A	02/07/2000	9.93E+01	pCi/L	U	2.72E+02
Tritium ^(b,c)	BOXK60 DUP	EBL 121/699-13-3A DUP	02/07/2000	1.76E+02	pCi/L	U	2.72E+02
Tritium ^(d)	BOXK61	EBL 122/699-13-3A	02/07/2000	1.79E+02	pCi/L	U	2.74E+02
Tritium	BOXK62	EBL123/699-13-1B	02/08/2000	8.45E+01	pCi/L	U	2.73E+02
Tritium	BOXK63	EBL124/C3075/ENW-MW5	02/09/2000	2.31E+02	pCi/L	U	2.56E+02
Tritium	BOXK66	FTB 322/699-13-3A	02/07/2000	7.04E+01	pCi/L	U	2.72E+02
Tritium	BOXK67	FTB 323 /699-21-6	02/07/2000	1.30E+02	pCi/L	U	2.73E+02
(a) $U = Res$	sult is less than the	minimum detectable activity (MDA).		- b -Communet	· · · · · · · · · · · · · · · · · · ·	

Table C.1. Tritium Results for 618-11 Burial Ground Investigation, February 2000

(b) Lab duplicate.(c) Before sampling.(d) After sampling.

Table C.2. Tritium Results for 618-11 Burial Ground Investigation, Thermo NUtechLaboratory, February 2000

Constituent	Sample Number	Well Name	Sample Date	Value Reported	Units	Lab Qualifier	MDA	
Tritium	B0XJT5	699-13-3A	02/07/2000	7.41E+06	pCi/L		2200	
Tritium ^(a)	B0XJT5 DUP	699-13-3A DUP	02/07/2000	7.55E+06	pCi/L		2200	
(a) Lab duplicate. MDA = Minimum detectable activity.								

Constituent	Sample Number	Well Name	Sample Date	Value Reported	Units	Lab Qualifier ^(a)	Reporting Limit	MDA
Antimony-125	B0XK02	699-10-E12	02/08/2000	-9.51E+00	pCi/L	U	1.83E+01	1.83E+01
Beryllium-7	B0XK02	699-10-E12	02/08/2000	-2.02E+01	pCi/L	U	5.44E+01	5.44E+01
Cesium-134	B0XK02	699-10-E12	02/08/2000	-2.97E+00	pCi/L	U	7.35E+00	7.35E+00
Cesium-137	B0XK02	699-10-E12	02/08/2000	3.97E-01	pCi/L	U	9.09E+00	9.09E+00
Cobalt-60	B0XK02	699-10-E12	02/08/2000	-1.01E+00	pCi/L	U	8.87E+00	8.87E+00
Europium-152	B0XK02	699-10-E12	02/08/2000	-2.55E+00	pCi/L	U	2.11E+01	2.11E+01
Europium-154	B0XK02	699-10-E12	02/08/2000	2.11E+00	pCi/L	U	2.33E+01	2.33E+01
Europium-155	B0XK02	699-10-E12	02/08/2000	4.97E+00	pCi/L	U	1.72E+01	1.72E+01
Gross alpha	B0XK02	699-10-E12	02/08/2000	3.71E+00	pCi/L		1.79E+00	1.79E+00
Gross beta	B0XK02	699-10-E12	02/08/2000	1.09E+01	pCi/L		2.99E+00	2.99E+00
Iodine-129	B0XK02	699-10-E12	02/08/2000	1.78E-02	pCi/L	U	2.69E-01	2.69E-01
Plutonium-238	B0XK02	699-10-E12	02/08/2000	-2.75E-02	pCi/L	U	3.04E-01	3.04E-01
Plutonium-239/240	B0XK02	699-10-E12	02/08/2000	-3.93E-03	pCi/L	U	1.98E-01	1.98E-01
Potassium-40	B0XK02	699-10-E12	02/08/2000	-5.01E+01	pCi/L	U	1.96E+02	1.96E+02
Ruthenium-106	B0XK02	699-10-E12	02/08/2000	-1.46E+01	pCi/L	U	6.72E+01	6.72E+01
Technetium-99	B0XK02	699-10-E12	02/08/2000	8.55E+01	pCi/L		1.23E+01	1.23E+01
Total beta radiostrontium	B0XK02	699-10-E12	02/08/2000	-8.58E-02	pCi/L	U	8.11E-01	8.11E-01
Uranium	B0XK02	699-10-E12	02/08/2000	5.15E+00	ug/L		7.29E-02	7.29E-02
Uranium-234	B0XK02	699-10-E12	02/08/2000	2.37E+00	pCi/L		3.61E-01	3.61E-01
Uranium-235	B0XK02	699-10-E12	02/08/2000	9.23E-02	pCi/L	U	2.62E-01	2.62E-01
Uranium-238	B0XK02	699-10-E12	02/08/2000	1.43E+00	pCi/L		3.49E-01	3.49E-01
Uranium-234 ^(b)	B0XK02 DUP	699-10-E12 DUP	02/08/2000	1.88E+00	pCi/L			1.24E+00
Uranium-235 ^(b)	B0XK02 DUP	699-10-E12 DUP	02/08/2000	1.31E-01	pCi/L	U		1.24E+00
Uranium-238 ^(b)	B0XK02 DUP	699-10-E12 DUP	02/08/2000	1.04E+00	pCi/L	U	-	1.09E+00
Antimony-125	B0XJW0	699-12-4D	02/07/2000	-5.16E+00	pCi/L	U		1.94E+01
Beryllium-7	B0XJW0	699-12-4D	02/07/2000	-9.76E+00	pCi/L	U		6.89E+01
Cesium-134	B0XJW0	699-12-4D	02/07/2000	-4.53E+00	pCi/L	U		5.77E+00
Cesium-137	B0XJW0	699-12-4D	02/07/2000	3.09E+00	pCi/L	U		9.67E+00
Cobalt-60	B0XJW0	699-12-4D	02/07/2000	-1.41E+00	pCi/L	U		7.81E+00
Europium-152	B0XJW0	699-12-4D	02/07/2000	-4.75E+00	pCi/L	U		2.23E+01
Europium-154	B0XJW0	699-12-4D	02/07/2000	-8.12E+00	pCi/L	U		2.10E+01
Europium-155	B0XJW0	699-12-4D	02/07/2000	2.67E+00	pCi/L	U		1.51E+01
Gross alpha	B0XJW0	699-12-4D	02/07/2000	3.44E+00	pCi/L			1.80E+00
Gross beta	B0XJW0	699-12-4D	02/07/2000	7.63E+00	pCi/L			2.81E+00
Iodine-129	B0XJW0	699-12-4D	02/07/2000	-1.88E-02	pCi/L	U		2.93E-01
Plutonium-238	B0XJW0	699-12-4D	02/07/2000	-3.55E-03	pCi/L	U		1.78E-01
Plutonium-239/240	BOXIWO	699-12-4D	02/07/2000	0.005+00	DCi/I	1 I		1 20E-01

Table C.3. Radionuclide Results for 618-11 Burial Ground Investigation, February 2000

Table C.3. (contd)

Constituent	Sample Number	Well Name	Sample Date	Value Reported	Units	Lab Qualifier ^(a)	Reporting Limit	MDA
Potassium-40	B0XJW0	699-12-4D	02/07/2000	6.15E+01	pCi/L	U		1.05E+02
Ruthenium-106	B0XJW0	699-12-4D	02/07/2000	-1.11E+01	pCi/L	U		6.97E+01
Strontium-89/90	B0XJW0	699-12-4D	02/07/2000	-1.20E-01	pCi/L	U .		6.06E-01
Technetium-99	B0XJW0	699-12-4D	02/07/2000	5.17E+00	pCi/L	U		1.23E+01
Uranium	B0XJW0	699-12-4D	02/07/2000	5.87E+00	ug/L			7.29E-02
Uranium-234	B0XJW0	699-12-4D	02/07/2000	1.80E+00	pCi/L			3.53E-01
Uranium-235	B0XJW0	699-12-4D	02/07/2000	2.35E-02	pCi/L	U		2.68E-01
Uranium-238	B0XJW0	699-12-4D	02/07/2000	1.91E+00	pCi/L			3.01E-01
Uranium ^(b)	B0XJW0 DUP	699-12-4D DUP	02/07/2000	5.70E+00	ug/L			7.29E-02
Antimony-125	B0XJW9	699-13-1A	02/08/2000	-9.44E+00	pCi/L	U	2.12E+01	2.12E+01
Beryllium-7	B0XJW9	699-13-1A	02/08/2000	7.57E+00	pCi/L	U	7.52E+01	7.52E+01
Cesium-134	B0XJW9	699-13-1A	02/08/2000	-4.72E+00	pCi/L	υ	8.59E+00	8.59E+00
Cesium-137	B0XJW9	699-13-1A	02/08/2000	-2.66E+00	pCi/L	U	7.86E+00	7.86E+00
Cobalt-60	B0XJW9	699-13-1A	02/08/2000	1.08E+00	pCi/L	U	1.06E+01	1.06E+01
Europium-152	B0XJW9	699-13-1A	02/08/2000	6.04E+00	pCi/L	U	2.47E+01	2.47E+01
Europium-154	B0XJW9	699-13-1A	02/08/2000	-1.45E+01	pCi/L	U	2.41E+01	2.41E+01
Europium-155	B0XJW9	699-13-1A	02/08/2000	1.28E+01	pCi/L	U	2.19E+01	2.19E+01
Gross alpha	B0XJW9	699-13-1A	02/08/2000	4.16E+00	pCi/L		1.93E+00	1.93E+00
Gross beta	B0XJW9	699-13-1A	02/08/2000	9.61E+00	pCi/L		2.99E+00	2.99E+00
Iodine-129	B0XJW9	699-13-1A	02/08/2000	1.29E-01	pCi/L	U	2.52E-01	2.52E-01
Plutonium-238	B0XJW9	699-13-1A	02/08/2000	0.00E+00	pCi/L	U	9.84E-02	9.84E-02
Plutonium-239/240	B0XJW9	699-13-1A	02/08/2000	0.00E+00	pCi/L	U	9.84E-02	9.84E-02
Potassium-40	B0XJW9	699-13-1A	02/08/2000	-1.06E+02	pCi/L	U	2.06E+02	2.06E+02
Ruthenium-106	B0XJW9	699-13-1A	02/08/2000	6.06E+00	pCi/L	U	7.94E+01	7.94E+01
Technetium-99	B0XJW9	699-13-1A	02/08/2000	3.01E+01	pCi/L		1.22E+01	1.22E+01
Total beta radiostrontium	B0XJW9	699-13-1A	02/08/2000	2.02E-01	pCi/L	U	6.93E-01	6.93E-01
Uranium-234	B0XJW9	699-13-1A	02/08/2000	2.77E+00	pCi/L		2.46E-01	2.46E-01
Uranium-235	B0XJW9	699-13-1A	02/08/2000	-1.04E-02	pCi/L	U	2.17E-01	2.17E-01
Uranium-238	B0XJW9	699-13-1A	02/08/2000	1.29E+00	pCi/L		2.32E-01	2.32E-01
Gross alpha ^(b)	B0XJW9 DUP	699-13-1A DUP	02/08/2000	4.29E+00	pCi/L			2.06E+00
Plutonium-238 ^(b)	B0XJW9 DUP	699-13-1A DUP	02/08/2000	0.00E+00	pCi/L	U		9.52E-02
Plutonium-239/240 ^(b)	B0XJW9 DUP	699-13-1A DUP	02/08/2000	0.00E+00	pCi/L	U		9.52E-02
Antimony-125	B0XJX6	699-13-1B	02/08/2000	3.58E+00	pCi/L	U	2.10E+01	2.10E+01
Beryllium-7	B0XJX6	699-13-1B	02/08/2000	2.42E+01	pCi/L	U	6.19E+01	6.19E+01
Cesium-134	B0XJX6	699-13-1B	02/08/2000	-4.64E+00	pCi/L	U	6.92E+00	6.92E+00
Cesium-137	B0XJX6	699-13-1B	02/08/2000	1.03E+00	pCi/L	U	8.19E+00	8.19E⊹00

Table C.3. (contd)

Constituent	Sample Number	Well Name	Sample Date	Value Reported	Units	Lab Qualifier ^(a)	Reporting Limit	MDA
Cobalt-60	B0XJX6	699-13-1B	02/08/2000	3.49E-01	pCi/L	U	9.82E+00	9.82E+00
Europium-152	B0XJX6	699-13-1B	02/08/2000	-2.28E+00	pCi/L	U	2.00E+01	2.00E+01
Europium-154	B0XJX6	699-13-1B	02/08/2000	8.71E+00	pCi/L	U	2.96E+01	2.96E+01
Europium-155	B0XJX6	699-13-1B	02/08/2000	-9.32E+00	pCi/L	U .	1.65E+01	1.65E+01
Gross alpha	B0XJX6	699-13-1B	02/08/2000	2.24E+00	pCi/L	J	1.69E+00	1.69E+00
Gross beta	B0XJX6	699-13-1B	02/08/2000	6.52E+00	pCi/L		2.96E+00	2.96E+00
Iodine-129	B0XJX6	699-13-1B	02/08/2000	-3.53E-02	pCi/L	U	2.98E-01	2.98E-01
Potassium-40	B0XJX6	699-13-1B	02/08/2000	-6.82E+01	pCi/L	U	1.28E+02	1.28E+02
Ruthenium-106	B0XJX6	699-13-1B	02/08/2000	-1.15E+01	pCi/L	U	7.05E+01	7.05E+01
Technetium-99	B0XJX6	699-13-1B	02/08/2000	1.58E+00	pCi/L	U	1.22E+01	1.22E+01
Total beta radiostrontium	B0XJX6	699-13-1B	02/08/2000	-4.72E-02	pCi/L	U	7.05E-01	7.05E-01
Antimony-125	вохлуо	699-13-1C	02/08/2000	-2.00E-01	pCi/L	U	1.87E+01	1.87E+01
Beryllium-7	B0XJY0	699-13-1C	02/08/2000	2.05E+01	pCi/L	U	6.62E+01	6.62E+01
Cesium-134	B0XJY0	699-13-1C	02/08/2000	-3.37E+00	pCi/L	U	8.45E+00	8.45E+00
Cesium-137	B0XJY0	699-13-1C	02/08/2000	-1.26E+00	pCi/L	U	8.61E+00	8.61E+00
Cobalt-60	вохлуо	699-13-1C	02/08/2000	2.19E+00	pCi/L	U	1.15E+01	1.15E+01
Europium-152	В0ХЈУ0	699-13-1C	02/08/2000	2.20E+00	pCi/L	U	2.21E+01	2.21E+01
Europium-154	B0XJY0	699-13-1C	02/08/2000	-2.03E+00	pCi/L	U	3.11E+01	3.11E+01
Europium-155	В0ХЈУ0	699-13-1C	02/08/2000	3.43E+00	pCi/L	U	1.71E+01	1.71E+01
Gross alpha	B0XJY0	699-13-1C	02/08/2000	5.59E-01	pCi/L	U	1.88E+00	1.88E+00
Gross beta	B0XJY0	699-13-1C	02/08/2000	7.32E+00	pCi/L		3.02E+00	3.02E+00
Iodine-129	вохлуо	699-13-1C	02/08/2000	1.18E-01	pCi/L	U	2.88E-01	2.88E-01
Potassium-40	B0XJY0	699-13-1C	02/08/2000	-2.12E+01	pCi/L	U	2.04E+02	2.04E+02
Ruthenium-106	B0XJY0	699-13-1C	02/08/2000	-1.29E+00	pCi/L	U	7.28E+01	7.28E+01
Technetium-99	B0XJY0	699-13-1C	02/08/2000	-5.68E+00	pCi/L	U	1.23E+01	1.23E+01
Total beta radiostrontium	B0XJY0	699-13-1C	02/08/2000	2.84E-01	pCi/L	U	7.37E-01	7.37E-01
Antimony-125 ^(b)	B0XJY0 DUP	699-13-1C DUP	02/08/2000	-9.30E+00	pCi/L	U		2.09E+01
Beryllium-7 ^(b)	B0XJY0 DUP	699-13-1C DUP	02/08/2000	5.08E+00	pCi/L	U		7.46E+01
Cesium-134 ^(b)	B0XJY0 DUP	699-13-1C DUP	02/08/2000	-3.24E+00	pCi/L	υ		7.76E+00
Cesium-137 ^(b)	B0XJY0 DUP	699-13-1C DUP	02/08/2000	2.52E+00	pCi/L	U -		9.02E+00
Cobalt-60 ^(b)	B0XJY0 DUP	699-13-1C DUP	02/08/2000	-1.08E+00	pCi/L	U		8.29E+00
Europium-152 ^(b)	B0XJY0 DUP	699-13-1C DUP	02/08/2000	-3.08E+00	pCi/L	U		2.12E+01
Europium-154 ^(b)	B0XJY0 DUP	699-13-1C DUP	02/08/2000	7.67E+00	pCi/L	U		2.99E+01
Europium-155 ^(b)	B0XJY0 DUP	699-13-1C DUP	02/08/2000	3.05E-01	pCi/L	U		1.57E+01
Potassium-40 ^(b)	B0XJY0 DUP	699-13-1C DUP	02/08/2000	3.54E+00	pCi/L	U		2.53E+02
Ruthenium-106 ^(b)	B0XJY0 DUP	699-13-1C DUP	02/08/2000	2.78E+00	pCi/L	U		7.58E+01
Antimony-125	BOXJT8	699-13-3A	02/07/2000	-7.46E+00	pCi/L	U		1.49E+01
Antimony-125	BOXJT9	699-13-3A	02/07/2000	-6.24E+00	pCi/L	U		2.11E+01
Beryllium-7	BOXJT8	699-13-3A	02/07/2000	-1.21E+01	pCi/L	U		5.27E+01

Table C.3. (contd)

Constituent	Sample Number	Well Name	Sample Date	Value Reported	Units	Lab Qualifier ^(a)	Reporting Limit	MDA
Beryllium-7	BOXJT9	699-13-3A	02/07/2000	-3.24E+00	pCi/L	U		6.41E+01
Cesium-134	BOXJT8	699-13-3A	02/07/2000	7.69E-02	pCi/L	U		7.12E+00
Cesium-134	BOXJT9	699-13-3A	02/07/2000	2.54E-01	pCi/L	U		8.54E+00
Cesium-137	BOXJT8	699-13-3A	02/07/2000	-1.47E+00	pCi/L	U		7.49E+00
Cesium-137	BOXJT9	699-13-3A	02/07/2000	-3.27E+00	pCi/L	U		8.21E+00
Cobalt-60	BOXJT8	699-13-3A	02/07/2000	1.54E+00	pCi/L	U		8.89E+00
Cobalt-60	BOXJT9	699-13-3A	02/07/2000	9.89E-01	pCi/L	U		8.75E+00
Europium-152	BOXJT8	699-13-3A	02/07/2000	1.20E+01	pCi/L	U		1.76E+01
Europium-152	BOXJT9	699-13-3A	02/07/2000	1.05E+01	pCi/L	U		2.47E+01
Europium-154	BOXJT8	699-13-3A	02/07/2000	-4.40E+00	pCi/L	U		2.17E+01
Europium-154	BOXJT9	699-13-3A	02/07/2000	4.22E+00	pCi/L	U		2.59E+01
Europium-155	BOXJT8	699-13-3A	02/07/2000	-4.66E+00	pCi/L	U		1.31E+01
Europium-155	BOXJT9	699-13-3A	02/07/2000	-1.33E+00	pCi/L	U		1.46E+01
Gross alpha	BOXJT8	699-13-3A	02/07/2000	6.06E+00	pCi/L			1.78E+00
Gross alpha	BOXJT9	699-13-3A	02/07/2000	6.15E+00	pCi/L			2.28E+00
Gross beta	BOXJT8	699-13-3A	02/07/2000	1.50E+01	pCi/L			3.00E+00
Gross beta	BOXJT9	699-13-3A	02/07/2000	2.08E+01	pCi/L			2.96E+00
Iodine-129	BOXJT8	699-13-3A	02/07/2000	-1.13E-01	pCi/L	U		2.37E-01
Iodine-129	BOXJT9	699-13-3A	02/07/2000	2.31E-01	pCi/L	U		3.40E-01
Plutonium-238	BOXJT8	699-13-3A	02/07/2000	0.00E+00	pCi/L	U		1.02E-01
Plutonium-238	BOXJT9	699-13-3A	02/07/2000	3.51E-02	pCi/L	U		9.52E-02
Plutonium-239/240	BOXJT8	699-13-3A	02/07/2000	0.00E+00	pCi/L	U		1.02E-01
Plutonium-239/240	BOXJT9	699-13-3A	02/07/2000	0.00E+00	pCi/L	U		9.52E-02
Potassium-40	BOXJT8	699-13-3A	02/07/2000	-3.28E+01	pCi/L	U ·		2.51E+02
Potassium-40	BOXJT9	699-13-3A	02/07/2000	1.56E+00	pCi/L	U		7.26E+01
Ruthenium-106	BOXJT8	699-13-3A	02/07/2000	2.72E+01	pCi/L	U		7.45E+01
Ruthenium-106	BOXJT9	699-13-3A	02/07/2000	2.41E+01	pCi/L	υ		8.56E+01
Strontium-89/90	BOXJT8	699-13-3A	02/07/2000	-3.15E-02	pCi/L	U		8.69E-01
Technetium-99	BOXJT8	699-13-3A	02/07/2000	1.86E+04	pCi/L			2.88E+01
Technetium-99	BOXJT9	699-13-3A	02/07/2000	1.36E+04	pCi/L	1.		2.88E+01
Uranium	BOXJT8	699-13-3A	02/07/2000	1.03E+01	ug/L			7.29E-02
Uranium	BOXJT9	699-13-3A	02/07/2000	9.91E+00	ug/L			7.29E-02
Uranium-234	BOXJT8	699-13-3A	02/07/2000	4.35E+00	pCi/L			2.40E-01
Uranium-234	BOXJT9	699-13-3A	02/07/2000	3.80E+00	pCi/L			2.49E-01
Uranium-235	BOXJT8	699-13-3A	02/07/2000	2.86E-01	pCi/L			2.11E-01
Uranium-235	BOXJT9	699-13-3A	02/07/2000	8.26E-02	pCi/L	U		3.23E-01
Uranium-238	BOXJT8	699-13-3A	02/07/2000	3.55E+00	pCi/L			1.94E-01
Uranium-238	BOXJT9	699-13-3A	02/07/2000	3.62E+00	pCi/L			3.23E-01
Antimony-125 ^(b)	BOXJT8DUP	699-13-3A DUP	02/07/2000	-1.93E+00	pCi/L	U		1.89E+01
Beryllium-7 ^(b)	BOXJT8DUP	699-13-3A DUP	02/07/2000	-2.33E+01	pCi/L	U		5.50E+01

Table C.3. (contd)

Constituent	Sample Number	Well Name	Sample Date	Value Reported	Units	Lab Qualifier ^(a)	Reporting Limit	MDA
Cesium-134 ^(b)	BOXJT8DUP	699-13-3A DUP	02/07/2000	-1.32E+00	pCi/L	U		8.10E+00
Cesium-137 ^(b)	BOXJT8DUP	699-13-3A DUP	02/07/2000	-1.23E+00	pCi/L	U		7.14E+00
Cobalt-60 ^(b)	BOXJT8DUP	699-13-3A DUP	02/07/2000	8.54E-01	pCi/L	U		9.82E+00
Europium-152 ^(b)	BOXJT8DUP	699-13-3A DUP	02/07/2000	5.57E+00	pCi/L	U		2.17E+01
Europium-154 ^(b)	BOXJT8DUP	699-13-3A DUP	02/07/2000	-8.96E+00	pCi/L	U		2.26E+01
Europium-155 ^(b)	BOXJT8DUP	699-13-3A DUP	02/07/2000	-7.34E-01	pCi/L	U		1.88E+01
Iodine-129 ^(b)	BOXJT8DUP	699-13-3A DUP	02/07/2000	1.12E-01	pCi/L	U		3.53E-01
Potassium-40 ^(b)	BOXJT8DUP	699-13-3A DUP	02/07/2000	1.88E+01	pCi/L	U		1.53E+02
Ruthenium-106 ^(b)	BOXJT8DUP	699-13-3A DUP	02/07/2000	-1.90E+01	pCi/L	U		6.17E+01
Technetium-99 ^(b)	BOXJT9 DUP	699-13-3A DUP	02/07/2000	1.50E+04	pCi/L			2.88E+01
Antimony-125	B0XK20	699-15-15B	02/08/2000	-1.84E+00	pCi/L	U	1.85E+01	1.85E+01
Beryllium-7	B0XK20	699-15-15B	02/08/2000	-3.90E+00	pCi/L	U ·	6.33E+01	6.33E+01
Cesium-134	B0XK20	699-15-15B	02/08/2000	-2.23E+00	pCi/L	U	7.39E+00	7.39E+00
Cesium-137	B0XK20	699-15-15B	02/08/2000	-3.50E-01	pCi/L	U	7.61E+00	7.61E+00
Cobalt-60	B0XK20	699-15-15B	02/08/2000	4.77E-01	pCi/L	U	7.00E+00	7.00E+00
Europium-152	B0XK20	699-15-15B	02/08/2000	-5.69E+00	pCi/L	U	1.78E+01	1.78E+01
Europium-154	B0XK20	699-15-15B	02/08/2000	1.44E+01	pCi/L	U	2.91E+01	2.91E+01
Europium-155	B0XK20	699-15-15B	02/08/2000	-1.09E+00	pCi/L	U	1.47E+01	1.47E+01
Gross alpha	B0XK20	699-15-15B	02/08/2000	4.22E+00	pCi/L		2.23E+00	2.23E+00
Gross beta	B0XK20	699-15-15B	02/08/2000	8.56E+00	pCi/L		3.00E+00	3.00E+00
Iodine-129	B0XK20	699-15-15B	02/08/2000	-1.27E-02	pCi/L	· U	2.89E-01	2.89E-01
Potassium-40	B0XK20	699-15-15B	02/08/2000	-8.84E+01	pCi/L	U	2.30E+02	2.30E+02
Ruthenium-106	B0XK20	699-15-15B	02/08/2000	1.78E+01	pCi/L	U	7.32E+01	7.32E+01
Technetium-99	B0XK20	699-15-15B	02/08/2000	-4.61E+00	pCi/L	U	1.22E+01	1.22E+01
Uranium-234	B0XK20	699-15-15B	02/08/2000	3.39E+00	pCi/L		4.05E-01	4.05E-01
Uranium-235	B0XK20	699-15-15B	02/08/2000	1.20E-01	pCi/L	U	3.27E-01	3.27E-01
Uranium-238	B0XK20	699-15-15B	02/08/2000	2.28E+00	pCi/L		3.88E-01	3.88E-01
Iodine-129 ^(b)	B0XK20 DUP	699-15-15B DUP	02/08/2000	-5.04E-02	pCi/L	U		2.21E-01
Uranium-234 ^(b)	B0XK20 DUP	699-15-15B DUP	02/08/2000	3.03E+00	pCi/L			2.74E-01
Uranium-235 ^(b)	B0XK20 DUP	699-15-15B DUP	02/08/2000	3.51E-02	pCi/L	U		2.31E-01
Uranium-238 ^(b)	B0XK20 DUP	699-15-15B DUP	02/08/2000	2.55E+00	pCi/L			3.18E-01
Antimony-125	B0XK15	699-17-5	02/07/2000	-1.05E-01	pCi/L	U	1.85E+01	1.85E+01
Beryllium-7	B0XK15	699-17-5	02/07/2000	2.83E+01	pCi/L	U	6.40E+01	6.40E+01
Cesium-134	B0XK15	699-17-5	02/07/2000	-5.37E+00	pCi/L	U	6.30E+00	6.30E+00
Cesium-137	B0XK15	699-17-5	02/07/2000	3.19E+00	pCi/L	U	8.55E+00	8.55E+00
Cobalt-60	B0XK15	699-17-5	02/07/2000	-8.42E-01	pCi/L	U	8.28E+00	8.28E+00

Table C.3. (contd)

Constituent	Sample Number	Well Name	Sample Date	Value Reported	Units	Lab Qualifier ^(a)	Reporting Limit	MDA
Europium-152	B0XK15	699-17-5	02/07/2000	6.42E+00	pCi/L	U	2.09E+01	2.09E+01
Europium-154	B0XK15	699-17-5	02/07/2000	1.37E+00	pCi/L	U	2.16E+01	2.16E+01
Europium-155	B0XK15	699-17-5	02/07/2000	-8.78E-01	pCi/L	U	1.51E+01	1.51E+01
Gross alpha	B0XK15	699-17-5	02/07/2000	2.48E+00	pCi/L	J	2.04E+00	2.04E+00
Gross beta	B0XK15	699-17-5	02/07/2000	7.92E+00	pCi/L		2.82E+00	2.82E+00
Iodine-129	B0XK15	699-17-5	02/07/2000	-7.25E-02	pCi/L	U	2.08E-01	2.08E-01
Potassium-40	B0XK15	699-17-5	02/07/2000	4.77E+01	pCi/L	U	4.85E+01	4.85E+01
Ruthenium-106	B0XK15	699-17-5	02/07/2000	-1.48E+01	pCi/L	U	6.52E+01	6.52E+01
Technetium-99	B0XK15	699-17-5	02/07/2000	2.18E+00	pCi/L	U	1.23E+01	1.23E+01
Uranium-234	B0XK15	699-17-5	02/07/2000	1.36E+00	pCi/L		4.08E-01	4.08E-01
Uranium-235	B0XK15	699-17-5	02/07/2000	1.12E-01	pCi/L	U	3.17E-01	3.17E-01
Uranium-238	B0XK15	699-17-5	02/07/2000	9.85E-01	pCi/L	J	3.77E-01	3.77E-01
Antimony-125 ^(b)	B0XK15 DUP	699-17-5 DUP	02/07/2000	4.57E+00	pCi/L	U		1.92E+01
Beryllium-7 ^(b)	B0XK15 DUP	699-17-5 DUP	02/07/2000	-1.52E+01	pCi/L	U		6.35E+01
Cesium-134 ^(b)	B0XK15 DUP	699-17-5 DUP	02/07/2000	1.43E+00	pCi/L	U		8.07E+00
Cesium-137 ^(b)	B0XK15 DUP	699-17-5 DUP	02/07/2000	1.94E+00	pCi/L	U		8.31E+00
Cobalt-60 ^(b)	B0XK15 DUP	699-17-5 DUP	02/07/2000	-2.24E+00	pCi/L	U		7.84E+00
Europium-152 ^(b)	B0XK15 DUP	699-17-5 DUP	02/07/2000	-2.01E+00	pCi/L	U		1.76E+01
Europium-154 ^(b)	B0XK15 DUP	699-17-5 DUP	02/07/2000	2.98E+00	pCi/L	U		2.52E+01
Europium-155 ^(b)	B0XK15 DUP	699-17-5 DUP	02/07/2000	3.05E+00	pCi/L	U		1.35E+01
Potassium-40 ^(b)	B0XK15 DUP	699-17-5 DUP	02/07/2000	3.15E+01	pCi/L	U		7.00E+01
Ruthenium-106 ^(b)	B0XK15 DUP	699-17-5 DUP	02/07/2000	-1.13E+01	pCi/L	U		6.59E+01
Antimony-125	B0XK23	699-21-6	02/07/2000	-1.69E+01	pCi/L	U	2.02E+01	2.02E+01
Beryllium-7	B0XK23	699-21-6	02/07/2000	1.30E+01	pCi/L	U	7.62E+01	7.62E+01
Cesium-134	B0XK23	699-21-6	02/07/2000	-4.93E+00	pCi/L	U	8.80E+00	8.80E+00
Cesium-137	B0XK23	699-21-6	02/07/2000	-1.44E+00	pCi/L	U	8.53E+00	8.53E+00
Cobalt-60	B0XK23	699-21-6	02/07/2000	2.63E+00	pCi/L	U	1.09E+01	1.09E+-01
Europium-152	B0XK23	699-21-6	02/07/2000	2.93E+00	pCi/L	U	2.30E+01	2.30E-01
Europium-154	B0XK23	699-21-6	02/07/2000	8.80E+00	pCi/L	U	3.18E+01	3.18E-01
Europium-155	B0XK23	699-21-6	02/07/2000	2.92E+00	pCi/L	U	2.13E+01	2.13E+01
Gross alpha	B0XK23	699-21-6	02/07/2000	2.08E+00	pCi/L	J	1.77E+00	1.77E-⊦00
Gross beta	B0XK23	699-21-6	02/07/2000	9.52E+00	pCi/L		2.72E+00	2.72E+00
Iodine-129	B0XK23	699-21-6	02/07/2000	7.73E-02	pCi/L	U	3.33E-01	3.33E-01

Table C.3. (contd)

Constituent	Sample Number	Well Name	Sample Date	Value Reported	Units	Lab Qualifier ^(a)	Reporting Limit	MDA
Potassium-40	B0XK23	699-21-6	02/07/2000	-2.29E+01	pCi/L	U	2.24E+02	2.24E+02
Ruthenium-106	B0XK23	699-21-6	02/07/2000	-1.79E+01	pCi/L	Ŭ	7.15E+01	7.15E+01
Technetium-99	B0XK23	699-21-6	02/07/2000	5.18E+01	pCi/L		1.23E+01	1.23E+01
Uranium-234	B0XK23	699-21-6	02/07/2000	1.56E+00	pCi/L		2.62E-01	2.62E-01
Uranium-235	B0XK23	699-21-6	02/07/2000	-1.11E-02	pCi/L	U	2.31E-01	2.31E-01
Uranium-238	B0XK23	699-21-6	02/07/2000	9.58E-01	pCi/L	J	2.47E-01	2.47E-01
Antimony-125	B0XK12	699-8-17	02/08/2000	2.65E+00	pCi/L	U	2.26E+01	2.26E+01
Beryllium-7	B0XK12	699-8-17	02/08/2000	-1.26E+01	pCi/L	U	5.62E+01	5.62E+01
Cesium-134	B0XK12	699-8-17	02/08/2000	-6.01E+00	pCi/L	U	6.60E+00	6.60E+00
Cesium-137	B0XK12	699-8-17	02/08/2000	3.55E+00	pCi/L	U	9.57E+00	9.57E+00
Cobalt-60	B0XK12	699-8-17	02/08/2000	7.01E-01	pCi/L	U	7.81E+00	7.81E+00
Europium-152	B0XK12	699-8-17	02/08/2000	1.46E+01	pCi/L	υ	2.45E+01	2.45E+01
Europium-154	B0XK12	699-8-17	02/08/2000	3.71E+00	pCi/L	υ	2.68E+01	2.68E+01
Europium-155	B0XK12	699-8-17	02/08/2000	3.74E+00	pCi/L	U	1.59E+01	1.59E+01
Gross alpha	B0XK12	699-8-17	02/08/2000	3.83E+00	pCi/L		1.53E+00	1.53E+00
Gross beta	B0XK12	699-8-17	02/08/2000	2.18E+01	pCi/L		2.80E+00	2.80E+00
Iodine-129	B0XK12	699-8-17	02/08/2000	1.72E-01	pCi/L	U	2.96E-01	2.96E-01
Potassium-40	B0XK12	699-8-17	02/08/2000	2.12E+01	pCi/L	U	2.53E+02	2.53E+02
Ruthenium-106	B0XK12	699-8-17	02/08/2000	-2.20E+01	pCi/L	U	6.98E+01	6.98E+01
Technetium-99	B0XK12	699-8-17	02/08/2000	1.56E+02	pCi/L		1.23E+01	1.23E+01
Uranium-234	B0XK12	699-8-17	02/08/2000	1.53E+00	pCi/L		2.56E-01	2.56E-01
Uranium-235	B0XK12	699-8-17	02/08/2000	4.32E-02	pCi/L	U	2.35E-01	2.35E-01
Uranium-238	B0XK12	699-8-17	02/08/2000	1.32E+00	pCi/L		2.74E-01	2.74E-01
Antimony-125	B0XJY4	699-9-E2	02/10/2000	2.38E+00	pCi/L	U	2.08E+01	2.08E+01
Beryllium-7	B0XJY4	699-9-E2	02/10/2000	-1.40E+00	pCi/L	U	6.60E+01	6.60E+01
Cesium-134	B0XJY4	699-9-E2	02/10/2000	-3.58E+00	pCi/L	U	7.24E+00	7.24E+00
Cesium-137	B0XJY4	699-9-E2	02/10/2000	-2.92E+00	pCi/L	U	6.93E+00	6.93E+00
Cobalt-60	B0XJY4	699-9-E2	02/10/2000	2.31E+00	pCi/L	U	1.00E+01	1.00E+01
Europium-152	B0XJY4	699-9-E2	02/10/2000	4.51E+00	pCi/L	U	2.25E+01	2.25E+01
Europium-154	B0XJY4	699-9-E2	02/10/2000	2.82E+00	pCi/L	U	3.20E+01	3.20E+01
Europium-155	B0XJY4	699-9-E2	02/10/2000	-2.13E+00	pCi/L	U	1.88E+01	1.88E+01
Gross alpha	B0XJY4	699-9-E2	02/10/2000	1.98E+00	pCi/L	J	1.32E+00	1.32E+00
Gross beta	B0XJY4	699-9-E2	02/10/2000	7.35E+00	pCi/L		3.11E+00	3.11E+00
Iodine-129	B0XJY4	699-9-E2	02/10/2000	1.83E-01	pCi/L	U	3.52E-01	3.52E-01
Potassium-40	B0XJY4	699-9-E2	02/10/2000	-3.63E+01	pCi/L	U	1.44E+02	1.44E+02
Ruthenium-106	B0XJY4	699-9-E2	02/10/2000	-1.07E+01	pCi/L	U	6.23E+01	6.23E+01
Technetium-99	B0XJY4	699-9-E2	02/10/2000	-3.32E+00	pCi/L	U	1.25E+01	1.25E+01
Total beta radiostrontium	B0XJY4	699-9-E2	02/10/2000	-5.44E-02	pCi/L	U	6.42E-01	6.42E-01
Uranium-234	B0XJY4	699-9-E2	02/10/2000	1.28E+00	pCi/L	,	3.96E-01	3.96E-01

Table C.3. (contd)

Constituent	Sample Number	Well Name	Sample Date	Value Reported	Units	Lab Qualifier ^(a)	Reporting Limit	MDA
Uranium-235	B0XJY4	699-9-E2	02/10/2000	7.15E-02	pCi/L	U	3.07E-01	3.07E-01
Uranium-238	B0XJY4	699-9-E2	02/10/2000	1.13E+00	pCi/L		3.88E-01	3.88E-01
Antimony-125 ^(b)	B0XJY4 DUP	699-9-E2 DUP	02/10/2000	6.22E-01	pCi/L	U		2.24E+01
Beryllium-7 ^(b)	B0XJY4 DUP	699-9-E2 DUP	02/10/2000	1.72E+01	pCi/L	U		8.90E+01
Cesium-134 ^(b)	B0XJY4 DUP	699-9-E2 DUP	02/10/2000	-5.94E+00	pCi/L	U		8.72E+00
Cesium-137 ^(b)	B0XJY4 DUP	699-9-E2 DUP	02/10/2000	1.63E+00	pCi/L	U		9.54E+00
Cobalt-60 ^(b)	B0XJY4 DUP	699-9-E2 DUP	02/10/2000	-1.84E+00	pCi/L	U		9.25E+00
Europium-152 ^(b)	B0XJY4 DUP	699-9-E2 DUP	02/10/2000	7.70E+00	pCi/L	U		2.39E+01
Europium-154 ^(b)	B0XJY4 DUP	699-9-E2 DUP	02/10/2000	4.22E+00	pCi/L	U		2.81E+01
Europium-155 ^(b)	B0XJY4 DUP	699-9-E2 DUP	02/10/2000	-9.94E-01	pCi/L	U		1.99E+01
Potassium-40 ^(b)	B0XJY4 DUP	699-9-E2 DUP	02/10/2000	-2.14E+01	pCi/L	U		2.28E+02
Ruthenium-106 ^(b)	B0XJY4 DUP	699-9-E2 DUP	02/10/2000	7.23E+00	pCi/L	U		8.75E+01
Technetium-99 ^(b)	B0XJY4 DUP	699-9-E2 DUP	02/10/2000	2.66E+00	pCi/L	U		1.25E+01
Total beta radiostrontium ^(b)	B0XJY4 DUP	699-9-E2 DUP	02/10/2000	-5.14E-02	pCi/L	U		7.41E-01
Antimony-125	B0XKC1	C3071/ENW-MW1	02/09/2000	-3.60E+00	pCi/L	U	2.00E+01	2.00E+01
Beryllium-7	B0XKC1	C3071/ENW-MW1	02/09/2000	6.28E+00	pCi/L	U	8.34E+01	8.34E+01
Cesium-134	B0XKC1	C3071/ENW-MW1	02/09/2000	2.48E+00	pCi/L	U	8.47E+00	8.47E+00
Cesium-137	B0XKC1	C3071/ENW-MW1	02/09/2000	3.44E-01	pCi/L	<u> </u>	8.06E+00	8.06E+00
Cobalt-60	B0XKC1	C3071/ENW-MW1	02/09/2000	5.09E+00	pCi/L	U	1.24E+01	1.24E-+01
Europium-152	B0XKC1	C3071/ENW-MW1	02/09/2000	5.08E-01	pCi/L	U	2.19E+01	2.19E+01
Europium-154	B0XKC1	C3071/ENW-MW1	02/09/2000	1.23E+01	pCi/L	U	3.14E+01	3.14E+01
Europium-155	B0XKC1	C3071/ENW-MW1	02/09/2000	2.20E-01	pCi/L	U	1.61E+01	1.61E+01
Gross alpha	B0XKC1	C3071/ENW-MW1	02/09/2000	5.23E+00	pCi/L		3.23E+00	3.23E+00
Gross beta	B0XKC1	C3071/ENW-MW1	02/09/2000	3.07E+01	pCi/L		3.39E+00	3.39E+00
Iodine-129	B0XKC1	C3071/ENW-MW1	02/09/2000	5.62E-02	pCi/L	U	2.68E-01	2.68E-01
Potassium-40	B0XKC1	C3071/ENW-MW1	02/09/2000	2.08E+01	pCi/L	U	9.38E+01	9.38E+01
Ruthenium-106	B0XKC1	C3071/ENW-MW1	02/09/2000	1.88E+01	pCi/L	U	7.90E+01	7.90E+01
Technetium-99	B0XKC1	C3071/ENW-MW1	02/09/2000	8.84E+01	pCi/L		1.26E+01	1.26E+01
Uranium-234	B0XKC1	C3071/ENW-MW1	02/09/2000	5.93E+00	pCi/L		4.68E-01	4.68E-01
Uranium-235	B0XKC1	C3071/ENW-MW1	02/09/2000	3.38E-01	pCi/L	U	3.63E-01	3.63E-01
Uranium-238	B0XKC1	C3071/ENW-MW1	02/09/2000	5.09E+00	pCi/L		4.33E-01	4.33E-01
Antimony-125 ^(b)	B0XKC1 DUP	C3071/ENW-MW1 DUP	02/09/2000	2.24E+00	pCi/L	U		2.36E+01
Beryllium-7 ^(b)	B0XKC1 DUP	C3071/ENW-MW1 DUP	02/09/2000	-1.72E+01	pCi/L	U		7.28E+01
Cesium-134 ^(b)	B0XKC1 DUP	C3071/ENW-MW1 DUP	02/09/2000	-6.55E+00	pCi/L	υ		8.11E+00
Cesium-137 ^(b)	B0XKC1 DUP	C3071/ENW-MW1 DUP	02/09/2000	1.01E+00	pCi/L	U		9.54E+00
Cobalt-60 ^(b)	B0XKC1 DUP	C3071/ENW-MW1 DUP	02/09/2000	5.22E+00	pCi/L	U		1.15E+01

Table C.3. (contd)

Constituent	Sample Number	Well Name	Sample Date	Value Reported	Units	Lab Qualifier ^(a)	Reporting Limit	MDA
Europium-152 ^(b)	B0XKC1 DUP	C3071/ENW-MW1 DUP	02/09/2000	-5.36E+00	pCi/L	U		2.18E+01
Europium-154 ^(b)	B0XKC1 DUP	C3071/ENW-MW1 DUP	02/09/2000	1.20E+01	pCi/L	U		3.39E+01
Europium-155 ^(b)	B0XKC1 DUP	C3071/ENW-MW1 DUP	02/09/2000	-2.45E+00	pCi/L	U		2.04E+01
Gross alpha ^(b)	B0XKC1 DUP	C3071/ENW-MW1 DUP	02/09/2000	7.26E+00	pCi/L			2.86E+00
Potassium-40 ^(b)	B0XKC1 DUP	C3071/ENW-MW1 DUP	02/09/2000	-5.15E+01	pCi/L	U		2.20E+02
Ruthenium-106 ^(b)	B0XKC1 DUP	C3071/ENW-MW1 DUP	02/09/2000	2.59E+01	pCi/L	U		8.74E+01
Technetium-99 ^(b)	B0XKC1 DUP	C3071/ENW-MW1 DUP	02/09/2000	8.82E+01	pCi/L			1.27E+01
Antimony-125	B0XKC2	C3072/ENW-MW2	02/10/2000	-2.39E+00	pCi/L	U	2.05E+01	2.05E+01
Beryllium-7	B0XKC2	C3072/ENW-MW2	02/10/2000	2.17E+01	pCi/L	U	8.33E+01	8.33E+01
Cesium-134	B0XKC2	C3072/ENW-MW2	02/10/2000	-2.68E+00	pCi/L	U	7.80E+00	7.80E+00
Cesium-137	B0XKC2	C3072/ENW-MW2	02/10/2000	3.09E+00	pCi/L	· · U	8.90E+00	8.90E+00
Cobalt-60	B0XKC2	C3072/ENW-MW2	02/10/2000	-3.01E+00	pCi/L	U	9.21E+00	9.21E+00
Europium-152	B0XKC2	C3072/ENW-MW2	02/10/2000	3.31E+00	pCi/L	U	2.34E+01	2.34E+01
Europium-154	B0XKC2	C3072/ENW-MW2	02/10/2000	-1.71E+00	pCi/L	U	2.63E+01	2.63E+01
Europium-155	B0XKC2	C3072/ENW-MW2	02/10/2000	-1.29E+00	pCi/L	U	1.52E+01	1.52E+01
Gross alpha	B0XKC2	C3072/ENW-MW2	02/10/2000	2.21E+01	pCi/L		3.16E+00	3.16E+00
Gross beta	B0XKC2	C3072/ENW-MW2	02/10/2000	2.29E+01	pCi/L		4.47E+00	4.47E+00
Iodine-129	B0XKC2	C3072/ENW-MW2	02/10/2000	-6.29E-02	pCi/L	U	2.41E-01	2.41E-01
Potassium-40	B0XKC2	C3072/ENW-MW2	02/10/2000	1.10E+01	pCi/L	U	8.86E+01	8.86E+01
Ruthenium-106	B0XKC2	C3072/ENW-MW2	02/10/2000	-1.12E+01	pCi/L	U	7.43E+01	7.43E+01
Technetium-99	B0XKC2	C3072/ENW-MW2	02/10/2000	9.96E+00	pCi/L	U	1.25E+01	1.25E+01
Uranium-234	B0XKC2	C3072/ENW-MW2	02/10/2000	1.22E+01	pCi/L		2.17E-01	2.17E-01
Uranium-235	B0XKC2	C3072/ENW-MW2	02/10/2000	5.80E-01	pCi/L	J	2.79E-01	2.79E-01
Uranium-238	B0XKC2	C3072/ENW-MW2	02/10/2000	1.09E+01	pCi/L		3.24E-01	3.24E-01
Gross alpha ^(b)	B0XKC2 DUP	C3072/ENW-MW2 DUP	02/10/2000	2.59E+01	pCi/L			2.83E+00
Iodine-129 ^(b)	B0XKC2 DUP	C3072/ENW-MW2 DUP	02/10/2000	1.66E-02	pCi/L	U		3.36E-01
Antimony-125	B0XKC3	C3073/ENW-MW3	02/10/2000	5.63E+00	pCi/L	U	1.84E+01	1.84E+01
Beryllium-7	B0XKC3	C3073/ENW-MW3	02/10/2000	2.96E+01	pCi/L	U	6.79E+01	6.79E+01
Cesium-134	B0XKC3	C3073/ENW-MW3	02/10/2000	-1.30E+00	pCi/L	U	6.76E+00	6.76E+00
Cesium-137	B0XKC3	C3073/ENW-MW3	02/10/2000	2.14E+00	pCi/L	U	8.49E+00	8.49E+00
Cobalt-60	B0XKC3	C3073/ENW-MW3	02/10/2000	1.15E+00	pCi/L	U	7.67E+00	7.67E+00
Europium-152	B0XKC3	C3073/ENW-MW3	02/10/2000	3.01E+00	pCi/L	U	1.81E+01	1.81E+01
Europium-154	B0XKC3	C3073/ENW-MW3	02/10/2000	6.78E+00	pCi/L	U	2.49E+01	2.49E+01

Table C.3. (contd)

Constituent	Sample Number	Well Name	Sample Date	Value Reported	Units	Lab Qualifier ^(a)	Reporting Limit	MDA
Europium-155	B0XKC3	C3073/ENW-MW3	02/10/2000	-3.16E-01	pCi/L	U	1.38E+01	1.38E+01
Gross alpha	B0XKC3	C3073/ENW-MW3	02/10/2000	1.84E+01	pCi/L		2.56E+00	2.56E+00
Gross beta	B0XKC3	C3073/ENW-MW3	02/10/2000	1.44E+01	pCi/L		3.94E+00	3.94E+00
Iodine-129	B0XKC3	C3073/ENW-MW3	02/10/2000	8.33E-03	pCi/L	U	2.09E-01	2.09E-01
Potassium-40	B0XKC3	C3073/ENW-MW3	02/10/2000	-6.32E+01	pCi/L	U	2.22E+02	2.22E+02
Ruthenium-106	B0XKC3	C3073/ENW-MW3	02/10/2000	-7.06E-01	pCi/L	U	6.84E+01	6.84E+01
Technetium-99	B0XKC3	C3073/ENW-MW3	02/10/2000	3.82E+00	pCi/L	U	1.25E+01	1.25E+01
Uranium-234	B0XKC3	C3073/ENW-MW3	02/10/2000	7.67E+00	pCi/L		5.05E-01	5.05E-01
Uranium-235	B0XKC3	C3073/ENW-MW3	02/10/2000	7.94E-01	pCi/L	J	4.63E-01	4.63E-01
Uranium-238	B0XKC3	C3073/ENW-MW3	02/10/2000	7.96E+00	pCi/L		5.72E-01	5.72E-01
Gross beta ^(b)	B0XKC3 DUP	C3073/ENW-MW3 DUP	02/10/2000	1.57E+01	pCi/L			3.83E+00
Antimony-125	B0XKC4	C3074/ENW-MW4	02/10/2000	-9.66E+00	pCi/L	U	1.53E+01	1.53E+01
Beryllium-7	B0XKC4	C3074/ENW-MW4	02/10/2000	2.00E+01	pCi/L	U	7.40E+01	7.40E+01
Cesium-134	B0XKC4	C3074/ENW-MW4	02/10/2000	-1.44E+00	pCi/L	U	6.56E+00	6.56E+00
Cesium-137	B0XKC4	C3074/ENW-MW4	02/10/2000	1.59E+00	pCi/L	U	7.53E+00	7.53E+00
Cobalt-60	B0XKC4	C3074/ENW-MW4	02/10/2000	-1.24E+00	pCi/L	U	8.99E+00	8.99E+00
Europium-152	B0XKC4	C3074/ENW-MW4	02/10/2000	1.32E+01	pCi/L	U	2.38E+01	2.38E+01
Europium-154	B0XKC4	C3074/ENW-MW4	02/10/2000	-2.61E+00	pCi/L	U	2.34E+01	2.34E+01
Europium-155	B0XKC4	C3074/ENW-MW4	02/10/2000	1.97E+00	pCi/L	U	1.47E+01	1.47E-01
Gross alpha	B0XKC4	C3074/ENW-MW4	02/10/2000	6.50E+00	pCi/L		1.37E+00	1.37E-+00
Gross beta	B0XKC4	C3074/ENW-MW4	02/10/2000	1.40E+01	pCi/L		3.20E+00	3.20E-+00
Iodine-129	B0XKC4	C3074/ENW-MW4	02/10/2000	-6.91E-02	pCi/L	U	2.59E-01	2.59E-01
Potassium-40	B0XKC4	C3074/ENW-MW4	02/10/2000	2.74E+01	pCi/L	U	1.87E+02	1.87E-+02
Ruthenium-106	B0XKC4	C3074/ENW-MW4	02/10/2000	7.40E-01	pCi/L	U	7.35E+01	7.35E+01
Technetium-99	B0XKC4	C3074/ENW-MW4	02/10/2000	2.81E+01	pCi/L		1.25E+01	1.25E+01
Uranium-234	B0XKC4	C3074/ENW-MW4	02/10/2000	2.01E+00	pCi/L		7.31E-01	7.31E-01
Uranium-235	B0XKC4	C3074/ENW-MW4	02/10/2000	1.93E-01	pCi/L	U	5.47E-01	5.47E-01
Uranium-238	B0XKC4	C3074/ENW-MW4	02/10/2000	2.57E+00	pCi/L		6.79E-01	6.79E-01
Uranium-234 ^(b)	B0XKC4 DUP	C3074/ENW-MW4 DUP	02/10/2000	1.98E+00	pCi/L			6.94E-01
Uranium-235 ^(b)	B0XKC4 DUP	C3074/ENW-MW4 DUP	02/10/2000	2.19E-01	pCi/L	U		5.16E-01
Uranium-238 ^(b)	B0XKC4 DUP	C3074/ENW-MW4 DUP	02/10/2000	2.44E+00	pCi/L			6.33E-01
Antimony-125	B0XKC5	C3075/ENW-MW5	02/09/2000	-9.89E-01	pCi/L	U	1.81E+01	1.81E+01
Beryllium-7	B0XKC5	C3075/ENW-MW5	02/09/2000	1.12E+01	pCi/L	U	7.61E+01	7.61E+01
Cesium-134	B0XKC5	C3075/ENW-MW5	02/09/2000	-5.96E+00	pCi/L	U	5.84E+00	5.84E+00
Cesium-137	B0XKC5	C3075/ENW-MW5	02/09/2000	-3.31E+00	pCi/L	U	6.16E+00	6.16E+00
Cobalt-60	B0XKC5	C3075/ENW-MW5	02/09/2000	5.77E-01	pCi/L	U	8.45E+00	8.45E+00
Europium-152	B0XKC5	C3075/ENW-MW5	02/09/2000	4.32E+00	pCi/L	U	1.99E+01	1.99E+01

Table C.3. (contd)

Constituent	Sample Number	Well Name	Sample Date	Value Reported	Units	Lab Qualifier ⁽²⁾	Reporting Limit	MDA
Europium-154	B0XKC5	C3075/ENW-MW5	02/09/2000	-7.33E-01	pCi/L	U	2.37E+01	2.37E+01
Europium-155	B0XKC5	C3075/ENW-MW5	02/09/2000	3.68E+00	pCi/L	U	1.52E+01	1.52E+01
Gross alpha	B0XKC5	C3075/ENW-MW5	02/09/2000	3.51E+00	pCi/L		1.85E+00	1.85E+00
Gross beta	B0XKC5	C3075/ENW-MW5	02/09/2000	1.13E+01	pCi/L		3.15E+00	3.15E+00
Iodine-129	B0XKC5	C3075/ENW-MW5	02/09/2000	7.26E-02	pCi/L	U	3.20E-01	3.20E-01
Potassium-40	B0XKC5	C3075/ENW-MW5	02/09/2000	1.42E+01	pCi/L	U.	1.82E+02	1.82E+02
Ruthenium-106	B0XKC5	C3075/ENW-MW5	02/09/2000	3.18E+00	pCi/L	U	7.17E+01	7.17E+01
Technetium-99	B0XKC5	C3075/ENW-MW5	02/09/2000	2.87E+01	pCi/L		1.26E+01	1.26E+01
Uranium-234	B0XKC5	C3075/ENW-MW5	02/09/2000	1.45E+00	pCi/L		3.61E-01	3.61E-01
Uranium-235	B0XKC5	C3075/ENW-MW5	02/09/2000	1.60E-02	pCi/L	U	2.86E-01	2.86E-01
Uranium-238	B0XKC5	C3075/ENW-MW5	02/09/2000	9.28E-01	pCi/L	J	3.39E-01	3.39E-01
Gross beta ^(b)	B0XKC5 DUP	C3075/ENW-MW5 DUP	02/09/2000	1.08E+01	pCi/L	•		3.16E+00
Iodine-129 ^(b)	B0XKC5 DUP	C3075/ENW-MW5 DUP	02/09/2000	6.23E-02	pCi/L	U		2.95E-01
Antimony-125	B0XKC6	C3076/ENW-MW6	02/09/2000	2.52E+00	pCi/L	U	2.42E+01	2.42E+01
Beryllium-7	B0XKC6	C3076/ENW-MW6	02/09/2000	-3.46E+01	pCi/L	U	6.77E+01	6.77E+01
Cesium-134	B0XKC6	C3076/ENW-MW6	02/09/2000	-1.48E+00	pCi/L	U	8.88E+00	8.88E+00
Cesium-137	B0XKC6	C3076/ENW-MW6	02/09/2000	2.91E+00	pCi/L	U	9.79E+00	9.79E+00
Cobalt-60	B0XKC6	C3076/ENW-MW6	02/09/2000	-2.24E+00	pCi/L	U	9.99E+00	9.99E+00
Europium-152	B0XKC6	C3076/ENW-MW6	02/09/2000	5.04E+00	pCi/L	U	2.34E+01	2.34E+01
Europium-154	B0XKC6	C3076/ENW-MW6	02/09/2000	-5.49E-01	pCi/L	U	3.03E+01	3.03E+01
Europium-155	B0XKC6	C3076/ENW-MW6	02/09/2000	-1.26E+00	pCi/L	U	2.02E+01	2.02E+01
Gross alpha	B0XKC6	C3076/ENW-MW6	02/09/2000	7.66E+00	pCi/L		2.49E+00	2.49E+00
Gross beta	B0XKC6	C3076/ENW-MW6	02/09/2000	1.26E+01	pCi/L		3.17E+00	3.17E+00
Iodine-129	B0XKC6	C3076/ENW-MW6	02/09/2000	7.98E-02	pCi/L	U	3.43E-01	3.43E-01
Potassium-40	B0XKC6	C3076/ENW-MW6	02/09/2000	2.74E+01	pCi/L	U	2.39E+02	2.39E+02
Ruthenium-106	B0XKC6	C3076/ENW-MW6	02/09/2000	-4.86E+01	pCi/L	U	7.68E+01	7.68E+01
Technetium-99	B0XKC6	C3076/ENW-MW6	02/09/2000	7.13E+00	pCi/L	U	1.26E+01	1.26E+01
Uranium-234	B0XKC6	C3076/ENW-MW6	02/09/2000	4.14E+00	pCi/L		2.23E-01	2.23E-01
Uranium-235	B0XKC6	C3076/ENW-MW6	02/09/2000	2.16E-01	pCi/L	J	2.04E-01	2.04E-01
Uranium-238	B0XKC6	C3076/ENW-MW6	02/09/2000	4.36E+00	pCi/L		2.38E-01	2.38E-01
Uranium-234 ^(b)	B0XKC6 DUP	C3076/ENW-MW6 DUP	02/09/2000	5.18E+00	pCi/L			2.29E-01
Uranium-235 ^(b)	B0XKC6 DUP	C3076/ENW-MW6 DUP	02/09/2000	1.12E-01	pCi/L	U,		2.84E-01
Uranium-238 ^(b)	B0XKC6 DUP	C3076/ENW-MW6 DUP	02/09/2000	4.92E+00	pCi/L			3.25E-01
Antimony-125	B0XKC7	C3077/ENW-MW7	02/15/2000	-8.47E+00	pCi/L	U		1.54E+01
Beryllium-7	B0XKC7	C3077/ENW-MW7	02/15/2000	-1.27E+00	pCi/L	U		5.69E+01
Cesium-134	B0XKC7	C3077/ENW-MW7	02/15/2000	1.52E+00	pCi/L	U		7.91E+00

Table C.3. (contd)

Constituent	Sample Number	Well Name	Sample Date	Value Reported	Units	Lab Qualifier ^(a)	Reporting Limit	MDA
Cesium-137	B0XKC7	C3077/ENW-MW7	02/15/2000	1.34E+00	pCi/L	U		7.69E+00
Cobalt-60	B0XKC7	C3077/ENW-MW7	02/15/2000	6.67E+00	pCi/L	U		1.20E+01
Europium-152	B0XKC7	C3077/ENW-MW7	02/15/2000	8.88E+00	pCi/L	U		2.18E+01
Europium-154	B0XKC7	C3077/ENW-MW7	02/15/2000	4.43E+00	pCi/L	U		2.66E+01
Europium-155	B0XKC7	C3077/ENW-MW7	02/15/2000	8.04E+00	pCi/L	U		1.73E+01
Gross alpha	B0XKC7	C3077/ENW-MW7	02/15/2000	3.01E+01	pCi/L			4.14E+00
Gross beta	B0XKC7	C3077/ENW-MW7	02/15/2000	4.25E+01	pCi/L			5.09E+00
Iodine-129	B0XKC7	C3077/ENW-MW7	02/15/2000	3.61E-02	pCi/L	U		3.03E-01
Potassium-40	B0XKC7	C3077/ENW-MW7	02/15/2000	-2.03E+01	pCi/L	U		1.98E+02
Ruthenium-106	B0XKC7	C3077/ENW-MW7	02/15/2000	9.93E+00	pCi/L	U		6.76E+01
Technetium-99	B0XKC7	C3077/ENW-MW7	02/15/2000	-2.01E-01	pCi/L	U		1.21E+01
Uranium-234	B0XKC7	C3077/ENW-MW7	02/15/2000	1.18E+00	pCi/L			2.29E-01
Uranium-235	B0XKC7	C3077/ENW-MW7	02/15/2000	8.45E-02	pCi/L	U		2.10E-01
Uranium-238	B0XKC7	C3077/ENW-MW7	02/15/2000	1.32E+00	pCi/L			2.45E-01
Antimony-125 ^(b)	B0XKC7 DUP	C3077/ENW-MW7 DUP	02/15/2000	-1.10E+00	pCi/L	U		2.26E+01
Beryllium-7 ^(b)	B0XKC7 DUP	C3077/ENW-MW7 DUP	02/15/2000	-2.72E+01	pCi/L	U		7.14E+01
Cesium-134 ^(b)	B0XKC7 DUP	C3077/ENW-MW7 DUP	02/15/2000	-7.55E+00	pCi/L	U		7.74E+00
Cesium-137 ^(b)	B0XKC7 DUP	C3077/ENW-MW7 DUP	02/15/2000	2.74E+00	pCi/L	U		9.13E+00
Cobalt-60 ^(b)	B0XKC7 DUP	C3077/ENW-MW7 DUP	02/15/2000	-3.69E-01	pCi/L	U		8.88E+00
Europium-152 ^(b)	B0XKC7 DUP	C3077/ENW-MW7 DUP	02/15/2000	-7.75E+00	pCi/L	U		2.16E+01
Europium-154 ^(b)	B0XKC7 DUP	C3077/ENW-MW7 DUP	02/15/2000	-3.63E+00	pCi/L	U		2.58E+01
Europium-155 ^(b)	B0XKC7 DUP	C3077/ENW-MW7 DUP	02/15/2000	-5.70E+00	pCi/L	U		1.89E+01
Gross alpha ^(b)	B0XKC7 DUP	C3077/ENW-MW7 DUP	02/15/2000	3.50E+01	pCi/L			2.15E+00
Gross beta ^(b)	B0XKC7 DUP	C3077/ENW-MW7 DUP	02/15/2000	4.43E+01	pCi/L			5.14E+00
lodine-129 ^(b)	B0XKC7 DUP	C3077/ENW-MW7 DUP	02/15/2000	-6.19E-02	pCi/L	U		2.74E-01
Potassium-40 ^(b)	B0XKC7 DUP	C3077/ENW-MW7 DUP	02/15/2000	-5.16E+01	pCi/L	U		2.20E+02
Ruthenium-106 ^(b)	B0XKC7 DUP	C3077/ENW-MW7 DUP	02/15/2000	1.94E+01	pCi/L	U		8.71E+01
Technetium-99 ^(b)	B0XKC7 DUP	C3077/ENW-MW7 DUP	02/15/2000	7.20E+00	pCi/L	U		1.21E+01
Uranium-234 ^(b)	B0XKC7 DUP	C3077/ENW-MW7 DUP	02/15/2000	1.24E+00	pCi/L			3.33E-01

Table C.3. (contd)

Constituent	Sample Number	Well Name	Sample Date	Value Reported	Units	Lab Qualifier ^(a)	Reporting Limit	MDA
Uranium-235 ^(b)	B0XKC7 DUP	C3077/ENW-MW7 DUP	02/15/2000	7.69E-02	pCi/L	U		2.44E-01
Uranium-238 ^(b)	B0XKC7 DUP	C3077/ENW-MW7 DUP	02/15/2000	9.74E-01	pCi/L	J		3.05E-01
Antimony-125	B0XKC8	C3078/ENW-MW8	02/11/2000	-2.90E+00	pCi/L	U		2.10E+01
Beryllium-7	B0XKC8	C3078/ENW-MW8	02/11/2000	-1.92E+01	pCi/L	U		6.36E+01
Cesium-134	B0XKC8	C3078/ENW-MW8	02/11/2000	-5.66E-01	pCi/L	U		7.59E+00
Cesium-137	B0XKC8	C3078/ENW-MW8.	02/11/2000	8.34E-02	pCi/L	U		9.01E+00
Cobalt-60	B0XKC8	C3078/ENW-MW8	02/11/2000	2.26E+00	pCi/L	U		9.21E+00
Europium-152	B0XKC8	C3078/ENW-MW8	02/11/2000	-3.48E+00	pCi/L	U		2.16E+01
Europium-154	B0XKC8	C3078/ENW-MW8	02/11/2000	4.68E+00	pCi/L	U		2.36E+01
Europium-155	B0XKC8	C3078/ENW-MW8	02/11/2000	-9.85E-01	pCi/L	U		1.70E+01
Gross alpha	B0XKC8	C3078/ENW-MW8	02/11/2000	6.32E+00	pCi/L			1.41E+00
Gross beta	B0XKC8	C3078/ENW-MW8	02/11/2000	8.12E+00	pCi/L			3.13E+00
Iodine-129	B0XKC8	C3078/ENW-MW8	02/11/2000	-6.64E-03	pCi/L	U		2.43E-01
Potassium-40	B0XKC8	C3078/ENW-MW8	02/11/2000	-3.72E+01	pCi/L	U		2.51E+02
Ruthenium-106	B0XKC8	C3078/ENW-MW8	02/11/2000	1.79E+01	pCi/L	U		7.89E+01
Technetium-99	B0XKC8	C3078/ENW-MW8	02/11/2000	-6.56E-01	pCi/L	U		1.26E+01
Uranium-234	B0XKC8	C3078/ENW-MW8	02/11/2000	3.00E+00	pCi/L			2.64E-01
Uranium-235	B0XKC8	C3078/ENW-MW8	02/11/2000	1.82E-01	pCi/L	U		3.27E-01
Uranium-238	B0XKC8	C3078/ENW-MW8	02/11/2000	2.96E+00	pCi/L			3.94E-01
Antimony-125 ^(b)	B0XKC8 DUP	C3078/ENW-MW8 DUP	02/11/2000	1.89E+00	pCi/L	U		2.38E+01
Beryllium-7 ^(b)	B0XKC8 DUP	C3078/ENW-MW8 DUP	02/11/2000	3.89E+00	pCi/L	U		8.30E+01
Cesium-134 ^(b)	B0XKC8 DUP	C3078/ENW-MW8 DUP	02/11/2000	-4.49E+00	pCi/L	U		8.32E+00
Cesium-137 ^(b)	B0XKC8 DUP	C3078/ENW-MW8 DUP	02/11/2000	-1.63E+00	pCi/L	U		9.52E+00
Cobalt-60 ^(b)	B0XKC8 DUP	C3078/ENW-MW8 DUP	02/11/2000	-4.75E+00	pCi/L	U		9.02E+00
Europium-152 ^(b)	B0XKC8 DUP	C3078/ENW-MW8 DUP	02/11/2000	-4.10E+00	pCi/L	U		2.25E+01
Europium-154 ^(b)	B0XKC8 DUP	C3078/ENW-MW8 DUP	02/11/2000	6.88E+00	pCi/L	U		2.97E+01
Europium-155 ^(b)	B0XKC8 DUP	C3078/ENW-MW8 DUP	02/11/2000	5.93E+00	pCi/L	U		2.06E+01
Gross alpha ^(b)	B0XKC8 DUP	C3078/ENW-MW8 DUP	02/11/2000	2.20E+01	pCi/L			3.15E+00
Gross beta ^(b)	B0XKC8 DUP	C3078/ENW-MW8 DUP	02/11/2000	1.30E+01	pCi/L			4.04E+00
Iodine-129 ^(b)	B0XKC8 DUP	C3078/ENW-MW8 DUP	02/11/2000	1.42E-01	pCi/L	U		2.53E-01

Table C.3. (contd)

Constituent	Sample Number	Well Name	Sample Date	Value Reported	Units	Lab Qualifier ^(a)	Reporting Limit	MDA
Potassium-40 ^(b)	B0XKC8 DUP	C3078/ENW-MW8 DUP	02/11/2000	1.95E+00	pCi/L	U		2.28E+02
Ruthenium-106 ^(b)	B0XKC8 DUP	C3078/ENW-MW8 DUP	02/11/2000	9.11E+00	pCi/L	U		8.17E+01
Technetium-99 ^(b)	B0XKC8 DUP	C3078/ENW-MW8 DUP	02/11/2000	-1.40E+00	pCi/L	U		1.26E+01
Uranium-234 ^(b)	B0XKC8 DUP	C3078/ENW-MW8 DUP	02/11/2000	2.35E+00	pCi/L			3.84E-01
Uranium-235 ^(b)	B0XKC8 DUP	C3078/ENW-MW8 DUP	02/11/2000	2.15E-01	pCi/L	U		3.37E-01
Uranium-238 ^(b)	B0XKC8 DUP	C3078/ENW-MW8 DUP	02/11/2000	2.97E+00	pCi/L			3.19E-01
Antimony-125	B0XKC9	C3079/ENW-MW9	02/11/2000	2.56E+00	pCi/L	U		2.19E+01
Antimony-125 ^(c)	B0XKD0	C3079/ENW-MW9	02/11/2000	-6.06E+00	pCi/L	U		1.68E+01
Beryllium-7	B0XKC9	C3079/ENW-MW9	02/11/2000	-1.40E+01	pCi/L	U		7.54E+01
Beryllium-7 ^(c)	B0XKD0	C3079/ENW-MW9	02/11/2000	-9.20E+00	pCi/L	U		7.13E+01
Cesium-134	B0XKC9	C3079/ENW-MW9	02/11/2000	-2.61E-01	pCi/L	U		7.60E+00
Cesium-134 ^(c)	B0XKD0	C3079/ENW-MW9	02/11/2000	-2.39E+00	pCi/L	U.		7.19E+00
Cesium-137	B0XKC9	C3079/ENW-MW9	02/11/2000	3.30E+00	pCi/L	U		9.66E+00
Cesium-137 ^(c)	B0XKD0	C3079/ENW-MW9	02/11/2000	-1.74E+00	pCi/L	U		6.44E+00
Cobalt-60	B0XKC9	C3079/ENW-MW9	02/11/2000	-2.09E+00	pCi/L	U	·	9.21E+00
Cobalt-60 ^(c)	B0XKD0	C3079/ENW-MW9	02/11/2000	2.06E+00	pCi/L	U		8.67E+00
Europium-152	B0XKC9	C3079/ENW-MW9	02/11/2000	-3.62E+00	pCi/L	U		2.23E+01
Europium-152 ^(c)	B0XKD0	C3079/ENW-MW9	02/11/2000	-7.83E+00	pCi/L	U		1.75E+01
Europium-154	B0XKC9	C3079/ENW-MW9	02/11/2000	-2.56E+00	pCi/L	U		2.36E+01
Europium-154 ^(c)	B0XKD0	C3079/ENW-MW9	02/11/2000	3.99E+00	pCi/L	• U		2.86E+01
Europium-155	B0XKC9	C3079/ENW-MW9	02/11/2000	2.78E+00	pCi/L	U		1.66E+01
Europium-155 ^(c)	B0XKD0	C3079/ENW-MW9	02/11/2000	4.52E+00	pCi/L	U		1.37E+01
Gross alpha	B0XKC9	C3079/ENW-MW9	02/11/2000	2.21E+01	pCi/L			3.22E+00
Gross alpha ^(c)	B0XKD0	C3079/ENW-MW9	02/11/2000	2.28E+01	pCi/L			3.15E+00
Gross beta	B0XKC9	C3079/ENW-MW9	02/11/2000	1.61E+01	pCi/L			4.03E+00
Gross beta ^(c)	B0XKD0	C3079/ENW-MW9	02/11/2000	1.59E+01	pCi/L			4.10E+00
Iodine-129	B0XKC9	C3079/ENW-MW9	02/11/2000	3.48E-02	pCi/L	U		3.65E-01
Iodine-129 ^(c)	B0XKD0	C3079/ENW-MW9	02/11/2000	3.41E-02	pCi/L	U		3.09E-01
Potassium-40	B0XKC9	C3079/ENW-MW9	02/11/2000	-6.76E+01	pCi/L	U		2.40E+02
Potassium-40 ^(c)	B0XKD0	C3079/ENW-MW9	02/11/2000	6.17E+01	pCi/L	U		8.26E+01
Ruthenium-106	B0XKC9	C3079/ENW-MW9	02/11/2000	4.09E+01	pCi/L	U	1	8.94E⊹01
Ruthenium-106 ^(c)	B0XKD0	C3079/ENW-MW9	02/11/2000	1.04E+01	pCi/L	U		7.13E+01
Technetium-99	B0XKC9	C3079/ENW-MW9	02/11/2000	4.73E+00	pCi/L	U	1	1.26E+01
Technetium-99 ^(c)	B0XKD0	C3079/ENW-MW9	02/11/2000	5.66E-01	pCi/L	U		1.26E+01
Uranium-234	B0XKC9	C3079/ENW-MW9	02/11/2000	1.26E+01	pCi/L	,		3.37E-01
Uranium-234 ^(c)	B0XKD0	C3079/ENW-MW9	02/11/2000	1.37E+01	pCi/L	,		3.97E-01

Table C.3. (contd)

Constituent	Sample Number	Well Name	Sample Date	Value Reported	Units	Lab Qualifier ^(a)	Reporting Limit	MDA
Uranium-235	B0XKC9	C3079/ENW-MW9	02/11/2000	5.24E-01	pCi/L			2.62E-01
Uranium-235 ^(c)	B0XKD0	C3079/ENW-MW9	02/11/2000	4.24E-01	pCi/L			2.95E-01
Uranium-238	B0XKC9	C3079/ENW-MW9	02/11/2000	1.23E+01	pCi/L			3.04E-01
Uranium-238 ^(c)	B0XKD0	C3079/ENW-MW9	02/11/2000	1.14E+01	pCi/L			3.71E-01
Gross alpha ^(b)	B0XKC9 DUP	C3079/ENW-MW9 DUP	02/11/2000	2.20E+01	pCi/L			3.15E+00
Gross beta ^(b)	B0XKD0 DUP	C3079/ENW-MW9 DUP	02/11/2000	1.30E+01	pCi/L			4.04E+00
Iodine-129 ^(b)	B0XKC9 DUP	C3079/ENW-MW9 DUP	02/11/2000	1.42E-01	pCi/L	U		2.53E-01
Antimony-125	B0XKD1	ENW-31	02/08/2000	-4.50E+00	pCi/L	U.	1.83E+01	1.83E+01
Beryllium-7	B0XKD1	ENW-31	02/08/2000	1.61E+01	pCi/L	U	6.50E+01	6.50E+01
Cesium-134	B0XKD1	ENW-31	02/08/2000	-5.11E-01	pCi/L	U	7.79E+00	7.79E+00
Cesium-137	B0XKD1	ENW-31	02/08/2000	2.28E+00	pCi/L	U	7.97E+00	7.97E+00
Cobalt-60	B0XKD1	ENW-31	02/08/2000	-3.41E+00	pCi/L	U	6.87E+00	6.87E+00
Europium-152	B0XKD1	ENW-31	02/08/2000	8.88E-01	pCi/L	U	2.00E+01	2.00E+01
Europium-154	B0XKD1	ENW-31	02/08/2000	-8.76E+00	pCi/L	U	2.51E+01	2.51E+01
Europium-155	B0XKD1	ENW-31	02/08/2000	1.06E+00	pCi/L	U	1.46E+01	1.46E+01
Gross alpha	B0XKD1	ENW-31	02/08/2000	1.19E+00	pCi/L	U	1.97E+00	1.97E+00
Gross beta	B0XKD1	ENW-31	02/08/2000	6.57E+00	pCi/L		2.86E+00	2.86E+00
Iodine-129	B0XKD1	ENW-31	02/08/2000	-2.14E-02	pCi/L	υ	3.15E-01	3.15E-01
Potassium-40	B0XKD1	ENW-31	02/08/2000	-1.69E+01	pCi/L	U	2.50E+02	2.50E+02
Ruthenium-106	B0XKD1	ENW-31	02/08/2000	-3.53E+00	pCi/L	U	6.41E+01	6.41E+01
Technetium-99	B0XKD1	ENW-31	02/08/2000	-1.53E+00	pCi/L	U	1.23E+01	1.23E+01
Uranium-234	B0XKD1	ENW-31	02/08/2000	1.05E+00	pCi/L		2.77E-01	2.77E-01
Uranium-235	B0XKD1	ENW-31	02/08/2000	1.79E-01	pCi/L	U	2.13E-01	2.13E-01
Uranium-238	B0XKD1	ENW-31	02/08/2000	2.46E-01	pCi/L	U	3.10E-01	3.10E-01
Antimony-125	B0XKD2	ENW-32	02/08/2000	5.17E+00	pCi/L	U	1.80E+01	1.80E+01
Beryllium-7	B0XKD2	ENW-32	02/08/2000	-1.41E+01	pCi/L	U	5.96E+01	5.96E+01
Cesium-134	B0XKD2	ENW-32	02/08/2000	7.41E-01	pCi/L	U	8.61E+00	8.61E+00
Cesium-137	B0XKD2	ENW-32	02/08/2000	-2.35E+00	pCi/L	υ	7.49E+00	7.49E+00
Cobalt-60	B0XKD2	ENW-32	02/08/2000	-1.08E+00	pCi/L	U	8.81E+00	8.81E+00
Europium-152	B0XKD2	ENW-32	02/08/2000	-6.21E+00	pCi/L	U	1.83E+01	1.83E+01
Europium-154	B0XKD2	ENW-32	02/08/2000	-5.71E-01	pCi/L	U	2.29E+01	2.29E+01
Europium-155	B0XKD2	ENW-32	02/08/2000	6.65E-01	pCi/L	U	1.74E+01	1.74E+01
Gross alpha	B0XKD2	ENW-32	02/08/2000	2.16E+00	pCi/L	J	1.95E+00	1.95E+00
Gross beta	B0XKD2	ENW-32	02/08/2000	8.35E+00	pCi/L		2.87E+00	2.87E+00
Iodine-129	B0XKD2	ENW-32	02/08/2000	5.78E-02	pCi/L	U	2.43E-01	2.43E-01
Potassium-40	B0XKD2	ENW-32	02/08/2000	-5.63E+01	pCi/L	U	1.17E+02	1.17E+02
Ruthenium-106	B0XKD2	ENW-32	02/08/2000	-2.26E+01	pCi/L	U	6.45E+01	6.45E+01
Technetium-99	B0XKD2	ENW-32	02/08/2000	2.96E+00	pCi/L	U	1.23E+01	1.23E+01

Table C.3. (contd)

Constituent	Sample Number	Well Name	Sample Date	Value Reported	Units	Lab Qualifier ^(a)	Reporting Limit	MDA
Uranium-234	B0XKD2	ENW-32	02/08/2000	1.12E+00	pCi/L		4.09E-01	4.09E-01
Uranium-235	B0XKD2	ENW-32	02/08/2000	2.79E-02	pCi/L	U	3.18E-01	3.18E-01
Uranium-238	B0XKD2	ENW-32	02/08/2000	5.92E-01	pCi/L	J	3.90E-01	3.90E-01
	L	Quality	Control San	nples		· ·	· · · · · · · · · · · · · · · · · · ·	
Antimony-125 ^(d)	B0XK43	EBL 121/699-13-3A	02/07/2000	2.28E+00	pCi/L	U		2.13E+01
Beryllium-7 ^(d)	B0XK43	EBL 121/699-13-3A	02/07/2000	-4.67E+00	pCi/L	U ·		6.51E+01
Cesium-134 ^(d)	B0XK43	EBL 121/699-13-3A	02/07/2000	-1.16E+00	pCi/L	U		8.09E+00
Cesium-137 ^(d)	B0XK43	EBL 121/699-13-3A	02/07/2000	5.71E-01	pCi/L	U .		9.00E+00
Cobalt-60 ^(d)	B0XK43	EBL 121/699-13-3A	02/07/2000	-2.80E+00	pCi/L	U ·		6.36E+00
Europium-152 ^(d)	B0XK43	EBL 121/699-13-3A	02/07/2000	1.49E+01	pCi/L	U		2.27E+01
Europium-154 ^(d)	B0XK43	EBL 121/699-13-3A	02/07/2000	-4.48E+00	pCi/L	U		2.33E+01
Europium-155 ^(d)	B0XK43	EBL 121/699-13-3A	02/07/2000	-1.02E+01	pCi/L	U		1.46E+01
Gross alpha ^(d)	B0XK43	EBL 121/699-13-3A	02/07/2000	4.17E-01	pCi/L	U		6.82E-01
Gross beta ^(d)	B0XK43	EBL 121/699-13-3A	02/07/2000	0.00E+00	pCi/L	U		2.71E+00
Iodine-129 ^(d)	B0XK43	EBL 121/699-13-3A	02/07/2000	-2.19E-02	pCi/L	U		2.35E-01
Plutonium-238 ^(d)	B0XK43	EBL 121/699-13-3A	02/07/2000	-2.99E-03	pCi/L	U		1.51E-01
Plutonium-239/240 ^(d)	B0XK43	EBL 121/699-13-3A	02/07/2000	2.99E-03	pCi/L	U		1.50E-01
Potassium-40 ^(d)	B0XK43	EBL 121/699-13-3A	02/07/2000	2.50E+01	pCi/L	U		2.19E+02
Ruthenium-106 ^(d)	B0XK43	EBL 121/699-13-3A	02/07/2000	1.79E+01	pCi/L	U		7.61E+01
Strontium-89/90 ^(d)	B0XK43	EBL 121/699-13-3A	02/07/2000	-9.09E-03	pCi/L	U		6.79E-01
Technetium-99 ^(d)	B0XK43	EBL 121/699-13-3A	02/07/2000	-3.33E+00	pCi/L	U		1.22E+01
Uranium ^(d)	B0XK43	EBL 121/699-13-3A	02/07/2000	4.36E-03	ug/L	U		7.29E-02
Uranium-234 ^(d)	B0XK43	EBL 121/699-13-3A	02/07/2000	3.96E-02	pCi/L	U		2.15E-01
Uranium-235 ^(d)	B0XK43	EBL 121/699-13-3A	02/07/2000	7.16E-02	pCi/L	U		2.80E-01
Uranium-238 ^(d)	B0XK43	EBL 121/699-13-3A	02/07/2000	-4.15E-02	pCi/L	U		3.33E-01
Strontium-89/90 ^(b)	B0XK43 DUP	EBL 121/699-13-3A DUP	02/07/2000	1.84E-01	pCi/L	U		6.41E-01
Antimony-125 ^(e)	B0XK46	EBL 122/699-13-3A	02/07/2000	2.05E+00	pCi/L	U		2.20E+01
Beryllium-7 ^(e)	B0XK46	EBL 122/699-13-3A	02/07/2000	1.22E+01	pCi/L	U		7. 79E -⊦01
Cesium-134 ^(e)	B0XK46	EBL 122/699-13-3A	02/07/2000	-8.49E+00	pCi/L	U		8.09E+00
Cesium-137 ^(e)	B0XK46	EBL 122/699-13-3A	02/07/2000	-4.64E+00	pCi/L	U		8.49E+00
Cobalt-60 ^(e)	B0XK46	EBL 122/699-13-3A	02/07/2000	-5.49E+00	pCi/L	U	•	6.68E+00
Europium-152 ^(e)	B0XK46	EBL 122/699-13-3A	02/07/2000	1.02E+01	pCi/L	U		2.39E+01
Europium-154 ^(e)	B0XK46	EBL 122/699-13-3A	02/07/2000	2.89E+00	pCi/L	U		2.92E+01
Europium-155 ^(e)	B0XK46	EBL 122/699-13-3A	02/07/2000	-8.77E-01	pCi/L	U		1.89E+01
Gross alpha ^(e)	B0XK46	EBL 122/699-13-3A	02/07/2000	1.02E-02	pCi/L	U		9.34E-01
Gross beta ^(e)	B0XK46	EBL 122/699-13-3A	02/07/2000	7.25E-01	pCi/L	U		2.67E+00
Iodine-129 ^(e)	B0XK46	EBL 122/699-13-3A	02/07/2000	9.97E-02	pCi/L	U		3.10E-01
Plutonium-238(c)	B0XK46	EBL 122/699-13-3A	02/07/2000	-2.79E-03	pCi/L	U		1.40E-01
Plutonium-239/240(e)	B0XK46	EBL 122/699-13-3A	02/07/2000	0.00E+00	pCi/L	U	1	9.43E-02

Table C.3. (contd)

Constituent	Sample Number	Well Name	Sample Date	Value Reported	Units	Lab Qualifier ^(a)	Reporting Limit	MDA
Potassium-40 ^(e)	B0XK46	EBL 122/699-13-3A	02/07/2000	-4.41E+01	pCi/L	U		2.30E+02
Ruthenium-106 ^(e)	B0XK46	EBL 122/699-13-3A	02/07/2000	2.87E+01	pCi/L	U		9.08E+01
Strontium-89/90 ^(e)	B0XK46	EBL 122/699-13-3A	02/07/2000	-2.00E-01	pCi/L	U		6.51E-01
Technetium-99 ^(e)	B0XK46	EBL 122/699-13-3A	02/07/2000	-3.90E+00	pCi/L	U		1.22E+01
Uranium ^(e)	B0XK46	EBL 122/699-13-3A	02/07/2000	6.05E-03	ug/L	U		7.29E-02
Uranium-234 ^(e)	B0XK46	EBL 122/699-13-3A	02/07/2000	2.66E-02	pCi/L	U		2.51E-01
Uranium-235 ^(e)	B0XK46	EBL 122/699-13-3A	02/07/2000	3.37E-02	pCi/L	U		2.22E-01
Uranium-238 ^(e)	B0XK46	EBL 122/699-13-3A	02/07/2000	-1.42E-02	pCi/L	U		2.37E-01
Gross beta ^(b)	B0XK46 DUP	EBL 122/699-13-3A DUP	02/07/2000	2.58E-01	pCi/L	U		2.71E+00
Technetium-99 ^(b)	B0XK46 DUP	EBL 122/699-13-3A DUP	02/07/2000	4.46E+00	pCi/L	U		1.23E+01
Antimony-125	B0XK32	EBL 123/699-13-1B	02/08/2000	-1.72E+00	pCi/L	U		1.84E+01
Beryllium-7	B0XK32	EBL 123/699-13-1B	02/08/2000	-4.00E+00	pCi/L	U		6.21E+01
Cesium-134	B0XK32	EBL 123/699-13-1B	02/08/2000	-2.25E+00	pCi/L	U		6.65E+00
Cesium-137	B0XK32	EBL 123/699-13-1B	02/08/2000	1.91E+00	pCi/L	U		9.48E+00
Cobalt-60	B0XK32	EBL 123/699-13-1B	02/08/2000	-1.90E+00	pCi/L	U		8.09E+00
Europium-152	B0XK32	EBL 123/699-13-1B	02/08/2000	5.18E+00	pCi/L	U		1.84E+01
Europium-154	B0XK32	EBL 123/699-13-1B	02/08/2000	-5.30E+00	pCi/L	U		2.15E+01
Europium-155	B0XK32	EBL 123/699-13-1B	02/08/2000	3.29E+00	pCi/L	U		1.77E+01
Gross alpha	B0XK32	EBL 123/699-13-1B	02/08/2000	2.33E-01	pCi/L	U		8.90E-01
Gross beta	B0XK32	EBL 123/699-13-1B	02/08/2000	3.34E-01	pCi/L	U .		2.64E+00
Iodine-129	B0XK32	EBL 123/699-13-1B	02/08/2000	5.29E-02	pCi/L	U		3.23E-01
Plutonium-238	B0XK32	EBL 123/699-13-1B	02/08/2000	-7.04E-03	pCi/L	U		2.01E-01
Plutonium-239/240	B0XK32	EBL 123/699-13-1B	02/08/2000	-7.04E-03	pCi/L	U		2.01E-01
Potassium-40	B0XK32	EBL 123/699-13-1B	02/08/2000	-1.16E+00	pCi/L	U		1.32E+02
Ruthenium-106	B0XK32	EBL 123/699-13-1B	02/08/2000	-1.13E+01	pCi/L	U		5.79E+01
Strontium-89/90	B0XK32	EBL 123/699-13-1B	02/08/2000	1.01E-01	pCi/L	U		6.83E-01
Technetium-99	B0XK32	EBL 123/699-13-1B	02/08/2000	-8.21E+00	pCi/L	U		1.23E+01
Uranium	B0XK32	EBL 123/699-13-1B	02/08/2000	1.54E-02	ug/L	U		7.29E-02
Uranium-234	B0XK32	EBL 123/699-13-1B	02/08/2000	8.06E-02	pCi/L	U		2.28E-01
Uranium-235	B0XK32	EBL 123/699-13-1B	02/08/2000	-2.56E-02	pCi/L	U		2.83E-01
Uranium-238	B0XK32	EBL 123/699-13-1B	02/08/2000	4.39E-02	pCi/L	U		3.41E-01
Plutonium-238 ^(b)	B0XK32 DUP	EBL 123/699-13-1B DUP	02/08/2000	-7.14E-03	pCi/L	U		2.04E-01
Plutonium-239/240 ^(b)	B0XK32 DUP	EBL 123/699-13-1B DUP	02/08/2000	4.45E-02	pCi/L	U		1.21E-01
Antimony-125	B0XJW1	EBL 124/ENW-MW5	02/09/2000	-1.07E+00	pCi/L	U	2.12E+01	2.12E+01
Beryllium-7	B0XJW1	EBL 124/ENW-MW5	02/09/2000	-1.61E+01	pCi/L	U	5.56E+01	5.56E+01
Cesium-134	B0XJW1	EBL 124/ENW-MW5	02/09/2000	-3.50E+00	pCi/L	U	7.07E+00	7.07E+00
Cesium-137	B0XJW1	EBL 124/ENW-MW5	02/09/2000	2.57E+00	pCi/L	U	8.70E+00	8.70E+00

Table C.3. (contd)

Constituent	Sample Number	Well Name	Sample Date	Value Reported	Units	Lab Qualifier ^(a)	Reporting Limit	MDA
Cobalt-60	B0XJW1	EBL 124/ENW-MW5	02/09/2000	-3.62E+00	pCi/L	U	7.18E+00	7.18E+00
Europium-152	B0XJW1	EBL 124/ENW-MW5	02/09/2000	-9.53E+00	pCi/L	U	1.64E+01	1.64E+01
Europium-154	B0XJW1	EBL 124/ENW-MW5	02/09/2000	-2.37E+00	pCi/L	U	1.85E+01	1.85E+01
Europium-155	B0XJW1	EBL 124/ENW-MW5	02/09/2000	7.00E+00	pCi/L	U	1.59E+01	1.59E+01
Gross alpha	B0XJW1	EBL 124/ENW-MW5	02/09/2000	-8.97E-02	pCi/L	U	9.09E-01	9.09E-01
Gross beta	B0XJW1	EBL 124/ENW-MW5	02/09/2000	8.27E-01	pCi/L	U	2.67E+00	2.67E+00
Iodine-129	B0XJW1	EBL 124/ENW-MW5	02/09/2000	7.08E-02	pCi/L	U	3.53E-01	3.53E-01
Plutonium-238	B0XJW1	EBL 124/ENW-MW5	02/09/2000	0.00E+00	pCi/L	U	9.26E-02	9.26E-02
Plutonium-239/240	B0XJW1	EBL 124/ENW-MW5	02/09/2000	0.00E+00	pCi/L	U	9.26E-02	9.26E-02
Potassium-40	B0XJW1	EBL 124/ENW-MW5	02/09/2000	1.16E+01	pCi/L	U	1.85E+02	1.85E+02
Ruthenium-106	B0XJW1	EBL 124/ENW-MW5	02/09/2000	5.43E+00	pCi/L	U	6.18E+01	6.18E+01
Technetium-99	B0XJW1	EBL 124/ENW-MW5	02/09/2000	2.90E+00	pCi/L	U	1.22E+01	1.22E+01
Total beta radiostrontium	B0XJW1	EBL 124/ENW-MW5	02/09/2000	2.93E-01	pCi/L	U	7.57E-01	7.57E-01
Uranium	B0XJW1	EBL 124/ENW-MW5	02/09/2000	2.72E-03	ug/L	U	7.29E-02	7.29E-02
Uranium-234	B0XJW1	EBL 124/ENW-MW5	02/09/2000	3.04E-02	pCi/L	U	3.86E-01	3.86E-01
Uranium-235	B0XJW1	EBL 124/ENW-MW5	02/09/2000	-3.04E-02	pCi/L	U	3.05E-01	3.05E-01
Uranium-238	B0XJW1	EBL 124/ENW-MW5	02/09/2000	8.92E-02	pCi/L	U	3.62E-01	3.62E-01
Gross beta ^(b)	B0XJW1 DUP	EBL 124/ENW-MW5 DUP	02/09/2000	5.01E-01	pCi/L	U		2.67E+00
Technetium-99 ^(b)	B0XJW1 DUP	EBL 124/ENW-MW5 DUP	02/09/2000	1.51E+00	pCi/L	U	-	1.22E+01
Total beta radiostrontium ^(b)	B0XJW1 DUP	EBL 124/ENW-MW5 DUP	02/09/2000	2.43E-01	pCi/L	υ		7.37E-01
Uranium ^(b)	B0XJW1 DUP	EBL 124/ENW-MW5 DUP	02/09/2000	1.03E-02	ug/L	U		7.29E-02
Antimony-125	B0XJV5	FTB 322/699-13-3A	02/07/2000	1.61E+00	pCi/L	U		1.89E+01
Beryllium-7	B0XJV5	FTB 322/699-13-3A	02/07/2000	-2.34E+01	pCi/L	U		5.79E+01
Cesium-134	B0XJV5	FTB 322/699-13-3A	02/07/2000	-2.14E+00	pCi/L	U		6.93E+00
Cesium-137	B0XJV5	FTB 322/699-13-3A	02/07/2000	2.37E+00	pCi/L	U		7.95E+00
Cobalt-60	B0XJV5	FTB 322/699-13-3A	02/07/2000	3.08E+00	pCi/L	U		1.04E+01
Europium-152	B0XJV5	FTB 322/699-13-3A	02/07/2000	5.97E-01	pCi/L	U		1.97E+01
Europium-154	B0XJV5	FTB 322/699-13-3A	02/07/2000	2.84E+00	pCi/L	U		2.22E+-01
Europium-155	B0XJV5	FTB 322/699-13-3A	02/07/2000	-1.83E-01	pCi/L	U		1.50E-01
Gross alpha	B0XJV5	FTB 322/699-13-3A	02/07/2000	2.14E-01	pCi/L	U		9.28E-01
Gross beta	B0XJV5	FTB 322/699-13-3A	02/07/2000	7.76E-01	pCi/L	U	T	2.67E+00
Iodine-129	B0XJV5	FTB 322/699-13-3A	02/07/2000	1.43E-01	pCi/L	U		3.46E-01
Plutonium-238	B0XJV5	FTB 322/699-13-3A	02/07/2000	0.00E+00	pCi/L	U		9.30E-02
Plutonium-239/240	B0XJV5	FTB 322/699-13-3A	02/07/2000	-2.75E-03	pCi/L	U		1.38E-01
Potassium-40	B0XJV5	FTB 322/699-13-3A	02/07/2000	-1.08E+01	pCi/L	U		1.65E+02
Ruthenium-106	B0XJV5	FTB 322/699-13-3A	02/07/2000	7.21E+00	pCi/L	U		7.43E+01

C

Table C.3. (contd)

Constituent	Sample Number	Well Name	Sample Date	Value Reported	Units	Lab Qualifier ^(a)	Reporting Limit	MDA
Strontium-89/90	B0XJV5	FTB 322/699-13-3A	02/07/2000	2.20E-01	pCi/L	U		6.17E-01
Technetium-99	B0XJV5	FTB 322/699-13-3A	02/07/2000	-2.51E+00	pCi/L	U		1.22E+01
Uranium	B0XJV5	FTB 322/699-13-3A	02/07/2000	1.18E-03	ug/L	U		7.29E-02
Uranium-234	B0XJV5	FTB 322/699-13-3A	02/07/2000	1.12E-01	pCi/L	U		2.64E-01
Uranium-235	B0XJV5	FTB 322/699-13-3A	02/07/2000	1.16E-01	pCi/L	υ		2.52E-01
Uranium-238	B0XJV5	FTB 322/699-13-3A	02/07/2000	1.19E-01	pCi/L	U		2.38E-01
Gross alpha ^(b)	B0XJV5 DUP	FTB 322/699-13-3A DUP	36563	2.33E-01	pCi/L	U		8.34E-01
Antimony-125	B0XK24	FTB 323/699-21-6	02/07/2000	-1.06E+01	pCi/L	U	1.76E+01	1.76E+01
Beryllium-7	B0XK24	FTB 323/699-21-6	02/07/2000	-1.52E+01	pCi/L	U	5.70E+01	5.70E+01
Cesium-134	B0XK24	FTB 323/699-21-6	02/07/2000	8.49E-01	pCi/L	U	8.44E+00	8.44E+00
Cesium-137	B0XK24	FTB 323/699-21-6	02/07/2000	-1.84E+00	pCi/L	U	8.17E+00	8.17E+00
Cobalt-60	B0XK24	FTB 323/699-21-6	02/07/2000	1.73E-01	pCi/L	U	7.81E+00	7.81E+00
Europium-152	B0XK24	FTB 323/699-21-6	02/07/2000	4.80E+00	pCi/L	U	2.32E+01	2.32E+01
Europium-154	B0XK24	FTB 323/699-21-6	02/07/2000	-8.12E+00	pCi/L	U	2.10E+01	2.10E+01
Europium-155	B0XK24	FTB 323/699-21-6	02/07/2000	1.21E+01	pCi/L	U	1.79E+01	1.79E+01
Gross alpha	B0XK24	FTB 323/699-21-6	02/07/2000	3.12E-01	pCi/L	U	9.16E-01	9.16E-01
Gross beta	B0XK24	FTB 323/699-21-6	02/07/2000	1.13E+00	pCi/L	υ	2.52E+00	2.52E+00
Iodine-129	B0XK24	FTB 323/699-21-6	02/07/2000	-1.83E-02	pCi/L	U	3.18E-01	3.18E-01
Potassium-40	B0XK24	FTB 323/699-21-6	02/07/2000	1.33E+02	pCi/L		6.69E+01	6.69E+01
Ruthenium-106	B0XK24	FTB 323/699-21-6	02/07/2000	-1.03E+01	pCi/L	U	7.68E+01	7.68E+01
Technetium-99	B0XK24	FTB 323/699-21-6	02/07/2000	-4.05E-01	pCi/L	U	1.23E+01	1.23E+01
Uranium-234	B0XK24	FTB 323/699-21-6	02/07/2000	-1.06E-02	pCi/L	U	2.21E-01	2.21E-01
Uranium-235	B0XK24	FTB 323/699-21-6	02/07/2000	-1.06E-02	pCi/L	U	2.21E-01	2.21E-01
Uranium-238	B0XK24	FTB 323/699-21-6	02/07/2000	2.66E-02	pCi/L	U	2.50E-01	2.50E-01
Iodine-129 ^(b)	B0XK24 DUP	FTB 323/699-21-6 DUP	02/07/2000	1.27E-01	pCi/L	U		2.79E-01

(a) U = Value reported is less than the MDA.
(b) Lab duplicate.
(c) Field duplicate.
(d) Before sampling.
(e) After sampling.

Ś

EBL = Equipment blank; FTB = Full trip blank; MDA = Minimum detectable activity.

Table C.4. Radionuclide Results for 618-11 Burial Ground Investigation, 325 RadiochemicalProcessing Group, February 2000

Constituent	Sample Number	Well Name	Sample Date	Value Reported	Units	Lab Qualifier	Comments
Tc-99 Rad Disks	B0XJT6	699-13-3A	02/07/2000	5.45E+01	pCi/L		Measured Activities
Tc-99 Rad Disks	B0XJT6 DUP	699-13-3A DUP	02/07/2000	5.77E+01	pCi/L		Measured Activities/Lab Duplicate
Sr-90 Rad Disks	B0XJT6	699-13-3A	02/07/2000	<2	pCi/L		Measured Activities/Corrected ^(a)
Sr-90 Rad Disks	B0XJT6 DUP	699-13-3A DUP	02/07/2000	<2	pCi/L		Measured Activities/ Corrected ^(a) /Lab Duplicate
(a) Based on	recount 8 days	after separation	•				

c

· · · · · · · · · · · · · · · · · · ·	Sample	1		Value	1	Lah	Dilution	Reporting	
Constituent	Number	Well Name	Sample Date	Reported	Units	Oualifier ^(a)	Factor	Limit	MDL
Chloride	B0XJY9	699-10-E12	02/08/2000	11.2	mg/L		10	2	0.35
Fluoride	B0XJY9	699-10-E12	02/08/2000	0.26	mg/L		1	0.1	0.01
Nitrate as N	B0XJY9	699-10-E12	02/08/2000	6.8	mg/L		10	0.2	0.11
Nitrite as N	B0XIY9	699-10-E12	02/08/2000	ND	mg/L	U	1	0.02	0.0074
Sulfate	B0XIY9	699-10-E12	02/08/2000	35.4	mg/L		10	5	1.1
Total Alkalinity	B0XIV9	699-10-E12	02/08/2000	252	mg/L		1	5	2.2
Chloride	B0XIV7	699-12-4D	02/07/2000	11	mg/L		10	2	0.35
Fluoride	B0XIV7	699-12-4D	02/07/2000	0.31	mg/L		1	0.1	0.01
Nitrate as N	B0XIV7	699-12-4D	02/07/2000	6.3	mg/L		10	0.2	0.11
Nitrite as N	B0XIV7	699-12-4D	02/07/2000	ND	mg/L	T I	1	0.02	0.0074
Sulfate	BOXIV7	699-12-4D	02/07/2000	47.7	mg/I		10	5	11
Total Alkalinity	B0XIV7	699-12-4D	02/07/2000	128	mg/I		1	5	2.2
Chloride	B0XIW6	699-13-1A	02/08/2000	2.8	mg/I		1	0.2	0.035
Fluoride	B0XIW6	699-13-1A	02/08/2000	0.36	mg/L		1	0.1	0.01
Nitrate as N	B0XIW6	699-13-1A	02/08/2000	1.6	mg/L		2	0.04	0.021
Nitrite as N	B0XIW6	699-13-1A	02/08/2000	ND	mg/L	U	1	0.02	0.0074
Sulfate	BOX IW6	699-13-1A	02/08/2000	25.1	mg/L		2	1	0.22
Total Alkalinity	B0XIW6	699-13-1A	02/08/2000	152	mg/L		1	5	2.2
Chloride	BOX IX5	699-13-1B	02/08/2000	14	mg/L	<u> </u>	1	0.2	0.035
Fluoride	B0XIX5	699-13-1B	02/08/2000	0.36	mg/L		1	0.1	0.01
Nitrate as N	BOXIX5	699-13-1B	02/08/2000	0.021	mg/L		1	0.02	0.011
Nitrite as N	B0XIX5	699-13-1B	02/08/2000	ND	mg/L	II II	1	0.02	0.0074
Sulfate	B0XIX5	699-13-1B	02/08/2000	20.6	mg/L		2	1	0.22
Total Alkalinity	B0XJX5	699-13-1B	02/08/2000	128	mg/L		1	5	2.2
Chloride	B0XJX9	699-13-1C	02/08/2000	14.4	mg/L		5	1	0.17
Fluoride	B0XJX9	699-13-1C	02/08/2000	2.3	mg/L		1	0.1	0.01
Nitrate as N	B0XJX9	699-13-1C	02/08/2000	0.023	mg/L		1	0.02	0.011
Nitrite as N	B0XJX9	699-13-1C	02/08/2000	ND	mg/L	U	1	0.02	0.0074
Sulfate	B0XJX9	699-13-1C	02/08/2000	2	mg/L		1	0.5	0.11
Total Alkalinity	B0XJX9	699-13-1C	02/08/2000	158	mg/L		1	5	2.2
Chloride	BOXJT3	699-13-3A	02/07/2000	14.9	mg/L		5	1	0.17
Chloride ^(b)	BOXJV1	699-13-3A	02/07/2000	14.8	mg/L		5	1	0.17
Fluoride	BOXJT3	699-13-3A	02/07/2000	0.26	mg/L		1	0.1	0.01
Fluoride ^(b)	BOXJV1	699-13-3A	02/07/2000	0.26	mg/L		1	0.1	0.01
Nitrate as N	BOXJT3	699-13-3A	02/07/2000	22.8	mg/L	1	50	1	0.53
Nitrate as N ^(b)	BOXJV1	699-13-3A	02/07/2000	23.3	mg/L		50	1	0.53
Nitrite as N	BOXJT3	699-13-3A	02/07/2000	ND	mg/L	U	1	0.02	0.0074
Nitrite as N ^(b)	BOXJV1	699-13-3A	02/07/2000	ND	mg/L	U	1	0.02	0.0074
Sulfate	BOXJT3	699-13-3A	02/07/2000	62.4	mg/L		5	2.5	0.54
Sulfate ^(b)	BOXJV1	699-13-3A	02/07/2000	62.7	mg/L		5	2.5	0.54
Total Alkalinity	BOXJT3	699-13-3A	02/07/2000	150	mg/L		1	5	2.2
Total Alkalinity ^(b)	BOXJV1	699-13-3A	02/07/2000	152	mg/L		1	5	2.2
Chloride ^(c)	BOXJT3 DUP	699-13-3A DUP	02/07/2000	14.8	mg/L		5	1	0.17
Fluoride ^(c)	BOXJT3	699-13-3A DUP	02/07/2000	0.27	mg/L		1	0.1	0.01

 Table C.5.
 Anion and Alkalinity Results for 618-11 Burial Ground Investigation, February 2000

	Sample	1	1	Value	1	Lab	Dilution	Reporting	
Constituent	Number	Well Name	Sample Date	Reported	Units	Qualifier ^(a)	Factor	Limit	MDL
Nitrate as N ^(c)	BOXJT3	699-13-3A DUP	02/07/2000	22.5	mg/L		50	1	0.53
	DUP							_	
Nitrite as N ^(c)	BOXJT3	699-13-3A DUP	02/07/2000	ND	mg/L	U	1	0.02	0.0074
	DUP				-				
Sulfate ^(c)	BOXJT3	699-13-3A DUP	02/07/2000	62.2	mg/L	-	5	2.5	0.54
	DUP								
Total Alkalinity ^(c)	BOXJT3	699-13-3A DUP	02/07/2000	146	mg/L		1	5	2.2
	DUP	:							
Chloride	B0XK19	699-15-15B	02/08/2000	8.6	mg/L		10	2	0.35
Fluoride	B0XK19	699-15-15B	02/08/2000	0.34	mg/L		. 1	0.1	0.01
Nitrate as N	B0XK19	699-15-15B	02/08/2000	6.1	mg/L		10	0.2	0.11
Nitrite as N	B0XK19	699-15-15B	02/08/2000	ND	mg/L	U	1	0.02	0.0074
Sulfate	B0XK19	699-15-15B	02/08/2000	90.6	mg/L		10	5	1.1
Total Alkalinity	B0XK19	699-15-15B	02/08/2000	124	mg/L		1	5	2.2
Chloride	B0XK14	699-17-5	02/07/2000	12.4	mg/L		5	1	0.17
Fluoride	B0XK14	699-17-5	02/07/2000	0.26	mg/L		1	0.1	0.01
Nitrate as N	B0XK14	699-17-5	02/07/2000	16.4	mg/L		50	1	0.53
Nitrite as N	B0XK14	699-17-5	02/07/2000	0.097	mg/L		1	0.02	0.0074
Sulfate	B0XK14	699-17-5	02/07/2000	46.5	mg/L		5	2.5	0.54
Total Alkalinity	B0XK14	699-17-5	02/07/2000	102	mg/L		1	5	2.2
Chloride	B0XK22	699-21-6	02/07/2000	10.7	mg/L		5	1	0.17
Fluoride	B0XK22	699-21-6	02/07/2000	0.19	mg/L		1	0.1	0.01
Nitrate as N	B0XK22	699-21-6	02/07/2000	9.5	mg/L		20	0.4	0.21
Nitrite as N	B0XK22	699-21-6	02/07/2000	0.044	mg/L		1	0.02	0.0074
Sulfate	B0XK22	699-21-6	02/07/2000	28.9	mg/L		5	2.5	0.54
Total Alkalinity	B0XK22	699-21-6	02/07/2000	102	mg/L		1	5	2.2
Chloride	B0XK11	699-8-17	02/08/2000	10.4	mg/L		5	1	0.17
Fluoride	B0XK11	699-8-17	02/08/2000	0.38	mg/L		1	0.1	0.01
Nitrate as N	B0XK11	699-8-17	02/08/2000	7	mg/L		10	0.2	0.11
Nitrite as N	B0XK11	699-8-17	02/08/2000	ND	mg/L	U	1	0.02	0.0074
Sulfate	B0XK11	699-8-17	02/08/2000	54.8	mg/L		10	5	1.1
Total Alkalinity	B0XK11	699-8-17	02/08/2000	121	mg/L		1	5	2.2
Chloride	B0XJY3	699-9-E2	02/10/2000	11.5	mg/L	-	5	1	0.17
Fluoride	B0XJY3	699-9-E2	02/10/2000	0.34	mg/L		1	0.1	0.01
Nitrate as N	B0XJY3	699-9-E2	02/10/2000	3.2	mg/L		5	0.1	0.22
Nitrite as N	B0XJY3	699-9-E2	02/10/2000	ND	mg/L	U	1	0.02	0.0074
Sulfate	B0XJY3	699-9-E2	02/10/2000	41.6	mg/L		5	2.5	0.54
Total Alkalinity	B0XJY3	699-9-E2	02/10/2000	138	mg/L		1	5	2.2
Chloride	B0XK99	C3071/	02/09/2000	16.5	mg/L		20	4	0.69
		ENW-MW1		1					
Fluoride	B0XK99	C3071/	02/09/2000	0.23	mg/L		1	0.1	0.01
		ENW-MW1							
Nitrate as N	B0XK99	C3071/	02/09/2000	12.4	mg/L		20	0.4	0.21
	1	ENW-MW1			1				
Nitrite as N	B0XK99	C3071/	02/09/2000	ND	mg/L	U	1	0.02	0.0074
		ENW-MW1	1			1		1	

Table C.5. (contd)

· · · · · · · · · · · · · · · · · · ·	Sample	T		Value		Lab	Dilution	Reporting	1
Constituent	Number	Well Name	Sample Date	Reported	Units	Qualifier ^(a)	Factor	Limit	MDL
Sulfate	B0XK99	C3071/	02/09/2000	82.8	mg/L		20	10	2.2
Total Alkalinity	B0XK99	C3071/ ENW-MW1	02/09/2000	268	mg/L		1	5	2.2
Chloride	B0XKB0	C3072/ ENW-MW2	02/10/2000	53.3	mg/L		20	4	0.69
Fluoride	B0XKB0	C3072/ ENW-MW2	02/10/2000	0.24	mg/L		1	0.1	0.01
Nitrate as N	B0XKB0	C3072/ ENW-MW2	02/10/2000	14.2	mg/L		20	0.4	0.21
Nitrite as N	B0XKB0	C3072/ ENW-MW2	02/10/2000	ND	mg/L	U	1	0.02	0.0074
Sulfate	B0XKB0	C3072/ ENW-MW2	02/10/2000	117	mg/L		10	5	1.1
Total Alkalinity	B0XKB0	C3072/ ENW-MW2	02/10/2000	306	mg/L		1	5	2.2
Chloride	B0XKB1	C3073/ ENW-MW3	02/10/2000	17.5	mg/L		20	4	0.69
Fluoride	B0XKB1	C3073/ ENW-MW3	02/10/2000	0.14	mg/L		1	0.1	0.01
Nitrate as N	B0XKB1	C3073/ ENW-MW3	02/10/2000	6.6	mg/L		20	0.4	0.21
Nitrite as N	B0XKB1	C3073/ ENW-MW3	02/10/2000	ND	mg/L	U	1	0.02	0.0074
Sulfate	B0XKB1	C3073/ ENW-MW3	02/10/2000	142	mg/L		20	10	2.2
Total Alkalinity	B0XKB1	C3073/ ENW-MW3	02/10/2000	448	mg/L		1	5	2.2
Chloride	B0XKB2	C3074/ ENW-MW4	02/10/2000	12.5	mg/L	4 · · ·	10	2	0.35
Fluoride	B0XKB2	C3074/ ENW-MW4	02/10/2000	0.29	mg/L		1	0.1	0.01
Nitrate as N	B0XKB2	C3074/ ENW-MW4	02/10/2000	6.9	mg/L		10	0.2	0.11
Nitrite as N	B0XKB2	C3074/ ENW-MW4	02/10/2000	ND	mg/L	U	1	0.02	0.0074
Sulfate	B0XKB2	C3074/ ENW-MW4	02/10/2000	65.2	mg/L	-	10	5	1.1
Total Alkalinity	B0XKB2	C3074/ ENW-MW4	02/10/2000	222	mg/L		1	5	2.2
Chloride	B0KXB3	C3075/ ENW-MW5	02/09/2000	10.7	mg/L		1	0.2	0.035
Fluoride	B0KXB3	C3075/ ENW-MW5	02/09/2000	0.34	mg/L		1	0.1	0.01
Nitrate as N	B0KXB3	C3075/ ENW-MW5	02/09/2000	8.4	mg/L		10	0.2	0.11

Table C.5. (contd)

	Sample	1	T	Value	1	Lab	Dilution	Reporting	
Constituent	Number	Well Name	Sample Date	Reported	Units	Qualifier ^(a)	Factor	Limit	MDL
Nitrite as N	B0KXB3	C3075/	02/09/2000	ND	mg/L	U	1	0.02	0.0074
		ENW-MW5			<u> </u>				
Sulfate	B0KXB3	C3075/	02/09/2000	50.9	mg/L		10	5	1.1
		ENW-MW5							
Total Alkalinity	B0KXB3	C3075/	02/09/2000	144	mg/L		1	5	2.2
		ENW-MW5			<u> </u>				
Chloride	B0KXB4	C3076/	02/09/2000	16.6	mg/L		10	2	0.35
	DOWNDA	ENW-MWO	00/00/2000	0.00	-/7			0.1	
Fluoride	BUKXB4		02/09/2000	0.26	mg/L		1	0.1	0.01
Nitrata an N	DAVYDA	EIN W-IVI WO	02/00/2000	70		<u> </u>	10	0.2	
Nitrate as in	BUKAB4	CSU/0/	02/09/2000	1.0	mg/L		10	0.2	0.11
Nitrite as N	BOK YB4	C3076/	02/09/2000	ND	mg/I	TI	1	0.02	0.0074
INTUIC as IN	DUILAD	ENW-MW6	02/09/2000	n.	Ing/L		1	0.02	0.0074
Sulfate	BOKXB4	C3076/	02/09/2000	102	mg/L		10	5	1.1
Sumato		ENW-MW6			- 6			-	
Total Alkalinity	B0KXB4	C3076/	02/09/2000	222	mg/L	+	1	5	2.2
-	-	ENW-MW6							
Chloride	B0XKB5	C3077/	02/15/2000	4.8	mg/L		1	0.2	0.035
		ENW-MW7			.		-	,	
Fluoride	B0XKB5	C3077/	02/15/2000	0.22	mg/L		1	0.1	0.01
		ENW-MW7							
Nitrate as N	B0XKB5	C3077/	02/15/2000	0.36	mg/L		1	0.02	0.011
	· •	ENW-MW7							
Nitrite as N	B0XKB5	C3077/	02/15/2000	ND	mg/L	U	1	0.02	0.0074
		ENW-MW7							
Sulfate	B0XKB5	C3077/	02/15/2000	21.5	mg/L	Τ	2	1	0.22
		ENW-MW7			<u> </u>		<u> </u>	<u> </u>	
Total Alkalinity	B0XKB5	C3077/	02/15/2000	172	mg/L		1	5	2.2
	DAVINDO	ENW-MW7		107		ļ			
Chloride	B0XKB6	C3078/	02/11/2000	12.7	mg/L		10	2	0.35
Thursday and the	DAVED						<u> </u>	0.1	
Pluonae	DUALDU	ENW-MW8	02/11/2000	0.5	mg/L		1	U.1	0.01
Nitrate as N	BOYKBG	C3078/	02/11/2000	0.35	mg/L	1	<u> </u>	0.02	0.011
Initiate as in	DOVISIO	ENW-MW8	02/11/2000	0.55	IIIE L		· ·	0.02	0.011
Nitrite as N	B0XKB6	C3078/	02/11/2000	ND	mg/L	t u	1	0.02	0.0074
		ENW-MW8				-	-		
Sulfate	B0XKB6	C3078/	02/11/2000	47.4	mg/L	-	10	5	1.1
		ENW-MW8					[ĺ .	
Total Alkalinity	B0XKB6	C3078/	02/11/2000	216	mg/L		1	5	2.2
		ENW-MW8					l		
Chloride	B0XKB7	C3079/	02/11/2000	26.7	mg/L	C	20	4	0.69
		ENW-MW9							
Chloride ^(b)	B0XKB8	C3079/	02/11/2000	26.6	mg/L	С	20	4	0.69
		ENW-MW9							

Table C.5. (contd)

	Sample	1		Value	<u> </u>	Lab	Dilution	Reporting	
Constituent	Number	Well Name	Sample Date	Reported	Units	Qualifier ^(a)	Factor	Limit	MDL
Fluoride	B0XKB7	C3079/	02/11/2000	0.23	mg/L		1	0.1	0.01
1		ENW-MW9	02.11.2000	0.22			-		
Fluoride ^(b)	B0XKB8	C3079/	02/11/2000	0.23	mg/L		1	0.1	0.01
		ENW-MW9			Ũ				
Nitrate as N	B0XKB7	C3079/	02/11/2000	32.5	mg/L		50	1	0.53
		ENW-MW9			Ū				
Nitrate as N ^(b)	B0XKB8	C3079/	02/11/2000	33.6	mg/L		50	1	0.53
		ENW-MW9							:
Nitrite as N	B0XKB7	C3079/	02/11/2000	ND	mg/L	U	1	0.02	0.0074
		ENW-MW9							
Nitrite as N ^(b)	B0XKB8	C3079/	02/11/2000	ND	mg/L	U	1	0.02	0.0074
		ENW-MW9							
Sulfate	B0XKB7	C3079/	02/11/2000	259	mg/L		20	10	2.2
		ENW-MW9			ļ				
Sulfate ^(b)	B0XKB8	C3079/	02/11/2000	251	mg/L		20	10	2.2
		ENW-MW9							
Total Alkalinity	B0XKB7	C3079/	02/11/2000	182	mg/L		1	5	2.2
		ENW-MW9				L			
Total Alkalinity ⁽⁰⁾	BOXKB8	C3079/	02/11/2000	202	mg/L		1	5	2.2
	DOMEDZ	ENW-MW9	00/11/0000	07.7		L			
Chloride ^(c)	BOXKB/	C3079/ENW-	02/11/2000	27.7	mg/L	C	20	3.8	0.69
	DUP	MW9 DUP	00/11/0000	0.02					0.01
Fluoride	BOXKB/	C30/9/ENW-	02/11/2000	0.23	mg/L		i	0.44	0.01
Nitrata an NI(C)	DUP	C2070/ENIW	02/11/2000	226			50	0.10	0.52
Nitrate as N ⁽⁰⁾	BUAKB/	C30/9/ENW-	02/11/2000	32.0	mg/L		50	0.19	0.55
Nitrito on NI ^(C)	DOP	C2070/ENW	02/11/2000	ND		TI	1	0.02	0.0074
INITIAL as IN	DUARD	MW9 DITP	02/11/2000		Ing L		1	0.02	0.0014
Sulfate ^(c)	BOXKB7	C3079/FNW-	02/11/2000	257	mg/I		20	0.47	22
Junac	DUP	MW9 DUP	02/11/2000		ing D	ļ.	20	0.47	2.2
Total Alkalinity ^(c)	B0XKB7	C3079/ENW-	02/11/2000	180	mg/L		1	1.1	2.2
, i otal i intainity	DUP	MW9 DUP	02112000	100	11.9.2				
Chloride	B0XKB9	ENW-31	02/08/2000	4.4	mg/L		1	0.2	0.035
Fluoride	B0XKB9	ENW-31	02/08/2000	1.1	mg/L		1	0.1	0.01
Nitrate as N	B0XKB9	ENW-31	02/08/2000	0.033	mg/L		1	0.02	0.011
Nitrite as N	B0XKB9	ENW-31	02/08/2000	ND	mg/L	Ū	1	0.02	0.0074
Sulfate	B0XKB9	ENW-31	02/08/2000	16.4	mg/L		1	0.5	0.11
Total Alkalinity	B0XKB9	ENW-31	02/08/2000	170	mg/L	1	1	5	2.2
Chloride	B0XKC0	ENW-32	02/08/2000	3.9	mg/L		1	0.2	0.035
Fluoride	B0XKC0	ENW-32	02/08/2000	0.7	mg/L		1	0.1	0.01
Nitrate as N	B0XKC0	ENW-32	02/08/2000	0.02	mg/L		1	0.02	0.011
Nitrite as N	B0XKC0	ENW-32	02/08/2000	ND	mg/L	U	1	0.02	0.0074
Sulfate	B0XKC0	ENW-32	02/08/2000	15.5	mg/L		1	0.5	0.11
Total Alkalinity	B0XKC0	ENW-32	02/08/2000	164	mg/L	[1	5.	2.2
Quality Control Samples									
Chloride ^(d)	B0XK45	EBL 121/	02/07/2000	ND	mg/L	U	1	0.2	0.035
		699-13-3A							
	and a second								
Table C.5. (contd)

Sample	· · ·		Value	T	Lab	Dilution	Reporting	
Number	Well Name	Sample Date	Reported	Units	Qualifier ^(a)	Factor	Limit	MDL
B0XK45	EBL 121/	02/07/2000	ND	mg/L	U	1	0.1	0.01
	699-13-3A							
B0XK45	EBL 121/	02/07/2000	ND	mg/L	U	1	0.02	.0.011
	699-13-3A			-				
B0XK45	EBL 121/	02/07/2000	ND	mg/L	U	1	0.02	0.0074
	699-13-3A			-				
B0XK45	EBL 121/	02/07/2000	ND	mg/L	U	1 .	0.5	0.11
1	699-13-3A	1		-				
B0XK45	EBL 121/	02/07/2000	ND	mg/L	U	1	5	2.2
1	699-13-3A			-				
B0XK06	EBL 122/	02/07/2000	0.11	mg/L	В	1	0.2	0.035
	699-13-3A			-				
B0XK06	EBL 122/	02/07/2000	ND	mg/L	U	1	0.1	0.01
	699-13-3A	!						
B0XK06	EBL 122/	02/07/2000	ND	mg/L	U	1	0.02	0.011
	699-13-3A							
B0XK06	EBL 122/	02/07/2000	ND	mg/L	U ·	1	0.02	0.0074
	699-13-3A							
B0XK06	EBL 122/	02/07/2000	ND	mg/L	U	1	0.5	0.11
	699-13-3A			-				
B0XK06	EBL 122/	02/07/2000	ND	mg/L	U	1	5	2.2
	699-13-3A							
B0XK34	EBL 123/	02/08/2000	ND	mg/L	U	1	0.2	0.35
	699-13-1B		-					
B0XK34	EBL 123/	02/08/2000	ND	mg/L	U	1	0.1	0.01
	699-13-1B		-			-	-	
B0XK34	EBL 123/	02/08/2000	ND	mg/L	U	1	0.02	0.011
	699-13-1B							1
B0XK34	EBL 123/	02/08/2000	ND	mg/L	U	1	0.02	0.0074
	699-13-1B							
B0XK34	EBL 123/	02/08/2000	ND	mg/L	U	1	0.5	0.11
	699-13-1B						· · · ·	
B0XK34	EBL 123/	02/08/2000	5	mg/L	U	1	5	2.2
	699-13-1B			-				
B0XJW3	EBL 124/C3075/	02/09/2000	0.12	mg/L	B	1	0.2	0.035
	ENW-MW5							
B0XJW3	EBL 124/C3075/	02/09/2000	ND	mg/L	U	1	0.1	0.01
	ENW-MW5			-				
B0XJW3	EBL 124/C3075/	02/09/2000	0.02	mg/L	1	1	0.02	0.011
	ENW-MW5			-				
B0XJW3	EBL 124/C3075/	02/09/2000	ND	mg/L	U	1	0.02	0.0074
	ENW-MW5			-				
B0XJW3	EBL 124/C3075/	02/09/2000	ND	mg/L	 U	1	0.5	0.11
	ENW-MW5							
B0XJW3	EBL 124/C3075/	02/09/2000	5	mg/L	†	1	5	2.2
	ENW-MW5							
	Sample Number B0XK45 B0XK06 B0XK34 B0XK34 B0XK34 B0XK34 B0XK34 B0XJW3 B0XJW3 B0XJW3 B0XJW3 B0XJW3	Sample Number Well Name B0XK45 EBL 121/ 699-13-3A B0XK06 EBL 122/ 699-13-3A B0XK06 EBL 122/ 699-13-1A B0XK34 EBL 123/ 699-13-1B B0XIW3 EBL 124/C3075/ ENW-MW5 B0XJW3 EBL 124/C3075/ ENW-MW5 B0XJW3 EBL 124/C3075/ ENW	Sample Number Well Name Sample Date B0XK45 EBL 121/ 699-13-3A 02/07/2000 699-13-3A B0XK45 EBL 121/ 699-13-3A 02/07/2000 699-13-3A B0XK45 EBL 121/ 699-13-3A 02/07/2000 699-13-3A B0XK45 EBL 121/ 699-13-3A 02/07/2000 699-13-3A B0XK06 EBL 122/ 699-13-3A 02/07/2000 699-13-1B B0XK34 EBL 123/ 699-13-1B 02/08/2000 699-13-1B B0XK34 EBL 123/ 699-13-1B 02/08/2000 699-13-1B B0XK34 EBL 123/ 699-13-1B 02/08/2000 699-13-1B B0XK34 EBL 123/ 699-13-1B 02/08/2000 699-13-1B B0XK34 EBL 123/ 609-13-1B 02/08/2000 699-13-1B B0XK34 EBL 123/ 609-13-1B 02/08/2000 699-13-1B B0XK34 EBL 124/C3075/ 609-13	Sample Number Well Name Sample Date Value Reported B0XK45 EBL 121/ 699-13-3A 02/07/2000 ND B0XK66 EBL 122/ 699-13-3A 02/07/2000 ND B0XK06 EBL 122/ 699-13-1B 02/08/2000 ND B0XK34 EBL 123/ 699-13-1B 02/08/2000 ND B0XK34 EBL 123/ 699-13-1B 02/08/2000 ND	Sample Number Well Name Sample Date Value Reported Units B0XK45 EBL 121/ 699-13-3A 02/07/2000 ND mg/L B0XK66 EBL 122/ 699-13-3A 02/07/2000 ND mg/L B0XK06 EBL 123/ 699-13-1B 02/08/2000 ND mg/L B0XK34 EBL 123/ 699-13-1B 02/08/2000 ND mg/L B0XK34 EBL 123/ 699-13-1B 02/08/2000 <td>Sample Number Well Name Sample Date Value Reported Lab Units Qualifier^(a) B0XK45 EBL 121/ 699-13-3A 02/07/2000 ND mg/L U B0XK06 EBL 122/ 699-13-3A 02/07/2000 ND mg/L U B0XK06 EBL 122/ 699-13-1B 02/07/2000 ND mg/L U B0XK34 EBL 123/ 699-13-1B 02/08/2000 ND mg/L U <td>Sample Number Well Name Sample Date Value Reported Lab Units Dilution Qualifier^(a) B0XK45 EBL 121/ 699-13-3A 02/07/2000 ND mg/L U 1 B0XK06 EBL 122/ 699-13-3A 02/07/2000 ND mg/L<</td><td>Sample Number Well Name Sample Date Value Reported Lab Qualifier⁴⁹ Dilution Factor Reporting Limit B0XK45 EBL 121/ 699-13-3A 02/07/2000 ND mg/L U 1 0.1 B0XK45 EBL 121/ 699-13-3A 02/07/2000 ND mg/L U 1 0.02 B0XK45 EBL 121/ 699-13-3A 02/07/2000 ND mg/L U 1 0.02 B0XK45 EBL 121/ 699-13-3A 02/07/2000 ND mg/L U 1 0.5 B0XK06 EBL 122/ 699-13-3A 02/07/2000 ND mg/L U 1 0.1 B0XK06 EBL 122/ 699-13-3A 02/07/2000 ND mg/L U 1 0.02 B0XK06 EBL 122/ 699-13-3A 02/07/2000 ND mg/L U 1 0.02 B0XK06 EBL 122/ 699-13-3A 02/07/2000 ND mg/L U 1 0.2 B0XK36 EBL 122/ 699-13-3A 02/07/2000 ND mg/L</td></td>	Sample Number Well Name Sample Date Value Reported Lab Units Qualifier ^(a) B0XK45 EBL 121/ 699-13-3A 02/07/2000 ND mg/L U B0XK06 EBL 122/ 699-13-3A 02/07/2000 ND mg/L U B0XK06 EBL 122/ 699-13-1B 02/07/2000 ND mg/L U B0XK34 EBL 123/ 699-13-1B 02/08/2000 ND mg/L U <td>Sample Number Well Name Sample Date Value Reported Lab Units Dilution Qualifier^(a) B0XK45 EBL 121/ 699-13-3A 02/07/2000 ND mg/L U 1 B0XK06 EBL 122/ 699-13-3A 02/07/2000 ND mg/L<</td> <td>Sample Number Well Name Sample Date Value Reported Lab Qualifier⁴⁹ Dilution Factor Reporting Limit B0XK45 EBL 121/ 699-13-3A 02/07/2000 ND mg/L U 1 0.1 B0XK45 EBL 121/ 699-13-3A 02/07/2000 ND mg/L U 1 0.02 B0XK45 EBL 121/ 699-13-3A 02/07/2000 ND mg/L U 1 0.02 B0XK45 EBL 121/ 699-13-3A 02/07/2000 ND mg/L U 1 0.5 B0XK06 EBL 122/ 699-13-3A 02/07/2000 ND mg/L U 1 0.1 B0XK06 EBL 122/ 699-13-3A 02/07/2000 ND mg/L U 1 0.02 B0XK06 EBL 122/ 699-13-3A 02/07/2000 ND mg/L U 1 0.02 B0XK06 EBL 122/ 699-13-3A 02/07/2000 ND mg/L U 1 0.2 B0XK36 EBL 122/ 699-13-3A 02/07/2000 ND mg/L</td>	Sample Number Well Name Sample Date Value Reported Lab Units Dilution Qualifier ^(a) B0XK45 EBL 121/ 699-13-3A 02/07/2000 ND mg/L U 1 B0XK06 EBL 122/ 699-13-3A 02/07/2000 ND mg/L <	Sample Number Well Name Sample Date Value Reported Lab Qualifier ⁴⁹ Dilution Factor Reporting Limit B0XK45 EBL 121/ 699-13-3A 02/07/2000 ND mg/L U 1 0.1 B0XK45 EBL 121/ 699-13-3A 02/07/2000 ND mg/L U 1 0.02 B0XK45 EBL 121/ 699-13-3A 02/07/2000 ND mg/L U 1 0.02 B0XK45 EBL 121/ 699-13-3A 02/07/2000 ND mg/L U 1 0.5 B0XK06 EBL 122/ 699-13-3A 02/07/2000 ND mg/L U 1 0.1 B0XK06 EBL 122/ 699-13-3A 02/07/2000 ND mg/L U 1 0.02 B0XK06 EBL 122/ 699-13-3A 02/07/2000 ND mg/L U 1 0.02 B0XK06 EBL 122/ 699-13-3A 02/07/2000 ND mg/L U 1 0.2 B0XK36 EBL 122/ 699-13-3A 02/07/2000 ND mg/L

Table C.5. (contd)

	Sample			Value	1	Lab	Dilution	Reporting			
Constituent	Number	Well Name	Sample Date	Reported	Units	Qualifier ^(a)	Factor	Limit	MDL		
Chloride	B0XJV3	FTB 322/	02/07/2000	ND	mg/L	U	1	0.2	0.035		
		699-13-3A							}		
Fluoride	B0XJV3	FTB 322/	02/07/2000	ND	mg/L	U	1	0.1	0.01		
		699-13-3A									
Nitrate as N	B0XJV3	FTB 322/	02/07/2000	ND	mg/L	U	1	0.02	0.011		
		699-13-3A									
Nitrite as N	B0XJV3	FTB 322/	02/07/2000	ND	mg/L	U	1	0.02	0.0074		
		699-13-3A									
Sulfate	B0XJV3	FTB 322/	02/07/2000	ND	mg/L	U	1	0.5	0.11		
		699-13-3A									
Total Alkalinity	B0XJV3	FTB 322/	02/07/2000	5	mg/L	U	1	5	2.2		
		699-13-3A	1								
Chloride	B0XK26	FTB 323/	02/07/2000	ND	mg/L	U	1	0.2	0.035		
		699-21-6									
Fluoride	B0XK26	FTB 323/	02/07/2000	ND	mg/L	U	1	0.1	0.01		
		699-21-6									
Nitrate as N	B0XK26	FTB 323/	02/07/2000	0.016	mg/L	В	1	0.02	0.011		
		699-21-6									
Nitrite as N	B0XK26	FTB 323/	02/07/2000	ND	mg/L	U	1	0.02	0.0074		
		699-21-6									
Sulfate	B0XK26	FTB 323/	02/07/2000	ND	mg/L	U	1	0.5	0.11		
		699-21-6									
Total Alkalinity	B0XK26	FTB 323/	02/07/2000	5	mg/L	U	1	5	2.2		
	699-21-6										
(a) ND/U = Resu	lt is non-detec	:t.	(0	c) Lab dup	licate.						
B = Estimated	l value. Resul	t less than the repo	orting limit. (e	i) Before s	amplin	g.					
C = Blank cor	ntamination.		(4	e) After sa	mpling.						
(b) Field duplicat	e.										

EBL = Equipment blank; FTB = Full trip blank; MDL = Minimum detection level.

C.29

	Sample	[T	Value		Lab	Reporting	
Constituent	Number	Well Name	Sample Date	Reported	Units	Qualifier ^(a)	Limit	MDL
Barium	B0XJY8	699-10-E12	02/08/2000	58.6	ug/L	B	200	6.7
Calcium	B0XJY8	699-10-E12	02/08/2000	71,900	ug/L		5,000	103
Chromium	B0XJY8	699-10-E12	02/08/2000	3.6	ug/L	В	10	3
Iron	B0XJY8	699-10-E12	02/08/2000	54.5	ug/L	B	100	8.6
Magnesium	B0XJY8	699-10-E12	02/08/2000	22,300	ug/L		5,000	99.2
Potassium	B0XJY8	699-10-E12	02/08/2000	5,970	ug/L		5,000	1,700
Sodium	B0XJY8	699-10-E12	02/08/2000	16,700	ug/L		5,000	102
Strontium	B0XJY8	699-10-E12	02/08/2000	547	ug/L	<u> </u>	50	3.1
Vanadium	B0XJY8	699-10-E12	02/08/2000	12	ug/L	В	50	2
Zinc	B0XJY8	699-10-E12	02/08/2000	8.8	ug/L	В	20	3
Barium	B0XJV6	699-12-4D	02/07/2000	48.5	ug/L	В	200	6.7
Calcium	B0XJV6	699-12-4D	02/07/2000	47,000	ug/L		5,000	103
Chromium	B0XJV6	699-12-4D	02/07/2000	3.4	ug/L	B	10	3
Iron	B0XJV6	699-12-4D	02/07/2000	45.6	ug/L	В	100	8.6
Magnesium	B0XJV6	699-12-4D	02/07/2000	12,500	ug/L		5,000	99.2
Manganese	B0XJV6	699-12-4D	02/07/2000	2.5	ug/L	В	15	1.1
Potassium	B0XJV6	699-12-4D	02/07/2000	7,290	ug/L		5,000	1,700
Sodium	B0XJV6	699-12-4D	02/07/2000	16,700	ug/L		5,000	102
Strontium	B0XJV6	699-12-4D	02/07/2000	266	ug/L		50	3.1
Vanadium	B0XJV6	699-12-4D	02/07/2000	9.4	ug/L	В	50	2
Zinc	B0XJV6	699-12-4D	02/07/2000	10.2	ug/L	B	20	3
Aluminum	B0XJW5	699-13-1A	02/08/2000	1,060	ug/L		200	19.7
Barium	B0XJW5	699-13-1A	02/08/2000	28.3	ug/L	B	200	6.7
Calcium	B0XJW5	699-13-1A	02/08/2000	26,800	ug/L		5,000	103
Iron	B0XJW5	699-13-1A	02/08/2000	204	ug/L		100	8.6
Magnesium	B0XJW5	699-13-1A	02/08/2000	10,200	ug/L		5,000	99.2
Manganese	B0XJW5	699-13-1A	02/08/2000	49.2	ug/L		15	1.1
Potassium	B0XJW5	699-13-1A	02/08/2000	7,780	ug/L		5,000	1,700
Sodium	B0XJW5	699-13-1A	02/08/2000	22,200	ug/L	·	5,000	102
Strontium	B0XJW5	699-13-1A	02/08/2000	262	ug/L		50	3.1
Vanadium	B0XJW5	699-13-1A	02/08/2000	7.7	ug/L	В	50	2
Zinc	B0XJW5	699-13-1A	02/08/2000	7.5	ug/L	В	20	3
Barium	B0WJX4	699-13-1B	02/08/2000	36.9	ug/L	В	200	6.7
Calcium	B0WJX4	699-13-1B	02/08/2000	23,600	ug/L		5,000	103
Iron	B0WJX4	699-13-1B	02/08/2000	84.9	ug/L	В	100	8.6
Magnesium	B0WJX4	699-13-1B	02/08/2000	9,420	ug/L		5,000	99.2
Manganese	B0WJX4	699-13-1B	02/08/2000	94.2	ug/L		15	1.1
Potassium	B0WJX4	699-13-1B	02/08/2000	7,350	ug/L		5,000	1,700
Sodium	B0WJX4	699-13-1B	02/08/2000	21,900	ug/L		5,000	102
Strontium	B0WJX4	699-13-1B	02/08/2000	224	ug/L		50	3.1
Zinc	B0WJX4	699-13-1B	02/08/2000	5.9	ug/L	В	20	3
Aluminum	B0WJX8	699-13-1C	02/08/2000	39.3	ug/L	B	200	19.7
Barium	B0WJX8	699-13-1C	02/08/2000	26.2	ug/L	В	200	6.7
Calcium	B0WJX8	699-13-1C	02/08/2000	11,700	ug/L		5,000	103
Iron	B0WJX8	699-13-1C	02/08/2000	172	ug/L		100	8.6
Magnesium	B0WJX8	699-13-1C	02/08/2000	2,760	ug/L	В	5,000	99.2
Manganese	BOWIXS	699-13-1C	02/08/2000	196	no/L		15	11

 Table C.6. Filtered Metal Results for 618-11 Burial Ground Investigation, February 2000 (detects only)

£

Table C.6. (contd)

	Sample			Value		Lab	Reporting	
Constituent	Number	Well Name	Sample Date	Reported	Units	Qualifier	Limit	MDL
Potassium	B0WJX8	699-13-1C	02/08/2000	7,700	ug/L		5,000	1,700
Sodium	B0WJX8	699-13-1C	02/08/2000	53,300	ug/L		5,000	102
Strontium	B0WJX8	699-13-1C	02/08/2000	73.2	ug/L		50	3.1
Zinc	B0WJX8	699-13-1C	02/08/2000	11.6	ug/L	В	20	3
Aluminum	BOXJT2	699-13-3A	02/07/2000	20.4	ug/L	В	200	19.7
Barium	BOXJT2	699-13-3A	02/07/2000	85.3	ug/L	В	200	6.7
Barium ^(b)	BOXJV0	699-13-3A	02/07/2000	83.8	ug/L	B	200	6.7
Calcium	BOXJT2	699-13-3A	02/07/2000	76,600	ug/L		5,000	103
Calcium ^(b)	BOXJV0	699-13-3A	02/07/2000	74,300	ug/L		5,000	103
Iron	BOXJT2	699-13-3A	02/07/2000	87	ug/L	В	100	8.6
Iron ^(b)	BOXJV0	699-13-3A	02/07/2000	89.6	ug/L	B	100	8.6
Magnesium	BOXJT2	699-13-3A	02/07/2000	18,300	ug/L		5,000	99.2
Magnesium ^(b)	BOXJV0	699-13-3A	02/07/2000	17,700	ug/L		5,000	99.2
Manganese	BOXJT2	699-13-3A	02/07/2000	5.6	ug/L	B	15	1.1
Manganese ^(b)	BOXJV0	699-13-3A	02/07/2000	5.5	ug/L	B	15	1.1
Potassium	BOXJT2	699-13-3A	02/07/2000	7,980	ug/L		5,000	1,700
Potassium ^(b)	BOXJV0	699-13-3A	02/07/2000	8,460	ug/L		5,000	1,700
Sodium	BOXJT2	699-13-3A	02/07/2000	21,600	ug/L		5,000	102
Sodium ^(b)	BOXJV0	699-13-3A	02/07/2000	20,700	ug/L		5,000	102
Strontium	BOXJT2	699-13-3A	02/07/2000	389	ug/L		50	3.1
Strontium	BOXJV0	699-13-3A	02/07/2000	381	ug/L		50	3.1
Vanadium	BOXJT2	699-13-3A	02/07/2000	13.5	ug/L	B	50	2
Vanadium ^(b)	BOXJV0	699-13-3A	02/07/2000	14.7	ug/L	B	50	2
Zinc	BOXJT2	699-13-3A	02/07/2000	33	ug/L		20	3
Zinc ^(b)	BOXJV0	699-13-3A	02/07/2000	21.7	ug/L		20	3
Barium	B0XK18	699-15-15B	02/08/2000	46.7	ug/L	B	200	6.7
Calcium	B0XK18	699-15-15B	02/08/2000	52.400	ug/L		5,000	103
Chromium	B0XK18	699-15-15B	02/08/2000	4.5	ug/L	В	10	3
Iron	B0XK18	699-15-15B	02/08/2000	37.2	ug/L	<u> </u>	100	8.6
Magnesium	B0XK18	699-15-15B	02/08/2000	10.800	ug/L		5,000	99.2
Manganese	B0XK18	699-15-15B	02/08/2000	1.8	<u> </u>		15	1.1
Potassium	B0XK18	699-15-15B	02/08/2000	8.550	ug/L		5,000	1.700
Sodium	B0XK18	699-15-15B	02/08/2000	21.100	ug/L	<u> </u>	5,000	102
Strontium	B0XK18	699-15-15B	02/08/2000	276	ug/L		50	3.1
Vanadium	B0XK18	699-15-15B	02/08/2000	13	ug/L	В	50	2
Zinc	B0XK18	699-15-15B	02/08/2000	136	ug/L		20	3
Aluminum	B0XK13	699-17-5	02/07/2000	46.4	ug/L	В	200	19.7
Barium	B0XK13	699-17-5	02/07/2000	65.4	ug/L	 B	200	6.7
Calcium	B0XK13	699-17-5	02/07/2000	52.300	ug/L		5.000	103
Chromium	B0XK13	699-17-5	02/07/2000	3.4	<u> </u>	B	10	3
Iron	B0XK13	699-17-5	02/07/2000	138	ug/L		100	8.6
Magnesium	B0XK13	699-17-5	02/07/2000	14 300	ng/L		5.000	99.2
Manganese	B0XK13	699-17-5	02/07/2000	37	ng/L	<u> </u>	15	1.1
Potassium	B0XK13	699-17-5	02/07/2000	7 160	110/1		5 000	1,700
Sodium	B0XK13	699-17-5	02/07/2000	13,000	110/I		5,000	102
Strontium	B0XK13	699-17-5	02/07/2000	318	100/I		50	31
Zinc	BOXK13	699-17-5	02/07/2000	174	100/I	R ·	20	3
~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1422-11-2	1 04001/40000	* / • 🖛	ւսպեսես	1 D	, <u>~</u> v ·	, J

C.31

Table C.6. (contd)

	Sample	1	1	Value	1	Lab	Reporting	
Constituent	Number	Well Name	Sample Date	Reported	Units	Qualifier ^(a)	Limit	MDL
Dorium	PAVE 21	600 21 6	02/07/2000	50.2	ug/I	P	200	67
Calcium	BOXK21	600 21 6	02/07/2000	<u> </u>	ug/L		5.000	102
Chromium	DOXK21	600 21 6	02/07/2000	43,300		P	10	2
Trop	DOXK21	600 21 6	02/07/2000	278	ug/L	В	10	96
	DUAK21	600.21.6	02/07/2000	<u> </u>	ug/L		100	0.0
Magnesium	DUANZI DOVK21	600 21 6	02/07/2000	9,800			3,000	99.2
Determinese	DUAK21	600 21 6	02/07/2000	6 220		· · · · · · · · · · · · · · · · · · ·	5 000	1.1
Potassium	BUAK21	600 21 6	02/07/2000	0,320			5,000	1,700
Sodium	BUXK21	699-21-6	02/07/2000	8,580	ug/L	-	5,000	2.1
Strontium	BUXK21	699-21-0	02/07/2000			<u> </u>	50	
Vanadium	BUXK21	699-21-6	02/07/2000	0.0	ug/L	B	50	
Linc	B0XK21	699-21-6	02/07/2000	8.0		B	20	- 10 7
Aluminum	BOXKIO	699-8-17	02/08/2000	29.1	ug/L	B	200	19.7
Barium	BOXKIO	699-8-17	02/08/2000	38.2	ug/L	В	200	6.7
Calcium	B0XK10	699-8-17	02/08/2000	45,500	ug/L		5,000	103
Chromium	B0XK10	699-8-17	02/08/2000	5.9	ug/L	В	10	3
Iron	B0XK10	699-8-17	02/08/2000	37.4	ug/L		100	8.6
Magnesium	B0XK10	699-8-17	02/08/2000	12,300	ug/L		5,000	99.2
Manganese	B0XK10	699-8-17	02/08/2000	2.5	ug/L	В	15	1.1
Potassium	B0XK10	699-8-17	02/08/2000	8,200	ug/L		5,000	1,700
Sodium	B0XK10	699-8-17	02/08/2000	20,800	ug/L		5,000	102
Strontium	B0XK10	699-8-17	02/08/2000	254	ug/L		50	3.1
Vanadium	B0XK10	699-8-17	02/08/2000	10	ug/L	В	50	2
Zinc	B0XK10	699-8-17	02/08/2000	116	ug/L		20	3
Barium	B0XJY2	699-9-E2	02/10/2000	51.1	ug/L	В	200	6.7
Calcium	B0XJY2	699-9-E2	02/10/2000	40,500	ug/L		5,000	103
Iron	B0XJY2	699-9-E2	02/10/2000	60.4	ug/L	В	100	8.6
Magnesium	B0XJY2	699-9-E2	02/10/2000	13,700	ug/L		5,000	99.2
Manganese	B0XJY2	699-9-E2	02/10/2000	6.3	ug/L	В	15	1.1
Potassium	B0XJY2	699-9-E2	02/10/2000	7,310	ug/L		5,000	1,700
Sodium	B0XJY2	699-9-E2	02/10/2000	24,700	ug/L		5,000	102
Strontium	B0XJY2	699-9-E2	02/10/2000	289	ug/L	1	50	3.1
Zinc	B0XJY2	699-9-E2	02/10/2000	12.8	ug/L	B	20	3
Barium	B0XK87	C3071/	02/09/2000	79.3	ug/L	В	200	6.7
	]	ENW-MW1				1		
Calcium	B0XK87	C3071/	02/09/2000	106,000	ug/L		5,000	103
		ENW-MW1						
Iron	B0XK87	C3071/	02/09/2000	122	ug/L		100	8.6
		ENW-MW1		. <b>x</b>				
Magnesium	B0XK87	C3071/	02/09/2000	24,400	ug/L	1	5,000	99.2
Ū		ENW-MW1						
Potassium	B0XK87	C3071/	02/09/2000	9,770	ug/L		5,000	1,700
		ENW-MW1			l T			
Sodium	B0XK87	C3071/	02/09/2000	23,700	ug/L	1	5,000	102
		ENW-MW1						
Strontium	B0XK87	C3071/	02/09/2000	506	ug/L	1	50	3.1
		ENW-MW1						

C.32

Ð,

Table C.6. (contd)

	Sample	<u> </u>	<u> </u>	Value	1	Lab	Reporting	
Constituent	Number	Well Name	Sample Date	Penarted	Units	Cualifier ^(a)	Limit	MDL
Vorodium	DOVVO7	C2071/		<u> </u>	Units ug/I	D	50	2
vanadium	BUAK8/	ENW-MW1	02/09/2000	. 0	ug/L	В	, 50	2
Zinc	B0XK87	C3071/ ENW-MW1	02/09/2000	19.5	ug/L	. В	20	3
Barium	B0XK88	C3072/ ENW-MW2	02/10/2000	76.7	ug/L	• <b>B</b>	200	6.7
Calcium	B0XK88	C3072/ ENW-MW2	02/10/2000	139,000	ug/L		5,000	103
Chromium	B0XK88	C3072/ ENW-MW2	02/10/2000	4.6	ug/L	В	10	3
Iron	B0XK88	C3072/ ENW-MW2	02/10/2000	148	ug/L		100	8.6
Magnesium	B0XK88	C3072/ ENW-MW2	02/10/2000	32,600	ug/L		5,000	99.2
Potassium	B0XK88	C3072/ ENW-MW2	02/10/2000	10,600	ug/L		5,000	1,700
Sodium	B0XK88	C3072/ ENW-MW2	02/10/2000	34,700	ug/L		5,000	102
Strontium	B0XK88	C3072/ ENW-MW2	02/10/2000	670	ug/L		50	3.1
Vanadium	B0XK88	C3072/ ENW-MW2	02/10/2000	5.8	ug/L	В	50	2
Zinc	B0XK88	C3072/ ENW-MW2	02/10/2000	8.2	ug/L	В	20	3
Aluminum	B0XK89	C3073 ENW-MW3	02/10/2000	33.5	ug/L	В	200	19.7
Barium	B0XK89	C3073/ ENW-MW3	02/10/2000	75.8	ug/L	В	200	6.7
Calcium	B0XK89	C3073/ ENW-MW3	02/10/2000	166,000	ug/L		5,000	103
Chromium	B0XK89	C3073/ ENW-MW3	02/10/2000	3.7	ug/L	В	10	3
Iron	B0XK89	C3073/ ENW-MW3	02/10/2000	81.2	ug/L	В	100	8.6
Magnesium	B0XK89	C3073/ ENW-MW3	02/10/2000	36,000	ug/L		5,000	99.2
Potassium	B0XK89	C3073/ ENW-MW3	02/10/2000	11,800	ug/L		5,000	1,700
Sodium	B0XK89	C3073/ ENW-MW3	02/10/2000	44,900	ug/L		5,000	102
Strontium	B0XK89	C3073/ ENW-MW3	02/10/2000	731	ug/L		50	3.1
Vanadium	B0XK89	C3073/ ENW-MW3	02/10/2000	6.6	ug/L	В	50	2
Zinc	B0XK89	C3073/ ENW-MW3	02/10/2000	9.6	ug/L	В	20	3

Table C.6. (contd)

	Sample	1	T	Value	T the second sec	Lah	Reporting	1
Constituent	Number	Well Name	Sample Date	Reported	Units	Oualifier ^(a)	Limit	MDL
Aluminum	BOXK90	C3074/	02/10/2000	27.8	1 .ug/I	B	200	19.7
Alummun	DUARSO	ENW-MW4	02/10/2000	21.0	ug/L		200	12.1
Barium	B0XK90	C3074/	02/10/2000	70.4	ug/L		200	6.7
		ENW-MW4						
Calcium	B0XK90	C3074/	02/10/2000	79,300	ug/L		5,000	103
		ENW-MW4		·				
Chromium	B0XK90	C3074/	02/10/2000	4.3	ug/L	В	10	3
		ENW-MW4						
Iron	B0XK90	C3074/	02/10/2000	121	ug/L		100	8.6
		ENW-MW4						
Magnesium	B0XK90	C3074/	02/10/2000	18,000	ug/L		5,000	99.2
		ENW-MW4						
Potassium	B0XK90	C3074/	02/10/2000	7,560	ug/L		5,000	1,700
		ENW-MW4			ļ			
Sodium	B0XK90	C3074/	02/10/2000	27,200	ug/L		5,000	102
	DOMINOO	ENW-MW4	00/10/0000	274				
Strontium	BUXK90	C3074/	02/10/2000	374	ug/L		50	3.1
· · · · · · · · · · · · · · · · · · ·	DOVKOO	ENW-MW4	00/10/2000					<u> </u>
Vanadium	BUXK90	C3074/	02/10/2000	1.4	ug/L	В	50	2
7:22	DAVKOA	EIN W-IVI W4	02/10/2000	14.1			20	3
Zinc	BUAR50	ENW-MWA	02/10/2000	14.1	ug/L	D	20	5
Barium	BOYK91	C3075/	02/09/2000	48			200	67
Dartain	DUMEN	ENW-MW5	02/09/2000	70	ug/ L		200	0.7
Calcium	B0XK91	C3075/	02/09/2000	49.200	ug/L		5.000	103
<u>Ourse</u>		ENW-MW5		· · · · · · · · ·	-9			
Chromium	B0XK91	C3075/	02/09/2000	4.3	ug/L	B	10	3
· · · · · · · ·		ENW-MW5				-		
Magnesium	B0XK91	C3075/	02/09/2000	13,000	ug/L	<u> </u>	5,000	99.2
Ŭ		ENW-MW5						
Potassium	B0XK91	C3075/	02/09/2000	7,580	ug/L		5,000	1,700
		ENW-MW5						
Sodium	B0XK91	C3075/	02/09/2000	19,500	ug/L		5,000	102
		ENW-MW5						
Strontium	B0XK91	C3075/	02/09/2000	268	ug/L	Γ	50	3.1
	1	ENW-MW5						
Vanadium	B0XK91	C3075/	02/09/2000	9.3	ug/L	B	50	2
1		ENW-MW5			<u> </u>		,	
Zinc	B0XK91	C3075/	02/09/2000	8.6	ug/L	B	20	3
		ENW-MW5	00/0000			Ļ		
Barium	B0XK92	C3076/	02/09/2000	75.8	ug/L	В	200	6.7
	- DOTIVOO	ENW-MW0	00000				- <u> </u>	
Calcium	B0XK92	C3076/	02/09/2000	82,200	ug/L		5,000	103
<u>.</u>	DOVICOO	ENW-MW6	00/00/0000			<u> </u>		
Chromium	BOXK92	C3076/	02/09/2000	3	ug/L	в	10	3
		EIN W-IVI WO				1	1	

Table C.6. (contd)

	Sample	1		Value	T T	Lab	Reporting	
Constituent	Number	Well Name	Sample Date	Reported	Units	Qualifier ^(a)	Limit	MDL
Iron	B0XK92	C3076/	02/09/2000	38.4	ug/L	В	100	8.6
		ENW-MW6			-8-	_		
Magnesium	B0XK92	C3076/	02/09/2000	20,400	ug/L		5,000	99.2
U		ENW-MW6		2			,	
Potassium	B0XK92	C3076/	02/09/2000	9,610	ug/L		5,000	1,700
		ENW-MW6						
Sođium	B0XK92	C3076/	02/09/2000	26,300	ug/L		5,000	102
		ENW-MW6						
Strontium	B0XK92	C3076/	02/09/2000	462	ug/L		50	3.1
		ENW-MW6						
Zinc	B0XK92	C3076/	02/09/2000	6.8	ug/L	В	20	3
		ENW-MW6		·				
Barium	B0XK93	C3077/	02/15/2000	35.7	ug/L	В	200	0.9
		ENW-MW7			<u> </u>			
Calcium	B0XK93	C3077/	02/15/2000	38,100	ug/L	-	5,000	65.3
-		ENW-MW7			ļ			
lron	B0XK93	C3077/	02/15/2000	30.6	ug/L	B	100	30.3
	Downoo	ENW-MW7	00/15/0000				6.000	101
Magnesium	B0XK93	C3077/	02/15/2000	7,840	ug/L		5,000	101
	Dovicos	ENW-MW/	00/15/0000				10	
Manganese	B0XK93	C307//	02/15/2000	1.1	ug/L	В	15	0.9
Datasi	DOVKO2	EN W-IVI W /	02/15/2000	5.510	/T		5 000	1.010
Potassium	B0XK93	C30///	02/15/2000	5,510	ug/L		5,000	1,810
Sadium	DOVKO2	EIN W-IVI W /	02/15/2000	0.140			5.000	44.2
Sodium	BUAR95	CSU///	02/15/2000	9,140	ug/L		3,000	44.2
Strontium	POVV02	C2077/	02/15/2000	196			50	0.4
Suoman	DUARSS	ENW-MW7	02/15/2000	100 .	ug/L		50	0.4
Vanadium	BOXK93	C3077/	02/15/2000	6.9	ng/I	B	50	47
	Donicos	ENW-MW7	02/15/2000	0.9	ug D	2		,
Zinc	B0XK93	C3077/	02/15/2000	18.5	ug/L	В	20	4.2
		ENW-MW7						
Barium	B0XK94	C3078/	02/11/2000	55.6	ug/L	В	200	6.7
		ENW-MW8						
Calcium	B0XK94	C3078/	02/11/2000	68,200	ug/L		5,000	103
		ENW-MW8						
Iron	B0XK94	C3078/	02/11/2000	175	ug/L		100	8.6
		ENW-MW8						
Magnesium	B0XK94	C3078/	02/11/2000	15,700	ug/L		5,000	99.2
		ENW-MW8						
Manganese	B0XK94	C3078/	02/11/2000	-1.3	ug/L	B	15	1.1
		ENW-MW8				·		
Potassium	B0XK94	C3078/	02/11/2000	6,730	ug/L		5,000	1,700
		ENW-MW8			ļ	<u> </u>		
Sodium	B0XK94	C3078/	02/11/2000	25,300	ug/L		5,000	102
		ENW-MW8				1	1	

Table C.6. (contd)

£

	Sample	1	T	Value	T	Lab	Reporting	
Constituent	Number	Well Name	Sample Date	Reported	Units	Qualifier ^(a)	Limit	MDL
Strontium	B0XK94	C3078/	02/11/2000	329	ug/L		50	3.1
		ENW-MW8						
Vanadium	B0XK94	C3078/	02/11/2000	9.3	ug/L	В	50	2
		ENW-MW8						
Zinc	B0XK94	C3078/	02/11/2000	37.9	ug/L		20	3
		ENW-MW8						
Barium	B0XK95	C3079/	02/11/2000	46.5	ug/L	В	200	6.7
		ENW-MW9						
Barium ⁽⁰⁾	B0XK96	C3079/	02/11/2000	49.2	ug/L	B	200	6.7
		ENW-MW9						
Calcium	B0XK95	C3079/	02/11/2000	146,000	ug/L		5,000	103
(b)		ENW-MW9			ļ <u>,</u>			
Calcium	B0XK96	C3079/	02/11/2000	156,000	ug/L		5,000	103
	DOMINOC	ENW-MW9		·····		<u> </u>		
Chromium	B0XK96	C3079/	02/11/2000	3.4	ug/L	В	10	3
	Dovros	ENW-MW9	00/11/0000					
Cobalt	BUXK95	C30/9/	02/11/2000	3.1	ug/L	В	50	2.8
C - h - 1+(b)	DONKOG	EIN W-IVI W9	02/11/2000		1		50	
Cobait	BUXKAD	C30/9/	02/11/2000	3	ug/L	в	50	2.8
T	DOVKOS	ENW-WW9	02/11/2000	717			100	06
Iron	BUXK95	C30/9/	02/11/2000	/1./	ug/L	в	100	8.0
r(b)	DAVKOG	C2070/	02/11/2000	262		+	100	06
lron ^w	BUAR90	COU/9/	02/11/2000	202	ug/L		100	8.0
Magnacium	DOVKOS	C2070/	02/11/2000	25 200			5.000	00.2
Magnesium	DUAR73	ENIN MWO	02/11/2000	33,300	ug/L		3,000	77.2
Magnecium ^(b)	BUXK06	C2070/	02/11/2000	27 700	110/1	<u> </u>	5,000	09.2
Magnesium	DUARSO	ENW-MW9	02/11/2000	21,100	ugr		3,000	55.2
Potassium	BOXK95	C3079/	02/11/2000	9 950	10/I.	+	5 000	1 700
i Guosian.	Longo	ENW-MW9	02011.2000	ت ب مروم			2,000	,,,
Potassium ^(b)	B0XK96	C3079/	02/11/2000	10,400	ng/L	+	5.000	1.700
		ENW-MW9			-6-		-,-	-,
Sodium	B0XK95	C3079/	02/11/2000	53,300	ug/L		5,000	102
		ENW-MW9		/				
Sodium ^(b)	B0XK96	C3079/	02/11/2000	56,700	ug/L	1	5,000	102
		ENW-MW9		ŕ				
Strontium	B0XK95	C3079/	02/11/2000	700	ug/L	1	50	3.1
		ENW-MW9			-			
Strontium ^(b)	B0XK96	C3079/	02/11/2000	742	ug/L		50	3.1
		ENW-MW9						·
Vanadium	B0XK95	C3079/	02/11/2000	6	ug/L	B	50	2
		ENW-MW9						
Vanadium ^(b)	B0XK96	C3079/	02/11/2000	6	ug/L	B	50	2
		ENW-MW9						
Zinc	B0XK95	C3079/	02/11/2000	7.8	ug/L	B	20	3
		ENW-MW9						

Table C.6. (contd)

	Sample	T	T	Value	T	Lab	Reporting	1
Constituent	Number	Well Name	Sample Date	Reported	Units	Oualifier ^(a)	Limit	MDL
Zinc ^(b)	BOXK96	C3079/	02/11/2000	9.2	ng/[,	B	20	3
	L'UNIL V	ENW-MW9	02/11/2000	<i></i>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<i></i>	-
Barium	B0XK97	ENW-31	02/08/2000	59.8	ug/L	B	200	6.7
Calcium	B0XK97	ENW-31	02/08/2000	20.800	ug/L		5.000	103
Iron	B0XK97	ENW-31	02/08/2000	42.4	ug/L	B	100	8.6
Magnesium	BOXK97	ENW-31	02/08/2000	6.080	ug/L		5.000	99.2
Manganese	BOXK97	FNW-31	02/08/2000	13.4	ug/L	B	15	1.1
Potassium	BOXK97	ENW-31	02/08/2000	7 580	ug/L		5.000	1.700
Sodium	B0XK97	ENW-31	02/08/2000	49,500	ng/L		5,000	102
Stroptium	BOXK97	FNW-31	02/08/2000	154	ng/L		50	3.1
7inc	BOXK97	FNW-31	02/08/2000	92	no/L	B	20	3
Aluminum	BUXK08	FNW-32	02/08/2000	84.1	100/L		200	19.7
Rarium	BUXK08	FNW-32	02/08/2000	55.6	110/1	B	200	67
Calcium	BUNKOS	ENW-32	02/08/2000	22 400			5 000	103
Trop	DUNICO	ENIW 32	02/08/2000	194			100	86
Magnecium	DUALTO	ENUL 22	02/00/2000	6 380		<b> </b>	5 000	0.0
Magnesium	DUAK70	EIN WY-52	02/08/2000			ļ	15	77.4
Determine	DUAL 70	EIN W-52	02/08/2000	<u> </u>		<b> </b>	5.000	1.1
Potassium	BUANYO	EIN W-52	02/08/2000	<u> </u>	ug/L	<u> </u>	5,000	1,700
Soaium	BUXKYO	ENW-32	02/08/2000	43,000	ug/L		5,000	102
Strontium	BUXK98	ENW-32	02/08/2000	104	ug/L		20	3.1
Zinc	BOXKAS	ENW-32	02/08/2000	9.5	ug/L	В	20	<u> </u>
(c)			Quality Cont	roi Samples	T 17			10.7
Aluminum	BOXIA2	EBL 121/ 699-13-3A	02/07/2000	32.2	ug/L	В	200	19.7
Calcium ^(c)	B0XJY5	EBL 121/	02/07/2000	180	ug/L	В	5,000	103
Tran ^(C)	BOVIV5	EDI 121/	02/07/2000	68 /	wg/I		100	86
11011	DUNIIJ	EDL 1217	02/07/2000	00.4	ug/L	<u>د</u>	100	0.0
Sodium ^(c)	BUNINS	EDI 121/	02/07/2000		Jug/I		5 000	102
Sourum	DUALIS	600_13_3A	02/07/2000	220	ug/L		5,000	102
Zinc ^(C)	BOYIV5	FRI 121/	02/07/2000		ug/I	<u> </u>	20	3
Zinc	DUALIS	600_13_3A	02/07/2000	<i>2</i> I	ug/L		20	
A huminum ^(d)	BOYKAA	FRI 122/	02/07/2000	23.7	ug/I	B	200	197
Aluminum	DUAL	600_13_3A	02/07/2000	42.1	ug/L		200	12.7
Calcium ^(d)	BOYK44	FRI 122/	02/07/2000	217	ug/I	B	5 000	103
Calcium	DUAL	600_13_3A	02/07/2000	211			5,000	105
Trop(d)	BOYKAA	EDI 122/	02/07/2000	86.6	ug/I	R	100	86
	DUAL	EDL 122/	02/07/2000	00.0	ug/L	ע	100	0.0
Codium ^(d)	BUNKAA	EDI 122/	02/07/2000	207		R	5.000	102
Soutum	DUAL	699-13-3A	02/07/2000	207			5,000	102
Zinc ^(d)	B0XK44	EBL 122/	02/07/2000	26.1	ug/L		20	3
		699-13-3A						
Calcium	B0XK33	EBL 123/	02/08/2000	347	ug/L	B	5,000	103
		699-13-1B						
Sodium	B0XK33	EBL 123/	02/08/2000	401	ug/L	В	5,000	102
		699-13-1B					1	

	Sample			Value	1	Lab	Reporting	
Constituent	Number	Well Name	Sample Date	Reported	Units	Qualifier ^(a)	Limit	MDL
Zinc	B0XK33	EBL 123/	02/08/2000	6.7	ug/L	В	20	3
		699-13-1B	i i i i i i i i i i i i i i i i i i i					
Calcium	B0XJW2	EBL 124/ ENW-MW5	02/09/2000	354	ug/L	В	5,000	103
Sodium	B0XJW2	EBL 124 /ENW-MW5	02/09/2000	468	ug/L	В	5,000	102
Zinc	B0XJW2	EBL 124/ ENW-MW5	02/09/2000	7.6	ug/L	В	20	3
Calcium	B0XJV2	FTB 322/ 699-13-3A	02/07/2000	174	ug/L	В	5,000	103
Cobalt	B0XJV2	FTB 322/ 699-13-3A	02/07/2000	4.3	ug/L	В	50	2.8
Iron	B0XJV2	FTB 322/ 699-13-3A	02/07/2000	55.3	ug/L	В	100	8.6
Sodium	B0XJV2	FTB 322/ 699-13-3A	02/07/2000	219	ug/L	В	5,000	102
Zinc	B0XJV2	FTB 322/ 699-13-3A	02/07/2000	17.6	ug/L	В	20	3
Aluminum	B0XK25	FTB 323/ 699-21-6	02/07/2000	35.3	ug/L	В	200	19.7
Calcium	B0XK25	FTB 323/ 699-21-6	02/07/2000	411	ug/L	В	5,000	103
Iron	B0XK25	FTB 323/ 699-21-6	02/07/2000	371	ug/L		100	8.6
Sodium	B0XK25	FTB 323/ 699-21-6	02/07/2000	462	ug/L	В	5,000	102
Zinc	B0XK25	FTB 323/ 699-21-6	02/07/2000	8.7	ug/L	В	20	3

¥

Table C.6. (contd)

(a) B = Estimated result. Value is less than reporting limit.

(b) Field duplicate.

(c) Before sample.

(d) After sample.

Note: Samples reported as non-detect are omitted. EBL = Equipment blank; FTB = Full trip blank; MDL = Minimum detection level.

li				×7 ×	1	X . L	D	
Constitution	Sample	XX/-II N/	Sample	Value	TI	Lab	Reporting	MDI
Constituent	Number	wen Name	Date	Reportea	Units	Quaimer		MDL
Methylene Chloride	BOXJ13	699-13-3A	02/07/2000	3.4	ug/L	<u>B</u>	1	0.37
Carbon Tetrachloride	BOXJT3	699-13-3A	02/07/2000	0.24	ug/L	J	1	0.23
Trichloroethene	BOXJT3	699-13-3A	02/07/2000	0.32	ug/L	J	1	0.16
bis(2-Ethylhexyl) phthalate	BOXJT3	699-13-3A	02/07/2000	1.4	ug/L	J	10	1.3
Methylene Chloride	BOXJV1	699-13-3A	02/07/2000	3	ug/L	B	1	0.37
Carbon Tetrachloride	BOXJV1	699-13-3A	02/07/2000	0.24	ug/L	J	1	0.23
Chlorobenzene	B0XJV7	699-12-4D	02/07/2000	0.41	ug/L	J	1	0.28
Methylene Chloride	B0XJW6	699-13-1A	02/08/2000	0.68	ug/L	J	1	0.37
		Quality Q	Control Samp	oles				
Methylene Chloride	B0XK50	FXR 520/	02/07/2000	0.51	ug/L	J	1	0.37
		699-13-3A			-			
Chloroform	B0XK50	FXR 520/	02/07/2000	0.59	ug/L	J	1	0.23
		699-13-3A						
Chloroform	B0XJV3	FTB 322/	02/07/2000	0.54	ug/L	J	1	0.23
		699-13-3A						
Chloroform ^(b)	B0XK45	EBL 121/	02/07/2000	17	ug/L		1	0.23
		699-13-3A			17			
Bromodichloromethane ^(b)	B0XK45	EBL 121/	02/07/2000	0.43	ug/L	J	1	0.2
		699-13-3A			-			
Chloroform ^(c)	B0XK06	EBL 122/	02/07/2000	11	ug/L		1	0.23
		699-13-3A						
Trichloroethene ^(c)	B0XK06	EBL 122/	02/07/2000	0.21	ug/L	J	1	0.16
		699-13-3A						
Bromodichloromethane ^(c)	B0XK06	EBL 122/	02/07/2000	0.33	ug/L	J	1	0.2
		699-13-3A						
bis(2-Ethylhexyl)	B0XK06	EBL 122/	02/07/2000	2.3	ug/L	JB	10	1.3
phthalate ^(c)		699-13-3A						
Methylene Chloride	B0XK51	FXR 521/	02/08/2000	0.82	ug/L	J	1	0.37
· · · · · · · · · · · · · · · · · · ·		699-13-1A		}	-			
Chloroform	B0XK51	FXR 521/	02/08/2000	0.57	ug/L	J	1	0.23
		699-13-1A				· · · · ·		
Chloroform	B0XK34	EBL 123/	02/08/2000	10	ug/L		1	0.23
		699-13-1B			-			
Methylene Chloride	B0XJW3	EBL 124/C3075/	02/09/2000	0.72	ug/L	J	1	0.37
-		ENW-MW5				•		
Bromodichloromethane	B0XJW3	EBL 124/C3075/	02/09/2000	0.51	ug/L	J	1	0.2
		ENW-MW5						
Chloroform	B0XJW3	EBL 124/C3075/	02/09/2000	23	ug/L		1	0.23
	· ·	ENW-MW5			Ŭ			
bis(2-Ethylhexyl) phthalate	B0XJW3	EBL 124/C3075/	02/09/2000	1.7	ug/L	JB	10	1.3
		ENW-MW5			<b>1</b>			
Methylene Chloride	B0XK52	FXR 522/C3076/	02/09/2000	0.98	ug/L	JB	1	0.37
		ENW-MW6			Ĭ			
Chloroform	B0XK52	FXR 522/C3076/	02/09/2000	0.55	ug/L	J	1	0.23
		ENW-MW6			Ĩ			

### Table C.7. Organic Results for 618-11 Burial Ground Investigation, February 2000

B = Method blank contamination. The associated method blank contains the target analyte at a reportable level. (a)

J = Estimated result. Result is less than reporting limit.

(b) Before sampling.

(c) After sampling.
 Note: Samples reported as non-detect are omitted.
 EBL = Equipment blank; FTB = Full trip blank; MDL = Minimum detection level.

	Sample		1	Value	1
Constituent	Number	Well Name	Sample Date	Reported	Units
Conductivity	B0XJY9	699-10-E12	02/08/2000	609	uS/cm
pH Measurement	B0XJY9	699-10-E12	02/08/2000	7.4	pН
Temperature	B0XJY9	699-10-E12	02/08/2000	17.6	Deg C
Furbidity	B0XJY9	699-10-E12	02/08/2000	4.61	NTU
Conductivity	B0XJV7	699-12-4D	02/07/2000	413	uS/cm
oH Measurement	B0XJV7	699-12-4D	02/07/2000	7.94	pH
Temperature	B0XJV7	699-12-4D	02/07/2000	17.1	Deg C
Turbidity	B0XJV7	699-12-4D	02/07/2000	10.6	NTU
Conductivity	B0XJW6	699-13-1A	02/08/2000	307	uS/cm
oH Measurement	B0XJW6	699-13-1A	02/08/2000	8.09	pH
Тетрегаците	B0XJW6	699-13-1A	02/08/2000	17.4	Deg C
Turbidity	B0XJW6	699-13-1A	02/08/2000	1.85	NTU
Conductivity	B0XJX5	699-13-1B	02/08/2000	289	uS/cm
oH Measurement	B0XJX5	699-13-1B	02/08/2000	8.23	nH
Temperature	B0XIX5	699-13-1B	02/08/2000	17.1	Deg C
Turbidity	BOXIX5	699-13-1B	02/08/2000	12.2	INTU
Conductivity	BOXIX9	699-13-1C	02/08/2000	330	uS/cm
oH Measurement	BOXIX9	699-13-1C	02/08/2000	8 44	pH
Temperature	BOXIXO	699-13-10	02/08/2000	20.8	Deg C
Turbidity	BOXIXO	699-13-1C	02/08/2000	30.3	NTU
Conductivity	BOXIT3	699-13-3 4	02/07/2000	624	uS/cm
H Measurement	DOVIT2	600 12 2 A	02/07/2000	77	nU
Tamparature	BOXIT2	600-13-3A	02/07/2000	171	Deg C
Turbidity	DOXIT2	600 12 2 A	02/07/2000	510	NTU
Tanduativity	BOXJ13	600.15.15D	02/07/2000	J.19 491	INIO INS/am
	DOXK19	600 15 15D	02/08/2000	7.09	us/cm
	DUAK19	699-13-15B	02/08/2000	/.90	IDer C
	DOXK19	099-13-13B	02/08/2000	10.9	Deg C
	BUXK19	699-13-13B	02/08/2000	3.44	INTU .
Lonductivity	BUAK14	699-17-5	02/07/2000	425	uS/cm
pH Measurement	BUXK14	699-17-5	02/07/2000	8.01	pH Dec C
Temperature	BUXK14	699-17-5	02/07/2000	17.8	Deg C
Turbidity	BUXK14	699-17-5	02/07/2000	10.6	
Conductivity	BOXK22	699-21-6	02/07/2000	334	uS/cm
pH Measurement	B0XK22	699-21-6	02/07/2000	8	рн
Temperature	BOXK22	699-21-6	02/07/2000	17.1	Deg C
Turbidity	BOXK22	699-21-6	02/07/2000	3.4	NIU
Conductivity	BOXKII	699-8-17	02/08/2000	426	uS/cm
pH Measurement	BOXKII	699-8-17	02/08/2000	8.19	pH
Temperature	BOXK11	699-8-17	02/08/2000	18.1	Deg C
Turbidity	B0XK11	699-8-17	02/08/2000	1.47	NTU
Conductivity	B0XJY3	699-9-E2	02/10/2000	380	uS/cm
Dissolved Oxygen	B0XJY3	699-9-E2	02/10/2000	0.99	mg/L
pH Measurement	B0XJY3	699-9-E2	02/10/2000	7.99	pH
Temperature	B0XJY3	699-9-E2	02/10/2000	17.1	Deg C
Turbidity	B0XJY3	699-9-E2	02/10/2000	0.8	NTU
Conductivity	B0XK99	C3071/ENW-MW1	02/09/2000	827	uS/cm
Dissolved Oxygen	B0XK99	C3071/ENW-MW1	02/09/2000	6.39	mg/L
pH Measurement	B0XK99	C3071/ENW-MW1	02/09/2000	7.13	pH
Temperature	B0XK99	C3071/ENW-MW1	02/09/2000	16.4	Deg C
Turbidity	B0XK99	C3071/ENW-MW1	02/09/2000	16	NTU
Conductivity	B0XKB0	C3072/ENW-MW2	02/10/2000	927	uS/cm
Dissolved Oxygen	B0XKB0	C3072/ENW-MW2	02/10/2000	6.26	mg/L

# Table C.8. Field Parameter Results for 618-11 Burial Investigation, February 2000

r

Table C	<b>.8</b> . (cc	ontd)
---------	-----------------	-------

	Sample			Value	
Constituent	Number	Well Name	Sample Date	Reported	Units
pH Measurement	B0XKB0	C3072/ENW-MW2	02/10/2000	7.19	pH
Temperature	B0XKB0	C3072/ENW-MW2	02/10/2000	17.1	Deg C
Turbidity	B0XKB0	C3072/ENW-MW2	02/10/2000	8.62	NTU
Conductivity	B0XKB1	C3073/ENW-MW3	02/10/2000	1,075	uS/cm
Dissolved Oxygen	B0XKB1	C3073/ENW-MW3	02/10/2000	4.12	mg/L
pH Measurement	B0XKB1	C3073/ENW-MW3	02/10/2000	6.95	pH
Temperature	B0XKB1	C3073/ENW-MW3	02/10/2000	17.5	Deg C
Turbidity	B0XKB1	C3073/ENW-MW3	02/10/2000	4.83	NTU
Conductivity	B0XKB2	C3074/ENW-MW4	02/10/2000	623	uS/cm
Dissolved Oxygen	B0XKB2	C3074/ENW-MW4	02/10/2000	7.01	mg/L
pH Measurement	B0XKB2	C3074/ENW-MW4	02/10/2000	7.3	bH
Temperature	B0XKB2	C3074/ENW-MW4	02/10/2000	16.6	Deg C
Turbidity	B0XKB2	C3074/FNW-MW4	02/10/2000	15	NTU
Conductivity	BOXKB3	C3075/ENW-MW5	02/09/2000	448	uS/cm
Dissolved Oxygen	BOXKB3	C3075/ENW-MW5	02/09/2000	6.99	mg/L
nH Measurement	BOXKB3	C3075/ENW-MW5	02/09/2000	7.74	pH
Termerature	BOXKB3	C3075/ENW-MW5	02/09/2000	17.8	Deg C
Turbidity	BOXKB3	C3075/ENW-MW5	02/09/2000	2.68	NTU
Conductivity	BOXKBA	C3075/ENW-MW6	02/09/2000	689	uS/cm
Dissolved Owycon	DOXKD4	C3076/ENW-MW6	02/09/2000	46	mg/I
Dissolved Oxygen	DUARD4	C2076/ENW MW6	02/09/2000	7.48	nig/L
pH Measurement	BUXKB4	C3076/EINW-MW6	02/09/2000	17.5	Deg
Temperature	BUXKB4	C3076/ENW-MW6	02/09/2000	17.5	Deg C
Turbidity	B0XKB4	C3076/ENW-MW6	02/09/2000	1.39	NTU
Conductivity	BOXKBS	C307//ENW-MW7	02/15/2000	10	uS/cm
pH Measurement	BOXKB5	C3077/ENW-MW7	02/15/2000	7.29	рн
Temperature	B0XKB5	C3077/ENW-MW7	02/15/2000	13.6	Deg C
Turbidity	B0XKB5	C3077/ENW-MW7	02/15/2000	1.37	NIU
Conductivity	B0XKB6	C3078/ENW-MW8	02/11/2000	520	uS/cm
Dissolved Oxygen	B0XKB6	C3078/ENW-MW8	02/11/2000	7.72	mg/L
pH Measurement	B0XKB6	C3078/ENW-MW8	02/11/2000	7.67	pH
Temperature	B0XKB6	C3078/ENW-MW8	02/11/2000	15.9	Deg C
Turbidity	B0XKB6	C3078/ENW-MW8	02/11/2000	2.29	NTU
Conductivity	B0XKB9	ENW-31	02/08/2000	354	uS/cm
Dissolved Oxygen	B0XKB9	ENW-31	02/08/2000	0.91	mg/L
pH Measurement	B0XKB9	ENW-31	02/08/2000	8.08	pH
Temperature	B0XKB9	ENW-31	02/08/2000	18.2	Deg C
Turbidity	B0XKB9	ENW-31	02/08/2000	1.75	NTU
Conductivity	B0XKC0	ENW-32	02/08/2000	354	uS/cm
Dissolved Oxygen	B0XKC0	ENW-32	02/08/2000	0.18	mg/L
pH Measurement	B0XKC0	ENW-32	02/08/2000	8.08	pH
Temperature	B0XKC0	ENW-32	02/08/2000	17	Deg C
Turbidity	B0XKC0	ENW-32	02/08/2000	0.56	NTU
Conductivity	B0XKB7	C3079/ENW-MW9	02/11/2000	1,179	uS/cm
Dissolved Oxygen	B0XKB7	C3079/ENW-MW9	02/11/2000	7.21	mg/L
pH Measurement	B0XKB7	C3079/ENW-MW9	02/11/2000	7.57	pH
Temperature	B0XKB7	C3079/ENW-MW9	02/11/2000	16.9	Deg C
Turbidity	B0XKB7	C3079/ENW-MW9	02/11/2000	2.27	NTU

Constituent	Sample Number	Well Name	Sample Date	Alpha by Liquid Scintillation Result pCi/mL MDL=.20	Alpha Error by LC %	Lab Oualifier	Beta by Liquid Scintillation Result pCi/mL MDL=.30	Beta Error by LC %	Units
ACTIVITY SCAN	B0XJW4	699-12-4D	02/07/2000	4.40E-02	1.00E+03	U	1.90E+00	5.00E+01	pCi/L
ACTIVITY SCAN	B0XJX3	699-13-1A	02/08/2000	3.00E+00	2.50E+01		1.60E+01	1.50E+01	pCi/L
ACTIVITY SCAN	B0XJX7	699-13-1B	02/08/2000	3.30E+00	2.50E+01		3.10E+00	3.10E+01	pCi/L
ACTIVITY_SCAN	B0XJY1	699-13-1C	02/08/2000	-2.00E-01	2.25E+02	U	1.00E+00	8.50E+01	pCi/L
ACTIVITY_SCAN	B0XJV4	699-13-3A	02/07/2000	5.00E-01	1.10E+02		3.80E+03	1.00E+01	pCi/L
ACTIVITY_SCAN	B0XK68	699-15-15B	02/08/2000	6.00E-01	9.00E+01		1.20E+00	7.00E+01	pCi/L
ACTIVITY_SCAN	B0XK70	699-17-5	02/07/2000	-3.00E-01	1.50E+02	U	7.00E-01	1.00E+01	pCi/L
ACTIVITY_SCAN	B0XK73	699-21-6	02/07/2000	-3.00E-01	1.45E+02	U	1.20E+01	1.50E+01	pCi/L
ACTIVITY_SCAN	B0XK74	699-9-E2	02/10/2000	1.90E+00	3.50E+01		3.00E+00	3.10E+01	pCi/L
ACTIVITY_SCAN	B0XKD3	C3071/ENW-MW1	02/09/2000	1.10E+00	5.20E+01		7.00E+00	2.00E+01	pCi/L
ACTIVITY_SCAN	B0XKD4	C3072/ENW-MW2	02/10/2000	4.00E-01	1.11E+02		2.10E+00	4.20E+01	pCi/L
ACTIVITY_SCAN	B0XKD5	C3073/ENW-MW3	02/10/2000	8.00E-01	6.50E+01		2.00E+00	4.50E+01	pCi/L
ACTIVITY_SCAN	B0XKD6	C3074/ENW-MW4	02/10/2000	5.00E-01	1.01E+02		7.80E+00	2.00E+01	pCi/L
ACTIVITY_SCAN	B0XKD7	C3075/ENW-MW5	02/09/2000	2.10E-02	1.00E+03	U	8.40E+00	2.00E+01	pCi/L
ACTIVITY_SCAN	B0XKD8	C3076/ENW-MW6	02/09/2000	8.00E-01	6.50E+01		3.50E+00	3.00E+01	pCi/L
ACTIVITY_SCAN	B0XKD9	C3077/ ENW-MW7	02/15/2000	-2.00E-01	1.70E+02	U	1.00E+00	8.00E+01	pCi/L
ACTIVITY_SCAN	B0XKF0	C3078/ENW-MW8	02/11/2000	7.00E-01	7.50E+01		1.40E+00	6.00E+01	pCi/L
ACTIVITY_SCAN	B0XKF1	C3079/ENW-MW9	02/11/2000	9.00E-01	6.00E+01		2.60E+00	4.00E+01	pCi/L
(a) U = Result is no	(a) U = Result is non-detect.								

Table C.9.	Total Activity Parameter Results for 618-11 Burial Ground Investigation, Fel	bruary 2000

C.42

# Appendix D

Ť

. 1

# **Quality Control Sample Definitions**

## Appendix D

# **Quality Control Sample Definitions**

### **D.1** Field Quality Samples

Equipment Blank (EBL) – A field blank sample that is used to check for sample contamination caused by unclean sampling equipment or the sampling equipment itself. Generally, equipment blanks are only collected at wells that are sampled using non-dedicated pumps. Equipment blanks are prepared by passing Type II reagent water through the pump or manifold after the equipment has been decontaminated (sometimes just prior to sampling a well) and collecting the rinsate in preserved bottles.

Field Duplicate – A replicate sample used to determine the repeatability of the sampling and analytical measurement process by comparing results with an identical sample collected at the same time and location.

Field Transfer Blank – A field blank sample that is used to check for in-the-field sample contamination by volatile organic compounds. Field transfer blanks are prepared near a well sampling site by filling preserved VOA sample bottles with Type II reagent water that has been transported to the field. Field transfer blanks are normally prepared at the same time VOA samples are being collected from the well. After collection, the field transfer blank bottles are sealed and placed in the same sample storage container as the rest of the samples. Field transfer blanks are not removed from the storage container until they have been delivered to the lab.

Full Trip Blank (FTB) – A field blank sample that is used to check for sample contamination resulting from sample bottles, preservatives, and sample storage and handling. Full trip blanks are initially prepared in the laboratory by filling a preserved bottle set with Type II reagent water. After the bottles have been sealed, they are transported to the field in the same storage container that will be used for ground-water samples collected that day. Full trip blanks are not removed from the storage container until they have been delivered to the laboratory.

Split Samples – Replicate samples sequentially collected from the same location and analyzed by different laboratories.

#### **D.2** Laboratory Quality Control Samples

Laboratory Control Sample – A sample of Type II reagent water that is spiked with known amounts of target analyte(s). The sample is extracted (if appropriate) and analyzed to monitor the performance of the analytical method.

Matrix Duplicate – A replicate analysis of a regular (i.e., groundwater) sample. Matrix duplicates and matrix spike duplicates are used to evaluate the precision of an analysis.

Matrix Spikes/Matrix Spike Duplicates – Samples that are prepared by adding known quantities of one or more target analytes to a sample prior to extraction and analysis. Comparison of the original (unspiked) sample and matrix spike results provides information about the suitability of an analysis for the sample matrix. Matrix spike duplicates are replicate matrix spike samples that are used to assess the precision of an analysis.

Method Blank – A sample of Type II reagent water that is prepared in the laboratory, extracted (if appropriate), and analyzed as if it were a regular sample. Method blanks are used to monitor the possible introduction of contaminants during sample preparation and analysis.

\$

Ē.

# Distribution

#### No. of Copies

#### OFFSITE

2 J. Chasse
Energy Northwest
P.O. Box 968
Richland, WA 99352

R. A. Danielson Washington State Department of Health 5508 Englewood Avenue Yakima, WA 98908

R. E. Jaquish Washington State Department of Health 1232 Vintage Ave. Richland, WA 99352

State of Oregon Office of Energy 625 Marion Street N.E. Salem, OR 97310 ATTN: D. Dunning

Washington State Department of Ecology, MS 7600 P.O. Box 47600 Olympia, WA 98504-7600

Washington Statement Department of Health Division of Radiation Protection P.O. Box 47827 Olympia, WA 98504-7827 ATTN: D. McBaugh

#### No. of Copies

# ONSITE

29 DOE Richland Operations Office

M. J. Furman (3)	A5-13
R. D. Hildebrand	A5-13
R. G. McLeod (3)	H0-12
K. M. Thompson (20)	A5-13
Public Reading Room (2)	H2-53

#### 5 Bechtel Hanford, Inc.

K. R. Fecht	H0-02		
M. J. Graham	H0-09		
G. W. McNair	H0-21		
G. B. Mitchem	H0-21		
BHI Document and Information Services			

#### 3 CH2M Hill Hanford, Inc.

J. V. Borghese	H9-03
L. C. Hulstrom	H9-03
L. C. Swanson	H9-02

#### Washington State Department of Ecology

D.	Goswami	B	5-1	8	3

#### 2 U.S. Environmental Protection Agency

L. E. Gadbois	B5-01
D. R. Sherwood	B5-01

7

3

No. of <u>Copies</u>

## 32 Pacific Northwest National Laboratory

P. E. Dresel (10)	K6-96
J. S. Fruchter	K9-96
R. E. Gephart	K9-76
M. J. Hartman	K6-96
J. W. Lindberg	K6-81
S. P. Luttrell	K6-96
J. P. McDonald	K6-96
L. F. Morasch	K6-86

## No. of <u>Copies</u>

K. B. Olsen	K6-96
R. M. Smith	K6-96
F. A. Spane, Jr.	K6-96
D. L. Stewart	K6-96
C. J. Thompson	K6-96
P. D. Thorne	K9-33
W. D. Webber	K6-96
B. A. Williams	K6-81
Information Release Office (7)	K1-06