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Executive Summary

The purpose of this report is to describe efforts carried out during 1998 and 1999 at the

Lawrence Berkeley National Laboratory (LBNL) to assist the U. S. EPA in developing methods

for constructing, evaluating, and scoring the robustness of probability distributions. The U.S.

Environmental Protection Agency (EPA) Office of Emergency and Remedial Response (OERR)

is in the process of updating its 1989 Risk Assessment Guidance for Superfund (RAGS) as part

of the EPA Superfund reform activities. Volume III of RAGS, when completed in 1999 will

provide guidance for conducting probabilistic risk assessments. This revised document will

contain technical information including default probability density functions (PDFs) and methods

used to develop and evaluate these PDFs.

Probabilistic risk assessment methods have emerged that promise to improve the way that

uncertainty and variability are treated and communicated. The effectiveness of these methods is

largely dependent on our ability to characterize the uncertainty and variability associated with

expostire factors using probability distributions. A variety of methods are available for

developing these distributions from raw data or from summary statistics. However, a framework

for determining when a distribution is appropriate for a given assessment has not yet been

established. In an effort to develop a practical and reliable method for evaluating the

performance and appropriateness of PDFs, LBNL has collected and critically evaluated data for

the following exposure factors:

. body weight

. exposure duration (amount of time living at a residence)

. exposure frequency (fraction of the day spent at the exposure location)

. total water intake and
● inhalation rates

For each of these exposure factors, available data was collected and used to develop

evaluate, and score distributions. The most appropriate distribution for each subset was selected

based on a combination of standard procedures and on a novel graphical method. Lessons learned

during the data collection, evaluation and distribution development process were used to design a

scoring system based on the quantity, quality and relevance of the data and on our ability to

identify a parametric model (or other distributional form where appropriate) that adequately

describes the data. A key contribution of this report is the development of a simple method for

scoring the quality of distributions in the context of the cohort/population to which the

distribution is to be applied.

June 1999 v



Data Collection

Several studies have reported distributions for exposure factors that were developed from

percentiles or statistical summaries of the data. Although this approach for developing

distributions is statistically sound and economically feasible, it fails to provide adequate detail

about influential factors, possible sub-populations within the sample and the power of the

selected parametric distributions. Therefore, it was important for this work to use raw data from

its original source whenever possible.

An exhaustive review of the available literature was performed and the best candidate

sources of data were identified for each exposure factor. When several sources were equally

suited for a given problem, a decision about which data set to use was based on 1) how well the

sample survey represents the overall US population and demographic subsets of the population,

2) the number of samples in the data set, 3) the number of individual exposure factors included in

the survey and how well the measurements or reported values represent those exposure factors

and 4) the availability and usability of the data. Data sources that were not used in the initial

development of distributions maybe used at a later date to evaluate the performance of the

recommended distributions against independent samples using cross-validation experiments.

Information gained from cross validation and analysis of random samples selected from

independent surveys will help to further characterize the power of the recommended distributions

and to highlight those exposure factor distributions that are particularly robust across the

population.

With exception of inhalation rates, results from high quality nationally representative

surveys were available for all exposure factors. Although the body weight values were self-

reported, we expect these values to be reasonably accurate. The reported current residence time

(length of time that sample person has lived in their current home) was used as a surrogate value

to estimate exposure duration. Without further study it is not apparent how the use of the

surrogate data will affect the reliability of the estimated exposure duration. Exposure frequency

values were both self-reported as well as surrogate in that short-term diary data was used to

represent long term behavior.

Self-reported water intake values were obtained from the same nationally representative

survey used for body weight. However, the relevant questions in the survey did not elicit

appropriate information for direct estimate of tap water intake. The survey data included

information on the amount of tap water consumed by the sample person as plain drinking water

and the amount and type of food and beverage (coffee, tea, juice) ingested. To estimate the total

amount of tap water ingestion one would need to estimate the amount of tap water used in the

preparation of each food and beverage and then use the intake data to estimate indirect tap water

ingestion. Developing and validating a database of the extrinsic water content of each food and

beverage is beyond the scope of this project. We were able to extract information on total water
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intake (extrinsic plus intrinsic) and this information was used to demonstrate the procedure for

water intake distributions.

For inhalation rate, we selected a small data set from a well-designed experiment that

directly measured inhalation rate for five distinct activity levels. The study included a number of

demographic variables and the experimental design used a demographic composition (age,

gender and race) that represented the population in California. Although the values from the

study were directly measured, the data must be treated as a proxy for actual inhalation rates due

to the complex relationship between inhalation rate and activity.

Data Analysis

Default values and distributions for exposure factors are commonly reported for specific

age and gender classes. However, it is rare that these individual classes are tested to determine

whether they are statistically different from one another given the inherent variability in the

population and the quality of the data. We used Classification and Regression Tree (CART) data

mining software to systematically identify the optimum number of statistically different subsets

within the sample for each exposure factor. Results of the CART analysis are concise, easy to

understand, and are appropriate for use as a decision making tool. The technique was developed

almost 20 years ago and has been applied in many fields, including engineering, medicine, public

health and economics. The CART analysis provided a statistically and scientifically defensible

approach for identifying important variables in complex data sets. These variables are used to

decompose the original data set into important demographic subsets. The classification provides

an initial family of data sets for each exposure factor that are based solely and objectively on the

data. Other demographic subsets of the population may need to be considered for subjective or

policy reasons.

Our analysis of the body weight data indicated that age, gender and race were important

variables for constructing demographic subsets of the population. Not surprisingly, the body

weight of children less than 12 years is only dependent on age and the group was separated into

four age groups. For individuals 12 years of age and older, both gender and age became

important. An interesting finding was that race was an important factor regarding variability in

weight among adult females. Black and American Indian females, Asian/Pacific Islander females

and Caucasian females all had statistically different body weights. In addition, adult

Asian/Pacific males had significantly lower body weights than other adult males.

For exposure duration the age of the person sampled and housing status (renter or owner)

were important variables. For people over 67 years of age, the region that the individual lived in

was also important. Younger people reported shorter current residence times and, for each age

group, renters reported shorter residence time than people living in owner-occupied houses.
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Exposure frequency was defined in this study as the fraction of the day that an individual

spends indoors at home. This factor depended mainly on employment status-- people who were

employed spend less time indoors at home than the unemployed or part time employed. Not

surprising, the activity pattern for employed individuals changed significantly on weekends.

For water ingestion data, the reported intake values were normalized to body weight

(liters per kg day) prior to the CART analysis to reduce the inter-individual variance. The total

water intake (normalized to body weight) for children 10 years of age and younger is strongly age

dependent--children drink less water per unit body weight as they get older. The analysis

indicated that, on a body-weight basis, adults living in the Northeast and South consume less

water than do those living in the Midwest and West. No clear explanation for this regional

difference was found although the results were consistent with previous work (Ershow &

Cantor, 1989). The analysis also indicated that race may bean important variable and that

pregnant and lactating women consume more water (comparable to adult males) than women

who are not pregnant.

Preliminary analysis of inhalation rate data indicated that variance could be reduced by

normalizing the values to body weight. The normalized inhalation rate data for children was

similar to that of water ingestion where intake per unit body weight decreased with increasing

age. This change in intake with age (for young children) is likely due to changes in metabolism as

the child grows (CARB, 1993). Although the dependence of intake on age was obvious, the

overall sample size was not adequate to clearly establish differences due to gender or race. Thus,

the data was simply separated into children younger than 11 years of age and adults at the five

activity levels reported in the study.

For future applications, we propose a two-stage procedure to identify the optimal number

of demographic regions for each exposure factor. In the first stage of the procedure, CART or a

comparable approach is used to systematically split the data set into statistically different

demographic regions and each split is ranked in order of importance. The second stage of this

procedure will use sensitivity analysis techniques to collapse the family of distributions for a

given exposure factor into the fewest number of significantly different demographic regions (age,

gender, race, etc.).

Distribution Development

After splitting the data into individual sample sets for each exposure factor, standard

parametric distributions (when appropriate) were identified and fit to the data. Methods for fitting

parametric distributions to data are well established and statistical software is available with the

capability of automating much of the work. Standard methods were used to narrow down the

choice of parametric distributions for each data set. A graphical method was then developed and
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used to identify the best parametric model. The graphical method uses a plot of the fitted

parametric model and the empirical cumulative distribution along with an overlay of a plot of the

vertical residuals (i.e., residuals in the estimated percentiles) between the parametric model and

the data. A 95% confidence band is used with the residual plot to show where no further

improvement in fit can be expected or justified.

In addition to providing a visual stopping rule, the residual method highlights the regions

of the distribution where the selected parametric model provides the best fit and the poorest fit.

This feature is important because we are often more interested in a specific region of the

distribution and visualization can facilitate judgments about which distribution works better in

the important region even if the goodness of fit score indicates otherwise. Final distributions are

selected for their simplicity, their theoretical representation of the particular exposure factor and

their overall fit to the data.

Lognormal and extreme value distributions provide the best fit for each of the body

weight data sets except that of the youngest group for which a logistic distribution worked best.

There was no apparent theoretical basis for choosing the Iognormal over th~ extreme value so the

decision was based solely on quality of fit. Due to the nature of the data used to estimate

exposure duration, no distributions were fit for this exposure factor. Rather, the strengths and

limitations of previously published distributions are identified. Truncated logistic distributions

worked well for all of the exposure frequency data sets except for employed individuals during

the week (not on the weekend). For these individuals a mixture model (logistic and uniform) was

required. The mixture was likely due to the activity pattern of a subset of sample persons the day

of the survey (most were at work but some may have been home sick or on vacation) but

adequate information was not available to further decompose the data. Lognormal distributions

worked well for all water intake and inhalation data sets.

Distribution Scoring

A key contribution of this report is the development of a simple method for scoring the

quality of distributions in the context of the cohortipopulation to which the distribution is to be

applied. The scoring system is not limited to measuring how well a model fits the data that was

initially used to construct the distribution – this can be accomplished using standard goodness of

fit procedures. Rather, the method developed in this report is designed to facilitate decisions

about how well a distribution is expected to perform with a different but presumably similar data

set or sample.

For example, a distribution of produce ingestion rates from a well-designed study

performed in California maybe deemed appropriate for a similar population in Minnesota.

However, such a decision requires an intimate familiarity with the data (population) that was
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used to construct the distribution, the ability of the distribution (parametric or otherwise) to

describe the original data, and the degree of similarity between the original data set and the

population to which the distribution is to be applied. The scoring system used here is designed to

facilitate this decision making process. The system is based on a combination of quantitative and

qualitative information for each distribution. The quantitative information includes factors such

as sample size, confidence intervals about the distribution, sensitivity of the exposure equation to

the particular exposure factor and graphicalianalytical measures of how well the recommended

PDF represents the available data. The qualitative information includes knowledge of how well

the sample survey captures the demographics of the population and how well the sampled data

represents the particular exposure factor.

The proposed scoring system uses a questionnaire type format designed to combine the

quantitative and qualitative information into a single scenario-specific measure for the quality of

a given parametric model (or other form of distribution). Although the final scores fall on a

continuum from “not applicable” to “highly recommended”, the continuum is partitioned into

four regions defined as “highly recommended” for use (H), “medium quality” (M), “low quality”

(L) and “not applicable” for use (NA). This partitioning is admittedly subjective but it provides a

picture of performance that can be used to help facilitate decisions about the appropriateness of a

distribution for a given application.

Using the scoring system developed in this report, all of the distributions for body weight

were found to be either highly applicable or of medium quality. The medium scores were a result

of small sample size for some of the demographic subsets used in the analysis. The exposure

duration distributions scored a medium to low due to the high degree of qualitative uncertainty

associated with the use of current residence time to estimate exposure duration. In addition,

distributions for demographic regions of the population identified as important in this study have

not been developed in the literature. Distributions for exposure frequency scored medium to low

because of significant qualitative uncertainty about the relevance and representativeness of the

short-term diary data used to approximate time spent indoors at home.

Although the sample size and data quality used to develop distributions for water intake

were very good, the distributions score poorly on relevance. The lack of direct information about

tap water intake (both direct and indirect) makes the high quality distributions developed for total

water intake irrelevant to most exposure assessments. To make the distributions appropriate, one

would either have to convert the value from total water intake to tap water intake using an

appropriate metric or approximate the amount of tap water ingested with food and beverage then

reconstruct the distributions accordingly. Due to the lack of relevance of the data used to

construct the distributions, the water intake distributions score low. The inhalation rate

distributions score medium because the data is of good quality and representative of the

population but the sample size is small.
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Findings and Recommendations

One of the main lessons from the LBNL project is that judging the quality of a

distribution requires a clear and complete understanding of the data used to develop the

distribution in question, the procedure used to construct the distribution and the population in the

analysis objective. The scoring method described here provides a simple and reliable tool for

developing that understanding. Findings and recommendations from this work are summarized

below:

(i)

(ii)

(iii)

(iv)

(v)

(vi

To score the quality, reliability and relevance of a distribution, it is critical that the user

have a clear and complete understanding of the data used to develop the distribution in

question, the procedure used to construct the distribution and the population that the

distribution will be used to represent. Whether this understanding comes from developers

of the distributions, the user of the distributions or a combination of the two is not readily

apparent.

When a large amount of data is available, CART is an efficient and effective tool for

identifying the most appropriate way to split complex data along demographic lines.

Further splits in the data maybe necessary for political or policy reasons but that is

beyond the scope of this report.

Systematic methods incorporating sensitivityhncertainty analysis should be use to

determine when and to what degree the demographic subsets of data identified by CART

can be recombined to form the optimal number of members in the family of distributions

for each exposure factor.

Future work should be directed towards better understanding how”to fit truncated

distributions and how truncated distribution influences the calculation of dose/risk.

Although not included in the body of this report, we found that model-free methods show

promise as a tool for learning more about the underlying shape of distributions but more

work is needed to determine just how useful they might be,

Neither set of currently available exposure duration (ED) distributions include

information on ethnicity or socio-economic status. Such distributions could be

determined by applying the analytical/statistical procedures of either Israeli and Nelson

(1992) or Price et al. (1998) to the 1995 AHS-N data or the Monte Carlo procedure of

Johnson and Capel ( 1992). In addition, the information was split on variables that were

not found to be important in this analysis (gender, multiple age groups) and the strong

relationship between young adults and children living at home was not accounted for. A
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reanalysis of the methods and data used to estimate ED and the construction of new

distributions that can be tested using the methods introduced in section 3 is warranted.

(vii) All of the exposure factors included in this report can benefit from cross-validation

experiments designed to test the performance of the parametric models (or other

distributional forms) against independent data sets.

(viii) A better understanding of the relevance of short-term diary data for estimation of activity

patterns and exposure frequency is warranted.

(ix) Direct measurements for inhalation rates are limited. Resources should be directed

towards the collection of quality data that can provide a better understanding of the

physiological differences and inter-individual variability.

(x) The relevance and reliability of nutrition studies for estimating water intake should be

verified using a series of small-scale studies designed specifically to estimate the amount

and source of water consumed by various demographic subsets of the population.
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1.0 Introduction

The purpose of this report is to describe efforts carried out during 1998 and 1999 at the

Lawrence Berkeley National Laboratory (LBNL) to assist the U. S. EPA in developing and

ranking the robustness of a set of default probability distributions for exposure assessment

factors. Among the current needs of the exposure-assessment community is the need to provide

data for linking exposure, dose, and health information in ways that improve environmental

surveillance, improve predictive models, and enhance risk assessment and risk management

(NAS, 1994). The U.S. Environmental Protection Agency (EPA) Office of Emergency and

Remedial Response (OERR) plays a lead role in developing national guidance and planning

future activities that support the EPA Superfund Program. OERR is in the process of updating

its 1989 Risk Assessment Guidance for Superfund (RAGS) as part of the EPA Superfund reform

activities. Volume ID of RAGS, when completed in 1999 will provide guidance for conducting

probabilistic risk assessments. This revised document will contain technical information

including probability density functions (PDFs) and methods used to develop and evaluate these

PDFs. The PDFs provided in this EPA document are limited to those relating to exposure factors.

Exposure assessments use of a number of factors that are both variable and uncertain. As

a result, the magnitude of these factors can not accurately be represented by a single value in a

risk assessment, but must be characterized by a range of values reflecting both the population

variability and the uncertainty that results from limited and imprecise data. Methods have

emerged that promise to improve the way that uncertainty and variability in risk assessment are

characterized and communicated. The effectiveness of these methods is largely dependant on our

ability to characterize the uncertainty and variability associated with the individual factors that

are used in the calculations. Arguably, the most powerful way to characterize and use stochastic

inputs is through probability distributions.

LBNL has evaluated for EPA the quality, reliability and relevance of data and

distributions for the following exposure factors:

body weight

exposure duration (amount of time living at a residence)

exposure frequency

inhalation rates

water intake rates

(fraction of the day spent at the exposure location)
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For each of these factors a family of PDFs has been developed and evaluated according to

the quantity, quality and relevance of the data available to construct the PDFs and our ability to

identify a parametric model that adequately describes the data.

1.1 The Use of Probability Distributions in Exposure Assessment

Estimating potential human exposures involves the use of large amounts of data coupled

with the use of models. Because these data and models must be used to characterize individual

behaviors, contaminant transport, human contact, and uptake among large and often

heterogeneous populations, there can be large variabilities and uncertainties associated with

exposure predictions.

One common approach to address variability and uncertainty in exposure and risk

assessments is the practice of compounding upper bound estimates in order to make decisions

based on a highly conservative estimate of exposure. Such compounding of upper bound

estimates leaves the decision maker with no flexibility to address margins of error; to consider

reducible versus irreducible uncertainty; to separate individual variability from true scientific

uncertainty; or to consider benefits, costs, and comparable risks in the decision making process.

Because the compounding of conservative estimates does not serve the exposure assessment

process well, there has been a growing effort to include explicit variance propagation and

uncertainty analyses into the risk assessment process.

For human populations, total exposure assessments that include time-activity patterns and

micro-environmental data reveal that an exposure assessment is most valuable when it provides a

comprehensive view of exposure pathways and identifies major sources of variability and

uncertainty. Probability distributions are the most versatile and informative means for describing

uncertainty and variability in model inputs.

1.2 Aims of this Study

The work reported here has two specific aims. The first aim is to develop PDFs that

reflect variability and uncertainty in a set of exposure factors. The second aim is to develop and

apply a system for scoring these and other distributions for use in risk assessments.

The first specific aim of this study is to contribute to and evaluate two types of PDFs for

use in exposure assessments. One type reflects variability and uncertainty on a national scale,

and the second type reflects variability and uncertainty in specific subsets of the population. In

carrying out this aim, we assess the extent to which the data available to construct the
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distributions support dividing the population into subgroups. In constructing these distributions

we also identify gaps in the available data that, if filled, could help to better elucidate important

subgroups within the general population As noted above, exposure factors included in this study

are body weight, exposure duration grouped by categories (e.g., home owners vs. renters, rural

vs. urban residents), exposure frequency (days per year at the exposure location), inhalation rates,

and water intake rates.

The second specific aim of this study is to develop and apply a system for scoring or

ranking the resulting PDFs for each of the above-identified exposure factors and recommend

ways to improve quality, reliability and relevance of the distributions where necessary. Some of

the more common exposure factors included in this study (body weight, water intake) have

extensive nationally representative data sets from which distribution scores can be developed and

tested. However, other exposure factors must be derived from proxy measures (exposure

duration) or developed from small sets of data (inhalation rate). The purpose of the scoring

methodology is to provide a means for characterizing the overall value of a distribution for use in

risk assessments.

1.3 Overview of the report

The remainder of this report consists of eight sections. In the next section, Section 2, we

provide a background on the development and ranking of PDFs in exposure and risk assessment.

In Section 3, we describe the methods used in the study. Included here are the methods used to

identify and assemble data sources; methods for identifying the subgroup structure of large data

sets and decomposing the data by demographic factors; methods for distribution development

including statistical models and data simulation using non-parametric methods; and definition of

a system for scoring the PDFs and the data sets used to develop the distributions. In Sections 4

through 8, we describe the development and evaluation of PDFs for, respectively, body weight,

exposure duration, exposure frequency, breathing rates, and water intake. Section 9 provides

summary discussion and recommendations for this effort.
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2.0 Background

An important step in the process of conducting an uncertainty analysis is the construction

of a PDF or CDF for each model input. The purpose of these distributional representations is to

define the range of values that an input can take on and to assign a probability of obtaining any

particular value within that range. One step in the process of constructing a probability

distribution is to define the range and moments of the input data. Once this is done we can use

various subjective, graphical, and statistical methods to select an appropriate distribution to

represent inputs and to j udge the effectiveness with which the distribution fits the data. These

issues are addressed in this section.

2.1 The Need for Distributional Inputs to Models

Exposure models are used to describe the relative magnitude and variation in human

contact with environmental contaminants. An important attribute of exposure models is the

ability to account for factors that control variation in human contact, i.e. age, gender, location,

activity patterns, etc. Uncertainties limit the ability of models to characterize these relationships.

Uncertainty in model predictions arises from a number of sources, including specification of the

problem; formulation of the conceptual model; formulation of the computational model;

estimation of input values; and calculation, interpretation, and documentation of the results,, Of

these, only uncertainties due to estimation of input values can be quantified in a straightforward

manner using variance propagation techniques. Uncertainties that arise from mis-specification of

the problem and model formulation are clearly important but fall outside of the scope of this

report.

Single value inputs to models fail to express exposure variation and the uncertainty that

arises from the use of incomplete and proxy data. Such issues can be addressed in part with the

use of probability distributions as inputs to models. The value of information derived from an

uncertainty analysis is ‘very much dependent on the care given to the process of constructing the

input parameter distributions.

The data, scenarios, and/or models used to represent human exposures to environmental

contaminants include at least five important relationships:

(i) The magnitude of the source medium concentration, that is, the level of contaminant in

the air, water, soil, and food with which the population has contact;

(ii) the contaminant concentration ratio, which defines how much a source-medium

concentration changes as a result of transfers, transformation, partitioning, dilution etc.

before human contact:
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(iii

(iv)

(v)

the level of human contact, which describes (often on a body-weight basis) the

frequency (days per year or hours per day) and magnitude (mS/day, L/day or kg/day) of

human contact with a potentially contaminated exposure medium;

the frequency and duration of potential contact for the population of interest as it

relates to the fraction of lifetime during which an individual is potentially exposed; and

the averaging time for the type of health effects under consideration, i.e. is the

appropriate averaging time the cumulative duration of exposure (as is typical for

cancer and chronic diseases) or some relatively short time period (as is the case for

acute effects).

2.2. Variability and Uncertainty

One of the issues in uncertainty analysis that must be confronted is how to distinguish

between the relative contribution of variability (i.e., heterogeneity) versus true uncertainty

(measurement precision) to the characterization of predicted outcome. Variability refers to

quantities that are distributed empirically–such factors as rainfall, soil characteristics, weather

patterns and human characteristics that come about through processes that we expect to be

stochastic because they reflect actual variations in nature. These processes are inherently random

or variable and cannot be represented by a single value, so that we can only determine their

moments (mean, variance, skewness, percentiles, etc.) with precision. In contrast, true

uncertainty or model-specification error (e.g., statistical estimation error) refers to an input that,

in theory, has a single value that can not be known with precision due to measurement or

estimation error.

In many situations, an exposure model is used to characterize the relative magnitude and

importance of parameter uncertainty (lack of information) versus parameter variability (inter-

individual variation). It is important to distinguish between the two forms of variance because

each plays a unique role in decision making. Uncertainty can be reduced by further

experimentation while variability can only be better characterized (i.e., uncertainty about the

variability can be reduced through further experimentation).

To fully express the combined impact of uncertainty and variability, it is sometimes

necessary to carry out a two-dimensional Monte Carlo simulation consisting of an inner set of

calculations embedded within an outer set. Bogen and Spear (1987) first described this approach.

In the first phase, a single realization is obtained from the distribution of each uncertain

parameter, followed by repeated sampling from the variable parameters. This process is repeated

until a large number (- 500) of uncertain parameter value sets are taken in the outer phase and a

larger number (- 1000 or more) of the variable parameter values are selected. The simulation
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results are plotted as either a two-dimensional surface or as a family of variability curves at

different levels of uncertainty. Typical results for this type of simulation are shown in Figure
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Figure 2.1. A set of cumulative probability plots that reflect both variability and
uncertainty. Each curve expresses a realization of a variability distribution at
a different level of uncertainty.

2.3 The Link Between PDFs and Data

When constructing input distributions for an uncertainty analysis, it is often useful to

present the range of values in terms of a standard probability distribution. It is important that the

selected distribution be matched to the range and moments of any available data. It is often

appropriate to simply use the raw data or a custom distribution. Other more commonly used

standard probability distributions include the normal distribution, the lognormal distribution, the

uniform distribution, the log-uniform distribution, and the triangular distribution.

Probability distributions are typically displayed as probability density functions (PDFs) or

as cumulative distribution functions (CDFS). For a continuous distribution, the PDF is a smooth

function, f(x), which represents the probability that a parameter x has a value between x -dx and

x +dx, where dx is an infinitely small interval. In a CDF, F(x) represents the probability that a

parameter, x, has a value less than or equal to any value, x. Figure 2.2a shows a PDF for a

continuous distribution and Figure 2.2b shows the corresponding CDF for this distribution.
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These two diagrams illustrate the PDF and CDF that would be used to represent a normal

distribution with mean value, 1, and standard deviation, 0.3. Continuous distributions, like the

samples in Figure 2,2, maybe separated into three categories: (1) Those that represent only

variability, (2) those that represent only uncertainty and (3) those that represent both variability

and uncertainty.

There are a number of methods for constructing a parametric PDF to fit observations

(data). These include moments matching, graphical methods, goodness of fit tests and Bayesian

methods, among others (Cullen and Frey, 1999; D’Agostino and Stephens, 1986). When these

methods are applied, one obtains a distribution that has in some way been optimized to fit the

available observations. Often, more than one parametric model can be satisfactorily fit to a data

set. The function used to optimize model fit rarely provides decisive information about which of

two models is better. Thus, the final choice of the best model for describing a given data set is

often subjective or based, at least in part, on theory, convention and/or convenience.
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Figure 2.2a. Probability density function for a continuous distribution.
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Figure 2.2b. Cumulative density function for a continuous Normal distribution with
mean of 1 and standard deviation of 0.3.

2.4 A Tiered Approach to Uncertainty/Variability Analysis

As was noted earlier, it has been determined that compounding of upper bound estimates

is no longer considered an appropriate approach to exposure and risk assessment. A more

reasonable approach is one that provides the decision maker with flexibility to address margins

of error; to consider reducible versus irreducible uncertainty; to separate individual variability

from true scientific uncertainty; and to consider benefits, costs, and comparable risks in the

decision making process. In order to make an exposure assessment consistent with such an
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approach, it should have both sensitivity and uncertainty analyses incorporated directly into an

iterative process by which premises lead to measurements, measurements lead to models, models

lead to better premises, and better premises lead to additional, but better-informed measurements,

and so on. In 1996, the U.S. EPA Risk Assessment Forum held a workshop on Monte Carlo

Analysis. Among the many useful discussions at this meeting was a call for a “tiered” approach

for probabilistic analysis, which is iterative and progressively more complex. The need for

formal uncertainty analysis and a tiered approach will require the development by the exposure

assessment community of new methods and will put greater demands on the number and types of

exposure measurements that must be made. In such an approach at least three tiers are needed.

These are described below.

First, the variance associated with all input values should be clearly stated and the impact of

these variances on the final estimates of risk assessed. At a minimum, this can be done by

listing the estimation error or the experimental variance associated with the parameters

when these values or their estimation equations are defined. It would help to define and

reduce uncertainties if a clear summary and justification of the assumptions used for each

aspect of a model are provided. In addition, it should be stated whether these assumptions

are likely to result in representative values or conservative (upper bound) estimates.

Second, a sensitivity analysis should be used to assess how model predictions are impacted by

model reliability and data precision. The goal of a sensitivity analysis is to rank the input

parameters on the basis of their contribution to variance in the output.

Third, variance propagation methods (including but not necessarily limited to Monte-Carlo

methods) should be used to carefully map how the overall precision of risk estimates is

tied to the variability and uncertainty associated with the models, inputs, and scenarios.

2.5 The Need for PDF Scores

The quality or validity of the PDFs that are used in a probabilistic exposure analysis

directly influences the reliability of the predictions or decisions that are based on the exposure

analysis outcome. Many times default distributions are prescribed. In such situations, there is a

risk that policy guidelines can be looked on as fact. Default values need to be clearly represented

as to their quality, reliability and relevance for various exposure scenarios.

One begins the process of constructing a distribution function for a given parameter by

assembling values from the literature or from personal knowledge. These values should be

consistent with the model and its particular application. The values will vary as a result of

measurement error, spatial and temporal variability, extrapolation of data from one situation to

another, lack of knowledge, etc. The process of constructing a distribution from limited and
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imprecise data can be highly subjective. Because the uncertainty analyst must often apply

judgment to this process, there is a need for expertise, wisdom and an intimate relationship with

the data. The process becomes more objective as the amount of data for a given parameter

increases. However, a large set of data does not necessarily imply the existence of a suitable:

distribution function nor does it imply that the data is directly relevant to the problem or

question.

As was noted above, PDFs are developed from data sets and there are a number of

methods for making the best fit of a distribution to the data. When these methods are applied,

one obtains a distribution that provides an optimum fit to the available data. However, once this

process is completed, the resulting distribution does not provide the user of that distribution with

a quantitative measure of how well “the distribution replicates either the underlying data or the

true variability of the exposure factor being represented. What is needed to address these issues

is some measure of the quality of the distribution as it relates to the subject factor.

In order to define a score we consider those factors that would increase one’s confidence

about a given distribution. These factors include quantity of data available, sources and

measurements techniques used to collect data, data quality, relevance and representativeness of

the data, mixtures of distributions with contamination of the data, and correlation among inputs.

These issues must be explicitly addressed to develop a score for any distribution. By developing

a series of questions in a score sheet or questionnaire, one can systematically incorporate al],of

the confidence-building-factors into a single measure of quality, reliability and relevance.
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3.0 Methods

This section provides an overview and explanation of the methods and procedures used to

collect and analyze existing data and to select, fit and score the parametric distributions for each

of the five exposure factors included in this study. This effort began with an exhaustive literature

search to identify candidate data sets for each exposure factor. The best data set for each factor

was then identified based on a simple set of decision rules. Next, each data set was processed to

remove extraneous information, data were converted to appropriate units and formatted for factor

analysis. The factor analysis used an objective and systematic data mining technique to identify

the population descriptors that have the greatest contribution to central tendency and variance.

Individual data sets were constructed for each of the important factor classes and

statistical/graphical techniques were used to identify and parametrize the best distribution for

each class.

After the appropriate distribution for each of the individual classes within each exposure

factor is constructed, a series of Monte Carlo analyses will be designed and performed using the

basic exposure equation. Results from these analyses will help characterize how sensitive the

calculation of dose is to differences in the class specific distributions. By comparing the outcome

distribution from each combination of class specific distributions we proposed to collapse the

class distributions into the final set of recommended distributions for each exposure factor. In

this way, one can highlight what actually influences the variability of each exposure factor (age,

gender, region, etc.) then test how this variability contributes to the overall estimate of exposure.

Thus, one can provide an objective recommendation for the appropriate number of classes for

each exposure factor and the appropriate level of complex ity for the class specific distributions.

Finally, we measure both the analytical and subjective power of each distribution and

summarize it with a simple scoring system. The 4score is designed to incorporate information

about how well the data represents the exposure factor of interest (quality, quantity and relevance

of data) and how well the parametric model represents the data. The scoring procedure is

designed to provide an indication of how well the recommended distributions are expected to

work for a subset of the population or sample that was not included in the original data set.

3.1 Literature Review and Summary of Data Sources

Several studies have previously presented distributions for exposure factors that were

based on the reported percentiles or statistical summaries from sample surveys (Burmaster, 1998;

ODEQ 1998; RTI, 1998). Although this approach for developing distributions is statistically

sound and economically feasible, it fails to provide adequate detail about influential factors,

possible sub-populations within the sample and the power of the selected parametric
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distributions. Therefore, it was important for this work to use raw data from its original source

whenever possible.

An exhaustive review of the available literature was performed to identify the best

candidate sources of data for each exposure factor. Often there were several data sources that

were equally well suited for a given problem and a decision about which data set to use was

based on convenience (ease of access and use or multiple exposure factors included). The

remaining data sources can be used at a later date to measure how well the recommended

distributions predict independent samples using cross-validation experiments. Information gained

from cross validation and analysis of random samples selected from independent surveys will

help to further characterize the power of the recommended distributions and to highlight those

exposure factor distributions that are particularly robust to changes in demographics across the

population.

The original source of candidate data sets for this study are given in Appendix 1, Tables

A. 1 through A.5 along with a brief description of each data set, where the data has been used or

referenced and the contact person(s) or data source (if known). The data sets are listed in order of

relevance to this study in each exposure factor table. The specific rational for selecting a data set

for a given exposure factor is provided in the sections related to each factor. The basic decision

points that were used to identify the best candidate data sets include:

1)

2)

3)

4)

5)

6)

how well the sample survey represents the US population,

how well the survey accounts for demographic regions within the population,

how well the measured or reported value represent the exposure factor (measured values

are better than self reported values and self reported are better than surrogate values),

how large the sample size is,

how easy the data set is to obtain and work with,

the number of exposure factors and independent variables included in the survey (this is

both for convenience and for investigating potential correlation within the population at a

later date)

3.2 Measuring the Importance of Demographic Factors

A number of the distributions and parameters associated with exposure factors have been

related to age and gender classes (Oregon DEQ 1998, Burmaster, 1998; BOC, 1995). However, it
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is rarely tested whether or not these individual classes are indeed statistically different from one

another given the inherent variability in the population and the quality of the data. We use

Classification and Regression Tree (CART) data mining software to analyze the full data sets and

systematically identifying the optimum way to decompose the data for each exposure factor.

CART uses binary recursive partitioning to develop a classification or regression tree

(Brieman et al., 1984). The CART software (Steinberg and Colla, 1997) provides a non-analytic,

computationally intensive procedure that uses a set of rules for determining what factor and what

value of that factor should be used to split the original data set into subsets. Each new subset is

then analyzed and split until either the sample size reaches a lower limit or the cost (added

complexity) of an additional split exceeds what would be gained in the form of reduced variance

and spread between resulting subsets. Each split is chosen to maximize the statistical difference

or separation between two new sub-groups created from the original data. The results of the

CART analysis are concise, easy to understand, and are appropriate for use as a decision making

tool. For an explanation of how a classification and regression tree is read, see Example 1. The

technique was developed almost 20 years ago and has been applied in many fields, including

engineering, medicine, public health and economics (Eisenberg et al., 1998; Eisenberg and

McKone, 1998; Eisenberg et al, 1998; Pilote, et al., 1996; Tronstad, 1995; Spear et al., 1994;

Spear et al., 1991). Detailed explanation of the methodology used in CART is available

elsewhere (Breiman et al., 1984; Breiman, 1992)

CART is easy to use for identifying subsets or reducing variance in large complex

samples. CART was developed to systematically decompose complex data sets into statistically

different subgroups or samples. Subgroups that are not statistically different from the other

members of the sample may still need to be treated differently based on political or policy

reasons. However, after using CART to analyze the data, we can present a systematic and

scientifically defensible process for decomposing the data and make a clear judgement about how

appropriate or necessary the resulting subsets of the population are. Each time we split out a new

subset of the population based on demographics, and construct a new distribution, we increase

the complexity of the exposure analysis. This in turn increases both the likelihood of an error in

the analysis and the complexity of the regulatory review process. Thus, it is beneficial to have the

fewest justifiable number of classes for each exposure factor while still capturing the important

differences within the population.

A two-stage procedure is used to identify the optimal number of demographic regions for

each exposure factor. In the first stage of the procedure, CART is used to systematically split the

data set into statistically different demographic regions and each split is ranked in order of

importance. The most important split produces the greatest difference in the two resulting regions

of the data. The second most important split in combination with the first split produces the

greatest difference between three demographic regions and so on. The second stage of this
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procedure, which comes after the distributional analysis, uses sensitivity analysis techniques to

collapse the set of distributions for a given exposure factor into the fewest number of

significantly different demographic regions (age, gender, race, etc.).

Example Box 1:

J

v
subset 1 subset 6
CV = 46% Cv =41%
Avg = 1.47E-2 Avg = 1.82E-2
n = 958 n =2646

Split 5
v

subset 2 subset 3 subset 4 subset 5
Cv =43% Cv =39% Cv =46% Cv =50%
Avg =1.78 E-2 Avg =1.63E-2 Avg =1.88E-2 Avg =2.17E-2
n =2543 n =2302 n =1036 n =1193

.
EK22!!
CV = percentcoefficientof variation
Avg = average
n = sample size

‘ariables include:
Region(l=northeast, 2=midwest,3=southand4=west),
Race (l=white, 2=bIack,3=AsianlPacific,4=nativeAmericanand5=other),
Age (reportedin years)and
PLS ( l=pregnant, 2=lactating, 3=pregnant and lactating, 4=not pregnant nor lactating and 5=not female 10-55).

This example demonstrates how CART can be used to systematically decompose a large

omplex data set into demographic regions of sampling space. The data is total water intake fron

he USDA’s Continuing Survey of Food Intakes by Individuals and the Diet and Health

howledge Survey (CSFIVDHKS) 1994-96. Total water intake includes both extrinsic and

ntrinsic water. Extrinsic water includes tap water and water added to food and beverage and

ntrinsic water includes all water naturally occurring in food. Total water intake is normalized to

~odyweight (4 kg-l d-*)prior to the analysis and only individuals older than 10 years of age are

ncluded. For individuals 10 and under, the single most important factor is age.

The first five splits in the data set are illustrated above. The output from the analysis is

ead as a binary decision tree. A logical statement is given at each decision point (hexagon). The
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data for which the statement is true move to the left to form a new data subset. When the

statement is false, the data moves to the right.

In the example, the first split occurs on “Region = 1,3” which means that all sample

persons living in the northeast and south go to the subset to the left (average = 1.67E-2 4 kg-i d-i)

and sample persons in the midwest and west are included in the other subset (average = 1.92E-2

/ kg-l d-l). The second split occurs on age e 40.5 for sample persons in the midwest and west.

Sample persons 41 years and older go into subset 6 (average = 1.82E-2 1 kg-l d-]) and those 40

years and younger are again split on PLS. The split on PLS brings up a cautionary note. The

selected variable seems to indicate that pregnancy/lactating status is the next most important

variable. However, closer inspection shows that all non-pregnant females 40 years and younger

living in the midwest and west are assigned to subset 4 (average= 1.88E-2 / kg-l d-l) and

pregnant or lactating women go to subset 5 along with all males (average= 2. 17E-2 1 kg-l d-l).

Pregnant and lactating women have water intake rates similar to that of men when normalized to

body weight.

Next, the sample persons in the south and northeast are split on “Race = 2,4” moving all

blacks and native Americans into subset 1 (average= 1.47E-2 1 kg-l d-l). The remainder of the

data set is split again on “Agee=47.5” creating subset 2 (average = 1.78E-2 1 kg-* d-l) and subset

3 average= 1.63E-2 1 kg-l d-l).

The splitting order also indicates the relative importance of each variable in decomposing

the data. For the example, for individuals older than 10 years of age, the region of the country is

the most important variable followed in order by age, gender and race.

We used CART to analyze the original data sets and identify the importance of various

demographic descriptors within the population. An advantage of the CART approach is that a

wide range of factors can be included in the initial analysis whether these factors are continuous

(age), binary, (gender) or categorical (race, region). Selection of the initial set of demographic

test factors is limited only by the number of factors included in the data set:

Another important advantage of using CART to decompose the data into unique

demographic regions of sample space is that we can avoid the thorny issue of developing

distributions based on stratified surveys that require sample weighting in order to represent the

population of interest. Typically, data from national surveys are weighted to correct for bias that

may result from non-respondents or intentional over-sampling of specific members of the

population (e.g., young children). Methods are readily available for calculating the population

mean and percentiles from weighted data (Snedecor and Cochran, 1989, pp. 431-456) however,

these methods are not easily applied to the development of distributions. Using the CART

analysis, we can identify the subsets of the population that are different. The regions of the

sample space that aren’t different can then be combined without introducing bias into the
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distribution. i.e., if the data does not indicate that men and women consume water at a different

rate then weighting the sample will not influence the characteristics of the resulting distribution.

3.3 Constructing Distributions

Once the data are split into individual sample sets, the next step is to fit parametric

distributions to the data for use in the probabilistic analyses. Methods for fitting parametric

distributions to data are well established and statistical software is available with the capability of

automating much of the work. Even though fitting parametric distributions to data using the

method of moments, “goodness of fit” tests or maximum likelihood estimation (MLE) techniques

is relatively easy with modern software, the challenge remains to determine when the model fits

well enough or when one distribution is more appropriate than another. Analytical methods often

lack the power to choose between two competing distributions (D’ Agostino and Stephens, 1.986).

Therefore, we rely at least in pafi.on subjective or visual methods for choosing the best

parametric model for a given exposure factor.

The current study uses a combination of graphical and standard goodness-of-fit

techniques to identify the best candidate distributions for each data set. By plotting the empirical

cumulative distribution function (ECDF) of the data along with the cumulative distribution

function (CDF) of several candidate parametric distributions (parameterized using MLE or other

goodness-of-fit function) the quality of the fit can be visualized. We enhance this visualization

process by plotting the relative deviation of the predicted percentiles for each CDF (residuals).

This helps to highlight the regions of the ECDF where the parametric CDFS provide the best fit

and where they provide the poorest fit. This feature is important because we are often more

interested in a specific region of the distribution and the visualization process can facilitate

judgments about which distribution works better in the important region even if the goodness of

fit score indicates otherwise. A risk assessment is often focused on the upper region of the

distribution of risk. How the exposure factor influences this region depends on where the factor

fits into the exposure algorithm (see for example Eq. 3). For example, Body Weight is used in the

denominator of the exposure equation and as a result, the lower region of the BW distribution

produces the higher estimate of exposure. By contrast, the Intake rate and the Exposure

Frequency are both in the numerator so that the upper region of the distribution for these factors

produces the higher estimate of exposure.

In finding the best distribution, we start with a standard set of parametric distributions.

Each exposure factor has a different set of candidate distributions. These distributions are

selected for their simplicity and their theoretical representation of the particular data type. For

example, when exposure frequency is specified as a “fraction of the day” it results in a

distribution that is bounded by O and 1. Candidates for this case include log uniform, log

triangular, Beta or truncated continuous distributions. We limit the use of truncated distributions
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whenever possible because the process of truncation fundamentally changes both the distribution

and the procedures used to parametrize the distribution.

3.3.1 Statistical Methods (Parametric)

“Well established methods are currently available for fitting parametric distribution to

data. In addition to extensive reviews and discussion of the available methods, [D’Agostino and

Stephens, 1986, Cullen and Frey, 1999] there are several software packages that do a good job of

implementing the methods. Therefore, we do not go into great detail about the standard methods.

Most of the distributional analyses in this study were performed in a spread sheet program. Some

of the initial visualization of the data sets were performed using the Minitab data analysis

software or using C++ subroutines developed for a specific task (see Section 5.1.3).

3.3.2 Model-Free and Graphical Methods

The simplest graphical methods for distributional analysis are the direct comparison of

distribution functions plotted on the same chart. This comparison can be facilitated using a

variety of plots such as the P-P, Q-Q plot or some form of linear transformation using

standardized Z-scores (D’Agostino and Stephens, 1986). We prefer a simple plot of the residuals

between the ECDF and the parametric CDF as given in Equation 3.1 and illustrated in Figure 3.1:

where: Ri = residual between

parametric CDF

Ri=(&qk) (3.1)

the ithpercentile of the ECDF and the ithpercentile of kth

Pi = i’hpercentile of the ECDF

Pi~ = i’hpercentile of the kth parametric CDF

Several residual plots can be included on offset horizontal axis on a single chart along

with the associated distributions making it easy to locate the regions a distribution where the

model provides the best fit. Figure 3.1 demonstrates the use of the residual where raw data was

drawn directly from a standard normal distribution (mean=O, s=l) and the residual plot calculated

as the difference between the percentiles of the raw data and those of the parent distribution. The

figure demonstrates that even when the data is drawn from a known distribution, a certain degree

of scatter can be expected due to the random nature of the sampling process. As the sample size

gets smaller, the range of scatter in the residuals increases. Using residuals to visualize fit is

useful in that it provides information on the density of data in the different regions of the curve as

well as an indication of bias or trend in the parametric model.
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Figure 3.1: Illustration of the residuals for visualizing the fit of a parametric
distribution to an empirical distribution. The raw data was drawn directly
from a standard normal distribution (mean=O, s=l). The residuals not only
give an indication of where the parametric distribution fits best, it shows the
density of the data at the tails and any bias or trend in the model.

The 95% confidence bounds in Figure 3 were developed by repeatedly generating random

samples from know distributions and calculating the resulting residuals. This was done for a

wide range of sample sizes and standard deviations {or scale values in the case of Beta

distribution). Confidence bounds in the vertical direction (uncertainty about the percentiles rather

than un(uncertainty about the percentiles rather than uncertainty about the quantiles) were found

to be insensitive to changes in the spread of the data. For sample sizes greater than 50, the

confidence bounds on the residuals are inversely proportional to the square root of the sample

size. The relationship between sample size and the 95% confidence bound is given in Table 3.1

for three distributions.
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Table 3.1: Confidence Interval Estimation Equations

Distribution type Confidence interval r~ comments

Normal CI=O.837/sqrt(n) 0.9997 Linear for n>=50

Lognormal CI=O.815/sqrt(n) 0.9872 Linear for n>=50

Beta CI=O.942/sqrt(n) 0.9966 Linear for n>=30

A sample size of 100 drawn from a lognormal and Beta distribution would yield 8% and

9?10confidence interval, respectively. Given the similarity across differing parametric

distributions, we settle on a single average predictor for the confidence interval (Cl) for all

distributions as given in Equation 3.2:

cz=Qg (3.2)

Although the confidence interval

confidence interval about the percentiles

dn

in Figure 3.1 is illustrated as parallel lines, the actual

is greatest at the mean and less in the tails. For

convenience, parallel lines are used to approximate the confidence interval for visualizing model

fit.

Model-free methods are also available for visualizing data and investigating the

underlying composition of the ,data set – whether the distribution is a composite or mixture

model and what parametric distribution or combination of distributions best represent the data

(Tarter, 199 1). The model-free methods show promise as a tool for learning more about the

underlying shape of distributions but more work is needed to determine just how useful they

might be.

3.3 Stochastic Analysis and Distribution Class Reduction

Once each class is assigned an appropriate distribution, a next step will be to collapse the

set of distributions for each exposure factor into the minimum set of stochastically important

distribution. Although we introduce this step here, the actual work and results will be provided

in a separate report.

A Monte Carlo sensitivity analysis technique will be used with each distribution to

determine the exposure factor’s influence on the calculation of dose or risk. The central tendency
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and variance (uncertainty and variability) in each exposure factor will be combined through a

dose equation in a predictable multiplicative manner (Rai and Krewski, 1998). Analytically, the

contribution to variance in the dose estimate is easily calculated. However, when considering the

overall distribution (including the tails) it is often easier to simply run a Monte Carlo analysis

and generate an outcome distribution along with correlation between inputs and outputs to assess

the importance of a given model input. We propose to use the latter approach, along with

Equation 3.3, to test the individual exposure factor classes and determine which demographic

exposure factor subsets can be recombined without significant loss of information.

where: ADDi =

Ci =

IRi =

EF =

ED =

BW =

AT =

ADD, = CixIRix EF X El)1
BWXAT

average daily dose received through ingestion of the irkcontaminated
media (mg Kg-l d-l),

contaminant concentration in media i, (mg m-q),

intake rate of the it~media, (m3d-1),

exposure frequency, (unitless fraction)

exposure duration, (y)

body weight, (Kg) and

averaging time, (y)

(3.3)

A spread sheet program will be developed and used to systematically test each

combination of input distributions in a Monte Carlo analysis. By comparing the outcome

distributions we can collapse the set of input distributions to the appropriate number of unique

demographic classes for each exposure factor. When testing a set of distributions for an exposure

factor, all other inputs to the exposure equation will be assigned their most precise parametric

model from their respective distribution sets. For example, when testing the water intake

distributions in Example 1, all inputs are assigned distributions that minimize the level of

outcome variance. Thus, if no difference in the distributions of exposure model outcomes is

detected for two adjacent exposure factor distributions (subsets 2 & 3 or subsets 4 & 5 in

Example 1) then those subsets can be collapsed or recombined into a single subset and a new

model fit to the data. The analysis should include variance in the concentration term (assumed to

be log normal with a coefficient of variation of 10%) but uncertainty and variability in the

toxicity data will be excluded. As a result, the stochastic analysis of the distributions is expected

to be conservative in that additional variance will be introduced into the system by the toxicity

data and. as a result the variance threshold (the level below which one cannot tell the difference

between two distributions) will increase.
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3.3 Scoring the PDFs

The main contribution of this report is the development of a simple method for scoring

the quality of distributions in the context of the cohort/population to which the distribution is

applied. After the final set of exposure factor data sets are identified along with their respective

distributions, we introduce a scoring system based on a combination of quantitative and

qualitative information for each distribution. The quantitative information includes items such as

sample size, confidence intervals about the distribution, sensitivity of the exposure equation to

the particular exposure factor and graphical/analytical measures of how well the recommended

PDF represents the available data. The qualitative information will include an assessment of how

well the sample survey captures the demographics of the population and how well the sampled

data represents the particular exposure factor.

The challenge in developing high quality, reliable and relevant distributions is that we

often have an incomplete picture of the population (independent studies, small sample sizes).

Without a statistically representative sample of the population, it is difficult to know the amount

of variation between and among subsets of the population. This limits our ability to know a-

priori, how well a distribution for one demographic part of the population will represent another

without some minimal sampling of the new population. For example, we can use national census

data to construct a single distribution of water consumption that will encompass all members of

the population in all regions of the country with a high degree of certainty (assuming the data

from the census is representative). Statistically different subsets of the population can then be

identified and the initial PDF can be decomposed into a mixture of class-specific PDFs each

representing a unique subset of the population (gender, age, ethnicity and region) as described in

section 3.2. We can continue to decompose the sample as long as the variance reduction, sample

size and distance between the new distributions warrant a separate model.

However, if we were to start with a data set consisting of only a subset of the population,

we may be able to construct a highly representative PDF for the existing data set but the

distribution will not necessarily encompass the entire population or other demographic regions of

the population. Expanding the distribution to include other members of the population will rely

on qualitative information and insight gained from the better-characterized exposure factors. In

this case, the size of the confidence bands about the distribution will be influenced by

quantitative information such as sample size and qualitative information such as how

representative the data set is and uncertainty about the selected parametric model.

The scoring system introduced in this report is a questionnaire designed to combine

quantitative and qualitative information about the data and models into a single scenario-specific

measure for the quality of a given parametric model (or other form of distribution). Although the

final scores fall on a continuum from not applicable to highly recommended, the continuum is

partitioned into four basic regions defined as Highly recommended for use (H), Medium (M),
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Low (L) and Not Applicable for use (NA). The questions are designed to elicit information

about:

1) The quantity of data used to construct distributions,

2) Relevance of the data (actual measurement, self-reported or surrogate value),

3) Analytical goodness of fit for standard distributions,

4) Theoretical basis for standard distributions,

5) Visual performance of the model across the range of data including the percentiles of

greatest interest to the particular analysis objective,

6) Extent to which variability and uncertainty can be represented, is the amount of

measurement or reporting error known, and

7) Ability of the recommended distribution to forecast samples from independent but

related surveys and/or data sets.

Although the final form of the questionnaire and scoring system should come through

peer reviewed literature and/or from extensive open debate among experts from a wide range of

disciplines, an initial format is developed from the above list of criteria and presented in

Example 2. At this stage, the lines between each score are assigned somewhat arbitrarily. As we

gain experience with a variety of distributions and data sets, the lines separating HA, M, L and

NA will likely converge on the most effective location. The questions may also evolve as we gain

additional experience and insight.

Some of the criteria in the questionnaire are quantitative where the value given is

dependent on an actual measurement of sample size or fit. For other criteria such as data qui~lity

the score falls on a continuum from very poor to very good. To assign a score to these criteria,

the user must become familiar with the data. The more intimate a person is with a given data set,

the more qualified that person is to judge the quality of the data for a given task. Information on

how the data was collected and the precision of the measuring device used to collect the data

should also be considered when judging data quality. There are several sources of guidance for

judging data quality and the reader is referred to these papers and books for further discussion

(Cullen and Frey 1999, page 162, Thompson, 1999). Overall, in order to judge the quality of a

distribution, it is critically important that the user have a clear and complete understanding of the

data used to develop the distribution in question, the procedure used to construct the distribution

and the population in the analysis objective. The questionnaire is designed to help lead the user

towards the necessary level of understanding.
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Example Box 2

For each of the following criteria, enter a number from O to 3 in the box to the right. For some

questions the values will be arrived at quantitatively and for others the values will be assigned on

a low to high scale. After filling in each of the sections, add up each score and refer to the bar at

the bottom of the page to locate the score.

Sample size
For (n< 10); enter O
For (10 e n < 50); enter 1

For (50 c n < 250); enter 2
For (250 < n); enter 3

Data relevance
For irrelevant datx enter O
For surrogate values; enter 1
For self-reported values; enter 2
For actual measurements; enter 3

Data Quality
Score data quality from O-3 (low to high)

Theoretical basis for distribution
Score theoretical basis from O to 3 (low to high)

Analytical goodness of fit
For KS or AD in 50%; enter 1
For KS or AD in 7590; enter 2
For KS or AD in 95%; enter 3

Visual performance
Poor fit across range; enter O
High scatter but low bias; enter 1
Low scatter low bias in region of interest; enter 2
Low scatter and bias across range of data; enter 3

Model performance in cross-validation
Enter O if no cross-validation has been performed
Score model performance from 1-3 (poor to good) for each
independent cross-validation experiment

Add the values in the right hand column and locate the score on the following bar.

NA

o 5 10 15 >20
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3.4Method summary

The overall method, starting from the point where the appropriate data set has been

identified and carrying through the robustness score is summarized in Table 3.2 (preprocessing

phase) and 3.3 (data processing phase).

Table 3.2: Steps in the preprocessing phase of the project

Pre-processing phase

1.

2.

3.

4.

5.

6.

7.

8.

9.

Acquire and install data base and necessary software

Identify factors of interest that are available (both dependent and independent variables)

Extract data files and save as an Excel file(s)

Combine files that were extracted separately from the same database (body weight and water intake
for example). Use the sample identification number when merging files.

Remove files with incomplete data. Keep record of files that are removed to adjust the weighting
factor if necessary.

Convert units (oz. – grams, lb – kg, cups – grams, months to fraction of year . . .).

Combine variables where feasible, (convert months to season) Age typically has column for years
and for months – combine in a single column for years by converting the months into fraction of a
year (months/12).

Convert files to format for analysis in CART

Go to Data Processing Phase

24 Lawrence Berkeley National Laboratory



Table 3.3: Summary of procedure for processing data

Data Processing Phase

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11<

12.

13.

Construct histograms and baseline distribution for complete data set (using Minitab, SAS or Excel)
prior to decomposition.

Perform CART analysis to identify subsets of the data

Save the subsets as independent files and construct empirical distributions and histograms for each

Use T-test and/or Anderson Darling test to assess differences and confirm extent of curve
decomposition

Save final data subsets as Excel files

Construct distributions for each subset identified in CART analysis

Run Monte Carlo analysis and collapsed classes where warranted into more general distributions
for each exposure factor

Determine confidence bounds and two dimensional distributions for each final distribution if
sample size is less than 100

Calculate confidence bounds for each distribution (if significant)

Extract uncertainty (normal distribution about mean based on sample size, Chi-square distribution
about standard deviation based on sample size) where uncertainty contributes significantly to
variance

Test power of parametric model to predict independent or randonily drawn data sets. (Is residual
error within the bounds of uncertainty?)

Combine quantitative and qualitative information to calculate final robustness score

Compile information and score the final distributions
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4.0 Development of PDFs for Body Weight

In this section we provide details on the development and analysis of PDFs for body

weight. Body weight is one of the most extensive and representative data sets of all the exposure

factors. Measured and self-reported body weights are provided along with demographics in

several nationally representative surveys. In addition, anthropometric data for children have been

extensively reviewed and include studied using both longitudinal and cross sectional analyses.

Results from these studies have been used to develop standard growth charts for use by medical

practitioners when assessing the growth of children during physical examinations (Tanner et al.,

1965; Hamill et al., 1977; Hamill et al., 1979). Updated growth charts should be available

sometime in 1999 ( htt~://www.cdc. ~ov/nchswww/aboutim aior/nhanesAanesrev .htm ).

Age and gender have been used to characterize the distribution of body weight in the

population (Burmaster and Crouch, 1997, USEPA, 1990; USEPA, 1997). By referring to the

original data we can identify the optimal demographic classification for this exposure factor.

When fitting distributions to the BW data it is important to consider what part of the distribution

is most influential to the dose calculation. BW is in the denominator of the calculation and as a

result, small values of BW (lower tail of the distribution) produces the largest estimate of dose

and subsequently the highest risk. Thus, for this exposure factor, we are most interested in fitting

the lower region of the data. However, it should be noted that all of the data should be considered

as relevant and we only use the lower tail when trying to decide between two parametric

distributions that each score well with standard goodness of fit tests.

4.1 Sources of Data

In addition to numerous smaller studies, two extensive nationally representative

surveys were available for assessing BW. These include the National Health and Nutrition

Examination Survey, III 1988-94 (DHHS, 1997 revised; NHANES III) and the 1994-96

Continuing Survey of Food Intake by Individuals (CSFll). Both surveys provide complete

representation of the population on both a national and regional level and include several

potentially important variables. Even though both surveys include information on body weight

and water intake the water intake information in the CSFII survey is more quantitative. For this

reason, we chose to use the CSFII database for the initial development and save the NHANESIII

database for cross validation and future work on robustness scoring.

It was learned late in the study that the two surveys also differ in that the CSFH has self-

reported body weights while the NHANESIII includes actual measurements. Even though the

actual measurements are better than self-reported values, we continued to use the CSFII data
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because the benefit of having water intake data along with body weight exceeded the potential

cost of having self-reported body weight.

The CSFII was conducted by the Food Surveys Research Group, Beltsville Human

Nutrition Research Center, Agricultural Research Service (USDA, 1998). The survey includes a

nationally represented population of noninstitutionalized (non-military, and not living in group

quarters) households, excluding the homeless (and reservations). Low-income housing units were

over-sampled but weighting factors were provided that correct the sample composition to reflect

the composition of the US population based on the 1990 Census. For more information on the

CSFIUDHKS 1994-96 Survey Methodology, see Tipett and Cypel (eds.) 1997 on Disk 1 in

\dor9496\dor9496 .pdf. Two 24-hour recall records were used as the collection method for dietary

data.

The self-reported body weight [Ibs] is given for each “Sample Person” in the particular

record type (rt25.dat file on CD-ROM) for 16,103 individuals. Also provided in the data set are:

●

●

●

o

●

●

●

June 1999

age in yrs (0-90 yrs) and in months (if <1 yr)

breast feeding status

pregnant/lactating status

race (white, black, Asian/Pacific Islander, American Indian/Alaskan native, or other

race)

origin (Mexican, Puerto Rican, Cuban, or other Hispanic)

percentage of poverty level (the household income for the previous calendar year

expressed as a percentage of the Federal poverty thresholds (Baugher and Lamison-

White, 1996) adjusted for inflation)

region

Northeast = Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New

York, Pennsylvania, Rhode Island, Vermont;

Midwest = Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska,

North Dakota, Ohio, South Dakota, Wisconsin,

South = Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia,

Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South

Carolina, Tennessee, Texas, Virginia, and West Virginia; and
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West = Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada., New

Mexico, Oregon, Utah, Washington, Wyoming), gender, urbanization (MSA, central

city, MSA, outside central city, or Non-MSA),

● and year of survey.

Further information can be found at

http: //www.barc.usda. Rov/bhn rc/foodsurvev/home .htm

4.2 Terminology and Definitions

● Body weight: Total mass of individual

. Longitudinal analysis: measurements collected from a single individual over time.

. Cross-sectional analysis: measurements collected across a population (both the

NHANESIII and the CSFII provide cross-sectional analyses)

4.3 Data Classification and Distribution Analysis

The original data set from record type 25 of the CSFII was modified prior to analysis. The

modification included the removal of all pregnant, lactating or pregnant and lactating women

from file because of the strong dependence of BW on term of pregnancy. The two columns

reporting age in years and age in months (when years e O) were combined into a single column of

age in years (fraction of year used when age<O). The pctpov (percent of poverty) variable was

converted to categorical data such that “under poverty line”= 1, “ 100-200%of poverty” = 2 and

“greater than 200 % of poverty” = 3 (resulting frequency: 1=2673, 2=3667 and 3=9159). The

independent demographic variables that were included in the CART analysis were age, gender,

race, ethnicity, region, urban (whether individual lived in rural, urban or metropolitan area) and

percent of poverty. A total of 15502 sample persons were included in the final data set for 13W

analysis.

The CART analysis was set up using the default options. The analysis was set for

regression tree with v-fold cross validation (n= 10) and the minimum cost tree was generated

using the least squares method. The results are presented for ages 12 years and above in the tree

diagram in Figure 4.1. Ages less than 12 were not included in the figure to reduce the complexity

of the figure. Information not included in Figure 4.1 is split 1 (at age e= 11.5), split 3

(age <= 6.5), split 7 (age <= 2.5) and split 10 (age<= 9.5). These splits produce sub-regions of

the population grouped by age from Oto 2 years, 3 to 6 years, 7 to9 years and 10 to 11 years.

There is no measurable difference in gender or race below age 12. For an explanation on how to
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read the regression tree output, see Example 1 in section 3. The compositions of the demographic

sub-regions of the data are summarized in Table 4.1.

CARTOutputforBody Weight (all sample persons 12 yrs. and older)

1
I&e!@
CV = percent coefficient of variation
Avg = average
n = sample size
Variables definitions
Sex ( l=rnale, 2=female)
Age (continuous yearly values)
Race ( l=white, 2=black, 3=asian/pacific isIander, 4=native american and 5=other

~ Split 9 ~

HE!!

Figure 4.1: Classification and regression tree showing the decomposition of the original
data set for body weight into demographic sub-regions. The tree begins at the
second data split. The first split was on age<= 11.5 years. As a result, the data
in figure 4.1 are only for ages 12 years and older. See text for further
explanation.
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Table 4.1: Composition of final BW nodes

Sub- Characteristics n Ave CV
region
Root
1(2)
2(1)
3(4)
4(3)
5(6)
6(5)
7(8)
8(7)
9
10(11)
11(10)
12
13(14,15)
14(13,15)

Full data set for U.S. population
All persons 1 and 2 years of age
All persons 3 to 6 years of age
All persons 7 to 9 years of age
All persons 10 and 11 years of age
Females 12 and 13 years of age
Females 14 to 23 years of age
Asian/Pacific females 24 years and older
Caucasian females 24 years and older
Black and American Indian females 24 years and older
Males 12 and 13 years of age
Males 14 and 15 years of age
Asian/Pacific males 16 years and older
Males 15 to 19 years of age ( non-Asian/Pacific males)
Males 20to71 years of age (non-Asian/Pacific males)

15502
1718
1610
672
486
197
757
102
3621
591
187
201
133
323
4268

59 50%
12 29%
19 24%
30 27%
40 26%
51 24%
61 21%
55 16’3?0
68 22%
77 25%
53 26%
65 22%
67 17%
74 20%
85 18%

15(13,14) Males 72 years and older~non-Asian/Pacific males) 636 77 17%
The sub-region number refers to the terminal region in the CARTtree illustratedin figure4.1 Terminalnode 1-4
are not includedin Figure4.1. The numberin parenthesisindicatesthe “sister”node.Sisternodesare generated
by splittinga singlenodeandas suchcan be recombinedif it is determinedthat the differencebetweenthe two
nodes is not significant.The sub-regionnumberdoes not reflectthe orderof importance.For data splitting
order,refer to figure4.1.

E is not surprising that body weight is strongly dependent upon age from birth through the

teen years. The results in Table 4.1 show a strong dependence on BW for all children under 12

years (regions 1-4). For adolescents and adults (age 12 and up) gender becomes an important

variable. Females are separated by age from 12 to 24 (regions 5-6) and by race for women 24

years and older (regions 7,8 and 9). Men are subdivided by age from 12 to 19 years (nodes 1.0, 11

and 13) and above 72 (regions 14 and 15) except that Asians and Pacific Islanders are split out of

the data set for men older than 15 years (regions 12). It is interesting to note the significant

difference in body weight for Asian/Pacific Islanders for adult men and women. The average

body weight for this demographic sub-population of adult women is over 10 Kg less than the

general population and 20 Kg less than that of Black and American Indian women. We also note

that the average weight for adult males excluding Asian/Pacific Islanders is 85 Kg.

4.4 Presentation of Distributions

The output from the CART analysis was used to construct individual data sets for

each node in Table 4.1. ECDFS for each resulting sample are illustrated in Figures 4.2 through

4.4. Figure 4.2 includes all children younger than 11.5 years (race, gender, region, . ..) subdivided

into 4 age categories. Figure 4.3 includes all females over 12 years of age and Figure 4.4
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includes all males over 12 years of age. The figures further illustrate the separation between the

different categories identified by the CART analysis.

Children ages Oto 11 year

10070

7570

5(Y%0

25%

o%

1 ..
❑ mF’n: .4

S#
❑ age O-2

~“;b$
o age 3-6
A age 7-9

~’kti#
x age 10-11

i I ! , I !

o 10 20 30 40 50 60 70 80 90 100

body weight (kg)

Figure 4.2: Age dependent empirical cumulative distribution functions for the body
weight (kg) of all children under 12 years of age separated into four age
groups. There was no significant difference in gender, race or other measured
demographic variable for children under 12.
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10070

070

Female Age 12 and older

I
❑ age 12-13

0 age 13-23

‘A asian,pacific age 24+ —

x white, other age 24+

x black, native american age 24+

Lawrence Berkeley National Laboratory

o 50 100 150 200 250

body weight (kg)

Figure 4.3: Empirical cumulative distribution functions for the body weight (kg) of
females 12 years and older. In addition to the obvious age dependence, body
weight for females is also dependent upon race. The “Black, Native
American age 24+” category had a strong outlier but we were not able to
justify removing the value from the data set.

32



Male Age 12 and older

0 20 40 60 80 100 120 140 160 180 200

body weight (kg)

Figure 4.4: Empirical cumulative distribution functions for the body weight (kg) of
males 12 years and older. The body weight of males is also somewhat
dependent on race where the body weight of adolescent and adult
Asian/Pacific Islander males is significantly different than that of the other
members of the population.

The data used to construct the ECDFS in Figures 4.2 to 4.5 are placed into individual data

sets and the method described in Section 3 is used to select the best parametric distribution for

each set. Figure 4.6 shows a typical illustration of the results of the distributional analysis.

Although both parametric distributions in Figure 4.6 (normal and logistic) do a good job

describing the data, the logistic is selected because it likely arises from the rapid growth that

occurs during the first two years of life (Johnson, 1995). A second example illustrating the body

weight of Black and American Indian adult women is given in Figure 4.7. In this case both the

lognormal and the extreme value distributions adequately fit the data. Typically if more than one

distribution provides an adequate fit to the data, we selected the simpler or more common

distribution for use. The three-parameter Gamma distribution and the three-parameter Iognormal

distribution fit the data better than the two-parameter distributions. However, the increased

complexity of the distribution was not warranted given the inherent noise in the data. The results

for the remaining demographic subsets of the data are illustrated in Figures 4.8 to 4.20 and all of

the categories are summarized in Table 4.2.
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Body Weight (kg) of Children Ages 1 and 2

100?40

0%

34

. . . . .. . . . . {I . -. .- . . . . . . -. . ..

0 Raw Data

— Normal

x normal

— Logistic

- logistic

( , , 1
0 5 10 15 20 25 30

Body Weight (kg)

Figure 4.6: Body weight distribution for children ages 1 and 2. This is a typical
overlay of the parametric distributions used to model body weight. It shows
that each of the distributions do a good job mapping the actual data. The
logistic distribution is selected here because it fits well in the tails of the data.
The logistic probably arises from the rapid growth during the first two years.
The straight lines are the 95% confidence interval for the residuals.
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10070

0%
30

Figure 4.7: Body weight of Black and American Indian adult females showing the fit of
the Iognormal and extreme value distributions. Both distributions do a good
job of fitting the data. There is an apparent outlier in the data (upper tail) but
no justification for removing the point could be made.

Body Weight (kg) of Black and American Indian Females
24 Years and Older

x

o Raw Data

-— Lognormal

x Iognormal

— Extreme
Value

1 1 1
80 130

Body Weight (kg)

180

June 1999 35



100%

75%
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Body Weight (kg) of Children Ages 3 to 6
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x Iognormal

— Extreme
Value

T- , , ! I !
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Body Weight (kg)

Figure 4.8: Body weight of children ages 3 to 6 years showing
and extreme value distributions.

the fit of the lomormal
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Body Weight (kg)

Body Weight (kg) of Children Ages 7 to 9
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e Raw Data
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— Extreme
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Figure 4.9: Body weight of children ages 7 to 9 years showing the performance of the
lognormal and extreme value models.
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Body Weight (kg) of Children Ages 10 and 11

100%
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4 x Iognormal

—3-parameter
~ognormq
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Body Weight (kg)

Figure 4.10: Body weight of children ages 10 and 11 years showing the performance of
the Iognormal and three-parameter Iognormal models. The step pattern in the
raw data is an artifact of the unit conversion and the self-reported values
(more values were reported in units of five pounds indicating a rounding
tendancy in self-reported body weights).
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Body Weight (kg) of Females Ages 12 and 13
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Figure 4.11: Body weight of females ages 12 and 13 years showing the performance of
the lognormal and three-parameter lognormal models. Again, there is a strong
outlier in the data for this data set but no justification for removal of the point
could be found.
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Body Weight (kg) of Females Ages 14 and 23

r
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— 3-parameter
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Body Weight (kg)

Figure 4.12: Body weight of females ages 14 and 23 years showing the performance of
the extreme value and three-parameter lognormal models. The step pattern in
the raw data again is thought to bean artifact of the unit conversion and the
self-reported values where more values seem to be reported in units of five
pounds indicating a rounding tendency in self-reported body weights.
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Figure 4.13: Body weight of Asian/Pacific females older than 23 years of age showing
the performance of the Iognormal and extreme value models.
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Figure 4.14: Body weight of Caucasian females older than 23 years of age showing the
performance of the lognormal and extreme value models. The step pattern in
the raw data is thought to be an artifact of the unit conversion and the self-
reported values where more values seem to be reported in units of five
pounds indicating a rounding tendency in self-reported body weights.
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Figure 4.15: Body weight of males that are 12 and 13 years of age showing the
performance of the lognormal and extreme value models.
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Figure 4.16: Body weight of males that are 14 and 15 years of age showing the
performance of the lognormal and extreme value models.
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Figure 4.17: Body weight of Asian/Pacific males older than 15 years of age
performance of the lognormal and normal models.
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Figure 4.18: Body weight of non-Asian/Pacific males 15 to 19 years of age showing the
performance of the extreme value and the three-parameter lognormal models.
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Figure 4.19: Body weight of non-Asian/Pacific males20to71 years of age showing the
performance of the lognormal and the extreme value models. The step pattern
in the raw data is apparent due to the large sample size and possible reporting
bias where weight is rounded to the nearest five pounds. This characteristic
shows up more in the data sets with a large number of samples.
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Figure 4.20: Body weight of non-Asian/Pacific males older than71 years of age showing
the performance of the Iognormal and the extreme value models. The step
pattern in the raw data is apparently due to the large sample size and possible
reporting bias where weight is reported to the nearest five pounds. This
characteristic shows up more in the data sets with a large number of samples.
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Table 4.2: Initial selection and parameterization of distributions for BW

Description of the data sets Distribution n KSb Azc ssd locatio scale
n

1. Ages 1 and 2 years Logisticg 1703 0.051 3.49 0.27 12.10 1.85

2. Ages 3 to 6 years

3. Ages 7 to 9 years
4. Ages 10 and 11 years
5. Females ages 12 and 13 years
6. Females ages 14 to 23 years
7. AsianlPacific females 24 years +
8. Caucasian females 24 years +
9. Black and American Indian

females 24 years +
10. Males ages 12 and 13 years
11. Males ages 14 and 15 years
12. AsianiPacific males 16 yey +

13. Males ages 15 to 19 years

14. Males ages 20 to 71 years f

Lognormale
Lognormal
Lognormal
Lognormal
Extreme Value
Lognormal
Extreme Value
Lognormal

Lognormal
Lognormal
Lognormal
Extreme Value

Lognormal

1610 0.085 7.12 1.30 18.70 4.24

672 0.067 2.08 0.25 30.16 7.71
486 0.056 1.13 0.12 39.91 10.16
197 0.068 0.83 0.13 51.03 11.43
757 0.052 1.43 0.21 55.15 9.31
102 0.110 0.61 0.09 55.16 8.38

3621 0.047 2.37 0.34 61.68 11.53
591 0.050 0.69 0.07 76.90 18.22

187 0.049 0.43 0.05 52.51 13.54
201 0.052 0.45 0.04 65.09 14.04
133 0.058 0.43 0.02 66.94 11.65
323 0.052 0.81 0.16 67.14 11.66

4268 0.055 7.58 0.58 84.61 15.12

15. Males ages 72 years + f Lognormal 636 0.049 0.87 0.10 74.14 12.90
(a)
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4.6 Uncertainty and variability in the body-weight distributions

The analytical uncertainty in the parametric distribution of body weight is illustrated for

sample sizes of 102 and 486 in Figure 4.21. The contribution of analytical uncertainty becomes

negligible for sample sizes greater than 100. Because of the relatively large sample size in each

data set (n>100) the spread in the data is essentially all due to variability. As a result, 2-D Monte

Carlo analyses are not beneficial or necessary for this exposure factor.
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Figure 4.21: Illustration of analytical uncertainty for two distributions. The number of
data points used to construct the distribution were 102 and 486 for the top
and bottom figures, respectively.

A more interesting and pertinent question maybe whether or not there is bias in self-

reported body weights. To test for bias, cross-validation experiments could be performed on

independent data sets such as the NHANESIII survey (measured values) or any of a number of

smaller data sets that contain measured body weights.
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4.7 Distribution scores for the body-weight

Overall, the data quantity and quality for body weight are very high. Several nationally

representative surveys are available for generating distributions and performing cross-validation

experiments. The national survey data is well researched with numerous layers of QA/QC and

the surveys include enough demographic information to identify different demographic regions

of the data set. We were able to identify standard parametric distributions that provide adequate

representation of each subset of the data and visualization techniques were used to assess the

quality of fit across the range of the data. The final step in the analysis is to assign scores to each

distribution.

Before scoring each distribution, a clear statement of the analysis objective is required.

The quality of the distributions cannot be judged without first knowing what populationhcenario

the candidate distribution is to be used for. In this report, the distributions are scored based on

their representation of the demographic subsets from the original national survey. The scoring

procedure would be identical if we were judging how well the distribution was expected to

represent some other subset of the population, however, the scores would likely change. The

questionnaire given in Example 2 of Section 3.3 is used to demonstrate the scoring process for

the first distribution (children ages 1 and 2 years). The final score along with the scores

associated with the remaining distributions are given in Table 4.3.

The first value in the score sheet is set at 3 because the sample size for 1 and 2 year old

children from the CSFH was well over 250. Data relevance was scored a 2 because the body

weights were self-reported. The data quality was given a 3 because of the extensive reviews

received by the CSFII survey and highly representative and well documented experimental

design. The theoretical basis of the distribution for body weight is given a 3 as well because of ‘

the likely influence of physical growth over the sample range (O-2 years). We assign the

analytical goodness of fit a 2 although it is unclear how well either the KS or A2 tests work with

very large samples. The visual performance of the model is good in the region of interest so we

assign a score of 2 and no cross-validation experiments have been performed so we assign the

last value a O. Adding the right-hand column we find a total score of 15 which puts us on the

border between M and HA. This illustrates the advantage of performing some form of cross-

validation with a newly developed distribution. Depending on the performance of the model, a

simple comparison to an independent data set could easily bring the model into the HA region or

demonstrate the limitations of the distribution. Several of the distributions in Table 4.3 received

scores in the M range. This is due primarily to the relatively small sample sizes (n = 50- 250) for

these demographic regions of the data. These scores could also be improved through cross

validation.
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Example Box 3 Scoring of body weight distribution for 1-2 year old
children

For each of the following criteria, enter a number from O to 3 in the space to the right. For some

questions the values will be arrived at quantitatively and for others the values will be subjectively

assigned on a low to high scale. After filling in each of the sections, add up each score and refer

to the bar at the bottom of the page to determine the appropriate score.

Sample size
For (n< 10); enter O

For (10 e n < 50); enter 1

For (50 e n < 250); enter 2
For (250 < n); enter 3 3

Data relevance
For irrelevant data; enter O
For surrogate values; enter 1
For self-reported values; enter 2
For actual measurements; enter 3 2

Data Quality
Score data quality from O-3 (low to high) 3

Theoretical basis for distribution
Score theoretical basis from Oto 3 (low to high) 3

Analytical goodness of fit
For KS or AD in 50%; enter 1
For KS or AD in 75%; enter 2
For KS or AD in 95%; enter 3 2

Visual performance
Poor fit across range; enter O
High scatter but low bias; enter 1
Low scatter low bias in region of interest; enter 2
Low scatter and bias across range of data; enter 3 2

Model performance in cross-validation
Enter O if no cross-validation has been performed
Score model performance from O-3 (poor to good) for each
independent cross-validation experiment o

Add the values in the right hand column and locate the score on the following bar. 15

0 5 10 15 >20
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Table 4.2: Robustness scores for body weight distributions

Region number and data description Robustness
1. Ages 1 and 2 years H
2. Ages 3 to 6 years H
3. Ages 7 to 9 years H
4. Ages 10 and 11 years H
5. Females ages 12 and 13 years M
6. Females ages 14 to 23 years H
7. Asian/Pacific females 24 years + M
8. Caucasian females 24 years + H
9. Black and American Indian females 24 years + H
10. Males ages 12 and 13 years M
11. Males ages 14 and 15 years H
12. Asian/Pacific males 16 years+ M
13. Males ages 15 to 19 years H
14. Males ages 20to71 years H
15. Males a~es 72 vears + H
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5.0 Development of PDFs for Exposure Duration

In this section we provide a summary and recommendation for exposure duration PDFs.

For illustrative purposes, we assume exposure occurs at or near the home so exposure duration is

defined as the amount of time that an individual is expected to occupy his or her current

residence. There are no direct measurements of exposure duration (ED) given as total residence

time. Therefore, ED must be estimated from surrogate data such as the reported amount of time

an individual has lived in their current residence or from mobility and mortality data. The use of

surrogate data to estimate ED increases the qualitative level of uncertainty in the estimate and

increases the level of difficulty associated with the factor analysis used to identify important

subsets of the population.

However, there is an abundance of Nationally representative data that can be used with

standard statistical methods to estimate distributions for ED from surrogate data. We highlight

these data sources and statistical methods below.

5.1 Primary Data Source

The U.S. Bureau of the Census is currently conducting national housing surveys every

other year. These surveys provide comprehensive housing statistics for the U.S. Department of

Housing and Urban Development (HUD) and include information on housing (apartments,

single-family homes, and mobile homes), attributes of housing units (locale, number of rooms,

square footage, etc.), and data on household members (age, race, gender, income, education,

etc.). The last survey year from which data have been made available to the public is 1995.

There are 45,675 occupied housing units in the 1995 American Housing Survey National

(AHS-N) sample. Weightingl factors are provided in order to estimate housing statistics for

97,693,000 housing units in the U. S.. Housing units are identified as rental or owner occupied,

in an urban or rural setting, and by geographic region (northeast, midwest, south, or west). Of

particular interest to this report, the survey includes information on the age, gender, race,

Hispanic origin, salary, education, and current residence lime of each household member for a

total population of 254,159,000 (after weighting housing units in the survey).

1 Appendix B of the 1995AHS-N report (ref) discusses how housing units in the sample have been
weighted to account for the probability of selection, whether the unit could be interviewed, sampling
deficiencies for new constructions, and other differences in sampling estimates based on independent

sources (e.g., the 1980 census) for key characteristics such as region, tenure, urban or rural status,
metropolitan area status, ethnicity, and race.
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The size and complexity of the Housing Survey data sets necessitated the development of

computer routines to facilitate the extraction and pre-processing of the data. These routines are

described in the following section.

5.1.3 Computer Routine for Processing Data

Two computer programs, written in C++, were developed to manipulate data from the

1995 American Housing Survey (AHS) (BoC, 1995). When downloading the AHS data from the

U.S. Bureau of the Census Web site, the user specifies what information to include for each

housing unit in the downloaded data set. The information may include attributes of the housing

unit (owned or rented, geographic region, square footage, etc.) as well as data on household

members (age, gender, income, education, current residence time, etc.). The downloaded data

consist of one record per housing unit surveyed.

In order to examine current residence time by factors such as age, gender, income,

geographic region, etc., it was necessary to first select only occupied housing units, and secondly

reformat the data so that there is one record per individual, rather than one record per housing

unit. The first computer program works by reading the AHS data one record at a time. If the

housing unit is occupied, then one record is generated for each individual in the unit. Each

record contains the following:

● the number of the housing unit;

. the individual’s age, current residence time, ethnicity, salary, gender, and spanish

origin;

● categorical variables that describe the housing unit’s census region and metropolitan

region and whether the housing unit is owner occupied or a rental unit and whether

the housing unit is classified as a farm.

. The outputfile of the computer program can then be read directly into the CART

analysis program.

The second computer program extracts subsets of data from the output file of the first

program. At this time, the only selection criteria used by the program are age, whether the

housing unit is owner occupied or a rental unit, the census region, and the metropolitan region.

These variables were identified by a preliminary CART analysis as being the most important

variables in terms of explaining variance in current residence time. The computer program

prompts the user for the following information.

. Type of age test to use and the upper and lower limits, al and az, respectively. The

choices are (1) al < age < a2, (2) al e age, or (3) age < a2. The user specifies the
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number of the test (1, 2, or 3) and the value of al for tests 1 and 2 and/or az for tests 1

and 3.

● Whether the housing unit is (1) owner occupied, (2) a cash rental, or (3) a non-cash

rental.

● In which census regions (northeast, midwest, south, and west) the housing unit should

be located.

● In which of the seven metropolitan regions the housing unit should be located.

The computer program then generates an output file that contains records only for

individuals who meet the age criterion and who live in housing units that meet all of the other

selection criteria. The structure of the computer program is flexible so that additional selection

criterion could be added in the future. This program is used to partition the data into various

categories depending on the results of the CART analysis.

5.2 Definitions Associated with Exposure Duration

Exposure duration (ED): is the expected length of time that an individual will remain in

his/her current housing unit. Exposure duration is required to calculate dose.

As noted above, the AHS-N collects data on current residence time, not on the length of

time an individual lived in hisfier previous residences. The U.S. Bureau of the Census (BoC,

1995) provides data on mobility, i.e., whether an individual has moved within the last year. The

next section explains how

5.3 Data analysis

both of these types of data have been used to estimate ED.

Data were extracted from the AI-IS database and preprocessed for CART analysis using

the computer routines described above. The preprocessed data included the individual sample

persons tenure (owner or renter), metropolitan area (urban, suburban or rural setting), geographic

region (northeast, midwest, south, or west) and various demographics such as age, gender, race,

Hispanic origin, salary and education. The data also reported the current residence time (CRT) of

each household member. As discussed in the following section, the CRT has been used to

approximate the distribution of ED for the population and for various subgroups within the

population using either a survival function or a semi-analytical relationship between CRT and

ED. Because of the nature of the data and the methods used

variable as a proxy for ED during the factor analysis phase.

to estimate ED, we use the CRT
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An initial CART analysis indicated a strong dependence of CRT on the age of the sample

person. Prior to running the full CART analysis, the data was visualized using the Minitab data

analysis software. The distribution of CRT as a function of age (Figure 5.1) clearly shows a

bimodal relationship. The distribution first maximizes at age 18 (y) then drops to a minimum at

age 30. After age 30, the CRT increases Iinearl y with increasing age. A simple explanation for

the bimodal shape is that the CRT of sample persons with ages O-18 (children and adolescents

living at home) is directly related to that of individuals of age 20-45 (young adults with children

living at home). Including both groups in the analysis may introduce bias towards a lower

estimate of ED. Children and adolescents should be analyzed separately and further investigation

is warranted but beyond the scope of this study. For the remainder of this section, children and

adolescents (age< 18 years) are excluded from the analysis.
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Figure 5.1: Mean current residence time (CRT) reported for each year showing the
increasing trend with age and the bimodal characteristic. The height of each
bar is the mean for all individuals in that age group.

Results from the CART analysis indicated that several of the factors had no measurable

influence on the variance of CRT. For the factor definitions, see table 5.1. The non-influential
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factors include ethnicity, gender, spanish origin and farm status. The initial CART analysis did

not identify farm status as an important variable even though average CRT for farm and non-

farm households was 15 and 8.5 years, respectively. The variance in CRT that is due to the farm

variable is either captured by another variable (e.g., metropolitan area) or masked by the

background variability within the population. This demonstrates that reliance on the CART

output alone may not fully characterize the importance of some demographics variables on the

exposure factor.

Table 5.1: Variable definitions used in the housing survey

Variable Definition -—
HSHLD
AGE
CRT

ETH
INDSAL
GEN
SPA
FRM
MET
REG
TEN

Number of housing unit
Age of individual in years
Current residence time in years calculated as difference between survey year and the
year that individual moved into the home
Ethnicity of the individual
Annual salary of individual in dollars
Gender of individual
Spanish origin of individual
Indicates whether housing unit is classified as a farm
Metropolitan area
Census region in the U.S.
Owner occupied or rental unit

Table 5.2: Relative importance of the variables in analysis of CRT

Variable Relative Importance

AGE 0.71

TEN 0.21

INDSAL 0.04

REG 0.03

MET 0.01

For definitionsof variables, see Table 5.1

The relative importance of the individual variables that were included in the analysis is

given in Table 5.2 (normalized to 1). The importance of the annual salary of the sample

person is questionable because the values included in the housing survey were either $0,

continuous between $0 and $100,000 or greater than $100,000. The mixture of censored,

continuous and classification data can potentially cause confusion in the CART analysis.
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However, there is not sufficient evidence to allow the removal of socioeconomic status from the

list of important variables.

Results from the CART analysis of CRT are presented in Figure 5.2 and the composition

of the demographic sub-regions are summarized in Table 5.3

CART Output for reported Current ResidenceTime (Samplepersons age >18 years)

,
Ten = (2,3)
CV= 116%
Avg = 6.6
n =29806

Subset 1 Split 3
CV =165%
Avg = 2,9
n = 10850

mma“’it’aa‘P’it’a
k!e!!d
CV = percent coefficient of variation
Avg = average
n = sample size
Variables definitions
Age(continuousyearlyvalues)
Reg = Region (l=northeast, 2=midwest, 3=south, 4= west)
Ten = Tenure (l=owner occupied, 2=rental unit, 3=no cash rent)

IndSal = Annual Salary of Individual in dollars (continuous 0- lOOK, categorical> IOOK)

Figure 5.2: Regression tree of current residence time (CRT) for samples persons over
age 18 years. The composition of the demographic subse& of-the data are
provided in Table 5.3.
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Table 5.3: Composition of demographic sub-regions for Current Resident Time (CRT)

2 Survey data had been weighted
previous footnote.)

60

Sub-region Characteristics Ave. CV

Root Subset of the U.S. Population :2475 10 115%
1 AgeS53 years and non-owner occupied 10850 3 165%

2(3) Age<45 years; owner-occupied; salary< 13K 6168 9 9170

3(2) Age<45 years; owner-occupied; salary> 13K 8325 7 1of~%

4 Age 45 – 53 years; owner-occupied 4463 13 73%
5 Age >53 years; non-owner occupied 2185 ‘9 119%
6(7) Age 53 – 60 years; owner occupied 2894 16 68%
7(6) Age 60 – 67 years; owner occupied 2673 20 67(%
8(9) Age >67 years; region (south and west) 2550 23 70%
9(8) Age >67 years; region (northeast and midwest) 2367 28 61%

The CART analysis results in Table 5.3 excludes sample persons with ages S 18 years.

The analysis was repeated with inclusion of all ages and the splits were similar to those reported

in Table 5.3 except that income was not included in the top 10 splits of the data. The split on

income <$13,000 is a very low value for annual salary for owner-occupied housing units and we

were not able to explain the reason for this split. However, the results indicate that economic

status may be an important factor for predicting CRT. If CRT is to be used as a surrogate or

proxy for exposure duration, economic status should not be ignored. Previous estimates of ED

discussed in the following section do not consider socioeconomic status or the apparent

relationship between the CRT of children/adolescents and young adults.

5.4 Statistical and Computational Methods Used to Determine Exposure Duration

Israeli and Nelson, (1992) used weighted data2 from the 1985 and 1987 AHS-N surveys

to estimate expected total residence time for the following groups: all households, renters,

owners, urban households, rural households, farms (subset of rural households), and households

in four geographic regions (northeast, midwest, south and west). They employed a semi-

analytical approach in which they derived expressions relating the fraction of households that

moved into their current residence tyears before the surveys to the fraction of households just

moving in at the time of the survey that will be found in the same residence tyears from now.

Values of the fraction of households that moved into their current residence tyears before the

surveys were calculated from AHS-N data and fit with a five-parameter survival function. The

expected total residence time is then a function of three of the parameters.

in order to estimate housing statistics for the U.S. population. (See
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Johnson and Capel (1992) used a Monte Carlo approach to develop distributions of

residential occupancy time (ROP)3 by gender and age. In their simulations, they used population

and mobility data from the U.S. Bureau of the Census and mortality data from the National

Center for Health Statistics. The data that they used represent the 1987 U.S. population.

The first step in their process was to determine the number of persons in each

demographic group of interest, e.g., the number of males or females of a given age. Next, they

developed mobility tables and mortality tables for the different demographic groups. Mobility

tables give the probability that a person in the demographic group did not move during the

previous year. Morality tables give the probability that a person in the demographic group will

die during the upcoming year. They then applied a Monte Carlo algorithm that generates current

residence time using the mobility tables and future residence time using both the mobility and

mortality tables. The ROP is one plus the sum of the current and future residence times.

Altogether ROP’S were generated for 500,000 persons.

Finley et al. ( 1994) discussed and included the work of both Israeli and Nelson (1992)

and Johnson and Capel (1992) in their review of distributions of exposure factors. In addition,

they derived a formula for and calculated the ROP for children born in the household based on

moving rates from the U.S. Bureau of the Census. Finley et al. (1994) recommend using the

estimates of Israeli and Nelson (1992) “forexposure assessments that depend on housing unit

characteristics such as geographic location, etc., and using the distributions of Johnson and Capel

(1992) for exposure assessments for individuals of specified ages.

Price et al. (1998) present a somewhat different computational approach from Israeli and

Nelson (1992) for calculating the total duration (Ill) of a behavior based on the reported duration

(RD) of and the starting age (SA) of the behavior. Their approach is based on relating the

probability of RD to the probability of TD given the value of SA. Price et al. ( 1998) applied their

method to surveys of anglers rather than to housing data. Their approach, however, is general

and could be applied to housing data. In the context of housing data, TD would be the total time

an individual lives in a residence, RD would be the reported residence time when the individual

is surveyed, and SA would be the age of the individual when he/she started living in the residence

(not the individual’s age at the time of the survey).

The Oregon Department of Environmental Quality (DEQ, 1998) recommended using a

custom distribution that samples the percentiles reported by Johnson & Capel (1992) because the

data represents the age dependant exposure duration.

3 Johnson and Capel (1992) use the term “residential occupancy period” or ROP instead of ED.
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Rather than present new distributions for exposure duration, we summarize the strengths

and limitations of currently used distributions in Section 5.5 and asses whether the considerable

effort needed to generate new distributions is warranted.

5.5 Presentation of the Exposure Duration Distributions

Israeli and Nelson (1992) calculated average total residence times4 in years for the

following groups: all households (4.55 &0.60), renters (2.35* 0.14), owners (1 1.36 & 3.87),

farms (17.3 1 * 13.81), urban households (4.19 ~ 0.53), rural households (7.80& 1.17), and

households in the northeast (7.37& 0.88), midwest (5. 11 * 0.68), south (3.96& 0.47), and west

(3.49 ~ 0.57). In addition, they provided a table of total residence time for these same groups

corresponding to selected values of the fraction of households just moving in at the time of the

survey that will be found in the same residence t years from now.

Johnson and Capel (1992) give their results in terms of the mean and selected percentiles

of the ROP for all ages for both genders, males only, and females only and also the mean and

selected percentiles of the ROP for ages 3, 6, 9, . . .. 90 for both genders, males only, and fennales

only. The estimated mean ROP for all males is 11.1 years, for all females 12.3 years, and for the

entire population (both genders, all ages), 11.7 years.

Table X in Finley et al. (1994) gives selected percentiles of residential occupancy by

residence types (all households, renters, owners, urban households, rural households, and farms).

Table XI in their report gives selected percentiles of residential occupancy period by age for

“from birth”, and ages of 3, 12,21,30, and 60 years. Table X is based on the work by Israeli and

Nelson (1992), and most of Table XI is based on the work by Johnson and Capel ( 1992). The

percentiles for “from birth” were calculated by Finley et al. (1994).

5.6 Uncertainty in the Exposure Duration Distributions

Israeli and Nelson (1992) calculated standard errors for the average total residence times

(given in the previous section) from the standard errors calculated for the five parameters

determined as part of the curve fitting process. Israeli and Nelson (1992) also give the stanclard

errors for the five parameters in the paper.

Underlying the Monte Carlo process used by Johnson and Capel ( 1992) are the

assumptions that the probabilities in the mobility and mortality tables used are independent of

both the calendar year to which they are applied and the history of moving of the person being

represented in the simulation. The mobility and mortality rates were determined from 1987 data.

4 The values of the average total residence times are given together with their standard errors derived
from the standard
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Johnson and Cape] (1992) note that the rates “are unlikely to be representatives of rates in effect

during earlier decades” and that it would be “difficult to predict the applicability of these rates to

future decades.” The authors acknowledge that any bias that results from these uncertainties

would be difficult to quantify.

Given the sample sizes available through the housing survey and the mortality/mobility

data tables, quantitative uncertainty in the estimates and distributions previously reported are

likely to be negligible. However, qualitative uncertainty arising from the use of surrogate and/or

proxy data to calculate ED, regardless of the calculation method applied, maybe extensive. There

is also uncertainty in the way that the previous studies partitioned the data. From the CART

analysis performed in this section, we a very different set of important factor influencing CRT

and the estimate of ED.

5.7 Scores for the Exposure Duration Distributions

The only indication of quantitative or method robustness is from Johnson& Capel ( 1992)

who performed five Monte Carlo simulations for 500,000 sample persons per simulation. The

results of the five simulations in terms of mean ROP and selected percentiles are nearly identical.

However, concern arises in that the different methods reported in section 5.5 produce somewhat

different predictions of ED.

Overall, the data used to construct the distributions for exposure duration are adequate

and represent the national population and demographic sub-regions within the population

although it appears that information about Native Americans living on reservation land are not

included in the housing survey. The parametric distributions presented in the previous studies do

a good job of representing the data that was used to. generate them. However, the use of a

surrogate variables to predict ED and the limited effort to identify significantly different

demographic subgroups within the population lead to a low score for data relevance. In addition,

to our knowledge, the currently used distributions have not been tested against independent

samples (independent samples of measured exposure duration do not exist at this time). Because

of the high degree of qualitative uncertainty, we recommend a robustness score of medium (M)

to low (L). This exposure factor clearly needs further consideration.

5.8 Recommended Improvements to the Exposure Duration Distributions

The references cited above provide ED distributions for the following groups.

● Johnson and Capel (1992): gender and selected ages (ages 3,6,9, . . .. 90) based on

1987 census and health statistics data.
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. Israeli mdNelson (1992): geographic regions (notiheast, midwest, south, or west);

renter or owner; urban, rural or farm based on 1985 and 1987 AHS-N data.

Neither provides ED distributions by socioeconomic status. Such distributions could be

determined by applying the analytical/statistical procedures of either Israeli & Nelson ( 1992) or

Price e~al. (1998) to the 1995 AHS-N data or the Monte Carlo procedure of Johnson & Capel

(1992). In addition, the data used to develop current distribution was split on variables that were

not found to be important in this analysis (gender, multiple age groups) and the strong

relationship between young adults and children living at home was not accounted for.

This section does not attempt to recommend a family of distributions for exposure

duration. Rather, it demonstrates and suggests that further work is warranted and that

demographically appropriate distributions should be developed for exposure duration. We

recommend a reanalysis of both the methods and the data used to estimate ED. The new

distributions should be tested and validated using the approach introduced in section 3. In

addition, effort should be directed towards developing survey questions to collect data that is not

only representative of the national population but is also relevant to the estimate of exposure

duration.
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In this section we summarize efforts for development and analysis of PDFs for exposure

frequency (EF). EF is the frequency in hours per day or days per year that an individual is in

contact with the hazard that is being assessed. In practice, information on EF shot.dd be collected

for each important exposure location and activity. However, for this study we look only at the

fraction of the day that an individual spends indoors at his/her primary residence. The method

developed here can be applied to other exposure locations/activities as needed. .

Exposure frequency is developed from an analysis or survey of personal activity patterns.

Several assessments of personal activity have been performed. Typically these assessments are

based on diary data prepared by individuals over a set time period – usually 1 to 7 days. This type

of data leads to some important questions regarding representiveness of the data used to develop

the exposure factor distributions. The over-riding assumption is that within a survey sample,

individual diary reports will converge on an unbiased representation of the population.

However, certain activities reported over short time periods are clearly not representative.

For example, a significant fraction of the population report (in 3-day diary records) time spent

indoors at home as either 100% of the day or 070 of the day. Intuitively, we know that this is not

a realistic behavior over the duration of a typical exposure event. To get a reasonable picture of

personal activity patterns and to ascertain the distribution of activity for an individual over an

extended period of time, data should be collected for several nonconsecutive days. Unfortunately,

available data is collected on consecutive days and as a result, we need to make an a-priori

decision about representativeness. It must be determined whether it is best to construct truncated

distributions that capture extreme values in the bounded data set or to treat extreme values as

outliers and remove them from the analysis. Given that the reported values for EF are likely an

artifact of the method used to collect the data, the removal of these data points cannot be

justified. Rather, we state in advance that the distributions resulting from the currently available

data (short-term diary data) should be considered to represent short-term behavior of an

individual in the population. The distribution of long-term behavior would likely converge on a

value other than O% and 100%.

6.1 Sources of Data

The data for calculating exposure frequency was taken from the National Human Activity

Patterns Survey (NHAPS) conducted between 1992-1994. NHAPS consisted of daily diary data

results including 9386 different respondents (excluding Alaska and Hawaii) over 8 seasonal

quarters. Respondents were between O-93 years and the following demographic data was

provided:
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● age in yrs (0-90 yrs) and in months (if <1 yr)

. Gender

. race (White, Black,

● Hispanic origin

. pregnancy status

● education (grade or,

Asian, Hispanic, or other race)

Years of school completed).

. employment status(full-time, part-time, unemployed, student, retired)

● weekday or weekend and season

● region

Northeast = Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, NTew

York, Pennsylvania, Rhode Island, Vermont;

Midwest = Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska,

North Dakota, Ohio, South Dakota, Wisconsin,

South = Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia,

Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South

Carolina, Tennessee, Texas, Virginia, and West Virginia; and

West = Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New

Mexico, Oregon, Utah, Washington, Wyoming), gender, urbanization (MSA, central

city, MSA, outside central city, or Non-MSA),

● and year of survey.

The data were taken from both the NHAPS A and NHAPS B questionnaires. The

questions in the NHAPS A and NHAPS B questionnaires are related to the air-exposure pathway

and water exposure pathway, respectively. Three different types of questionnaires were

administered in the survey. These include an adult survey, a child survey and a proxy survey (for

children to young to answer). The fraction of time spent indoors at home was calculated based on

the location variables defined as other, own home indoors, own home kitchen, own home living

room/family roornlden, own home dining room, own home bathroom, own home bedroom, own

home study/office, own home garage, own home basement, own home moving from room to

room, own home utility room/laundry room, and own home, other verified.
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Also included inthesurvey wasinfomation (numeric groupings, O, l-2,3 -5, etc.) on the

amount of 8 oz glasses of orange juice, Iemonade, Kool Aid, or other drinks made with tap water

(drink yesterday)? And, qualitative information on the sources of drinking water (i.e., in terms of

public water system, private well, or other, and the use of bottled water). The amount [gallons] of

water used each week was also recorded. This information is related to other exposure factors

included in this study but the qualitative nature precludes its use for either distributional analysis

or for use as cross-validation data. The NHAPS survey also includes information on the year

moved into current home. This may be useful for estimating or cross-validating estimates of

exposure duration at a later date.

As with other nationally representative surveys, the NHAPS survey includes weighting

functions for each sample person to relate the data to the 1990 US Census. Weighting is typically

necessary when estimating population characteristics when the characteristics are expected to be

different for demographic subgroups within the population (Snedecor and Cochran, 1989, pp

431-455). The weighting functions were developed for (1) over-sampling on weekends, (2)

probability of sampling adults, (3) probability of household selection, (4) disproportionate

weekday ratios, (5) unrepresentative male/female ratios, (6) disproportionate sampling on

weekends, and (7) unrepresentative ratios among ten age groups. There is also an overall

weighting variable for each individual in the survey. However, the weighting functions were not

required in this analysis because the data set was decomposed into statistically different

demographic subsets of the population prior to distribution development (Section 3.2). The

reader is referred to Blaire (1995) for additional information and details about the NHAPS-data

collection methodologies and sample questionnaires. A condensed questionnaire is also available

in the Appendix of USEPA (1996b).

6.2 Data Classification and Distribution Anaiysis

The original data set for fraction of day spent at home indoors was modified prior to

analysis. Modifications include the removal of individuals with missing values for age, sex, race

and pregnancy status. The reported quarter of survey was converted to season (spring, summer,

fall and winter). The initial CART analysis indicated that the reported time spent indoori at home

was strongly dependent on employment status, The majority of sample persons younger than 19

years of age had missing values for employment status. Therefore, all individuals with reported

age <18 years (1886 sample persons) were placed in a separate category. The final data set

included 7160 sample persons greater than 18 years of age.

The CART analysis was set up using the default options. The analysis was set for

regression tree with v-fold cross validation (n=l O) and the minimum cost tree was generated

using the least squares method. The results are illustrated Figure 6.1 below.
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CARTOutput for reportedFractionofDaySpentIndoorsat Home(Samplepersonsage> 18years)

/ Wend.(l)\ Split 1

Subset 1
CV=31% Cv . 28% CV = 360/. Cv = 30%

A/g = 0.54 Avg = 0,63 Avg = 0.62 Avg = 0.68

n = 2668 n = 502 n .2894 n = 772

Subset 7
w = 21%
Avg= 0.82

n = 863

Subset5
CV . 29% CV .24%

Avg = 0.69 Avg = 0,77

n = 537 n. 1054

L!2@d
CV = percent coefficient of variation
Avg = average
n = sample size
Variablesdefinitions
Age(continuousyearlyvalues)
Emp= employmentstatus(1=fulltime,2=parttime,3=notemployed)
Wend= dayof week(1=weekday,2=weekend)
Sex= gender(1= male,2 = female)

Lawrence Berkeley National Laboratory

Figure 6.1: Classification and regression tree showing the decomposition of the original
data set for exposure frequency into demographic sub-regions. The tree
excludes sample persons younger than 19 years of age. See text for further
explanation.

There is a clear difference in EF for individuals employed full-time, part-time and

unemployed. In addition, for employed individuals (both full- and part-time), EF is dependent on

whether or not it is a weekday or weekend. Interestingly, the reported EF depends on gender

during weekend days or when the individual is unemployed. Employed females on the weekend

are not significantly different than unemployed males but the data sets cannot be logically

recombined. Finally, individuals 68 years of age and older spend the most time indoors at home

(average = 0.82). The compositions of the terminal nodes in the regression tree are given in Table

6.1.
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Table 6.1: Composition of final EF nodes

Sub- Characteristics n Ave CV
region
Root data set for U.S. population (age>18 years) 7160 0.65 33’%
1(2) Employed full-time (weekday) 2668 0.54 31%
2(1) Employed part-time (weekday) 502 0.63 28%
3(4) Employed male (weekend) 2894 0.62 36%
4(3) Employed female (weekend) 772 0.68 30%
5(6) Unemployed male younger than 68 years of age 537 0.69 29%
6(5) Unemployed female younger than 68 years of age 1054 0.77 24%
7 Unemployed with age S 68 years of age 863 0.82 21%

The sub-regionnumberrefers to the terminalregion in the CARTtree illustratedin figure6.1. The numberin
parenthesis indicates the “sister” node. Sister nodes are generated by splitting a single nodeand as suchcan be
recombined if it is determined that the difference between the two nodes is not significant. The sub-region
number does not reflect the order of importance. For data splitting order, refer to figure 6.1.

6.3 Presentation of Distributions

The output from the CART analysis was used to construct individual data sets for each

terminal node in Table 6.1. ECDFS for each resulting demographic region of the sample are

illustrated in Figure 6.2. Figure 6.2 includes all sample persons (over the age of 18 years)

subdivided into the compositions defined in Table 6.1. Two interesting characteristics of the

distributions warrant mention prior to fitting the parametric models to the data.

First, the distribution of full-time employed individuals (weekday) clearly deviates from

the smooth form typical of most parametric distributions. This indicates that all of the factors

required to explain the variance in the population (demographic subset) were not included in the

survey. For exampIe, we were not able to determine if the employed individual was on vacation

or home sick on the day(s) of the survey. Fitting the distribution of employed individuals

(weekday) requires a mixture model (distribution constructed from two or more parametric

distributions) at least until additional information about the population can be gathered.

The second characteristic illustrated in Figure 6.2 is related to the significant number of

sample persons reporting the fraction of the day spent indoors at home as 1. This results in an

ECDF that does not seem to reach 100%. This is most apparent in Figure 6.2 for the category of

unemployed individuals with age greater than 67 years and is least apparent for weekday EF of

individuals who are employed either full- or part-time. Fitting parametric distribution to this form

of EDF requires that the parametric distribution be truncated at 1. However, rather than simply

truncate the distribution and discard the values greater than the specified upper bound (1 in the

case of EF), a procedure is used to reduce the values that exceed the upper bound (1) to a value

that equals the upper bound.
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Activity Pattern ECDFS

- employed full time, weekday

- employed part time, weekday

employed, weekend, male

u employed, weekend, female

o unemployed male

x unemployed female

O age <67

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of Day Spent Indoors at Home (unitless)

Figure 6.2: Empirical distributions of the sub-regions of EF as determined using a CART
analysis of the data collected and reported in the NHAPS survey. For
distributions that do not reach 100%, (age> 67) the remainder of the salmple
reported fraction of day spend indoors at home equal to 1. See text for further
explanation.

Results from fitting the parametric distributions to the terminal nodes in Table 6.1 are

presented in Figures 6.3 to 6.9. The figures include both the ECDF of the raw data (open

triangles) and the best parametric distribution (solid line) along with the 95% bounded residual

points (open crosses and solid lines). In all of the distributions, the logistic model performed the

best based on the least squares between the predicted and reported values for EF. The Weibull

model also performed well but the cost of adding a parameter to the model was not deemed

necessary. In Figure 6.3, a uniform distribution was used along wkh the logistic model to

produce an adequate fit of the data. The final results are presented in Table 6.2.
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Figure 6.3: Parametric distributions and ECDF for full-time employed individuals
reporting time spent indoors at home on a weekday. The logistic distribution
failed to explain the apparent uniform nature of the upper tail of the
distribution (residuals not shown). However, a mixture model using a
combination of logistic and uniform distributions provide a reasonable fit of
the data. The mixture model was optimized using least squares between the
estimated and reported EF along with the solver routine in the spreadsheet
program . The model was generated using the following form:

X = Logistic[xl,pl,ol] + (l-n)Uniform[xl, al,bl]

where pi and O1 are the mode and scale of the logistic distribution, al and bl

are the lower and upper bound of the uniform distribution and n is the mixing
variable (Burmaster and Wilson, 1999).
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Activity Pattern for Part-Time Employed (weekday)
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Figure 6.4: Parametric distributions and ECDF for part-time employed individuals
reporting time spent indoors at home on a weekday. The logistic distribution
was able to provide an adequate fit to the data.

72 Lawrence Berkeley National Laboratory



Activity Pattern for AH Employed Males (weekend)
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Figure 6.5: Parametric distributions and ECDF for employed males reporting time spent
indoors at home on a weekend. The logistic distribution was able to provide
an adequate fit to the data.
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Figure 6.6: Parametric distributions and ECDF for employed females reporting time
spent indoors at home on a weekend. The logistic distribution was able to
provide an adequate fit to the data.
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Figure 6.7: Parametric distributions and ECDF for unemployed males reporting time
spent indoors at home. The logistic distribution was able to provide an
adequate fit to the data.
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Activity Pattern for Unemployed Females
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Figure 6.8: Parametric distributions and ECDF for unemployed females reporting time
spent indoors at home. The logistic distribution was able to provide an
adequate fit to the data.
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Activity Pattern for Individuals with Age >67 yrs.
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Figure 6.9: Parametric distributions and ECDF for unemployed individuals over 67 years
of age reporting time spent indoors at home. The logistic distribution was
able to provide an adequate fit to the data.

Pecforrnance of the pseudo-truncated parametric models can be tested by generating a

distribution of random variable (sample size equal to that of the reported sample) using the

selected parametric model. This is demonstrated for terminal node 7 (unemployed individuals

over 67 years of age). The results should fall on a diagonal line between zero and one. The

performance of the model is shown in figure 6.10. The figure includes a secondary x-axis across

the top of the chart showing the approximate percentiles. The secondary axis shows that the

model performs well for values above the 5 percentile. Given that EF is used in the numerator of

the risk calculation, performance at the low end of the distribution is not considered as critical as

the upper end performance and as such, the model is deemed to be satisfactory.
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Figure 6.10: Comparison of the random numbers

0.75 1.00

generated using the pseudo-truncated
logistic distribution to reported values for time spent indoors at home. The
diagonal line indicates perfect agreement between the values. The values
across the top axis show the approximate percentiles of the data showing that
the upper 95% of the distribution performs well.
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Table 6.2: Initial selection and parameterization of distributions for EF

Description of the data sets Distribution n location scale Multiplierb
1. Employed full-time (weekday) Logistic 2668 0.53 0.057 0.82

Uniform o 1.14
2. Employed part-time (weekday) Logistic 502 0.63 0.10
3. Employed male (weekend) Logistic 2894 0.62 0.13
4. Employed female (weekend) Logistic 772 0.69 0.12
5. Unemployed male Logistic 537 0.70 0.12
6. Unemployed female Logistic 1054 0.79 0.11
7. Individuals over 67 years of age Logistic 863 0.85 0.11

Individual 18 years of age and younger Logistic 1886 0.67 0.11
(a)
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The theoretical basis for the logistic and mixture distributions used to fit the reported EF

values is unclear. Although the pseudo-truncated approach used to account for the fraction of

respondents reporting an EF of 1 seems to perform well (Figure 6.10), the theoretical basis for

the model is unclear. The visual performance of the parametric models (residuals) was very good,

however, the analytical goodness-of-fit scores (KS and AD) were not calculated for these

distributions. Finally, the ability of the recommended distribution to forecast samples from

independent but related surveys was not measured. As a result, the final scores for the EF

distributions are low (L) to medium (M) as reported in Table 6.3.

Table 6.3: Scores for Exposure Frequency distributions

Description of the data sets Robustness score
1. Employed full-time (weekday) L
2. Employed part-time (weekday) L
3. Employed (full- and part-time) male (weekend) M
4. Employed (full- and part-time) female (weekend) M
5. Unemployed male 67 years of age and younger M
6. Unemployed female 67 years of age and younger L
7. Unemployed individuals over 67 years of age M

All respondents 18 years of age and younger M

The best way to improve upon the scores for EF is to demonstrate that the self-reported

short-term diary data is both relevant and representative. In addition, a better understanding of

the theoretical basis for logistic and mixture distributions is warranted.
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7.0 Development of PDFs for Inhalation

In this section we provide a summary on the development and scoring of PDFs for

inhalation rate. Inhalation rate is dependent on activity and is often estimated from other

metabolic factors (METS) such as heart rate or caloric intake. There is a wealth of information in

the sports medicine literature about inhalation rate and its relation to physical exertion but these

studies are often targeted towards healthy individuals and as a result, provide little information

on potentially important demographic subsets of the population. In addition, the relationship

between physical activities that a person performs throughout the day and the level of exertion in

a laboratory setting using a treadmill has not been clearly established.

Adams (CARB, 1993) designed a study to test how well METS predict inhalation rate for

a small but representative sample. The study found that heart rate actually did a poor job

predicting inhalation rate. A separate study reached a similar conclusion (Mermier et al., 1993).

The reason for discrepancy between heart rate/inhalation rate correlation from laboratory

treadmill studies and from field studies may be related to the use of upper body and lower body

muscle. Upper body muscle used in field activities consumes more energy than walking which in

turn increases oxygen demand (Adams, 1993). However, given the ease of measuring heart rate

and the intuitive relationship between physical exertion and both heart rate and inhalation, METS

data may ultimately be the best available surrogate for predicting inhalation rates. However,

identifying the relationship between METS and IR is beyond the scope of this project. Rather,

this section uses actual measurements of IR at various activity levels to develop and score

representative distributions.

7.1 Sources of data

The California Air Resources Board, 1993 and the Human Performance Laboratory at

University of California, Davis, performed laboratory and field studies of individuals inhalation

rate (IR) while resting (three levels), active (two levels), and while performing common activities

such as cleaning house, mowing the yard and driving. Resting protocol involved lying down,

sitting, and standing while the active data were collected at running and walking modes on a

treadmill (w/ speed [mph] included).

Measurements taken during active and resting protocols included ventilation rate, [L/rein]

(measured at body temperature, standard pressure), heart rate [beats/rein], breathing frequency

[breaths/rein] and volume of oxygen consumption [L/rein]. Anthropometric and demographic

data (age, height in [cm], weight in [kg], and body surface area, gender and race) as well as field

data during specific activities were also included in the data set.
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Active and resting data were given for each age and a cross validation group of children

(6-12 yrs) was also included in the study. Within each age group, males and females were

included as well as members from 4 ethnic groups: Black, Hispanic, Caucasian, and Asian. Data

was collected for both active and resting experiments on 20 male and 20 female subjects (19

Males in the active >59 age category) except the young children. For the young children, data on

six male and six female subjects was collected for the active and resting protocol.

Layton (1993) presented a second study that maybe of interest for predicting the

distribution of long term average breathing rate. Three approaches were described for calculating

breathing rates primarily for the purpose of assessing the quantitative dose of airborne nuclides.

In his first approach, food-energy intake from the USDA 1977-78 Nationwide Food

Consumption Survey was used to estimate the oxygen demand (volume of oxygen consumed in

production of 1 kJ expended energy) and related to inhalation rate. The IR was adjusted for

underreporting of foods. The second approach involves calculating IR from the ratio of total

energy expenditure to basil metabolism rate (BMR), as well as ventilator equivalent, average

oxygen uptake (volume of oxygen consumed in production of 1 kJ expended). The third

approach incorporates time activity data from Sallis, et al. (1985). JR’s were calculated based on

age, gender and specific activity.

For the initial development of IR distributions, we use the CARB study (CARB, 1993)

because of its relationship to activity level and the availability of anthropometric measurements.

7.2 Definitions Associated with Inhalation Rate

●

●

●

●

●

●

Alveolar Ventilation Rate:= the absorbed dose of oxygen. Equivalent to: ‘tidal volume --

space in lungs’. Approximately 7070 of the total ventilation

Tidal Volume:= Volume of air respired per respiratory cycle/breath.

Lung Volume:= total/max volume of air that can occupy lung

Ventilator Equivalent:= Ratio of minute volume (i.e., ventilation rate) [L/rein] to oxygen

uptake [L/rein]

Basal metabolic rate:= minimum amount of energy required to support basic cellular

respiration while at rest and not digesting food.

Minute volume:= volume of air exhaled per minute
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7.3 Data Classification and Distribution Analysis

The original data was obtained from the California Air Resources Board in the form of

multiple spreadsheets – each containing information related to a specific activity or field

experiment for a group of individuals. The data were combined into a single set including all

available information for each individual in the study. For the initial classification described in

this section, only the laboratory experiments were used. Field studies can be analyzed at a later

date to determine how each field activity relates to the laboratory activity level used to construct

the distributions (as done by Beals et al., 1993). The original data set reported multiple

measurements (typically 5) at each activity level for each individual. For the factor analysis, we

look only at the average value reported for the activity but note that there was significant

variability between measurements for each individual (inter-individual variability).

Activity was categorized and included in the analysis to determine the degree to which we

could separate the activities given the variance in the data. The final data set included activity,

age, gender, race and BW although the sample size for race was much too small to make any

conclusions about differences in inhalation rate. A preliminary analysis shown in Figures 7. la

found that normalizing the intake rate to body weight significantly reduced the scatter in IR

which is in agreement with an earlier analysis of the data (Beals et al., 1996). Adams (CARB,

1993) recommended using body surface area to normalize IR but the body surface area is a

function of height and body weight. Thus, all IR data was normalized to body weight (1 kg-l min-

1, prior to analysis.

For younger children, there is a strong dependence on age as shown in figure 7. lb. This is

thought to be due to changes in metabolic rate as children grow (CARB, 1993; Beals et al.,

1996). In addition, physiological differences between males and females are expected to results

in gender specific differences in IR as (CARB, 1993) however, the sample size maybe too small

to detect these differences. The appropriate level of partitioning in the data was left to the

objective analysis in CART.

The regression tree analysis with v-fold cross validation (n= 10) and the minimum cost

tree was generated using the least squares method. The CART results support the suspected

dependence of Ill on age and activity. However, the analysis did not clearly support separation of

the three resting categories into individual levels. This is confirmed visually in Figure 7.2 and 7.3

for adults and children, respectively. Gender differences were not clearly established in this

analysis but that may be due to the small sample size. The data is separated into only 6 subsets,

shown in Table 7.1 and defined as resting, walking running for children under 12 years of age

and for persons 12 years and older.
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a. Age Dependent Inhalation Rate in Units of Data

25
1 ●

A I
● ● Q:

0 I (
0 10 20 30 40 50 60 70 80

Age of Sample Person (yrs.)

b. Age Dependent Inhalation Rate Normalized to Body Weight
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Figure 7.1: Figure a shows an age dependent plot of inhalation rate and figure b shows
the reduction of scatter in the data when the inhalation rate is normalized to
body weight. Figure b also shows the age dependence of the normalized
inhalation rate for individuals younger than 12 yrs.
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Inhalation Rate at Various Activity Levels
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Figure 7.2: Plot of the normalized inhalation rate for different activity levels for children
under 12 years of age. Note that there is little difference between the three
“resting” activities. The resting categories are combined resulting in three
activity categories for the distributional analysis.
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Inhalation Rate at Various Activity Levels
(adults and adolescents ages 12 and above)
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Figure 7.3: Plot of the normalized inhalation rate for different activity levels for
individual 12 years of age and older. Again, there is little difference between
the three “resting” activities. The resting categories are combined resulting in
three activity categories for the distributional analysis.

Table 7.1: Composition and Summary Statistics for Final Ill Data Sets

Characteristics n Ave. Cv
Children under 12 years of age resting 138 0.29 32%
Children under 12 years of age walking 46 0.56 18%
Children under 12 years of age running 33 0.98 17’%
Individuals 12 years and older resting 378 0.13 27%
Individuals 12 years and older walking 125 0.37 1570
Individuals 12 years and older running 93 0.80 21%

86 Lawrence Berkeley National Laboratory



7.4 Presentation of Distributions

The data subsets listed in Table 7.1 were analyzed and parametric distributions selected

for each group. Figures 7.4 to 7.6 illustrate the ECDFS for children under 12 years of age and

Figures 7.7 to 7.9 include all individuals 12 years and older.

The best distributions identified by the Anderson Darling goodness of fit test for the

children under 12 years of age were the Extreme Value, Triangular and Normal for resting,

walking and running, respectively. However, when one considers the uncertainty due to the small

sample size (illustrated by the 95% confidence interval about the residuals) it was not possible to

distinguish between the performance of those distributions and the performance of the

Lognormal distribution. Therefore, given its general acceptance and ease of use, the Lognormal

distribution was selected over the other parametric models for the inhalation rate of children

under 12 years of age performing the three different activities.

The best distributions identified for the individuals 12 years and older were the Extreme

Value, Weibul and Logistic for resting, walking and running, respectively. Again, for the resting

and walking data sets, the Lognormal distribution performed as well given the quantitative

uncertainty in the data. For the running data set the Logistic distribution was used. Although a

theoretical basis for this model is not apparent, the fit was clearly better than that of the other

parametric models and, as such, we could not justify using another model.
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Inhalation Rate “Resting”
(children ages 11 and under)
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Figure 7.4: Plot of the ECDF for Children under 12 years of age during the “resting”
activities along with the fitted Lognormal distribution and residuals. The
shape of the upper tails of the ECDF indicates a possible mixture model. This
may be due to the different levels of “resting” used in the study (lying, sitting
and standing) however, the affect was not great enough to warrant further
decomposition of the data set.
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Inhalation Rate “Walking”
(children ages 11 and under)
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Figure 7.5: Plot of the ECDF for Children under 12 years of age in a “walking” activity
along with the fitted Lognormal distribution and residuals.
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Inhalation Rate “Running”
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Figure 7.6: Plot of the ECDF for Children under 12 years of age in a “running” activity
along with the fitted Lognormal distribution and residuals.
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Inhalation Rate “Resting”
(adults and adolescentsages 12 and above)
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Figure 7.7: Plot of the ECDF for Individual 12 years of age and older in a “resting”
activity along with the fitted Lognormal distribution and residuals. The upper
tail has a similar shape as that of the children in a “resting” activity but again,
the small deviation from the does not warrant further decomposition of the
data.
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Inhalation Rate “Walking”
(adults and adolescentsages 12 and above)
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Figure 7.8: Plot of the ECDF for Individuals 12 years of age and older in a “walking”
activity along with the fitted Lognormal distribution and residuals.
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Inhalation Rate “Running”
(adults and adolescentsages 12 and above)
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Figure 7.9: Plot of the ECDF for Individuals 12 years of age and older in a “running”
activity along with the fitted Logistic distribution and residuals. Although a
theoretical basis for the Logistic model was not apparent, the model
performed much better than any of the other parametric models tested.

Table 7.2: Initial Selection and Parameterization of Models for IR

data description Distribution n location” scaleb
Children under 12 years of age resting Lognormal 138 0.29 0.09
Children under 12 years of age walking Lognormal 46 0.56 0.10
Children under 12 years of age running Lognorrnal 33 0.98 0.17
Individuals 12 years and older resting Lognormal 378 0.13 0.03
Individuals 12 years and older walking Lognormal 125 0.37 0.06
Individuals 12 years and older running Logistic 93 0.81 0.09

(a) the arithmeticmean for the Iognormal model and the logistic model

(b) the arithmetic standard deviation for the Iognormal and the scale parameter for the logistic model
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7.5 Uncertainty and Variability in the Inhalation Rate Exposure Factor

The greatest source of analytical uncertainty in the distributions of inhalation rate is due

to the relatively small sample sizes use to construct the distributions. The uncertainty can be

visualized by the width of the 95~o confidence interval around the residuals in Figures 7.4

through 7.9. A two dimensional analysis is likely appropriate for this exposure factor. One way to

reduce uncertainty is with a series of cross validation experiments. However, data is not readily

available for such an experiment at this time.

Qualitative uncertainty in the distribution arises from the fact that the inhalation rates are

highly dependent on activity and that the measurements used to develop the distributions are

from laboratory experiments rather than actual field studies. Another weakness is that there is a

physiological reason for women to have a different inhalation rate than men yet this was not

apparent in the small sample used to develop the distributions in this report. Although it is not

clear how well the distributions can apply to individual demographic subgroups within the

population (race, gender), the study used here was well designed and efforts were taken to

construct a sample that was representative of the population as a whole (CARB, 1993).

There is a significant amount of qualitative uncertainty associated with the distributions

for children under 12 years of age across all activity levels. Overall, these distributions do a good

job representing the combined data for all children. However, it is clear that the inhalation rate

for young children is inversely related to the age of the individual and as a result, the

distributions will likely under predict II? for the younger members of the group and over predict

Ill for the older members. A larger sample size is required to identify the whereto split the data

to best capture this age dependence (as was done for body weight).

7.5 Scores for the inhalation rate distributions

The data used to construct the distributions for nhalation rate were of high quality and

were relevant to the three basic activity levels (resting, walking and running) used in the study. A

limited amount of information is available for determining the relationship between the basic

activity levels actual activities performed throughout the day.

The experimental design produced reliable direct measmements of IR and the selected

parametric models do a good of representing the data. However, the small sample size results in a

significant amount of analytical uncertainty for some of the distributions.

The theoretical basis for using Lognormal distributions to describe inhalation rate data is

probably sound (no negative values, long upper tails). The basis for the logistic used to fit the

distribution of IR for “running” individuals 12 years of age and older is unclear. The visual

performance of the parametric models was good. Analytical goodness-of-fit scores and the ability
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of the recommended distribution to forecast samples in cross validation experiments was not

measured. As a result, the final robustness scores for the EF distributions are low (L) to medium

(M) as reported in Table 7.3.

Table 7.3: Robustness scores for Inhalation Rate distributions

data description Robustness score
Children under 12 years of age resting L
Children under 12 years of age walking L
Children under 12 years of age running L
Individuals 12 years and older resting M’
Individuals 12 years and older walking M
Individuals 12 years and older running M

a. the model for individuals 12 years and older “resting”was on the high end of
the medium score. The possibility of a mixture model in the upper tail
precluded the highly applicable score.

As with most of the exposure factors considered in this report, the best way to improve

upon the robustness scores is to demonstrate that the parametric models perform well with

independent data.
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8.0 Development of PDFs for Water Consumption Rates

In this section we report on the development of PDFs for water intake. Estimating

exposure to hazards in drinking water requires knowledge about the amount and the source of

water that the exposed individual consumes. Water is either consumed directly as drinking water

or indirectly through ingestion of food and beverages that have been prepared with drinking

water. Several well-designed surveys have been completed and extensive data are available with

information about the intake of water. However, the questions included in the national surveys do

not specifically address the consumption of tap water in all forms (direct from tap and indirect

through food or beverage). Rather, these surveys include information about the amount of tap

water consumed as drinking water and the type and amount of food/beverages ingested. Another

limitation of available data is that information pertaining to the source of drinking water (tap,

bottled, at or away from home) is qualitative.

To estimate drinking water consumption, previous authors have created and used

databases for estimating the amount of tap water used in the preparation of each food/beverage

based on standard recipes or on directions provided with packaged or canned foods (Ershow and

Cantor, 1989; Levallois et al., 1998). Using these databases in combination with the reported

values for food ingestion, the authors of both studies estimated the amount of drinking water

consumed directly or through the ingestion of food and beverage.

Food coding databases and recipe databases are available from the US Department of

Agriculture along with results from the national surveys. However, a critical analysis of all food

intake data is beyond the scope of this report. To demonstrate the method described in this report,

we consider only the “total water” intake from all sources including tap water, extrinsic water

(added to foodheverage) and intrinsic moisture in food and beverage.

8.1 Sources of data

The Continuing Survey of Food Intake by Individuals 1994-96 (CSFII 1994-96) was used

to develop distributions for total water intake levels. The total water intake includes drinking

water consumed directly, drinking water added to food and intrinsic moisture in food products

(i.e., moisture in fresh fruit). The CSFII was the 10th national food consumption survey

conducted by the USDA. It contains information on the sources of water used for cooking

purposes, in preparing beverages and as plain drinking water. The survey participants were asked

at an interview how much plain drinking water they drank in the previous 24-hour period. The

amount of water included in foods and beverages as well as the amount of plain water drunk

yesterday was used to estimate the total water consumed in a 24-hr period. In record time 40

(“daily intakes: nutrients, fatty acids”) the water intake [g] (“water” variable) was obtained,
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which includes any water in food and beverages [g]; excluding plain drinking water. Added to

the “water” variable on either day 1 or 2 was the corresponding amount of water (drunk

yesterday, i.e., on day 1 and/or 2). Record type 25 also included qualitative information on the

fraction of water that was drunk at home (all, most, some, none, or don’t know), the day of intake

(day of week) and month of intake and the type of “water from home” as either, tap

waterldrinking fountain, bottled water, other, or don’t know, or not ascertained.

Each year of the CSFII 1994-96, a nationally represented sample (over-sampling of low

income individuals) was selected and asked to recall their food intake over the past 24 hour

period via interview. Two nonconsecutive days of food and nutrient intake data were collected

for 16,108 individuals and the day 1 response rate was 80% in all 3 years of the survey. Other

data collected, includes health related variables such as self assessed body weight (Section 4. 1)

and body mass index as well as the activity level of the survey participant during the time of

recall (i.e., frequency of vigorous exercise and number of hours of television or videotapes

watched yesterday).

Individual sample person variables included: age from O to 90 yrs where ages over 90

years was reported as 90, gender, race (white, black, Asian/Pacific, Native American, or Other),

ethnic origin (i.e., Hispanic, including Mexican, Peurto Rican, Cuban, or Other Hispanic). The

work status for all household members (>=15 yrs), and pregnancy or lactation status and

breastfeeding status of children 3 years old or less. The region of US (Northeast, Midwest, South,

and West) and whether urbanhural area (Metropolitan Statistical Area (MSA) (**)- central city,

MSA-outside central city, or non MSA), and household income from previous year before taxes

and income as a percentage of the poverty threshold are also given as well as data on the income

from the previous month by source.

Another source of data is the NHANES III survey. For the NHANES III, the total water

intake in previous 24 hour period was defined by summing the DRPQ2A and DRPNWATE

variables for each sample person in NHANES III. DRPQ2A is defined as the “quantity of plain

drinking water reported either in total fluid ounces per day or by specifying the number of glasses

of water and the volume per glass using standardized measurement aids”. All responses for

DRPQ2A were converted to fluid ounces. If the respondent answered “None,” meaning that no

plain drinking water is usually consumed, the amount of water was reported to be 000 fluid

ounces; other quantities of plain drinking water were recorded as xxx fluid ounces. The volume

of plain drinking water is in addition to water found in foods and beverages. Water from foods

and beverages is included in the variable DRPNWATE [g]. Plain drinking water and spring water

usually were excluded from the dietary recall unless beverages were diluted with plain water or

water was a component of a combination food that was reported by components such as a

homemade fruit and water drink.

June 1999 97



During the dietary interview, information collected from the 24 hour recall for all sample

penons and the food frequency for ages 12-16, was automatically recorded by an automated

computer system (NCC, 1992). If the SP was less than 12 years old, a proxy interview was

conducted with a parent or guardian. The Nutrition Coordinating Center (NCC) at the University

of Minnesota is responsible for the design of the automated Dietary Data Collection (DDC)

system and construction of the foods databases. The development of the DDC was supported by

the National Cancer Institute (NCI), the National Heart, Lung, and Blood Institute (NHLBI) the

National Center for Health Statistics (NCHS), and the Food and Drug Administration. Sample

questions pertaining to water intake include: “How much plain water do you usually drink in a 24

hour period? (include only tap water and spring water)?”.

8.2 Data Classification and Distribution Analysis

Prior to analyzing the water consumption data, the two-day average values for plain

drinking water intake and the two day average values for total moisture intake (intrinsic and

extrinsic) from food and beverage excluding plain drinking water were combined. Sample

persons with missing values were removed from the analysis. These include missing values for

“day two” consumption, zero values for intrinsic moisture intakes on day two, zero values for

water intake and missing body weight values. The CART analysis was set for regression tree

with v-fold cross validation (n=lO) and the minimum cost tree was generated using the least

squares method.

Initial analysis indicated that body weight contributed significantly to variability in the

population. Therefore, prior to the CART analysis, the water intake was normalized to body

weight (1kg-l day-l). The affect of normalizing the data to body weight is illustrated in Figure

8.1. As with the inhalation rate data, the water intake is inversely related to age for children under

12. Do to this strong dependence of intake on age for children, individuals less than 11 years of

age were excluded from the CART analysis. For the younger ages, the data can be split into

appropriate subgroups. These splits can either be selected to match the BW subgroups or taken

from a CART analysis of the data for children. Our preliminary results (not shown) indicate

optimal splits for children under 12 years of age at 8 months, 18 months, 3.5 years, 6.5 years and

12 years. It must be noted however, that these subgroups would necessary be averaged over

whatever age categories are used.
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Figure 8.1: Plot (a) illustrates the age dependence for water intake plotted in the units of
the data. Intake increases until about 20 years of age, remains relatively
constant to 70 years then decreases with age. When the data is normalized to
body weight as shown in plot (b), consumption is relatively constant above
12 years of age. Only decade values are shown for sample persons older than
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Results from the CART analysis for individuals older than 11 years of age are shown in

the tree diagram in Figure 8.2. Interestingly, the main split in the data was on “Region”. The data

indicate that individuals in the Northeast and the South consume less water than those living in

the Midwest and West. This split may be due to factors not included in the analysis (i.e.,

environmental factors such as temperature) but this could not be confirmed. The data also

indicate a dependence on race where Black and Native American (in the Northeast and South)

ingest less water on a body weight basis than the remainder of the population.

The split on pregnant and lactating status (split 3) separates all “non-pregnant” women

from males, indicating females under 41 years of age consume less water than males in the same

region. This also implies that pregnant women consume more water than non-pregnant women

do (Ershow et al., 1991) although the CART analysis cannot distinguished tklem from males in

the same region and age group. Depending on the analysis objective, one would probably want to

develop a separate distribution for pregnant and lactating women (Burmaster, 1998).

Each of the data sets from the CART analysis are plotted as empirical distributions in

Figure 8.3. The results indicate that three of the distributions can be recombined without

significant loss of information. One could combine distribution (2) “White, Asian/Pacific

Islander, Other living in the Northeast and South” with “Non-pregnant women living in the West

and Midwest” and “Individuals 241 years of age in the West and Midwest”.

Table 8.1: Composition and Summary Statistics for Final Water Intake Data Sets

Characteristics of the Subgroups n Ave. CV
All data 10447 35.5 4570

1. Black and Native American in Northeast and South 920 29.1 46’70
2. White, Asian/Pacific and Other in Northeast and South (age<48 2458 35.5 41%

Y)
3. White, Asian/Pacific and Other in Northeast and South (age248 2302 32.6 39%

Y)
4. Non-pregnant women in West and Midwest (agec41 y) 983 37.3 46%
5. Men and pregnant women in West and Midwest (age<41y) 1138 43.0 50%
6. Individuals in West and Midwest (age241 y) 2646 36.3 42%
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CART Output for Water Intake Normalized to Body Weight (g kg-l dl)
(all sample persons 12 yrs. and older)

4

Subset 1 Subset 6
CV = 46% CV =42%
Avg = 29.1 Avg =36.3

n = 920 n =2646

v
Sptit5 v

Subset 2 Subset 3 Subset 4 Subset 5
Cv =42% Cv =39% CV =46% Cv =50%
A~g =35.5 Avg =1.63E-2 Avgb =37.3 Avg =43.0

n =2458 n =2302 n =983 n=l138
\

L!222!d
CV = percent coefficient of variation
Avg = average
n = sample size
Variables definitions
Region (l=northeast, 2=midwest, 3=south, 4= west)
Age (continuous yearly values greater than 11)
Race (I=white, 2=black, 3=asian/pacific islander, 4=native american and 5=other
Preg (I=pregnant, 2=lactating, 3 =pregnant and lactating 4 = not pregnant or lactating, 5=not female)

Figure 8.2: Classification and regression tree showing the decomposition of the original
data set for water intake rate normalized to body weight. Sample persons
younger than 12 years of age are excluded from the analysis (see text for
explanation). The next data split would occur on Subset 6 splitting
individuals living in urban from those living in rural areas.

8.3 Presentation of distributions

The output from the CART analysis was used to construct individual data sets for each

demographic group described in Table 8.1. ECDFS for each resulting demographic region of the

sample are illustrated in Figure 8.3. Figure 8.3 includes all sample persons (over the age of 11

years) subdivided into the compositions defined in Table 8.1. Figure 8.3 indicates that three of

June 1999 101



the datasets can be recombined without significant loss of information. These include

“Individuals who are not Black or Native American living in the Northeast and South”, “Non-

pregnant women living in the West and Midwest” and “Individuals241 years of age in the West

and Midwest”. However, The systematic determination of which distributions can be recombined

is the subject for future work (See section 4.5). Parametric distributions where assigned to each

of the data sets listed in Table 8.1.

Total Water Intake (L kg-l d-l)
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r
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— White, Asian/Pacific, Other in Region 1,3 (agec48)
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— Non-pregnant women region 2,4 (age<41 )

x Men in Region 2,4 (agee41 )
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Total Water Intake Rate (L kg-’ d-’)

Figure 8.3: Plot of all empirical distributions resulting from the datasets identified in the
CART analysis. The three distributions that are plotted as lines can like”ly be
recombined without loss of information.

Distributions for each demographically independent data set in Table 8.1 are presented in

Figures 8.4 through 8.9. Distributions for children less than 12 years of age are not included.

Although the Extreme Value and the Lognormal distributions performed equally well in most

cases, the Lognormal was selected because of its theoretical basis (values for water intake must
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be greater than zero) and because of its ease of use. Each of the distributions are summarized in

Table 8.2.

Total Water Intake (/ kg-l d-l)
Black and Native American in Northeast and South

o%

x

o Raw Data
— Lognormal

x residuals (Iognormal)
—

o 20 40 60 80 100 120

Total Water Intake Rate (L kg-’ d-’)

Figure 8.4: Distribution for total water intake for Black and Native American individuals
living in the Northeast and South plotted along with the fitted Lognormal, the
residuals between the parametric model and the data, and the 95% confidence
interval for the residuals. The parametric model slightly over predicts water
intake in the upper tail but the results are still within the expected range of
precision (confidence interval around residuals).
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Figure 8.5: Distribution for total water intake for individuals who are not Black or
Native American living in the Northeast and South and are less than 48 years
of age. The empirical cumulative distribution is plotted along with the fitted
Lognormal, the residuals between the parametric model and the data, arid the
95% confidence interval for the residuals.
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Figure 8.6: Distribution for total water intake for individuals who are not Black or
Native American living in the Northeast and South who are greater than or
equal to 48 years of age. The empirical cumulative distribution is plotted
along with the fitted Lognormal, the residuals between the parametric model
and the data, and the 95% confidence interval for the residuals. The slight
lack of a smooth transition in the ECDF between the 25th percentile and the
90th percentile indicate a possible mixture model but the confidence interval
of the residuals does not warrant increasing the complexity of the parametric
model.
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Figure 8.7: Distribution for total water intake for non-pregnant women in the West and
Midwest who are less than 41 years of age. The empirical cumulative
distribution is plotted along with the fitted Lognormal, the residuals between
the parametric model and the data, and the 95% confidence interval for the
residuals.
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Figure 8.8: Distribution for total water intake for men living in the West and Midwest
who are less than 41 years of age. The empirical cumulative distribution is
plotted along with the fitted Lognormal, the residuals between the parametric
model and the data, and the 95% confidence interval for the residuals. The
parametric model slightly over predicts water intake in the upper tail but the
results are still within the expected range of precision (confidence interval
around residuals).
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Figure 8.9: Distribution for total water intake for individuals living in the West and
Midwest who are 41 years of age and older. The’ empirical cumulative
distribution is plotted along with the fitted Lognormal, the residuals between
the parametric model and the data, and the 95% confidence interval for the
residuals.
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Table 8.2: Parametrization of Models Selected for Total Water Intake

data description Distribution n Iocationa scale~
1. Black and Native American in Northeast and Lognormal 920 29.11 13.08

South
2. White, Asian/Pacific and Other in Northeast Lognormal 2458 35.55 15.46

and South (age<48 y)
3. White, Asian/Pacific and Other in Northeast Lognormal 2302 32.57 12.80

and South (age248 y)
4. Non-pregnant women in West and Midwest Lognormal 983 37.23 16.48

(age<41y)
5. Men in West and Midwest (age<41y)’ Lognormal 1138 42.93 20.33

6. Individuals in West and Midwest (age241 y) Lognormal 2646 36.32 15.09

a.

b.

c.

The arithmetic mean for the Iognormal model

The arithmetic standard deviation for the Iognormal

Pregnant women are included in the distribution for men (age c 41 years) in west and midwest. Inclusion or

exclusion of pregnant women from this set does not change the distribution.

8.4 Uncertainty and variability in the ingestion-rate distributions

Because of the large sample sizes for each data set, analytical uncertainty in the

distributions of water intake is not expected to contribute significantly to variance in this

exposure factor. The small analytical uncertainty is indicated by the narrow 95% confidence

interval around the plot of residuals. A two dimensional analysis of uncertainty is not necessary

on the basis of analytical uncertainty alone.

However, qualitative uncertainty in the data used to develop these distributions maybe

significant. The data used to develop the distributions in this section are based on 24-hour recall

data. Although the approach was validated in previous studies (Ershow and Cantor, 1989), a

recent study found a possible bias in recall data. More water was reported as consumed over a

24-hour period on recall than from diary data (Levallois et al., 1998). However, the sample size

used in this study was relatively small (n=l 25). To our knowledge, the inconsistency between 24-

hour recall data and diary data has not yet been resolved.

There is also a significant amount of qualitative uncertainty about the reliability and

relevance of food intake data converted to drinking water intake. Critical evaluation of the data

bases used to estimate the amount of drinking water used in the preparation of food and beverage

products was beyond the scope of this study. In addition, the qualitative nature of questions used

in the survey lead to uncertainty about the source of drinking water (tap or bottled).

All of the distributions presented in Figures 8.4 through 8.9 had strong outliers in the

upper tails of the data with Z-scores greater than 6 and occasionally greater than 8. It is often
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recommended that Lognormal distributions of drinking water intake be truncated to prevent such

outliers. However, the data presented in this section does not support truncating the data.

Rather, it demonstrates that uncharacteristically large values are indeed possible and should be

included in the analysis unless additional information is available that can show that these

excessively large values are not real.

8.5 Scores for the ingestion-rate distributions

The data used to construct the distributions for water intake were of high quality. The

Continuing Survey of Food Intake by Individuals has been adapted and improved over several

decades. As a result, the data collected in the survey is highly representative of the population

and the sample size is more than adequate even when separated in to demographic subset.

However, the relevance of the data is somewhat questionable. There is limited evidence that

recall data may overestimate the amount of water ingested and there is uncertainty in the authors

mind about the approach and assumptions used to estimate indirect drinking water consumption

from self reported food intake data. Thus, the values used to estimate water intake must be

considered both self-reported and surrogate.

The theoretical basis of the Lognormal distribution is acceptable and both the goodness of

fit and visual performance across the range of data for all distributions was excellent. However,

there is still a question as to whether or not the distributions should be truncated. Removal of the

outliers (values greater than 6 standard deviations from the mean) did not change the parametric

distribution. However, the question is not whether the outliers will change the distribution.

Rather, the question is whether one should use the occasional extreme value generated by the

Lognormal distribution when performing a probabilistic risk assessment. Extreme values occur

regularly in the samples of water intake and efforts to determine if these outliers could be

removed from the data set were inconclusive.

Although the quality and quantity of data are extremely high and the parametric models

do an excellent job fitting the data, concern about the relevance of the food intake data to water

consumption and lack of information about the source of drinking water result in a score of

medium (M). These are summarized below in Table 8.3.
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Table 8.3: Robustness scores for Total Water Intake distributions

data description Robustness score
Black and Native American in Northeast and South M
White, Asian/Pacific and Other in Northeast and South (agee48 y) M
White, Asian/Pacific and Other in Northeast and South (age248 y) M
Non-pregnant women in West and Midwest (age<41y) M
Men in West and Midwest (agec41 y) M
Individuals in West and Midwest (age241 y) M

The robustness scores that are reported in Table 8.3 are specific to Total Water Intake.

Total water includes plain drinking water, drinking water in food and beverage and intrinsic

water in food/beverages. If we were to apply these distributions to drinking water they would

clearly need to be modified. Drinking water accounts for approximately 50% to 60% of total

water (Ershow and Cantor, 1989). Attempts to modify the distributions to represent only drinking

water would likely lead to a significant penalty in the score of robustness reducing most of the

distributions from medium (M) to low (L).
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9.0 Conclusions, Findings and Recommendations

Exposure assessments use a number of factors that are both variable and uncertain. As a

result, the magnitude of these factors can not accurately be represented by a single value in a risk

assessment. A range of values reflecting both the population variability and the uncertainty that

results from limited and imprecise data must be used to characterize these exposure factors.

Methods are readily available for developing distributions for exposure factors when relevant

data exists. Although standard goodness of fit techniques can be used to test the performance of a

distribution in mapping or fitting existing data sets, little effort has gone into developing a

method for scoring the expected performance of these models in new applications.

In an effort to develop a practical and reliable method for evaluating the performance and

robustness of PDFs, LBNL has collected and critically evaluated data for the following exposure

factors:

. body weight

. exposure duration (amount of time living at a residence)

. exposure frequency (fraction of the day spent at the exposure location)

. inhalation rates and

. total water intake

For each of these exposure factors available data was critically reviewed and analyzed to

identify important demographic regions of the population. The original data sets were

decomposed into these regions and PDFs were constructed for each demographic subset of the

population. The most appropriate distribution for each subset was selected based on a

combination of standard procedures and on a simple graphical method. Lessons learned during

the data collection, evaluation and distribution development process were used to design a

scoring system based on the quantity, quality and relevance of the data and on our ability to

identify a parametric model (or other distributional form where appropriate) that adequately

describes the data.

9.1 Findings

The validity or quality of the PDFs that are used in a probabilistic exposure analysis

directly influence the reliability of the decisions that are based on the outcome of the analysis.

Many times default distributions are prescribed by regulatory agencies, consulting organizations

or in the peer review literature. In such situations, there is a risk that policy guidelines can be

looked on as fact. Default values need to be clearly represented as to their quality or

appropriateness for various exposure scenarios.
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PDFs are developed from data sets and there area number of methods for making the best

fit of a distribution to the data. When these methods are applied, one obtains a distribution that

provides an optimum fit to the data used in the analysis. However, once this process is

completed, the resulting distribution does not provide the user of that distribution with a

quantitative measure of how welI the distribution replicates either the underlying data or the true

variability of the exposure factor being represented. What is needed to address these issues is

some measure of the quality, reliability and relevance of the distribution as it relates to the

current application.

The scoring procedure introduced in this report is a questionnaire designed to combine

quantitative and qualitative information about the data and distribution into a single scenario-

specific measure for the quality of a given parametric model (or other form of distribution).

Although the final scores fall on a continuum from not applicable to highly recommended, the

continuum is partitioned into four basic regions defined as Highly recommended for use (H),

Medium (M), Low (L) and Not Applicable for use (NA). The questions are designed to elicit

information about:

●

●

●

●

●

●

●

The quantity of data used to construct distributions,

Relevance of the data (actual measurement, self-reported or surrogate value),

Analytical goodness of fit for standard distributions,

Theoretical basis for standard distributions,

Visual performance of the model across the range of data including the percentiles of greatest

interest to the particular analysis objective,

Extent to which variability and uncertainty can be represented, is the amount of measurement

or reporting error known, and

Ability of the recommended distribution to forecast samples from independent but related

surveys and/or data sets.

Although the final form of the questionnaire and scoring system should come from

extensive open debate among experts from a wide range of disciplines, an initial format has been

developed from the above list of criteria and demonstrated in this report.

Some of the criteria in the questionnaire are quantitative where the value given is

dependent on an actual measurement of sample size or fit. For other criteria such as data quality

the score falls on a continuum from very poor to very good. To assign a score to these criteria, it

is essential that the user become familiar with all facets of the data. The more intimate a person is

with a given data set, the more qualified that person is for judging the quality of the data for a

given task.
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9.1.1 Score for Body Weight

The body-weight distributions score mostly high as a result of an abundance of

representative and directly relevant data that is well described by standard distributions. Some

subsets of the body-weight data sets—age, gender, etc. groupings—score medium on the

robustness scale because the sample sizes are small among certain demographic regions of the

population. In addition, no cross-validation experiments have yet been run with the distributions.

No effort was made to reduce the number of demographic regions or subgroups of body weight.

These distributions are expected to apply equally well across the population for any well-defined

exposure scenario and probabilistic risk assessment.

9.1.2 Score for Exposure Duration

Exposure duration can be defined in a number of ways. For this report, we assume that

the hazard originates at or near the home and ED is defined as the length of time that and

individual is expected to remain in their current residence. Exposure duration is estimated from

reported values for “current residence time” or the amount of time that an individual has

occupied his/her current home. Data used to construct the distributions for exposure duration

were representative of the national population and subgroups within the population although it

was no clear whether Native Americans living on tribal land were included in the analysis.

The parametric distributions presented in the previous studies do an excellent job of

representing the data that was used to generate them. However, the use of a surrogate values to

predict ED and the limited effort to identify significantly different subgroups within the

population lead to a recommended robustness score of low to medium (L-M). This distribution

clearly needs further consideration.

9.1.3 Score for Exposure Frequency

The definition of Exposure Frequency is also scenario specific. Knowing the fraction of

the day that an individual spends performing an activity at a given location is critical when

assessing exposure through multiple pathways. For this report, EF is generally defined as the

fraction of the day spent indoors at home. The data used to construct the distributions for

exposure frequency were highly representative of the population and the parametric distributions

developed for EF do a good job representing the data. However, the relevance of information

from short-term diary data is of concern. As a result, the distributions of EF receive a score of

low to medium (L-M).

9.1.4 Score for Inhalation Rate

Inhalation rate is strongly dependent on activity and as a result, a single estimate of

inhalation rate is not feasible. The data selected for use in this report were from a small but

114 Lawrence Berkeley National Laboratory



representative study that included measurements collected during field activities and during

controlled laboratory activities. Only results from the laboratory portion of the study were used

here. The parametric distributions selected for use do a good job of representing the data.

However, the sample sizes for directly measured inhalation rates is too small to allow analysis of

demographic/physiological difference in inhalation rate and time constraints precluded a critical

analysis of the relationship between inhalation rate and activity. As a result, we assign the

distributions of inhalation rate a score of medium (M) with the caveat that they are only

appropriate for the three standard activity levels performed in the controlled laboratory study.

The applicability of these distributions to an actual analysis would likely result in a moderate to

heavy penalty against the score.

9.1.5 Score for Water Intake

Exposure to water borne contaminants is dependent on both the amount and the source of

water consumed by the exposed individual. A large amount of quality data is available for

constructing distributions for water intake. Although the data is highly representative of the

population it is not clear how relevant the data is for estimating water consumed from a particular

source (home drinking water). For this report, water intake was defined as “total water”, which

includes direct tap water, indirect tap water and intrinsic water ingested with food and beverage.

Although the quality and quantity of data are extremely high and the parametric models do an

excellent job fitting the data, concern about the relevance of the food intake data to water

consumption and lack of information about the source of drinking water result in a score of

medium (M) for water intake.

9.2 Recommendations

(i) To score the exposure factor distributions, it is critically important that the user have a

clear and complete understanding of(1) the data used to develop the distribution in

question, (2) the procedure used to construct the distribution and (3) the population that

the distribution will be used to represent. Whether this understanding comes from

developers of the distributions, the user of the distributions or a combination of the two is

not readily apparent but clear documentation of all phases of the process are critical.

(ii) When a large amount of data is available, CART is an efficient and effective tool for

identifying the optimum way to split complex data along demographic lines. Further

splits in the data maybe necessary for political or policy reasons but that is beyond the

scope of this report.

(iii) Systematic methods for incorporating sensitivity/uncertainty analysis should be

developed and use to determine when and to what degree the demographic subsets of data
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(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(x)

identified by CART can be recombined into the minimum number of subsets in the

family of distributions for each exposure factor.

Future work should be directed towards better understanding how to fit truncated

distributions and how truncated distribution influences the calculation of dose/risk.

Although not included in the body of this report, we found that model-free methods show

promise as a tool for learning more about the underlying shape of distributions but more

work is needed to determine just how useful they might be.

Neither set of currently available exposure duration (ED) distributions include

information on ethnicity or socio-economic status. Such distributions could be

determined by applying the analytical/statistical procedures of either Israeli and Nelson

(1992) or Price et aL (1998) to the 1995 AHS-N data or the Monte Carlo procedure of

Johnson and Capel (1992). In addition, the information was split on variables that were

not found to be important in this analysis (gender, multiple age groups) and the strong

relationship between young adults and children living at home was not accounted for. A

reanalysis of the methods and data used to estimate ED and the construction of new

distributions that can be tested using the methods introduced in section 3 is warranted.

All of the exposure factors included in this report can benefit from cross-validation

experiments designed to test the performance of the parametric models (or other

distributional forms) against independent data sets.

A better understanding of the relevance of short-term diary data for estimation of activity

patterns and exposure frequency is warranted.

Direct measurements for inhalation rates are limited. Resources should be directed

towards collection of quality data that can provide abetter understanding of the

physiological differences and inter-individual variability.

The relevance and reliability of nutrition studies for estimating water intake should be

verified using a series of small scale studies designed specifically for the estimate of

source and amount of water consumed by various demographic subsets of the population.
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Appendix 1: Data sources for use in development of PDFs

An extensive literature review was performed to identify sources of raw data that would

be appropriate for constructing distributions for each exposure factor. The attached tables include

all sources located during this search along with a brief description of each data set and contact

person when available. The data is also labeled as to importance or usefulness for this report. The

attributes of the data are coded in the last column of each table and the attributes are provided

below.

Table A: Description of data attributes used to code data in following tables table

Label Data attribute

1 primary raw data sources used to generate distributions in this report.

2 secondary raw data sources, available but not used to generate distributions in this
report.

3 auxiliary data sources and referenced scientific reports or papers used for supporting
and cross validation purposes.

4 attempts made to locate and obtain, but not available.

5 not obtained sources, i.e., raw data not presently available to be analyzed.
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Table A. 1. Original Data Sources for Body Weight

Original Source Data Description Referenced in Contact Attribute (*)
NHANES III (US DHHS, 1996). CD-ROM available from (1)
CD-ROM NTIS.

USDAS Continuing Survey of Food
Intakes by Individuals and Diet and
Health Knowledge Survey
(CSFIUDHKS) 1994-96

Wiley JA et al (1991b) Study of
Childrens Activity Patterns,.

NIST (National Institute of
Standards and Technology),
Anthrometric Data of Children
(1977).

US Veterans Administration’s
“Normative Aging Study” in
Boston, MA

plain drinking water as
well as total water in
foods reported for
-33,994 persons
(-31 ,310 used) total tap
water not included

10’hnational food
consumption survey.
Representative samples
from 48 contiguous US
states. Same variable as
NHANES III.

body weight data given
for 1200 children (O-11
yrs).

n=3,899 subjects aged 2-
20 yrs with body weight
data.

long term longitudinal
cohort body weight data
for men between ages 50-
80 yrs as reported by
medical staff of the US
Veterans

CD-ROM available from (1)
NTIS

available from CARB (2)

data accessible via web at (2)

http: //ovrt.nist.Eov/pr

oiects/anthrokids/ori

g77/individuals. csv

Burmaster and Murray Corresponding author,
(1998). David. E Burmaster:

deb@?Alceon.com

(5)

(’)
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Table A. 1. Original Data Sources for Body Weight (continued)

Ori inal Source Datallescri tion~ Contact Attribute (*)
Burmaster, DE ( 1998). Lognormal
Distributions for Skin Area as a
Function of Body Weight.

Najjar, M.F. And Rowland, M.
Anthropometric reference data and
prevalence of overweight: US 1976-
1980 (1987).

Fels Research Institute, Yellow
Springs, OH

Recreated database relied
upon by USEPA EFH
(1990, 1995, 1996).
Measurements for 401
individuals (161 males,
140 females, 100 not
identified by gender)
aged >1 month to 66 yrs
and 2 months.

body weight; 18000
subjects (6months-74 yrs)

children O-36 mnths.

1. Layton, 1993
2. Burmaster and Crouch
(1994)
3. USEPA EF (1996)
4. Brainard and Burmaster

(1992) [Note: AIHC
(1994) used their
distributions and, Finley
et al (1994) summarized
their distributions too]

5. CalEPA, ATI-ISP (1996)
6. Burmaster and Couch

(1997)
8. ODEQ (1998)

1. Hamill et al (1979)
2. USEPA EFH (1996)

Corresponding author, (5)
David. E Burmaster:
deb@Alceon.com

DHHS/CDC/NCHS/OVH (3)
, MD Najjar
Health Statistician
(301)436-7072,
FAX (301) 436-3431
mfnl @CDC.GOV

Mike Rowland HRSA,
DHHWHRSWBPHG,
MD (301) 594-4243,
Mrowland@HRSA.DHEl
S.GOV

(3)

(*) see footnote under Table 5 for explanation of attributes of the data source and their relevance to this study.
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Table A.2. Original Data Sources for Exposure Duration

Original Source Data Description Referenced in Contact Attribute (*)

BoC ( 1995) American Housing 55,000 sample 1. Previous years AHS used

Survey for 1995.

(1)
interviews. National in by Israeli and Nelson
scope. Number of years (1992) then Finley et al
rented or owned- current (1994) fit more
residence time percentiles

2. USEPA EFH (1996)

National Association of Realtors questionnaires to 15,000 USEPA EFH (1996) relevant
(1993), The Homebuying and homes (12% response study
Selling Process rate)

(4)

Transfer of property title- sample of
tax records (e.g.: Multnomah
County, Oregon)

Sedman et al (1998)

Price, PS et al (1998). An Empirical empirical approach to
Approach for Deriving Information “determining distribution
on Total Duration of Exposure from of total duration from
Information on Historical Exposure past durations

Richard Sedman, PhD,
3158 Fairmount,
Portland, OR 97201.
Tel: (503)-229-6773,
Fax: (503)-229-6945

(3)

(3)

(*) see footnote under Table 5 for explanation of attributes of the data source and their relevance to this study.
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Table A.3. Original Data Sources for Exposure Frequency

Original Source Data Description Referenced in Contact Attribute (*)

National Human Activity Patterns “largest and most current 1. USEPA EFH (1996) available on CD-ROM (1)

Survey (NHAPS) CD-ROM, human activity pattern
study available”; 82
possible locations, 91
different activities..
Self reported diary data

2, Tsang and Klepeis (1996).
3. Klepeis, NE, AM Tsang,
and JV Behar (1996).
4. CHAD v1.O (1997)

from NTIS. Data used
for this report obtained
from Neil Klepeis:
klepeis @uclink4.berkele
y.edu or by tel: (510)
848-5827)

Wiley JA et al. (199 la) Activity 1762 CA residents, aged
Patterns of CA Residents. 12 and over. Telephone

interviews based on
previous 24 hour activities

Wiley JA et al (199 lb) Study of 1200 CA children, O-11
Children’s Activity Patterns yrs. Previous 24 hours

activities recorded by
telephone interview

Data from Denver, Washington, All studies from self-

DC, Cincinnati, and Valdez reported diary data.

Activity Patterns Studies

1. CalEPA, ATHSP (PDR
1996)
2. Funk, et al (1998)
3. Silvers, et al (1994)
4. CHAD v1.O (1997)

1. CalEPA, ATHSP (PDR
1996)
2. Funk, et al (1998)
3. CHAD v1.() (1997)

Included in CHAD V1.0
(1997) (Denver) and/or
slated to be included in next
CHAD version (Washington,
DC, Cincinnati, and Valdez)

Dr. Wiley, Asst Dir
SRS, (510)642-3086,
email:
jwiley@uc1ink3 .berkeley
.edu

see Wiley JA et al.
(1991a)

(2)

(2)

(2)

(*) see footnote under Table 5 for explanation of attributes of the data source and their relevance to this study.
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Table A.3. Original Data Sources for Exposure Frequency (continued)

Original Source Data Description Referenced in Contact Attribute (*)

NHANES III, Phase I (1988-1990) Adult, aged 20 and over as Crespo, CJ, et al (1996). (2)
part of the 6 year
NHANES III study from
1988 to 1994

Sell (1989). The Use of Children’s
Activity Patterns in Development
of a Strategy for Soil Sampling in
West Central Phoenix

Robinson, J.P, and J. Thomas
(1991). Time Spent in Activities,
Locations, and
Microenvironment: A CA-
National Comparison Project
Report.

Kanawha County Health Study

Field, et al (1998). Retrospective
Temporal and Spatial Mobility of
Adult Iowa Women

preschool and tot school
pop.1 outdoors

CARB Time Activity
Study + 1985 National
Study (Americans Use of
Time)

Daily diary data for 90
children as part of a
respiratory health status
and gender stratified
sample taken during both
fall and spring.

619 Iowa females spatial
and temporal mobility
within and outside the
home and in other
buildings

US EPA E12H (1996) contact Arizona DEQ:
(602)207-300; env
library: (602)207-2217

USEPA EFH (1996)

Schwab, Met al (1992).

Field, RW (lead author).
Department of
Preventative Medicine
and Environmental
Health, College of
Medicine, University of
Iowa, N222 Oakdale
Hall, Iowa City, Iowa
<99A9

(4)

(5)

(5)

(3)

~) see footnote under Table 5 for explanation of attributes of the data source and their relevance to this study.
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Table A.3. Original Data Sources for Exposure Frequency (continued)

Original Source Data Description Referenced in Contact Attribute (*)

USEPA ( 1992) Dermal Exposure Exposure frequency data (5)

Assessment: Principles and
Applications.

Hill, M.S. Patterns of time use. In:
Juster, F.T. Et al, Time, goods,
and well being.

Timmer, S.G. Et al. How children
use time. (1985)

Carey, M (1990). Occupational
Tenure, Employer Tenure and
Occupational Mobility.

Carey, M. (1988) Occuaptional
Tenure in 1987: Many Workers
Have Remained in their Fields.

activity patterns

activity patterns

occupational activity
pattterns

1. Layton, 1993

1. Layton, 1993
2. USEPA EFH (1996)

USEPA EFH (1996)

(3)

(3)

(3)

occupational activity USEPA EFH (1996) (3)
pattterns

(’) see footnote under Table 5 for explanation of attributes of the data source and their relevance to this study.
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Table A.4. Original Data Sources for Inhalation Rate

Original Source Data Description Referenced in: Contact Attribute (*)

Adams, WC. Prof. Emeriti of 160 subjects, adults and 1. Beals, J.A. Et al Dr. Adams (UCD Prof (1)
Exercise Science, Human
Performance Laboratory, UCD.

children. Excel spreadsheets
containing raw data on active,
resting and field measured
inhalation rates for adults,
children. Subjects body weights
also given.

(1996); Exercise Science)
2. CARB (1993) wcadams @ucdavis.edu

or tel: (916) 752-0645

Layton, D. (1993)

Roy, M and Courtay, C. Daily
activitities and breathing parameters
for use in respiratory tract
dosimetry.

Linn, W.S. Et al (1993) Activity
Patterns in Ozone exposured
construction workers.

Linn, W.S et al (1992)
Documentation of activity patterns
in “high risk” groups exposed to
ozone in the LA area.

children, M’s and Fs daily
inhalation rates using three
methods (no raw data- used data
from USDA (NFCS), USDHHS
(dietary data), USDA(NFCS))

no raw data

self estimated inhalation rates of
19 construction workers before
and during typical work day

different groups (7 panels)=
outdoor workers, school faculty
+ students, asthmatic adults and
children, and male construction
workers. Total 151 participants.

US EPA, 1996 (EFH)

Roy, Monique (NH)
DHHWNIFVNEI tel:
(301) 496-5846 email:
mr53f@NIH.GOV

US EPA EFH (1996).

USEPA, EFH (1996)

(3)

(5)

(5)

(5)

~) see footnote under Table 5 for explanation of attributes of the data source and their relevance to this study,
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Table A.4. Original Data Sources for Inhalation Rate (continued)

Original Source Data Description Referenced in: Contact Attribute (*)

Spier, C.E et al. (1992) Activity 17 elem students+ 19 HS USEPA, EFH (1996) (5)

Patterns in elementary and high students from suburban LA
school students exposed to oxidant
pollution..

Shamoo, D.A et al (1991) Activity 20 adult volunteers--> summer US EPA, EFH (1996) (5)

Patterns in a panel of outdoor activity pattern (15 M’s and 5
workers exposed to oxidant Fs)

pollution.

Snyder, W.S. et al (1975) and ICRP adult M, F, children (10 yrs), US EPA, EFH (198 1) (5)

(1981). infant (1 yr) and newborn
estimates.

Sallis, J. et al (1985). Physical 1120 Fs and 1006 M’s (aged 20- Layton, 1993 (5)

activity Assessment Methodology 74 yrs) from four communities
in the Five-City project. in CA (activity)

(*) see footnote under Table 5 for explanation of attributes of the data source and their relevance to this study,
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Table A.5. Original Data Sources for Water Ingestion

Original Source Data Description Referenced in Contact Attribute (*)
NHANES III (US DHHS, 1996). CD- plain drinkingwateras CD-ROM available from (1)
ROM NTIS.

USDA’s Continuing Survey of Food
Intakes by Individuals and Diet and
Health Knowledge Survey
(CSFII/DHKS) 1994-96

Total Water and Tap Water Intake in
the US: population based estimates of
quantities and sources, Ershow &
Cantor (1989):

Water Consumption by man in a
warm environment: a statistical
analysis. Greenleaf JE, et al (1966),

well as total water in
foods reported for
-33,994 persons
(-31,310 used). Total
tap water not reported.

10[hnational food
consumption survey.
Representative samples
from 48 contiguous US
states. Same variables
as NHANES III.

26,000 sample
subjects. Data from the
USDA (1977-78)
NFCS (National Food
Consumption Survey).
Database created to
estimate tap water
intake.
87 male subjects. Used
regression analysis to
determine six variables
associated with water
intake.

970 Canadian
individuals

1977-78 USDA NFCS data
used by Ershow, et al (199 1).

1. ODEQ (1998)
2. USEPA EFH (1996)
3. data used in Roseberry

and Burmaster (1992)
4. Ershow et al (1991).
5. USEPA (1984)
6. CalTEPA ATHSP (1996)

Canadian Ministry of National Health
and Welfare (198 1). Tap Water
Consumption in Canada.

1. USEPA EFH (1996)
2. CalEPA ATHSP (1996)

CD-ROM available from
NTIS

Abbey Ershow at NHLBI
(Md):
ershow@gwgate.nhlbi. nih
.gov or tel: (301) 435-
0540

(1)

(3)

(3)

(3)

(*) see footnote under Table 5 for explanation of attributes of the data source and the relevance to this study.
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Table A.5. Original Data Sources for Water Ingestion (continued)

Original Source Data Description Referenced in Contact Attribute (*)

Levallois, P, et al (1998), New pattens
of drinking water consumption: results
of a pilot study

National Cancer Institute (NCI)
Study. Bladder Cancer, drinking water
source and tapwater consumption: A
Case Control Study Cantor, et al
(1987).

Data from the FDAs Total Diet Study
(conducted annually). Includes recall
data from NFCS 1977-78 by USDA
and NHANES II

NAS (1977), Drinking Water and
Health. Vol I.

US Army (1983). Water Consumption
Planning Factors Study

139 rural and urban
subjects from Quebec
city. 24 hr recall plus 2
day diary data

8000 adults (all white),
100% >21 yrs, 57%>
65 yrs

no distinguishment
between “sources of
water” (i.e., tap,
bottled, etc.), -50,000
participants total from
all surveys.

based on 8 previous
studies (pre 1975)

based on climate and
activity levels.

Patrick Levallois (3)/ raw data
(corresponding author). is (5)
Patrick. Levallois @msp.ul
aval.ca

USEPA EFH (1996) Kenneth Cantor (5)
(epidemiologist) at
NHLBI:
cantork@ epndce.nci ,nih.
gov or by tel: (301) 435-
4718

Petmington (1983) Jean Pennington (NIH)
DHHS/NIH/niddk-
research nutritionist tel:
(301) 594-8822, FAX
(301) 480-3768 email:
jp157d@NIH.GOV

USEPA EFH (1996)

USEPA EFH (1996)

(5)

(5)

(4)
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