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1 Introduction

The prupose of the work is to test and show how well the numerical method
called Optima Prediction works. This method is relatively new and only a few
experiment have been made. We first did a series of simple tests to see how
the method behaves. In order to have abetter understanding of the method,
we then reproduced one of the main experiment which was done about Optimal
Prediction by Kupferman. Once we obtained the same results that kupferman
had, we changed a few parameters to see how dependant the method was on
this parameters. In this paper, I will present all the tests we made, the results
we obtained and what we concluded about the method. Before talking about
the experiments, I have to explain what is the Optimal Prediction method and
how does it work. This will be done in the first section of this paper.



2 Presentation of the Optimal Prediction Method

2.1 Main Idea

The goal of this method is to be able to solve problems which can not be
properly resolved because the solutions of the equations of the problem are
too complicated. Optimal Prediction should also help to solve problem which
are so large that they can not be solved with the actual technology. Here is
the main idea. Instead of solving a particular initial value problem, we try to
find the average of all solutions that satisfy certain constraints at time t=O.The
constraints may be local averages of the initial data or a small number of Fourier
coefficient. We then used some statistical information to compensate for the
incompleteness of the initial data. With this method, the number of variables to
find is then a lot smaller than in the initial problem.

2.2 A Detained Presentation

A method of “optimal prediction of underresolved dynamics” has recently been
proposed by Chorin, Kast, and Kupferman [1] for producing computationally
feasible numerical schemes for nonlinear evolution problems, such as turbulent
flow problems. They consider a space X of vectors or functions that is closed
under the evolution

(1)

which may be either a system of ordinary differential equations or a partial
differential equation. Given an ensemble of initial conditions for (1) distributed
according to the probability measure P* on X , the ensemble of solution values
at time t is distributed according to

Pt(A) = PO ({z: z(t) E A when c(O) = z}).

Expectations with respect to the measure Pt satisfy the change of variables
formula

lEp* [h(%)]=IEpo[h(z(f))], (2)

where x(t) is the solution at time tof(1) with initial data x(O) = z. The purpose
of Optimal Prediction is to approximate the evolution PO + Pt by solving a
system of k ordinary differential equations. The idea is to select a family {Qe }
of probabilityy measures on X parameterized by a subset of Rk, and to derive
differential equations :0 = ~((?) for the parameters from the original evolution
equation (l), so that Q6(t) % Pt for as long as possible.

The papers [1, 3, 4, 5, 6, 7] develop a simplistic version of the method of
optimal prediction, called first-order prediction. This method, as applied to
large systems of ODES, goes as follows:
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Let

$x=I’(x) (3)

be a system of n ODES. (Imagine a Hamiltonian system with many degrees of
freedom.) Let gl (x), gz(x), . . . , g~(x) be k differentiable functions on Rn, with
k << n, and let Q be a measure on R“. (If the system of ODES is Hamiltonian,
the measure Q might be taken to be a canonical Gibbsian measure.) For each
0 =(61,... , 19~)E JRklet Q@ denote the conditional probability under Q given
that gi(x) = Oi for i = 1,2,. . . ,k. That is

Qe(A)= ~c)[Ak71(x) = h, ...,w(x) = L%]. (4)

Let F’” = Q@(o) be the distribution of an ensemble of initial conditions for the
ODES (3). We wish to “predict” expectation values with respect to Pt.

Let us assume that the family {Q. }ecx~ of measures is rich enough that the
measures Pt can continually be approximated by measures from that family.
This is called the closure assumption [6]. By the change of variables formula
(2),

-&i [gJx)] = -$IEpo[gi(x(t))] = I&o [Vgi(x(t)) . F(x(t))]

= Epf [Vgi(x) . F(x)].

If the assumption that Pt can be approximated by a measure Q~(~) is valid,
the preceding equation implies that $~e[,) [g;(x)] N ~e(,) [Vgi(x) “F(x)]. But

%,[,) [gi(x)] = @i(t) by definition of the measure Qe(t), so the closure assumption
suggests that the parameter O(t) should obey the system of differential equations

(5)$%(t) = %,(,) [v9i(x) “f’(x)]

These are the equations of first-order optima! prediction for the evolution prob-
lem (3) with prior measure Q and co!ieciive variables gl (x), . . . . gk(x). They
may be called “first-order” because they do correctly predict I&pi[g~(x)] for in-
finitesimally small t >0 to first-order, that is, if P“ = Q$(0) then

$Eri[gi(x)]
d

t=o = #be(q k(x)] ~=o”



3 Experiments

3.1 Some Simple Experiments

The first tests we did, seemed to indicate that this method wasn’t very good. It
simply doesn’t work in some very simple cases. These simple experiments were
done mostly with the use of Matlab.

3.1.1 Experiment Number 1

Here are the parameters for this experiment. We look at N=12 particles which
are the solutions of the following system :

There are NS=3 optimal prediction variables defined by

@i = @k for i = l.. NSandk G {1..N}

and answering to the following equations:

~ = E[~l % ,1=1..NS] for i = l.. NSandk c {1..N}

This is equivalent to

~ = E[~ -1%,1=1 ..NS] for i = l.. NSand k G {1..N}
j=l

a%= ~ E[cOs(~-OJ)]\@,,l= l..NS] for i = 1..NS and k c {1..N}
j=l

As we can see, the Optimal Prediction equations sre exactly the same as the
ones of the former system. In both cases, we used a fourth order Runge-Kutta
algorithm to solve these systems. We had different kind of results. With N= 12
and NS=3, the solutions of the Optimal Prediction system are similar to the
solutions of the former system for about one second. This time increases if we
increase N. However, it does not increase linearly. If NS = 1, then the methods
of Optimal Prediction works perfectly: the solutions are exactly the same for
both systems.

5



3.1.2 Experiment Number 2

In this experiment, we consider the same system aa in experiment number 1.
We just add the following term to the equations : c * dt(l/21 + .zi where Zi is

a random variable. We then have to solve a stochastic equation. The system
becomes

% = ~fj V +~dtl/2zi i=l..N

However, the results were the same as in the first experiment.

3.1.3 Experiment number 3: coupled harmonic oscillator

Kast [7] considers the following system of 1001 coupled oscillators:

Q.p

!ij = j2Pj; j=lj%...,looo
1000

Pj = –Q+ ~(q~–Q)
i=l

1000
~j = (Q-~j)+~(~i-qj); .i=l,2,... ,1ooo. -

i=]

(6)

The collective variables are taken to be Q, P, qI, PI,. . , , qlo, P1O. The prior mea-
sure is the canonical measure e–H / ~ e-H determined by the Hamiltonian func-
tion H for which (6) are the canonical equations. Kast finds good agreement
between

IEIP(t)lQ(0), P(0), ql(0), . . . ,plo(0)]

and the optimally predicted values until (at least) t= 1.
We tested a simpler version of Kast’s system of coupled oscillators. We

considered the system

qj = j2pj; j=l,2,.. .,100 (7)
100

~j = qi+~(~i–qj); j=l,2, . . ..l00. (8)
i= 1

(9)

As our prior measure Q we took
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.

For several choices of the collective variables gi (q, p), we took PO = Qo(o)
as defined in formula (4). We compared the exact values of IEp,~3(p)] to the
estimates of those values ~ 8(t)[93(P)] given by first-order OPtimal prediction.
Here we report the results of seven experiments where twenty collective variables

91(q)> 91(P), . . . ,910(q), 910(q)

were taken to be:

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

Q1>P1>..- ,fllo, Plo

flll)nl, ., . ,q20, P20

~91>P91>. . . . ~loo, noo

5(MM3)$,(%PJ1~“ “ ,-5(~j>lo~~)ligl(~~)loPj)
j=l j=l

where M was an 1(I x 10 invertible matrix with integer entries

m + o.lqll, Pl +0.lpll, . . . ,qlo +O.lqzo, plo + O.lfuo

m + O.’all, n + O.%1, . . . . !710+ O.%2O,P1O + 0.%J20

m + 0.5!711,P1 + 0.5P11, .-. , !?10+ 0.@20, PI0 + 0.5Pz0

(viii) w + qII,zh +PII,... ,q,o+ q20,m0 +P20

The results of these experiments are shown in Figures 1-5. The solid curves
in those figures graph ~e(,) [g3(p)] as a function oft, and the crosses mark the
values of lEp~[g3(p)]. The graph for experiment (iii) is not printed (the graph is
too crowded) but first-order prediction was as successful for this case as it was
for (i) and (ii).

We also performed two experiments with the collective variables
!ll, pi,... , glo, P1O,but with different m~ses for the oscillators. In the first

experiment, the masses were taken to be l/j instead of l/j2. Thus we replaced
jz by j in the equation of motion (7) and in the fromula for the density of the
prior measure (10). In the second experiment, the masses were all taken to be
1, so we replaced j2 by 1 in (7) and (10). The results of these experiments are
graphed in Figures 6 and 7.

7



Figure 1: Coupled oscillators (ii)
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Figure 2: Coupled oscillators (iv)
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Figure3: Coupled
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Figure4: Coupled oscillators (vi)
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Figure5: Coupled oscillators (viii)
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Figure6: Oscillators with masses l/j
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Figure 7: Oscillators with masses 1

3.2 A Nonlinear Hamiltonian System

3.2.1 Reproducing the Experiment

We then decided to do an experiment that was done a few months ago and which
seems to validate the method. We wanted to understand why the method works
for this test and doesn’t work in simple cases. We first thought that by changing
the value of some parameters, we could show that the method is not reliable.

We study a finite dimensional system of 2n (n=16) ordinary differential
equations:

{

* = – @-ly.gJ+~(~+l)+ qqj)

~ = +P(~-wiJJ+x’(~+Q – ~3(j)

for j=l,..,n and where Ax = ~ We enforce periodicity with P(O) - p(n),

P(R + 1)s P(1), etc. This system admits the following Hamiltonian,

{
Iqy, q] = ; ~ p+pq 2+[q(~+}y‘]2++[P’o’)+ml}

i=l

Therefore, we can defined the canonical density of the equations by

.fo(P, d = f=p(-~(n d)

which we assume to be the probability density.
The collective variables we want to study are of the form

Wk d = (9a(.), P(.)) = .i~19Q(~)P(~)
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witha= 1, ... A’(JJ =2) and where theg’s represent thediscrete kernels given
by

91(~) = +=exp(–~)
92(.0 =-+=P(-*)

where Zis a normalizing constant andd(jl, j2) isadistance function which gives
the minimun of ]jl –jzl,ljl –jz – nl,ljl – jz + nl.

Applying the optimal method to the above formulas, we find four differential
equations for the four collective variables.

~ = 19.5(V; – V:) – [1.50 (V7)3 – 0.88( V;)2V; + 0.27V;(V;)2 + 0.11( V;)3]

~ = 19.5(V: – Vi) – [1.50 (V;)3 – 0.88( V;)2Vf + 0.27 V;(V;)2 + 0.11( V~)3]

# = –19.5(v; – V-f’)+ [1.50 (Vf)3 – 0.88( V/’)2V~ + 0.27 V:(V})2 + 0.11( V;)3]

~ = –19.5(V; – V;)+ [1.50(V33 – 0.88( V;)2~ + 0.27 V$’(Vf)2 + 0.11(~)3]

We used the same technics and the same algorithms that were formerly used.
Once, we obtained exactly the same results (figure 8, 9, we were able to perform
a few changes in order to see the limitation of the method.

““”~
0.17-

0.166-

o.lm-

O.la-

6

Figure 8: The covariances < p(i)p(j) >=< q(i)q(j) > as a function of the grid
separation i-j. these values were computed by a Monte Carlo algorithm
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0.5-

0.4-

Figure 9: Evolution in time of the mean value of the four collectives variables:
v:(+), V;(0), Vf(+), V; (o). These values were obtained by solving 32 equations
for 500 initial conditions and averaging.

3.2.2 Changing some Parameters

There were several changes that we wanted to make in order to test the Optimal
Prediction method. Most of these changes concerned the choice of the kernels
that determinethe constraints. First we only changed the variance of the kernels.
We increased it to 0.9 (instead of 0.25). We can see how the method reacts to
that change on figure 10. The method works very well.

We then decided to change the hamiltonian. In fact, we only multiply the
old one by Ax. This has the effect of making the prior measure about four times
as spread out.

Then, we-decided to see what was the influence of the kernels. First, we ran
the experiment with the kernels defined below:

I
1 ifl<j<9

gl(~)= O ifj~9

O ifl<j<9
gz(j)= 1 ifj~9

Figure 12 shows the results of this experiment. We can see in that case
that the method doesn’t work. We then tried a lot of others kernels. In most
cases, we could see that the results of the Optimal prediction method did not
correspond to the real solution. Here are some of the kernels we tried:
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[

(j-1)/8 ifl<j<9

(i)
“(~) = (9-j)/8 ifj z 9

(17-j)/8 ifl<j<9
92(j) = (j-9)/8 ifj~9

(ii) gl(j) = (j – 1)/15 .fO?’j C {1..16}
9z(j) = (16 –j)/8 @j c {1..16}

1
1 ifjmod2=0

gl(j)= 0 ifjmod2#0
(iii)

O ifjmod2=0
gz(j)= 1 ifjmod2#0

[

1 if j c {1,4,5,6,7,11,,13,16}
91(j) = o ~fnot

(iv)
O if j c {2,617,8,9,10, 14, 16}0

9z(j) = 1 ~~not

(v) gl(j) = COS(!h’j/N) + cos(4~j/N) for j = 1..16
gz(j) = sin(2~j/~) + sin(4~j/JO for j = 1..16

(vi) 91(j) = cos(2rj/N) for j = 1..16
9z(j) = sin(2~j/N) for j = 1..16

Figures 12 through 18 show the results for these sets of kernels. In most
cases, all the results seem to indicate the method doesn’t work. we can see that
the optimal prediction solution ( plain lines) do not correspond with the real
solution (cross and circle).
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H
—Vlp
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— Vlq
--V2

A

0.4
t

-0.4I I
o 0.1 0.2 0.3 0.4 0.5 0,6 0.7 0.8 0.9 1

Figure 10: Evolution in time of the mean value of the four collectives variables:
V/’ (+), V:(o), Vf (+), V;(o). These values were obtained by solving 32 equations
for 100 initial conditions and averaging. Here, we change sigma to 0.9

~,~:;<>ti,

0.5-

0.4-

0.3?-.<
.
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0.2
./

+
o

0.1- + ‘-,

o

+

o , 1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 11: Evolution in time of the”mean value of the four collectives variables:

v:(+), v;(0), V:(+), V;(o). These values were obtained by solving 32 equations
for 500 initial conditions and averaging. We used for the hamiltonim G = Ax* H
where H is the former hamiltonian
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Figure 12: Evolution in time of the mean value of the four collectives variables:

v:(+), v;(0), V/(+), v;(0). The kernels were changed to “step kernels”
0.65

I
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Figure 13: Evolution in time of the mean value of the four collectives variables:
V?(+), V:(0), V:(+), V;(o). The kernels were changed to “triangle kernels”
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Figure 14: Evolution in time of the mean value of the four collectives
Vf(+), v:(o), v:(+), v;(o).
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Figure 15: Evolution in time of the mean value of the four collectives variables:

v?(+), V:(O), VI(+), V;(O). The kernels were changed to “random kernels”



Figure 16: Evolution in time of the mean value of
ables: VIP(+), Vzp(o), Vlg(+), V24(0). ‘I’he kernels were
nels” .This is a zoom of the precedent figure
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Figure 17: Evolution in time of the mean value of the four collectives variables:
V:(+), V;(0), V~(+), V:(o). The kernels were changed to “a sum of cosinus and
sinus kernels”
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Fimre 18: Evolution in time of the mean value of the four collectives variables:

V!(+), V“(O), J’_:(+), Vi(0). The kernels were changed to
kernels”

4 Conclusion on the Experiments
met hod

“cosinus and sinus

and on the

All these experiments show that the method isn’t working right now. A lot of
work needs to be done. But why does Optimal Prediction give such good results
with some of the experiments?

For a generic prediction problem, the closure assumption will not be valid
and the first-order met hod is not expected to succeed. However, some numeri-
cal experiments have been performed which show that optimal prediction some-
times works insofar as it successfully predicts the expectations of the collective
variables given their initial values. Speculation concerning circumstances which
may contribute to the success of first-order optimal prediction has produced
several hypotheses. Two of these hypotheses are mentioned in [6]: for PDEs, or
for systems of ODES derived from PDEs, first-order prediction is more apt to
succeed if (i) the collective variables represent spatial averages of the primary
variables which are not concentrated in space, and (ii) the collective variables
are not funtions of disjoint groups of primary variables. Another hypothesis is
that it is helpful to select collective variables that are functions of those primary
variables that change more slowly under the dynamics. It also might seem fa-
vorable for optimal prediction that the prior measure Q be concentrated, i.e.,
that samples from Q have a small variance.
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We have found that when first-order prediction succeeds, it is not primarily
due to the preceding circumstances. Rather, the success of first-order optimal
prediction depends mainly on the choice of collective variables: first-order pre-
diction works well if the set of functions of the collective variables is nearly
invariant under the dynamics. This hypothesis was suggested to us by the work
of O. Hald on first-order prediction for linear Hamiltonian problems [2].

For special choices of the collective variables, first-order prediction correctly
determines the expected values of the collective variables. The equations (5) of
first-order optimal prediction for the system

with

d
= Fi(u) ; U=(?4, ?J2,. . . ,Uk)

Zui
d

Gi(u, W) ;
%Wi =

W=(W1, W2,. . . , Wn–k)

an arbitrary prior measure Q and collective variables

(11)

91(% W)=W, 92( U, W)=U2, ..., gk(u, w) =W

are simply

& =R(01,02,. . . ,flk) ; i=l,2, . . ..k.

If the ensemble of initial conditions for (11) is distributed according to P“ =

Q,g(oJthen by (2) and (4)

I.@ [gi(u, w)]= I&t [Ui] = IFQ[u;(t) \u(o) = 6(0)] = e(t),

and the first-order method correctly “predicts” the expected values of the col-
lective variables at time t. This does not mean that Pt x Qe(t); first-order
predictiori correctly determines the expectations of functions h(u) of the collec-
tive variables, but not the expectations of general functions h(u, w).

Suppose, in particular, that A is an n x n matrix and that VI, V2,.. ., vk
span a subspace of IRnthat is invariant under AtT. Then, the system

XXAX

reduces to the form (11) just considered upon setting ui = x. Vi and Wj = x - Wj

for any vectors Wj which, together with the vectors vi, span lIln. Thus, if O(t)
solves the equations of first-order optimal prediction for x = Ax with collective
variables x . VI, . . . , x . v~ and any prior measure Q, then

I@ [x ~vi] = Oi(t)

if PO = Qe(o). First-order prediction exactly determines the expectations of the
collective variables.

In light of the preceding, first-order optimal prediction may be expected
to do well if the PDE or system of ODES is a slight perturbation of a linear
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evolution equation for which the collective variables span an invariant subspace.
We believe that every known success of first-order optimal prediction can be
attributed to these circumstances, and that the other circumst antes thought to
favor the performance of optimal prediction matter much less.

4.0.3 The Coupled harmonic oscillators

The span of a set of collective variables of the form qi, pi, . . . , q;+lo, Pi+lo is
nearly invariant under the dynamics (7) (8). Experiments (i) through (iv) show
that first-order prediction works well for these collective variables. Experiment
(iii) shows that “fast variables” can work as well as “slow variables.” Experi-
ments (v)-(viii) how first-order prediction fails as the collective variables move
farther and farther from invariance. The last two experiments also show that
fast variables work as well as slow variables, as long as the collective variables
are nearly invariant.

4.0.4 The Non Linear Hamiltonian

Experiments (i) ,(iv) and (vi) show that first-order prediction does not work for
some reasonable choices of the collective variables.

First-order prediction works well in experiments (iii) and (v) because the
span of the collective variables is invariant under the linear part of (3.2.1),
which dominates the dynamics. The linear part of the dynamics is diagonalized
by functions of the form f . (q + ip) and f. (q – ip), where fk is a discrete (six-
teen point) Fourier vector of the form exp(–i2~jk/16); for k = –7, –6, . ...7,8.
Thus, the collective variables of experiments (iii) and (v) span invariant sub-
spaces for the linear part of (3.2.1).

Experiment (iii) indicates that collective variables can have disjoint supports
and be fast variables; as long as they are invariant, first-order prediction can
work.

Figure 11 shows that it helps somewhat to have a concentrated prior.
The success of first-order prediction in the original experiment and in ex-

periment (ii) is a bit mysterious (see Figures 9 and 11) because the collective
variables are not very close to spanning an invariant subspace for the linear
part of (3.2.1), though they are still close. How close they come to invariance
is indicated by the graphs of the discrete Fourier transforms of gl + gz and
gl – g2 in Figures 19-21. (These Fourier transforms are real since gl and g2
are even. The central bar represents the constant component; the outer bars
represent higher frequency components. The sum of gl and g2 for experiment
(iii) is constant, so the graph of its Fourier transform is omitted.)
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Figure 19: fourier transform of g2-gl with the triangle kernels
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Figure 20: fourier transform of gl-g2 of the former system(ii)

I
I,o,,~

–84+-2 02468 ,

Figure 21: fourier transform of gl+g2 of the former system
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5 Conclusion

This internship was very interesting for several reasons. I had the chance to
work in both the mathematical field and the computing field. On the mathe-
matical field, i was able to learn some new skill in the statistical domain and
to increase my knowledge on how to solve Partial Differential Equations. As
for the computation part, I now have a better grasp ont the C language. I
was also initiated to C++, which could prove to be very helpfull for my first
employment. I discovered some new software (Latex) and was able to perfect
my knowledge of Matlab. But, what was the most interesting aspect of this
internship, was the fact that I could see and help on the developemnt on a new
numerical method. I could see all the different steps which are used in order
to create such a method. Waiting for the results of an experiment was excit-
ing since we didn’t know what to expect exactly. Doing this internship abroad
helped me to perfect my english and allowed to work in a different atmosphere
than
very

the one I was used to. There is no doubts that these two aspects will be
valuable for my first employment.
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