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Abstract

Data sets that are being produced by today’s simulations, such as
the ones generated by DOE’s ASCI program, are too huge for real-
time exploration and visualization. Therefore, new methods of vi-
sualizing these data sets need to be investigated. We present a
method that combines isosurface representations of different res-
olutions into a seamless solutionj virtually free of cracks and over-
laps. The solution combines existing isosurface generation al-
gorithms and wavelet theory to produce a real-time solution to
multiple-resolution isosurfaces.

Keywords: Mukiresolution isosurfaces, wavelets, crack removal

1 Introduction

The extraction of polygonal isosurfaces is a widely used visualiza-
tion method for scalar fields in volumetric data. It is especially use-
ful for visualizing data sets containing objects having well-detined
botmdariea, where lighting and shading of the polygonal surfaces
enhance the 3D structures. The most common algorithm used for
isostice extraction is marching cubes [8]. This algorithm tra-
verses all celk of the volume and generates the polygonal isosurface
by trilinear interpolation along the edges. The algorithm (including
its derivatives) is trivially parallelizable, and we have been able to
perform isosurface extraction, using aparallel implementation that
is part of the WsruzE.@itxr Toolkit (V’I’K) [18], of larger data sets
(10243 regular grids) in real time [71. Even though the production
of the polygonal surfaces is done in a reasonable time, the nutn-
ber of polygons generated by these algorithms quickly exceeds the
capabfities of the rendering hardware.

Isosurfaces am also a commonly used visualization technique
within virtual reality environments because they make full use of
the three-dimensional space and the creation of the surface is fast
enough for real-time exploration of moderately sized &ta sets [15,
171. As data sets grow larger, however, it is becoming difficult to
use virtual environments for investigation. Again ttds difficulty is
due not to the generation time of the surfaces, but to the number
of polygons generated. One can decimate the resulting surface, but
this approach adds to the computation time of the final surface and
is not acceptable in a real-time environment. Therefore, one must
explose methods to calculate isosurfaces with polygon counts that
am reasonably sized for ml-time rendering.

This paper describes a technique that enables the exploratory sci-
entific visuahzation of huge data sets using isosurfaces on a wide
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variety of machines, from low-end graphics workstations to high-
end virtual reality systems. This technique allows the user to mod-
ify the isosurface threshold interactively, as well as reduce the num-
ber of triangles generated so that they can be displayed in real time.
The user can also choose a region of interest that is displayed in
high resolution while the rest of the data set is dispiayed at a lower
resolution. The ability to show both high- and low-resolution sur-
faces at the same time allows the user to maintain real-time frame
rates from the rendering engine, look at a panicular region of the
data in fill detail, and have a sense of the global context of the data
set as well. The technique uses the well-studied wavele[ transfoms
to construct multiple resolutions of rectilinear data whiie introduc-
ing minimum error. In the following sections of the paper we show
how wavelet coefficients can be manipulated at the boundary be-
tween two resolutions to ensure continuity of the function, and we
present an efhcient technique that ensures continuity of the isosur-
face generated. The isosurface has no overIap, but in the worst case
hairline cracks may appear at multiresolution boundaries. How-
ever, these cracks are insignificant and, we believe, do not hinder
the process of understanding and visualization of the data set.

2 Background

Several attempts have been made to reduce the number of triangles
generated by the marching cubes algorithm. The most notable is
the decimation algorithm by Schroeder et al. [19]. A full high-
resolution isosurface genemted by marching cubes is substituted
with a simpler mesh generated with only a subset of the originrd
vertices. ‘fhis approach is too computationally expensive, however,
because a large number of triangles are first generated, only to be
eliminated at a later stage.

Several adaptive marching cube algorithms have been pro-
posed [21, 10, 20, 11]. These techniques traverse all voxels and
at least partially extract the isosurface for each voxel. Neighbor-
ing voxels are then merged if the isosurface is found to be similar.
However, these techniques are inappropriate for exploratory scien-
tific visualization because merging of cells is directly linked to the
isosurface threshold; that is, at least a partial full resolution iso-
surface is extracted and the merging process repeated every time
the user modifies the isovalue. Moreover, additional memory is re-
quired to store the multiple resolutions.

The benefii of octrees for faster reconstruction of isosurfaces
for regular volume data was first recognized by Wtielrns and
Oelder [26]. The minimum and maximum density value of the sub-
tree sooted at every inner node are stored. Large branches of the vol-
ume that do not intersect the isosurface can thus be skipped. West-
ermann et al. [25] used average pyramid octrees for exploratory
visualization in which the level of refinement of a particular inner
node is determined by a userdefined focal point and radius of in-
terest. Their technique requires neighboring cells to vary by not
more than one level of resolution. Extra processing is requhed to
maintain continuity of the data set at mukiresolution boundaries.
The teciuique generates additional polygons to fill in cracks at mul-
tiresolution boundaries. Moreover, additional memory is required
to store the full octree.

Mallat [9] proposed a framework for multiresolution decompo-
sition of a measurable, square-integrable, one-dimensional function
~(z). The model is extensible to higher dimensions. An approxi-
mation operator A2j is defined that projects ~(z) at the resolution
2j. Among all approximated fimctions at nsohrtion 2J, A2i f(s) is
the function most similar to f(z). More formally, assuming Vzj to
be the set of all possible approximations at the resolution 2J of*
measurable, square-integrable one-dimensional functions, thk can

be expressed as follows:

Vg(.Z) c V2j , llg(~) _ ~(z)ll ~ llA2j j(z) _ .f(.z)]/ (1)
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The multiresolution transform is implemented efficiently by
the “cascade” algorithm. which successively decomposes a sig-
nal Azj+l ~(z) to a coarser signal AZ, f(z) and a “detail” sig-
nal D2j j(z) (also called wavelet coefficients). The wavelet co-
efficients store the difference between the two resolutions and are
computed by projecting the signal onto orthogonal wavelet basis
functions. This transform is fully reversible and requires no ad-
ditional storage. The cascade algorithm runs in linear time with
respect to the number of samples of the original discrete signal.

In volume visualization only finite signals are considered, while
MaHat’s mukiresolution transform is designed for infinite signals.
Using symmetric or antisyrnmetric wavelet basis functions alfows
for (anti)symrnetric extensions of the function at the boundary.
Therefore, it is desirable for the wavelet basis functions to be
(anti)symmetric when the signal is defined only over a finite inter-
val. It has been proven that compactly supported, (anti)symmetric,
orthogonal wavelet basis functions of degree greater than zero can-
not be constructed [1]. On the other hand, relaxing the orthog-
onality condition allows the construction of smooth, symmetric,
and compactly supported biorthogonal wavelets. The error intro-
duced by performing a multiresohstion transform using biorthogo-
nal wavelet basis functions is within a small constant of the mini-
mum possible error (as described in Equation 1) [1]. Moreover, ex-
tremely efficient, in-place computation of the biorthogonal wavelet
transform is possible using the lifting scheme [23].

The idea of using wavelets to obtain multiple resolutions of
three-dimensional rectilinear data has been used by severai re-
searchers [12, 6,24, 16]. However, none of these techniques allow
the user to specify a region of interest or permit multiple resolutions
in different regions of the data at the same time. Grosset al. [4] use
wavelet decomposition to adaptively generate polygonaf data repre-
senting a terrain from a height field. They also modify wavelet co-
efficients to define a region of interest. However, extra processing is
involved, requiring lookup into a table with 625 entries to maintain
continuity of the polygonal mesh at mtdtiresolution boundaries.

3 Theory

In this section we first justi~ our choice of subsampling technique
(Section 3.1). We then show how we modify wavelet coefftcienta
to ensure continuity of the !krrction at multiresolution boundaries
(Section 3.2). We conclude this section by describing art efficient
technique of eliminating cracks in the isosurface at multitesolution
bounties (Section 3.3).

3.1 Subaampling Technique - Wavelet Decompe
sition Using Linear Biorthogonal Basis

The matching cubes algorithm assumes that the scalar field is piece-
wise linear along the edges; the intersection of the isosurface along
an edge of the data set is determined by linearly interpolating be-
tween the two boundary data points of the edge. Linear wavelet
basis functions have one vanishing moment. Hence, if one iteration
of the cascade algorithm is performed using linear wavelet bases on
a linear function, the function is represented exactly. When higher-
otder wavelet basis functions are used, even higher-order functions
can be represented exactly. However, higher-order basis fitnctions
have a wider support, thus increasing the computational cost of the
multiresolution transform. Therefote, linear basis functions are best
suited to represent piecewise linear titnctions. Hereafter we refer to
decomposition of a signal at resolution 2) into a signal at resolution
23-1 and wavelet coefficients using the lifting scheme with linear
biotthogonal wavelet basis functions as one iteration of thejorward
wuvefet tmnsfonrr. A reconstruction of a signal from a coarser res-
olution signal and wavelet coefficients using the same algorithm is

Table 1: Error introduced by the three subsampling techniques.
Note that the range of data values in this data set is Oto 255.

“ Subsampling Technique L 1 Er-
ror

Average pyramid with box tilter 15.5254
Accepting every eighth sample 13.0492
‘Ike iterations of the forward wavelet 10.6413
transform 3

RMS
Error
34.9054
33.2336
27.0047

referred to as the reverse wavelet transform.
Figure 1 shows the effect of subsam~ling using three techniques.

An isosurface is extracted after three levels of subsampiing of the
iron protein data set’. Note that after this subsampfing process,
only O.195% of the data is retained. Figutv 1(a) is obtained by av-
eraging every 8 x 8 x 8 subgrid, which can also be considered as
three iterations of the cascade algorithm using Haar wavelets [5].
Clearly, there is more severe 10SSof detail here than with the other
two methods. Thk is because the Haar wavelet basis functions have
zero vanishing momenta and are thus suited to represent ordy piece-
wise constant functions, whereas the marching cubes algorithm as-
sumes the scalar field to be piecewise linear. The naive strategy of
skipping over samples may cause considerable aliasing, as seen in
Figure l(b). Table 1 gives the Ll and the root mean square (RIMS)
error introduced by the three methods of subsamplirtg. AU subsam-
pled data sets were first supersampled back to the original size by
trilinear interpolation and then compared against the original iron
protein data set. Again, this is justified because the isosurface ex-
traction algorithm assumes the scalar field to be piecewise linear
rdong its edges.

3.2 Ensuring Function Continuity

In order to ensure continuity of the i30surface generated, it is imper-
ative to ensure continuity of the function at the boundary between
the two resolutions. We demonstrate this in two dimensions with
the help of Figure 2. We need to ensure U1 = u2, dl = d2, and
m= *, ag% assuming piecewiae linearity of the function.

If the subsampling strategy used is to skip over samples, as was
done in Figure l(b), the function will always match at the data sam-
ples common to the two resolutions (u1 = U2 and dl = d2 in
Figure 2), whereas other sarnplea at the higher resolution (m in
Figure 2) will need to be explicitly recalculated by lineariy interpo-
lating the lower-resolution values. This was done in [20]. If average
pyramids ase used as the subsarnpling strategy, as waa done in Fig-
ure 1(a), the function is not guaranteed to be continuous even at the
data points shared between the two resolutions. In [25], data vahtes
at the coaraer level are modified to be equal to the comqxmling
data values at the finer level (u1 is set to U2 and dl is set to d2 in
F@re 2). Other samples at the finer level are recalculated by linear
interpolation (m is set to * in F&we 2).

We use a linear biorthogonal wavelet transform implemented by
the lifting scheme [23] to obtain multiple resolutions of our data
aeL The lifting scheme does an in-place computation of this trans-
form and is composed of two stages predict and upalate. During
the predict stage of the forward wavelet transfoirn, in each itera-
tion, all odd-indexed samples ate replaced by wavelet coefficients.
The opposite occurs during the predict stage of the teverse wavelet
transform During the upalue stage, all even-indexed samples are
transformed to a lower or higher resolution in the forwrud or re-
verse wavelet transform, respectively. For example, in F@tre 2, the
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1.) (b)

(c) (d)

Figure 1: Isosurface of iron protein data set with a threshold of 127;
(a), (b), and (c) are subsampled by a factor of eight in all three di-
mensions. (a) Data set subsampled using average pyramid and box
fikec (b) data subsampled by skipping over every eight samples;
(c) data subsampled by applying linear, biorthogonal wavelet trans-
form three times; (d) the original data set.

low-resolution region is generated by two iterations and the high-
resolution region by one iteration of the forward wavelet transform.

When using linear basis functions while performing the wavelet
transform, a wavelet coefficient at a paticular point z gives an in-
dication of how far the function is from being linear at x. A wavelet
coefficient of zero at z indicates that the fimction is perfectly lin-
ear at z; so if a reverse wavelet transform is done to transform the
function one level of resolution higher, the data value at x will be a
linear interpolation of its neighboring data values at the higher res-
olution. This is illustrated for the onedimensional case in Figure 3.

When using linear basis functions, the value by which an even-
indexed sample is altered during the update stage is a function of
only its surrounding wavelet coefficients. Therefore, in one dimen-
sion, if the two neighboring wavelet coefficients of a data value at
a point z arc zero, the data value remains unchanged when trans-
formed one resolution higher by performing one iteration of the
reverse wavelet transform. This is illustrated in Figure 4. Similarly,
in two dimensions, 8 wavelet coefficients update a data point, while
in three dimensions the count is 26.

The observations of the preceding two paragraphs give us a
framework for ensuring continuity of the function at the bound-
ary between two resolutions. For the following discussion, refer
to Figure 5. Assume for clarity of explanation that the data set is
n dimensional (n = 1, 2,3) and of resolution s in all n dimen-
sions. Let 1 and h be user-defined n-dimensional points defining
an rz-chmensional rectangular region that forms a boundary to the
high resolution region. Assume that the user sets low-resolution re-
gion to one-level subsampling (one iteration of the fonvard wavelet
transforrit achieves this) and the high-resolution region at the res-
olution of the original data set (the highest resolution). Note that
O <=/i < h, < s,i = O, 1, ..n - 1. Also note tha[l: and(s -h,)
need to be even so that they may bound the one-level subsampled
low-resolution regions. Here is the sequence of steps required to
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Figure 2: Multiresolution boundary
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Figme 3: A zero wavelet coefficient at a point z implies that the
fiction is linear at z.

generate a seamless nmkiresolution function in this particular ex-
ample .

1.

2.

3.

Perform one iteration of he forward wavelet transfotm to the
original data set to bring the entire data set one level of reso-
lution down.

Modify wavelet coefficients to ensure continuity. Assume that
Wi is the position of a wavelet coefficient W in the ith dimen-
sion. Set W = O if Wi <= ii +-cw Or Wi >= hi – CW,

whete CWis called the cu,rhwn width. l%is basically nuUi-
fies al$ waveiet coefficients insi& the low-resolution region
and inside a cushion at the boundary of the high-resolution
region. This is illustrated in two dimensions in l%gurt 5. The
cushion width CWis half the width of a low-resolution voxel,
which in the above example is 2, and so CWis 1.

Do one iteration of a nmrse wavelet transform.

Setting wavelet coefficients to zem.as described above ensures
that the data vrdues in the low-resolution region do not change while
doing the reverse waveiet transform. Mao all other data values in
this region are forced to be linearly interpolated from their neigh-
boring data values and that includes the data values at the boundary
between the two resolutions. This ensures continuity of the ftmc-
tion.

In the above example, the two resolutions varied by only one
level. However, this is not a requirement. The two resolutions can
vary by arbitrasy amounts as long as the elwhion is set to half the
width of the low-resolution voxel. This guarantees that at every it-
eration of the forward wavelet transfo~ wavelet coefficients on
and outaide the boundary of the high-resolution region as well as
those that line the boundary inside the high-resohnion region are
zero. This, in turn, ensures that afier the forward wavelet trans-

form, the data values at the coarser resolution on and outside the
high-resolution boundaty are unchanged. Mao, the new data val-
ues generated on and outside the high-resolution boundw ddg

the predict stage of the lifting scheme are guaranteed to be linetiY
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Figure 5: Smooth transition between two resolutions with the help
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interpolated from the neighboring data values at the userdefined
low-resolution level.

What this technique effectively does is create a cushion of vox-
els at the boundary that forms a smooth transition between the Nvo
resolutions; one side of the cushion is at a high resolution, while
the other side is at a low resolution.

A More Efficient Aigorithm

The algorithm described above is a little wastetisl. A mwerse
vvaveiet transform is applied to the low-resolution region even
though the data values there are unalWted by this transfosm, How-
ever, a simple improvement to the algorithm can eliminate this
waste. He~ is the modified aigorithnx

1.

2.

3.

Transform the entire data set to the user-specified low resoht-
tion.

Set all wavelet coefficients in the cushion region (See Fig-
ure 5) to zero.

Apply the reverse wavelet transform only to the high-
re~olution region (which includes the cushion) to the le-ml
specified by the user.

Tids not only reduces the computational cost of transforming be-
tween the two resolutions but also reduces the amount of storage
required to store the wavelet coefficients that am set to zero. It is
important to have the ability to recover the data set because the user
should be able to move the high-resolution region as weii as change
the two resolution levels. We now need to store only the wavelet
coefficients in the cushion region in order to recover the data set.

3.3 Ensuring isosurface Continuity

In Section 3.2, we described a method to ensure function continu-
ity in a linear sense at a mukiresolution boundary. When we apply
the marching cubes algorithm to such a function in two dimensions
(called marching squares), the resulting contour lines generated are
continuous. Figure 6 illustrates this. However, this is not generally
true in the three-dimensional case. In the marching cubes algo-
rithm, the function is assumed to be linear only along the edges.
The intersection of the isosurface is calculated only along the edges
of the cubical voxels. Adjacent intersection points are connected to
form contours, which are then triangulated to give isosurface geom-
etry. Note that if the function were trilinearly interpolated at every
point in the volume, as is done in volume rendering [2], or even
bilinearly interpolated along the faces of the data se~ the resulting
isosurface would be continuous along the muhiresohttion boundary,
given that the scalar field is continuous.

Figure 6: In two dimensions, continuity of the function ensures con-
thntity of the isolines. The white contour lines are generated fmm a
region that is two levels of resolution lower than the high-resolution
region from which the yellow contour lines are generated. The data
set was generated as a two-dimensional array of random numbexz.

Consider a face of a low-resolution cube at a multiresolution
boundary. Assuming the scalar value at a vertex point to be its
third dimension, the four points at the vertices of this face may
be nonplanar. In this case, the approximation of the scalar field
used by marthing cubes (as described in the previous paragraph)
has a fold along one of the diagonals (which diagonal the fold lies
on is asbhmry, and this gives rise to ambiguous cases in marching
cubes [13]. This is discussed later in this section). Assume that ail
wavelet coefficients surrounding the vertices are set to zero, as de-
scribed in Section 3.2. Then, the points introduced along the edges
of the face during the predict stage of the reverse wavelet trans-
form do not change the points of intersection of the isosurface with
that face. This is because the new data points introduced along the
edges are finearly interpolated from the two edge points. However,
the scalar value at the center of the face, which is an average of the
scalar values at the four boundary vertices, may not lie on the fold.
The different resolution isolines thus generated will be coincident
along the edges of the face but not inside the face, as was observed
in [25]. This results in cracks at the multiresolution boundary, as
illustrated in Figure 7.

Fortunately we found an efficient and easy-to-implement way
around this problem. Refer to Figure 8(a). Consider a nonplanar
mukiresolution boundary face F with vertices VI, U2,03, U4. As-
sume the isostsrface intersects F along adjacent edges, ~ and
~. Tids is equivalent to saying that the fold lies along the diag-
onal ~. After nullifying the wavelet coefficients in the cushion
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Figure’1 A crack is formed in spite of the function being continu-
ous at the boundary if the four vertices at a face are non-coplanac
(a) is a face at a boundary where the resolutions differ by one level.
(b) and (c) give the surface plots of the boundary face at low and
high resolutions, respectively, as well as a contour line shown in
red with an isowdue of 6.5. Note the fold in the Iow-msolution sur-
face plot. The two surface plots differ at the center at the cell. The
contour lines coincide along the edges of the face but not inside it.

and doinft one level of a reverse wavelet transform. we go up by one
resolution. We then mocMy the scalar value at ceriter of F, c, to lie
along the fold, that is, we set its value to ~.

Refer now to Figure 8(b) and (c). Assume that the isosurface
passes though opposite edges of F, ~, and ZIE. After going
up one resolution, the scalar values at the center of F may have
be adjusted so that the isolines generated coincide with the low-
resolution isoline on F. This is done by pulling the scalar value at
the center of F up or down, until the new, high-resohttion isoline
bumps against the low-resolution isoline. In more detail, this is
accomplished as follows:

1.

2.

Calculate the intmection point p of the low-resolution isoline
with the edge m 1rn2 that connects the midpoints of the other
two edges (?XZi and-.

Set the scalar value at the center of F, c, so that the inter-
section of the high-resolution isosurface with F remains un-

—.changed along ml m2 (I.e., the high-resolution isoline passes
through p).

Assuming that the isovalue threshold is iso, V(Z) is the scakw value
at location x, and referring to F@ure 8(b) and (c), the scalar vrdue
at c is changed according to the following pseudocode:

/“ calculate e = scalar value at p ●/
lete=~ x {’-J + -j}
if (e > 0.5) /* Figure 8 (b) “/

let e =2x e-1
iso-exv mlet v(c) = _ (

eke /’ Figure “8(lc)e ‘/
lete=2xe

let v(c) = ‘so-~(m’) + v(ml)
endif

(a)

“D’“Eli‘n’
c - (Vl +’v3)/2

(b) (c)
m V3 V4 WJ

n m Tz Va

------------ Isomufaoo tith thr.sheld i#O

Figure 8: Modifiing the center vahte of a boundary face to ensure
continuity of the isosurface. Note that rotationally symmetric cases
have been omitted (a) isosurface intersects adjacent edges(b) and
(c) isosurface intersects opposite edges.

~fer to Figure 9. In this case the isoline passing through op-
posite edges of F intersects with two high-resolution edges of the
data set on F. There can be instances in which it is impossible to
adjust the scalar value at c so that the high-resolution isoline passes

.
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through both p and q. In our implementation, we adjust the scalar
value at c so that the isoline passes through p. This guarantees that
the LWOisolines at different resolutions coincide along at least half
the face F (along ~r in Figure 9). Hairline cracks may appear on the
other half. Figure 10 shows such a crack. We have experimentally
found that only approximately 4. 19% of mukircsolution boundary
faces, which intersect the isosurface, develop these cracks; the max-
imum area of the ttiangle forming the crack is 2.84% of the area of
the low-resolution boundary face, while the average crack area is
1.22%. We believe that these cracks do not hinder the visualization
of the data set.

(a) 1

T

i
i
i

c: p i..-------- ~----,
/

/“

l-z
am!

(b) r

I?lc:.-------~-- ----- ma

u.

‘------ ~gh-rmsolut ion isolino
— LOw-r9s01uti0n isolin.

‘------ - tigh-r.solut ion faca

Figure 9: (a) A low-resolution isoline may intersect two high-
resolution edges. (b) Our correction forces the high-resolution iso-
line to coincide with one intersection point(p) but not both. Thin
cracks may resuit.

Figure 10 An example of a minute crack generated in the iron
protein data set. (a) The global view showing the boundary of the
region where the crack exits as a green rectangle; (b) the crack mag-
nified.

Note that the modification of the data set introduced above is
easily reversible. Before performing any iteration of the forward
wavelet transform involving only the high-resolution region, the
scalar values at the centers of all faces along mukiresolution bound-
aries need to he restoted. This is done by simply setting the scalar
value at the center of a face to the average of the scalar vah2es of its
four vertices.

Our technique fills cracks by modifying sparse data values along
muhiresolution boundaries so that the high-resolution edges are
forced to coincide with the corresponding low-resolution edges.
The technique is efficient because the change at a particular ver-
tex is a function of only its immediate neighbotx and the cunent
isovalue. The change is also trivially reversible. Figure 11 shows
isosurface extraction with and without this correction applied to the
boundaries.

(a) (b)

Figure 11: Fting the cracks by modi~ing data points at bound-
aries. The yellow region is the isosurface generated at the highest
resolution; the white region is the isosurface generated from down
sampling by two levels: (a) without the correction, cracks visible
(b) Whh the correction, no cracks,

Marching Cubes Ambiguities

Up to now, we have discussed techniques to ensure continuity of
the isosurface. Note that the isosurfaces of the different resolu-
tion regions are extmcted with separate calls to the marching cubes
algorithm. An ambiguous face [13] may exist at a muMresoht-
tion boundary. In order to ensure topological consistency across
the boundary, the same disambiguation choice needs to be made at
neighboring mukiresolution cells. We use the so-called single-entry
cubical table marching cubes technique [14). In this technique, an
arlit.rary choice is used at the ambiguous face. However, neigh-
boring cells produce the same contours at the common face, thus
maintaining topological consistency.

4 Implementation

We built our system using the Visualization Toolkit (VTK) [18],
which is free Software.z The code is written using C++. Isosur-
face extraction is done using a VTK function called synchronized
tempIates, which is an improved version of standard singie-entry
cubical marching cubes. Therefore, mamhing cubes ambiguities at
mukiresolution boundaries, “Mdiscussed in Section 3.2, are taken
care of.

We buiit our biorthogonal wavelet transform fitnctions starting
with free software3 called JJFIT?ACK [3]. LJFIPACK supports
one- and two-dimensional biorthogonal wavelet transforms of ar-
bitrary order using the lifting scheme. We extended the transform
to three dimensions and reduced its computational mquiretnen~ as
explained below.

LIITPACK uses the so-called non standard technique [22] to
construct two-dimensional wavelet bases from one-dimensional ba-
sis functions. Assuming lD-Trans f orrn is a function performing
one iteration of a forward wavelet transfosm in one dimension, one
can express a forward wavelet transform in two dimensions, using
the non standard technique, algorithmically as follows:

for each row r
lD.Transf orm (r )

endfor
for each column c

lD.Transf orm(c)
endfor

Note that in the algorithm, the wavelet codicients generated
after applying the transform to the rows arc again subjected to a
forward wavelet transform when iterating over the columns. We

2Availableat htt@/www.kitwam.comMk.htmt
3Availableat httpWwww.cs.sc.edu/-femanddif@ck/
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modified the second loop of the algorithm so that lD.Trans fortn
is applied only to columns comprising data values (i.e., in two di-
mensions, we skipped over every alternate column). If the data set
size is s x s, the number of data elements that are processed by
lD-Trans form reduces from2s2 to 1.592: a factorof 25%. This
is illustrated in Figure 12. Note that this modification generatea the
same multiresolution data sets as the original algorithm. Also, the
effect of nr.dt wavelet coefficients as dkcussed in Section 3.2 re-
mains the same. The following pseudocode describes the modified
algorithm in two dimensions:

for each row r
lD.Trans form(r)

endfor
for each alternate column c

lD-Transform(c)
endfor

Note that the computation savings are even greater when going
up to three dimensions. lD-Trans f orrn is applied to only one-
fourth of the rows in the thirn dimension. Consequently, the number
of data eIements processed by lD.Trans f orm reduces from 3s3
to 1.75ss, a factor of 41.7%.

● oeoeoeoo
● 00000000
● 00000000 ● Data Point

● oeomo*oe o Wavslot Coofficiont

● oaoooooe
● oeoeoeoe
● 00000000
● oooeo*oo

F@re 12: The data set afkr applying lD_Transf orm to all the
tows. The columns comprising only wavelet coefficients need not
be further processed by lD-Transf orm.

Also note that the multidimensional wavelet transform as de-
scribed in the above pseudocode is easily parallelizable, since each
iteration of the loop can be independently executed.

Region of Interest

The user can specify a rectangular tegion defining a region of inter-
est as well as the te301ution Ievel of the two regions. Assumel andh
are the user-specified low- and high-resolution levela, respectively,
that is, the number of levels these tegions are subsampled (note that
Llog, s] > / z h). The initialization steps areas followx

1.

2.

3.

4.

Perform 1 iterations of the forward wavelet transform on
the full data set to bring it down to the user-specified low-
msolution level.

Store wavelet coefficients in the cushion region, and then md-
lify them.

Perform (1 – h) iterations of the reverse wavelet transform
only on the high-resolution region. Modify data points at the
center of boundary faces after each iteration, as described in
Section 3.2.

Perform isosurface extraction. The different resolution m-
regionsate pmcessedby separate calls to the synchronized tem-
plates function.

The resolution levels can be changed by the user, too. Assuming
1’ and h’ are the new low and high resolutions, respectively, the
following steps are performed:

1.

2.

3.

4.

5.

6.

Perform (1 - h) iterations of the reverse wavelet transform
on the old high-resolution region, restoring data values at the
center of boundary faces before each iteration, as described in
Section 3.2.

Restore the wavelet coefficients in the old cushion.

if (i’ > 1)
Perform (J’ - /) iterations of the forward wavelet trans-
form on the full data set

else if (1’ < /)
Perform (1 - l’) iterations of the reverse wavelet trans-
form on the fulldata set

~ step brings the entire data set to the new low-resolution

Store the wavelet coefficients in the new cushion and then nul-
lify them.

Perform (1’ – h’) iterations of the forward wavelet transform
only on the high-resolution region. Modify data points at the
center of boundary faces after each iteration, as described in
Section 3.2.

Perform isosurface extraction. The different-resolution re-
gions are processed by sepamte calls to the synchronized tem-
plates algorithm.

The region of interest can be interactively moved and resized.
The steps involved for this are same as above, skipping step 3 and
replacing 1’by i and h’ by h in step 5. We recognize that for step 5
in this situation, the isosurface extraction needs to be done only
in a limited number of voxels. If H and H’ are the old and new
high-resolution regions and C and C“ are the old and new cushions,
isosurface extraction need be done only in the region (H – H’) U
(~’ - If) U C U c’. We haven’t implemented this feature, but we
foresee a reduction in the isosttrface extraction times in Table 3.

5 Results

in this section we give timings and output images of our imple-
mentation on different machines. Thnings are taken on a two-
procesaorSGI octsne=~ with an MXl $t#iliCS board and 256 MB
RAM(SG), a two-processor Intel PIII with a 32 MB Mats’ox
Millennium400 video crud and 512 MB IUM, running Windows
NT*”(NT) and a two-processor httel PIUTM with a 16 MB Ma-
trox Millennium 400 video card and 256 MB W, running Red
Hat LirtuxTM (LX). We haven’t parallelized our implementation of
the wavelet transform at this stage, and the code is not o timized.

$We show results from the Rayleigh-Taylor data seL which is
a 128 x 512 x 128 regular grid. Images at different resolutions
are shown in F@ure 13 and timings listed in Table 2. We ob-
serve that the wavelet transform time increases ordy logarithmi-
cally with number of Ievela. This is as expected because the num-
ber of samples to be processed reduces by one-eighth after each
iteration. Note that the wavelet transform processes the fill high-
resolution data and therefore takes several seconds at startup, as
shown in Table 2. However, this can be considered a preprocessing
step. A change in the regions-of-interest box requires a mukiteso-
lution transform only of the high-reaohttion region. These timings
are shown in Table 3.

We now show images with a region of interest specified. In Fig-
ure 14, the region in the red box is the user-specified high-resolution

‘The Raykigh-lbylor data used in thii work was in partgeneratedby
ths DOE-SupportedASCI/Atthmce Center for Astrophysical Therrnonu-
ctearFtashesat the University of Chicago.
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Table 2: Rayleigh-Taylor data set at different resolutions. The
wavelet transform times indicated are those needed to transform
the full-resolution data set to the low resolution specified, isnd is
required only at startup.

Res.

Full
Half
Quam
One
eighth

Polygo
Count

307481
76714

r18234
3612

IWavelet Isosurface Frame
Transform Extraction Rendering
lime (sees) time (see) Time (see)
SG NT LX SG NT LX SG NT LX
NIA WA WA 15.1 7.53 4.00 0.52 1.80 1.89
6.28 11.6 2.28 1.97 0.95 0.47 0.13 0.49 0.58
7.13 13.0 2.61 0.30 0.16 0.07 .037 0.14 0.19
7.21 13.2 2.66 0.06 0.03 0.01 .015 .063 .071

[ I 1 I i t 1 I I

region. This box can be interactively moved and resized by the user.
The levels of the two resolutions can also be interactively changed..

Refer to Table 3. Every time the region of interest or the res-
olution level(s) are modified, wavelet transforms (which includes
modification of the wavelet coefficients) as well as isosurface ex-
traction are performed. These steps take only a few seconds even
with a single-threaded implementation. On the other hand, we get
big wina on frame rates. Note that the isosurfaces generated are (c) (d)

seamless between the two resolutions. Figure 15 shows a closeup
of mukiresolution boundaries. Figure 13: Isosurface of Rayleigh-Tayloc data at multiple resolu-

tions: (a) full resolution; (b) one-level subsampling (87.5% reduc-

Table 3: Rayleigh-Taylor data set with regions of interest. The
tion); (c) Two level subsampling (98.44% reduction); (d) three level
subsampling (99.8070 reduction).

above wavelet transform and isosurface extraction times are those
that &cur when the region of interest box is moved or resized.

IT@
: Low

iEi-
14(a)
02
M(b)
03
14(C)

Polygl
count

98896

49986

43766

Wavelet Isosurface Frame
Transform Extraction Rendering
Tiie (see) Time (see) Tm (see)
SG NT LX SG NT LX SG NT Lx
0.23 0.77 0.13 2.26 1.20 0.58 0.18 0.63 0.98

0.29 1.06 0.17 0.66 0.52 0.19 0+09 0.32 0.50

0.56 1.53 0.22 0.46 0.49 0.15 0.08 0.27 0.44

6 Conclusions and Future Work

We have demonstrated an efficient method for displaying seamless
mukirescdution isosurfaces interactively. The method makes use
of the power of wavelet theory to generate multiple resolutions of
the data while introducing nearly minimal error, thus allowing ex-
ploratory scientific visualization on a wide variety of machines. The
mukiresolution transform we use guarantees that the multiresolu-
tion scalar field generated is continuous in a linear sense.

Futute work includes an inspection of wavelet coefficients at dif-
ferent regions of the data se~ using them as a measure of the reso-
lution needed to faithfully represent the data and thus providing a
framework for generation of adaptive isosurfaces. Regions of inter-
est may also be defined based on the user gaze within a environment
where such information is already being collected, such as in a vir-
tual environment. In the area of remote visualization, we plan to

Figure 14: Isosurfxe of Raylei:h-Taylor dam with region of in-
terest specified os a red hex: (;I) high: t’ull resolution, Iow:half
resolution; (b) high:full rcsolu[ion, low:quarter resolution; (C)
high:full resolution, Iow:one-eighth resolution (d) high:half reso-
lution, Iow:quwler resolution.



Figure 15: Seamless multi resolution boundaries.

investigate progressive transmission of mukimsolution isosurfaces
using wavelet-based multiresolution decomposition.
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