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Abstract 

Three Dimensional Nuclear Magnetic Resonance 
Spectroscopic Imaging of Sodium Ions 

Using Stochastic Excitation and Oscillating Gradients 

Blaise deBonneval Frederick. 
Doctor of Philosophy in Biophysics 

University of California at Berkeley 

Professor Thomas F. Budinger, Chair 

Nuclear magnetic resonance (NMR) spectroscopic imaging of 23Na holds promise 
as a non-invasive method of mapping Na+ distributions, and for differentiating pools 
of Na+ ions in biological tissues. However, due to NMR relaxation properties of 23Na 
in vivo, a large fraction of Na+ is not visible with conventional NMR imaging meth- 
ods. An alternate imaging method, based on stochastic excitation and oscillating 
gradients, has been developed which is well adapted to measuring nuclei with short 

T2 - 
Contemporary NMR imaging techniques have dead times of up to several hun- 

dred microseconds between excitation and sampling, comparable to the shortest in 
vivo 23Na T2 values, causing significant signal loss. An imaging strategy based on 
stochastic excitation has been developed which greatly reduces experiment dead time 
by reducing peak radiofrequency (RF) excitation power and using a novel Rl? cir- 
cuit to speed probe recovery. Continuously oscillating gradients are used to eliminate 
transient eddy currents. Stochastic IH and 23Na spectroscopic imaging experiments 
have been performed on a small animal system with dead times as low as 25ps, per- 
mitting spectroscopic imaging with 100% visibility in vivo. As an additional benefit, 
the encoding time for a 32x32~32 spectroscopic image is under 30 seconds. 
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The development and analysis of stochastic NMR imaging has been hampered 
by limitations of the existing phase demodulation reconstruction technique. Three 
dimensional imaging was impractical due to reconstruction time, and design and 
analysis of proposed experiments was limited by the mathematical intractability of 
the reconstruction method. A new reconstruction method for stochastic NMR based 
on Fourier interpolation has been formulated combining the advantage of a several 
hundredfold reduction in reconstruction time with a straightforward mathematical 
form. This permits the determination of important image parameters, such as point 
spread function and noise propagation. 

The reduction in image reconstruction time from over 1700 hours to under 3 

hours for a 323 image has made stochastic spectroscopic imaging practical. In ad- 
dition, the active probe Q-spoiling circuits developed for this experiment can be 
added to any RF probe and used with any imaging sequence to significantly reduce 
dead time between RF excitation and sampling for short Tz experiments. 

& flw if&+ 
P'6ofessor Thomas F. Budingr 
Dissertation Committee Chair 
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Chapter 1 

Introduction 

1.1 Interest in Ions 

The principal medical use of nuclear magnetic resonance (NMR) imaging is to 
glean information about tissue structure by using contrast between various types of 
tissue in IH images. This contrast arises from differences in IH density, TI and T2 

relaxation times, and differences in flow and diffusion rates of bodily fluids. 'H is 
the nucleus of choice for most NMR imaging because its high concentration, 100% 
natural isotopic abundance, and high NMR sensitivity give a significantly higher 
signal to noise ratio than any nucleus found in the body. There are, however, many 
other NMR sensitive nuclei in the body, some of which carry functional information 
about the activity and health of cells. NMR imaging and spectroscopy experiments 
that observe these nuclei offer a non-invasive technique for monitoring metabolism 
and pathology locally and dynamically in a clinically useful way. 23Na is an NMR 
active nucleus with 100% natural isotopic abundance and a high gyromagnetic ratio; 
this and its relatively high concentration in the body give it the second highest NMR 
signal to noise ratio in the body, making it a good candidate for NMR imaging in 
vivo. The NMR properties of lH and 23Na are compared-in Table 1.1. 

The relative concentrations of certain ions inside and outside of the cell are 
critical to many of the processes of cell function. Ion balance affects the osmotic 
pressure across the cell membrane, which determines cell volume and constituent 



2 

-~ 
'H 23Na 

Concentration l l l M  39mM 
intracellular 
extracellular 
Natural Abundance 99.98% 100% 
Gyromagnetic Ratio 42.57 MHz/T 11.26 MHz/T 
Spin 1/2 3/2 
Sensitivity (relative to 'H ) 
Raw 1 0.35 
In vivo 1 0.00013 
T2 Relaxation times 30ms-2000ms 300ps-50ms 

1lmM (14mM x 80% v.f.) 
28mM (142mM x 20% v.f.) 

Table 1.1: Comparison of NMR properties of ' H  and 23Na 

concentrations, and the balance between the osmotic pressure and electrostatic forces 
establishes the membrane potential. Two of the most important ions in animal cells 
are Na+ and K+ . Fully one third of the energy used in animal cells is devoted to the 
ATPase which pumps Na+ out of the cell while pumping K+ in (70% in electrically 
active cells) to  maintain Na+ and K+ gradients across the cell membrane[l]. These 
Na+ and K+ gradients are responsible for driving many of the transport systems 
which bring substances in and out of the cell. Any stress on the cell which inhibits 
metabolism will cause this gradient to change, and a method of determining the 
relative and absolute concentrations of these ions inside and outside of the cell has 
great potential for indicating pathology in tissue. Of the two nuclei, 23Na is more 
practical to study clinically with NMR, as it has a much higher sensitivity in vivo. 

1.2 Medical Applications of Sodium Imaging 

The potential of 23Na imaging in medicine has already been demonstrated in the 
study of the brain, heart, and kidney. Clinical 23Na images have shown significant 
promise in detecting brain lesions which are essentially invisible in 'H images by 
seeing dramatic changes in the amount of extracellular Na+ in damaged tissue[2]. 
Spectroscopic studies which monitored intracellular/extracellular Na+ concentration 
ratios in perfused hearts dynamically during and after ischemia[3] and statically 
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postmortem[4] have shown that these concentration ratios can be used to  predict 
whether or not reperfused tissues will recover hom ischemia and regain full con- 
tractile function. Sodium imaging has also been used to track the 3D distribution 
of Na+ in the kidney in vivo[5], which allows the monitoring of kidney Na+ under 
different physiological stresses. 

The clinical utility of 23Na imaging has been limited by relatively long imag- 
ing times which are due to low signal to noise ratios and the low (and sometimes 
indeterminate) visibility parameter - the 23Na signal in many physiological environ- 
ments relaxes away so quickly it is “invisib1e”or greatly attenuated in conventional 
images. This makes these images somewhat qualitative; anomalous features can be 
detected but not characterized. While the technique is still useful without quan- 
titative measurement, there is another area where quantitative Na+ imaging could 
provide information impossible to obtain by any other means. There are indications 
that brain Na+ concentration ratios are disturbed in some types of mental illness, 
such as bipolar illness[6]. There has been little experimental exploration of this area, 
however, because there are no non-invasive techniques for measuring these concen- 
trations in vivo. Therefore this hypothesis has not been unequivocally tested, and 
is currently of no use clinically. If this hypothesis could be confirmed or disproved, 
this would increase the understanding of the physical bases of mental illness, and 
would provide a non-invasive physical diagnostic tool for mental illness. These con- 
ditions can currently only be diagnosed behaviorally; there are no direct diagnostic 
methods. Therefore there is a strong incentive to  develop a quantitative method of 
measuring 23Na concentration. 

1.3 NMR Imaging of Ions 

There are two major difficulties in measuring the concentrations of these phys- 
iological electrolytes in vivo with NMR. The first is that the nuclear quadrupole 
moments of both 39K and 23Na give them short relaxation times when they are mo- 
tionally restricted, as they often are in the body. The short relaxation times make 
it difficult to “see” much of the 23Na and 39K in bivo. In most conventional imag- 
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ing pulse sequences, many T2 time constants have passed before any NMR signal is 
measured; in fact, the relaxation times of these nuclei are so short that the actual 
ranges of relaxation rates in vivo are unknown; for many tissues, only an upper 
bound for T2 is known. There is, however, some evidence from data on packed, Na+ 
loaded yeast cells[7], that 300ps may be the lower bound for intracellular 23Na T2. 

For an NMR technique to  be able to estimate the distribution of Na+ in the body, 
the experimenter must either have 100% 23Na visibility or be able to confidently 
calculate what the visibility factor is for a given experiment for each compartment 
of physiological interest. Rooney and Springer have calculated and verified that 
100% visibility of 23Na with a T2 of 300,~s requires a dead time before sampling of 
<25ps [ 81. 

The second major difficulty is in differentiating the NMR signatures of these 
electrolytes. The resolution of NMR imaging techniques depends on many factors, 
but the major determinant of voxel size is the signal to noise ratio attainable in a 
reasonable amount of time. Imaging 23Na in a fair sized animal in vivo cannot ap- 
proach cellular resolution by many orders of magnitude (a typical reported voxel size 
is 0.36cm3) [2]. Therefore, intracellular and extracellular Na+ must be distinguished 
by NMR parameters rather than by directly resolving them spatially. Because the 
electrolytes exist as free ions, there is no chemical shift information in the spectra 
of the ions in normal physiological conditions. One way to differentiate ions in dif- 
ferent environments (Le. between the intracellular and extracellular compartments) 
is through the use of paramagnetic shift reagents such as dysprosium. Ions that 
can bind temporarily to these reagents experience a large magnetic field due to the 
unpaired electron in the dysprosium, changing their average resonance frequency. 
These reagents do not penetrate the cell membrane, however, so only extracellular 
Na+ is affected, offering a way to distinguish the two compartments. Unfortunately, 
current shift reagents are cardiotoxic, limiting their use in humans. Also, they are 
not likely to be isotropically distributed in the extracellular spaces in intact tissue. 
This is especially true in the brain, due to the blood-brain barrier. Therefore, an 
experimental protocol which did not rely on shift reagents would be preferable. 

There are two other proposed methods for separating various Na+ compartments. 
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The first is the use of multiple quantum filters, which detect the coherences between 
non-adjacent energy levels in nuclei with more than two levels ( 23Na and 39K have 
spin 3/2; they have 4 energy levels when the nuclei are placed in a magnetizing field). 
These coherences develop when the quadrupolar field of the nucleus interacts with 
electric fields that do not average to zero in a time short compared to the nucleus’ 
NMR precession period. This happens when nuclei are motionally restricted, as they 
are in the intracellular medium. However, these signals are a s  much as ten times 
smaller than the single quantum signals, and require significant signal averaging to 
discern, which may limit the clinical utility of this technique. 

The last method for distinguishing 23Na in different environments is relaxome- 
try - measuring the distribution of relaxation times and estimating the amount of 
23Na with each T2. 23Na in the intracellular medium in general has much shorter 
relaxation times than the extracellular environment because of longer correlation 
times for the Na+ ions and larger electric field gradients, although exactly what the 
distributions of T2 are is not known[9]. An imaging method which preserves the free 
induction decay signal (FID) at every voxel allows the experimenter to estimate the 
populations with various relaxation times within the voxel, and therefore to form 
spatially resolved maps of these populations. These maps, coupled with information 
about the extracellular volume fraction can be used to estimate the intracellular 
and extracellular Na+ concentration. The feasibility of “relaxographic” imaging has 
been demonstrated (for lH) by Labadie, et  aZ[lO]. This technique has the advantage 
of making use of the single quantum signal, and is perhaps the most straightforward 
way to do the experiment, as it measures all the 23Na simultaneously. 

1.4 Goals 

Current imaging methods are not well adapted. to quantitative sodium imaging. 
The goal of this thesis is to develop an NMR imaging method which can be used 
for clinical relaxographic 23Na imaging. An ideal imaging method for this purpose 
must satisfy the following criteria: 
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1. The imaging method should allow the collection of spatially resolved T2 relax- 
ation data. 

2. The imaging method must have a very short dead time before sampling (less 
than 25ps). 

3. The imaging method must be implementable on a clinical system and have a 
sufficient signal to noise ratio to complete an experiment in a tolerable amount 
of time (less than one hour). 

Spectroscopic NMR imaging with stochastic excitation and oscillating gradients 
can fulfill all of these requirements. Stochastic NMR imaging can measure the time 
evolution of spins resolved in three dimensions. The data contain all of the infor- 
mation necessary to reconstruct spatially resolved spectra or free induction decay 
signals. The latter can be used to determine the T2 relaxation components in each 
voxel of an object, much like a chemical shift imaging (CSI) experiment. Unlike CSI, 
however, the very low dead time to sampling required for 23Na imaging is easily ob- 
tained. With a few modifications, a clinical spectrometer can perform the stochastic 
experiment. Experiments on physiological phantoms. indicate that acceptable signal 
to noise levels are obtainable in reasonable examination times. 

This thesis will demonstrate the feasibility of implementing a clinical 23Na imag- 
ing experiment based on stochastic NMR. Chapter 2 will review the theoretical basis 
for the stochastic imaging experiment, Chapter 3 will describe the particular imple- 
mentation of the experiment. Chapter 4 will develop and analyze a reconstruction 
algorithm for producing three dimensional spectroscopic images from stochastic data 
sets. Chapter 5 will present the results of simulations to validate the experiment, and 
Chapter 6 will present the results of experiments performed on a 2.35T horizontal 
bore imaging system, demonstrating the real-world performance of the technique. 
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Chapter 2 

Stochastic NMR 

2.1 Introduction 

This chapter describes the concepts underlying the stochastic NMR experiment. 
Section 2.2 provides some background on NMR fundamentals, describing the physical 
phenomenon and how it can be used to determine chemical and physical properties of 
samples by observing differences in NMR spectra. Section 2.3 describes the various 
experimental methods for deriving NMR spectra. Section 2.4 examines the motiva- 
tion for performing a stochastic NMR experiment. Finally, Section 2.5 describes how 
the stochastic spectroscopic experiment can be extended into an imaging technique. 

2.2 Background 

The nuclei of many isotopes have a non-zero spin angular momentum quantum 
number, I. Because nuclei are charged, this spin leads to a nuclear magnetic moment, 
p. When these nuclei are placed in a magnetic field, the projection of the magnetic 
moment along the applied field direction (which by.convention is the z axis of the 
system) is quantized into 21 + 1 states which differ in energy by ZpBo, where Bo is 
the applied magnetic field. 

It is usually more convenient in NMR to characterize a nucleus’ magnetic moment 
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in terms of the gyromagnetic ratio y: 

2TlJ 
I h  

y = -  

where h is Planck’s constant. Because of their angular momentum, nuclei placed 
in a magnetic field do not simply align with the applied field, they instead precess 
around the field at  a characteristic frequency ?BO, known as the Larmor precession 
frequency. This nuclear precession is the basis of NMR spectroscopy. 

Nuclear magnetic resonance experiments measure the properties of a spin system 
by determining the spectrum of NMR resonances near the Larmor frequency of the 
nucleus being studied. When the spin system is in equilibrium in a static magnetic 
field, all of the spins have random projections in the xy plane; the net magnetiza- 
tion is aligned with the z axis. Energy is put into the system by exciting it with a 
radiofrequency (RF) magnetic field; this induces transitions between the magnetic 
energy levels which rotates the net magnetization vector around the applied field 
direction. The resultant magnetization vector precesses in the xy plane at the Lar- 
mor frequency. The xy component of the field can be detected by an RF resonator. 
The spin system radiates radio frequency energy as the spins relax back to the low 
energy configuration. This radiated signal is digitized and processed to determine 
the properties of the spin system. 

The chemical and physical environment of each nucleus will affect its Larmor 
precession. Modifications of the density of the electron cloud around a nucleus 
(by chemical bonds between atoms) will change the local Bo that impinges on the 
nucleus. This is manifested as slight differences in the resonance frequencies (on the 
order of parts per million) of populations of nuclei in different chemical residues. 
This is known as chemical shift (denoted a). For instance, hydrogen nuclei in lipids 
have a resonance frequency different from the nuclei in water molecules. 

Also, the coupling of pools of nuclei to the lattice (a term referring generically to 
other energy storage modes in surrounding medium) and to each other will determine 
how long it will take the nuclei to relax back to their ground state so that they can 
be reexcited, and how long a group of nuclei that, are precessing will remain coherent 
in their precession so that they produce a net magnetic field that can be observed. 
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These properties are known respectively as longitudinal (TI) and transverse (T2) 

relaxation times. 
Chemical shift, relaxation times, and other properties are usually examined in 

the spectral dimension and are reflected in the amplitude, phase, relative position 
and width of resonance lines. These resonance characteristics in turn can indi- 
cate chemical and physical properties of the system being studied, such as chemical 
composition and concentration, physical environment of chemical species, rates of 
dynamic processes like proton exchange, flow and diffusion rates, et cetera. 

Spatial information can be encoded into the NMR signal with the addition of 
spatial magnetic field gradients. These gradients alter the local polarizing field Bo, 
which in turn changes the Larmor frequency of the nuclei in different parts of the 
sample. This spatial information encoding can occur during either the excitation of 
the sample, the measurement, or both. For example, a two dimensional region of an 
object can be selectively excited by applying a magnetic field gradient while exciting 
the sample with a narrowband RF pulse. When the gradient field is applied, the 
resonance frequency of the spins in the sample will vary over a range determined by 
the strength of the gradient. By applying a narrowband FU? pulse, only a fraction 
of these spins which experiences a particular range of local Bo will be resonant with 
the applied field; therefore only a slab of magnetization will be excited. Similarly, 
if a gradient is applied to a group of spins which is already excited, and while 
the signal is being measured, the resonance frequency change will affect the signal 
measured from the sample; the resonance frequency of a spin indicates its position 
along the gradient (this is known as frequency encoding). If the gradient is applied 
transiently between excitation and measurement, the relative phase of the spins will 
be altered in the recorded signal (this is called phase encoding). By applying the 
proper set of gradient values during an NMR experiment, the NMR parameters 
described above (and the underlying physical and chemical properties that cause 
them) can be resolved into images. 
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Figure 2.1: Schematic representation of the continuous wave (CW) NMR experiment. The 
R F  input to the apparatus is a continuous signal which is slowly swept in frequency. The 
reflection properties of the probe are recorded over the frequency range and measure the 
NMR spectrum directly. 

2.3 Spectroscopy 

NMR spectra are measured by placing a sample in an RF resonator (probe) 
which can transmit and receive RF energy polarized in the plane perpendicular to 
the polarizing field Bo. A strong static magnetic field Bo (typically 0.5 - 14T) is 
imposed on the apparatus to polarize the nuclei in the sample and causes them to 
precess at the Larmor frequency. The RF probe is tuned to this frequency, and the 
RF properties of the sample are measured. 

The first method employed to determine NMR spectra was a direct frequency 
domain technique. A continuous wave (CW) single frequency RF signal is transmit- 
ted into a probe, and the reflection characteristics of the probe-sample system are 
measured. The excitation frequency is slowly scanned over the range of interest, and 
the resonator reflection coefficient changes as the spin system comes into resonance 
with the RF. This method, while straightforward, has a numbei of disadvantages. 
One is technical; it is difficult to average signc* to increase sensitivity. The other 
limitation is the slowness of the technique - the scanning must be slow enough to 
give an accurate representation of the spectrum (the “slow passage condition”). The 
result is that a large fraction of the experiment time is spent traversing regions of 
the spectrum that have no resonances, which makes the technique inefficient. The 
CW experiment is shown schematically in Figure 2.1. 
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In 1966 Ernst[ll] introduced 
ficient method of determining a 
of RF energy (usually 10 to 100 

Fourier transform NMR (FT-NMR) as a more ef- 
spin system’s characteristics. A broadband pulse 
microseconds long) is transmitted to the probe to 

excite the nuclei; the probe is then switched to receive mode, and the response of 
the system (the Free Induction Decay, or FID) is recorded. This time domain signal 
is the impulse response of the spin system - which is the Fourier transform of the 
spectrum. Therefore the spectrum can be derived from the measured signal by a 
Fourier transform operation. FT-NMR excites all of the resonances in parallel, and 
records all of the responses simultaneously. The Fourier transform separates the 
responses into distinct spectral lines. This is a much more efficient process than 
single frequency scanning, as no additional time is spent exciting the spin system in 
frequency bands where there is no response to measure. The FT-NMR experiment 
is shown schematically in Figure 2.2. 

When discussing pulsed RF NMR techniques, it is convenient to introduce the 
concept of the “flip angle” (a). The flip angle is a measure of how much magne- 
tization is rotated from the z axis into the xy plane by an RF pulse. The ratio 
of the xy magnetization resulting from an RF pulse to the starting magnetization 
along the z-axis is the sine of the flip angle. A 90” pulse rotates all of the avail- 
able magnetization along the z direction into the xy plane, therefore producing the 
maximum measurable signal. Once magnetization is rotated into the xy plane, the 
z magnetization grows back as e-tlT1. Therefore, subsequent pulses will have less 
initial magnetization to rotate into the xy plane for detection. The optimum sig- 
nal to noise ratio per unit experiment time is achieved when the time between RF 
pulses (TR) is comparable to the TI of the spins being studied. The flip angle which 
produces the maximum signal to noise ratio per unit time is called the Ernst angle: 

Ernst[l2] and Kaiser[lS] independently proposed yet another way to  obtain NMR 
spectra in 1970; the use of stochastic excitation. The impulse response of a linear 
system can be derived by exciting the system with Gaussian white noise and cross- 
correlating the input and output signals. Although the NMR system response is not 
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Figure 2.2: Schematic representation of the Fourier Transform (FT-NMR) experiment. 
The RF input to the apparatus consists of broadband pulses. After each pulse, the RF 
signal (the FID) from the sample is measured in the time domain. The FID is Fourier 
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Figure 2.3: Schematic representation of the stochastic NMR experiment. The R F  input to 
the apparatus consists of a train of random broadband RF pulses. The voltage on the probe 
is sampled after each pulse. The input signal is crosscorrelated with the output signal to 
give the FID, which is then Fourier transformed to give the NMR spectrum. 

truly linear, it can be treated as linear for sufficiently small excitations[l2, 13, 141. 
As with FT-NMR, all resonances are excited simultaneously and encoded into a time 
domain signal. The stochastic NMR experiment is shown schematically in Figure 
2.3. The total excitation power integrated over the course of the experiment is com- 
parable to that of an FT-NMR experiment. The expression for the average pulse 
excitation angle for optimum signal to noise ratio in the stochastic experiment is 
given in Equation 4.4. This equation is similar to 2.2, with the difference that aErnst 

refers to the root mean square flip angle in the stochastic case. 
Mathematically, measuring the impulse response of a linear system directly or 

through crosscorrelation is exactly equivalent. Ernst showed that the the signal 
to noise ratio of the optimum stochastic NMR experiment is equal to that of the 
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optimum FT-NMR experiment[lZ]. Thus at first sight it would seem that the sig- 
nificantly higher level of complexity of the stochastic experiment is unwarranted. In 
many practical situations, however, the optimum FT-NMR experiment is impossible 
to perform for a number of reasons, such as hardware or safety limitations on allow- 
able peak RF power, or dead time in the receiver hardware following transmission 
of an RF pulse. Stochastic NMR experiments have a very different set of tradeoffs 
that make the technique very well suited to some spin systems that are difficult to 
study with conventional FT-NMR. 

2.4 Advantages of Stochastic Excitation 

The most obvious difference between stochastic excitation and FT-NMR is that 
while the total RF excitation energy applied during the experiment is about the 
same, the excitation duty cycle is very much higher in the stochastic experiment 
since the R F  excitation is essentially continuous. As a result, the instantaneous 
power applied to the system can be very much smaller using stochastic excitation. 
This has the benefits of reducing the demands on RF components, such as probe 
breakdown voltage and peak amplifier power. The largest benefits, however, result 
from the reduction of system dead time. 

The RF resonators used in NMR are high Q structures which store RF energy 
quite efficiently. As a result it takes some time for residual RF energy to  dissipate 
after a pulse is applied to them. The peak power transmitted to the probes is often 
on the order of kilowatts for in vivo FT-NMR. This means that several thousand 
volts can be resonating in the probe after the excitation pulse is delivered. Typical 
induced voltages from the nuclei in the probe are on the order of microvolts, many 
orders of magnitude less than the residual RF voltages left over from the excitation. 
Also, high gain preamplifiers which are used in NMR imaging are easily saturated 
by signals much larger than the expected NMR signals. It c.an take hundreds of 
microseconds for the RF probe and receiver electronics to recover from a high power 
transmitted pulse to the point where the induced NMR signal can be observed. For 
many nuclei this is not a problem; however, for nuclei such as 23Na, where the T2 
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relaxation time is short (a few milliseconds and below), the dead time in the RF 
electronics can have a serious impact on the signal to noise ratio of the experiment. 
Much of the strongest NMR signal will have decayed away before the data are 
recorded. 

NMR with stochastic excitation reduces the peak RF power by approximately 
three orders of magnitude relative to an FT-NMR experiment, which dramatically 
reduces the recovery time of the RF system. The dead time from excitation to 
sampling in the sodium experiments presented here are on the order of 20ps to 30ps, 

which means that even for the shortest T2 expected in vivo there will be negligible 
signal loss before the onset of sampling. As a result, the imaging method is expected 
to have 100% visibility factor for sodium in vivo. 

2.5 Extension to Imaging 

The stochastic NMR experiment is not limited to performing spectroscopy. In 
1984 Bliimich proposed extending the stochastic experiment to include time varying 
gradients to perform imaging experiments[l5]. He initially proposed using random 
gradients as a method of covering k-space while acquiring data, and developed a 
method of reconstructing images from the data sets using a crosscorrelation and 
averaging technique. This imaging method, however, was somewhat impractical due 
to transient eddy current response; he later modified the proposed experiment to 
use nonrandom sinusoidally oscillating gradients in three orthogonal dimensions[ 161. 

In 198’7, Roos and Wong extended the analysis of stochastic NMR to demon- 
strate how a spectroscopic imaging experiment could be performed using stochastic 
excitation and oscillating gradients[l7]. This involved modification of the crosscorre- 
lation method to include a weighting function which would correct for the sampling 
density of the gradient trajectory, and allow the signals with different chemical shift 
evolution times to be separated. They also performed a detailed analysis of the 
relationship between T2 , gradient parameters, and the resulting image quality. 

The most serious obstacle to practical application of stochastic NMR imaging at 
this point was the difficulty of reconstruction. The weighted crosscorrelation method 
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is computationally expensive, and the reconstruction time grows linearly with the 
number of image voxels. In addition, the mathematical form of this reconstruction 
algorithm makes analysis of reconstructed image parameters quite tedious for all but 
the simplest gradient trajectories. 

A much more efficient and easily analyzed reconstruction method for stochas- 
tic NMR experiments has been developed which is based on Fourier gridding, a 
technique for resampling arbitrarily spaced Fourier domain data onto Cartesim 
grid. Originally developed for radioastronomy, Fourier gridding has been applied 
to conventional NMR data in the last few years to allow the use of new sampling 
trajectories[l8, 191. The technique has been extended here to  reconstruct stochastic 
NMR data. The new reconstruction method reduces reconstruction time by almost 
three orders of magnitude, and is quite amenable to detailed analysis of the relation 
between the choice of experimental parameters and the resulting images. The new 
reconstruction algorithm is described in detail in Chapter 4. 
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Chapter 3 

Materials and Methods 

3.1 Introduction 

This chapter will describe the procedures and apparatus used for performing the 
stochastic NMR imaging experiment. In order to perform a spectroscopic stochastic 
NMR imaging experiment, there are a number of criteria that need to be satisfied by 
the RF and gradient waveforms. The major requirements on the RF sequence are 
that the individual RF pulses be broadband enough to excite all of the resonances in 
the spin system, and that the correlation properties of the train of pulses in the noise 
sequence allow for unambiguous reconstruction of an estimate of the spin density of 
the sample from the received signal. The gradients used in the experiment must fully 
sample the four dimensional k,t-space representation of the sample over the course 
of the experiment. The specific choice of RF sequence and gradient trajectory are 
independent and quite flexible. This flexibility allows the experimenter to  base the 
choice of RF and gradients on practical considerations such as ease of generation, 
eddy current minimization, hardware limitations, and ease of reconstruction. Section 
3.2 will describe the RF and gradient waveforms tailored to observing short T2 

nuclei, which will be used for the experiments presented. The effect of the physical 
properties of the spin system being studied on the choice of experimental parameters 
will be discussed. Section 3.3 will describe the hardware used to carry out the 
experiments, including descriptions of special hardware required, and Section 3.4 
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Figure 3.1: Pulse sequence of the stochastic experiment. sn is the n th  pseudorandom RF 
pulse, G n  is the gradient under which the magnetization evolves, and yn is the NMR signal 
at the sampling time nTR. 

will discuss special spectrometer calibrations which must be performed in order to 
do the stochastic imaging experiment. 

3 2  Experiment Parameters 

3.2.1 Pulse Sequence 

The stochastic NMR experiment is diagrammed in Figure 3.1. The basic pulse 
sequence repeats throughout the course of the experiment (Figure 3.2): a new gra- 
dient value is asserted along all three axes, a short RF pulse is transmitted, and a 
data sample is taken after a period (e.g. 10-3Ops) to  allow for active and passive 
RF hardware recovery. This sequence repeats with a period TR (usually 50-loops) 

determined by the bandwidth of the signal from the spin system evolving under the 
gradients (Section 3.2.4). The RF pulse amplitudes and phases and the sequence of 
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gradient values determine the characteristics of the experiment. 

3.2.2 RF Noise Sequence 

The RF noise sequence used in the stochastic experiment is assumed to meet 
three conditions: 

1. Each pulse excites all spins in the system 

2. The repetition time of the noise sequence is long compared to T1. 

3. The autocorrelation of the excitation sequence is a delta function in the time 
domain. 

The first requirement for the RF excitation is that each pulse be broadband 
enough to excite the entire spin system. This is accomplished by using short hard 
pulses. Typical RF pulses are 3ps to 15ps long, giving single pulse excitation band- 
widths of 67kHz to 333kHz. These bandwidths are typically 3 to 60 times the 
bandwidth of the spin system evolving under the gradients which are used for spec- 
troscopic imaging. 

The second and third conditions are on the properties of the overall sequence 
of pulse amplitudes and phases. In order to uniquely reconstruct the k,t-space rep- 
resentation of the spin system using the Fourier gridding crosscorrelation method 
described in Chapter 4, the noise sequence must satisfy two conditions. First, for 
a noise sequence which repeats, the repeat time must be longer than 5 times the 
longest T1 in the spin system to avoid setting up steady state magnetization which 
would lead to artifacts in the reconstruction. This consideration is easily met for 
even long T1 values and short TR values. For example, a sample with a T1 of 5 
seconds and a TR of 50ps (an extreme case) would require a noise sequence at least 
500,000 points long, which is quite practical. In an in vivo sodium experiment, T1 
values will be less than 100 ms, so a repetition time of >10,000 points is sufficient. 

The last condition on the RF noise sequence is that the autocorrelation function 
of the sequence should be a delta function. This condition is necessary to be able 
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Figure 3.2: Single cycle of the pulse sequence for the stochastic imaging experiment. For 
a typical sodium experiment, TRF = 1 5 p ~ ,  T ~ s p  = 1.&~, TRecover = lops,  Tint = 32ps, 
TSamp < < I P S ,  TXwarm = 4psj TR = TRF + TQSP + TRecover + TInt  + Txwarm =75W- 
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to uniquely reconstruct the object density from the received signal. Each data sam- 
ple contains information from different chemical shift evolution times and k-space 
positions; the validity of the reconstruction method for forming a k,t-space image 
estimate relies on the fact that the noise sequence has a delta function autocorre- 
lation (see Section 4.4). In practice, this last condition is very difficult to attain 
exactly. The Ta of the spins in the sample will weight the autocorrelation function 
so that spins with different T2 values will see digerent noise sequences from the same 
excitation. Also the gradients will affect the excitation values included in the auto- 
correlation differently for every position in k-space. At best one can choose a noise 
sequence which is relatively free from high order autocorrelations, with the result 
that for any given combination of points from the noise sequence the autocorrelation 
is “delta function like”. 

One class of RF modulation functions which satisfies these conditions is quadra- 
ture phase modulation using pairs of binary maximum length sequences (MLS). 
MLS generators provide a sequence of pseudo random bits with desirable autocorre- 
lation properties. An RF pulse of constant amplitude is phase modulated between 
45”(+X+Y), 135”(-X+Y), 225”(+X-Y), and 315”(-X-Y). The sign of the phase along 
each axis is selected by a bit output from a separate MLS generator. This modu- 
lation scheme was examined in detail by Wong [14], and found to be quite effective 
for stochastic NMR. MLS’s are attractive because they are very easily generated in 
simple hardware using a shift register, or in software using bit manipulation opera- 
tions. Digital signal processing chips can generate the two random bit values needed 
for the RF envelope in real time at the highest excitation frequencies used for the 
experiments presented (20,000 phase values/second) . 

Maximum length sequences are specified by three integers: the number of terms 
in the generating polynomial, the “mask value” (which specifies compactly which 
terms of the generating polynomial have non-zero coefficients), and the seed, which 
specifies the starting state of the generator. The number of terms in the generating 
polynomial determines the repeat time of the sequence; an MLS with N terms repeats 
after 2N - 1 points. The experiments described here use 19 term MLS sequences, 
which repeat in 524287 points, which will always be longer than 5 TI values for any 
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practical sodium experiment. Different mask values specify different bit sequences 
of this length, and the seed determines the starting point within a given sequence. 
For simplicity these experiments use the same mask value for both bits of the phase 
selection, but start the generator at different seed values which are 2N-1 points apart 
in the bit sequence. 

3.2.3 Gradient Trajectories 

The gradient trajectory used in the stochastic experiment must satisfy the fol- 
lowing conditions: 

1. Itispace must be critically sampled over a simply connected region. 

2. Each point in k-space must be critically sampled in the time domain to allow 
spectral reconstruction. 

3. Gradient slew rates must be within hardware and safety limitations. 

4. Eddy currents should be minimized or fully characterized to eliminate dead 
time due to gradients. 

All of these conditions can be met through the use of gradient waveforms based 
on one dimensional periodic oscillating gradients. Periodic waveforms retrace them- 
selves over a region of k-space through the origin, providing k-space samples, of 
arbitrary density along a line. They also revisit the same region in k-space at least 
once per cycle, so if the oscillation frequency is at least equal to the chemical shift 
bandwidth of the system, k,t-space will be adequately sampled to  reconstruct a 
spectroscopic image. Periodic waveforms are easily generated by resonant hardware, 
so very large gradient slew rates can be achieved with relatively low power input. 
Finally, periodic gradients by necessity have steady state eddy currents. 

Roos and Wong[l7] examined the special case of sinusoidally oscillating gradi- 
ents, which have very desirable characteristics from the point of view of eddy currents 
and ease of generation. Unfortunately, the k-space sampling density which results 
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from using a sinusoidal gradient and equal time 
pling density is strongly peaked at high spatial 

sampling is not uniform; the sam- 
frequencies. This leads to uneven 

distribution of measurement noise power in the reconstructed image, and uneven 
cancellation of systematic noise arising from stochastic excitation. Two methods 
were considered for modifying sinusoidal gradients to correct the sampling density 
while preserving the ease of generation and the steady state eddy current behavior. 

3.2.3.1 Truncated Square Wave (TSW) Gradients 

Because periodic gradients will always have steady state eddy currents, a periodic 
gradient can have an arbitrary shape depending on the sampling density required. In 
particular, a much more uniform sampling density can be obtained by adding odd 
harmonics to the fundamental sinusoid to generate an approximation to a square 
wave gradient, as shown in Equation 3.1. 

The peaking of the sampling density at  high spatial frequencies is greatly reduced by 
adding more harmonics to the gradient, but it also increases the maximum gradient 
slew rate. The experiments analyzed and presented in Chapters 5 and 6 using 
truncated square wave gradients use the first three components (zmm = 3). This 
number of harmonics represents a good compromise between the even sampling 
density of square wave gradients and the limited slew rate of sinusoidal gradients. 
The sampling density of this class of one dimensional periodic gradients will be 
analyzed in more detail in Section 4.6.2. 

3.2.3.2 Amplitude Modulated Sinusoidal (AMS) Gradients 

A different approach to correcting the sampling density of a sinusoidal gradient 
is to slowly modulate the amplitude of the oscillating gradients [21]. Changing the 
gradient amplitude gives sampling patterns of the same shape but covering different 
extents in k-space. The lower sampling density near the origin of k-space can be 
corrected by emphasizing smaller gradient amplitudes in the modulation function. 
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(a) Gradient waveforms 

(b) k-space trajectories 

-3 -2 E 
(c) Gradient slew rates 

Figure 3.3: One dimensional gradient waveforms generated by Equation 3.1. (a) shows 
the gradient Waveforms for i,, of one, two and three. (b) shows the resulting k-space 
trajectories ( in  arbitrary units) and (e) shows the gradient slew rates (again in arbitrary 
units). 
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The modulation must be slow relative to the period of the sinusoid to keep the shape 
of the sinusoidal sampling density constant. In a typical experiment, the oscillation 
frequency will be 200-1000H2, and the modulation period will be on the order of a few 
seconds. This yields a flat spatial noise power spectrum in the reconstructed images. 
Because the modulation is very slow compared to the time for eddy currents to come 
into equilibrium, steady state eddy currents are preserved, and resonant gradients 
can still be employed. 

3.2.3.3 AMS Modulation Function 

A stochastic NMR experiment has (in general) a different sampling pattern for 
every time point q in the reconstructed FID image (see page 51). For a stochastic 
experiment with a sinusoidal gradient and a constant sample period, the number of 
samples at a location in k space for a time point q is proportional to: 

1 

where kgaX is the maximum extent in k-space for a given time point t,. This sampling 
pattern is shown as the dashed line in Figure 3.4. 

To construct an envelope function which .fills in the center of k-space, we make 
kg,, which is proportional to the amplitude of the sinusoidal gradient (G), a func- 
tion of time. A G(t) of the form: 

. .  

c o  otherwise 
(3.3) 

yields a constant sampling density in k when integrated from 0 to t,,, where t,, is 
long compared to one period of the sinusoidal gradient. This function can be made 
periodic by convolving it with a series of delta functions spaced t,, apart. If the 
total experiment time is a half integral number oft,,, long, the sampling density 
will be constant over the range -kmUx to k,=. The modulated waveform is shown 
in Figure 3.5, and the resulting sampling density is shown as the solid line in Figure 
3.4. 
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0 .5 1 

Figure 3.4: Normalized sampling density over range -&, &= with sinusoidal gradient 
(dashed) and modulated sinusoid (solid). Histogram shows the distribution of 10.48576 
sample points distributed over 104 bins. 

Figure 3.5: Sine wave modulated by periodic G(t) from time 0 to 5tmm (solid line). The 
frequency of the sinusoid is reduced fo r  clarity. In an actual experiment, tm, >> one 
oscillation period. The modulation function is the dashed line. 
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3.2.3.4 Gradient Oscillation Frequency 

The frequency of the gradient is determined by the chemical shift bandwidth of 
the sample. 23Na has no natural chemical shift in vivo. However, there are two 
sources of chemical shift bandwidth to the sodium system: T2 relaxation and shift 
reagents. As mentioned before, the shortest relaxation component of sodium may 
be as low as 300,~. This leads to a linewidth of approximately 1000Hz. Therefore 
the oscillating gradient frequency may need to be as high as lOOOHz for some in 
vivo experiments to fully capture the short relaxation signal. The effect of shift 
reagents is usually somewhat less; on the order of a few hundred Hz, so the T2 value 
will usually determine the minimum useful gradient frequency. The experiments 
presented here use gradient oscillation frequencies of approximately 500 to 600Hz. 

3.2.3.5 Extension to Three Dimensions 

There are many ways to extend a one dimensional oscillating spectroscopic imag- 
ing experiment to three dimensions; two methods will be examined here. These 
trajectories are chosen for ease of generation, and for the fact that they allow the 
oscillating part of the gradient and the method of extension to three dimensions to 
be considered separately; the requirements on gradient frequency and strength are 
the same for a one dimensional and a three dimensional experiment. 

The first method is to rotate the direction vector of the oscillating gradient so 
that it slowly traces out a spiral on the surface of a sphere. This is essentially a 
three dimensional projection experiment. Over short time scales, this trajectory 
repeatedly samples a line in k-space through the origin. Over the course of the 
experiment, the direction of this line rotates to sample all solid angles. The resulting 
sampling pattern is a sphere in k-space. If the rotation is very slow compared to 
both the oscillation frequency of the gradient and to the longest time constants of 
eddy currents in the magnet bore, the rotation does not invalidate the assumption 
of steady state eddy currents. 

The second method of extending oscillating gradients to three dimensions consists 
of simultaneously applying periodic oscillating gp-adients which are not harmonically 
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related along the three Cartesian axes (called “incommensurate frequency oscillating 
gradients” , after Bliimich[l6]). The incommensurate frequency gradients trace out a 
three dimensional Lissajous pattern, giving a cubical sampling patterns in k-space. 
By proper choice of the relative frequencies of the oscillating gradients and the 
sampling frequency, the sampling density in k,t-space can be made very uniform. 
The relation of the gradient trajectory to the point spread function and the noise 
characteristics of the reconstructed image are examined in Sections 4.5 and 4.6. 

As a practical matter, the second method, incommensurate gradients, is more 
desirable for these experiments, for a number of reasons. The first is that the overall 
k-space sampling density can be made uniform in three dimensions for all time 
points, which is very difficult to do using the rotating oscillating gradient trajectory; 
also, the point spread function is the familiar three dimensional sinc, which has 
well understood sidelobe properties. Also, because the gradient functions along the 
three axes are independent, their eddy currents and phase shifts can be mapped and 
compensated independently (using the procedure described in Section 3.4.1). 

The sampling density of a one-dimensional stochastic imaging experiment with 
an unmodified sinusoidal gradient varies by a factor of 8 from the centeroto the edges 
of k-space. In a three dimensional incommensurate frequency oscillating gradient 
experiment, most of the sampling density is concentrated in the eight corners of a 
cube in k-space, where there is little object information; the sampling density at the 
origin of k-space is only 25% of the average value, and 1/64th of the peak value. 
Flattening the sampling pattern using the three dimensional AMS gradient leads to 
significantly reduced systematic and measurement noise in the reconstructed image 
for a given imaging time. 

If the AMS technique is used for a three dimensional experiment, care must 
be taken to keep the gradient modulation functions incommensurate in addition 
to having the oscillation functions incommensurate. If the gradients are modulated 
synchronously, the gradients cannot be considered fully independent in terms of Sam- 
pling pattern, and the flat sampling density in one dimension will not be preserved 
in three dimensions. The resulting sampling pattern is concentrated dong diagonal 
lines radiating from the origin. Since the modulation function can be made periodic, 
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Figure 3.6: Modulation functions for x, y and z. The number of modulation periods has 
been chosen so that the gradients along x, y and z are modulated asynchronously. In  this 
example the three modulation function goes through 8, 10 and 12 t,, along x, y ,  and z 
during the course of the experiment. 

the number of periods along each .axis during the experiment can be different, whicg 
eliminates the concentration of sampling along the diagonals of k-space. 

3.2.4 Sampling Frequency 

The sampling frequency required for the stochastic experiment depends on the 
amplitude of the gradient, the field of view covered, the oscillation frequency of the 
gradient, and to a lesser extent, the shape of the gradient. 

Oscillating gradients have the effect of frequency modulating the NMR signal pro- 
duced by the spin system. This modulation produces sidebands spaced at multiples 
of the oscillation frequency, with an envelope function on the sideband amplitudes 
determined by the shape of the object. The sideband amplitudes never fall exactly 
to zero; however, there is an effective bandwidth where most of the energy is concen- 
trated. A common rule adopted in communications is that sideband is significant if 
its amplitude is greater than or equal to one percent of the unmodulated signa1[22]. 
In analogy to the terminology of communications, the oscillating gradient amplitude 
and the field of view are expressed as the quantity P ,  the “modulation index”: 

Y G ~ m a x  
fo P =  (3-4) 
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where y is the gyromagnetic ratio, G is the gradient amplitude, T m a  is the maximum 
extent of the object relative to the origin along-the direction of the.gradient, and fo 
is the gradient oscillation frequency. 

For a sinusoidal oscillating gradient, the effective signal bandwidth is determined 
using Carson’s rule[l7]. The approximate bandwidth of the stochastic experiment 
with a sinusoidally oscillating gradient is therefore: 

The bandwidth of a three dimensional rotating oscillating gradient is the same 
as the sinusoidal gradient case, because the rotation frequency is very slow com- 
pared to the oscillation frequency the rotation makes a negligible contribution to 
the bandwidth. In the case of the incommensurate frequency gradient, the gradients 
can be considered independently, and the experiment bandwidth is the maximum of 
the bandwidth determined by Equation 3.5 along each of the three axes. 

Because the modulation frequency of the AMS gradients is very slow compared 
to the sinusoidal oscillation frequency, the modulation has no observable effect on 
the overall bandwidth, and Carson’s rule holds using the maximum amplitude of the 
gradient to calculate the bandwidth. 

Frequency modulation is a nonlinear process, so the bandwidth resulting from 
multiple component gradients cannot be simply determined; the expression for side- 
lobe amplitude is rather unwieldy. Simulations and experiments have shown that in 
the regime of p >> 1, which is the usual case for stochastic NMR, the bandwidth 
of the sinusoidal experiment and the multiple component gradient is very similar, 
and Equation 3.5 can be used to determine the ,necessary sampling frequency. Power 
spectra from simulated experiments are compared in Section 5.3. 
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3.3 Apparatus 

3.3.1 Spectrometer 

All experiments were performed on a 2.35T imaging system. The imager is 
homebuilt around a 2.35T Bruker horizontal bore magnet with a 40cm bore. The 
gradients employed are custom designed actively shielded gradients with a clear 
bore of 25cm, powered by six Techron 7700 series amplifiers. The gradients have a 
maximum field strength of 6OmT/m and a maximum slew rate of 300T/m/s. 

The data acquisition system is divided into two parts; all realtime experimental 
tasks are handled by a dedicated multiprocessor VME-based computer system. Gra- 
dient and RF waveforms can be precomputed or generated in real time using two 
TMS320C30 digital signal processors on a Sky Challenger processor board; averag- 
ing and control of the pulse programmer and RF hardware is handled by a Motorola 
MVME147 68030 processor. All display and interface tasks are handled by Sun Mi- 
crosystems SPARCstation-10 which is connected to the realtime system using socket 
connections over an Ethernet connection. 

3.3.2 Probes 

The probe used for the 23Na experiments was a homebuilt d u d  tuned (1H/23Na) 
four-ring lowpass-lowpass birdcage resonator (Figure 3.7). The probe layout was 
adapted from the 1H/31P probe devised by Murphy-Boesch and coworkers.[23]. The 
lH mode of the probe is used for shimming and sample positioning; it is driven 
linearly. The 23Na mode of the birdcage transmits and receives in quadrature. 

An NMR probe is designed to be a high Q resonant structure for maximum 
signal to noise ratio. In order to minimize the preamp recovery time, an active 
Q-spoiling circuit was developed and added to the RF probes used for stochastic 
NMR experiments. This circuit provides a means of actively dissipating the power 
remaining in the probe after transmission by lowering the 23Na probe Q by a factor 
of 6.7 for several microseconds. The Q-spoiler circuit is mounted on two panels 90" 
apart on the probe body (one for each linear mode in the birdcage). The Q-spoiling 
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Figure 3.7: Dual tuned four-ring lowpass-lowpass (1 H f  3Na) birdcage resonator with 
quadrature Q-spoiler. One of the two Q-spoiler loops can be seen mounted on the left 
side of the probe; the second loop is on the bottom of the probe. 

circuitry is described in the next section. 
The lH experiments were performed on a single frequency Alderman-Grant probe 

with an added Q-spoiler circuit. The probe is not shown. 

3.3.3 Active Probe Q-spoiling 

To maximize the signal to noise ratio, especially with short T2 samples, the 
receiver gate should be open as long as possible during the sampling period to allow 
signal to integrate before sampling. To prevent the preamplifier from saturating, 
the probe must be given time to ring down after transmission of an RF pulse. This 
ringdown time can be quite long for a high Q probe, which is necessary for sensitive 
detection of the NMR signal from the sample. To resolve this apparent paradox, a 
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Figure 3.8: Circuit diagram, PIN diode Q-spoiler: The Q-spoiler is inductively coupled to 
the main tank circuit of the RF probe. When the PIN diode is backbiased, the resonant 
frequency of the Q-spoiler is much higher than that of the tank circuit, and does not affect 
it. When the diode is forward biased, the Q-spoiler is resonant at-the probe's frequency 
and couples strongly to the main tank circuit, lowering its effective Q. 

circuit was designed to give the RF probe a switchable Q, so that the residual power 
from the excitation pulse could be dissipated prior to opening the receiver gate. 

PIN diode circuits have been employed previously to reduce probe recovery time 
[24, 25, 261 and to eliminate interaction of multiple coils [27]. These existing circuits, 
however, either generate noise in the high Q state or require extremely high voltage 
diodes, which in turn have high capacitance and slow switching times. Therefore 
an inductively coupled PIN diode circuit for rapid switching of an imaging probe 
between a high Q and low Q state was developed [28]. The circuit described allows 
the dead time between the end of RF transmission and receiver gate opening to be 
reduced significantly, which is essential for detection of spins with short T2 and for 
stochastic NMR. 

The Q-spoiling is achieved by inductively coupling a tuned split resonator to the 
probe, as shown in Figure 3.8. During transmit and receive, the PIN diode is reverse 
biased, forming a low Q resonator with resonance frequency: 

1 
L ( c P I N  + C S t r u y )  

C ~ u n e  >> CPIN > CStruy (3-6) 
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RF Choke 7 + 
R2 

/ RF Choke 

Figure 3.9: The Q-spoiler used for the birdcage coil used in this experiment consists of two 
loops 90” apart on  the probe body, each coupled over a window of the birdcage. The loop 
is constructed of 14 AWG wire, and has an inductance L. For the 26.46MHz probe, r = 
5.5cm, C T ~ , , ~  = 130pF, R1 = 9i2, and R2 = 12m. D1 is a Unitrode 4OlOB PIN diode. 

This frequency is much higher than the probe resonance frequency, so the effect on 
the main probe resonator is quite small. Also, because the coupling is not resonant, 
the voltage across the diode is much lower than the voltages on components in the 
tank circuit. When the diode is forward biased during the Q-spoil interval, the loop’s 
resonance frequency becomes: 

1 
I 

w = 4 G z  (3.7) 

The loop components are chosen so that this frequency corresponds to the res- 
onance frequency of the main probe. Adding this coupled resonator to  the probe 
circuit splits the resonance and can lower the Q significantly, depending on the value 
of resistor R1 and the coupling constant k. The use of a split inductor makes the 
effect of switching the PIN diode on the loop’s frequency quite large; switching on 
the diode doubles the loop inductance. This causes a much greater effect on the 
100p7s resonance than relying on the capacitance change of the diode. 

The actual design of the Q-spoiling loop is accomplished using an heuristic ap- 
proach. The loop geometry is chosen much the same way & an inductive feed would 
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be designed; the coupling constant of the tuned loop is relatively high. A one turn 
loop split into two halves was used for this design. When the diode is reverse bi- 
ased, the inductance of this loop is half of the value of when it is conducting. The 
capacitor Ct,,, is then selected to make the loop resonate at the probe’s primary 
resonance frequency when the diode is on; (which corresponds to the loop inductor 
being joined into one continuous inductor). In this state, the resistor R1 is part of 
the circuit, lowering the Q of the loop, and hence the Q of the probe. If the loop 
Q is too low, its coupling to the main tank circuit is small, and it does not affect 
the probe Q strongly. If the Q is too high, the probe’s resonance is split in two, but 
the Q is not decreased significantly. The resistor R1 can be selected to fall between 
these two extremes with the use of a variable resistor. 

When the PIN diode is back biased, the loop’s inductance is halved, and the 
Q-spoiler’s resonance frequency increases to a high value determined by the lower 
inductance and the stray capacitance of the loop. Unless the stray capacitance is 
on the order of the tuning capacitance (in which case the loop is too big), the loop 
resonance frequency will be far above the probe tuning frequency, and its effect on 
probe operation will be very small. 

The driver design is straightforward. The PIN diode requires 75mA to switch on, 
and it only draws this current for a few microseconds. However, it must be able to 
switch quickly while driving the capacitance of the probe loop and the lowpass filter, 
so when designing the driver the peak current requirements must also be considered. 
The resistor R2 is a current limiting resistor chosen small enough to fully forward 
bias the PIN diode into a low resistance state. To limit the transients caused by 
switching the diode on and off, the driver circuit for the diode was given a -1ps time 
constant to eliminate sharp transitions which could excite the main probe resonator. 

The addition of the Q-spoiling circuit caused no observable decrease in the Q 
of the probe (relative to the probe without the circuit installed) when the diode 
was reverse biased. When the Q-spoiler was foiward biased, however, the unloaded 
Q dropped by a factor of 6.7. When the probe was installed in the system shown 
in Figure 3.10 (which includes a multiplexer, preamplifier, and receiver), the probe 
dead time could be decreased as shown without transmitter breakthrough. The 
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Figure 3.10: RF System Diagram. 

prediction of the system dead time with and without using the spoiler is not as 
simple as directly comparing the Q’s of the two systems, however. The matching 
of the probe to its cable varies during the course of the probe ringdown as the PIN 
diode is switched and the blocking diodes in the receiver protection circuits turn 
off, making predictions about ringdown based solely on Q values impossible. Also, 
when the probe is not matched to its cable, and the preamp can begin to recover 
from saturation before the probe ringdown is complete, since it is isolated from the 
full probe voltage, allowing parts of the system to recover in parallel rather than 
sequentially. 

Figure 3.11 shows the Q-spoiler in use in the stochastic experiment diagrammed 
in Figure 3.2. In both oscilloscope photographs, the top trace shows the RF pulse, 
and the bottom is the analog input to the spectrometer’s digitizer. In both cases, 
there is a 24ps delay between the end of the FKF pulse and the opening of the receiver 
gate. On the left, the Q-spoiler is not used and the preamplifier is still saturated 
during the sampling period; on the right, the Q-spoiler is on for 12ps. In these 
pictures, the analog receiver filter before the digitizer has been removed to show the 
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. ’  

(a) Q-spoiler off. The preamplifier is 
saturated from the transmitted pulse. 

(b) Q-spoiler on for 12p after end of 
RF. The preamplifier has fully recov- 
ered and is receiving normally. 

Figure 3.11: Demonstration of Q-spoiler. 

output of the preamp more clearly. In both pictures, the experiment was run for 
65536 pulses, so the signals were summed on the film. 

The receiver dead time depends not only on the probe ringdown, but on the 
preamp saturation characteristics and the recovery time of the T/R multiplexer. 
This method of decreasing probe recovery time takes all of these factors into account. 
The inductively coupled design allows a high degree of decoupling between the driver 
circuit and the transmitter and receiver; the need to protect the driver from the 
transmitted pulse is greatly reduced over designs which place the diode in the main 
probe circuit. Also, the transients arising from the switching of the diode circuit 
are only weakly coupled into the receiver circuitry, since very little of their energy 
is within the probe’s bandwidth. Various other designs were tried, such as putting 
the PIN diode directly across the tuning or matching capacitors of the tank circuit 
of the probe. While these designs did give switchable Q values in low power testing, 
in actual circuits they exhibited decreased signal to noise and oscillating matching 
impedance. This is most likely due to nonideal behavior of the PIN diodes when 
exposed to the full RF voltage in the tank circuit. Under these conditions, the model 
of the PIN diode as an “RF resistor’’ is probably a poor approximation to its true 
behavior. The inductively coupled circuit does not exhibit these characteristics. 
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NMR requires sampling in th 

3.4 Calibrations 

3.4.1 K Space Trajectory 

Like echo planar imaging (EPI), stochasti pres- 
ence of a time varying gradient. As a result, phase shifts and delays in the gradient 
waveform affect the actual k-space location where sampling occurs. Ignoring this 
effect will have deleterious effects on image quality, as the the Fourier transform of 
the object density will be distorted, perhaps irrecoverably, if image reconstruction is 
performed using incorrect k locations. If, however, the k location is known through- 
out the imaging sequence, the k positions can be corrected during reconstruction, 
or precompensated during gradient generation. 

The k-trajectory calibration is performed using the method described by Taka- 
hashi [29]. A large, well shimmed, spherical, undoped water sample on resonance is 
placed in the center of the magnet. The sample is excited by a 90” pulse, and a “self 
encode” gradient, G,, is applied along one axis, followed by the component along the 
phase encode direction of the gradient being mapped, Gm (see Figure 3.12). When- 
ever the time integral of the gradient waveform starting from the RF pulse is zero, 
there will be an echo; therefore if the integral under the self encode pulse is known, 
the value of the integral of G, at the echo time, which is the k-space position, is 
known. This is performed over a range of phase encode values, and for each time 
point in G, the value of G,, producing the maximum echo amplitude is determined. 
The result is a measurement of the k-space position as a function of time. 

The gradient trajectory is mapped for each of the three Cartesian axes. Because 
a periodic waveform is employed for the experiments described, only a representative 
sample of the gradient waveform along each axis is required. This technique assumes 
that the gradient waveforms along the three axes are independent, and that the eddy 
currents reach steady state well before sampling ends, so that the later parts of the 
waveform represent the true steady state k trajectory. 

Measured phase shifts for sine wave gradients at 500Hz were approximately 4.7, 

3.5, 9.2 degrees along x, y and z respectively. These phase shifts are enough to 
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Self Encode Gradient being mapped 

Gradient 
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Figure 3.12: IC trajectory calib,ration pulse sequence 

cause significant image distortion if left uncorrected. Therefore, all gradient wave- 
forms used in the experiments described were precompensated during generation to 
eliminate phase shifts and distortions in the k-space trajectory. 

3.4.2 Receiver Filter Delay 

Another important calibration that must be performed is measurement and com- 
pensation for the group delay of the receiver filter. Most NMR spectrometers have 
an analog filter in the RF receiver used to limit the analog signal bandwidth going to 
the digitizer. This filter will introduce a delay in the analog signal being generated. 
This delay time depends oh the type of filter used, but can be quite significant, 
often on the order of a sampling period. In conventional imaging this filter delay 
will cause a phase roll in the received FID, which can be compensated for after the 
fact; however, in stochastic imaging, because the receiver gate is being switched 
throughout the experiment, the result of ignoring the filter delay may be that the 
digitizer samples during a time when there is little or no signal at its input. 

The solution to this is to modify the pulse program to delay the actual sampling 
time of the ADC fiom the end of the experiment cycle shown in Figure 3.2 by the 
amount of the receiver delay. This receiver delay can be measured directly by watch- 
ing the analog input to the digitizer while triggering off of the RF gate pulse and 
determining when the analog signal response is at a maximum. However, in many 
cases the receiver filter group delay is characterized by the manufacturer and included 
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(a) Sinusoidal gradient 

(b) Three component gradient 

Figure 3.13: One dimensional I; trajectory maps of gradients generated by Equation 3.1. 
(a) imm = 1 (Sinusoidal gradient) (b) im, = 3 
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in the data sheet of the filter. Since this was the case with our spectrometer, the 
stochastic imaging experiment setup macro used for these experiments determines 
the filter delay after the experiment parameters have been set and automatically 
generates a pulse sequence which delays the sampling time to  compensate. 
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Chapter 4 

Reconstruction Algorithm 

4.1 Introduction 

This chapter describes the algorithm used to  reconstruct spectroscopic images 
from stochastic data sets. Previous image reconstruction methods have used a 
weighted crosscorrelation of the excitation sequence and the received signal, mod- 
ified by a phase demodulation kernel. Images are reconstructed voxel by voxel, 
with a different phase demodulation kernel for each voxel[l7]. This is computa- 
tionally expensive, and the derivation of the phase demodulation kernel imposes 
rigid constraints on the gradient encoding waveforms that can be used if practical 
reconstruction times are to be obtained, even for encoding in two spatial dimensions. 

Section 4.2 provides a mathematical description of the stochastic experiment 
and defines some concepts which will be used throughout the Chapter. The phase 
demodulation reconstruction method is described briefly in Section 4.3. Section 4.4 
describes and derives a new crosscorrelation reconstruc‘tion method based on inter- 
polation onto a grid in k7t-space, or “Fourier gridding”, which provides a dramatic 
reduction in reconstruction time and removes most of the mathematical constraints 
that limit the choice of image encoding process, providing much greater flexibility 
in experiment design. The point spread function and noise characteristics of the re- 
construction are analyzed in Sections 4.5 and 4.6 respectively. Section 4.7 discusses 
implementation issues. 
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4.2 Mathematical Description of the Experiment 

A typical stochastic NMR experiment is diagrammed in Figure 3.1. The RF 
excitation employed is a train of low flip angle (on the order of one degree) broadband 
RF pulses of random phase and/or amplitude, a s  described in Section 3.2.2. The 
bandwidth of each individual RF pulse is great enough to excite all of the spins in 
the system even in the presence of gradients. After each RF pulse, one data sample 
is taken, and the next gradient value is asserted. There is no spatial preselection 
in the stochastic experiment; the entire region within the RF probe is excited. We 
impose the condition that the RF excitation be small enough that the response of 
the transverse magnetization to the excitation sequence is linear. Then, following 
the analysis of Roos and Wong[l7], the transverse magnetization ~ ( x ,  a) at time n 
arising from a stochastic RF excitation sequence in the presence of applied magnetic 
field gradients can be shown to be: 

q=o 

where p(x, a) is the spin density as a function of space and chemical shift, Sn is the 
excitation sequence, TR is the sampling interval, and 

n 

p=n-q 

indicates the position in k-space (the spatial frequency domain[30]) at time nTR for 
the magnetization created at time (n - ~ ) T R ,  after evolving in the presence of a 
magnetic field gradient Gp. y is the gyromagnetic ratio of the nucleus being imaged. 
Throughout this derivation, constants of proportionality have been suppressed for 
clarity. 

Integrating the magnetization over space and chemical shift yields the received 
signal yn: 

In addition to linearity, we assume that the longitudinal magnetization is in 
steady state. These assumptions are made for convenience. A Bloch equation anal- 
ysis of the stochastic experiment after a brief interval for equilibration leads to 
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essentially the same result, with an added factor that accounts for T1 saturation. 
The added factor indicates that the signal will be maximized by choosing the RMS 
flip angle to be the Ernst angle, as in a conventional experiment (note that in the 
conventional expression, QEmst is assumed to be constant rather than an RMS value). 

4.3 Phase Dernodulat ion Reconstruct ion 

One way to estimate the spin density from the received signal is to  perform a 
weighted crosscorrelation of the received signal with the excitation sequence, using 
a phase demodulation kernel eixkn*qw(n, 4): 

where N is the total number of samples in the received signal yn, and w(n,q) is a 
weighting function. 

The demodulation kernel selects for magnetization having a particular phase evo- 
lution due to the gradients - i.e. the magnetization arising from a particular region 
in space. The weighting function w(n,q) compensates for the uneven sampling of 
lcrspace by the scanning trajectory. Each correlation lag q corresponds to a time 
point in the FID of the NMR signal (the Fourier transform of the spectrum). This 
method requires that we calculate a weighted summation of the entire received sig- 
nal with the excitation sequence for each lag q for every voxel in the image, so the 
reconstruction scales in time as the product of the received signal length and the 
number of voxels reconstructed (and as nlog(n) withethe number of correlation lags 
reconstructed). This scaling makes three dimensional image reconstruction compu- 
tationally impractical. Reconstruction speed is improved if crosscorrelations calcu- 
lated with fast Fourier transforms can be used, but this requires that the weighting 
function w(n,  q )  must be expressible as a product of two functions w1(n)w2(n - q). 
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4.4 Fourier Gridding Reconstruction 

We denote the spin density as a function of x and a as p. We will use pk to denote 
the Fourier transform of p with respect to x; pq to denote the Fourier transform of 
p with respect to a; and p~ to denote the Fourier transform of p with respect to x 
and a. Therefore: 

p(x, a) = / p k ( k ,  a )e ik .x  d k  = 1 pK(k, r])eiqueik'x dk dr] = pq(x, r])eiqu dr] 

(4.6) 
k 

which allows us to rewrite Equation 4.3 as: 

Rearranging the integration and summation, and using the definition of p ~ ,  we see 
that 

q=o 

For convenience in notation, from now on we will use the convention that pK(k, q )  

represents the function pK(k, r ] )  evaluated at r] = (q  + 1)T'. 
The received signal yn is now cast in a new form, as a function of the excitation 

sequence and the Fourier transform of the spin density (or k-space representation) of 
the object. This leads to a new interpretation of the stochastic NMR signal. Each 
time sample of the received signal has contributions from an ensemble of signals 
arising from every RF pulse in the past. Each signal in the ensemble samples the 
four dimensional k-space representation of the object density, and each is weighted 
by the RF pulse that created it. The signal composition and reconstruction in the 
absence of gradients is illustrated in Figure 4.1. Using this fact and knowing that 
the excitation sequence is a white noise sequence, we can estimate the spin density 
,6K(k, q )  in a straightforward manner. 

To reconstruct an image from the input signal yn we first form a rectilinear four 
dimensional array (three k-space axes and one lag axis) of p K ( k ,  r ] )  which is an 
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with delayed versions of excitation 

Figure 4.1: Composition and reconstruction of the stochastic signal in the absence of gra- 
dients. The top of the diagram shows how the stochastic excitation produces a signal which 
is a composite of many individual FIDs. Each time point of the received signal, yn, is a 
summation of signals arising from magnetization created in the past. The magnetization 
from the RF pulse Sn has evolved through one TR, the magnetization from pulse sn-l has 
evolved two periods, etc. Each component of the sum has initial phase. The lower sec- 
tion of the diagram on the shows how crosscorrelating the signal produced in this manner 
regenerates the FID of the spin system. 
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estimate of the 4D Fourier transform of the object p(x, a). To do this we will make 
use of the autocorrelation property of the white, random excitation, (s,s;,) = 6q,ql 
to separate the signal components that are summed together in each data sample. 

By way of example, consider the stochastic NMR signal in the absence of gradi- 
ents, 

03 

y n = ,-(q+1)TRb+l/T2)sn-,- (4.10) 

The FID of a spin system can be estimated from a stochastic experiment by cross- 
correlating the received signal with the excitation sequence. 

q=o 

(4.11) 

In this case, p ( q )  is the estimate of the spin density integrated over all space (the 
inverse Fourier transform of the spectrum). Each received signal point has contribu- 
tions from many RF excitations in the past; however, the crosscorrelation operation 
with the conjugate of the excitation sequence with a given delay acts as a matched 
filter which selects only for magnetization from the appropriate time lag in the past. 

In the presence of gradients ynsz-, is now also a function of k. While samples are 
acquired with uniform spacing in time, the k location of the samples in k,q space 
are not the same for each q (see Figure 4.3)) and are not uniformly spaced in k. To 
develop an extension of Equation 4.11, one approach is to interpolate these samples 
in the k dimension onto a rectilinear grid before computing the time crosscorrelation 
with the excitation. This crosscorrelation then yields one FID per k-space point. A 
four dimensional FFT then gives p(x, a). 

The interpolation problem in the k domain is the same as that encountered 
in imaging with arbitrary k trajectories and deterministic excitation[18]. The re- 
construction operation is derived in two steps: first, a continuous function of k is 
constructed for each lag value q from the discrete data samples yn; then an estimate 
analogous to Equation 4.11 is defined. 

To begin, multiply the scaled datum ynsz-, by a sampling function S3(k - k,q) 
to form the function: 

Mg,q(k) 3 yns;-,S3(k - k,q). (4.12) 



47 

kt,o 

Step 2 

t = n - q  t = n  

Figure 4.2: Diagram of the gridding reconstruction procedure. For all n: Step I :  multiply 
the received data point y,, with the conjugate of the excitation s ~ - ~ .  Step 2: subtract the 
initial k-space position from the current k-space position to determine the k location of the 
detected magnetization in the output grid. Step 3: add the product from step one into the 
grid position determined by the k location found in step two and the lag value q. 
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G%%t 

Sinusoidal Gradient 

k trajectories for transverse magnetization created by each pulse 

Figure 4.3: The magnetization from each R F  pulse follows its own k-space trajectory in 
the presence of gradients. Therefore each point in the received signal is made up of signals 
that in general have diflerent initial phase and k-space position. 

Convolve Mg"(k) with a kernel C to produce a continuous function which will 
be resampled onto a Cartesian grid. Following Jackson, et aZ[19], we find that the 
convolved, weighted, discrete function (prior to resampling) is represented by: 

(4.13) 

where C(k) is the convolution kernel used in the sampling operation, and 
N 

Wq(k) = 2 J J3(k - kn,q)C(k - k') dk' C(k - kn,q) (4.14) 
n=l k' n=l 

is the "area density function" that accounts for the uneven sampling density. 
This interpolated version of yns:-q can be summed over n to give an estimate of 

JK(k,  q )  similar to Equation 4.11. 

(4.15) 

(4.16) 

(4.17) 
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This function can subsequently be evaluated at any k position; in particular, we 
can evaluate it on the points of a Cartesian grid. We will use kIII to represent the 
continuous variable k evaluated on Cartesian grid points. 

Using yn from Equation 4.8, we find: 

The excitation sequence sn has a delta function autocorrelation, so that 

Employing this relation, we see that 

(4.19) 

(4.20) 

Evaluating Equation 4.20 at a grid point kin, we find that 

Thus the expectation of the spin density estimate is a smoothed version of the true 
density function with weighting dependent on the sampling density. 

The use of the convolution function C in the mtxlc domain introduces a small, 
correctable "doming"in the spatial domain[l9, 181. This can be approximately elim- 
inated by dividing the spin density estimate p by a periodic function c which is equal 
to the inverse Fourier transform of C over the reconstiucted field of view in x. 

The function Wq(k) can be computed prior to or during the reconstruction if the 
sampling density is known analytically; however, for sufficiently smooth sampling 
densities it is well approximated by Wq(km). This function may be estimated at 
grid points in parallel with the reconstruction operation, using: 

N 
W"kII1) = C(kII1- L,q). (4.22) 

In this case the weighting function can be pulled out of the summation in Equation 
4.21, and the weighting applied after the gridding operation. Using a gridded version 
of the weighting function can speed reconstruction, but it introduces some artifacts 
into the image and should be avoided if possible. 

n=l 
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4.5 Point Spread Function Analysis 

The point spread function is determined by the initial sampling function and the 
characteristics of the correction weighting function W Q .  Any useful gradient trajec- 
tory used for a stochastic experiment will be designed to cover some region of k-space 
densely enough so as not to have major discontinuities or holes. The point-spread 
function will be primarily determined by the shape of this region. Over the sampled 
region, after correction by Wq, the sampling density will be uniform. In addition, 
the point spread function can be tailored for different characteristics by multiplying 
the k-space spin density estimate by some filter function to enhance or deemphasize 
particular spatial frequencies. We will consider the case of uniform density over the 
sampled region for two useful three dimensional scanning trajectories. 

We represent the shape of the uniformly sampled region with a window function 
Bq(k): 

1 ‘d k inside sampled region 
0 everywhere else 

Bq(k) = (4.23) 

If we perform the summation in Equation 4.15, and perform the inverse Fourier 
transform with respect to x ,  we see that the estimate of the spin density is given by 
the relation 

iUx7 4 )  = {e-  (q+l)=RI=Z/)(x,  4)  * bQ}  c (4.24) 

where bQ, and c, are the inverse Fourier transforms of Bq, and C ,  respectively. 
After deconvolving or “undoming” by dividing out c: 

so the point spread function becomes 

(4.25) 

(4.26) 

Both of the scanning trajectories considered here are based on periodic oscillating 
gradients which are sums of sinusoids. Although the gradient trajectory is arbitrary, 
periodic gradients are easily generated and have the advantage of producing steady 
state eddy currents, which result only in a correctable phase shift of the gradient 
field (see Section 3.2.3). 
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4.5.1 One Dimensional Periodic Oscillating Gradients 

We start by considering a one dimensional oscillating gradient which is a trun- 
cated Fourier series of a square wave: 

We can rewrite the definition of b,q in Equation 4.2 as 

(4.27) 

(4.28) 

Substituting the definition of Gp into Equation 4.28, 
n n-q-1 

- G T R  amur 

p=o 
kn3q = i=l (-l) i(2i  - 1) 

(4.29) 
and using the fact that 

(n-l)Y nY Y cos(s + ky) = cos(a: + n-1 
)sin(-) csc(-), 2 2 k=O 

we find that 

(4.30) 

(4.31) 
For any given value of q, the phase between the lowest order (i = 1) sine functions 

in the difference term is q5 = 2(q + l)nlfoT', which gives a maximum value for the 
difference term of: 

2 sin (412) = 2 sin ( (q + l)nf,TR) , 
yielding a maximum k value 

(4.32) 

(4.33) 

This function is maximized when the two sine functions are out of phase by an 
odd integral multiple of n. 

kmax - - 

This gives an overall maximum k value 

(4.34) 
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Figure 4.4: Plot of k,, as a function of lag q for a typical stochastic 23Na experiment. 
Gradients are generated using Equation 3.1, and km, is calculated from Equation 4.33. y 
is 11.24 MHz/T, G is 8 mT/m, TR is 75ps and fo is 548.00846H.z 

We see from this analysis that the one dimensional truncated square wave gra- 
dient samples a line in k-space which extends from -km, to IC,,, and that the 
magnitude of k,, depends on the correlation lag q. The window function is there- 
fore: 

yielding the one dimensional sinc function point spread function 

(4.35) 

(4.36) 

4.5.2 Rotating Oscillating Gradients 

For fast three dimensional spectroscopic imaging, one possible gradient waveform 
is based on the trajectory proposed by Norton[31], an oscillating gradient which 
rotates with a direction vector 0, that sweeps out a spiral on the surface of a 
sphere. This gradient waveform samples a sphere in k-space for each time lag. The 
oscillation frequency of the gradients fo must be higher than the chemical shift 
bandwidth of the object under study to prevent aliasing in the spectral dimension. 

Norton's trajectory can be modified with the proper choice of the time depen- 
dence of the B and 4 values of 0, so that k-space will be sampled uniformly over all 
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Figure 4.5: Sample point distributions obtained with Norton's original sampling (left) and 
with the new technique (right). The distribution on the left requires 54% more points to 
achieve similar density near the equator. 

solid angles, leaving only a radial dependence in the k-space sampling density[32], 
which is corrected by the weighting function WQ. This isotropic solid angle rotating, 
oscillating gradient is given parametrically by: 

where N is the total number of points in the experiment, and TR is the sampling 
period. 

A useful approximation is that the gradient oscillation frequency fo is much 
higher than the 8 and 4 rotation frequencies of the direction vector, so that the 
direction vector is essentially constant over one period of the oscillation (0, = 0); 

experimental parameters can be selected so that this approximation holds extremely 
well. So assuming that G, = GO cos (2rf0pT'), and rfoT' < 7r/2, we can assume 
that the radial and angular parts of the k-space density are separable. Since all solid 
angles are sampled isotropically by this sampling trajectory, the density correction 
will be spherically symmetric, and after it is applied, the sampled region of k-space 
will be a uniform sphere. 

If the sampling density correction is applied independently for each lag q, the 
resulting estimate of the spin density is convolved with a three dimensional window 
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cm 

Figure 4.6: Calculated point spread function for a single lag using the rotating oscillating 
gradient. The line is a graph of equation 4-40 using the the gradient parameters for a 
typical 23Na experiment described in Figure 4.4. The lag chosen is at the first maximum 
of &=(q), lag 11. kmaz(ll) = 0.5237. 

function in the k domain: 

which has the inverse Fourier transform 

(4.38) 

(4.39) 

where kg,, is a function of the lag q. 

Combining Equations 4.26, 4.39, and 4.33, we find that for a rotating oscillating 
gradient 

(4.40) 

This function is plotted in Figure 4.6. The halfwidth of this function is 0.795/kL,, 
and the maximum sidelobe amplitude is 8.6%. 
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4.5.3 Incommensurate Frequency Oscillating Gradients 

Another way to extend the oscillating gradient to sample a three dimensional 
region in k-space is to employ 3 independent oscillating gradients along the three 
Cartesian axes which have frequencies chosen such that: 

i fi # j f2 # k f3 {i, j, k E integers} (4.41) 

The resulting k-space trajectory is a three dimensional Lissajous pattern which never 
retraces its path. This trajectory (using sinusoidal oscillations) was initially proposed 
by Bliimich[l6]. For any given time lag, the resulting sampling density over all data 
points samples a right rectangular prism in k-space, each side having a kz, deter- 
mined by Equation 4.33. If the gradients are close in frequency and amplitude, this 
region will be approximately cubic, giving the same spatial resolution along all axes. 
The result of sampling over a rectilinear region and performing a density correction 
gives the familiar three dimensional sinc shape to the point spread function: 

sin (27rk:(,,)a;) sin (27rk:(mm)y) sin (27r1c;(~,)z) 
1 (4.42) kq kq bq(x) = 

87r3k$maz) y(maz)  z(maz)xyz 
Combining Equations 4.26, 4.42, and 4.33, we h d  that for a incommensurate 

frequency truncated square wave gradients 

This function is plotted in Figure 4.7. The halfwidth of this function is 0.603/kz,, 
and the maximum sidelobe amplitude is 21.7%. 

4.5.4 Point Spread Functions For Spectroscopic Imaging 

The relations above describe the point spread function for a single reconstructed 
lag. If chemical shift information is not desired, then only one lag need be recon- 
structed; a value of the lag q can be chosen for m d u m  resolution by the criterion 
of Equation 4.35, with the value of p selected to give the desired T2 contrast. If 
however, one wants to combine the information from various time lags, for example - 
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x in cm 

Figure 4.7: Calculated point spread function for a single lag, incommensurate frequency 
sinusoidal oscillating gradients. The line is a graph of equation 4-40 using the the gradient 
parameters for a typical 23Na experiment described in Figure 4.4. The lag chosen is at the 
first maximum of &=(q), lag 11. &=(ll) = 0.5237. 

x in cm 

Figure 4.8: Calculated point spread function fo r  a single lag, incommensurate frequency 
three component truncated square wave oscillating gradients. The line is a graph of equation 
4.40 using the the gradient parameters for a typical 23Na experiment described in Figure 
4.4- The lag chosen is at the first maximum of km&q), lag 11- &&ll) = 0.6053. 
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to reconstruct a spectroscopic data set, we have to consider the k-space sampling 
density of the entire experiment, rather than for a single lag, to  determine the point 
spread function. Note that any combination of lags can be used depending on the 
information desired in the reconstructed image; different combination weights can be 
used to tailor spatial sideband amplitudes and main lobe width in the point spread 
function, or to change the spectral lineshape. For simplicity, we will only consider 
the cases of a single lag and the case of all lags from 0 to some maximum lag Q - 1. 

The overall point spread function of the experiment is derived by considering how 
the k-space densities from each time lag combine to form an overall k-space sam- 
pling density for the chemical shift reconstruction. As can be seen from Equation 
4.33, graphed in Figure 4.4, the maximum extent of the region sampled in k-space 
oscillates with twice the frequency of the oscillating gradient fo. Because the oscil- 
lating gradient frequency is chosen to exceed the chemical shift bandwidth of the 
spin system, the fourth k-space dimension, the lag dimension, is sampled adequately 
to reconstruct a spectroscopic image with the full three dimensional resolution indi- 
cated by the kmm of the experiment given in Equation 4.35 if the proper weighting 
is applied. 

As described above, the reconstructed spin density for each lag has been corrected 
to have unit sampling density over the volume in k-space that is sampled for that 
time lag. To generate a chemical shift image from the lag data, the data are Fourier 
transformed along the lag dimension (to go from the time to the frequency domain). 
Because the oscillating gradient makes the reconstructed spectral dimension periodic, 
only the baseband is considered. In performing the Fourier transform, data from all 
of the reconstructed lags contribute to each of the k-space positions in the object. 

It is easily seen that the overall sampling density in k-space for the rotating, 
oscillating gradient experiment, summed over the lag dimension, is: 

(4.44) 

The point spread function of the spectral data set reconstructed from lags 0 to Q - 1 
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x in cm 

Figure 4.9: Overall point spread function for  the rotating oscillating gradient experiment, 
1024 lags; this is the spatial point spread function for the chemical shijl reconstruction of 
the same experiment as in Figure 4.6; the overall Laz is 0.523813 

is therefore: 

The halfwidth of this function is 0.898/km,, and the maximum sidelobe amplitude 
is 4.5%. This function is plotted in Figure 4.9. 

Similarly, the point spread function of the spectral data set reconstructed from 
lags 0 to Q - 1 for the incommensurate gradient experiment is: 

The shape of the function kz, depends on the number of components used in 
the gradient, so the shape of the overall point spread function will also vary with 
the number of gradient components. For the sinusoidal case, the halfwidth of this 
function is 0.674/km,, and the maximum sidelobe amplitude is 16.1%. This function 
is plotted in Figure 4.10. When three component TSW gradients are employed, the 
halfwidth of the point spread function is 0.6:L3/km,, and the maximum sidelobe 
amplitude is 12.9%. This function is plotted in Figure 4.11. 
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x in cm 

Figure 4.10: Overall point spread function for the incommensurate frequency sinusoidal 
oscillating gradient experiment, 1024 lags; this is the spatial point spread function for the 
chemical shift reconstruction of the same experiment as in figure 4.7; the overall k,,,, is 
0.52381 3 

x in cm 

Figure 4.1 1: Overall point spread function for  the incommensurate frequency oscillating 
gradient experiment = 3), 1024 lags; this is the spatial point spread function for the 
chemical shift reconstruction of the same experiment as in figure 4.8; the overall km, is 
0.602898 
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4.6 Noise Analysis 

The initial sampling of k-space in the experiment is non-uniform, which means 
that a different degree of averaging occurs for different spatial frequency measure- 
ments. Therefore, there is a variation in the signal to noise ratio of the different 
spatial frequencies in the reconstructed image. In a real stochastic NMR experi- 
ment, there will be additive white measurement noise introduced into the received 
signal arising from Johnson noise in the probe and preamplifier which is indepen- 
dent of the gradient and RF waveforms. To determine the signal to noise ratio in 
the reconstructed image as a function of spatial frequency, we will consider the re- 
construction of a band-limited white noise signal & of variance q2, to determine the 
power spectral density of noise in the reconstructed image[33]. 

This noise analysis will only treat the noise power in the reconstructed image due 
to measurement noise. There is also systematic noise in the reconstruction, which 
arises from the random nature of the excitation[34]. 

4.6.1 Single Lag Noise Analysis 

We perform the reconstruction on the noise signal Gn for a given lag q to generate 
the noise image j q (x ,q ) .  The noise power spectral density of such a reconstructed 
image is defined as: 

(4.47) 

This is the ensemble average from the reconstructions of many images with different 
ijn with identical signal statistics. The Fourier transforms inside the angle brackets 
can be identified as the definition of ,oK(k, q). 

(4.48). 
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Using the definition of PK(k,q)  from Equation 4.17, and remembering that s, and 
gn have delta function autocorrelations, we see that: 

(4.51) 

In the usual case, the reconstruction employs a real, symmetric convolution func- 
tion c, so its Fourier transform C, and consequently WQ, are real. 

(4.52) 

The noise characteristics for any choice of sampling trajectory and convolution 
function can be calculated numerically using Equation 4.52. To evaluate the general 
characteristics of the two sampling trajectories presented analytically, we need an 
explicit form for the convolution kernel C(k). 

We have made two assumptions throughout this derivation; the first is that the 
sampling pattern covers a contiguous region in k-space adequately and the true 
density function is smooth enough that we can perform the convolution gridding 
operation; i.e., that we have approximated the true k-space estimate of the object 
density well enough that we can resample the density onto a Cartesian grid of a cer- 
tain granularity. The second is that the extent of the convolution function in k-space 
is small compared to the extent of the object density p K  (so that the convolution 
function does not alter the shape of the reconstructed density too much). 

To make the derivation clear, we will use the case of nearest neighbor interpola- 
tion, where all of the energy of a particular ynsn-q is gridded into the nearest grid 
point in an oversampled version of the k-space density estimate ,i?K(k,q). Nearest 
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neighbor interpolation produces greater aliasing artifacts than using other convolu- 
tion kernels, such as the Kaiser-Bessel function, however the effect on the shape of 
the noise distribution in small, so it is useful for demonstration purposes. 

The nearest neighbor convolution function is: 

(4.53) 

where E is the spacing between points on the oversampled Cartesian grid. If E is 
sufficiently small and W is sufficiently smooth that W is approximately constant 
over E ,  C can be treated like a delta function, and the weighting factor can be pulled 
out of the summation. Therefore: 

The term inside the last summation is just the definition of the weighting function 
W .  Therefore, the noise estimate is found to be (to good approximation): 

(4.55) 

One dimensional Monte Carlo simulations of noise reconstruction have verified 
that this approximation holds quite well for imaging experiments with typical pa- 
rameters. These simulations are shown in Section 5.6. 

To determine the noise power spectral density we must express WQ(k) explicitly. 

4.6.2 One Dimensional Oscillating Gradient 

For a one dimensional sinusoidal gradient (i = l), it can be seen from inspection 
of Equation 4.31 that the k trajectory for any lag q is sinusoidal with an amplitude 
kLaz. The k-space density along the gradient is proportional to the reciprocal of the 
velocity of the traversal of k-space 1gI-l. The sampling density as a function of k 
(normalized over the range -k,,, 5 k 5 kmm) is therefore (if the discrete nature of 
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the sampling is ignored): 

This gives a noise power spectral density of 

(4.56) 

(4.57) 

A general analytic expression for the sampling density arising from multiple 
component gradients is not easy to formulate. Unlike the sinusoidal gradient, the 
shape of the k-space trajectory, and therefore the sampling pattern, changes with 
different correlation lags. The sampling density can be obtained numerically using 
Equation 4.31. 

As discussed in Section 3.2.3.3, the Amplitude Modulated Sinusoidal Gradients 
have a flat sampling density between -kgm and k L .  

4.6.3 Rotating Oscillating Gradients 

As mentioned previouslf, the trajectory of the direction vector of the oscillating 
gradient has been designed to sample all solid angles uniformly, so we need only 
consider the variation in sampling density along the radial direction. The effect of 
extending the imaging technique to multiple dimensions by rotating the gradient 
direction vector is to add a factor that accounts for the constant distribution of 
samples over 2n radians for two dimensions, or 4n steradians for three dimensions. 
This factor is l/lkl for two dimensions, and l/lkI2 for three dimensions, giving a 
normalized three dimensional sampling density of 

s 

The noise power spectral density then becomes: 

This noise density is shown in Figure 4.12. 

(4.59) 
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Figure 4.12: Square root of the single lag noise power spectral density for the three- 
dimensional stochastic experiment using rotating oscillating gradients as a function of 
k/kmax. The figure on the le8 shows a line through the origin of k-space; the figure on the 
right shows two k-space dimensions. 

4.6.4 Incommensurate Frequency Oscillating Gradients 

Because the gradients used in the incommensurate frequency experiment are not 
harmonically related, the weighting function is simply the product of the individual 
sampling densities along each axis. 

Wq(k)  = 
N 

(4.60) 

The noise power spectral density for one lag then becomes: 

Sq(k) = 

(4.61) 

This noise density is shown in Figure 4.13. 

4.6.5 Multi-lag Noise Characteristics 

The analysis of the overall noise characteristics of the reconstructed signal is 
somewhat more complicated, since there may be cross terms between the noise 
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Figure 4.13: Square root of the single lag noise power spectral density for the three- 
dimensional stochastic experiment using incommensurate frequency sinusoidal oscillating 
gradients as a function of k l k m a .  The figwe on the left shows a line through the origin 
of k-space; the figure on the right shows two k-space dimensions. 

contribution of various reconstructed lags. However, these are seen to be eliminated 
by the autocorrelation properties of the excitation sequence. Closely following the 
single lag derivation, the reconstructed noise for the full reconstruction is: 

1 0 - 1  0-1  \ 

(4.62) 

(4.63) 

(4.64) 

Q-1 
= Sq(k) 

q=o 

(4.66) 

(4.67) 

Therefore, the multilag noise power is simply the sum of the individual lag noise 
powers. The multi-lag noise powers are shown for the rotating oscillating gradient 
experiment and the incommensurate gradient experiment in Figures 4.14 and 4.15 

respectively. 
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Figure 4.14: Square root of the overall noise power spectral density for  the three- 
dimensional stochastic experiment using rotating oscillating gradients as a function of 
k/k,,-. The figure on the left shows a line through the origin of k-space; the figure on the 
right shows two k-space dimensions. 
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h 

Figure 4.15: Square root of the overall noise power spectral density for the three- 
dimensional stochastic experiment using incommensurate frequency sinusoidal oscillating 
gradients as a function of k / k a z .  The figure on the left shows a line through the origin 
of k-space; the figure on the right shows two k-space dimensions. 



67 

4.7 Implement at ion 

This reconstruction technique has been implemented in ANSI C to run on a 
variety of platforms, and the specific implementation details have been tuned to 
efficiently use the resources of a scientific workstation. The order of various steps 
in the procedure can be interchanged for more efficient computation at the cost of 
requiring more memory or mass storage. 

The first step in the reconstruction is to calculate and store the integral of the 
gradients and the conjugate of the excitation signal for every time point recorded 
in the experiment. The image reconstruction is then treated one correlation lag 
at a time; for a given lag q the k-space position of each data point is determined 
from the difference of the gradient integral at the time the signal was recorded and 
q lags in the past when it was created. The signal is multiplied by the conjugate 
of the excitation q lags in the past, and convolved with the spreading function C. 
The resulting continuous function is sampled into an oversampled three dimensional 
k-space array. Two arrays are maintained; the sampled function values are summed 
into a weight array that keeps an estimate of the sampling density, and the function 
values, multiplied by the complex conjugate of the excitation, are summed into an 
array that stores the FT of the spin density estimate. After all the points have been 
gridded, the k-space array is divided by the weight array for all non-zero locations 
in the weight array to density correct the k-space estimate. An inverse Fourier 
transform and downsampling into the spatial domain is performed, and the doming 
effect of the spreading function C is removed. The result is a spatial reconstruction 
for one time lag. 

When reconstructing spectra, the array for each lag is multiplied by an exponen- 
tial weighting factor to perform apodization, if desired, and the resulting weighted 
array is multiplied by the appropriate Fourier phase rotations to transform it to the 
spectral domain and summed into the estimate of the chemical shift reconstruction. 
The set of operations is repeated until all the lags have been calculated. 

For time domain (FID) reconstructions, the data array for each lag is also mul- 
tiplied by an apodization function, and then the data are interpolated and down- 
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sampled into the destination time array. The time point spacing in the destination 
array is the reciprocal of the lowest gradient frequency. This ensures that every k 
position in k,t-space is critically sampled in time. As with spectral reconstructions, 
this operation is repeated for all time lags. 

Although it is more computationally efficient (and straightforward) to perform 
the Fourier transform into the spectral domain after all of the lags have been cal- 
culated, the memory requirements of this technique make that impractical on most 
workstations. As an example, to perform a 32x32~32 chemical shift reconstruction, 
oversampled by a factor of 2 (which is sufficient to remove any obvious artifacts of 
the gridding process) requires 32K complex data points per lag (256KB assuming 4 
byte floating point representation). Generally at least 1024 time lags are used in cal- 
culating a spectral data set, which would require at least 256MB of storage to keep 
the entire k-space array available, which requires disk storage of the k-space array. 
This estimate neglects the storage needed for the input data, gradient integral, and 
excitation signals, which can be quite large (10’s of megabytes), and must be kept in 
memory for efficient computation. The time saxings from keeping the k-space array 
in memory and performing the spectral Fourier transform at the end are more than 
offset by having to go to disk to read and write the lag data. 

Pseudocode for the reconstruction algorithm is shown in the appendix. 

Discussion 

There are three major advantages of the Fourier gridding reconstruction tech- 
nique over weighted crosscorrelation in the spatial domain. First, it is much faster 
than latter method for large problems. Second, because the k-space sampling density 
is estimated explicitly, the compensation for uneven k-space sampling can be per- 
formed almost exactly. Third, the derivation of this reconstruction is not dependent 
on the k-space scanning trajectory, and the scanning trajectory can be chosen with- 
out concern for the mathematical tractability of deriving an appropriate weighting 
function. 

The gradient trajectories analyzed here have very different noise characteristics, 
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arising from their very different sampling densities. The noise characteristics can 
be further shaped by modifying the density weighting correction, which also allows 
the point spread function to be tailored. There have recently been suggestions 
that preferential weighing of the low-frequency regions of k-space (as in the rotating 
oscillating gradient experiment) is desirable for chemical shift imaging [35, 36, 371. 

As an example of the time savings that this new algorithm affords, consider 
the reconstruction of a 32x32~32 voxel chemical shift image with 1024 correlation 
lags for each voxel from a stochastic data set of 4,194,304 data points (a typical 
experiment length using the old reconstruction algorithm). On a Silicon Graphics 
Crimson Elan workstation, using the old algorithm, the reconstruction would take 
approximately 192 seconds/voxel, or 1748 hours; the same reconstruction using the 
Fourier gridding technique takes approximately 26 seconds per correlation lag, or 7.4 
hours, an improvement of greater than two orders of magnitude. Using a repeating 
k-space trajectory (described in Section 5.5.1) allows for further speed improvements; 
a 323 voxel experiment with 6,745,200 data points can be reconstructed in about 4 
hours. 

It should also be noted that since each correlation lag can be calculated inde- 
pendently, the new reconstruction method has a high degree of parallelism which is 
not currently being exploited. Performing the reconstruction on a machine with a 
parallel architecture (or many machines) will lead to further speed improvements. 
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Chapter 5 

Simulations 

5.1 Introduction 

This chapter will present the results of Bloch equation simulations of the stochas- 
tic experiment. The experiment simulations were used for three major purposes. 
The first was to validate the theoretical predictions of the experimental and recon- 
structed image parameters, such as the bandwidth of the experiment with different 
gradient trajectories (Section 5.3), the point spread function for various gradient tra- 
jectories (discussed in Section 5.4), and the predictions of how measurement noise 
propagates from the received signal to the reconstructed image (Section 5.6). The 
second purpose of simulations, treated in Section 5.5, was to examine how experi- 
ment and reconstruction parameters affect the systematic noise in the reconstructed 
image due to the stochastic excitation. This is a very difficult area to treat analyti- 
c a y ;  simulations gave a simple way to test various ideas for reducing the systematic 
noise without the complication of additional real measurement noise which would 
have accompanied actual experiments. Finally, simulations provided a method for 
performing validity checks during development of the reconstruction software. 
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5.2 Simulation Program 

Simulations have been very important for developing and testing the parameters 
of the stochastic experiment. This has been especially true since the development of 
the stochastic imaging experiment has required major modifications to the spectrom- 
eter used for the experiments; simulation has helped diagnose hardware problems in 
addition to finding optimum parameters for the experiments and evaluating theo- 
retical predictions of performance. 

All simulations shown were performed using a simulation program which inte- 
grates the Bloch equations for an arbitrary number of spins with adjustable TI, Ts, 
chemical shift, amplitude, and position. Flip angle, FU? pulse duration and measure- 
ment noise level are adjustable, as are excitation noise type and gradient trajectory. 
Simulated data sets have been used to check theoretical predictions of point spread 
function, noise power spectral density, and systematic noise. The simulation pro- 
gram generates data files in the same format as the spectrometer, which can be 
processed as if they were actual data. As a result, the simulated data sets can be 
used to test all of the reconstruction software. 

5.3 Experiment Bandwidth 

The sign-a1 bandwidths of the sinusoidal oscillating gradient stochastic experiment 
and the amplitude modulated sinusoidal gradient experiment are easily calculated 
using Carson’s rule (Equation 3.5). Unfortunately, due to the nonlinear modulation 
process, a general derivation of the bandwidth of the multiple component truncated 
square wave gradient is not practical. However, it is easily demonstrated with sim- 
ulations that the experiment bandwidth is quite similar to the sinusoidal case; close 
enough that Carson’s rule is an appropriate approximation. This observation was 

made repeatedly during experiments and simulations. . 

As a demonstration of the relative signal bandwidths arising from the differ- 
ent gradient trajectories, a one dimensional experiment was simulated on a uniform 
density one dimensional object of known extent. The sampling frequency was delib- 
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Figure 5.1: Power spectrum, one dimensional sinusoidal gradient experiment. Overall 
experimental bandwidth is 13334Hz. The bandwidth predicted by  Equation 3.5 for the 
simulated object is 5590Hz (shown by  the vertical bars). -The 1% contour is the dashed 
horizontal line. TR = 7 5 p ,  rmaz = 2.5cm, G = 8.0mT/mY y = 11.24MHz/T, fo = 
546.008Hz. 

erately chosen to far exceed the signal bandwidth arising from the object, so that 
a good representation of the signal power spectrum could be obtained. The power 
spectra of the simulated NMR signals were calculated and are presented in Figures 
5.1, 5.2, and 5.3. 

The simulation was of a one dimensional sodium experiment, TR = 75~s’  G = 

8.0mT/m7 y = 11.24MHz/T, fo = 546.008Hz. The overall experimental bandwidth 
is 13334Hz. A uniform object which extended from -2.5cm to 2.5cm was simulated 
with various gradients. Carson’s rule predicted that all significant sidebands would 
be contained within 5590Hz. The resulting power spectra are compared to the 
predicted bandwidth. In all cases, Carson’s rule accurately predicted the bandwidth 
which includes all sidebands with amplitudes greater than or equal to 1% of the 

I amplitude of the fundamental. 
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Figure 5.2: Power spectrum? amplitude modulated one dimensional sinusoidal gradient ex- 
periment. Overall experimental bandwidth is 13334Hz. The bandwidth predicted by Equa- 
tion 3.5 for the simulated object is 5590Hz (shown by the vertical bars). The l% contour is 
the dashed horizontal line. TR = 7 5 , ~ s ~  I-,, = 2.5cmy G = 8.0mT/m, y = 11.24MHz/T, 
fo = 546.008H~. 
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Figure 5.3: Power spectrum, one dimensional three component truncated square wave gra- 
dient experiment. Overall experimental bandwidth is 13334Hz. The bandwidth predicted 
by  Equation 3.5 for the simulated object is 5590Hz (shown by the vertical bars). The 
1% contour is the dashed horizontal line. TR = 7 5 , ~ s ~  Tm, = 2.5cmY G = 8.0mT/mY 
y = 11.24MHz/TY fQ  = 546.008H~. 
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5.4 Point Spread Function 

A set of simulations was performed to validate the theoretical expressions for the 
point spread functions derived in Subsection 4.5. Figures 4.6, 4.9, 4.7 4.10, 4.8 and 
4.11 show the theoretical PSF’s for the rotating oscillating gradient and incommen- 
surate frequency oscillating gradient experiments with typical imaging parameters. 
For validation, simulations were performed of one spin at the origin with the exper- 
imental parameters used in the theoretical expressions. 

In most cases the agreement between theoretical expressions and the simulations 
was excellent, indicating both that the analysis was correct and that the reconstruc- 
tion program was functioning properly. In some of the chemical shift reconstructions, 
however, the first sidelobe amplitude was attenuated. This is because the maximum 
extent of the sampled region in k-space for any lag is discretized in the gridding 
and density correction process, and is always an integral number of k-space pixels. 
Therefore, when many lags are combined, the resulting PSF is a sum of rect func- 
tions with a discrete rather than continuous set of sizes. The degree of divergence 
of the point spread function can be reduced by increasing the oversampling factor. 

Figures 5.4 and 5.5 show the single lag and multilag point spread functions for 
a three dimensional experiment with rotating oscillating gradients. The theoretical 
expressions for the PSF’s are shown on the same plot. Figures 5.6 and 5.7 show the 
single lag and multilag PSF’s for the incommensurate frequency sinusoidally oscil- 
lating gradient experiment. Figures 5.8 and 5.9 show the single lag and multilag 
PSF’s for the incommensurate frequency three component oscillating gradient ex- 
periment. Figures 5.10 and 5.11 show the single lag and multilag PSF’s for the three 
dimensional amplitude modulated incommensurate frequency sinusoidally oscillating 
gradient experiment. 

5.5 Systematic Noise Reduction 

One consequence of using stochastic excitation is that it introduces systematic 
noise into the reconstructed image arising from the excitation and reconstruction 
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x in cm 

Figure 5.4: Normalized point spread function fo r  a single lag using the rotating oscillating 
gradient; points are from the reconstruction of a simulated stochastic experiment with the 
experimental parameters given an Figure 4.4a. This is the reconstruction at the first max- 
imum of ICmaZ(q), lag 11. ICm,(ll) = 0.5237; the line is a graph of equation 4.40 with the 
same parameters. 

x in cm 

Figure 5.5: Overall point spread function fo r  the rotating oscillating gradient experiment, 
1024 lags; this is from the chemical shifi reconstruction of the same data set as in figure 
4.6; the overall IC,, is 0.523813 
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Figure 5.6: Normalized point spread function for a single lag, incommensurate frequency 
sinusoidal gradients (i,,, = 1); points are from the reconstruction of a simulated stochastic 
experiment with the experimental parameters given in Figure 4.4a. This is the reconstruc- 
tion at the first mm*mum of &m(q)7 lag 11. k.,,-(ll) = 0.5237; the line is a graph of 
equation 4.43 with the same parameters. 

x in cm 

Figure 5.7: Overall point spread function for the incommensurate frequency sinusoidally 
oscillating gradient experiment (imm = 1024 lags; this is from the chemical shift re- 
construction of the same data set as in  figure 4.7; the overall IC,, is 0.523813 
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Figure 5.8: Normalized point spread function for a single Zag, incommensurate frequency 
three component T S W  gradients = 3); points are from the reconstruction of a sim- 
ulated stochastic experiment with the experimental parameters given in Figure 4.4 b. This 
is the reconstruction at the first maximum of L m ( q ) ,  lag 11. Lm(ll) = 0.5237; the line 
is a graph of equation 4.43 with the same parameters. 

x in cm . 

Figure 5.9: Overall point spread function for the incommensurate frequency three compo- 
nent T S W  oscillating gradient experiment (imm = 3), 1024 lags; this is from the chemical 
shift reconstruction of the same data set as in figure 4.8; the overall Lrn is 0.523813 
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Figure 5.10: Normalized point spread function for (t single lag, amplitude modulated incom- 
mensurate frequency sinusoidal gradient experiment; points are from the reconstruction of 
a simulated stochastic experiment with the experimental parameters given in Figure 4.4a. 
This is the reconstruction at the first maximum of Laz(q), lag 11. kmclz l ( l l )  = 0.5237; 
the line is a graph of equation 4.43 with the same parameters. 

x in cm 

Figure 5.11: Overall point spread function for the amplitude modulated incommensurate 
frequency oscillating gradient experiment, 1024 lags; this is from the chemical shifi recon- 
struction of the same data set as in figure 4.7; the overall &= is 0.523813 



79 

process, in addition to the random thermal noise present in any physical measure- 
ment. This systematic noise comes from the variance in the estimate of the object 
density in each position in k-space. There are many factors which affect the magni- 
tude of the variance of the estimate; these include the total length of the excitation 
sequence, the sampling density in k-space, higher order correlations in the noise 
sequence, and object dependent cross-terms between the object density and the ex- 
citation sequence. This is an extremely complicated subject to treat analytically, 
and such a treatment will be avoided here. For a detailed examination of the subject 
see Wong[l4]. There are some general statements which can be made regarding the 
factors that affect systematic noise, however. 

The most important consideration in reducing, the systematic noise in the recon- 
structed image is the number of samples at any point in k-space. The variance in 
the estimate of the object density is inversely proportional to the number of samples 
at that point. There is therefore an intimate relationship between gradient trajecto- 
ries and systematic noise, since the sampling density is determined by the gradient 
trajectory used. 

5.5.1 Repeating versus Nonrepeating k Trajectories 

One of the most useful (and surprising) results derived from experimental simu- 
lations was the discovery that repetitious sampling in k-space leads to a larger than 
expected reduction in the amount of systematic noise in the reconstructed image 
arising from a stochastic experiment for experiments based on incommensurate fre- 
quency gradients. Initially, care was taken to keep the sample rate of the experiment 
unrelated to the oscillation frequencies of the gradients, based on the assumption 
that the artifact introduced by gridding would be smallest if the k-space sampling 
along each axis before gridding was very fine. However, this strategy introduces 
two difficulties. The first is that when the gradient frequencies along each axis are 
completely unrelated, the three dimensional sampling density is very hard to  char- 
acterize. While the sampling density will converge to the expression in Equation 
4.60 as the number of data points goes to infinity, it is very difficult to know a priori 
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what the overall sampling density in any three dimensional k-space position is for an 
experiment of finite length. The density can be tabulated for any experiment, but 
there is no simple relationship that will predict the actual number of sample points 
that will land in any particular voxel in k-space for arbitrary gradient frequencies. 
When the gradient frequencies are chosen solely to be incommensurate with each 
other and the sample frequency for experiments of finite length, there are holes in 
the three dimensional sampling density, which can mean that the object density is 
undersampled. This leads to artifacts in the reconstructed image. 

The second consideration is that this variation in sampling density means that the 
degree of cancellation of the excitation sequence at every voxel in k-space can vary 
quite a bit. As a result, the assumption of Equation 4.19, that the autocorrelation 
of the excitation sequence is a delta function, is not a very good one for many voxels 
in the image. This in turn introduces systematic object dependent noise into the 
image. 

Simulations revealed that both of these considerations can have an effect on final 
image quality. The first task was to investigate the effect of the choice of gradient 
frequency directly on sampling density. Simulations were performed of three dimen- 
sional experiments with numerous choices of incommensurate gradient frequencies, 
and the sampling density was tabulated for each experiment. In each case, there 
were a number of holes in the sampling distribution, which sampling distribution, 
indicating that k-space was not adequately sampled. No obvious relationship was 
found that predicted how many holes there were or the deviation of the sampling 
density from the average value from the gradient frequencies. 

To examine the effect of noise sequence cancellation on systematic noise, two sets 
of simulations were performed. In the first set three dimensional experiment M 8 
million points long was simulated and reconstructed. The gradient frequencies had 
been determined from the previous simulations to have very few holes in the k-space 
sampling density even for relatively short (x 1 million points) experiments. Then 8 
experiments were simulated and reconstructed which covered the first 1/8th of the k- 
space trajectory of the long experiment, and the resulting images were added. Each 
of these simulations were started with different seeds in the noise sequence. The two 
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images had the same total number of samples, and both fully sampled k-space. The 
second image using the multiple noise seeds had significantly lower systematic noise 
than the single long experiment, indicating that sampling the exact same locations 
in k-space times resulted in observably better images than sampling for the same 
total amount of time with the same average distribution of k-space sample positions. 
Because the total experiment time and average sampling density are the same, the 
measurement noise variance in the image (as distinct from the systematic noise) is 
the same. I 

A technique which addresses both of these issues is to choose gradient frequencies 
such that the gradient along each axis repeats in an integral number of samples. By 
properly choosing the number of samples in which each gradient repeats (denoted 
a, b, and c), a k-space trajectory can be chosen which: 

1. Adequately samples three dimensional Cartesian'k-space at a chosen resolution 
for all lags in a known number of data points. 

2. Revisits the same locations in k-space repeatedly as experiment time increases 
with different parts of the excitation sequence to better estimate the object 
density. 

To guarantee that k-space is adequately sampled, the repeat times along the three 
axes must be chosen to satisfy certain conditions. The first is that the three integers 
a, b and c should share no common prime factors. This is a slight relaxation of the 
requirement in Equation 4.41; because a,'b and c are integers, the three gradients will 
return to the same relative phase every N = a x  b x c points, but will not do so before 
that. If an experiment runs for N points, it will have exactly one sample in each 
of N positions in a right rectangular prism in k-space. If the gradient frequencies 
and amplitudes are kept close, this region will be approximately cubical. This first 
condition can be met by choosing a, b and c to be consecutive odd integers. 

The second condition is the sampling density must be sufEicient so that when the 
Kspace samples are interpolated onto a Cartesian grid, there will be no holes in the 
sampled distribution. This can be assured if the greatest distance between samples 
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on each axis is less than or equal to the spacing of points on the Cartesian grid. 
Of the gradient waveforms proposed, the sinusoidal gradient has the most uneven 
sample spacing. A sinusoidal gradient which repeats after an odd number of points 
a will sample a locations along an axis in k-space. The greatest distance between 
sample points will be: 

a 
Therefore, for a sinusoidal gradient to adequately sample p points on a Cartesian 
grid extending from -kmm to km,,, 

TP a > - .  2 

The spectroscopic reconstructions considered here are usually on the order of 
32x32~32, which requires repeat times of greater than 51 points, or a minimum 
repeat time of 51 x 53 x 55 = 148665 points. If the repeat time of the noise sequence 
is not equal to  the gradient repeat time, running the experiment for an integral 
number of full gradient cycles will be equivalent to running the experiment with 
multiple noise seeds, as described above. 

As an additional benefit, the use of repeating gradients speeds up reconstruction 
time severalfold by allowing the use of pretabulated k-space positions so that the 
gridding operation becomes a table lookup. It also decreases memory access since 
several points end up in the same k-space position and can be processed simulta- 
neously. The combined speedup from these two factors is approximately a factor 
of three relative to nonrepeating gradient trajectories for reconstruction of normal 
spectroscopic data sets of 5 to 10 million points in the current implementation of 
the reconstruction program. 

5.5.2 Analytic versus Empirical Sampling Density Correc- 

tion 

Another issue which affects image quality in a systematic way is the sampling 
density correction scheme used. As discussed in Chapter 4, sampling density cor- 
rection can be performed either with empirically calculated sampling patterns or 
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the analytically derived expressions (as shown in 4.6) or with the tabulated sam- 
pling density at each time lag. Simulations with sinusoidal oscillating gradients 
showed that' analytic density correction was preferable in terms of image quality. 
This is because the analytic density correction is applied before the k-space position 
is discretized and is correct for every data point dropped into the k,t-space object es- 
timate, whereas the empirical sampling density correction is applied afterwards, and 
makes no distinction between points within a discrete bin in k-space. For sharply 
peaked sampling densities such as that of the sinusoidal gradient, there can be sig- 
nificant density variation across a k-space voxel. For certain sampling trajectories, 
such as the TSW gradients, the analytic sampling density is difEcult to calculate 
analytically; in all TSW gradient experiments and simulations, empirical sampling 
density was employed out of necessity. 

5.6 Monte Carlo Simulations of Noise Variance 

Because the sampling density in stochastic experiment is non-uniform for most 
of the proposed trajectories, the measurement noise in the experiment will lead to 
colored noise in the reconstructed image. The propagation of noise through the 
reconstruction is analyzed thleoretically in section 4.6. This analysis was validated 
for single lag reconstruction using Monte Carlo analysis. 

A one dimensional oscillating gradient experiment was simulated for the noise 
analysis. The one dimensional results serve to validate the derivation of the basic 
expression for noise propagation, and the relationship between sampling density and 
noise power spectral density. By comparing the one dimensional simulation results 
to equation 4.55, the accuracy of the expression can be shown, and the validity of 
4.55 is inferred. Due to the reconstruction time, it was impractical to simulate the 
three dimensional experiments repeatedly. 

The noise power was estimated by generating and reconstructing data sets con- 
sisting solely of measurement noise. The experiment parameters were chosen to 
reflect typical values which would be employed in a 23Na imaging experiment. The 
noise-only experiment was performed 2048 times and the mean power spectral den- 
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Noise PSD 

Figure 5.12: Single lag noise power spectral density in one dimension, sinusoidal oscillating 
gradients. The mean power spectral density of 2045 reconstructions of lag 12 of 128Kpoint 
data sets containing only measurement noise is shown as points. The line is a plot of 
Equation 4.57 with the same parameters. y is 11-24 MHz/T, G is 8 mT/m, TR is 75ps 
fo is 546.977Hz. 

sity of the reconstructed k-space object density was calculated. The resulting power 
spectral densities are shown with the noise power distributions predicted by equa- 
tion 4.55. In all cases the agreement is excellent. Note that for the three component 
square wave gradient, the sampling density used in the calculated noise power was 
derived numerically by tabulating the k-space positions sampled in the experiment. 
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Figure 5.13: Single lag noise power spectral density in one dimension, three component 
truncated square wave oscillating gradients. The mean power spectral density of 2048 
reconstructions of lag 12 of 128Kpoint data sets containing only measurement noise is 
shown as points. The line is a plot of Equation 4.55 using the tabulated sampling density 
for the experiment. 7 is 11.24 MHz/T, G is 8 mT/m, TR is 75ps fo is 546.977Hz. 
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Figure 5.14: Single lag noise power spectral density in one dimension, modulated sinusoidal 
oscillating gradients. The mean power spectral density of 2048 reconstructions of lag 12 of 
128Kpoint data sets containing only measurement noise is shown as points. The sampling 
density of the modulated gradient is designed to be flat over the sampled region, so the noise 
PSD should also be flat. y is 11.24 MHz/T, G is 8 mT/m, TR is 75ps fo is 546.977Hz. 
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Chapter 6 

Experimental Studies 

6.1 Introduction 

This chapter will present the results of stochastic NMR experiments on phantoms 
to demonstrate the performance of various aspects of the technique. The first set of 
phantom experiments, described in Section 6.2, demonstrates spectroscopic imaging 
on a 'H phantom. The second set of experiments, shown in Section 6.3 shows 
the performance of the stochastic relaxometric imaging experiment over a range of 
relaxation rates in a 23Na phantom. 

6.2 Spectroscopic Imaging 

6.2.1 'H Phantom Construction 

To demonstrate spectroscopic stochastic NMR imaging, a lH phantom with 
two chemical shift species was constructed. The outer flood field contains a 4% 
weight/weight agarose gel, which gives a water signal, and the tubes contain peanut 
oil, which gives a lipid signal. The resonances are separated by 380Hz at  2.35T 
(3.8ppm). The flood field is used to show variation in image intensity across the 
field of view, and the small tubes demonstrate the spatial resolution of the tech- 
nique. The phantom is diagrammed in Figure 6.1. 
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Figure 6.1: l H  chemical shift phantom 

6.2.2 Images 

The lH phantom was imaged using a stochastic imaging sequence with incom- 
mensurate frequency oscillating gradients. Both sinusoidal and three component 
truncated square wave (TSW) gradient experiments are shown. The water and lipid 
images shown are integrated in the spectral dimension over the water and lipid lines, 
starting from a spectroscopic image reconstructed on a 64x64~32 grid. The spectra 
from the central z plane of a 32x32~32 reconstruction are also shown. 

The first set of images shows an experiment employing sinusoidal incommensu- 
rate frequency gradients. The gradient oscillation frequencies were 547.945, 533.333, 
and 519.480Hz along x, y and z respectively, with repeat times of 73, 75, and 
77 points. The gradient amplitudes along x, y, and z were G = 4.00, 3.89, and 
3.79mT/m respectively, giving a point spread function halfwidth of 0.68cm along 
each axis. The voxel volume resulting from the PSF halfwidth is 0.314cm3. The RF 
sequence employed quadrature phase modulation, with the phase selected by two 19 
bit MLS’s, and the TR for the experiment was 50ps. The 421,575 point k trajectory 
was repeated 16 times, for a total of 6,745,200 data points. The total imaging time 
was 337.26 seconds. 
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The spectral field of view (FOV) equals the lowest gradient frequency, 519.48Hz. 
1024 lags were reconstructed, giving a spectral resolution of 19.6Hz. The water 
and lipid images are shown in Figure 6.2, reconstructed on a 64x64~32 grid (FOV 
= 8.68cm in x and y, and 13.13cm in z). The spectra of the central z plane of a 
32x32~32 reconstruction (FOV = 4.92cm in x, y, and z) are shown in Figure 6.3. 

The second set of images is of the same phantom, using incommensurate fre- 
quency three component TSW gradients. The same gradient oscillation frequencies 
were used, 547.945, 533.333, and 519.480Hz along x, y and z respectively, with re- 
peat times of 73, 75, and 77 points. G = 4.00, 3.89, and 3.79mT/m along x, y, and 
z. The point spread function halfwidth using the TSW gradients is 0.54cm along 
each axis, giving a voxel volume of 0.155cm3. The same FU? sequence and TR were 
used. The 421,575 point k trajectory was repeated 8 times, for a total of 3,372,600 
data points. The total imaging time was 168.63 seconds. 

The reconstruction parameters were the same as in the first experiment. The 
spectral field of view is 519.48Hz7 1024 lags were reconstructed, and the spectral 
resolution is 19.6Hz. The water and lipid images (64x64~32 voxels, (FOV = 8.68cm 
in x and y, and 13.13cm in z) are shown in Figure 6.4, and the spectra of the central 
z plane are shown in Figure 6.5 (32x32~32, FOV = 4.92cm along each axis). 

The difference in subjective image appearance between the two sets of 'H images 
arises from differences in both the gradient trajectories employed and in experimen- 
tal conditions. As seen in Section 5.6, the noise characteristics of the two experi- 
ments are quite different; the sinusoidal gradient experiment has measurement and 
systematic noise concentrated in the low spatial frequencies compared to the TSW 
experiment, which has a much flatter noise spectrum. No spatial filtering or overall 
sampling density correction was performed on these images, so the differences in 
noise power distribution are apparent. 

In addition, the second experiment (using TSW gradients) was performed after 
an enhanced shimming method was developed for our spectrometer based on spec- 
troscopic imaging. The differences in the quality of the shimming in the outer voxels 
can be seen by comparing the spectral plots of the two images. Intravoxel dephasing 
in the outer voxels is likely to be responsible for some of the inhomogeneity in the si- 
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(a) Images integrated over the water line 

(b) Images integrated over the lipid line 

Figure 6.2: Spectroscopic images of the H tube phantom using sinusoidal gradients. The 
8 central planes in z are shown left to right, top to bottom of the water (top) and lipid 
(bottom) lines from the phantom. The voxel 
halfwidth is 0.68cm. 

The field of view is 8.68cm in x and y. 



90 

Figure 6.3: Spectroscopic image of the central z plune of the l H  tube phantom using sinu- 
soidal incommensurate frequency oscillating gradients. The data are presented as a 32 b y  
32 grid of spectra. FOV = 4.92cm in x and y. 
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(a) Images integrated over the water line 

(b) Images integrated over the lipid line 

Figure 6.4: Spectroscopic images of the ' H  tube phantom using thTee component T S W  
gradients. The central 8 slices in z are shown left to right, top to bottom of the water (top) 
and lipid (bottom) lines from the phantom. The field of view is 8.68cm in x and y. The 
voxel halfwidth is 0.54cm. 
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Figure 6.5: Spectroscopic image of the central z plane of the lH tube phantom using three 
component TSW gradients. The data are presented as a 32 by 32 grid of spectra. FOV = 
4.92cm in a;, y and z. 
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Phantom extends Tubes filled with 1 O O m M  
12 cm along axis NaCl in glycerol/water n 1.7- mixtures > 

Flood field is water 

Figure 6.6: 23Na T2 phantom. The phantom is cylindrically symmetric along the z axis. 
Tubes 1-5 contain 1OOmM NaCl in 86%,77%y61%y45%y and 0% glycerol v/v in water 
respectively . 

nusoidal gradient image. However it is important to note that for the same gradient 
amplitude, the voxel size of the TSW experiment is approximately half that of the 
similar sinusoidal gradient experiment, so the TSW experiment is less susceptible to 
intravoxel dephasing a priori. 

6.3 T2 Sensitivity 

6.3.1 23Na T2 Phantom Construction 

A 23Na phantom was constructed to determine the performance of the stochastic 
experiment sensitivity over a range of relaxation rates. The cylindrical phantom 
consists of 5 1.7cm diameter tubes arranged in a pentagonal formation, separated 
by 2.3cm, each containing lOOmM NaCl with different T2 values. The flood stage 
was filled with water to reduce susceptibility artifacts. The phantom is diagrammed 
in Figure 6.6. 

The solvent in each tube is a volume/volume mixture of glycerol and water. In- 



94 

Percentage glycerol (v/v) 
0% 
45% 
61% 
77% 
86% 

Tube T1 (ms) Ta(ms) 
5 60.6 59.3 
4 11.3 11.2 
3 4.4 4.4 
2 1.2 1.3 
1 0.60 0.64 

creasing the concentration of glycerol increases the viscosity of the medium, and 
decreases the T2 of the 23Na in the solution. The sodium spectrum of all the so- 
lutions used is in the extreme narrowing limit, which means that the T2 relaxation 
is monoexponential. The five solutions were formulated to span a wide range of T2 

values. The T2 values of the solutions was measured using a spin-echo experiment 
(90,-~-180,-~-acq). Subsequent acquisitions employ different r values to map out 
the FID. The T1 was measured using an inversion recovery experiment (180,-~-90,- 
acq), again ranging over various r values, and both curves were fit to obtain the T1 
and T2. 

The results of these measurements are presented in Table 6.1. As expected for 
23Na in the extreme narrowing limit, the TI and T2 values are identical for all of 
the solutions. Due to finite pulse lengths and delays in the receiver system, the 
measurement technique breaks down at very short T1 and T2 values, leading in 
some cases to measured T1 values that are shorter than T2. The five tubes in the 
phantom cover two orders of magnitude in TI and T2. The relaxation times are 
likely to be somewhat shorter in vivo. 

The stochastic imaging experiment measures T4 rather than T2. Because the T2 

values of 23Na are rather short to begin with, and the gyromagnetic ratio is not very 
high, the difference between T2 and T; is not very significant at many of the T2 rates 
observed in vivo. T;j values of a 4cm diameter spherical sample of the glycerol water 
solutions were obtained by fitting the FIDs obtained using a stochastic spectroscopy 
experiment. The reconstructed FIDs are shown in Figure 6.7, and the Ta values are 
presented in Table 6.2. 
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Percentage glycerol (v/v) 
0% 

45% 
61% 
77% 
86% 

T;(ms) 
49.6 
10.5 
4.3 
1.2 
0.67 

Table 6.2: 23Na TH relaxation rates of lOOmM NaCl in glycerol/water solutions in a 4cm 
spherical sample at 2.35T measured using stochastic spectroscopy. 

1.2 

1 

0 . 8  

0.6 

0 . 4  

0.2 

0% Glycerol 

/ 

Figure 6.7: 23Na T$ relaxation rates of 100mM NaCl in glycerol/water solutions in a 
4cm spherical sample at'2.35T. These FIDs were obtained using a stochastic spectroscopy 
experiment. TR = 75ps, 524,287 points were recorded. Time axis is in milliseconds. The 
FID amplitudes are scaled separately for clarity. 



96 

6.3.2 Images 

The T2 phantom was imaged using a stochastic image sequence with incommen- 
surate frequency oscillating gradients. Again, both sinusoidal and three component 
truncated square wave (TSW) gradient experiments are shown. All reconstructions 
were done on a 32x32~32 grid, and the data are reconstructed in the time domain 
as FIDs rather than spectra. 

The first set of 23Na images shows an experiment employing sinusoidal incom- 
mensurate frequency gradients. The gradient oscillation frequencies were 547.945, 
533.333, and 519.481Hz along x, y and z respectively, with repeat times of 73, 75, 
and 77 points. The gradient amplitudes along x, y, and z were G = 8.00, 7.79, and 
7.59mT/m respectively, giving a point spread function halfwidth of 1.28cm along 
each axis. The voxel volume resulting from the PSF halfwidth is 2.11cm3. The RF 
sequence employed quadrature phase modulation, with the phase selected by two 
19 bit MLS’s, QI = 5O, and the TR for the experiment was 75ps. The 421,575 point 
k trajectory was repeated 16 times, for a total of 6,745,200 data points. The total 
imaging time was 505.89 seconds. 

Two reconstructions were performed. Figure 6.8 shows spatial images of the 
central z plane of the phantom at sequential time points of the FID. 1046 time lags 
were reconstructed, with a time resolution of 1.82ms. The first time point is centered 
at 912ps. The total field of view along the time axis is 77.35ms. 32x32~32 spatial 
voxels were reconstructed, with a field of view of 6.19cm along each axis. Figure 
6.9 shows the FIDs of the central z plane of 32x32~32 voxels. 523 time lags were 
reconstructed, with a time resolution of 912,s The total field of view along the 
time axis is 38.68ms. The first time point is centered at 456ps. The spatial field of 
view is again 6.19cm along each axis. 

The same experiment was performed with incommensurate TSW gradients. Iden- 
tical gradient frequencies and G values were used. The voxel halfwidth was l.llcm, 
giving a voxel volume of 1.39cm3. The 421,575 point k trajectory was repeated 12 
times, for a total of 5,058,900 data points. The total imaging time was 379.42 sec- 
onds. Identical reconstruction parameters were used. The resulting FID time point 
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Figure 6.8: Images of the central z plane of the 23Na T2 phantom using incommensurate 
frequency sinusoidally oscillating gradients. The images show different time points of the 
FIDs, presented as images, left to right, top to bottom. The first image is of the time point 
centered at 912ps. The time spacing between succeeding images is of 1.825ms. FOV = 
6.19cm along each axis. 
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Figure 6.9: FID image of the central z plane of the 23 Na T2 phantom using incommensurate 
frequency sinusoidally oscillating gradients. The data are presented as a 32 b y  32 gr id  of 
FIDs. The first time point is at 456ps, and the spacing between time points is 912ps. The 
spatial FOV = 6.19cm along each axis. 
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Figure 6.10: Images of the central z plane of the 23Na T2 phantom using incommensurate 
frequency three component truncated square wave gradients. The images show different 
time points of the FIDs, presented as images, left to right, top to bottom. The first image 
is of the time point centered at 912ps. The time spacing between succeeding images is of 
1.825ms. FOV = 6.19cm along each axis. 

images are shown in Figure 6.10, and the array of FIDs is shown in Figure 6.11. 
A large fraction of the overall intensity variation of the tubes in the image is 

due to T1 contrast (since this is a spectroscopic image method, the T2 contrast can 
be determined a postiorz). As shown in Equation 4.4, the overall system response 
depends on TI, TR, and the RMS flip angle a. The T1 values in the phantom span a 
wide range. cr was chosen to optimize the experiment for a T1 in the middle of this 
range. Tubes 3 and 4, which have intermediate TI values are therefore the brightest. 
Another source of apparent intensity variation is the decrease in intensity for very 
short T2 species. This is an image artifact; all of the signal from the very short 
T2 nuclei is captured by the stochastic experiment; however the density correction 
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Figure 6.11: FID image of the central z plane of the 23Na 7'2 phantom using incommensu- 
rate frequency three component TSW oscillating gradients. The data are presented as a 32 
by 32 gr id  of FIDs. The first time point is at 456ps, and the spacing between time points 
is 9 1 2 ~ s .  The spatial FOV = 6.19cm along each atxis. 
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Percentage T;(ms) from 

0% 49.6 
45% 10.5 
61% 4.3 
77% 1.2 
86% 0.67 

glycerol (v/v) stochastic spectroscopy 
T;(ms) from 

stochastic imaging 
22.0 
7.6 
3.1 
1.1 

0.68 

Table 6.3: Comparison of the 23Na Ta relaxation rates of lOOmM NaCl in glycerol/water 
solutions at 2.35T measured using stochastic spectroscopy and measured from the stochastic 
image in Figure 6.9. 

algorithm employed for these images has a tendency to underemphasize the data 
from the center of Rspace, which is where the signal energy from nuclei with T2 

shorter than one half of a gradient period is concentrated. 
These uncorrected effects make it difficult to perform proper quantitative relax- 

ometry. However, a “quick look” T2 fit to the data indicates the promise of the 
technique. The FID from the central voxel of each of the tubes was selected from 
the data set shown in Figure 6.9, and fit t o  determine the T2 values. The results are 
shown in Table 6.3. The anomalously low value of the 0% glycerol TS may be due 
to  shimming. 
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Chapter 7 

Summary 

This dissertation presents a fast three dimensional spectroscopic NMR imaging 
experiment which provides spatially resolved information on 23Na relaxation param- 
eters. This technique may prove useful for medical investigations of brain function. 
An experiment based on stochastic RF excitation and employing oscillating gradi- 
ents provides both the fast encoding time necessary to make high resolution in vivo 
spectroscopic images and the sensitivity to the wide range of T2 values exhibited by 
23Na in vivo. 

Stochastic NMR is not a new technique; it was originally proposed in 1970, 

and has been developed over the years by a number of researchers. However, the 
development of spectroscopic imaging with oscillating gradients by Roos and Wong 
opened the door to its use in biological imaging. My contribution in this thesis has 
been to address the issues necessary to adapt the technique to imaging of short T2 

nuclei. 
The important theoretical contribution of this thesis is the development of the 

fast reconstruction algorithm which makes three dimensional imaging practical. The 
speed increase of the Fourier interpolation stochastic reconstruction algorithm re- 
duces the reconstruction time for typical spectroscopic data sets to reasonable val- 
ues, a few hours on a general purpose scientific workstation. Further optimization 
of the reconstruction code, or the use of faster or more specialized processors can be 
expected to provide further speed increases. 
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Another benefit of the new reconstruction algorithm is that it has greatly sim- 
plified the analysis of sampling density and noise propagation in the stochastic ex- 
periment. This led to the development of the new gradient trajectories described 
in Chapter 3.2.3, the truncated square wave gradients and the amplitude modu- 
lated sinusoidal gradients. These gradient trajectories provide more uniform k-space 
sampling densities than those afforded by ordinary sinusoidal gradients, while still 
preserving the advantages of steady state eddy currents. The AMS gradients have 
uses beyond stochastic NMR; echo planar trajectories based on sinusoidal readout 
gradients can employ the AMS modulation function to gain a uniform k-space Sam- 
pling density without resorting to nonlinear time sampling. 

The reduced reconstruction time afforded by the new reconstruction algorithm 
permitted extensive simulation of the experiment, which in turn led to the explo- 
ration factors that affect image quality, and discoveries such as the improvement 
in reconstructed image quality through the use of repeating versus non-repeating 
k-space trajectories, and the use of analytic instead of empirical sampling density 
correction. 

Implementing the stochastic experiment for short T2 nuclei led to the develop- 
ment of a novel Q-spoiler circuit. The probe Q-spoiler can be used in any type of 
NMR experiment where dead time caused by probe ringdown time needs to be min- 
imized. Unlike previously designed PIN diode circuits for Q-spoiling, the inductive 
coupled design can be added to any existing probe with a minimum of modification. 
Also, in the non-energized state, the circuit causes no significant changes to the 
probe performance. Previous designs required active high voltage back-biasing of 
the PIN diode to keep the probe in the high Q state, which injects unwanted noise 
into the probe. Q-spoilers of the design described in this thesis are already in use in 
other non-stochastic short T2 experiments being done in our lab. 

In the course of implementing the experiment, other important practical lessons 
were learned, such as the necessity of measuring and compensating for gradient phase 
shifts and receiver delay times, factors which can usually be ignored for conventional 
imaging experiments, but which can significantly degrade stochastic images if left 
uncorrected. 
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The imaging method developed here combines short encoding time, on the order 
of 20 to 30 seconds, with sensitivity to a wide range of Tz values. These qualities 
make it a promising method for imaging 23Na in vivo. The gradient, RF, and 

sampling frequency requirements are within the capabilities of modern clinical echo- 
planar imaging systems. 

As an example of the requirements of a clinical experiment, consider the problem 
of making a three dimensional spectroscopic sodium image of the human head at 
with lcm3 voxels. If we design an incommensurate frequency truncated square wave 
gradient experiment (which is very close to cz trapezoidal gradient, available on 
many echo-planar machines) using lkHz gradient frequencies, we require a gradient 
amplitude of G = 14.7mT/m. To provide a field of view of 24cm requires a sampling 
frequency of 41,700Hz. Because of the high sampling rate, extremely small RF pulses 
(less than 1") can be employed. These hardware requirements are not unreasonable 
for a clinical EPI machine. Whether or not the software requirements for RF and 
gradient waveform generation can be met depend on the flexibility of the control 
console. If necessary, the waveforms could be generated and fed in from an external 
processor. 

There are a number of ways in which the stochastic experiment can be further 
improved. Image reconstruction could be improved by modifying the density cor- 
rection algorithm that is applied to the gridded data, as mentioned in Section 5.5.2. 
First, I have not yet found a computationally efficient way to calculate a general 
analytic expression for the sampling density of the truncated square wave gradients 
for anything other than the i,,, = 1 (sinusoidal gradients) case. The empirical Sam- 
pling density correction introduces artifacts into the single lag point spread function. 
Finding an analytic expression for the sampling density would improve the resulting 
image quality. 

Perhaps more important is the fact that the current reconstruction technique 
applies density correction in the spatial domain alone. Because different time lags in 
the reconstruction cover different extents in k-space, there are different numbers of 
time samples taken at  different k-space locations. Because the gradients are periodic, 
and k,t-space is critically sampled in time, this results primarily in a change in the 
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spatial point spread function (discussed in Section 4.5.4). However, it also tends 
to deemphasize the first lags in the reconstruction, which may affect the overall 
signal intensity of very short T2 nuclei, especially for the first point of the FID. 
This effect must be taken into account for accurate relaxometry. Performing the 
time-space density correction requires development of an analytic function for the 
overall time-space density, a task which has so far eluded me. 

Accurate, quantitative analysis of concentrations and relaxation parameters in a 
voxel will require a method for calibrating RF flip angle throughout the image, so 
that the effect of T1 contrast can be considered. In a sample where there is a wide 
range of T1, as was the case in the 23Na tube phantom, the intensity variation can 
be large, and must be taken into account. 

There are also of ways the implementation of the experiment can be improved. 
Paff has shown for spectroscopy that oversampling in the time domain (Le. having 
a TR much smaller than that required by the spectral bandwidth of the .system) 
can be used to reduce the systematic noise in stochastic spectra while leaving the 
measurement noise unchanged by improving the cancellation of the excitation noise 
sequence[43]. This technique can also be applied to stochastic imaging, and would be 
expected to greatly improve image quality, at the cost of additional reconstruction 
time. 

. 

Finally, a promising approach is to develop a hybrid technique which takes many 
data samples for each RF pulse. If capturing extremely short T2 signals is not crucial, 
spacing the excitation pulses farther apart would allow for extremely fast sampling, 
since there is no need to wait for probe relaxation between each sample. This would 
allow finer sampling of k-space. It would also allow the use of excitation sequences 
with much shorter repetition cycles, since there would be fewer RF pulses within 
5T1 (see Section 3.2.2). As a result, it may be possible to  use a full length excitation 
sequence at each point in k-space. Wong showed[l4] that this causes a significant 
decrease in the amount of systematic noise (on the order of 20dB) in the resulting 
spin density estimate, a result which has been demonstrated in stochastic imaging 
with constant gradients (Wong, personal communication). Also, the reconstruction 
for such images should be much faster than for "conventional" stochastic imaging, 
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because many of the calculations could be done in parallel. This could result in a 
significantly enhanced fast spectroscopic imaging method. 
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Appendix A 

Reconstruction Pseiudocode 

read s ignal  s[n] i n to  memory 
generate and s to re  y[nl /* exci ta t ion sequence */ 
generate and s to re  kx[n] /* i n t eg ra l  of t h e  x gradient */ 
generate and s to re  ky[n] /* i n t eg ra l  of t h e  y gradient */ 
generate and s to re  kz[n] /* i n t eg ra l  of t h e  z gradient */ 
i n i t i a l i z e  rhok[x] cy] [zl [ql /* object kspace estimate */ 
i n i t i a l i z e  densityCx1 cy] [z] /* number of samples at each 
posi t ion i n  rhok */ 
f o r  each lag q 

f o r  each time point n 

/* r o t a t e  data  value by the  phase of t he  exci ta t ion pulse 
q lags  i n  the  past  */ 

gridval  = conjugate(y[n - q l )  * s b l ;  

/* f i n d  t h e  current posi t ion i n  k-space f o r  magnetization 

kxpos = kxCn1 - k x h  - ql ; 
kypos = kyCn1 - ky Cn - ql ; 
kzpos = kzCn1 - kz[n - q] ; 

from time n - q */ 

/* convolve each sample with the  spreading function t o  f i nd  

f o r  a l l  x,y,z i n  the  neighborhood of kxpos,kypos,kzpos 
i t ’s  contribution t o  neighboring points  i n  k-space */ 

€ 
contrib = C((x,y,z) - (kxpos,kypos,kzpos)); 
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if(densitycorrecti0n == empirical) 
c 

densityCx1 [yl [zl += contrib; 
rhok[x] cy] [z] [ql += gridval * contrib; 

> 
c 

3 

if (densitycorrection == analytic) 

rhokCxl Cy1 [z] [ql += 
gridval * contrib/analyticdensity [XI cy] [z] ; 

1 
3 

/* correct for the sampling density if doing empirical 
density correction */ 

. if(densitycorrecti0n == empirical) 
c 

for all x,y,z 
c 
if density[x] cy] [z] != 0 

1 
reinitialize density [XI cy] [zl ; 

3 

/* transform rho estimate to the spatial domain */ 
rhok CXI Cy] CZI Cq] = 3DIFT(rhok [XI Cy] CZI [qI a W. r . t x a y a z> ; 
3 

/* transform rho estimate to spectral domain */ 
for all x,yaz 

c 
rhok [XI Cy] [z] [q] = FT(rhok [XI cy] [z] cql a w .r . t q) ; 
3 

3 
store rho estimate 
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