$D R=0048-5$ I. 25836

OAK RIDGE NATIONAL LABORATORY

MARTIN MARIETTA

MARTIN MARIETA ENERGY SYSTEMS, NC.
FOR THE UNITE STATES
aPARTMENT: OFENEGGT

Solvent Extraction Studies of Coprocessing Flowsheets Results from Campaign 6 of the Solvent Extraction Test Facility (SETF)
D. E. Benker
J. E. Bigelow
F. R. Chattin
E. D. Collins
L. J. King
R. G. Ross
H. C. Savage
R. G. Stacy

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Printed in the United States of America. Available from the U.S. Department of Energy Technical Information Center
P.O. Box 62, Oak Ridge, Tennessee 37830

This report was prepared as an account of work sponsored by an agency of the United States Government Nether the United States Government nor any agency thereot. nor any of their employees. makes any warranty. express or implied, or assumes any legal liability or responsibility for the accuracy. completeness. or usefulness of any information, apparatus, product, or process disclosed. or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product. process, or service by trade name, trademark. manufacturer, or otherwise. does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarlly state or reflec: those of the United States Government or any agency thereot.

DO NOT MICROFILM COVER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

ORNL/TM-9961
Dist. Category UC-86T (Applied) mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Consolidated Fuel Reprocessing Program

D. E. Benker
J. E. Bigelow
F. R. Chattin
E. D. Collins
ORNL/TM--9961
L. J. King
TI87 025893
R. G. Ross
H. C. Savage
R. G. Stacy

Chemical Technology Division

Date Issued: November, 1986

NOTICE: This document contains information of a preliminary nature. It is subject to revision or correction and therefore does not represent a final report.

Prepared by the
\checkmark OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY
under
Contract No. DE-AC05-840R21400

CONTENTS

Page
LIST OF FIGURES v
ABSTRACT 1

1. INTRODUCTION 1
2. EQUIPMENT AND OPERATIONAL PROCEDURES 2
2.1 FUEL DISSOLUTION AND ADDITION OF ${ }^{95} \mathbf{Z r}$ TRACER 3
2.2 FEED CLARIFICATION AND ADJUSTMENT 3
3. DESCRIPTION OF THE SOLVENT EXTRACTION FLOWSHEETS 4
4. EXPERIMENTAL RESULTS AND DISCUSSIONS OF SOLVENT EXTRACTION TESTS 7
4.1 RESULTS USING TRI-2-ETHYLHEXYL PHOSPHATE 7
4.1.1 Coextraction-Coscrub 8
4.1.2 Partitioning 11
4.2 RESULTS USING DEGRADED SOLVENT 14
4.2.1 Coextraction-Coscrub 14
4.2.2 Partitioning 19
4.3 TECHNETIUM DISTRIBUTION 22
5. SUMMARY AND CONCLUSIONS 22
6. ACKNOWLEDGMENTS 23
7. REFERENCES 25
APPENDIX 27

LIST OF FIGURES

Figure Title Page
1 Solvent extraction flowsheet used in Campaign 6. 5
2 Concentration profiles for the coextraction-coscrubcontactor for the runs with TEHP and TBP 9
3 Concentration profiles for ${ }^{95} \mathrm{Zr}$ (tracer) in thecoextraction-coscrub contactor for the runs withTEHP and TBP . 10
4 Concentration profiles for the partition contactor for the runs with TEHP and TBP 12
5 Concentration profiles for the coextraction-coscrub contactor for the runs with chemically degraded solvent. . 15
6 Concentration profiles for ${ }^{95} \mathrm{Zr}$ (tracer) in the coextraction-coscrub contactor for the runs with chemically degraded solvent . 16
7 Concentration profiles for 95 Nb (tracer) in the coextraction-coscrub contactor for the runs with chemically degraded solvent .17
8 Concentration profiles for ${ }^{106} \mathrm{Ru}$ in the coextraction-coscrub contactor for the runs with chemically degraded solvent. . 18
9 Concentration profiles for the partition contactor for the runs with new solvent and chemically degraded solvent. 20

SOLVENT EXTRACTION STUDIES OF COPROCESSING FLOWSHEETS results from campaign 6 OF the solvent extraction test facility (setf)
D. E. Benker, J. E. Bigelow, E. D. Collins, F. R. Chattin, L. J. King, H. C. Savage, R. G. Ross, R. G. Stacy

Abstract

A series of five solvent extraction tests were made in the Solvent Extraction Test Facility (SETF) during Campaign 6. Each test used a coprocessing flowsheet that included coextractioncoscrubbing of the heavy metals followed by partial partitioning of the uranium and plutonium into separate uranium and uraniumplutonium products. The separation of the uranium and plutonium was aided by the addition of HNO_{2} to the organic backscrub stream. Two of these tests compared the performance of the traditional Purex solvent, tri-n-butyl phosphate (TBP), with a potential replacement, tri-2-ethylhexyl phosphate (TEHP). The remaining three tests were made with a chemically-degraded TBP solvent to compare the effectiveness of two solvent cleanup methods - treatment with silica gel or scrubbing with sodium carbonate and water.

1. INTRODUCTION

The Solvent Extraction Test Facility is located within one of the heavily shielded hot cells of the Transuranium Processing Plant at the Oak Ridge National Laboratory. ${ }^{1}$ In the SETF, flowsheets for the reprocessing of irradiated nuclear reactor fuels are evaluated in mixer-settler contactors that have a processing capability of $\sim 1 \mathrm{~kg} / \mathrm{d}$ of heavy metals. The results from these tests provide information on uranium and plutonium recoveries, fission product removal, and the general operability of the system.

The broad objectives of studying coprocessing flowsheets, which was begun in the previous work, ${ }^{1-3}$ was continued in Campaign 6. For each of the tests, the solvent extraction flowsheet included coextraction and coscrubbing of the heavy metals (uranium and plutonfum) in the first contactor, followed by back-extraction of the plutonium with part of the uranium (partial partitioning) in the second contactor. An organic scrub was used in the partition bank to control the amount of uranium that was recovered with the plutonium and to add excess nitrous acid (HNO_{2}) to improve the uranium-plutonium separation by reducing some of the plutonium to Pu(III).

The five tests that were made in Campaign 6 were similar except for the type of organic extractant that was used. The first two tests were made to compare the performance of an alternative extractant, tri-2ethylhexyl phosphate (TEHP), with that of the standard Purex extractant, tri-n-butyl phosphate (TBP). The other three tests were made using a TBP-based solvent that had been chemically degraded to simulate a recycled solvent. These latter tests compared the performance of two solvent cleanup methods, (1) treatment with base-treated silica gel or (2) conventional scrubbing with sodium carbonate and water.

Although the program emphasis was on the reprocessing of fast breeder reactor (FBR) fuel, no such fuel was readily available when Campaign 6 was made in the fall of 1981 . Approximately 10 kg of light water reactor (LWR) fuel from the H. B. Robinson Reactor was used for these tests which had been irradiated to a burnup of $\sim 31 \mathrm{MWd} / \mathrm{kg}$ and discharged from the reactor in May 1974.

2. EQUIPMENT AND OPERATIONAL PROCEDURES

The SETF equipment items and most of the operational procedures used during Campaign 6 for fuel dissolution, feed clarification and adjustment; and solvent extraction were similar to those described for previous campaigns, ${ }^{1-3}$ except as noted below.

2.1 FUEL DISSOLUTION AND ADDITION OF ${ }^{95} \mathrm{Zr}$ TRACER

The basic procedure for dissolving LWR fuels has remained unchanged since the first dissolution in Campaign 1 and includes: (1) adding the sheared fuel pieces to 3 M nitric acid (HNO_{3}), (2) heating to $50^{\circ} \mathrm{C}$, (3) adding $11 \mathrm{M}_{\mathrm{HNO}}^{3}$ at a controlled rate, and (4) heating and digesting 2 h at $90^{\circ} \mathrm{C}$. The objective of this multi-step procedure was to maintain a slow, controlled dissolution rate. The final solution concentrations were typically $3 \mathrm{M} \mathrm{HNO}_{3}$ and $350 \mathrm{~g} / \mathrm{L}$ of heavy metals. Since short-cooled fuel was not available for Campaign 6 , a small amount of ${ }^{95} \mathrm{Zr}$ tracer was added during the dissolution procedure. Although it is unknown whether the tracer is yielding quantitative data on the behavior of fission product zirconfum, the tracer was found to be useful in the previous campaign ${ }^{3}$ for comparisons of decontamination factor values (DFs) with flowsheet changes. In Campaign 6, the tracer solution was added to the $3 \mathrm{M}^{\mathrm{HNO}} 3$ solution in the dissolver prior to the dissolution, instead of after the fuel dissolution as was done in the previous campaign. It was hoped that this method of adding the ${ }^{95} \mathrm{Zr}$ tracer would provide a better opportunity for isotopic exchange of zirconium between the tracer and the fuel.

2.2 FEED CLARIFICATION AND ADJUSTMENT

The clarification of the dissolver solution was accomplished in two filtration steps. The first (primary) filtration was made after the fuel dissolution to remove the acid insoluble residues; the second (polishing) filtration was made after the feed adjustment as the feed was in transit to the mixer-settlers in order to remove solids that might have formed during the feed adjustment or by feed aging mechanisms during the period preceding mixer-settler start-up. Both filtrations were made with a deepbed type of filter that contains a bed of diatomaceous-earth filter aid as
the filtering medium. Although this deep-bed filter was used for the primary filtration in Campaign 4 and for the polishing filtration in Campaign 5, this was the first time deep-bed filters have been used for both filtrations.

The feed adjustment was effected by the usual procedure; (1) sparging with $\mathrm{N}_{2} \mathrm{O}_{3}$ and air at ambient conditions to adjust the plutonium valence, and (2) addition of the appropriate HNO_{3} solution to make the final concentrations $\sim 3 \mathrm{M}_{\mathrm{HNO}}^{3}$ and $\sim 150 \mathrm{~g} / \mathrm{L}$ of heavy metals. The $\mathrm{H}_{2} \mathrm{O}_{2}$ addition and digest step that was used in Campaigns 2 through 5 was omitted because it appeared to have had a detrimental effect on the ruthenium DFs in the strip contactor.

3. DESCRIPTION OF THE SOLVENT EXTRACTION FLOWSHEETS

A diagram of the basic flowsheet used during Campaign 6 is shown in Fig. 1; the operating conditions and detailed stream analyses for each test are tabulated in the Appendix.

In each test, the first contactor was used to coextract the uranium and plutonium from the aqueous feed and coscrub the pregnant solvent with HNO_{3} to remove impurities. Because the use of two aqueous scrub streams had provided better zirconium removal during the previous campaign, it was included in Campaign 6. Also, the number of low-acid scrub stages was increased from three to six, with a corresponding decrease in extraction stages from 10 to 7 , in order to determine whether the additional stages would provide additional zirconium removal.

The second contactor was used to partially partition the uranium and plutonium. The two products desired from this type of flowsheet were, (1) a uranium stream (HBU) that was relatively free of plutonium, and (2) a mixed uranium-plutonium stream (HBP) that was enriched in plutonium. The amount of uranium that was stripped with the plutonium in the HBP was controlled in part by the organic backscrub stream (HBS). This stream was also used to add HNO_{2}. At the H^{+}concentrations used in these runs, HNO_{2}

ORNL DWG 86-4 14

FLOWSHEET FOR CAMPAIGN 6
Fig. 1. Solvent extraction flowsheet used in Campaign 6.
reduces $\mathrm{Pu}(\mathrm{IV})$ to $\mathrm{Pu}(I I I)$ which improves the efficiency of plutonium stripping and improves uranium-plutonium separation.

In a reprocessing plant the third contactor would be used to strip the uranium into an aqueous product stream. In these tests, the third contactor was used as a backup strip contactor for plutonium; uranium stripping was not studied. This mode was used to allow more freedom in testing partitioning flowsheets while ensuring that the waste solvent would meet disposal limits for plutonium. In addition, hydroxylamine nitrate (HAN) was added to the aqueous strip solution to reduce plutonium to $P u(I I I)$ and ensure complete stripping of plutonium from the solvent. The relatively high concentration (1.5 M) of HAN acted as an inextractable nitrate salt that helped lessen the amount of uranium that would be stripped along with the plutonium. This simplified the subsequent recovery of plutonium from this stream.

The primary difference among the five runs was in the organic extractant that was used for each test. The first two runs (6-1 and 6-2) compared an alternative extractant, tri-2-ethyhexyl phosphate (TEHP), with the more common Purex extractant, tri-n-butyl phosphate (TBP). Laboratory and glove box studies with TEHP ${ }^{4,5}$ had proceeded to the point that further testing with irradiated fuel was desirable. Some of the possible advantages of TEHP over TBP, which had been indicated by the laboratory studies, include: (1) lower aqueous solubility, (2) higher extraction coefficients for heavy metals, (3) greater chemical stability, and, when processing thorium, (4) no third phase formation at high metal loadings. The typical extractant concentration for fuel reprocessing is 1.1 M (30 vol \%) TBP; however, because the phase separation characteristics of TEHP are poor at this concentration, the extractant concentration was lowered to 0.6 M for these comparison runs; 0.6 M corresponds to 28 and $16.5 \mathrm{vol} \%$ for TEHP and TBP, respectively. The diluent for these extractants was normal paraffin hydrocarbon.

The first two runs were further subdivided into two parts, "A" and " B ", in order to determine the effect on the partitioning of adding different amounts of HNO_{2}. In the " A " runs ($6-1 \mathrm{~A}$ and $6-2 \mathrm{~A}$), ~ 2 mol of HNO_{2} per mol of plutonium was added to the partitioning contactor, and in the
" B " runs (6-1B and 6-2B) five times as much, ~ 10 mol of HNO_{2} per mol of plutonium, was added. The HNO_{2} was added with the HBS stream, which contained $\sim 0.008 \mathrm{M} \mathrm{HNO}_{2}$ in the " A " runs and $0.04 \mathrm{M} \mathrm{HNO}_{2}$ in the " B " runs.

The other three runs were made using 30 vol \% TBP (the diluent was again normal paraffin hydrocarbon) that had been chemically degraded (described below) in order to simulate a recycled solvent. Two solvent cleanup methods were evaluated - (1) scrubbing with sodium carbonate and water and (2) treatment with base-treated silica gel. Sodium carbonate scrubbing is the traditional method for solvent treatment in a reprocessing plant; the silica gel method is a relatively new method developed by Tallent et al. ${ }^{6}$ for possible application in fuel reprocessing. The chemical degradation step was necessary because the SETF has no means for recycling solvent or of using alpha-contaminated solvents; all previous runs have been made with new solvent that was used once and then discarded.

The degraded solvent was prepared by refluxing a small batch of 30% TBP in $8 \mathrm{M}_{\mathrm{HNO}}^{3}$ while sparging with NO_{2}, and then diluting this concentrate with new 30% TBP to make a final solution that was 0.003 M dibutyl phosphate (DBP) and $\mathbf{\sim} 0.8 \%$ diluent degradation products.
4. EXPERIMENTAL RESULTS AND DISCUSSIONS OF SOLVENT EXTRACTION TESTS

4.1. RESULTS USING TRI-2-ETHYLHEXYL PHOSPHATE

The initial use of TEHP in the SETF equipment caused problems that required some minor operational changes. During the solvent cleanup step (sodium carbonate and water scrubs), a slower agitator speed was needed to prevent the water scrubs from forming a stable emulsion. More batch contacts were used to compensate for the less vigorous mixing. Also, in order to achieve proper hydraulic operation in the SETF mixer-settlers, minor adjustments of the agitator positions were required to improve the pumping action from the mixers. On the other hand, the TEHP run did seem qualitatively to have less interfacial crud than did the later run with TBP (6-2) 。

4.1.1 Coextraction-Coscrub

The overall results from these runs indicated similar results for both solvents, except for uranium losses and zirconium DFs (Table l). For the run with TEHP solvent (6-1), uranium was not detected in the aqueous raffinate (HAW); the results shown are the limits of detection for the given samples. Because the uranium loss is so much lower than the plutonium loss in Run 6-1, it may be the result of sampling or analysis problems rather than from using TEHP. Concentration profiles for uranium, plutonium, and free H^{+}are shown in Fig. 2.

The concentration profile for the ${ }^{95} \mathrm{Zr}$ tracer is shown in Fig. 3. The higher ${ }^{95} \mathrm{Zr}$ DF in the TBP run was not only the result of less ${ }^{95} \mathrm{Zr}$ extracting but also of better ${ }^{95} \mathrm{Zr}$ removal in the scrub section. The ${ }^{95} \mathrm{Zr}$ concentration in Run $6-2$ was $2.6 \times 10^{7} \mathrm{~Bq} / \mathrm{L}$ in the solvent at stage 10 (aqueous feed inlet) and dropped by a factor of ~ 1000 across the scrub section. In the run with TEHP, the feed stage had twice as much ${ }^{9}{ }^{5} \mathrm{Zr}, 6.4$ x $10^{7} \mathrm{~Bq} / \mathrm{L}$, and the concentration only dropped by a factor of 200 across the scrub section. No significant difference was noted in the behavior of ${ }^{106} \mathrm{Ru},{ }^{137} \mathrm{Cs},{ }^{144} \mathrm{Ce}$, or ${ }^{154} \mathrm{Eu}$ for either solvent.

The ${ }^{95} \mathrm{Zr}$ DFs measured for Run 6-2 (2 x 10^{4}) is significantly higher than the DF measured in Run 5-1 (750) during Campaign 5 and may be the result of using additional low-acid scrub stages for Campaign 6 (six instead of three). Other differences that might have also influenced the ${ }^{95} \mathbf{Z r}$ behavior include: the fuel (Campaign 5 used EBR-II fuel), the addition of the tracer at a different point in the dissolution, and the lower TBP concentration (although Run 6-3, which used 30% TBP and is discussed below in section 4.2 .1 , had the same DF as Run 6-2).

ORNL DIVG 86-15336

Fig. 2. Concentration profiles for the coextraction-coscrub contactor for the runs with TEHP and TBP.

Fig. 3. Concentration profiles for ${ }^{95} \mathrm{Zr}$ (tracer) in the coextraction-coscrub contactor for the runs with TEHP and TBP.

Table l. Uranium and plutonium losses and fission product decontamination results in coextraction-coscrubbing for the runs with TEHP and TBP.

	Run No.	
	6-1 (TEHP)	6-2 (TBP)
Extraction losses, \%		
Uranium	<0.001	0.040
Plutonium	0.031	0.038
Fission product DFs		
${ }^{9} 5 \mathrm{Zr}$	1E3	2E4
$9{ }^{5} \mathrm{Nb}$	7E3	5E3
${ }^{106} \mathrm{Ru}$	<9E3	<4E3
${ }^{137} \mathrm{Cs}$	$>2 \mathrm{E} 7$	>2E7
$14^{4} \mathrm{Ce}$	$\sim 2 \mathrm{E} 4$	$\sim 1 E 4$
$1{ }^{4} \mathrm{Eu}$	$>3 \mathrm{E} 5$	>2E5

4.1.2 Partitioning

Although a slightly larger flow rate for the aqueous strip was used in the runs with TEHP in order to compensate for its higher extraction coefficients, the losses of plutonium into the uranium product (HBU) were still excessive, 1 to 2% of the total plutonium (Table 2). On the other hand, slightly less uranium was stripped into the plutonium product (HBP). The net result was poorer $U-P u$ separation with TEHP; the overall $U-P u$ separation factors (Table 2) were lower by a factor of ~ 10.

Increasing the $\mathrm{HNO}_{2} / \mathrm{Pu}$ mol ratio from ~ 2 (Runs $6-1 \mathrm{~A}$ and $6-2 \mathrm{~A}$) to a mol ratio of ~ 10 (Runs $6-1 B$ and $6-2 B$) decreased the plutonium losses to the uranium product by a factor of about 2 ; but, at the same time, increased the amount of uranium stripped to the plutonium product by factors of 1.2 and 1.4 .

Concentration profiles for uranium, plutonium, nitric acid, and nitrous acid are shown in Fig. 4.

Fig. 4. Concentration profiles for the partition contactor for the runs with TEHP and TBP.

Table 2. Results from partial partitioning contactor for comparison runs using TEHP and TBP solvents.

	Run No.			
	$6-1 A^{a}$	$6-18^{\text {b }}$	$6-2 A^{c}$	$6-2 B^{\text {d }}$
Feed solution (HAF)				
$\mathrm{Pu}, \mathrm{g} / \mathrm{g}$ of U	~ 0.008	~ 0.008	~ 0.008	~ 0.008
Phase ratio ($0 / A$) ${ }^{\text {e }}$				
Scrub	1.9	1.9	2.1	2.1
Strip	6.8	6.9	7.2	7.2
\% of Pu in				
$\mathrm{U}-\mathrm{Pu}$ product (HBP)	97.4	98.5	99.72	99.88
U product (HBU)	2.6	1.5	0.28	0.12
Uranium product (HBU)				
$\mathrm{Pu}, \mathrm{ug} / \mathrm{g}$ of U	238	154	26	12
Pu DF	34	52	310	670
U-Pu product (HBP)				
$\mathrm{Pu}, \mathrm{g} / \mathrm{g}$ of U	0.081	0.074	0.071	0.049
U DF	10	9.2	8.9	6.1
$\mathrm{U}-\mathrm{Pu}$ separation factor ${ }^{\text {f }}$	340	480	2700	4100

${ }^{\text {a }}$ Solvent was $0.6 \underline{\mathrm{M}}$ (28\%) TEHP with a $\mathrm{HNO}_{2} / \mathrm{Pu}$ mol ratio of ~ 2.
bSolvent was 0.6 M (28\%) TEHP with a $\mathrm{HNO}_{2} / \mathrm{Pu}$ mol ratio of ~ 10.
${ }^{\text {c Solvent was }} 0.6 \mathrm{M}$ (16.5%) TBP with a $\mathrm{HNO}_{2} / \mathrm{Pu}$ mol ratio of ~ 2. ${ }^{\text {d }}$ Solvent was 0.6 M (16.5%) TBP with a $\mathrm{HNO}_{2} / \mathrm{Pu}$ mol ratio of ~ 10.
${ }^{e}$ (organic flow rate)/(aqueous flow rate)
$\mathrm{f}_{\text {Product of }}$ of U and Pu DFs.

4.2 RESULTS USING DEGRADED SOLVENT

4.2.1 Coextraction-Coscrub

The flowsheet conditions were initially set to achieve a higher solvent loading than was used in previous SETF runs in an attempt to improve the efficiency of the coextraction-coscrub contactor. Unfortunately, the conditions were set too close to the maximum loading, and minor uncertainties in the feed composition and minor variations in the flow rates allowed the solvent loading to reach about $115 \mathrm{~g} / \mathrm{L}$ (90% saturation) at stages 10 and 12 for Runs 6-3 and 6-4, respectively. This led to unacceptable losses of heavy metals to the aqueous raffinate (the very low uranium number in Table 3 for Run 6-3 is probably caused by an analysis or sampling problem). The flowsheet conditions were corrected in Run 6-5. The peak solvent loading was lowered to about 70% of saturation, and the loss of heavy metals was reduced to about 0.04%, which is similar to previous SETF runs. As a result, there were significant variations in the solvent loading during these runs, as shown in Fig. 5.

The DFs for ${ }^{137} \mathrm{Cs},{ }^{144} \mathrm{Ce}$, and ${ }^{154} \mathrm{Eu}$ were similar for each solvent and are apparently unaffected by the presence of solvent degradation products or by the type of cleanup method used. However, the DFs for ${ }^{95} \mathrm{Zr},{ }^{95} \mathrm{Nb}$, and ${ }^{106} \mathrm{Ru}$ were noticeably worse (by factors of about 1000,100 , and 10 , respectively) when using the unpurified degraded solvent (Run 6-5). The two treatment methods (sodium carbonate or silica gel) yielded similar DFs for ${ }^{95} \mathrm{Nb}$ and ${ }^{106} \mathrm{Ru}$, which were also similar to the DFs measured for new solvent. However, the ${ }^{95} \mathrm{Zr}$ DF was a factor of 10 lower for the solvent that was treated with silica gel. After reviewing the purification procedure, it was determined that the poorer $D F$ was probably the result of inadequate water scrubbing of the silica gel product, which would leave some DBP in the solvent. If better water scrubbing had been used for the silica gel treatment, it might have yielded ${ }^{95} \mathrm{Zr}$ results similar to the sodium carbonate treatment. Concentration profiles for ${ }^{95} \mathrm{Zr},{ }^{95} \mathrm{Nb}$, and ${ }^{106} \mathrm{Ru}$ are shown in Figs. 6 through 8.

Fig. 5. Concentration profiles for the coextraction-coscrub contactor for the runs with chemically degraded solvent.

ORNL DWG 86-15340

Fig. 6. Concentration profiles for ${ }^{95} \mathrm{Zr}$ (tracer) in the coextraction-coscrub contactor for the runs with chemically degraded solvent.

Fig. 7. Concentration profiles for ${ }^{95} \mathrm{Nb}$ (tracer) in the coextraction-coscrub contactor for the runs with chemically degraded solvent.

Fig. 8. Concentration profiles for ${ }^{106} \mathrm{Ru}$ in the coextraction-coscrub contactor for the runs with chemically degraded solvent.

Table 3. Uranium and plutonium losses and fission product decontamination results in coextraction-coscrub contactor for runs with degraded solvent and previous runs with new solvent.

	New solvent ${ }^{\text {a }}$	Run No.		
		$\overline{6-3}$	$6-4{ }^{\text {c }}$	6-5d
Extraction losses, \%				
Uranium	~ 0.01	<8E-4	4.6	0.03
Plutonium	~ 0.01	0.3	4.2	0.04
Fission product DFs				
${ }^{95} \mathrm{Zr}$	-	2E4	2E3	4
95^{Nb}	-	7E3	3E3	50
${ }^{106} \mathrm{Ru}$	1E3-1E4	<2E3	1 E 4	5E2
${ }^{137} \mathrm{Cs}$	1E6-1E7	$1 E 7$	3E7	>1E6
${ }^{144} \mathrm{Ce}$	1E4-1E5	$\sim 2 \mathrm{E} 5$	$\sim 2 \mathrm{E} 4$	$\sim 4 \mathrm{E} 3$
$1^{154} \mathrm{Eu}$	1E4-1E5	>3E4	$>5 \mathrm{E} 5$	>9E4

a Used new solvent that was purified with sodium carbonate and water scrubs.
$b_{\text {Used }}$ degraded solvent that was purified with sodium carbonate and water scrubs.
${ }^{c}$ Used degraded solvent that was purified by base-treated silica gel.
Used degraded solvent without purification.

4.2.2 Partitioning

Concentration profiles for the partitioning bank are shown in Fig. 9. The plutonium losses to the uranium product during the runs with degraded solvent were larger than those measured during a previous run with new solvent (Table 4). Using degraded solvent without purification yielded the largest loss, $\sim 7 \%$. When the degraded solvent was purified by one of the treatment methods (sodium carbonate or silica gel), the plutonium loss was $\sim 0.5 \%$, which is only slightly poorer than the 0.1% that was measured for the run with new solvent.

Fig. 9. Concentration profiles for the partition contactor for the runs with new solvent and chemically degraded solvent.

Although the plutonium content in the degraded solvent was larger, the plutonium was not irreversibly lost. It was successfully stripped in the backup strip contactor ($0.2 \mathrm{M} \mathrm{HNO}_{3}$ and 1.5 M hydroxylamine nitrate aqueous strip). The plutonium content of the final waste solvent from this contactor was $<1 \mathrm{mg} / \mathrm{L}$, which is similar to the plutonium concentrations achieved when using new solvent.

Table 4. Results from partial partitioning contactor for comparison runs using degraded and new solvents.

	Run No.			
	$3-2 c^{\text {a }}$	6-3b	6-4c	6-5d
Phase ratio (0/A) ${ }^{\text {e }}$				
Scrub section	1.1	0.99	0.93	0.99
Strip section	4.0	3.5	2.8	3.0
$\%$ of Pu in				
$\mathrm{U}-\mathrm{Pu}$ product (HBP)	99.9	99.6	99.5	93.1
U product (HBU)	0.1	0.4	0.5	6.9
\% of U in				
U-Pu product (HBP)	10.6	10.8	16.9	10.7
U product (HBU)	89.4	89.2	83.1	89.2
Uranium product				
$\mathrm{Pu}, \mu \mathrm{g} / \mathrm{g}$ of U	9	37	55	589
U-Pu product				
$\mathrm{Pu}, \mathrm{g} / \mathrm{g}$ of U	0.082	0.070	0.051	0.066

a Used new solvent purified with sodium carbonate and water scrubs.
$b_{\text {Used }}$ degraded solvent purified with sodium carbonate and water scrubs.
CUsed degraded solvent purified by base-treated silica gel.
dused degraded solvent without purification.
${ }^{e}$ (Organic flow rate)/aqueous flow rate).

4.3 TECHNETIUM DISTRIBUTION

The distribution of technetium was measured in the outlet streams for Run 6-2 (Table 5). This had not been done before because technetium is not detectable in routine gamma-scans and special analytical techniques are required to measure it. In the coextraction-coscrub bank, about 86\% of the technetium was measured in the aqueous waste which corresponds to a technetium DF of ~ 7 for the coextraction-coscrub bank. In the partitioning contactor, no significant separation of technetium and uranium was noted.

Table 5. Distribution of technetium and uranium in outlet streams for Run 6-2.

	Tc $(\%)$	U $(\%)$
Coextraction-coscrub bank		
Aqueous waste (HAW)	86	0.04
U-Pu product (HAP)	14	99.96
Partial partitioning bank		
U-Pu product (HBP)	19	12
Uranium product (HBU)	81	88

5. SUMMARY AND CONCLUSIONS

The most significant results and conclusions from SETF Campaign 6 are as follows:

The extractant TEHP was tested and compared with the traditional TBP extractant for fuel reprocessing. Its use yielded no major advantages compared with TBP. The raffinate losses and fission product removals were similar; and although TEHP did initially cause some hydraulic problems,
they were corrected by minor changes in equipment and operational procedures. The only significant disadvantage was the poorer U-Pu separation with TEHP, which was primarily the result of poorer plutonium stripping. Using a different plutonium reductant or different flowsheet conditions might mitigate this difference with TBP.

Several tests were made to compare the solvent extraction behavior of (1) new solvent, (2) chemically degraded solvent (0.003 M DBP and 0.8% diluent degradation products), and (3) chemically degraded solvent that had been purified by either sodium carbonate or base-treated silica gel. When the degraded solvent was left unpurified, it yielded poorer DFs for ${ }^{95} \mathrm{Zr},{ }^{95} \mathrm{Nb}$, and ${ }^{106} \mathrm{Ru}$, in addition to much higher plutonium retention in the solvent from the partitioning bank (7% plutonium loss versus 0.1% for new solvent). Treating the solvent with either of the above purification methods, restored the fission product DFs to values similar to those obtained with new solvent, but still left a small amount of plutonium in the solvent from the partitioning contactor (0.5%). Little difference was noted between the runs that used sodium carbonate or silica gel treated solvent, except for the ${ }^{95} \mathrm{Zr}$ DF; the lower ${ }^{95} \mathrm{Zr}$ DF for the silica-treated solvent may have resulted from inadequate water scrubbing following the treatment.

6. ACKNOWLEDGMENTS

The experimental work done in the SETF was performed by the Chemical Technology Division staff of the Transuranium Processing Plant. The preparation of the degraded solvent and the purification by silica gel was performed by 0. K. Tallent and J. C. Mailen of the Chemical Technology Division. The extensive analytical work was carried out by Analytical Chemistry Division personnel, primarily under the supervision of J. H. Cooper and J. M. Peele. Engineering and maintenance services were provided by personnel from the ORNL Engineering Division, the Instrumentation and Controls Division, and Plant and Equipment Division, under the supervision of S. O. Lewis, A. A. Shourbaji, E. M. Shuford, and B. R. Scarborough.

7. REFERENCES

1. E. D. Collins, D. E. Benker, J. E. Bigelow, F. R. Chattin, M. H. Lloyd, L. J. King, R. G. Ross, H. C. Savage, Solvent Extraction Studies of Coprocessing Flowsheets - Results from Campaigns 1 and 2 of the Solvent Extraction Test Facility (SETF), ORNL/TM-7080, Oak Ridge National Laboratory, July 1982.
2. E. D. Collins, D. E. Benker, J. E. Bigelow, F. R. Chattin, L. J. King, R. G. Ross, H. C. Savage, Solvent Extraction Studies of Coprocessing Flowsheets - Results from Campaigns 3 and 4 of the Solvent Extraction Test Facility (SETF), ORNL/TM-7991, Oak Ridge National Laboratory, May 1982.
3. W. D. Bond, D. E. Benker, J. E. Bigelow, F. R. Chattin, E. D. Collins, L. J. King, R. G. Ross, H. C. Savage, Solvent Extraction Studies of Coprocessing Flowsheets - Results from Campaign 5 of the Solvent Extraction Test Facility (SETF), ORNL/TM-8598, Oak Ridge National Laboratory, November 1983.
4. W. D. Arnold and D. J. Crouse, Evaluation of Alternate Extractants to Tributyl Phosphate - Phase I, ORNL/TM-7536, Oak Ridge National Laboratory, April 1981.
5. B. A. Hannaford and G. D. Davis, Plutonium Flowsheet Development in Miniature Mixer-Settlers. Part II: Coextraction-Costripping Experiments with Fast Breeder Reactor Fuel Composition, ORNL/TM-8856, Oak Ridge National Laboratory, August 1984.
6. O. K. Tallent, J. C. Mailen, K. D. Pannell, Solvent Cleanup Using Base-Treated Silica Gel Solid Adsorbent, ORNL/TM-8948, Oak Ridge National Laboratory, June 1984.

APPENDIX A

Table A.l. Campaign 6 first cycle tests - extraction/scrub bank conditions and results

	Run No.				
	6-1	6-2	6-3	6-4	6-5
Dates 1	10/19-21/81	10/29-31/81	11/9-10/81	11/17-18/81	12/7-8/81
Bank temperature, ${ }^{\circ} \mathrm{C}$	51	51	51	52	51
Number of stages final scrub/intermediate scrub/extraction	6/3/7	6/3/7	6/3/7	6/3/7	6/3/7
HAX stream flow rate, L/h	1.50	1.56	1.52	1.45	1.54
Flow ratios					
has/HAX	0.118	0.118	0.121	0.126	0.118
hais/hax	0.0609	0.060	0.060	0.064	0.064
HAF/HAX	0.259	0.230	0.564	0.591	0.525
Inlet stream compositions					
HAS Stream, HNO_{3}, mol/L	L 0.51	0.49	0.48	0.48	0.52
HAIS Stream, HNO_{3}, mol/L HAX Stream	L 3.0	3.0	3.0	3.0	3.0
$\begin{aligned} & \text { \% TBP } \\ & \% \text { TEHP } \end{aligned}$	$28+0.5$	16.5+0.5	30 ± 0.5	30 ± 0.5	30 ± 0.5
	3.08	3.04	2.84	2.88	2.76
	149	153	163	158	144
	1.31	1.18	1.17	1.31	1.21
	49	48	56	52	53
	2.77	2.53	2.59	2.68	2.44
	1.48	2.18	1.32	0.895	0.87
	1.34	1.05	1.57	1.23	0.90
	<13	<10	<5	7.14	7.7
		<6	<3	3.8	$\stackrel{6}{348}$
	411	375	389	403	348
	<6	<6	<3	<4	<6
	15.2	13.0	12.4	14.8	13

Table A-1 (continued)

	Run No.				
	6-1	6-2	6-3	6-4	6-5
Outlet stream compositions					
HAW stream					
HNO_{3}, mol/L	2.5	2.35	2.6	2.7	2.8
U, mg/L	<1	31	<1	4990	30
Pu, mg/L	0.23	0.24	2.25	39	0.35
$241 \mathrm{Am}, \mathrm{mg} / \mathrm{L}$	35	34	44	49	44
$244 \mathrm{Cm}, \mathrm{mg} / \mathrm{L}$	1.6	1.6	1.9	2.1	2.1
${ }^{95} \mathrm{Zr}, \mathrm{GBq} / \mathrm{L}$	0.919	0.57	0.74	1.14	0.418
$95 \mathrm{Nb}, \mathrm{GBq} / \mathrm{L}$	0.703	0.55	0.97	1.25	0.698
${ }^{106} \mathrm{Ru}, \mathrm{GBq} / \mathrm{L}$	<4	<4	5.95	5.28	5.7
$125 \mathrm{Sb}, \mathrm{GBq} / \mathrm{L}$	<2	<2	3.67	3.01	<2
137 Cs , GBq/L	240	224	304	296	281
$144 \mathrm{Ce}, \mathrm{GBq} / \mathrm{L}$	<2	<2	<2	5.09	<2
$154 \mathrm{Eu}, \mathrm{GBq} / \mathrm{L}$	8.4	7.52	10.2	11.8	10.8
HAP stream.					
$\mathrm{HNO}_{3}, \mathrm{~mol} / \mathrm{L}$	0.01 0.00045	0.01	0.0219	0.03 0.0030	0.05 0.0028
HNO 2; mol/L $\mathrm{U}, \mathrm{~g} / \mathrm{L}$	0.00045 37.5	0.00078 31.4	0.0019 86.9	0.0030 80.3	73.5
Pu, g/L	0.327	0.262	0.63	0.69	0.60
$95 \mathrm{Zr}, \mathrm{MBq} / \mathrm{L}$	0.294	0.020	0.035	0.251	109
$95 \mathrm{Nb}, \mathrm{MBq} / \mathrm{L}$	0.048	0.050	0.12	0.211	9.47
${ }^{106} \mathrm{Ru}, \mathrm{MBq} / \mathrm{L}$	0.358	0.729	1.56	0.387	7.0
$125 \mathrm{Sb}, \mathrm{MBq} / \mathrm{L}$	<0.02	<0.02	<0.03	<0.03	<0.5
137 Cs , MBq/L	<0.005	<0.005	0.016	0.0076	<0.1
$144 \mathrm{Ce}, \mathrm{MBq} / \mathrm{L}$	<0.06	<0.1	<0.1	<0.09	<0.6
$154 \mathrm{Eu}, \mathrm{MBq} / \mathrm{L}$	<0.01	<0.02	<0.02	<0.02	<0.07

Table A-2. Campaign 6 first-cycle tests - strip bank conditions and results

		Run No.						
		6-1A	6-1B	6-2A	6-2B	6-3	6-4	6-5
Dates		10/19-20/81	10/20-21/81	10/29-30/81	10/30-31/81	11/9-10/81	11/17-18/81	12/7-8/81
Bank te	mperature, ${ }^{\circ} \mathrm{C}$	25	25	32	32	25-26	25	25
Number of stages Strip/scrub								
		13/3	13/3	13/3	13/3	13/3	13/3	13/3
BX stream flow rate, L / h Flow ratios		0.307	0.303	0.304	0.304	0.616	0.760	0.752
HAP/	/ HBX	4.89	4.95	5.12	5.12	2.47	1.91	2.04
HBS/	/ HBX	1.93	1.95	2.07	2.07	0.989	0.933	0.989
Inlet stream compositions								
HBX stream, HNO_{3}, mol/L HBS stream		L 0.10	0.10	0.10	0.10	0.10	0.10	0.10
				16.5+0.5	16.5+0.5	30+0.5	30+0.5	$30+0.5$
	\% TEHP	28+0.5	$28+0.5$					
	HNO_{3}, mol/L	$<0 . \overline{0} 1$	$<0 . \overline{01}$	<0.01	<0.01	0.02	0.01	0.02
	HNO_{2}, mol/L	0.0085	0.043	0.0085	0.040	0.083	0.089	0.099
	Stream							
	\% TBP			16.5 ± 0.5	16.5 ± 0.5	30 ± 0.5	30 ± 0.5	30 ± 0.5
	\% TRHP	$28+0.5$	$28+0.5$					
	HNO_{3}, mol/L	$0 . \overline{0} 1$		0.01		0.02	0.03	0.05
	$\mathrm{HNO}_{2}, \mathrm{~mol} / \mathrm{L}$	0.00045		0.00078		0.0019	0.0030	0.0028
	$\mathrm{U}, \mathrm{g} / \mathrm{L}$	37.5		31.4		86.9	80.3	73.5
	${ }_{9} \mathrm{Pu}, \mathrm{g} / \mathrm{L}$	0.327		0.262		0.63	0.69	0.60
	${ }^{95} \mathrm{Zr}, \mathrm{MBq} / \mathrm{L}$	0.294		0.020		0.035	0.251	109
	${ }^{95} \mathrm{Nb}, \mathrm{MBq} / \mathrm{L}$	0.048		0.050		0.12	0.211	9.47
	$106 \mathrm{Ru}, \mathrm{MBq} / \mathrm{L}$ $125 \mathrm{Sb}, \mathrm{MBa} / \mathrm{L}$	0.358 <0.02		0.729 <0.02		1.56 <0.03	0.387 <0.03	7.0 <0.5
	${ }^{137} \mathrm{Cs}$, MBq/L	<0.005		<0.005		-0.016	<0.03 0.0076	<0.5 <0.1
	$1{ }^{144} \mathrm{Ce}, \mathrm{MBq} / \mathrm{L}$	<0.06		<0.1		<0.1	<0.09	<0.6
	${ }^{154} \mathrm{Eu}, \mathrm{MBq} / \mathrm{L}$	<0.01		<0.02		<0.02	<0.02	<0.07

Table A-2 (continued)

	Run No.						
	6-1A	6-18	6-2A	6-2B	6-3	6-4	6-5
t stream composition							
HBP Stream							
$\mathrm{HNO}_{3}, \mathrm{~mol} / \mathrm{L}$	0.18	0.16	0.14	0.20	0.19	0.26	0.20
$\mathrm{U}, \mathrm{g} / \mathrm{L}$	19.0	21.3	19.4	29.4	23.3	26.4	17.4
Pu, g/L	1.54	1.58	1.38	1.44	1.64	1.34	1.14
\% Pu(IV)					42	47	44
${ }^{95} \mathrm{Zr}, \mathrm{MBq} / \mathrm{L}$	1.84	1.56	0.0674	0.047	0.0365	0.398	188
${ }^{95} \mathrm{Nb}, \mathrm{MBq} / \mathrm{L}$	0.373	0.334	0.0399	0.0442	0.0581	0.128	5.8
${ }^{106} \mathrm{Ru}, \mathrm{MBq} / \mathrm{L}$	<0.1	<0.1	<0.06	<0.06	<0.05	<0.08	<0.9
$125 \mathrm{Sb}, \mathrm{MBq} / \mathrm{L}$	<0.04	<0.05	<0.02	<0.02	<0.02	<0.02	<0.5
${ }^{137} \mathrm{Cs}$, MBq/L	0.039	0.060	0.0208	0.0101	0.0156	0.070	0.28
$1{ }^{144} \mathrm{Ce}, \mathrm{MBq} / \mathrm{L}$	<0.1	<0.1	<0.1	<0.25	<0.1	<0.1	<0.5
$154 \mathrm{Eu}, \mathrm{MBq} / \mathrm{L}$	<0.02		<0.01	<0.02	<0.01	<0.02	<0.08
HBU stream							
HNO_{3}, mol/L	<0.01	<0.01			0.01	0.02	0.03
$\mathrm{HNO}_{2}, \mathrm{~mol} / \mathrm{L}$	0.0020	0.0083	0.0024	0.0080	0.018	0.024	0.024
$\mathrm{U}, \mathrm{g} / \mathrm{L}$	25.6	21.8	20.2	20.5	55.2	45.8	47
Pu, mg/L	6.1	3.4	0.53	0.24	2.1	2.5	27.8
${ }^{95} \mathrm{Zr}$, MBq/L	0.039	0.020	0.0164	0.0092	0.022	0.0507	20.9
$95 \mathrm{Nb}, \mathrm{MBq} / \mathrm{L}$	0.012	0.012	0.0237	0.0284	0.0774	0.158	5.06
106 Ru , MBq/L	0.320	<0.24	0.536	0.554	1.42	0.266	5.2
$125 \mathrm{Sb}, \mathrm{MBq} / \mathrm{L}$	<0.02	<0.02	<0.02	0.02	<0.03	<0.02	<0.2
${ }^{137} \mathrm{Cs}, \mathrm{MBq} / \mathrm{L}$	<0.006	<0.003	<0.004	0.0037	<0.006	0.0059	<0.04
$1{ }^{144} \mathrm{Ce}, \mathrm{MBq} / \mathrm{L}$	<0.04	<0.03	<0.04	<0.03	<0.06	<0.05	<0.2
$154 \mathrm{Eu}, \mathrm{MBq} / \mathrm{L}$	<0.01	<0.01	<0.01	<0.01	<0.02	<0.01	<0.02

Table A-3. Campaign 6 first cycle tests - Pu scavenging bank
conditions and results

	Run No.				
	6-1A	6-2A	6-3	6-4	6-5
Dates	10/19-20/81	10/29-30/81	11/9-10/81	11/17-18/81	12/7-8/81
Bank temperature, ${ }^{\circ} \mathrm{C}$	40	31-32	41-42	41	41
Number of stages	16	16	16	16	16
HCX stream flow rate, L/h	0.195	0.762	0.205	0.203	0.203
Flow ratios					
HBU/CX	10.7	2.87	10.4	10.6	11.2
Inlet stream compositions HCX Stream					
. HNO_{3}, mol/L	0.17	0.10	0.2	0.21	0.22
HAN, mol/L	1.7		1.6	1.5	1.5
HBU Stream \% TBP		$16.5+0.5$	30+0.5	30+0.5	30+0.5
\% TEHP	$28+0.5$				
HNO_{3}, mol/L	$<0 . \overline{01}$		0.01	0.02	0.03
$\mathrm{HNO}_{2}, \mathrm{~mol} / \mathrm{L}$	0.0020	0.002	0.018	0.024	0.024
$\mathrm{U}, \mathrm{g} / \mathrm{L}$	25.6	20.2	55.2	46	47
Pu, mg/L	6.1	0.53	2.1	2.5	27.8
${ }^{95} \mathrm{Zr}, \mathrm{MBq} / \mathrm{L}$	0.039	0.016	0.022	0.051	20.9
$95 \mathrm{Nb}, \mathrm{MBq} / \mathrm{L}$	0.012	0.024	0.0774	0.158	5.1
$10{ }^{\text {R }}$ Ru, MBq/L	0.320	0.54	1.42	0.266	5.2
$125 \mathrm{Sb}, \mathrm{MBq} / \mathrm{L}$	<0.02	<0.02	<0.03	<0.02	<0.2
$137 \mathrm{Cs}, \mathrm{MBq} / \mathrm{L}$	<0.006	<0.004	<0.006	0.0059	<0.04
$1{ }^{14} \mathrm{Ce}, \mathrm{MBq} / \mathrm{L}$	<0.04	<0.04	<0.06	<0.05	<0.2
$15{ }^{4} \mathrm{Eu}, \mathrm{MBq} / \mathrm{L}$	<0.01	<0.01	<0.02	<0.01	<0.02

Table A-3 (continued)

ORNL/TM-9961
Dist. Category UC-86T
(Applied)

INTERNAL DISTRIBUTION

1-5.	D. E. Benker
6.	J. E. Bigelow
7.	J. F. Birdwell
8.	J. O. Blomeke
9.	W. D. Bond
10-12.	W. D. Burch
13.	D. O. Campbell
14-18.	F. R. Chattin
19-23.	E. D. Collins
24.	J. L. Collins
25.	S. F. DeMuth
26.	J. E. Dunn, Jr.
27.	R. D. Ehrlich
28.	M. J. Feldman
29.	R. W. Glass
30.	W. S. Groenier
31.	D. C. Hampson
32.	J. R. Hightower
33.	E. R. Johnson
34.	R. T. Jubin
35. M. V. Keigan	
36-40.	L. J. King
41.	E. H. Krieg, Jr.

42. R. E. Leuze
43. J. C. Mailen
44. S. A. Meacham
45. D. R. Moser

46-50. R. G. Ross
51-55. H. C. Savage
56. F. M. Scheitlin
57. J. H. Shaffer
58. R. W. Sharpe

59-63. R. G. Stacy
64. M. G. Stewart
65. J. G. Stradley
66. V. C. A. Vaughen
67. P. Welesko
68. M. E. Whatley
69. R. G. Wymer
70. 0. 0. Yarbro
71. Central Research Lib.
72. ORNL-Y-12 Technical Lib. Doc. Ref. Sec.
73-74. Laboratory Records
75. Laboratory Records, RC
76. ORNL Patent Section

EXTERNAL DISTRIBUTION

77. D. E. Bailey, Director, Division of Fuels and Reprocessing, Office of Facilities, Fuel Cycle, and Test Programs, U.S. Department of Energy, Washington, DC 20545
78. F. P. Baranowski, 1110 Dapple Grey Court, Great Falls, VA 22066
79. S. J. Beard, Vice President, Marketing and Uranium Operations, Exxon Nuclear Company, Inc., 600 108th Avenue, N.E., C-00777, Bellevue, WA 98009
80. M. J. Ohanian, Associate Dean for Research, College of Engineering, 300 Weil Hall, University of Florida, Gainesville, FL 32611
81. J. F. Proctor, Senior Technical Specialist, E. I. du Pont de Nemours \& Company, Savannah River Laboratory, Aiken, SC 29801
82. Office of Assistant Manager for Energy Research and Development, DOE-ORO, P.O. Box E, Oak Ridge, TN 37831
83-128. Given distribution as shown in TIC-4500 under UC-86T, Consolidated Fuel Reprocessing Category (Applied)
