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A VISCOPLASTIC MODEL OF EXPANDING CYLINDRICAL SHELLS 

SUBJECTED TO INTERNAL, EXPLOSIVE DETONATIONS 

by 

Rick L. Martineau 

ABSTRACT 

Magnetic flux compression generators rely on the expansion of thin ductile shells 

to generate magnetic fields. These thin shells are filled with high explosives, which when 

detonated, cause the shell to expand to over 200% strain at strain-rates on the order of 

lo4 s-'. Experimental data indicate the development and growth of multiple plastic 

instabilities which appear in a quasi-periodic pattern on the surfaces of the shells. These 

quasi-periodic instabilities are connected by localized zones of intense shear that are 

orientated approximately 45" from the outward radial direction. The quasi-periodic 

instabilities continue to develop and eventually become through-cracks, causing the shell 

to fragment. 

A viscoplastic constitutive model is formulated to model the high strain-rate 

expansion and provide insight into the development of plastic instabilities. The 

formulation of the viscoplastic constitutive model includes the effects of shock heating 

and damage in the form of microvoid nucleation, growth, and coalescence in the 

expanding shell. This model uses the Johnson-Cook strength model with the Mie- 

Griineisen equation of state and a modified Gurson yield surface. The constitutive model 

xv 



includes the modifications proposed by Tvergaard and the plastic strain controlled 

nucleation introduced by Needleman. The constitutive model is implemented as a user 

material subroutine into AI3 AQUSExplicit, which is a commercially available non-linear 

explicit dynamic finite element program. A cylindrical shell is modeled using both 

axisymmetric and plane strain elements. 

Two experiments were conducted involving plane wave detonated, explosively 

filled, copper cylinders. Instability, displacement, and velocity data were recorded using 

a fast framing camera and a Fabry-Perot interferometer. Good agreement is shown 

between the numerical results and experimental data. An additional explosively bulged 

cylinder experiment was also performed and a photomicrograph of an instability is shown 

to provide a qualitative comparison between the experimental observations and the 

numerical predictions. 

Observations from this research indicate the onset of a quasi-periodic pattern in 

the through-thickness equivalent plastic strain, which occurs early in the deformation 

process before the stress waves have attenuated. This quasi-periodic pattern continues to 

develop, eventually connecting the inner and outer surfaces, at which time quasi-periodic 

instabilities are observed on the surfaces of the shell. In addition, parameter studies 

performed as part of this research indicate relationships between the shell thickness, the 

number of instabilities, and the approximate time to failure. 
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1.0 Introduction and Problem Definition 

The high strain-rate deformation of ductile materials subjected to high dynamic 

pressures is of great fundamental importance to physicists and engineers. High pressure 

dynamic loading which results in large impulses with short rise times can generate shock 

waves in a material. These high pressure shock waves, which are often generated by 

explosives, can destroy, modify or enhance materials. Experimental data have shown 

that when ductile shells are subjected to internal pressure loading from high explosives, 

they experience large plastic deformation prior to fragmenting. These shells expand at 

strain rates on the order of lo4 sec-l. At approximately 150% strain, multiple plastic 

instabilities are observed on the outer surface of these shells in a quasi-periodic pattern. 

These quasi-periodic instabilities continue to develop and eventually form cracks that 

progress in a way that causes the shell to break into fragments. The entire process takes 

less than 100 microseconds from detonation to complete fragmentation. 

Developing the modeling and constitutive relationships for predicting these 

plastic instabilities and the overall deformation of the shell are the motivation for this 

dissertation. Although others have worked on limited constitutive models demonstrating 

plastic instabilities on rings and cylinders, few have compared their results with 

experimental data. An experimentally verified finite element model incorporating the 

constitutive relationships for large plastic deformation, void growth, inertia, strain-rate, 

1 



high pressure equation of state effects, and thermal effects will be a valuable tool for 

analyzing rapidly expanding shells. 

1.1 Why Study Expanding Shells 

The elastic/viscoplastic behavior of materials is an area of study that encompasses 

a variety of scientific disciplines with industrial and military applications. Industrial 

applications typically produce a structure or improve a material. Military applications are 

generally intended to defeat or protect a structure. In either case, the response of 

structures subjected to rapidly changing loads is considerably different from those under 

quasi-static conditions. Applications for this research include hypervelocity accelerators, 

magnetic flux compression generators, explosive power generating plants, and 

containment vessels. 

In 1948, the first hypervelocity accelerator was developed at the New Mexico 

School of Mines. This accelerator consisted of a combustion chamber which when 

ignited, accelerated a solid projectile to velocities as high as 11 km/s. The mechanical 

behavior of this projectile during the acceleration phases of the machine is critical in 

understanding the machine limitations (Kinslow, 1970). Scientists at General Electric 

and the Stanford Research Institute continued this research and in particular investigated 

applications for explosively driven guns and shaped charges. During the 1 9 8 0 ’ ~ ~  research 

in the area of rail guns became popular as scientists continued to look at hypervelocity 

accelerators. This work is continuing at the University of Texas (Persad et al., 1997) and 

at other research institutions around the world. In a recent report by Trucano and 

Chhabildas, (1995), it was recognized that preventing the fracture and failure of the flier 



plates which are subjected to extraordinary accelerations is crucial to the functionality of 

the machine. 

A magnetic flux compression generator uses explosives to amplify 

electromagnetic fields. This device consists of a thin cylindrical shell filled with high 

explosives and a low inductance coil (Prishchepenko, 1994). Understanding the high- 

strain-rate expansion and deformation of the shell is important in improving the 

functionality and reliability of this type of generator. 

Several countries including the USA, Russia, Japan, and UK are working on 

explosive generator plants (Shchegolevskii, 1983). While this process does not involve 

the large plastic deformation of materials, understanding the dynamic response of 

materials is important in the design of the hardware used to contain the explosive 

detonations. 

Large thin walled vessels are often used to contain high explosive detonations in 

the reduction and elimination of high explosive materials. Police and antiterrorist 

personnel around the world rely on these vessels to save lives and eliminate potential 

hazards. Containment vessels are also important in the design and operation of nuclear 

power plants. These vessels are re-used many times and may sustain damage. Predicting 

the damage, structural integrity, ultimate load capability, and remaining life are important 

applications for which the research of this dissertation is needed. A detailed 

understanding of the dynamic response of the material in the plastic region of behavior is 

critical to ensure structural integrity. 

An understanding of the dynamic response and high strain-rate behavior of 

materials is also important for other applications. In space, micrometeorites can travel at 



velocities as high as 30 kmisec before impacting space structures. Damage to these 

structures may result from the impact itself, shock waves, or excitation of destructive 

vibrational modes. 

The energy associated with shock waves is also instrumental in industry to harden 

materials. Techniques like explosive hardening and explosive forming are important in 

the production of large complex parts. Materials undergoing large plastic deformation at 

high strain-rates demonstrate enhanced formability allowing engineers to design and 

produce complicated structures and moldings. Industry also relies on the dynamic 

behavior of materials to explosively weld dissimilar metals. More recently, explosives 

are being used for shock synthesis and shock consolidation. Shock synthesis is used to 

produce diamond powder from carbon, while shock consolidation uses the energy of 

shock waves to bond fine metal powders. 

There is an ongoing need to understand the behavior of materials subjected to 

high strain-rate deformation. Numerical models capable of predicting the deformation 

and failure of materials subjected to high strain rates could substantially reduce costs and 

improve structural reliability. The research presented here provides an investigation into 

developing this capability for ductile materials such as oxygen free electronic (OFE) 

grade copper. 

The strain rates of interest in this investigation are on the order lo4 s'l, which are 

easily obtainable with conventional high explosives. Meyers (1994) described five 

strain-rate categories. These categories are presented below in Table 1.1. 
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Table 1.1: Classification of Strain-Rates and Testing Methods 

Strain-rate, s-l Category Testing Method 
io7- io5 
io5 - io3 Dvnamic-HiEh Exdosives 

Ultra High Velocity Impact _______ 

1oj - 10" DYIXUII~C-LOW High Velocity Machines I 100- 10-5 Ouasi-Static Hvdraulic. Screw Driven Machines 
lo-> - I Creep and Stress Relaxation I Conventional Testing Machines 11 

Materials research in the Dynamic-Low, Quasi-Static, and Creep categories is 

fairly advanced. However, research in the Dynamic-High and Ultra-High areas is still in 

its infancy, further justifying the scientific importance of this study. 

High explosives are typically used to obtain strain rates above lo3 s-l and at 

sufficiently high strain-rates; material can behave like a fluid. Shock physicists, who 

thoroughly understand the high explosive detonations, have sometimes underestimated 

the importance of classical engineering plasticity in the high strain-rate deformation of 

solid materials. This has resulted in the use of hydrocodes to analyze the deformation 

process. Hydrocodes typically treat the material as a fluid and assume shear effects are 

negligible or in some cases model the behavior of the material without strength. A 

summary of previous experimental and numerical work regarding the expansion of thin 

shells and their failure is provided in the next two sections. 

1.2 Background on Experimental Studies 

When a thin-walled circular cylinder is subjected to an internal explosion, the 

walls of the cylinder expand radially. For ductile materials this radial expansion occurs 

at very high velocities prior to failure by fragmentation. In 1943, Gurney (1943) derived a 

widely used model for predicting the terminal velocities of fragments from shells 



subjected to internal explosive detonations. His expression is based on an energy balance 

that assumes the potential energy characterizing the explosive charge before the 

detonation is equal to the kinetic energy of the gases from the detonation products and the 

metal after detonation and expansion. Gurney’s model provides an equation for 

determining the terminal velocity of common configurations, but provides no information 

regarding the deformation process itself. In addition, his model does not consider the 

energy consumed in the deformation of the shell. 

The failure of cylindrical structures was first examined in 1944 as a fragmentation 

problem by Taylor (1963a). G. I. Taylor was concerned with the formation of 

longitudinal cracks on the outer surface of cylindrical shells subjected to an internal 

explosive detonation. Taylor proposed that longitudinal cracks in the axial plane will 

open out into regions where the circumferential stress is tensile, but will not penetrate 

into regions where this stress is compressive. He concluded that the cracks will not 

penetrate to the inner wall of the cylinder until the compressive region is reduced to zero 

thickness and in some cases, the cylinder has nearly doubled its initial diameter. In 

addition, Taylor observed that for copper tubes with a 3.8 mm wall thickness, the hoop 

strain at failure by fragmentation was on average 2.4. The research presented in this 

dissertation is compared with Taylor’ s conclusions and observations. An expanding 

circular ring illustrating Taylor’s conclusions is shown below in Figure 1.1, where P, 

represents the internal pressure, t the shell thickness, and r the expanded radius. 
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Figure 1.1: Compressive and Tensile Stresses on Expanding Ring 

About the same time, Mott (1947), attempted to predict the distribution and size 

of fragments from a tubular structure based on the assumptions of a perfectly plastic 

material model and probability theory. Mott examined fragments from expanding shells 

and concluded that considerable plastic deformation occurs prior to case fragmentation. 

He also concluded that by the time fracture occurs, the case is traveling at some terminal 

velocity and the internal pressures for the high explosive have dropped to a small fraction 

of their original value. Mott observed two types of fractures; shear fractures and cup and 

cone type fractures. Mott also concluded that initiation of the fracture is not necessarily a 

surface phenomenon as reported by Taylor, but may occur inside the wall of the shell as 

in the case of a tensile specimen where high triaxial tensile stress causes the initiation of 

fracture. 

G. I. Taylor (1963b) continued his research in this area and in 1963, another paper 

was published on the expansion of cylindrical shells detonated on one end. In this paper, 

Taylor developed analytical expressions for estimating the velocity profile of the shell. 
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In 1967, Slate and others (Slate et al., 1967) experimentally examined the 

behavior of several thin spherical shells subjected to internal explosive detonations. 

These shells were fabricated from various materials including copper, aluminum, and 

titanium. Their report indicated that for copper shells with a thickness to radius ratio of 

0.02, the shells fragmented early with the formation of bubbles on the surface indicating a 

fluid like response. A more ductile response occurred for a radius ratio of 0.04. At this 

ratio, they observed what appeared to be local thinning between the fragments before the 

detonation products pierced through the surface. Finally, a more brittle response was 

observed for copper shells with a ratio of 0.08. At this ratio, the surface ripples became 

more obvious and eventually these ripples developed into lines of fracture. They felt this 

pattern was a result of heterogeneities in the density or crystalline structure of the 

material, thus providing a potential pattern for rupture under circumferential strain. In 

summary, their observations indicate that the thicker the shell, the more evident the 

surface cracking and in addition, the higher the strain to rupture. 

Hoggatt and Recht (1968) furthered the experimental study of fragmenting 

cylinders and developed a mathematical model assuming the fractures occur along lines 

of maximum shear. In addition, Hoggatt and Recht observed different types of fractures 

based on the amount of HE and the detonation pressures. At low detonation pressures, 

deep cracks formed on the outer surface before unstable shear zones began to develop. 

This resulted in fragments with deep radial cracks on the surface and shear zones only 

near the inner diameter. Hoggatt and Recht define shear zones as cracks that lie along 

shear planes, which are rotated approximately 45 degrees from the outward radial 

direction. At high detonation pressures, the compressive hoop stress from the detonation 



retards the growth of cracks and the unstable shear zones form earlier. As a result, larger 

shear zones are observed on the fragments. An illustration of the fracture resulting from 

a high and low pressure detonation is shown in Figure 1.2 

High Pressure Detonation Low Pressure Detonation 

Figure 1.2: Exaggerated Fractures from a High and Low Pressure Detonation 

Later, Al-Hassani and others (1969a) determined from experiments that the radial 

expansion of the vessel walls continues long after attenuation of the shock waves in the 

material. In addition, they provide an analytical expression for the hoop and radial stress 

in the vessel wall assuming a perfectly plastic material and confirmed the behavior 

observed by Taylor. In a separate report by Al-Hassani and Johnson (1969b), they 

concluded that the strain-rate, strain hardening, and deformation induced temperature are 

important to the yield behavior and that they influence both the fracture radius and 

velocity, although they did not include them in their analysis. 

Wesenberg and Sagartz (1977) analyzed the expansion of thin cylindrical shells 

at strain rates of lo4 sec-l. They discuss the radial expansion of the cylinders and their 

subsequent fracture by providing a numerical solution to Mott’s fracture equation (Mott, 

1947). Wesenberg and Sagartz compared Mott’s probabilistic analysis with experimental 
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data, which were reasonably close. They also observed that the number of fragments 

decreases with material density and decreasing strain-rate or detonation pressure. 

The research presented in this dissertation will verify G. I. Taylor’s conclusions 

and observations regarding failure and the tensile and compressive stress regions in an 

expanding shell. Reports by Mott, Slate, Hoggatt, Recht, and others indicate fragment 

variations are based on material thickness or detonation pressures. This dissertation will 

also provide numerical and experimental results for cylinders of different thicknesses, 

which will dispute or confirm the thickness dependent effects observed by Mott, Slate, 

Hoggatt, and Recht. 

1.3 Background on Numerical Studies 

In the late 1970’s experimental research into the high strain-rate expansion of 

explosively loaded shells began to taper off. Experiments probably became more cos-ly 

and the advent of the super computer provided a numerical means to investigate the high 

strain-rate expansion phenomena. As a result, scientists conducted more numerical 

studies in an effort to understand the development of plastic instabilities in dynamically 

loaded structures and dynamic fragmentation. Early numerical studies were limited to 

the expansion of rings and axially detonated cylinders. In both of these cases the entire 

geometry expands uniformly in the radial direction in the absence of a longitudinal stress 

component. The research presented in this dissertation considers this and the more 

complicated end detonated cylinder where the expansion varies along the longitudinal 

axis of the cylinder. 



Early results by Hoggatt and Recht (1968), suggest that thermoplastic instabilities 

occur when the local flow stress decreases with increasing strain. This occurs when the 

rate of thermal softening exceeds the rate of work hardening. In general, the loss of 

stability is assumed to take place when an increment in strain occurs with no 

simultaneous increase in pressure or load (Duffey, 1989). Duffey examined the effects of 

work hardening and mentions that work hardening effectively spreads out the 

deformation to a point that prevents strain localization. Neglecting inertia effects, 

materials with greater strain hardening exhibit higher instability strains. 

A formulation for modeling dynamic plastic instabilities in a thin sheet was 

developed by J. W. Taylor (Taylor et al., 1978). Their approach is based on 

hydrodynamic principles where they assume that the shear effects are negligible. They 

introduced a thickness perturbation in thin sheets and demonstrated that the size and 

appearance of the instabilities are dependent on the strain-rate and work hardening. Their 

analysis does not include porosity or temperature effects, nor does it consider multi-axial 

stresses. 

In 1983, Johnson (1983) examined the ductile failure of rapidly expanding rings. 

Johnson describes the time dependent heterogeneous plastic deformation in terms of the 

differential equations of thermoplasticity, conservation of mass, and conservation of 

momentum. Johnson’s model uses a small perturbation in the wall thickness or porosity 

to create the instability. He also examines the influence of work hardening and thermal 

softening and suggests that thermal effects can not be ignored. However, Johnson’s 

constitutive model focuses on the response of the material using a high pressure equation 

of state formulation and not the accepted theory of plasticity. In addition, his paper 



considers only the one-dimensional case and thus can not be easily extended to 

cylindrical shells under a multi-axial state of stress. 

Anderson, Predebon, and Karpp (1985) developed a two-dimensional finite 

difference code to model expanding cylinders. They felt typical hydrodynamic codes 

over-predicted the fragment velocities and attempted to obtain a more complete solution. 

Their model includes gas leakage and results for the velocity and expansion angle are 

compared with experimental data. However, their model assumes elastic-perfectly- 

plastic material behavior and does not consider instabilities. 

In 1997, Hao and Brocks (1997) implemented a void nucleation and growth 

constitutive model into a numerical finite element code. The constitutive model they 

developed was written as a user subroutine for the ABAQUSKtandard code. Their 

model was capable of analyzing low strain-rate problems involving creep and quasi-static 

type loading, rather than the high strain-rate problems considered in this dissertation. 

1.4 Shortcomings in Existing Literature 

Considering the results of the literature cited here, it is clear that strain-rate, 

material density, temperature, and inertial effects are important in large strain plastic 

deformation and development of instabilities when materials are subjected to high strain 

rates. These instabilities may result from inadequate thermal diffusion and excessive 

plastic flow and may include the effects of damage in the material. Several authors have 

examined instabilities associated with both uniaxial and bi-axial stress under quasi-static 

conditions, but most have not considered materials subjected to multiaxial stress states at 

strain rates on the order of lo4 s-'. 
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The previous experimental and numerical work leaves several shortcomings. In 

the early literature, the material used in experiments was not carefully characterized or 

documented. As a result, little is known about the grain size and hardness of the 

materials used, which makes it difficult to duplicate experimental results. The size of 

copper grains can be quite large resulting in perhaps one grain through the thickness of 

the tube. The microstructure, particularly the hardness and number of grains through the 

thickness of the tube, could significantly affect high strain-rate deformation. The work 

presented here examines the microstructure of the material before and after the 

experiment. 

Much of the current numerical literature only considers one stress component or 

at most the trace of the stress tensor. Furthermore, the geometries considered in the 

current literature are typically one-dimensional. The research presented here considers 

the entire stress and strain tensor according to the fundamental constitutive formulations 

for three-dimensional plasticity. This complexity advances the current state of the art. In 

addition, it allows researchers to consider not only the complex expansion of shells, but 

also provides the foundation to examine large strain plastic instabilities. 

From a review of the numerical literature, very few authors have included the 

high pressure equation of state effects, which could be important in the formulation of the 

constitutive equations. Those that have included these effects examined situations with 

strain rates much higher than lo4 sec-' or provided formulations that are limited to one- 

dimensional calculations. Most of the authors who have implemented equation of state 

type formulations are typically concerned with 1-dimensional fragmentation or spall and 

do not focus on the evolution of large strain plastic instabilities. 
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In some cases, researchers have neglected the strength of the material, which 

could be significant for predicting instabilities for rapidly expanding shells. In other 

cases, they assume a perfectly-plastic material where the flow stress is constant and the 

strength model for the material is independent of the material behavior. The strength 

model typically relates the current state of the material, most often strain, to some 

allowable state of stress. Numerous strength models exist in the current literature and a 

few of them are examined in Chapter 2. The Johnson-Cook strength model is arguably 

the most widely used in both the previous and current literature for high strain-rate 

plasticity. The underlying principles of the Johnson-Cook model and its implementation 

are discussed in Chapters 2 and 3. 

Shock physicists contend that numerical codes can not completely characterize 

the shock front or detonation front due to processor limitations even with the world’s 

fastest super computers. However, this research is not concerned with the microscopic 

behavior at either front, but rather treats the materials as a continuum and is concerned 

only with the average microscopic behavior. Curran et al. (1987) describe the average 

microscopic behavior in terms of state variables in the constitutive relations of materials. 

This continuum mechanics approach is referred to as “Microstatistical Fracture 

Mechanics” (MSFM). 

The MSFM approach is considered in the development of the damage model. 

Damage, which results from the effects of microdefects in the material, is incorporated in 

the form of a void model. This void model includes the effects of microvoid nucleation, 

growth, and coalescence in the material and is an important aspect in this constitutive 

model. In summing up the current literature, no one has formulated a model that includes 
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the 3-dimensional fundamental equations for high strain-rate plasticity with a high 

pressure equation of state model, a microvoid damage model, and a high strain-rate 

material strength model to study the expansion of thin ductile shells. 

1.5 Scope of Work Presented in this Dissertation 

The purpose of this research is to develop an experimentally verified finite 

element model capable of predicting the high strain-rate expansion of explosively loaded 

cylindrical shells. In addition, the constitutive model developed in this research provides 

insight into the initiation and development of plastic instabilities on the surfaces of the 

shell. The constitutive model is based on the Johnson-Cook strength model, Mie- 

Griineisen equation of state (EOS) model, and the GTN or modified Gurson void model. 

The constitutive model is verified with experimental data from two plane wave 

detonated copper cylinders filled with high explosive. The material for these cylinders is 

carefully characterized and state-of-the-art diagnostic equipment is used to record the 

cylinder wall displacement and velocity during the experiments. 

The numerical model is written to allow future modifications to the constitutive 

equations and additional damage criteria. The model is multi-dimensional and assumes 

void nucleation and growth is the main damage mechanism leading to the onset of plastic 

instabilities. As with most Lagrangian finite element models, the accuracy of the of the 

results diminishes with large element distortions and as a result the user must be cautious 

of extensive element warping, strain, and aspect ratios. In addition, the explicit finite 

element code used in this research limits the user to single integration point elements and 

as a result requires high mesh densities. At strain rates above lo6 s-', the accuracy of the 
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Johnson-Cook model tends to diminish and result from this numerical model may no 

longer be accurate. Finally, this is a newly developed model and further limitations may 

be observed as the code is exercised with new applications. 

The remaining chapters of this dissertation focus on the numerical model, the 

experimental and numerical results, and the onset of instabilities. Chapter 2 discusses the 

constitutive equations used in the development of the numerical model. The 

implementation of the constitutive equations in the numerical model is discussed in 

Chapter 3. Chapter 4 discusses the material characterization and set-up of the experiment 

used for verifying the numerical model. A comparison of experimental data with the 

results from the numerical model is provided in Chapter 5. Chapter 6 focuses on the 

development of the quasi-periodic instabilities for cylinder of different thickness. Finally 

Chapter 7 provides a summary, a list of conclusions, and recommendations for future 

work. 
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2.0 Constitutive Models 

Typical hydrodynamic calculations neglect the strength of the material and treat 

the material as a fluid. This simplification is reasonable in the case of fluids or solids 

undergoing high compression shocks resulting in a fluid type behavior. The copper 

cylinders considered in this study are subjected to high pressures, but are not believed to 

behave as a fluid. Instead, as the material strains, thermal energy is deposited in the 

material as a result of shock loading and plastic work. This thermal energy has an effect 

on the flow surface and resultant stress state of the material. In addition, damage 

accumulates in the material as it yields. This damage, which is modeled in the form of 

microvoids accumulating in the material, leads to the onset of the instabilities in the 

material. Recent literature suggests that constitutive models for modeling this high 

strain-rate behavior should be composed of at least three models: a strain-rate and 

temperature dependent material strength model, an equation of state, and a microvoid 

damage model. The research presented here includes all three of these models. 

This chapter is divided into three sections. Each section discusses or formulates a 

particular part of the constitutive model used to describe the deformation of the 

expanding cylindrical shells. The first section describes the material strength model, 

which predicts the flow stress of the material based on temperature, strain, and strain-rate. 

The second section provides an overview of the shock and stress waves propagation in 

solids and presents the background information regarding the equation of state, Rayleigh 
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line, and Hugoniot curve. In addition, this section formulates the equations used to 

model the shock wave effects on the bulk modulus and material temperature. The third 

section provides an overview of the damage model. The damage model used in this work 

is based on the nucleation, coalescence, and growth of microvoids in the material as a 

result of plastic strain. 

2.1 Material Strength Models 

Several strength models exist in the current literature. Strength models like the 

Zerrilli-Armstrong and Mechanical Threshold Stress (MTS) model are considered to be 

physically based models, while the Johnson-Cook model is an empirically based model. 

Numerous experiments have been conducted using each of these models, and all show 

reasonable agreement for dynamic strain rates below lo5 s-'. 

Zerilli and Armstrong proposed a microstructural based constitutive model based 

on the framework of thermally activated dislocation motion (Zerilli and Armstrong, 

1986). Their model results in equations that are very similar to the stress function 

proposed by Hall (195 1) and Petch (1953) and contains terms for the flow stress, the 

grain size dependence, and a stress correction factor that is slightly different for FCC and 

BCC metals. For FCC metals the correction factor couples the plastic strain with the 

strain rate and temperature, while for BCC metals, the plastic strain is uncoupled from the 

strain rate and temperature. 

The Mechanical Threshold Stress Model (Follansbee and Kocks, 1988) uses the 

same concepts as the Zerilli-Armstrong Model. In the MTS model, the thermally 

activated dislocation interactions are described by the linear summation of three different 
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terms. The first term represents the internal stress resulting from the dislocation 

interactions, perhaps with grain boundaries. The second term represents the strain rate 

and temperature effects on the yield stress. The final term represents the dislocation 

interactions from deformation and accounts for work hardening and thermal softening. 

A number of empirically based strength models have been proposed in the 

literature, and most of these show reasonable agreement with experimental data. 

Typically, these models define the flow stress as some function of strain raised to a 

power. Johnson and Cook (1983) used this principle in formulating their model. The 

strength model presented by Johnson and Cook has five experimentally determined 

parameters (A, B, C, n, m) coupled together in an easily identified form. Their model 

expresses the flow stress as a function of the equivalent plastic strain, strain rate, and 

temperature. The Johnson-Cook equation for the flow stress is expressed as 

of = ( A + B P ) ( I + c I ~ ~ *  ) ( I - T * ~ ) ,  

where E is the equivalent plastic strain, 

. *  € & =- 
€0 ' 

is the dimensionless plastic strain-rate for a reference strain-rate io = 1 .O s-l and 

is what Johnson and Cook refer to as the homologous temperature. 

The five material constants in eqn. (2.1) are separated into three multiplicative 

terms. The first term in eqn. (2.1) represents the strain hardening with A interpreted as 

the initial yield stress, B the strain hardening coefficient, and n the strain hardening 
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exponent. The second term in eqn (2.1) represents the strain-rate effect with C 

interpreted as the strain-rate hardening coefficient. The last term in eqn. (2.1) represents 

the thermal softening with rn interpreted as the thermal softening exponent. The five 

material constants A, B, C,  n, and m were determined by Johnson and Cook from a series 

of tensile and torsion tests evaluated at various temperatures and strain rates ranging from 

103-105 s-l (Johnson and Cook, 1983). Specific values for these constants as reported by 

Johnson and Cook are given in Table 2.1. Strain-rate dependent plots of the adiabatic 

flow stress from eqn. (2.1) as function of strain are shown in Figure 2.1 for OFE 

(Oxygen-Free Electronic) copper. Adiabatic effects were accounted for in eqn (2.1) by 

including the increase in temperature resulting from plastic work. The formulation for 

this increase in temperature is discussed later in this chapter. 

Table 2.1. Material Constants for the Johnson-Cook Strength Model 

Material A (MPa) B (MPa) n C m 
OFE Copper 90 292 0.31 0.025 1.09 
Cartridge Brass 112 505 0.42 0.009 1.68 
Nickel 200 163 648 0.33 0.006 1.44 
Armco Iron 175 380 0.32 0.060 0.55 
1006 Steel 350 275 0.36 0.022 1.00 
2024-T35 1 Aluminum 265 426 0.34 0.015 1.00 
7039 Aluminum 337 343 0.41 0.010 1.00 

0.12 0.016 1.00 
4340 Steel 792 510 0.26 0.014 
Tunnston Alloy 1506 177 
S-7 Tool Steel 1539 477 0.18 0.012 1.00 
Uranium- .75Ti 1079 1120 0.25 0.007 1.00 
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Figure 2.1: Johnson-Cook Flow Stress for OFE Copper as a Function of Strain 

The Johnson-Cook model (Johnson and Cook, 1983) has several desirable 

features. One of the most obvious is its ease of implementation. In addition, it can be 

readily applied to a variety of materials and the constants are easily obtainable for several 

materials of interest. The effects of various parameters in the equations are easily 

identifiable and the Johnson-Cook strength model does not require an extraordinary 

amount of computer time. However, since it has no physical basis, caution must be used 

when extrapolating E ,  k ,  and T beyond the limits of the data from which the constants 

were determined. The equations and implementation of the Johnson-Cook model into the 

plasticity model will be further examined in Chapter 3. 

2.2 Shock Waves and the Equation of State 

Shock wave studies examine the behavior of materials that are subjected to 

intense short term loading which forces the material into states not usually encountered. 
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The pressures attained from this loading can be two orders of magnitude larger than those 

attainable by conventional methods (Skidmore, 1965). This loading is typically a result 

of explosive detonations, the duration of which is on the order of microseconds. High 

speed diagnostic equipment is required to experimentally observe shock waves and as a 

result investigations in this area are limited. 

The study of shock waves in solids was first introduced in the UK by Pack and 

others in 1948 (Pack et al. 1948). Later in 1955, similar work was reported in the USA 

by Gorason et al. (1955). In addition, Walsh and Christian (1955) made significant 

contributions in this area while working at Los Alamos National Laboratory. During the 

1960’s scientists began focusing on shock waves resulting from high velocity impact 

(Duvall, 1961). Interest in shock waves has recently expanded in industry as engineers 

recognize the value of using explosive techniques for welding and plastic forming. In 

addition, metallurgists are studying the changes in the microstructure of solids following 

intense transient loading. Intense quantities of energy are deposited into materials from 

shock loading. This energy and the resulting temperatures are included as an integral part 

of the work presented in this study. 

Arguably, when the solid is subjected to intense hydrodynamic forces, the shear 

stresses are relatively small, and the stress system is effectively hydrostatic (Skidmore, 

1965). Therefore, the effects of shear stress are typically not included in hydrodynamic 

methods and it is possible to treat the material as a fluid when attempting to understand 

shock wave propagation in solids. The fundamental requirement for establishing a shock 

wave is that the velocity of the disturbance increases with an increase in pressure. 



Understanding of the concept of shock wave propagation in a material can be 

aided by considering the simplified analogy of the flow of snow in front of a snowplow. 

As the snowplow moves into a fresh new snow, a layer of packed snow begins to build up 

in front of the plow. The snow immediately in front of the blade of the snowplow travels 

faster than the snow further ahead of the blade. Eventually the wave front becomes 

infinitely steep, forming a mathematical discontinuity (Graham, 1993). This 

discontinuous wave front is called a shock wave. 

In a shock wave, the material changes discontinuously from one side of the front 

to the other and the expressions governing sound wave behavior are no longer strictly 

applicable. Instead scientists use what are called the Rankine-Hugoniot relations or jump 

conditions. A schematic of the profile of shock front is shown below in Figure 2.2 where 

Us is the shock velocity, U p  is the particle velocity, p is the density of the material, E 

is the energy, and P is the pressure. The subscript ‘0’ indicates the properties of the 

material ahead of the shock front. 
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Figure 2.2: Profile of a Shock Front Propagating Through a Material 
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The useful form of Ranlune-Hugoniot relations result from writing the 

conservation equations in their discrete forms. The conservation of mass becomes, 

POUS = P (us - u p  >. 

While the conservation of energy becomes, 

1 
2 

E - E ,  =-(P+P0)(Vo -v), 

and the conservation of momentum becomes, 

P - Po = pousu,. 

(2.4) 

This results in three equations and five unknown parameters. 

A fourth equation known as the equation of state (EOS) is necessary to determine 

any of the parameters as a function of one parameter. The EOS, which will be discussed 

later, defines all of the equilibrium states that can exist in a material. If the state of the 

material behind the shock is an equilibrium state, then it too satisfies the EOS. If both the 

Rankine-Hugoniot conditions and the EOS are satisfied simultaneously, then the energy 

terms between them may be eliminated and it is possible to obtain a P-V (Pressure- 

Volume) relation that is unique for the material represented by the EOS. The curve 

represented by this relation is called the Hugoniot curve, which simply represents a 

unique curve in the P-V plane representing the locus of all shocked states attainable 

behind the shock. 

The conservation of momentum defines a straight line of slope (P - PO) / (V-  Vo) 

in the P-V plane. This line is called the Rayleigh line. A graphical representation of the 

Hugoniot curve, and Rayleigh line is shown in Figure 2.3. The adiabats in Figure 2.3 

represent lines of constant entropy on the pressure-volume plane. 
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Figure 2.3: Plot of the Hugoniot Curve and Rayleigh Line on the P-V Plane 

When the pressure in the shock front is increased, it does not follow the adiabat or 

the Hugoniot Curve. Instead it follows along the Rayleigh line from PO to P. The 

unloading process behind the shock front is usually assumed to be adiabatic and as result 

takes place along the adiabatic curve from VI to Vz. The initial specific volume, V,, is 

different than Vz due to an increase in the temperature from the energy deposited in the 

material. The irreversibility of the process is shown graphically in Figure 2.3 as the 

hatched area between the Rayleigh line and the release adiabat. In practice, physicists 

often assume the unloading takes place along the Hugoniot. This is a reasonable 

approximation since the Hugoniot and the adiabat have close proximity. However, recall 

the Hugoniot curve represents the locus of end states, not the shock path. 

The concept of shock stability is important in understanding wave propagation in 

a material. Using an “Eulerian” coordinate system, consider a compression wave 

resulting from two small compressional disturbances as shown in Figure 2.4. 



v 
Distance 

Figure 2.4: Formation of a Stable Shock Wave 

The first wave moves at a speed of C1 + Up1, where C' is the pressure dependent sound 

speed. The second wave moves at a speed of C2 + U: where again C2 is the local sound 

speed. In general, the local sound speed of a material increases with pressure. The high 

pressure wave travels faster than the low pressure wave so that the combined 

compression wave becomes steeper. Eventually, the first wave overtakes the second. 

This results in a discontinuous disturbance or shock wave, which travels at the speed Us. 

In general, for a stable shock to exist, the velocity of the disturbance, C + Up, must 

always be greater than or equal to the shock velocity, Us. Otherwise, the disturbance will 

not be able to catch up to the shock and the shock will decay, develop an elastic 

precursor, or cause a phase transformation in the material. Thus a necessary condition for 

shock stability is 

up +c2u,. 

Three different stress wave configurations can exist in a solid and understanding 

the Rayleigh line and Hugoniot curve provides insight into the structure of the wave. 

Consider the stress system behind a one-dimensional compressive stress wave where the 

volumetric strain, E ,  which is defined as positive in compression, is described by 
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for small strain elasticity. The normal and transverse elastic stress for an element 

subjected to uniaxial strain can be respectively written as 

0, = ( 2 + 2 G ) ~ ,  (2.9) 

and 

0, =a€,  (2.10) 

where h is the Lam6 constant and G is the shear modulus. The Lam6 constant is related 

to the bulk modulus, K,  (Love, 1944) as 

(2.1 1) 2 
3 

A= K --G. 

For the case of hydrostatic pressure, P, the bulk modulus can be defined as 

(2.12) 

Using eqns. (2.9), (2.10), and (2.1 l), the equations for the elastic response of the material 

can now be written as 

(2.13) 

and 

O~ = K - - G  E,.  (2.14) 

These elastic relations remain valid provided the yield criterion is not violated. In this 

case, the yield criteria can be written in terms of the maximum shear stress as 

Y = 22- = (0, -of), (2.15) 



When yielding occurs, (a, - a , )  remains constant and as a result, 

o , - o , I Y .  (2.16) 

or 

~ G E ,  IY (2.17) 

Combining eqn. (2.12), (2.13), and (2.17), the normal yield stress, a,, , can be written as 

2 
3 

oy = P + - Y  (2.18) 

The stress wave behavior of a material subjected to shock loading can be understood with 

these equations. First consider the plot of stress vs. strain shown in Figure 2.5. This plot 

is similar to the plot shown by Skidmore (1965). 

CY & 
A 

Figure 2.5: One-dimensional and Hydrostatic Compression of Solids 

Point B in Figure 2.5 is called the Hugoniot Elastic Limit (HEL). The stresses 

below this limit are elastic and propagate through the material as a single wave. 7'he 
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velocity of the elastic wave, C, , is determined by substituting the equation for the normal 

stress into a combination of the conservation of mass and momentum equations given in 

eqns. (2.4) and (2.6), where o = P and PO = 0. The resultant 

4 
3 

K+-G 

Po t)”. P O  

(2.19) 

is the equation for longitudinal elastic waves in an unbounded medium. At point B, the 

material yields and plastically deforms along the solid curve from B to C. 

Experimental data have shown that the bulk modulus, K, slowly increases with 

pressure. At point B, the discontinuous decrease in slope violates the condition for shock 

stability. As a result, the shock breaks up into two waves, an elastic and a plastic wave. 

The elastic wave propagates with a stress of o moving with a velocity of C,, followed 

by the plastic wave moving with a velocity CPl, 

(2.20) 

At point C, the Rayleigh line for the plastic shock is an extension of the elastic 

line from point A to B and the velocity of the plastic wave is equal to or greater than the 

elastic wave. At this point the shock is stable and the stress wave travels through the 

material as a single wave. Shocks of this magnitude are described as strong shocks or 

overdriven shocks. Notice that at point B in Figure 2.5, the difference between the 

hydrostatic compression curve and the one-dimensional compression curve is 2/3 Y ,  

which is also shown in eqn. (2.18). As the pressure and normal stress increases, the 

difference between the two curves becomes negligible. Therefore, at very high shock 
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pressures, the stress system can be regarded as hydrostatic thus justifying the simplified 

approach of hydrocodes. 

Figure 2.6 shows a graphical representation summarizing the resulting stress 

waves, which can propagate through a material, in relation to the Hugoniot curve and 

Rayleigh line. At a shock pressure equal to PI, a single elastic stress wave propagates 

through the material. At a higher pressure of P2, the stress wave is unstable and breaks 

up into two waves. This results in an elastic stress wave followed by a plastic stress 

wave. In general, a stable wave can not exist unless the Hugoniot curve is steeper than 

the Rayleigh line at the final state. At an even higher pressure of P3, the velocity of the 

plastic wave overtakes the elastic wave and a single stress wave propagates through the 

material. 

.-i I.../ p3 1 I I 

p2L -+ 
P1 1 

VO Single Wave - TWO Waves - Single Wave - 
Plastic Wave Elastic and Plastic Elastic wave 
Traveling As Fast Wave Structure 
or Faster Than Below HEL. 
Elastic Wave 

with Amplitude V 

Figure 2.6: Wave Structure in Relation to the Hugoniot Curve and Rayleigh Line 



A table with the mechanical properties and the velocity of elastic waves for five different 

materials is given in Table 2.2. 

Table 2.2: Longitudinal Velocity of Elastic Waves 

Material Density (kg/m3’ G (GPa) K (GPa) Elastic Velocity ( d s )  
Iron 7.850 81.6 170.1 5.960 

Copper 8,930 48.3 137.8 4,760 
Aluminum 2.700 26.1 75.6 6.400 
Alumina 3,900 140.4 304.2 1 1,230 
Uranium 18.950 66.1 143 -26 3.490 

(2.21) 

Any time a material experiences high pressure loading, which may result from a 

shock wave, the effects of the pressure can be described with the use of the EOS for the 

material. If the state behind the shock wave is in equilibrium, then both the Rankine- 

Hugoniot and EOS relations must be satisfied. A common experimental form for the 

EOS is know as the Us - Up form which can be expressed as 

u, =c, is,u,, 

where C,, is the isentropic sound speed and S, is the slope of the Us - Up curve. 

In the study of shock waves, there are several different types of EOS equations. 

The Mie-Griineisen EOS is common form used in numerical codes, which relates a state 

of pressure, volume, and energy to the state energy and pressure at a reference state. This 

reference state could, for example, be a point on the Hugoniot at the same volume 

(Meyers, 1994). In this case, the Mie-Griineisen EOS can be written as, 

P = pH +-(E 7 - E ~ ) ,  V 
(2.22) 



where PH is the Hugoniot pressure and E ,  is the specific internal energy along the 

Hugoniot line on the P-V plane. The Griineisen constant, 7 , can then be expressed as 

(2.23) 

The shock and thermodynamic properties for different materials is given in Table 2.3 

(Meyers, 1994), where C ,  is the constant pressure specific heat. 

Table 2.3: Shock and Thermodynamic Properties of Metals 
" 

Material po (kg/cm3) Co (mm/ps) S, C,  (J/g-K) Y I Be 1.85 8.00 1.12 0.18 1.2 

1.8 
c u  8.93 3.94 1.49 0.40 1- Fe 7.85 3.57 1.92 0.45 I Ni 8.87 4.60 1.44 0.44 2.0 1 
Pb 11.35 2.05 1.46 0.13 2.8 

I u  18.95 2.49 2.20 0.12 2.1 I I I I I 

w 19.22 4.03 1.24 0.13 1.8 

At this point, a detailed explanation of the relationship between shock waves and 

stress waves has been provided. The loading in this dissertation is not considered in the 

range of a strong shock and once a shock propagates through a material, numerous waves 

are released and developed (Ferm, 1998). In the absence of strong shocks, it is quite 

common to see the terminology of shock waves and stress waves used interchangeably in 

the literature depending on the author, the audience, and the loading conditions. 

The previous explanation included an introduction to the Hugoniot curve, 

Rayleigh Line, and equation of state. These principles will now be used to formulate the 

equations representing the effects of the high pressure shock on the bulk modulus and 
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temperature in the material. The formulation for this part of the constitutive model 

closely follows the work of Johnson (1981) and Wallace (198Ob). 

Recall that the isentropic bulk modulus, K ,  is defined as 

=[E) 
where E ,  is the volumetric strain and P is the pressure. Under shock loading, the 

(2.24) 

pressure in the material can be found from the Hugoniot curve. Therefore, the modified 

bulk modulus is found by taking the partial derivative of the Hugoniot pressure with 

respect to the volumetric strain. 

The formulation to find the Hugoniot pressure as a function of the volumetric 

strain begins with the conservation of momentum equation given in eqn. (2.6), 

P - Pa = pausup. (2.25) 

The pressure on the Hugoniot, PH is then found by applying the Us - Up form of the EOS 

(eqn. (2-21)) to eqn. (2.25) with Po = 0, 

Recall from eqn (2.4), the conservation of mass may be written as, 

P O U S  = P (us - u p  >. 

Substituting the Us - Up form of the EOS into eqn. (2.27) gives, 

u P [1+Se[$-l)]=Ca~-$].  

Recall, the volumetric strain, E, ,  is defined as the trace of the stress tensor or, 

(2.26) 

(2.27) 

(2.28) 

(2.29) 
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Substituting eqn. (2.29) into (2.28) and simplifying gives an equation for the particle 

velocity as a function of volumetric strain. 

up = COE" 
l-Se&, 

(2.30) 

Substituting eqn. (2.30) into eqn. (2.26) gives the following equation representing the 

Hugoniot pressure as a function of the volumetric strain. 

The partial derivative is then 

(2.31) 

(2.32) 

Therefore the factor by which the bulk modulus is modified from the high pressure shock 

is simply 

(2.33) 

Next, a thermodynamic equation will be formulated to determine the change in 

temperature in the material as a result of plastic work and the high pressure shock. This 

formulation begins with the first law of thermodynamics for a closed system, 

6Q - 6W = dE , (2.34) 

where the work is defined as 

dW = PdV 

and the heat flux is defined as 

(2.35) 

dQ = TdS . (2.36) 
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Substituting eqns. (2.35) and (2.36) into eqn. (2.34) yields 

dE =T dS - P dV . 

Recall, entropy S, is a function of temperature and volume and therefore 

d S = ( $ ) v d T + ( $ )  T d V .  

Multiplying the eqn. (2.38) by the temperature, T, gives 

T d S = T  - d T + T  - d V .  (3 (a 
The specific heat at constant volume is defined as 

which when substituted into eqn. (2.37) above gives 

T d S = C , d T + T  - d V .  GL 
Using the following form of Maxwell's Equations, 

eqn. (2.41) can be written as 

T d S = C , d T + T  - d V ,  

or 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

Substituting eqns. (2.22) and (2.23) from the Hugoniot and Griineisen relations into 
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eqn (2.44) gives 

or 

Solving for dT gives, 

(2.45) 

T dS = Cv d T - T  2 C, dEv. (2.46) 

T dS d T = T  ydEv +- 
C" 

(2.47) 

For adiabatic solids, Q = 0 , and as a result 

oq d# 
dWp' = T d S =  

P 
(2.48) 

Substituting eqn. (2.48) into (2.47) gives the equation for calculating the temperature rise 

in the material due to the high pressure shock and plastic work. 

(2.49) 

The increase in temperature as a result of the shock loading and the plastic work is given 

by the first and second respective terms on the right side of eqn. (2.49). The term that 

accounts for the shock heating, along with eqn. (2.33) which represents the change in the 

bulk modulus, are determined in the EOS subroutine of the constitutive model. These 

values are then passed back to the constitutive model to be used in the Gurson subroutine. 

The details of their implementation into the constitutive model will be discussed in the 

next chapter. 
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2.3 Microvoid Damage Model 

The rate dependent plastic deformation that occurs during radial expansion of a 

ductile cylindrrcal shell causes material bonds to be broken which nucleates voids in the 

previously intact material. These voids are thought to nucleate predominantly at 

secondary phase particles in the material because of their stress raising effect or low bond 

strength with the surrounding material during plastic deformation (Shockey et al. 1980). 

Voids can also nucleate prior to, or as a result of, instabilities in the material. The voids 

continue to grow by means of local plastic flow or diffusion and coalescence with 

neighboring voids. It is therefore important to understand and account for void 

nucleation and void kinetics in the failure of ductile materials. 

Fracture by the growth of microvoids in materials was observed by Tipper (1949) 

in 1949 and later by Puttick (1959) and Rogers (1960). Early work on the growth of 

voids and microstructural damage in the plastic region of behavior for ductile materials 

under combined loading was performed in the late 1960’s (McClintock, 1968; Rice and 

Tracey 1969). Rice and Tracey derive a growth law for a spherical void that depends on 

both the plastic strain and the mean tensile stress. They considered only a single void in 

an infinite medium and thus void growth does not affect the imposed stress field. Later 

Gurson (1977), extended their model to consider a finite block of material with a 

continuum approach. Gurson’s model depends on the plastic strain and mean tensile 

stress and demonstrates the effects of the voids on the surrounding stress field. By 

assuming the material behaves as a continuum, voids appear in the model indirectly and 

their effects are averaged through the material. 



In addition to the strain, entropy, and temperature in the constitutive relations, 

functions for the distribution, orientation, and size of the microvoids are introduced to 

describe the current state of the material. This MSFM type of constitutive approach is 

justified for two reasons. First, the specimen size is large in comparison to the size of the 

flaws. Secondly, the flaws are distributed throughout the material and are numerous 

enough that their behavior can be averaged like molecular collisions in a material. 

Curran et al. (1987) categorize failure in polycrystalline solids by either ductile 

void growth or brittle crack extension. The bulk of existing literature assumes ductile 

void growth occurs by either diffusion or plastic flow from spherically symmetric tension 

or by a combination of symmetric tension and shear stress. Chadwick (1959) and 

Hopkins (1960) provided early results on the growth of voids subjected to spherically 

symmetric tension. Carrol and Holt (1972) continued this work and now much of the 

current literature considers only the effects of spherically symmetric tension, which is a 

simplification of the combined loading problem. 

Gurson’s model was observed to greatly over predict failure strains in real 

materials, which prompted Tvergaard (1981, 1982) to adjust Gurson’s constitutive 

equations. His modification was to include an effective void volume fraction in the 

constitutive model. In addition, Tvergaard introduced several coefficients to account for 

void interaction effects. Needleman and Rice (1978) proposed a general equation to 

represent the nucleation rate of voids in the material. This rate is controlled by either the 

maximum normal stress or maximum plastic strain (Chu and Needleman,l980; 

Needleman, 1987; Tvergaard, 1987). 
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The Gurson model is more comprehensive and computationally intensive than the 

model proposed by Carrol and Holt. However, it appears to be more commonly used in 

the recent literature. The modifications by Tvergaard and Needleman have greatly 

improved the model and in recent literature, this model has been referred to as the 

Gurson-Tvergaard-Needleman (GTN) model. Its numerical implementation is a major 

part of this dissertation. 

The yield condition for the GTN model can be expressed as: 

@=[e) +2q, f * c o s h [ - y )  - ( l+q3f*2)=0 (2.50) 

where 

is the effective Mises stress, 

is the deviatoric stress, 

1 s.. =o.. --o..s.. 
rJ B 3 B r J  

(2.5 1) 

(2.52) 

(2.53) 1 p = --o.. 
3 '* 

is the hydrostatic pressure and a is the flow stress. The original model derived by 

Gurson was formulated for a perfectly plastic material with spherically symmetric 

deformations around a single void. This model can be recovered by setting 

q1 = q 2  = q 3  = 1 in eqn (2.50). The variables 41, q2, and q3 are the material parameters 

introduced by Tvergaard (198 1, 1982). Tvergaard's modifications considerably 

improved the model by demonstrating closer agreement with experimental data. The 



GTN model is usually applied to ductile materials like OFE copper and aluminum. 

Typical values for 41, q 2 ,  and q3 are 41 = 1.0-1.5, q 2  = 1.0, and q3 = q12 = 1.0 - 2.25. 

The void volume fraction,f, is defined as a function of the relative density, 5 , of 

the material. The relative density, 4 , is defined as the ratio of the volume of solid 

material to the total volume of material. The void volume fraction and relative density 

are related by 

f =1-{=1-p". (2.54) 
P O  

The material is assumed to be fully dense i f f= 0 (4 = l), and in this case the Gurson 

yield surface reduces to the Von-Mises model. In the case off= 1 (5 = 0),  the material 

is assumed to be fully voided (100% voids) and the material has lost its stress carrying 

capacity. 

The parameterf, which was introduced by Needleman and Tvergaard (1984), is 

the modified damage parameter that accounts for void coalescence. This parameter is a 

function of the void volume fractionfand is defined as 

f iff Sf ,  

(2.55) 

wheref, is the critical value of the void volume fraction and fF is the final value of void 

volume fraction at which the material has completely lost its stress carrying capacity. 

The function for f, is defined as 



(2.56) 

The total increment in the void volume fraction is the sum of the increment due to 

void growth and the increment due to void nucleation, or 

df = df gr + df nucl - (2.57) 
The growth of existing voids is based on the conservation of mass and is expressed as 

dfgr =(l- f ) d & , f z ,  (2.58) 

where dE:' is the trace of the plastic strain tensor. The nucleation of voids occurs by 

decohesion of the interface between second phase particles and the matrix, by particle 

fracture, or from broken material bonds. The nucleation model suggested in the current 

literature can include strain or stress based nucleation. At this time, the work in this 

dissertation considers only strain based nucleation. The strain based nucleation rate is 

expressed as, 

where 

and the mean plastic strain, dF;l, is found from, 

(2.59) 

(2.60) 

(1 - f )of dZLz = og d&:" (2.61) 

In eqn. (2.60), f, is the volume fraction for nucleating particles, E ,  is the main strain 

for nucleation, and s, is the corresponding standard deviation. Recent literature 
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(ABAQUS, 1997) suggests the following range of values for typical metals: f, = 0.04, 

S, = 0.05 - 0.1, E ,  = 0.1- 0.3. 

Several of the equations presented in this chapter will reappear in the next chapter 

as the implementation of the constitutive model is discussed. The method used to 

determine the increment in plastic strain is also discussed in Chapter 3. In short, an 

increment in total strain is passed to the constitutive model. The constitutive model then 

iterates to determine the elastic strains and stresses to remain on the yield surface and not 

violate the yield condition presented in eqn (2.50). The iteration technique, which is 

occasionally called the cutting plane algorithm, is discussed in Chapter 3. In addition, 

Chapter 3 discusses other aspects of the constitutive model such as the optional “element 

remove” subroutine, which may be used to prevent elements from inverting and stopping 

the computation by removing them from the calculation. 
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3.0 Numerical Model 

This chapter describes the implementation of the constitutive model into the 

ABAQUS (1997) code through what ABAQUS calls a VUMAT subroutine. The 

constitutive model for this analysis is divided into four basic modules: shock effects, 

GTN plasticity, void growth and strength (Johnson-Cook). In general, the VUMAT 

subroutine is used to define the mechanical constitutive behavior of the material and if 

necessary update or use solution dependent state variables to track the material response. 

Finite element codes such as ABAQUS Explicit are widely used in industry and at 

government laboratories such as Los Alamos National Laboratory. These codes are 

capable of analyzing highly non-linear structural dynamics problems. ABAQUS is a 

commercially available Lagrangian finite element package. It offers post processing 

capabilities and a significant amount of user flexibility. Johnson (1981) demonstrated the 

implementation of his constitutive model using a finite difference approach. However, 

since numerical codes exist at Los Alamos National Laboratory to preprocess and post 

process finite element results from ABAQUS along with a strong experience base, 

ABAQUS was chosen for the numerical code. Enhancement of ABAQUS with additional 

code development in the form of a VUMAT subroutine will expedite the implementation 

of new constitutive models and provide a platform to analyze complex geometries. 

During the solution process, ABAQUS calculates an increment in strain based on 

the boundary conditions (such as an increment in load) and the previous state of stress. 
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This increment in strain is passed to the VUMAT subroutine. The subroutine then 

returns the state of stress for the material. A large number of parameters can be passed 

into the VUMAT subroutine. Most of these parameters are either user defined material 

properties or solution variables, which provide information regarding the last state of the 

solution and the increment in strain. The user definable variables include the updated 

stress tensor, state variables, internal energy, and inelastic energy. 

The VUMAT subroutine developed for thn dissertation consists of a main 

subroutine and five other smaller subroutines: an equation of state (EOS) subroutine, a 

GTN subroutine, a Johnson-Cook subroutine, a void growth subroutine, and an element 

remove subroutine. The EOS and element remove subroutines are optional and can be 

activated by the user. This allows the code to skip those calculations. 

Initially, the main VUMAT subroutine is called. Then if activated, the main 

subroutine calls the EOS subroutine to modify the bulk modulus and determine the shock 

heating effects. These results are then returned to the main VUMAT subroutine. Next 

the main subroutine calls the GTN subroutine. The GTN subroutine calculates the 

necessary parameters for the strength model and then calls the Johnson-Cook subroutine 

to determine the flow stress. This flow stress is returned back to the GTN subroutine 

where the code iterates to converge to a point on the yield surface. At this point, the 

stresses, energies, and temperatures are updated and passed back to the main subroutine. 

Next the main VUMAT subroutine calls the void subroutine. The void subroutine 

determines the nucleation and growth rate for the voids and passes back the new 

volumetric void concentration in the material. Finally, at the user’s discretion, the code 

enters the element remove subroutine. This subroutine eliminates elements from the 
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computation based on user specified parameters like volumetric void concentrations or 

equivalent plastic strain. A flow chart of the VUMAT subroutine is shown in Figure 3.1. 

It is important to understand that once the code enters the VUMAT subroutine, which is 

indicated by the dotted oval in Figure 3.1, it does not return to ABAQUS until the 

stresses and state variables are updated. The circled numbers in Figure 3.1 indicate the 

calling order for each subroutine. The entire VUMAT subroutine consists of 

approximately 2300 lines of commented Fortran source code. The implementation of the 

constitutive model into the VUMAT subroutine is explained in more detail in the 

remaining sections of this chapter. 
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3.1 EOS Subroutine 

As mentioned earlier, the first subroutine called from the main VUMAT 

subroutine is the equation of state subroutine. This subroutine determines the 



temperature change and the modified bulk modulus resulting from the high pressure 

shock. Recall that the increment in strain is passed into this subroutine and as a result, 

this subroutine begins by calculating the volumetric strain increment, where compression 

is defined as being positive in this subroutine, 

dE, = (-1.0) dE,, . (3-1) 

This increment is then added to the total volumetric strain at previous increment, 

E, =gY + d ~ ,  (3 -2) old 

Recall from Chapter 2, the particle velocity, shock velocity, and Hugoniot pressure are 

calculated with 

up = C O E V  

1 - S,&, (3.3) 

u, = co + s, up (3.4) 

The shock velocity is not specifically needed for the constitutive model. However, its 

value is stored as a solution dependent variable. If the particle velocity is positive, then 

the bulk modulus and material temperatures are modified based on the volumetric strain. 

For positive particle velocities (Up > 0), the new bulk modulus, K,, , and shock 

temperature, T, , are found using 

(1.0+ S,E,) 
(1.0 - S,E, y ’ Knew =KO 

T, =To 7 E , ,  
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otherwise, the default bulk modulus, KO , remains unchanged and the shock temperature 

is set to zero, 

Knew = K O  

T, =O.O. 

At this point, the solution dependent variables are updated and the computation 

returns to the main VUMAT subroutine. The next subroutine called updates the stresses 

based on the yield surface calculations defined by the GTN model. 

3.2 GTN Subroutine 

As mentioned in Chapter 2, the form of the GTN model implemented in this 

dissertation is a combination of the work completed by Gurson, Tvergaard and 

Needleman. This model has been implemented into other numerical codes like 

ABAQUS/Standard (Ha0 & Brocks, 1997) and NIKE (Engelmann & Whirley, 1992). 

An iterative technique must be used to obtain the stresses and not violate the yield 

conditions. The technique adopted for this dissertation is called the cutting-plane 

algorithm and is described by Ortiz and Popov (1985) and Ortiz and Simo (1986). This 

algorithm is based on linearization of the plastic consistency condition for the current 

iteration and satisfaction of the plastic consistency for the new iteration. The cutting 

plane algorithm is very efficient and demonstrates reasonable accuracy (Ortiz and Simo, 

1986). However, it is necessary to take the derivative of the yield function, which is not 

always straightforward. 

The first operation this subroutine performs is to reformulate the elastic constant 

matrix, zero temporary variables, and set the convergence tolerance. Recall the EOS 



subroutine may have modified the bulk modulus. The updated elastic constant matrix, 

D, ? becomes, 

D.. = 
rl 

0 
0 
0 

3 

0 
0 

3 
0 

0 0 0  

0 0 0  

G O O  
0 O G O  
0 O O G  

(3.10) 

Next, the subroutine performs a few preliminary calculations, which are required 

to determine the flow stress in the Johnson-Cook subroutine. The increment in plastic 

strain is found from 

1 
3 

dEpl = dE, - -dE&6i,  
21 

where d ~ ,  is the strain increment and d.$ is the plastic strain increment. The 

incremental equivalent plastic strain is found from, 

and the equivalent plastic strain rate is calculated using, 

(3.1 1) 

(3.12) 

(3.13) 

where dt is the current time step. The equivalent plastic strain rate and the total plastic 

strain are passed to the Johnson-Cook subroutine along with the current material 

temperature. The Johnson-Cook subroutine, which is discussed in the next section, 

returns the flow stress. 
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The iteration begins with the computation of the plastic strain increment, 

d.$ = d$ + AA Dijyi  . 

Initially, Ah and dt# are zero, so the plastic strain increment is also zero. The 

equivalent plastic strain increment is recalculated in the iteration loop using, 

(3.15) 

Next the total elastic strain is calculated using, 

(3.16) 

whereqp is the total elastic strain at the previous converged increment and d&$, is 

found from eqn. (3.14). At this point the new trial stresses are computed, 

For compressive shock loading, the hyperbolic cosine part of the yield function 

given in eqn. (2.50) becomes unstable at large hydrostatic pressures. As a result, a 

pressure cutoff was implemented to modify q 2  and stabilize the yield function. The 

concept of a pressure cutoff is unique to this dissertation and is based on the assumption 

that the GTN yield surface is not applicable to materials subjected to high hydrostatic 

compression. A cut-off pressure, which is set as a user supplied parameter, will ensure 

stability and not affect the resultant stresses. If the trace of the stress tensor is more 

compressive than allowed by the user defined cut-off pressure, then, 

(3.18) 

otherwise, q 2 ,  remains unchanged and 

function (see eqn. 2.50) is defined as 

the yield function is evaluated. Recall the yield 



= [ + 2q,  f* cosh[ -%) - (1 + q3 f q= 0. (3.19) 

If the yield function is less than or equal to zero, then the trial stresses become the new 

stresses. Otherwise, the yield surface is extended and the iteration loop continues until it 

determines the elastic-plastic solution. 

If an elastic-plastic solution exists, the iteration loop calculates the change in the 

plastic consistency parameter, AX. This new AX, is then used to recalculate the plastic 

strains in eqn. (3.14). Based on the new plastic strains, the elastic strains given by eqn. 

(3.16) are updated and the new trial stresses are found using eqn. (3.17). These trial 

stresses are then used to reevaluate the yield function, eqn. (3.19), and convergence is 

checked. If the yield function is still not less than or equal to zero, the iteration continues. 

The formulation for calculating change in the plastic consistency parameter 

closely follows reports by Engelmann and Whirley (1992) and Ortiz and Simo (1986), 

and is briefly summarized here. First let y i  be a vector of the equivalent plastic strain 

and void volume fraction, 

(3.20) 

and let the vector function hi (0, y ) be defined such that, 

Ayi(O,y)= Ai2 h,(o ,Y) .  (3.21) 

Next, define a vector function < i  (0, y ) as the gradient of the yield function with respect 

to the history variables, 

(3.22) 
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In addition, define a second order tensor uij  (0 , t,o ) as the gradient of the yield function 

with respect to stress, 

(3.23) 

The change in the plastic consistency parameter is then 

4 AA= 
' i j D j k V i k  - t l h l  ' 

(3.24) 

where, qj, is the yield function. The specific definitions of 6, , V ,  , and h, in terms of the 

stress components are: 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

where H is the tangent of the flow surface. The tangent of the flow stress equation given 

by Johnson and Cook is calculated as 

(3.30) 
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At this point, the iteration is complete and the elastic-plastic solution is known. 

Next the total plastic strain is updated with the new increments in plastic strain. The 

increment in plastic work is also calculated as, 

(3.31) 
P 

Notice eqn. (3.3 1) is not written in terms of the deviatoric stress tensor but rather the total 

stress tensor. This is a result of incorporating microvoids, which makes the contribution 

of the spherical stress tensor important in the calculation of the plastic work. The 

increment in internal energy is simply, 

1 a, d&, 
dE =- 

2 P  
(3.32) 

The total plastic work and total internal energy, whose units are for example Jkg, are 

then found by adding the respective increments from eqns. (3.31) and (3.32) to the values 

at the previously converged increment. 

The new temperature of the material is calculated using both the temperature rise 

as a result of the shock heating and the temperature resulting from the plastic work. 

(3.33) 

where T is the initial temperature, dW p' is the total increment in plastic work, and 

C, is the specific heat. Recall that the shock temperature is passed into this subroutine 

from the EOS subroutine. Finally, the mean plastic strain is calculated from the 

increment in plastic work, the current void volume fraction, and the flow stress. This 

value, which is expressed as, 
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(3.34) 

is needed to calculate the void nucleation rate in the void subroutine and is also shown as 

eqn. (2.61) in Chapter 2. 

At the end of this subroutine, several variables are saved as solution dependent 

variables. Any variable saved as a solution dependent variable can be used in subsequent 

subroutines or during the next time step and the user can always plot the time history 

response of solution dependent variables during post processing. 

3.3 Strength Subroutine 

As mentioned in Chapter 2 and the previous section, the flow stress is based on 

the Johnson-Cook strength model and is calculated using the current plastic strain, strain- 

rate, and temperature. From eqn. (2 .  l), the equation for the flow stress is written as, 

of = (A + B En ) (1 + C l n i *  ) (1 - T*" ) (3.35) 

The five experimentally determined parameters (A, B, C, n, m) are supplied as constants 

to the VUMAT. The current plastic strain, strain-rate, and temperature are passed into 

this Johnson-Cook subroutine from the GTN subroutine. The Johnson-Cook subroutine 

then returns the allowable flow stress. By separating the flow stress calculations from the 

main body of the VUMAT, it is relatively easy to implement other strength models at a 

later time. 

3.4 Void Subroutine 
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The implementation of the void model was separated from the GTN subroutine to 

allow the user to implement different constitutive laws involving other forms of void 

growth, nucleation, and coalescence. Recall from eqns (2.55) through (2.60) in 

Chapter 2, the rate of change in the void volume fraction can be written as, 

(3.36) 

where the growth rate is dependent on the trace of the plastic strain rate and the 

nucleation is based on the equivalent flow stress. 

At the start of this subroutine, the first series of calculations set the constants that 

will be used in the subroutine. One of these constants is 

(3.37) 

which is the void volume fraction at which there is a complete loss of stress carrying 

capacity in the material. Next the increment in void growth, . 

dfgr ~ ( 1 -  f ) d E L ' ,  (3.38) 

is calculated using the trace of the increment in the plastic strain tensor from the GTN 

model. To determine the increment in nucleated voids, the parameter 

(3.39) 

is determined and applied to 

dfnXl = A dEL', (3.40) 

using the mean plastic strain from the GTN model. Combining eqns. (3.38) and (3.40) 

into (3.36) gives the total increment in the void volume fraction. The increment in the 
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void volume fraction is added to the total volume fraction from the previous increment to 

obtainf. The new void volume fractionf, which is passed back from this subroutine is 

defined from the following equation as explained in eqn (2.55) from Chapter 2. 

f iff S f ,  

fc + f F - f c ( f - f c >  i f fccf  ‘ f F  
f, -fc 

(3.41) 

(3.42) 

If this is the first increment, this subroutine initializes the void volume fraction in 

the material with either a constant or random distribution of voids. A constant 

distribution of voids is defined with the user defined variable, finif, using 

f * = f init 7 

and a random distribution of voids is defined using 

f *  = f ””  +5.0 f i n i t ,  (3.42) 

where r is a randomly generated number from 0 to 1 .O. For example, iff init is 0.001, then 

the material will have a random distribution of voids ranging from 0.001-0.005. 

3.5 “Element Remove” Subroutine 

The element remove subroutine is simple and straightforward. ABAQUS allows 

the user to define a solution dependent variable that indicates the element is to be 

removed from the calculations. The corresponding stiffness of the targeted element is 

then significantly reduced to effectively remove this element from the calculations. The 

element does remain in the mesh, but does not interact any further with the surrounding 

elements. This allows the user to ‘remove’ elements based on a predetermined set of 
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specifications. For example, if the plastic strain or void volume fraction in the element 

reaches a selected critical value, the element is removed from the calculations. One 

negative aspect of this technique is that it does not allow for a gradual decrease in 

stiffness. However, this subroutine was written to allow the user to implement a stiffness 

degradation model at a later time. Currently, this subroutine removes elements based on 

either the accumulated equivalent plastic strain or void volume fraction. 

3.6 HE Burn Model 

The high explosive burn model used in this dissertation is developed and 

maintained by ABAQUS and is not part of the VUMAT developed in this dissertation. 

ABAQUS uses the Jones-Wilkens-Lee (JWL) equation of state to model the pressure 

generated by the release of chemical energy from the explosive. The reaction and 

initiation of the EOS is implemented using a program burn model. The program burn 

model determines the initiation time by a geometric construction using the detonation 

wave speed and the distance of the material points from the detonation point. 

This model is simple to use and the parameters are widely available in the current 

literature. To activate this model, the user simply provides the detonation point(s) and the 

high explosive (HE) parameters for the JWL equation of state. The HE used throughout 

this dissertation is PBX-9501. This type HE was used because it is readily obtainable 

with a well documented EOS and it is easy to fabricate and machine to reasonable 

dimensional tolerances. The JWL parameters for PBX-9501 (Dobratz, 1981) are 

provided in Table 3.1, where C d  is the detonation wave speed, KO is the initial energy per 

unit mass, and Pcj is the cutoff pressure. 
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Table 3.1: JWL Parameters for PBX-9501 

3.7 Preliminary Results 

A small axisymmetric model was developed to demonstrate the capabilities of this 

constitutive model. This model consists of an axisymmetric ring of copper filled with 

high explosive. The mesh for this model is shown in Figure 3.2. 

0 
00 a w 

Z 

t 
10.16 cm I 

Figure 3.2: Mesh for Preliminary Axisymmetric Ring Model 
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The elements used in this model are four node, linear, axisymrnetric elements. 

There are 1600 elements in the HE and 800 elements in the cylindrical shell. A 0.127 mrn 

gap exists between the HE and the copper shell. A contact surface is prescribed between 

the HE and the shell. This contact surface allows the elements on the boundary to slide 

relative to one another without penetration. The effects of friction are not included in the 

model and thus only a normal force relative to the contact surface is transmitted across 

the HE-copper boundary. The HE is line detonated along the axis of symmetry (R = 0) to 

provide uniform radial expansion. A symmetry boundary condition is applied to the top 

and bottom of the mesh, as it appears in Figure 3.2. This allows the geometry to expand 

freely in the radial direction, away from the detonated axis, but with no displacement in 

the Z-direction, normal to the rollers. A table summarizing the user parameters supplied 

to the constitutive model is provided in Table 3.2. 
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Table 3.2: User Parameters Supplied to the Constitutive Model for the Copper Ring 

Strength Model 

/I GTN Void Model 

Specific Heat Jkg-K 383.5 
Initial Temuerature K 294.26 

I RoomTemDerature I K I 294.26 
I MeltTemuerature I K I 1355.93 
I Shear Modulus I Pa 1 4.63~10" 

Model Description Units Value 
Johnson-Cook Material Density kg/m3 8945.0 

I Yield Stress I Pa I 8.963~10~ 
I Hardening Coef. I Pa I 2.916~10' 
I Hardening Exu. I - I 0.3 1 

- I Strain-Rate Coef. I I 0.025 
I Thermal Softening. EXD. I - I 1.09 

I Pressure Hardening Term I Pa I 0.0 

I Strength Cut-off Pa 6.895~10~' 
On/Off Flag (1-on, 0-off) - 1.0 

Bulk Modulus Pa 1.372~10~' 
Sound Speed - CO m / S  3940.0 

SloDe of U,-Un Curve - S - 1.49 
Griineisen Coef. - y - 1.96 

On/Off Flag (1-on, 0-off) - 1 .o 
Tensile Pressure Cut-off Pa 6.895~ 1 010 

a1 - 1.5 
I U? 1 .o 
I a? I - I 2.25 
I fF I - I 0.85 

fc - 0.85 
0.001 Init. Void Vol. Fract. - finit 

I En 0.3 
S n  - 0.1 
F n  - 0.04 

Void Nucleation On/Off - 1 .o 
Random Voids On/Off - 1 .o 

On/Off Flag (1-on, 0-off) - 1 .o 
Void Pressure Cut-off Pa - 1 .ox106 

The effect of the shock on the bulk modulus is shown in Figure 3.3. This figure 

shows plots of the user supplied bulk modulus and modified bulk modulus vs. time for an 
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element on the ID and OD of the cylinder. When the EOS is not activated, the user 

supplied bulk modulus, given in Table 3.2, is used throughout the calculations and is 

constant with time. Otherwise when the EOS is activated, the bulk modulus in the 

material is modified to include the effects of the high pressure shock. Notice that the 

shock effect on the bulk modulus is much less for an element on the outside of the 

cylinder. This is a result of rarefraction waves, which diminish the magnitude of the 

shock as it travels through the cylinder wall. 

270 1 -no EOS (K=Constant 
-ID with EOS 
*OD with EOS 

0 10 20 30 40 50 60 70 80 90 100 

Time (sec) 

Figure 3.3: Shock EOS Effects on the Bulk Modulus 

As expected, the temperature change resulting from the shock loading shows a 

similar effect. A graph of the temperature change from the high pressure shock and 

plastic deformation is shown in Figure 3.4. This figure shows the resulting temperature 

vs. time for an element on the OD and ID with and without the EOS model. The final 

temperature for a particular element is similar for either model. However, the shock does 

induce an initial temperature rise. As expected, the magnitude of this rise is larger on the 
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surface closest to the HE. The maximum increase in energy from the shock heating is 

approximately 0.1% of the total energy. 
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Figure 3.4: Temperature Effects from High Pressure Shock and Plastic Work 

Early literature from Taylor (1963a) indicated that the hoop stress on the ID 

remains compressive after the hoop stress on the OD becomes tensile. This effect is 

illustrated in Figures 3.5 and 3.6. The hoop stress on the OD becomes tensile after 25 

microseconds while the hoop stress on the ID becomes tensile after 54 microseconds. 

The early oscillations shown in Figures 3.5 and even more apparently in Figure 3.6 are a 

result of the reverberating elastic stress waves in the material. Several authors including 

Taylor (1963a) have shown that the hoop stress on the inner surface remains compressive 

until internal pressure is equal to yield stress. The radial stress, which is not shown here, 

remains negative long after the shock waves have attenuated and is still negative after 

100 microseconds. 
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Figure 3.5: Hoop Stress on the ID and OD of Expanding Ring 
from 0-30 Microseconds 
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Figure 3.6: Hoop Stress on the ID and OD of Expanding Ring 
from 30-100 Microseconds 

95 100 

The numerical model predicts a maximum shock velocity in the copper that is 

approximately equal to the elastic wave speed. This indicates the presence of elastic 

stress wave and most likely a combination of elastic and plastic stress waves due to the 

magnitude of the loading. If the shock wave velocity was greater than the elastic wave 
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speed, a strong shock would propagate through the material as a single wave, which is 

shown for the case of P3 in Figure 2.6. 

The equivalent plastic strain rate for an element on the ID is shown in Figure 3.7. 

This figure indicates a maximum equivalent plastic strain rate of approximately 

7 . 1 ~ 1 0 ~  s-l for calculations without the EOS and 6 . 6 ~ 1 0 ~  s-l for the calculations with the 

EOS subroutine. The equivalent plastic strain rate at 100 microseconds is 9.04~10~ s-l for 

calculations without the EOS and 9.18~10~ s-l for the calculations with the EOS model. 

The two curves are fairly close at this particular location on the mesh indicating that the 

EOS has a minor effect on the equivalent plastic strain rate. However, this observation is 

not conclusive in that the discrepancies between the two may be larger at other locations 

in the mesh and, as a result, additional comparisons should be performed. 
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Figure 3.7: Strain Rate on the ID with and without EOS Model 

The hoop strain for elements on the ID and OD with and without the EOS model 

is shown in Figure 3.8. From this figure, the strain on the OD is approximately the same 



with and without the EOS model. However, the strain on the ID is slightly different 

which could be a result of compression in the shell material. 
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Figure 3.8: Hoop Strain with and without EOS Model 

Finally, Figure 3.9 indicates the void volume fraction in the material for an 

element on the OD with and without the EOS model. The EOS model appears to have a 

minimal effect on this parameter. This trend is very similar for an element on the ID. 
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Figure 3.9: Void Volume Fraction on the OD with and without EOS Model 
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4.0 Cylinder Experiments 

Two experiments were designed to benchmark the numerical model and to add 

credence to the formulation of the constitutive model. The geometry and the materials 

used for the experiments were determined from the current literature and conversations 

with experienced experimentalists at Los Alamos (Christian, 1997). This chapter 

describes the set-up, materials, and diagnostic equipment used for the experiments. 

Numerous materials ranging from steel to 6061-T6 aluminum have been widely 

used in the literature for problems involving high strain-rate viscoplasticity. Most of 

these materials are not considered extremely ductile. A few experimenters have reported 

on the use of OFE (Oxygen-Free Electronic) copper, but in most cases they do not 

provide information regarding its hardness or grain size. In general, the bulk of existing 

literature, particularly before the 1970's, provides little or no information regarding the 

metallurgy or microstructure of the materials used. 

OFE copper has been carefully characterized for a number of years. Its high 

strain-rate response and plastic deformation are well understood. Unlike uranium, for 

example, OFE copper does not undergo a phase transition at strain rates below lo6 s-'. 

Numerous strength models have used OFE copper for validation purposes. In addition, 

OFE copper is easy to obtain in a carefully controlled high purity form. The ductility, 

predictability, and purity of OFE copper make it the material of choice for studying the 

development of instabilities in problems involving large deformation plasticity. 
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4.1 Cylinder Material and Design 

Alloy 101 OFE copper is 99.99% pure copper, and is considered extremely high 

purity copper. Locating alloy 101 copper in large diameter tubes or rods with a small 

grain size is a not trivial task. Numerous vendors advertise soft copper in large diameters 

but most have hot worked the material, which results in extremely large grains. 

However, Copper and Brass Sales Inc. located a batch of drawn copper tubing that 

proved to be adequate for the purposes of these experiments. 

The initial grain size in the copper tubing was 35-40 km with hardness on the 

Rockwell F scale of 80. A small sample of the material was sectioned off and heat 

treated to 350°C to determine the rate and degree of softening attainable in the material. 

After 60 minutes, the microstructure of the copper was approximately the same size. The 

hardness of the material was now 23 on the Rockwell F scale indicating the release of 

residual energy (Necker, 1997). The microstructure of the copper material before and 

after the heat treat is shown in Figure 4.1. 

As Purchased Copper (Before Heat Treat) After Heat Treat at 350°C for 60 min. 

Figure 4.1 Microstructure of the Copper Material Before and After Heat Treat 



The largest diameter of copper tubing available from Copper and Brass Sales, Inc. 

had a 114.3 mm outer diameter with a 6.35 mrn wall thickness. To a large degree this 

dictated the overall geometry of the experiments. The goal of the experiments was to test 

two different wall thicknesses using approximately the same amount of HE. After 

machining, the smallest inner diameter obtainable was 102.06 mm. This allowed for one 

tube to be 2.54 mm thick and the other to be 5.08 mm thick. Experimentalists at Los 

Alamos suggested the diameter to length ratio be at least 1:3 and preferably 1:4. This 

resulted in an overall tube length of 406.4 mm. 

The surface finish of the cylinder was carefully controlled to minimize 

perturbations on the surface. A surface finish, as defined by ANSI B46.1-1962, of 16 and 

32 was maintained on the outside and inside surfaces respectively. In addition, a 

concentricity tolerance of 0.05 mm was maintained during the fabrication process. The 

fabrication drawings for the cylinders are included in the Appendix A. The overall 

dimensions of the geometry for the two cylinders are shown below in Table 4.1. 

Table 4.1: Dimensions of the Two Cylinders Used for the Experiments 

Length Inner Diameter Wall Thickness Outer Diameter 
(mm) (mm> (mm> (cm> 

Thin Cvlinder 406.4 102.06 2.54 107.14 
$1 5.08 112.22 (I ThickC linder I 406.4 

4.2 High Explosive Type and Design 

Numerous types of high explosives have been used in the past and several are still 

available. However, some are extremely sensitive and difficult to use, while others are 

not well characterized. The type of HE used in these experiments is known as PBX- 
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9501. This particular type of HE is very well characterized and predictable. In addition, 

the method used to detonate PBX-9501 is well understood (Fern, 1998). 

The finite element model used in the numerical analysis portion of this 

dissertation is not well suited for modeling large air gaps in the configuration. Therefore 

a solid cylinder of HE was designed to slide inside of the copper shell. A 0.127 mm 

clearance was prescribed between the HE and the cylinder to provide an adequate gap for 

assembly. The HE was centered in the cylinder and bonded to several small shims 

located at each end. This prevented the HE from falling out of the copper cylinder. The 

fabrications drawings for the HE are also included in Appendix A with the drawing for 

copper cylinders. 

There are several possible detonation methods. The simplest and least expensive 

method is called an end-on detonation and uses a SE-1 type of detonator. In this method, 

the detonator is bonded to the HE in one place, which is typically at the axis of 

symmetry. This essentially detonates the cylinder of HE at a point. The detonation wave 

then propagates spherically from the point of detonation until it reaches the edges of the 

cylinder. At this point it begins propagating down the length of the cylinder and 

eventually becomes a planar detonation wave. This type of detonation is undesirable due 

to the complexity of the changing wave structure. 

An alternative method uses a plane wave lens and a SE-1 detonator to develop a 

planar detonation front. A planar detonation is much simpler to model and as a result is 

more desirable. The plane wave lens is essentially a cone fabricated from two different 

types of HE. The cone is detonated at the apex with a SE-1 detonator and the detonation 
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front travels down the cone. The burn times of the two different types of HE produce a 

planer detonation wave by the time the front reaches the base of the cone. 

The experiments presented in this dissertation used a plane wave lens and a SE- 1 

detonator to establish a plane wave detonation front. The plane wave lens and mounting 

ring for the SE-1 detonator are shown as the conical geometry above the copper cylinders 

in Figure 4.2. Once a plane wave front is established, it will remain planar as long as 

there are no significant material or geometric transitions. The transition from the plane 

wave lens to the solid cylinder of HE was improved in these experiments by extending 

the HE 5.08 cm beyond the end of the copper shell. This helped to ensure a stable plane 

wave detonation inside the copper cylinders. The weight of the HE was approximately 

7.3 kg and the weight of the thick and thin copper cylinder were 6.2 kg and 3.0 kg 

respectively. 

The assembly and inspection of both the cylinders and HE were carefully 

controlled. The final assemblies are shown below in Figure 4.2. Again, the mounting 

ring for the SE-1 detonator is shown at the top of the picture. This ring was bonded onto 

the plane wave lens, which in turn was bonded onto the cylinder of PBX-9501. The 

copper shells shown in Figure 4.2 have a grid with distinguishing marks on the outer 

surface. These marks provide a contrasting surface making it easier to identify the quasi- 

periodic instabilities. In addition, the grid is useful for determining the overall strain 

from the framing camera pictures. 
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Figure 4.2: Copper Cylinder and HE Assemblies 

4.3 Firing Point Set-Up 

The types of diagnostics used in an experiment typically dictate the required 

experimental set-up. The experiments presented as part of this dissertation use two basic 

types of diagnostic equipment: Fabry-Perot and fast framing camera. Fabry-Perot is a 

type of laser or visar interferometer, which is capable of recording velocity information 

for a single point on the surface of the expanding shell. The fast framing camera 

diagnostic provides several images of the deformed shape at specified intervals in time. 

The strain and the development of the instabilities observed on the surface of the 

expanding shell can then be extracted from the photographs and plotted as a function of 

time. 
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Information regarding the damage mechanism in the material and strain at or near 

failure can sometimes be obtained from the fragments. This requires an extensive effort 

to minimize additional damage or ‘soft catch’, while decelerating the fragments. In these 

experiments, a large plywood box filled with vermiculite and asphalt sheeting was used 

in an attempt to ‘soft catch’ the fragments. However, locating the fragments in the 

vermiculite proved to be very difficult and as a result the last experiment only used the 

asphalt sheeting. The shot stand and plywood fragment box are shown in Figure 4.3. In 

addition, sandbags were used in an attempt to minimize the movement of the fragment 

box. 
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Figure 4.3: Elevation View of the Experimental Set-Up 
(all dimensions are in meters unless indicated) 

The HE filled cylinder or shot was placed on the shot stand, which was 

constructed from plywood. During the event, the shot was illuminated using two flash 

candles. Flash candles are simply plywood boxes lined with what is known as detasheet. 

Detasheet is essentially paper with distinct winding patterns of HE. The HE is ignited at 

one end and then the HE burn follows the pattern like a fuse, resulting in bright light and 
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long burn times. The timing of the illumination was carefully coupled with the shutter 

timing on the fast framing camera. The fast framing camera was located down hole in a 

bunker and viewed the experiment through an optical port in the ceiling. A turning 

mirror, which is shown in Figure 4.3, was used to correct the line of sight. Figure 4.4 

shows a plan view of the experimental set-up. 

PLYWOOD BOX 
(48" X 32" X 48"H) 

\ SAND BAGS 

(24" X 24" X 16") 
SHOT STAND 

OPTICAL PORT (8" X 24") 
FLASH CANDLE 

Y 

Figure 4.4: Plan View of the Experimental Set-Up 
(all dimensions are in meters unless indicated) 
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A cross-sectional view of the wooded shot stand and the placement of the cylinder 

are shown in Figure 4.5. The cylinder was inverted with the plane wave lens and 

detonator on the bottom. The spot or measurement point for the Fabry-Perot was located 

exactly halfway up the cylinder at 20.32 cm. A digitized picture of the entire 

experimental set-up and shot stand is shown in Figure 4.6. 

(2” x 4”) 

Figure 4.5: Shot Stand Used in Experimental Set-Up 
(all dimensions are in meters unless indicated) 



4.4 Preliminary Observations 

The first experiment involved the thicker of the two cylinders. In this experiment, 

the diagnostic equipment did not perform entirely as expected. The Fabry-Perot 

equipment experienced a hardware failure and as a result, was not able to record data. 

However, the fast framing camera performed as expected. A total of 23 images with a 

frame interval time of 2.257 microseconds were recorded. 

In the second experiment, which involved the thinner cylinder, all of the 

diagnostic equipment performed as expected. Again the frame interval time of the fast 

framing camera was 2,257 microseconds and a total of 23 images were recorded. The 

fast framing camera images of the thinner cylinder are shown in Figure 4.7. 
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Figure 4.7: Framing Camera Images for the Thin Cylinder 
(Times in Microseconds) 
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A pattern of quasi-periodic instabilities was observed on the framing camera 

pictures from both experiments. However, it is more difficult to see on the thick wall 

cylinder. A picture of the last frame of the thin cylinder (49.6 microseconds) is shown 

below in Figure 4.8. The image in this figure is rotated 90’ counterclockwise for 

illustration purposes. The quasi-periodic pattern of instabilities is most prevalent on the 

black lines shown inside the dark circle of this figure. The hoop strain at center of the 

dark circle is on the order of 1.5. The dark shaded circle on the bottom edge of the 

cylinder is a shadow from the Fabry-Perot optics. 

Figure 4.8: View of Instabilities on Expanding Thin Cylinder 

The efforts to ‘soft-catch’ fragments did not work as planned. This is partially 

due to the destructive power of the HE. The entire experiment and shot set-up as shown 

in Figure 4.6 was destroyed. The only fragments that could be found were located in the 

asphalt sheeting and most of the sheeting was torn to shreds. The destruction and size of 
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the remaining pieces of hardware are illustrated in Figure 4.9. This Figure, which shows 

the same firing point shown in Figure 4.6, was taken after the detonation of the thick 

cylinder. The fragments found at the firing point were extremely small and are shown in 

Figure 4.10. No useful information was obtained from the fragments. 

~ 

Figure 4.9: Firing Point Following Explosive Detonation of the Thick Cylinder 

Thin Cylinder Fragments 
Figure 4.10: Fragments Obtained from Explosive Detonation of Copper 

Thick Cylinder Fragments 

Cylinders 
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5.0 Model Verification 

An axisymmetric finite element model was constructed to model the detonation 

and expansion of the HE and the resultant deformation of the copper cylinder. The 

specifics of the solid model and parameters used in the analysis are discussed in this 

chapter. Several figures are shown to provide a comparison of the numerical results with 

the experimental data. These figures indicate good agreement and add credence to the 

parameters supplied to the constitutive model as well as the overall development of the 

constitutive model. 

5.1 Axisymmetric Numerical Model and Parameters 

The geometry of the numerical model included the solid cylinder of HE and the 

copper cylinder. However, it did not include the plane wave lens or SE-1 detonator. The 

mesh of the HE and copper cylinder are shown below in Figure 5.1. Five elements were 

maintained through the thickness of the copper cylinder for both of the 2.54 and 5.08 mm 

thick shells. This provided a consistent qualitative comparison of the numerical results 

between the two cylinders and still captured the global deformation of the cylinder. The 

aspect ratios of the elements in the copper cylinder and HE was nearly 1: 1. 

The HE and the copper were separated by a 0.127 mm gap. A sliding contact 

surface was prescribed at this gap to model the interactions between the HE and the 

cylinder. The size ratio of the HE elements to the copper cylinder elements was 
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maintained at 2: 1. Therefore, one HE element loaded two cylinder elements. The HE 

and copper cylinder were uniformly meshed with the same element density throughout 

the mesh. Four node, linear, axisymmetric elements were used throughout the analysis 

for both the HE and copper cylinder. The number of elements used in the HE and copper 

for each cylinder is shown in Table 5.1 

I-i , 0.127 mm Gap 
Cu Shell Mesh 

HE Mesh 
Uniformly 
Detonated End 

\ 

Figure 5.1: Axisymmetric Mesh of HE and Copper Cylinder 

Table 5.1: Number of Elements Used in Axisymmetric 
Model of HE and Copper Cylinder 

Number of Number of 
Elements in HE Elements in Copper 

Thin Shell (2.54 mm Thick) 21,550 4,000 
Thick Shell 15.08 mm Thick) 5 -400 2.000 

A symmetry boundary condition was applied to the bottom of the HE. This fixed 

the edge of the HE in the radial direction while allowing it to expand (on rollers) in the 

longitudinal direction. The mesh of the HE extended 50.8 mm beyond the end of the 

copper cylinder. This distance corresponds to the actual length of the solid HE cylinders 



used in the experiments. The HE in the model was then detonated all along the right 

surface which numerically models the detonation front produced by the plane wave lens. 

The user parameters supplied to the axisymmetric model are given in Table 5.2. This 

table is very similar to Table 3.2 shown in Chapter 3, but is shown again for clarity. 

The HE in the numerical model is detonated at time t = 0 seconds. The pressure 

in the model at the detonation front can be as high as 10 GPa for a very short duration. 

Initially, the elements at the tip of the copper cylinder can not respond to this extreme 

pressure loading. In fact, the actual cylinder in the experiments appears to crack in a non- 

ductile manner at the detonated end. The element remove subroutine, as described in 

Chapter 3, was implemented to handle these extreme pressures. If the equivalent plastic 

strain of an element exceeds 250 %, the element is removed from the numerical 

computation. Without the element remove subroutine, the elements distort and invert, 

effectively stopping the computation. The element remove subroutine only affects a few 

elements in the first couple of rows through the thickness. The effect of removing these 

elements on the overall accuracy of the solution away from the ends of the cylinders is 

thought to be minimal. 

The plots shown in Figure 5.2 illustrate the deformation of the copper cylinder at 

specific periods in time. In this figure, the HE is detonated on the right hand side and the 

detonation wave propagates from the right to the left of the figure. The thick solid line in 

the plots represents the axisymmetric cylindrical shell. The dashed line in the plots 

represents the axis of symmetry. The expansion of the HE, which extends from the 

cylinder edge to the line of symmetry, is not shown for clarity. 
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Table 5.2: User Parameters Supplied to the Axisymmetric Model 

7 Johnson-Cook 

HE Burn Parameters 

Description Units Value 
Material Density kg/m3 8945.0 

Specific Heat J/kg-K 383.5 
Initial TemDerature K 294.26 
Room Temperature K 294.26 
Melt Temperature K 1355.93 

Shear Modulus Pa 4 . 6 3 ~  10" 
Yield Stress Pa 

Hardening Coef. Pa 2.9 16x10 
- 

- 0.025 
Hardening Exp. 

Strain-Rate Coef. 
- 

6 .895~  10 
Thermal Softening Exp. 

Strength Cut-off Pa 

3940.0 

a1 1 - 1  1.5 II 
- 1 .o q2 I 
- 
- 0.85 

q 3  
fF 
f, 1 - 1  0.85 I/ 

hit .  Void Vol. Fract. - flmt - 0.001 
E, - 0.3 

- 1.5 
-l-oxlob I Void Pressure Cut-off Pa 

Max. Plastic Strain 

2.049~10 
A Pa 
B Pa 
w I I 0.25 II 
R1 I I 4.6 II 

8830.0 
R2 

Detonation Velocitv. Cd m / S  

EnergyMass, E, J k g  5 .543~ 1 Ob 



- - - - - - 
Time t = 0 microseconds 

- - - - - - 
Time t = 10 microseconds 

- - - - - - 
Time t = 20 microseconds 

- - - - - - 
Time t = 30 microseconds 

- - - - - - 
Time t = 40 microseconds 

- - - - - - 
Time t = 50 microseconds 

Figure 5.2: Deformed Axisymmetric Edge of the Copper Cylinder Computed 
from the Numerical Model (Dashed Line Indicates Axis of Symmetry) 
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5.2 Comparison of Numerical Results with Experimental Data 

During the experiment, data from the fast framing camera and Fabry-Perot were 

obtained. The data from the fast framing camera are in the form of photographs from 

which information regarding the instabilities and cylinder deformation can be obtained. 

The displacement data were extracted at eight points along the longitudinal axis of the 

cylinder. Each point is separated by 50.8 mm, with the first point located 50.8 mm up 

from the detonated end. The displacement as a function of time is plotted for the 

following locations measured from the detonated end of the cylinder: 50.8, 101.6, 152.4, 

203.2,254.0,304.8,355.6, and 406.4 mm. These data points are compared with the 

numerical results for each corresponding cylinder. 

The Fabry-Perot data were obtained at only one point on the surface of the 

cylinder. Recall during the experiment which involved the 5.08 mm thick cylinder, a 

hardware failure occurred with the Fabry-Perot instrumentation. As a result, the only 

useful Fabry-Perot data obtained were from the 2.54 mm thick cylinder. The velocity 

data from the Fabry-Perot instrumentation were taken exactly half-way up the cylinder at 

203.2 mm and are compared in this section with the results from the numerical model. 

A sequence of deformed geometry plots for the two cylinders are shown in 

Figures 5.3 and 5.4. Each figure shows two graphs, each of which contains a plot of the 

experimental data and the numerical results. The data and results for the 2.54 mm thick 

cylinder are shown in Figure 5.3. The two graphs shown in this figure are taken at 20.3 

and 49.65 microseconds. The data and numerical results for the 5.08 mm thick cylinder 

are shown in Figure 5.4. The two graphs shown in this Figure are taken at 18.9 and 49.65 

microseconds. 



Deformed Geometry at Time t=20.3 microseconds 

Experimental Data : 
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Figure 5.3: Deformed Geometry for the 2.54 mm Thick Copper Cylinder 
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Deformed Geometry at Time k18.1 microseconds 
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Figure 5.4: Deformed Geometry for the 5.08 mm Thick Copper Cylinder 



In general, the comparisons of the deformed cylindrical shells shown in Figures 

5.3 and 5.4 indicate good agreement between the experimental data and the numerical 

results. Some deviation is illustrated at the top and bottom end of the cylinders. This 

deviation is likely caused from the inability of the finite element model to respond to 

sudden changes in the loading. This is particularly obvious at the ends of the cylinder. 

The explosive gases that vent around the cylinder ends during the experiment are also not 

modeled correctly by the numerical model. The HE elements can not distort and behave 

like escaping gas. A finer mesh density and rezoning would likely improve the results in 

these areas. Artificial damping in the numerical model, which smears out the shock 

front, could also affect the displacements at the ends of the cylinder where the load is 

applied suddenly. 

The radial displacement of each cylinder is plotted with respect to time in Figures 

5.5 and 5.6. The displacement curves shown in each of these figures are taken at eight 

different longitudinal locations on the cylinder wall. The longitudinal location is shown 

in the text on the right side of the figures. The plots shown in Figure 5.5 are for the 

2.54 mm thick cylinder and the plots shown in Figure 5.6 are for the 5.08 mm thick 

cylinder. In each figure, the plots near the center of the cylinder illustrate good 

agreement between the numerical results and the experimental data. However in both 

figures, the plots near the ends of the cylinder show a small discrepancy. This is the 

same discrepancy observed in Figures 5.3 and 5.4 and again, the meshing, viscosity, and 

rezoning of the cylinder mesh could reduce this discrepancy. 
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Figure 5.5: Radial Displacement as a Function of Time at Eight Locations 
Along the Longitudinal Axis of the 2.54 mm Thick Cylinder 
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Figure 5.6: Radial Displacement as a Function of Time at Eight Locations 
Along the Longitudinal Axis of the 5.08 mm Thick Cylinder 
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In Chapter 1, a brief discussion was provided regarding an equation developed by 

Gurney (1943) for predicting the maximum velocity, V,, , of shells subjected to internal 

explosive detonations. Gurney’s equation for a cylindrical shell is written as, 

c 2  

where M/C is the ratio of the mass of the shell to the mass of the explosive and is 

called the Gurney constant. The empirical constant, m, was determined from 

experiments involving a particular type of explosive. For PBX-9501, J2 E is equal to 

2900 m / s .  The results shown in Table 5.3 indicate the calculated values of the Gurney 

velocity for the experiments conducted in this dissertation. 

Table 5.3: Gurney Velocity for Cylindrical Shell Experiments 

Mass of HE Mass of Shell M/C V m  
(kg/m) @g/m> (&SI 

2.54 mm Thick Shell 14.98 7.46 0.498 2902 
5.08 mm Thick Shell 14.98 15.29 1.02 235 1 

Figures 5.7 and 5.8 show the velocity of the cylinder wall for the 2.54 and 5.08 

mm thick cylinders. The plots shown in Figure 5.7 include the velocities from the 

empirical Gurney equation, the Fabry-Perot instrumentation, and the numerical model. 

The plots shown in Figure 5.8 only include the velocities from the empirical Gurney 

equation and the numerical model. Recall the Fabry-Perot equipment experienced a 

hardware failure and as a result, was not able to record data for the 5.08 mm thick 

cylinder. However, good agreement with the available data is shown in both figures. 
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Figure 5.7: Radial Velocity as a Function of Time for the 2.54 mm Thick Cylinder 
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Figure 5.8: Radial Velocity as a Function of Time for the 5.0s mm Thick Cylinder 
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The number of instabilities and the time at which they are observed can typically 

be extracted from the fast framing camera pictures. In both cylinder experiments, 

instabilities were observed on the surface of the expanding shell. However, the 

resolution of the photographs was not as sharp as expected. Each photograph was 

digitized and enlarged to determine the number of instabilities for a small characteristic 

length on the surface of the cylinder. This length and the quantity of instabilities were 

then used to determine the total number of instabilities on the entire circumference of the 

shell. Unfortunately, the resolution of the photographs was not sufficient to provide 

information regarding the initiation time of the instabilities, average instability size, or 

rate of instability growth. The number of instabilities around the circumference of each 

cylinder is given below in Table 5.4 

Table 5.4: Number of Instabilities for Each Cylinder as Determined 
from the Fast Framing Camera Photographs 

Number of Instabilities 
2.54 mm Thick Shell 298 
5.08 mm Thick Shell I 343 

The experiments documented in Chapter 4 of this dissertation were designed to 

verify the numerical model and good agreement is shown in Figures 5.3 to5.8. The 

deformed geometry plots in Figures 5.3 and 5.4 are reasonably close. At locations away 

from the cylinder ends, the correlation of the deformed shape is very good. The radial 

displacement plots in Figures 5.5 and 5.6 are also quite close and again a slight variation 

is observed at the ends of the cylinders. In Figures 5.7, excellent correlation exists 

between the radial velocity obtained from the experimental data and the predictions from 
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the numerical model. In addition, the predicted numerical velocity asymptotically 

approaches the Gurney velocity in both Figures 5.7 and 5.8. 

The comparisons shown here illustrate that the user supplied constitutive 

parameters and the mesh densities used in the numerical models are reasonable. Good 

agreement is shown for large displacements thus indicating that the distortion of the 

elements in the numerical model is not affecting the solution. In addition, the 

fundamental work by Gurney provides a supplemental form of verification of the 

maximum velocity. 

The instabilities observed on the surface of the expanding cylinder appear to 

occur and propagate down the longitudinal axis of the cylinder. The axisymmetric 

geometry analyzed in this chapter is not capable of predicting circumferential pattern of 

quasi-periodic instabilities with occurs in the longitudinal orientation. However, the 

credibility of the constitutive model is established based on agreement between the 

experimental data and numerical results for the overall deformation of the copper 

cylinders. With this established, the next chapter examines a plane strain geometry to 

determine the number of instabilities and provide insight into their development. 



6.0 Dynamic Instabilities 

This chapter discusses the development of the quasi-periodic instabilities, which 

are observed on the surface of rapidly expanding shells. For cylindrical shells, quasi- 

periodic instabilities appear as material separation or extreme thinning on planes of 

constant angle in the theta (e) direction and propagate in the longitudinal direction, see 

Figure 6.1. The axisymmetric analysis presented in Chapter 5 is not capable of predicting 

instabilities of this type. However, the comparisons with experimental data presented in 

that chapter, add credence to the constitutive model. In this chapter, a plane strain 

analysis is performed to numerically model the development of instabilities in expanding 

cylindrical shells. 

The quasi-periodic instabilities observed in the framing camera photographs 

shown in Chapter 4 appear to be perturbations on the surface. As expected, these 

perturbations could be initiated from inhomogeneities in the copper or the high explosive, 

or due to nonuniform loading. Preliminary results from this numerical analysis have 

verified these effects. In the analyses performed in this chapter, an extensive effort is 

made to minimize these incidental perturbations. 

The contribution of the perturbations in the loading to the development of the 

instabilities is difficult to quantify. Inhomogeneities may exist in the high explosive and 

could cause perturbations in the loading of the shell. The work presented here assumes 

these inhomogeneities are not related to the instabilities. The analysis presented in this 
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chapter does not include the explosive burn model. Instead, the pressures resulting from 

the explosive detonation are applied uniformly to the inside surface of the cylinder. 

Without the void model, the numerical model predicts smooth uniform expansion 

of the shell and instabilities do not develop. As a result, some type of damage, or void 

model, is necessary in the prediction of instabilities in rapidly expanding shells. The void 

model used in this work is based on the microvoid model by Gurson, Tvergaard, and 

Needleman. This model allows the user to prescribe an initial volumetric distribution of 

voids. Typically this distribution is thought to be uniform throughout the material. When 

a uniform distribution of voids is used in the numerical model, the development of 

instabilities occurs but it occurs much later in time and at a much larger strain. Results 

such as these do not correspond well with the experimental data shown in this research or 

in the current literature. 

Recall, from Chapter 4, that the microstructure of the copper material shows a 

random grain structure, which varies significantly throughout the material. The current 

literature suggests that voids nucleate predominately at grain boundaries or secondary 

particles which in essence indicates random nucleation sites. As a result, a method of 

randomizing the initial void distribution was developed. This method is explained in 

Chapter 3. Using an initial random void distribution, the on set of instabilities occurs 

much earlier in time and the results correspond much better with experimental data. 

6.1 Plane Strain Numerical Model 

A plane strain finite element model was constructed to examine the development 

of instabilities. The user parameters supplied to the constitutive model are shown in 



Table 3.2. This model has twenty elements through the thickness of the shell, and each 

element has a 1 : 1 aspect ratio for a total of 12,000 elements. These elements are two- 

dimensional single integration point plane strain elements. The mesh for the model is 

shown in Figure 6.1. The inner radius of the mesh is 5.08 cm, and the outer radius of the 

mesh for this analysis is 5.334 cm. Symmetry boundary conditions are applied to the 

edges of the mesh at 0 and 90 degrees. 

R 

Figure 6.1: Plane Strain Mesh for Instability Investigation 

As mentioned earlier in this chapter the HE was not directly included in this 

analysis. This minimizes the potential for numerical errors in the HE burn model and 

perturbations in the load transferred between the high explosive and the shell. Instead, an 

average pressure history at the HE-shell boundary was determined from a numerical 

model, which included the high explosive. This pressure history was then applied to the 

94 



inner surface of the mesh shown in Figure 6.1. Figure 6.2 shows the characteristic , 

pressure history for the mesh shown in Figure 6.1. Notice the maximum pressure occurs 

early in time and then drops off rapidly. The accumulated impulse, up to 50 

microseconds is approximately 67,000 Pa-sec. 

50 

45 

40 

n 35 

30 

25 a t 20 
15 

10 

5 

0 

p. 

0 10 20 30 40 50 60 70 

Time (microseconds) 

Figure 6.2: Pressure Time History for the 2.54 mm Thick Cylinder 

6.2 Instability Development 

From previous literature and the experiments described in Chapters 4 and 5, the 

instabilities developed on the surface of the shell are visible only after the shell has 

expanded to at least one and a half times its initial diameter. Fragments from those 

experiments were collected but it was difficult to determine what initiated the instabilities 

and how they developed. 

A much less sophisticated experiment was conducted in an attempt to obtain a 

highly strained copper sample illustrating the development of instabilities prior to 

fragmentation. This experiment consisted of a 30.48 cm long OFE grade copper tube 



with a 2.54 cm inner diameter and 6.35 mm thickness. The copper tube was placed on 

end in about 2.54 cm of sand. A slug of Composition C-4, which measured to be 7.62 cm 

long and 1.27 cm in diameter, was placed inside the top lip of the copper tube. The C-4 

was end detonated and the explosive shock wave traveled down the inside of the tube. 

The shock wave reflected off the surface of the sand, resulting in an overpressure. The 

overpressure caused the tube to bulge and fracture but not fragment. A picture of the 

bulged tube is shown below in Figure 6.3. The arrows shown in this figure indicate the 

locations of the instabilities. 

Figure 6.3: Bulged Tube from C-4 Experiment 

The bulged tube shown in Figure 6.3 was cross-sectioned through the instabilities 

to determine how the instability formed. Examination of the section indicates the 

development of instabilities on both the inner and outer surfaces. However, unlike a 

uniaxial tensile specimen, these instabilities are offset in the theta direction and the 

formation of a shear band is obviously connecting the instabilities. An exaggerated 

illustration of the offset instabilities is shown in Figure 6.4 and a photomicrograph of the 
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resulting microstructure from the bulged tube section is shown in Figure Excessive 

plastic deformation is visible from the elongated grains, illustrating a very ductile 

material response. In addition, the inner surface of the tube appears to be rougher than 

the outer surface indicating additional damage. This damage is possibly from localized 

heating and shock interactions with the high explosive. 

-..... J \ 
\ 

Quasi-Periodic 
Instabilities 

Localized / 
Zonesof \ 1 

jR Shear 

Figure 6.4: Exaggerated Illustration of Quasi-Periodic Instabilities 

Outside Diameter 

Inside Diamter 200 pm 
Figure 6.5: Shear Band from Bulged Tube Experiment 
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The formation of localized shear is also visible in the numerical model. Figure 

6.6 shows several plots illustrating the development of an instability in the copper shell. 

Initially at 6.7 microseconds, the equivalent plastic strain is fairly uniform in the theta 

direction and has a smooth gradient in the radial direction. However, an oscillatory 

pattern is observed in the theta direction as early as 7.6 microseconds. This pattern 

becomes more pronounced and by 25 microseconds, the minimum equivalent plastic 

strain is 0.6 and the maximum is 1.09. At this point quasi-periodic instabilities are 

observed on the inner and outer surfaces. These instabilities are also offset in the theta 

direction much like instabilities observed on the bulged tube sample and illustrated in 

Figure 6.4. 

Initially, the hoop stress through the entire thickness of the shell is in 

compression. At 6.4 microseconds, the hoop stress at the outer surface of the shell 

becomes tensile, while the hoop stress at the inner surface of the shell does not become 

tensile until 14.8 microseconds. The instabilities do not appear on the surfaces of the 

shell until 25 microseconds, which is much later in time. However, the oscillatory 

pattern, which is first observed at 7.6 microseconds, does not appear to significantly grow 

until after 15 microseconds at which time the hoop stress is tensile throughout the 

thickness of the shell. 

At 34 microseconds, the pattern of equivalent plastic strain is much larger. The 

minimum value is 0.705 and the maximum 1.65, indicating a large variation through 

thickness of the shell. The contours of equivalent plastic strain now illustrate the distinct 

formation of localized shear zones. The combination of quasi-periodic thinning and the 

formation of the shear zones are referred to here as quasi-periodic instabilities. 
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Figure 6.6: Equivalent Plastic Strain and Surface 
Features from the Numerical Model 

99 



The development of shear bands in a material is typically a result of thermal 

softening outweighing strain hardening. According to Zener and Holloman (1944), when 

intense plastic deformation occurs, a large portion of the work done is converted into 

heat. If the strain rate is high enough, there may not be enough time for the heat to 

diffuse away from the deforming zone. This causes a local thermal softening effect. If 

the strength loss due to thermal softening becomes greater than the increase in strength 

due to strain or strain rate hardening, the plastic deformation will become unstable. This 

plastic deformation will give way to a localized band-like deformation or a shear band. 

As mentioned earlier, a periodic pattern in the equivalent plastic strain is observed 

in the numerical results as early as 7.6 microseconds. This corresponds to a strain WRo 

of 1.05. However, the localized shear zones are not obvious until much later in time. 

Figure 6.7 shows a larger image of the equivalent plastic strain at 7.6 microseconds. 
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Figure 6.7: Equivalent Plastic Strain at 7.6 microseconds 
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The equivalent plastic strain rate, temperature, and volumetric void fraction are shown in 

Figures 6.8,6.9, and 6.10 respectively. 
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Figure 6.8: Equivalent Plastic Strain Rate at 7.6 microseconds 
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Figure 6.9: Temperature at 7.6 microseconds 
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WV 

Figure 6.10: Volumetric Void Fraction at 7.6 microseconds 

All four figures show some type of periodic pattern at 7.6 microseconds. In 

addition, the temperature fringe plot, Figure 6.9, shows a periodic pattern on the inside of 

the material and at the boundary between the inner radius and the HE. Specimens 

collected following the bulge experiment also exhibited a rough surface at the HE 

boundary. Again, this roughness is likely caused from excessive heating and wave 

interactions with the high explosive. 

The localized zones of shear illustrated by the contours of equivalent plastic strain 

shown in Figure 6.6 indicate the mode of failure. These results agree well with the shear 

band illustrated in Figure 6.5, which resulted from the bulge experiment. The thickness 

of the cylinder appears to have a minimal effect on the mode of failure. Several 

cylinders, ranging from 2.54 to 7.52 mm thick, were analyzed with the numerical model 

and in each case, failure was indicated by the development of localized shear zones. 
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It is difficult at this time to theorize on the cause of the oscillatory pattern 

observed early in the results from the numerical model. This pattern appears before the 

shock waves have attenuated which suggests the accumulation of some type of damage. 

This damage could be due to the amplification of reverberating shock waves. Once 

damage is initiated, the equivalent plastic strain in the material continues to increase until 

the oscillatory pattern has extended to the inner and outer surfaces of the cylinder. At 

this point localized surface thinning begins to occur indicating the onset of the quasi- 

periodic instabilities. Next localized shear zones develop and the instabilities become 

visible on fast framing camera photographs. The zones of shear continue to grow and 

eventually the cylinder fragments. 

6.3 Sensitivity Study 

There are several user supplied parameters in the GTN model. The values for the 

parameters used in this analysis are based on previous literature. The f,, E , ,  and sN , 

parameters in the void nucleation rate equation appear to be more statistically and 

physically based than the q l ,  q2 ,  and q3 parameters in the yield surface equation. As a 

result, the sensitivity analysis presented in this section only considers the q1 parameter in 

the yield surface equation for the GTN model. 

Recall from eqn. (2.50), the yield surface for the GTN model is expressed as, 

4=[:J+2q1 f* cash[---) 3 q 2  p - ( l+q3 f* )=O. 



This equation has three non-physical parameters (41, q2,  and q3) .  These parameters were 

introduced by Tvergaard (1 98 1, 1982) to provide closer agreement with numerical and 

experimental data. The current literature by Tvergaard and Needleman suggest, 

2 
q 3  = 41 

with values for q~ ranging from 1 .O to 1.5. The value for q 2  is almost always 1 .O although 

some literature suggests slightly smaller values within the range of 0.9-1.0. The 

sensitivity analysis presented in this section considers three values of 41: 1 .O, 1.25, and 

1.5. 

The model considered in this study is similar to the plane strain model analyzed 

earlier in this chapter. Four different cylinders are considered, each with an inner radius 

of 5.08 cm. The wall thickness of the cylinders range from 2.54 to 7.62 mm. Again, 

twenty elements were maintained through the thickness of each cylinder and each 

element has a 1 : 1 aspect ratio. This resulted in a different number of elements for each 

analysis. The mesh is shown in Figure 6.1 and the elements used are four node, linear, 

plane strain elements. The boundary conditions for this analysis include symmetry 

planes at both ends of the mesh and a pressure loading applied uniformly to the inner 

surface of the cylinder. The pressure loading was determined using the procedures 

described above in section 6.2. The total applied impulse, from 0 to 50 microseconds, 

and the number of elements for each of the four cylinders are shown below in Table 6.1 

Table 6.1: Impulse and Number of Elements for Four Cylinders with 
50.8 mm Inside Radius 

11 ~ a l l ~ h i c k n e s s ( m m )  I 2.54 5.08 6.35 7.62 11 
Impulse (Pa-sec) 67,000 99,600 1 13,000 125,400 

Number of Elements 12,000 6,000 5,020 4,180 
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The constitutive model developed in this dissertation is unable to simulate crack 

behavior and is limited only to the onset of failure. In order to characterize the effects of 

various parameters, a failure criterion was established. This criterion was based on the 

change in the cylinder thickness. Consider the geometry shown in Figure 6.1 1. 

Node 2 

Node 4 

Expansion Without 
an Instability 

Expansion With 
an Instability 

Figure 6.11: Illustration of Failure Criterion for Expanding Shell 

As the cylinder expands, the wall thickness is reduced. E the cylinder expands 

uniformly without an instability, the cylinder wall will reduce uniformly. If an instability 

develops, the wall thickness at that instability will change faster than the wall thickness 

away from the instability. The change in the wall thickness at the instability will 

continue to increase while away from the instability, the change in the wall thickness will 

be uniform. 

An 18" segment was analyzed for each cylinder. Each pair of nodes in the 

segment is assumed to lie along the same radial line indicating the same location in the 

theta direction before and after the development of instabilities, as shown in Figure 6.1 1. 
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The change in the wall thickness, A t h ,  for each nodal pair located along this 18" segment 

is then calculated at each time step using 

where, 

dAxt2 + Ayz2 

represents the radial displacement of a node on the ID and 

(6.4) 

represents the radial displacement of a node on the OD. When the deviation of the 

change in thickness along the 18" segment is greater than 5% of the outer cylinder radius, 

failure is assumed in the cylinder. A representative plot of the change in wall thickness 

for an 18" segment of the 6.35 mm thick cylinder with an 5.715 cm outer radius is shown 

in Figure 6.12. Notice that there are several curves plotted in this figure. Each curve 

represents a pair of nodes whose position in the theta direction was identical at the start of 

the analysis. As expected, the curves shown in this figure are initially coincident, 

indicating that the change in wall thickness for the characteristic length of elements is 

initially uniform. At approximately 50 microseconds, the band of plots begins to 

illustrate a deviation. This deviation continues to increase and at about 65 microseconds 

it exceeds the previously chosen failure criterion. At this point, the instabilities are 

considered fully developed and failure is assumed. 
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Figure 6.12: Change in Wall Thickness for Expanding Cylinder 

Again, this analysis was performed for each of the four cylinders and each of the 

three values for 41. Following the analysis, the time of failure was predicted using the 

failure criterion presented above. Then the results of the finite element model were 

examined to determine the maximum volumetric void concentration, equivalent plastic 

strain, equivalent plastic strain rate, and temperature. Plots of these values along with the 

failure time and strain are shown in Figures 6.13 to 6.18. It is important to note that 

values obtained from the fringe plots represent localized maximums and may not be 

representative of the global behavior. 
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Figures 6.13 through 6.14 illustrate fairly linear relations. There is a slight bend 

in Figure 6.13 and an even larger bend in Figures 6.16 and 6.17. The bend or change in 

slope in Figures 6.16 and 6.17 appear to occur at the same outer radius. This suggests a 

change in the failure mechanism of the cylinder. Examination of the fringe plots still 

suggests the development of localized shear. Recall from Figure 6.6, the area 

surrounding the shear zone is at a significantly lower equivalent plastic strain. This 

results in a large gradient between the shear zone and the surrounding material. 

The plots shown in Figure 6.6 are for a cylinder with a 2.54 mm thickness. The 

thicker cylinders appear to have a smaller gradient in equivalent plastic strain perhaps 

suggesting more plastic flow and subsequent necking. The plot shown in Figure 6.18 

illustrates the relationship between wall thickness and the number of instabilities. 

Variations in q1 did not affect the number of instabilities observed from the model and 

therefore only one curve is shown in Figure 6.18. The total number of instabilities 

calculated by the numerical model was determined by counting the thinned regions on the 

18" segment and interpolating for the entire 360" circumference. Recall that the 

experiments conducted had the same inner radius and a wall thickness of 2.54 mm and 

5.08 mm. The estimated total number of experimentally observed circumferential 

instabilities was 343 and 298 for the smaller and larger cylinders respectively. This 

agrees reasonably with the numerical predictions as shown by the plot in Figure 6.18. 

The effect of the mesh density was examined by modeling one geometry, the 

5.08 mm thick shell, with two different mesh densities. This resulted in a model with 

3525 elements in the first case and 6000 elements in the second case. The boundary 

conditions and constants on both models were identical. Values such as equivalent 
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plastic strain, equivalent plastic strain-rate, volumetric void fraction, and temperature 

were examined for each model at three different times. The results of this exercise for 

each mesh density are shown below in Table 6.2. The maximum values shown in this 

table are not identical, nor are they expected to be. Recall, the distribution of voids in the 

material is random, particularly the initial maximum and minimum distributions, and are 

expected to be different for each mesh. This will produce slight variations in the fringe 

plots of state variables like equivalent plastic strain, temperature, and void concentration. 

However, the results are within approximately 15% of each other and the hoop strain in 

each case is essentially identical. 

Table 6.2: Results from Mesh Sensitivity Study 

# of Elements 

50.0 I 1.28 I 1.37 I 0.171 I .210 I 442 I 454 I 2.663 I 2.663 1 

Next the initialization of the void distribution was examined. Changing the seed 

of the random function changes the initial distribution of voids. The effects of seed 

variations were also negligible in terms of the overall failure, hoop strain, and equivalent 

plastic strain. However, it did have small effects, less than lo%, on the equivalent plastic 

strain rate, temperature, and volumetric void distribution. 

In all of the preceding numerical runs, the initial range of voids in the material 

ranges randomly from 0.001 to 0.005. To study the effects of the initial void distribution, 

two different ranges were analyzed. These results are shown below in Table 6.3 

112 



Table 6.3: Results from Void Range Sensitivity Study 

II Initial Void Range I 0.0009-0.0045 I 0.001-0.005 II 
N Hoou Strain at 70 us I 2.876 I 2.877 N 

Hoop Strain at Failure 3.115 2.980 
Max. Equiv. Plastic Strain at Failure 1.59 1.61 
Max. Void Concentration at Failure 0.277 0.394 

Max. TemDerature at Failure 48 1 485 
Max. Equiv. Plastic Strain Rate at Failure 2 . 0 3 ~  10" 3.41 x 10" 

Failure Time (us) 78 73 

The failure time of the model is related to the initial void distribution. The 

smaller the initial concentration of voids, the longer the model runs before failure and the 

higher the strain at failure. At 70 ps, the hoop strain for both initial void concentrations 

is nearly the same. In addition, at failure the equivalent plastic strain and temperature for 

both initial void concentrations is nearly the same. This indicates that the failure criterion 

is reasonable and justified when considering the mechanics involved with shear bands. 

There is, however, a variation in the final void concentration, equivalent plastic strain 

rate, and temperature. Finally, the overall number of instabilities does not appear to be 

affected by the mesh density, the seed, or the initial range of voids in the material 

In summary, the simulations shown in this chapter illustrate the onset and 

development of plastic instabilities that are associated with rapidly expanding shells. The 

onset of a periodic pattern is observed as early as 7.6 microseconds and localized areas of 

intense plastic strain, which extend from the inner to the outer surfaces, are observed later 

at 34 microseconds. The total number of instabilities predicted by the numerical model is 

fairly close to the number of instabilities observed from the experimental data. In 

addition, several quantities such as the number of instabilities, the time to failure, and the 

hoop strain appear to be related to the thickness of the shell. 
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7.0 Summary and Conclusions 

Thin cylindrical shells subjected to internal explosive detonations expand 

outwardly at strain rates on the order lo4 s-'. At approximately 150% strain, multiple 

plastic instabilities appear on the surface of these shells. These plastic instabilities 

develop into bands of localized shear and eventually cracks that progress in a way which 

causes the shell to break into fragments. Modeling this high strain rate expansion prior to 

fragmentation is the primary focus of this dissertation. Using the fundamental 

foundations of engineering mechanics, insight is also provided into the development of 

the instabilities through the thickness of the shell. 

The multi-axial constitutive model developed for this dissertation includes 

modules for a hydrodynamic equation of state model, a microvoid damage model, and a 

rate dependent strength model. None of the constitutive models in the current literature 

apply all three of these components in an effort to analyze rapidly expanding shells. In 

addition, models in the current literature typically consider only the uniaxial stress or one 

of the principal stress components. The constitutive model developed in this dissertation 

includes the complete fundamental formulations of the entire stress and strain tensors for 

multi-dimensional plastic flow. 

Examination of the results from the numerical model indicates that damage occurs 

early in time before the stress waves have attenuated. This damage does not appear to 

begin on the surface of the shell, but rather through the thickness of the material much 



like a spall plane. However, with spall problems, damage in the form of void coalescence 

accumulates from waves moving transversely through the thickness of the shell. These 

waves load the material uniformly through its thickness and eventually cause a spall 

plane, which is not oscillatory or periodic. In the expanding shell problem, the periodic 

pattern clearly illustrates nonlinearities in the equivalent plastic strain. This periodic 

pattern or damage zone continues to develop and eventually extends to the outer and 

inner surfaces where thinning develops. Regions of intense shear eventually connect the 

thinned surfaces of the shell. A photomicrograph illustrating the cross-section of the 

thinned region around an instability is provided and is related to the numerical 

predictions . 

In the majority of the current literature, the authors do not provide data regarding 

the microstructure of the material. This research provides photomicrographs illustrating 

the microstructure and hardness of the material prior to the experiment. The observations 

made from the photomicrograph of bulged samples and the results of the numerical 

model provide an interesting qualitative comparison of the localized thinning and shear 

zones that develops through the thickness of the shell. 

The numerical results predicted here are compared with experimental data from 

this research. These experiments were designed to validate the multidimensional aspects 

of the constitutive model. Strain and velocity information was recorded during the 

experiment. Good agreement is obtained between the experimental data and the 

numerical results. 

This research provides the scientific community with results from an additional 

set of sophisticated high explosive experiments that are not easily performed or recorded. 



In the study of rapidly expanding shells, few authors compare their numerical results with 

experimental data. The authors that do provide experimental verifications are validating 

finite difference based models and only validate a few points on the expanding shell. 

Numerical results of other quantities such as equivalent plastic strain, strain rate, 

and temperature are provided in this research. In addition, a limited sensitivity study is 

performed for parameters in the equation for the GTN yield surface. The results of this 

study indicate that the number of instabilities and time to failure are related to the 

thickness of the shell. In summary this sensitivity study indicated that the thicker the 

shell, the fewer instabilities and the longer the expansion. This also results in a larger 

strain before the onset of instabilities and larger strain at failure. 

Future work in this area should focus on adaptive remeshing techniques to further 

study the details in the development of the instabilities predicted by the numerical model. 

The current model is not capable of modeling material separation. With adaptive 

remeshing, the growth of the instabilities and the subsequent fracture of the shell can be 

examined further. 

The instabilities appear to be related to the periodic pattern, which is observed 

early in time. This periodic pattern may be initiated by an interference pattern from the 

reflecting stress waves in the material or by the excitation of higher order harmonics in 

the shell. Recall from the results presented in chapters 5 and 6 that the instabilities were 

not predicted for the axisymmetric model but were predicted for the plane strain model. 

In terms of stress wave interactions, the interference pattern developed by reflecting 

stress waves in the shell should be more distinct in the axisymmetric model than the 

plane strain model. Since the instabilities were not observed in the axisymmetric 
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analysis, additional research should focus on the harmonic solution and an examination 

of the eigenvalues. 

Additional experiments should also be performed with carefully characterized 

bulged tests. These experiments should be designed to develop instabilities but not 

fragments. Should fragments be produced, enhanced fragment catching techniques 

should be implemented to minimize fragment damage and maximize the number of 

captured fragments. A less energetic explosive should also be considered in order to 

maximize the size of the fragments. Finally, optical resolution studies should be 

performed prior to the experiment to maximize the resolution of the photographs at the 

desired radial displacement. When the cylinder expands, the focus of the camera will 

either improve or diminish. A significant effort should be made to obtain the sharpest 

focus at the critical moment in the development of instabilities. 

In summary, this research extends of the state of the art in the following ways: 

1. The development of a constitutive model for multi-axial stress states, which 

includes modules for a hydrodynamic equation of state model, a microvoid 

damage model, and a rate dependent strength model. 

2. The development of a constitutive model, which includes the correct 

fundamental formulations for multi-dimensional plastic flow, rather than the 

simplifying assumptions typical of hydrocodes. 

3. The design, implementation, and results of experiments used to verify of the 

constitutive model for rapidly expanding cylindrical shells. 
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4. Photomicrographs illustrating the microstructure of the material before and 

after the experiments. 

The results from this study led to the following conclusions: 

1. Good correlation is shown between the numerical model and the experiments 

involving an explosively filled plane wave detonated copper cylinder. 

2. The initiation of the periodic damage occurs early in time before the stress 

waves in the material have attenuated. 

3. The instabilities observed on the surfaces of expanding cylindrical shells are 

connected by local areas of intense shear, which eventually cause failure. 

4. The failure and damage accumulation in the high strain rate expansion of 

cylindrical shells is different from failure in spall problems. 

5. The number of instabilities is related to the thickness of the shell. 

6. Reasonable numerically results depend on the presence of a random 

distribution of microvoids at the start of the analysis. 

The experimentally verified constitutive model developed in this dissertation 

provides a useful tool for further analytical work on the expansion of explosively 

expanding shells. In addition, the problems solved and the comparisons presented 

provide much needed insight into the development of the quasi-periodic instabilities 

observed on the surfaces of the expanding shells. In conclusion, the work presented in 

this dissertation represents an original and much needed contribution to the literature 

regarding the expansion of thin shells subjected to internal explosive detonations. 
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APPENDIX B 

Fortran Source Code for VUMAT Subroutine 

subroutine vumat( 

C Read only - 
. nblock, ndir, nshr, nstatev, nfieldv, nprops, lanneal, 
. stepTime, totalTirne, dt, cmname, coordMp, charlength, 
. props, density, strainInc, relSpinInc, 
. tempold, stretchold, defgradold, fieldold, 
. stressold, stateold, enerInternOld, enerInelasOld, 
. tempNew , s tre tchNew , de f gradNew , f ieldNew , 

. stressNew, stateNew, enerInternNew, enerInelasNew) 
C Write only - 

C 1 2 3 4 5 6 7 
C Written by: Rick Martineau 
C Submitted in partial fulfillment of the requirements f o r  
C the degree of Doctor of Philosophy from Colorado State 
C University, Fort Collins Colorado 
C 

include 'vabaqaram.inc' 
data iFirst/O/ 

C 
di 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

.mension 
coordMp (nblock, * )  , charLength (nblock) , props (nprops) , 
density(nblock), strainInc(nblock,ndir+nshr), 
relSpinInc (nblock, nshr) , 
stretchOld(nblock,ndir+nshr), 
defgradOld(nblock,ndir+nshr+nshr), 
fieldOld(nblock,nfieldv), stressOld(nblock,ndir+nshr), 
stateOld(nblock,nstatev), enerInternOld(nblock), 
enerInelasOld(nblock), tempNew(nblock), 
stretchNew(nblock,ndir+nshr), 
defgradNew(nblock,ndir+nshr+nshr), fieldNew(nblock,nfieldv), 
stressNew(nblock,ndir+nshr), stateNew(nblock,nstatev), 
enerInternNew(nblock), enerInelasNew(nb1ock) 

tempold (nblock) , 

C 
character*8 cmname 

dimension dsNew(nblock, 6) , u (nblock) , dvdot (nblock) , 
. dvolInc (nblock) , sbarNew (nblock) , SbarOld(nb1ock) , 

edev (nblock) , edot (nblock) , Sallow (nblock) , 
Tstar (nblock) , BulkNew (nblock) 

real maxTen 

C general material properties are read from the input deck 
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DenO 
SpHt 
Tinit 
Troom 
Tmelt 
Gs 
junk 
junk 

props (1 
props (2 1 
props (3 
props (4 
props (5 ) 
props ( 6 1 
props (7  
props ( 8 

C DenO MUST be the same as input on *DENSITY card 
C SpHt - specific heat used for temperature calcs 
C (work/mass/degree) 
C T  - temperatures for thermal softening 

C Johnson-Cook strength model parameters 

C 
C 
c 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 

c1 
c2 
c3 
c4 
c5 
C6 
Smax 
iJC 

= props (9) 
= props ( 1 0 )  
= props(l1) 
= props (12) 
= props (13) 
= props(l4) 
= props(l5) 
= props(l6) 

C1 - C6 are JC strength parameters 
C1 is commonly called A or C1 or Yield Stress 
C2 is commonly called B or C2 or Hardening Modulus 
C3 is commonly called n or Hardening Exponent 

for no strain hardening (elastic-perfectly plastic) set 
C2=0 and C3=1.0 

for no strain-rate effects set C4 = 0.0 

for no thermal softening set C5 = 0.0 

C4 is commonly called C or C3 or Strain-Rate Coefficient 

C5 is commonly called m or Thermal Softening Exponent 

C6 is commonly called D or C4 or Pressure Hardening Coefficient 
Smax maximum strength - if zero, strength not limited 

iJC=l, do strength calc with Johnson-Cook material model 
iJC=O do not do strength calc 

can be used like a saturation stress 

C Griineisen equation of state parameters 

Bulki = props(l7) 
co = props (18) 
S = props (19) 
grunO = props (20) 
maxTen = props(21) 
bl = props(22) 
b2 = props(23) 
iEOS = props (24) 

C 
C 
c 
C 
C 
C 
C 
C 
C 
c 

Bulki 
co 
S 
grunO 
maxTen 

bl 
b2 

iEOS = 

bulk modulus for material 
Linear Acoustic Speed 
Slope of the Us/Up Curve 
Griineisen parameter for material 
tensile pressure cutoff 
for unlimited tension, set maxTen to a very large value 
Linear term of bulk viscosity - Used to reduce Ringing 
quadratic term of bulk viscosity - Used to smear shock 
front 
0, do not do EOS or artificial vis calcs 
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C iEOS = 1, use EOS and artificial viscosity calcs 

C Gurson Void Model Parameters 

91 = props(25) 
92 = props(26) 
93 = props(27) 
Ff = props 
FC = props 
Vfract = props 
En = props 
Sn = props 

Fn = props 
iVoid = props 
Vtime = props 
vmin = props 
pmax = props 
epmax = props 
ivNuc = props 
ivRand = props 

iDam = props 
EPS = props (42) 

Tkill = props (43) 

c 9# - parameters for Gurson Void model 
C fF - Ultimate Void Volume Fraction 
c fC - Critical Void Volume Fraction 
C Vfract - 
C En - 
C Sn 
C Fn - 
C iVoid - 
C Vtime - 

- 

C iDam - 
C EPD - 

Void Volume Fraction 
Mean Nucleation Strain 
Standard Deviation of Voids 
Nucleation Void Fraction 
Void Flag 
Time at which void model starts 

Turn Damage on/off 
Equivalent Plastic Strain Limit 

C TKill - Kill Time cut-off 

C State Parameters for Void model are 36-45 

if (iJC .eq. 0 )  iDam = 0 

iFirst=iFirst + 1 

901 format (10i10) 
904 format (7e10.3, i3) 

if (iFirst .le. 1) then 
write(6,*) ' begin vumat' 
write(6,*) ' ' 

write(6,*) 'DenO, S p H t ,  Tinit, Troom, Tmelt, G s ,  ' 
write(6,904) DenO,SpHt,Tinit,Troom,Tmelt, Gs 
write(6,*) 'Cl, C2, C3, C4, C5, C6, Smax, iJC' 
write(6,904) C1, C2, C3, C4, C5, C6, Smax, iJC 
write(6,") 'Bulki, Co, S, grun0, maxTen, bl, b2 iEOS' 
write(6,904) Bulki, Co, S ,  grun0, maxTen, bl, b2, i E O S  
write(6,*) '91, 92, 93, fF, fC, Vfract, En, iVoid' 
write(6,904) 91, 9 2 ,  93, fF, f C ,  Vfract, En, iVoid 
write(6,*) 'Fn, Flag, Vtime, Vmin, Pmax, EPe, NUC, Damage' 
write(6,904) fn, iVoid, Vtime, vmin, pmax, epmax, ivNuc,Damage 

write(6,*) #* * * * * * * * * *  Start parameter Data ***************  
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C 
C 
C 
C 

C 

C 
C 

C 
C 
C 

C 

write(6, * )  ’TKill’ 
write(6,904) TKill 

write(6,*) ‘ ’ 
write(6,*) ‘nblock, ndir, nshr, nstatev, nfieldv, nprops, annl‘ 
write(6,901) nblock,ndir,nshr,nstatev,nfieldv, nprops, lanneal 
write(6,*) ’ ‘ 

write(6,*) , * * * * * e * * * * * * * * *  End Parmeter Data * * * * * * * * * * * * * * ,  

endif 

testing on element type to make sure 
legal element types are used. 
ndir = S11, S22, S33 
nshr = S12, 523, S31 

if (iFirst .le. 1) then 
if (nshr .eq. 1) write(6,*) ‘axisymmetric or plane strain‘ 
if (nshr .eq. 3) write(6,*) ‘3D Solid‘ 

end if 

if iEOS = 1, then update bulk modulus and calculate temperature 

if (iEOS .eq. 1) then 

if (iFirst .le. 1) then 
write(6,*) ‘EOS is set to ’, iEOS 
write(6,*) ‘Calling EOS’ 
write(6,*) ‘ ’ 

end if 

Note: Specific Heat at constant Volume is passed into sub. eos 
Uses state variables 21 and reserves 31-40. 

call EOS( nblock, dt, ndir, nshr, DenO, density 
. stateOld(l,2), Bulki, S, Co, grun0, b2, SpHt, 
. stateNew(l,61), StateNew(l,62), StateNew(l.63 
. ~tateNew(l,64), StateNew(l,65), StateNew(l,66 
. StateNew(l,67), StateNew(l,68), StateNew(l,69 
. stateOld(l,21), StateNew(l,21), charLength ) 

else 

if (iFirst .le. 1) then 
write(6,*) ’EOS is set to ‘ ,  iEOS 
write(6,*) ‘NOT Calling EOS‘ 
write(6,*) ’ ’ 

end if 

strainInc, 
BulkNew, 

Since the EOS subroutine calculates a new bulk modulus for each 
integration point, we need to set the array to the constant bulk 
modulus if EOS is not called. 

do i=l, nblock 

end do 
BulkNew(i) = Bulki 

endif 

if iJC=1 , do strength model 

if (iJC .eq. 1) then 

if (iFirst .le. 1) then 



write(6,") 'JC is set to ' ,  iJC 
write(6,*) 'Calling Stress' 
write(6,*) ' ' 

end if 

C Note: Specific Heat at constant Pressure is pass into sub. stress 
C Uses State Variables 1-20, 23, 34, 45 

if (ivoid .eq. 1) then 

call Gurson( nblock, ndir, nshr, dt, steplime, totallime, 
density, strainInc, stressold, stressNew, enerInternOld, 
enerInternNew, enerInelasOld, enerInelasNew, StateOld(l,l), 
StateNew(l,l), StateOld(l,2), StateNew(l,2), StateOld(l,3), 
StateNew(l,3), StateOld(l,5), StateNew(l,5), StateNew(l,6), 
StateNew(l,7), StateNew(l,8), StateNew(l,9), StateOld(1,lO). 
StateNew(l,lO), StateOld(l,ll), StateNew(l,ll), 
StateNew(l,l2), StateNew(l,l3), StateNew(l,l4), 
StateNew(l,l5), StateNew(l,l6), StateNew(l,l7), 
StateNew(l,l8), StateNew(l,l9), StateOld(l,20), 
StateNew(l,20), StateOld(l,21), StateNew(l,21), 
StateOld(l,22), StateNew(l,22), StateOld(l,23), 
StateNew(l,23), StateOld(l,24), StateNew(l,24), 
StateOld(l,25), StateNew 
StateNew(l,26), StateOld 
StateOld(l,28), StateNew 
StateNew(l,29), StateOld 
StateOld(l,31), StateNew 
StateNew(l,32), StateOld 
StateNew(l,34), StateNew 
StateNew(l,37), StateNew 

1,251, StateOld 
1,27 ) , StateNew 
1,281, StateOld 
1,30), StateNew 
1,311, StateOld 
1,33), StateNew 
1,35) , StateNew 
1,38), StateNew 

StateNew (1,40) , StateOld (1,41) , 
StateNew(l,45), StateNew(l,46), StateNew(l,51), 
StateNew(l,52), StateNew(l,53), StateNew(l,54), 
StateNew(l,55), StateNew(l,63), 
DenO, SpHt, Tinit, Troom, Tmelt, Gs, C1, C2, C3, C4, 
C5, C6, Smax, dsNew, sbarold, dvdot, u, edot, Tstar, 
edev, BulkNew, ivoid, ql, q2, q3, win, pmax ) 

else 

call VonMises( nblock, ndir, nshr, dt, steplime, totallime, 
density, strainInc, stressold, stressNew, enerlnternold, 
enerInternNew, enerInelasOld, enerInelasNew, StateOld(l,l), 
StateNew(l,l), StateOld(l,2), StateNew(l,2), StateOld(l,3), 
StateNew(l,3), StateOld(l,S), StateNew(l,5), StateNew(l,6), 
StateNew(l,7), StateNew(l,8), StateNew(l,9), StateNew(l,lO), 
StateOld(l,ll), StateNew 
StateNew(l,l3), StateNew 
StateNe~(l.16)~ StateNew 
StateNew (1,19) , StateOld 
StateOld(l,21), StateNew 
StateNew(l,22), StateOld 
StateOld(l,24), StateNew 
StateNew(l,25), StateOld 
StateOld(l,27), StateNew 
StateNew(l,28), StateOld 
StateOld(1,30), StateNew 
StateNew(l,31), StateOld 
StateOld(l,33), StateNew 
StateNew(l,35), StateNew 
StateNew(l,38), StateNew 
StateNew(l,45), StateNew 

1,11), StateNew(l,l2), 
1,14), StateNew(l,lS), 
1,17), StateNew(l,l8), 
1,20), StateNew(l,20), 
1,21), StateOld(l,22), 
1,23), StateNew(l,23), 
1,24), StateOld(l,25), 
1,26), StateNew(l,26), 
1,271, StateOld(l,28), 
1,29), StateNew(l,29), 
1,30), StateOld(l,31), 
1,32), StateNew(l,32), 
1,33), StateNew(l,34), 
1,361, StateNew(l,37), 
1,39), StateOld(l,41), 
1,46), StateNew(l,51), 
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StateNew(l,52), StateNe~(l.53)~ StateNew(l,54), 
StateNew(l,55), StateNew(l,63), 
DenO, SpHt, Tinit, Troom, Tmelt, G s ,  C1, C2, C3, C4, 
C5, C6, Smax, dsNew, SbarOld, dvdot, u, edot, 
Tstar, edev, BulkNew) 

end if 

else 
write(6,*) 'Strength Flag must be 1' 
stop 

endi f 

if iVoid = 1, then find void volume fraction 

if (ivoid .eq. 1) then 

if (iFirst .le. 1) then 
write(6,*) 'ivoid is set to ', iVoid 
write(6,*) 'Calling Void' 
write(6,") ' ' 

end if 

Uses State Variables 11, 12, 13 and reserves 41-55 

call Void(nblock, dt, ndir, nshr, stepTime, totalTime, 
density, strainInc, stressold, stateNew(l,ll), 
StateNew(l,41), StateOld(l,dl), StateNew(l,42), 
StateNew(l,43), StateNew(l,44), StateNew(l,45), 
StateNew(l,46), StateNew(l,47), StateNew(l,48), 
StateNew(l,49), StateNew(l,SO), StateNew(l,51), 
StateNew(l,52), StateNew(l,201, StateNew(l.541, 
StateNew(l,55), StateOld(l,43), StateOld(l,44), 
Gs, Sn, Fn, En, ql, 92, 93, fF, fC. vFract, 
vmin, pmax, ivNuc, ivRand ) 

else 

if (iFirst .le. 1) then 
write(6,*) 'Void is set to I ,  iVoid 
write(6,*) 'NOT Calling Void' 
write(6,") ' ' 

end if 

endif 

If no damage model, 
then 

if 

set damage = zero. 

(iDAM .eq. 0 )  then 

do I=l, nblock 

end do 
stateNew(i.3) = 0.0 

end if 

Element death 
Based on equivalent plastic strain or volumetric strain 

call death( nblock, iDam, Vdead, u, stateOld(l,l), 
. ~tateNew(l.1)~ stateOld(l,2), stateNew(l,2), 
. stateOld(l,3), stateNew(l,3), stateOld(l,4), 



. stateNew(l,4), StateNew(l,41), StateNe~(l.20)~ 

. dt, epmax, Vfract, EPS, TKill, TotalTime) 

return 
end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 
C SUBROUTINE Gurson 
C 
C This subroutine calculates the stresses, strains, energies, and 
C temperatures at each material point 
C 
C Rick Martineau 
C Written: 05/10/97 
C 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine Gurson( nblock, ndir, nshr, dt, stepTime, totalTime, 
. density, eInc, SigOld, SigNew, eInternOld, eInternNew, 
. eInelasOld, eInelasNew, ebarOld, ebar, dvolold, dvol, DamOld, 
. Dam, Oedt, State5, State6, State7, State8, State9, TanMod, 
. StatelO, SallowO, Statell, Statel2, Statel3, Statel4, State-15, 
- Statel6, Statel7, Statel8, Statel9, OPlEM, State20, Tempo, 
. State21, epol, State22, epo2, State23, epo3, State24, epo4, 
. State25, epo5, State26, epo6, State27, eel, State28, ee2, 
. State29, ee3, State30, ee4, State31, ee5, State32, ee6, 
. State33, State34, State35, State36, State37, State38, State39, 
. State40, VoidF, State45, State46, State51, State52, State53, 
- State54, State55, ShockTemp, 
. DenO, SpHeat, Tinit, Troom, Tmelt, Gs, C1, C2, C3, C4, C5, C6, 
. Smax, dsNew, SbarOld, dvdot, u, edt, Tstar, edev, Bulk, 
. ivoid, ql, 92, 93, Vmin, pmax ) 

include ‘vabasaram. inc‘ 

dimension density(nblock), eInc(nblock,ndir+nshr), 
. SigOld(nblock,ndir+nshr), sigNew(nblock,ndir+nshr), 
. eInternOld(nblock), eInternNew(nblock), Dam(nblock), 
. eInelasOld(nblock), eInelasNew(nblock), ebarOld(nblock), 
. ebar (nblock) , dvolOld (nblock) , dvol (nblock) , DamOld (nblock) , 
. TempO (nblock) , TempN(nb1ock) , ShockTemp (nblock) , 
~ V o i d F  (nblock) , Oedt (nblock) , TanOld(nb1ock) 

dj .menston State5 (nblock) , State6 (nblock) , 
State7 (nblock) , State8 (nblock) , State9 (nblock) , 
StatelO (nblock) , Statell (nblock) , State12 (nblock) , 
Statel3(nblock), Statel4(nblock), StatelS(nblock), 
State16 (nblock) , State17 (nblock) , State18 (nblock) , 
State19 (nblock) , State20 (nblock) , State21 (nblock) , 
State22 (nblock) , State23 (nblock) , State24 (nblock) , 
State25 (nblock) , State26 (nblock) , State27 (nblock) , 
State28 (nblock) , State29 (nblock) , State30 (nblock) , 
State31 (nblock), State32 (nblock) , State33 (nblock) , 
State34 (nblock) , State35 (nblock) , State36 (nblock) , 
State37 (nblock) , State38 (nblock) , State39 (nblock) , 
State40 (nblock) 

dimension State45(nblock), State46(nblock), StateSl(nblock), 
. State52 (nblock) , State53 (nblock) , State54 (nblock) , 
. State55 (nblock) , eel (nblock) , ee2 (nblock) , ee3 (nblock) , 
. ee4 (nblock), ee5 (nblock) , ee6 (nblock) , Epol (nblock) , 
. Epo2 (nblock) , Epo3 (nblock) , Epo4 (nblock) , Epo5 (nblock) , 
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Epo6 (nblock) , OPlEM(nblock), Sallow(nb1ock) 

data iFirst/O/ 

dimension dsNew(nb1ock. 6), SbarOld(nb1ock) , dvdot (nblock) , 
dvbar (nblock) , dvolInc (nblock) , eIncAvg (nblock) , 
edt (nblock) , edot (nblock, 6), edev(nb1ock) , 
sbarNew (nblock) , Bulk (nblock) , Yfunc (nblock) , 
TanMod(nblock), ElasMod(nblock), dsOld(nblock,6) 

dimension factor(nblock), vmises(nblock), SallowO(nblock), 
DelTemp (nblock) , Tstar (nblock) , PlastEM (nblock) , 
PlasticWorkInc (nblock) , Epdot (nblock) , dsEquiv(nb1ock) 

dimension et(nblock,6), epeff(nblock),SigTrace(nblock), 
rm(nblock, 61, ee(nblock, 61, epInc (nblock, 6), el (nblock, 6), 
yf (nblock) , VoidY (nblock) , dlamda (nblock) , 
dep(nblock, 6), iconv(nb1ock) , qZn(nb1ock) 

dimension vl (nblock) , v2 (nblock) , v3 (nblock) , v4 (nblock) , 
. xpsil (nblock) , xpsi2 (nblock) , hl (nblock) , h2 (nblock) , 
. edotl (nblock) , edot2 (nblock) , edot3 (nblock) , 
. edot4 (nblock) , edot5 (nblock) , edot6 (nblock) 

dimension cll (nblock) , c22 (nblock) , c33 (nblock) , c44 (nblock) , 
c12 (&lock), c13 (nblock) , c21 (nblock) , c23 (nblock) , 
c31 (nblock) , c32 (nblock) , c55 (nblock) , c66 (nblock) 

real const, yf, smean 

C cycle counter and formats for debugging 

iFirst = iFirst + 1 

C Formulate the Elastic Matrix f o r  the Material Behavior 

do i=l, nblock 
cll(i) = (Bulk(i) - (2.0/3.0) * G s )  + 2.0 * GS 
c22(i) = cll(i) 
c33(i) = cll(i) 
c12(i) = (Bulk(i) - (2.0/3.0) * Gs) 
c13(i) = c12(i) 
c21(i) = c12(i) 
c23 (i) = c12 (i) 
c31(i) = c12(i) 
c32(i) = c12(i) 
c44(i) = Gs 
c55(i) = Gs 
c66(i) = Gs 

end do 

C Set the convergence tolerance to a small number 

ctol = 0.0001 

C The strain hardening exponent must be positive 

if (C3 .le. 0 .0 )  then 
write(6,*) 'ERROR STOP because c3 must be > 0.0' 
stop 

endi f 

do i=l, nblock 
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dvolInc(i) = eInc(i,l) + eInc(i,2) + eInc(i,3) 
dvol(i) = dvolOld(i) + dvolInc(i) 
dvdot(i) = dvolInc(i) /dt 
dvbar(i) = dvol(i) - dvdot(i) * dt / 2.0 

C Compute the Elastic Modulus 

ElasMod(i) = 9.0 * Bulk(i) * Gs / (3.0 * Bulk(:) + G s )  

end do 

if (iFirst .le. 1) then 

end if 
write(6,*) 'Working on strength model' 

C ndir+nshr = 4 means 2D 

if (ndir+nshr .eq. 4) then 

if (iFirst .le. 1) then 

end if 
write(6,*) 'Working on axisymmetric strength' 

do I=l,nblock 

C Set the el equal to the previous elastic strains 

el(i,l) = eel(i) 
el(i,2) = ee2(i) 
el(i,3) = ee3(i) 
el(i,4) = ee4(i) 

do j=1, 4 

epInc(i,j) = 0.0 
rm(i,j) = 0 . 0  

end do 

c Set the converged flag to 0 (false) 

iconv(i) = 0 

C Set dlamda to zero so that plastic strain starts at zero 

dlamda(i) = 0.0 

C Average normal strain increment - TOTAL 
C TOTAL means (elastic + plastic and deviator + dilatation) 

eIncAvg(i) = (eInc(i,l) + eInc(i,2) + eInc(i.3)) / 3.0 

C Deviator strain rates 

edot(i,l) = (eInc(i,l) - eIncAvg(i)) / dt 
edot(i,2) = (eInc(i,2) - eIncAvg(i)) / dt 
edot(i,3) = (eInc(i,3) - eIncAvg(i)) / dt 
edot(i,4) = (eInc(i,4) ) / dt 

C equivalent plastic (deviatoric) strain rate 
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+ (edot(i,2) - edot(i,3))**2 + (edot(i,3) - edot(i,l))**2 
+ 6.0 * edot(i,4)**2 ) ) 

C Calculate the old average stress for Johnson-Cook Subroutine 

SbarOld(i) = (SigOld(i,l) + SigOld(i,2) + SigOld(i,3) )/3.0 

C Lower bound on strain rate for logarithm operation in flow stress calc 

if ((at .eq. 1.0) .or. (dt .le. TotalTime)) then 

edt(i) = dmaxl (edt(i), 0.0001) 

else 

end if 

end do 

C Compute flow stress - Sallow 
C Send Ebar, 

call JC ( nblock, stepTime, totalTime, OPlEm, 
DamOld, Tinit, Troom, Tmelt, Gs, C1, C2, C3, 
C4, C5, C6, Smax, SbarOld, edt, Sallow, 
Tstar, <First, Tempo, DelTemp, dt ) 

Converged = .False. 
j = O  

do while (Converged .eq. .False.) 

C Increment counter 

j = j + l  

do i=l, nblock 

if (iconv(i) .eq. 0 )  then 

C Update the plastic strain increment 

do k = 1, 4 

end do 
epInc(i,k) = epInc(i,k) + dlamda(i) * rm(i,k) 

C equivalent plastic (deviatoric) strain rate 

edt(i) = sqrt((2.0/9.0) * ( 
(epInc ( i , 1) /dt - epInc ( i ,2 ) /dt ) **2 

+ (epInc (i, 2) /dt - epInc (i, 3 ) /dt) **2 
+ (epInc(i,3)/dt - epInc(i,l)/dt)**2 
+ 6.0*(epInc(i,4)/dt)**2 ) )  

C Lower bound on strain rate for logarithm operation in flow stress calc 

C Calculate the effective plastic strain change 
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epeff (i) = Sqrt (2.0/9.0) 

* Sqrt( ( epInc(i,l) - epInc(i.2) ) * * 2  

+ ( epInc(i,2) - epInc(i,3) )**a 
+ ( epInc(i,3) - epInc(i,l) )**2 

+ 6.0 * (  epInc(i,4)**2 ) ) 

C Update the total effective plastic strain 

ebar(i) = ebarOld(i) + epeff(i) 

C Update the elastic strain increment 
C Elastic = OldElastic + Total Inc - Plastic 

do k=l, 4 

end do 
ee(i,k) = el(i,k) + eInc(i,k) - epInc(i,k) 

C Update the volumetric increment 

dvolInc(i) = ee(i,l) + ee(i,2) + ee(i,3) 

C Compute New stresses - For first iteration this is 
C my trial stress. 

SigNew(i,l) = cll(i)*ee(i,l) + c12(i)*ee(i,2) 

SigNew(i,2) = c2l(i)*ee(i,l) + c22(i)*ee(i,2) 

SigNew(i,3) = c3l(i)*ee(i,l) + c32(i)*ee(i,2) 

SigNew ( i ,4 ) = c44 ( i ) *ee ( i ,4) 

+ c13(i)*ee(i,3) 

+ c23(i)*ee(i,3) 

+ c33(i)*ee(i,3) 

SbarNew (i) = (SigNew(i, 1) +SigNew (i, 2) +SigNew (i, 3) ) /3.0 
SigTrace (i) = SigNew (i, 1) +SigNew (i, 2) +SigNew (i ,3 ) 

C Reset 92 
C Basically if the element is under compression larger than pmax 
C then shut off the Gurson model. In addition, if the bulk modulus 
C has been modified by the EOS (ie. under compression) then 
C shut off the Gurson model. 

if (SigTrace(i) .It. pmax) then 

q2n(i) = abs(Sallow(i) / SigTrace(i)) 

else 

q2n(i) = 92 

end if 

C Find the deviatoric Stress 

dsNew(i.1) = SigNew(i,l) - SbarNew(i) 
dsNew(i,2) = SigNew(i,2) - SbarNew(5) 
dsNew(i,3) = SigNew(i,3) - SbarNew(i) 
dsNew(i,4) = SigNew(i,4) 

C Calculate the Equivalent stress from the deviatoric stress 

dsEquiv(i) = Sqrt((l.0/2.0) * ( (dsNew(i,l) 
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- dsNew(i,2))**2 + (dsNew(i,2) 
- dsNew(i,3) )**2 + (dsNew(i,3) 
- dsNew(i,l))**2 + 6 . 0  * dsNew(i,4)**2) ) 

C Equivalent stress 

vmises(i) = 

- sigNew 

- sigNew 
- sigNew 

sqrt( (1./2.) * (((sigNew(i,l) 

i,2))**2 + (sigNew(i,2) 

i,3))**2 + (sigNew(i,3) 
i,l))**2 + 6.0 * sigNew(i,4)**2))) 

end if 
end do 

do i=l, nblock 
if (Damold(<) .ge. 1.0) then 

endi f 
iconv(i) = 1 

end do 

do i=l, nblock 

if (iconv(i) .eq. 0 )  then 

C Determine the Tangent of the Flow Surface 

if ( (dt .eq. 1.0) .or. 
(dt .eq. TotalTime) ) then 

TanMod(i) = Sallow(i) / (edt (i) *dt) 

else if (abs(Sallow(i)-SallowO(i)) .It. 0.1 ) then 

TanMod(i) = 0.0 

else if (epeff(i) .eq. 0 . 0 )  then 

TanMod(i) = 0.0 

else 

TanMod(i) = (Sallow(i) - SallowO(i)) / epeff(i) 

end if 

C Evaluate yield function in a non-dimensional form 

VoidY(i) = (2.0 * q1 * Voidf(i) * 
Cosh(q2n(i) * SigTrace(i) / ( 2.0 
* Sallow(i) ) ) )  - (1.0 + 93 * Voidf(i)**2) 

yf (i) = (dsEquiv(i) /Sallow(i) )**2 + VoidY(i) 

C Elastic stress Only and set elastic strains to total strains 

if ( ( (yf(i) .It. 0.0)  .and. ( j  .eq. 1)) 
.or. (dt .eq. 1.0) ) then 

iconv(i) = 1 



c plastic Stress and Converged 

else if (abs(yf(i)) .It. ctol) then 

iconv(i) = 1 

else 

c Calculate the Mtensor 

vcl = (91 * VoidF(i)/Sallow(i)) * Sinh(q2n(i) 

C Compute delta 

C 

* SigTrace(i) / 
vc2 = 1.0 / Sallow 

rm(i.1) = vc2 * (3 
rm(i,2) = vc2 * (3 
rm(i,3) = vc2 * (3 
rm(i,4) = vc2 * (3 

(2.0 * Sallow(i)) ) 
i) **2 

*SigNew (i, 1) -SigTrace 
*SigNew(i, 2) -SigTrace 
*SigNew(i,3)-SigTrace 
*SigNew(i,4)) 

i) ) +vcl 
i) ) +vcl 
i) ) +vcl 

const = (VoidF(i) * TanOld(i) * q1 * SigTrace(i) 
/ Sallow(i)**2) * Sinh(q2n(i)*SigTrace(i) / 
(Z.O*Sallow(i) ) ) 

xpsil(i) = -2.0 * TanOld(i)/Sallow(i)**3 * 
(1.5 * (SigNew(i,l)**2 + SigNew(i,2)**2 + 
SigNew(i,3)**2 + 2.0 * SigNew(i,4)**2) - 0 .5  
* SigTrace(i)**2) - const 

-si2 (i) = 2. *ql*Cosh(q2n(i) * SigTrace(i) / 
(Z.O*sallow(i))) - 2.0 * q2n(i) * VoidF(i) 

hl(i) = Sqrt((2.0/3.0) * (rm(i,l)**2 + rm(i,2)**2 
+ rm(i,3)**2 + 2.0Rrm(i,4)**2)) 

h2(i) = (1.0 - VoidF(i)) * 
(rm(i.1) + rm(i,2) + rm(i.3)) 

ct = cll(i) * (rm(i,l)**2 + rm(i,2)**2 + 
rm(i,3)**2) + 4.* c44(i)*rm(i,4)**2 + 2.*c12(i) 
* (rm(i,l)*rm(i,2) + rm(i,l)*rm(i,3) 
+ rin(i,Z)*rm(i,3)) 

denom = ct - xpsil(i)*hl(i) - xpsi2(i)*h2(i) 

if ( denom.eq.O.0) then 
write(6,*) 'stop denom is 0' 
stop 

end if 

dlamda (i) = yf (i) / denom 

if ((denom .It. O.O).and.(j.gt.2)) then 
write(6,*) ' * *  Need to Change dlamda' 
stop 

end if 

end if 

if ( ( j  .gt. 5) .and. (j .It. 10000)) then 
write(6,*) yf (i), const, VoidY(i), dlamda(i), j 
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else if ( j  .eq. 10000) then 
write(6,*) ‘J exceed maximum, STOP‘ 
write(6,*) yf (i), const, VoidY(i), dlamda(i), j 
write (6, * )  ’ 
write(6,*) ‘Consider reducing the time step‘ 
write ( 6, * ) ’ 
STOP 

end if 
end if 

end do 

C Check for complete convergence 

Converged = .True. 

do i=l, nblock 

if (iconv(i) .eq. 0)  then 
Converged = .False. 

end if 

end do 

end do 

do i=l, nblock 

C Set dep to the plastic strain increment 

do k=l, 4 

end do 
dep(i,k) = epInc(i,k) 

C Update the new plastic strain 

epInc(i,l) = dep(i,l) + epol(i) 
epInc(i.2) = dep(i,2) + epo2(i) 
epInc(i,3) = dep(i,3) + epo3(i) 
epInc(i,4) = dep(i,4) + epo4(i) 

C Update the Plastic Work and Inelastic Energy terms 

PlasticWorkInc(i) = (1.0/2.0) * ( 
(SigOld(i,l) + SigNew(i,l)) * dep(i,l) + 
(SigOld(i,2) + SigNew(i,2)) * dep(i,2) + 
(SigOld(i,3) + SigNew(i,3)) * dep(i,3) + 
2.0 *(SigOld(i,4) + SigNew(i,4)) * dep(i,4)) 

eInelasNew (2) = ernelasold (i) + 
PlasticWorkInc (i) / density(i) 

C Update the Internal Energy terms 

edev(i) = (1.0/2.0) * ( 
(sigold(i.1) + SigNew(i,l)) * eInc(i,l) + 
(SigOld(i,2) + SigNew(i,2)) * eInc(i.2) + 
(SigOld(i,3) + SigNew(i,3)) * eInc(i,3) + 
2.0 *(SigOld(i,4) + SigNew(i,4)) * eInc(i,4)) 

eInternNew(i1 = eInternOld(i) + edev(i) / density(i) 

end do 
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C ndir+nshr = 6 means 3D 

else if (ndir+nshr .eq. 6) then 

if (iFirst .le. 1) then 

end if 
write(6,*) 'Working on solid strength' 

do I=l,nblock 

C Set the el equal to the previous elastic strains 

el(i,l) = eel(i) 
el(i,2) = ee2(i) 
el(i,3) = ee3(i) 
el(i,4) = eel(i) 
el(i,5) = ee5(i) 
el(i,6) = ee6(i) 

do j=1, 6 

epInc(i,j) = 0.0 
rm(i,j) = 0.0 

end do 

C Set the converged flag to 0 (false) 

iconv(i) = 0 

C Set dlamda to zero so that plastic strain starts at zero 

dlamda(i) = 0.0 

C Average normal strain increment - TOTAL, 
C TOTAL means (elastic + plastic and deviator + dilatation) 

eIncAvg(i) = (eInc(i,l) + eInc(i,2) + eInc(i.3)) / 3.0 

C Deviator strain rates 

edot(i,l) = (eInc(i,l) - eIncAvg(i)) / dt 
edot(i,2) = (eInc(i,2) - eIncAvg(i)) / dt 
edot(i,3) = (eInc(i,3) - eIncAvg(i)) / dt 
edot(i,4) = (eInc(i,4) 1 / dt 
edot(i,5) = (eInc(i,5) 1 / dt 
edot(i,6) = (eInc(i,6) 1 / dt 

C equivalent plastic (deviatoric) strain rate 

edt(i) = sqrt ( (2.0/9.0) * ( (edot(i,l) - edot(i,2))**2 
+ (edot(i,2) - edot(i,3))**2 + (edot(i,3) - edot(i,l))**2 
+ 6.0 * (edot(i,4)**2 + edot(i,5)**2 + edot(i,6)**2) ) ) 

C Calculate the old average stress for Johnson-Cook Subroutine 

SbarOld(i) = (SigOld(i,l) + SigOld(i,2) + SigOld(i,3))/3.0 

C Lower bound on strain rate for logarithm operation in flow stress calc 

if ((dt .eq. 1.0) .or. (dt .le. TotalTime)) then 

edt(i) = &ax1 (edt(i) , 0.0001) 
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else 

edt(i) = dmaxl (Oedt(i), 0.0001) 

end if 

end do 

C Compute flow stress - Sallow 
C Send Ebar, 

call JC( nblock, stepTime, totalTime, O P l m ,  
DamOld, Tinit, Troom, Tmelt, Gs, C1, C2, C3, 
C4, C5, C6, Smax, SbarOld, edt, Sallow, 
Tstar, iFirst, Tempo, DelTemp, dt ) 

Converged = .False. 
j = O  

do while (Converged .eq. .False.) 

C Increment counter 

j = j + 1  

do i=l, nblock 

if (iconv(i) .eq. 0 )  then 

C Update the plastic strain increment 

do k = 1, 6 

end do 
epInc(i,k) = epInc(i,k) + dlamda(i) * rm(i,k) 

C equivalent plastic (deviatoric) strain rate 

edt(i) = sqrt((2.0/9.0) * ( 
(epInc ( i ,1) /dt - epInc (i ,2 ) /dt ) **2 

+ (epInc(i,2)/dt - epInc(i,3)/dt)**2 
+ ( epInc ( i ,3 ) / dt - epInc ( i , 1 / dt ) * * 2 
+ 6.O*( (epInc(i,4)/dt)**2 + (epInc(i,5)/dt)**2 
+ (epInc(i,6)/dt)**2) ) ) 

C Lower bound on strain rate for logarithm operation in flow stress calc 

edt(i) = dmaxl (edt(i) , 0.0001) 

C Calculate the effective plastic strain change 

epeff(i) = sqrt(2.0/9.0) 
* Sqrt( ( epInc(i,l) - epInc(i.2) )**2 

+ ( epInc(i,2) - epInc(i,3) ) * * 2  
+ ( epInc(i,3) - epInc(i,l) )**2 
+ 6.0 * (  epInc(i,4)**2 + epInc(i,5)**2 
+ epInc(i,6)**2 1 ) 

C Update the total effective plastic strain 

ebar(i) = ebarOld(i) + epeff(i) 

C Update the elastic strain increment 



C 

C 

C 
C 

C 
C 
C 
C 
C 

C 

C 

C 

Elastic = OldElastic + Total Inc - Plastic 

do k=l, 6 

end do 
ee(i,k) = el(i,k) + eInc(i,k) - epInc(i,k) 

Update the volumetric increment 

dvolInc(i) = ee(i,l) + ee(i,2) + ee(i,3) 

Compute New stresses - For first iteration this is 
my trial stress. 

SigNew(i.1) = cll(i)*ee(i,l) + c12(i)*ee(i,2) 

i) *ee (i, 2 ) 

i) *ee(i, 2) 

+ c13 (i) *ee(i,3) 

+ c23(i)*ee(i,3) 

+ c33 (i) *ee(i,3) 

SigNew(i,2) = c2l(i)*ee 

SigNew(i,3) = c3l(i)*ee 

SigNew(i,4) = c44(i)*ee 
SigNew(i,5) = c55(i)*ee 
SigNew(i, 6) = c66 (i) *ee 

i,l) + c22 

i,l) + c32 

1,4) 
1,5) 
i, 6) 

SbarNew(i) = (SigNew (i, 1) +SigNew(i, 2) +SigNew (i, 3) ) /3.0 
SigTrace(i)= SigNew(i,l)+SigNew(i,2)+SigNew(i,3) 

Reset 92 
Basically if the element is under compression larger than pmax 
then shut off the Gurson model. In addition, if the bulk modulus 
has been modified by the EOS (ie. under compression) then 
shut off the Gurson model. 

if (SigTrace(i) .It. pmax) then 

q2n(i) = abs(Sallow(i) / SigTrace(i)) 

else 

q2n(i) = 92 

end if 

Find the deviatoric Stress 

dsNew(i,l) = SigNew(i.1) - SbarNew(i1 
dsNew(i,2) = SigNew(i,2) - SbarNew(i) 
dsNew(i,3) = SigNew(i,3) - SbarNew(i) 
dsNew(i,4) = SigNew(i,4) 
dsNew(i,5) = SigNew(i,5) 
dsNew(i,6) = SigNew(i,6) 

Calculate the Equivalent stress from the deviatoric stress 

dsEquiv(i) = Sqrt((l.0/2.0) * ( (dsNew(i.1) 
- dsNew(i,2) )**2 + (dsNew(i,2) 
- dsNew(i,3) )**2 + (dsNew(i,3) 
- dsNew(i,l))**2 + 6.0 * (dsNew(i,4)**2 
+ dsNew(i,5)**2 + dsNew(i,6)**2) ) ) 

Equivalent stress 

vmises(i) = sqrt( (1./2.) * ((sigNew(i,l) 



- sigNew(i,2)) **2 + (sigNew(i,2) 
- sigNew(i,3))**2 + (sigNew(i,3) 
- sigNew(i,l))**2 + 6.0 * (sigNew(i,4)**2 
+ sigNew(i,5)**2 + sigNew(i,6)**2 ) 

end if 
end do 

do i=l, nblock 
if (DamOld(i) .ge. 1.0) then 

endi f 
iconv(i) = 1 

end do 

do i=l, nblock 

if (iconv(i) .eq. 0 )  then 

C Determine the Tangent of the Flow Surface 

if ( (dt .eq. 1.0) .or. 
(dt .eq. TotalTime) ) then 

TanMod(i) = Sallow(i) / (edt (i) *dt) 

else if (abs (Sallow (i) -Sallow0 (i) ) .It. 0.1 ) then 

TanMod(i) = 0.0 

else if (epeff(i) .eq. 0.01 then 

TanMod 

else 

TanMod 

end if 

TanMod ( i) 

i) = 0.0 

i) = (Sallow(i) - SallowO(i)) / epeff(i) 

= dminl(TanMod(i), 0.001) 

C Evaluate yield function in a non-dimensional form 

VoidY(i) = (2.0 * ql * Voidf(i) * 
Cosh(q2n(i) * SigTrace(i) / ( 2.0 
* Sallow(i) ) ) )  - (1.0 + 93 * Voidf(i)**2) 

yf (i) = (dsEquiv(i)/Sallow(i) )**2 + VoidY(i) 

C Elastic stress Only and set elastic strains to total strains 

if ( ( (yf(i) .It. 0.0) .and. ( j  .eq. 1)) 
.or. (dt .eq. 1.0) ) then 

iconv(i) = 1 

C Plastic Stress and Converged 

else if (abs(yf (i) ) .It. ctol) then 

iconv(i) = 1 

else 



C Calculate the Mtensor 

vcl = (ql * VoidF(i)/Sallow(i)) * Sinh(q2n(i) 

vc2 = 1.0 / Sallow(i)**2 
* SigTrace(i) / (2.0 * Sallow(i)) ) 

rm(i, 1) = vc2 * (3. *SigNew (i, 1) -SigTrace (i) ) +vcl 
rm(i,21 = vc2 * (3.*SigNew(i,2)-SigTrace(i))+vcl 
rm(i,3) = vc2 * (3.*SigNew(i,3)-SigTrace(i))+vcl 
rm(i,4) = vc2 * (3.*SigNew(i,4)) 
rm(i,5) = vc2 * (3.*SigNew(i,S)) 
rm(i,6) = vc2 * (3.*SigNew(i,6)) 

const = (VoidF(i) * TanOld(i) * ql * SigTrace(i) 
/ Sallow(i)**2) * Sinh(q2n(i)*SigTrace(i) / 
(2.0*Sallow(i))) 

xpsil(i) = -2.0 * TanOld(i)/Sallow(i)**3 * 
(1.5 * (SigNew(i,l)**2 + SigNew(i,2)**2 + 
SigNew(i,3)**2 + 2.0 * (SigNew(i,4)**2 + 
SigNew(i,5)**2 + SigNew(i,6)**2 ) ) - 0.5 
* SigTrace(i)**2) - const 

xpsi2 (i) = 2. *ql*Cosh (q2n (i) * SigTrace (i) / 
(2.0*~allow(i))) - 2.0 * q2n(i) * voidF(i) 

hl(i) = Sqrt((2.0/3.0) * (rm(i,l)**2 + nn(i,2)**2 
+ rm(i,3)**2 + 2.0 * (rm(i,4)**2 + 
rm(i,5)**2 + rm(i,6)**2 ) ) ) 

h2(i) = (1.0 - VoidF(i)) * 
(rm(i,l) + rm(i,2) + rm(i,3)) 

C Compute delta - lamda 

C 

ct = cll(i) * (rm(i,l)**2 + rm(i,2)**2 + 
rm(i,3)**2) + 4.* (c44(i)*rm(i,4)**2 + 
c55(i)*rm(i,5)**2 + c66 (i)*nn(i,6) **2)+ 
2.*c12(i) * (rm(i,l)*rm(i,2) + 
nn(i,l)*rm(i,3) + rm(i,2)*rm(i,3)) 

denom = ct - xpsil(i)*hl(i) - xpsi2(i)*h2(i) 

if ( denom. eq - 0 . 0  ) then 
write(6,") 'stop denom is 0' 
stop 

end if 

dlamda(i) = yf(i) / denom 

if ((denom .It. O.O).and.(j.gt.2)) then 
write(6,*) ' * *  Need to Change dlamda' 
stop 

end if 

end if 

if ((j .gt. 5) .and. (j .lt. 10000)) then 

else if (j .eq. 10000) then 
write(6,*) yf (i), const, VoidY(i), dlamda(i1, j 

write(6,") 'J exceed maximum, STOP' 
write(6,*) yf (i), const, VoidY(i), dlamda(i1, j 
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write (6, * )  ' 
write(6,*) 'Consider reducing the time step' 
write (6, * )  ' 
STOP 

end if 
end if 

end do 

Check for complete convergence 

Converged = .True. 

do i=l, nblock 

if (iconv(i) .eq. 0 )  then 
Converged = .False. 

end if 

end do 

end do 

do i=l, nblock 

Set dep to the plastic strain increment 

do k=l, 6 

end do 
dep(i,k) = epInc(i,k) 

Update the new plastic strain 

epInc 
epInc 
epInc 
epInc 
epInc 
epInc 

i,l) = dep 
i,2) = dep 
i.3) = dep 
i,4) = dep 
i,5) = dep 
i.6) = dep 

i,l) + epol(i) 
i,2) + epo2(i) 
i,3) + epo3(i) 
i,4) + epo4(i) 
i,5) + epo5(i) 
i,6) + epo6(i) 

Update the Plastic Work and Inelastic Energy terms 

PlasticWorkInc(i) = (1.0/2.0) * ( 
(SigOld(i,l) + SigNew(i,l)) * dep(i,l) + 
(SigOld(i,2) + SigNew(i,2)) * dep(i,2) + 
(SigOld(i,3) + SigNew(i,3)) * dep(i,3) + 
2.0 *(SigOld(i,4) + SigNew(i.4)) * dep(i,4) + 
2.0 *(SigOld(i,5) + SigNew(i,S)) * dep(i,5) + 
2.0 *(SigOld(i,6) + SigNew(i,6)) * dep(i,6)) 

eInelasNew(i) = eInelasOld(i1 + 
PlasticWorkInc (i) / density(i) 

Update the Internal Energy terms 

edev(i) = (1.0/2.0) * ( 
(SigOld(i,l) + SigNew(i,l)) * eInc(i,l) + 
(SigOld(i,2) + SigNew(i,2)) * eInc(i,2) + 
(SigOld(i,3) + SigNew(i,3)) * eInc(i,3) + 
2.0 *(SigOld(i,4) + SigNew(i,4)) * eInc(i,4) + 
2.0 *(SigOld(i,5) + SigNew(i,S)) * eInc(i,5) + 
2.0 *(SigOld(i,6) + SigNew(i,6)) * eInc(i,6)) 

eInternNew(i) = eInternOld(i1 + edev(i) / density(i) 



end do 

else 
write(6,*) 'No Strength Model' 
stop 

end if 

C Update the total temperature of the model 

do i=l, nblock 

TempN(i) = Tinit + eInelasNew(i) / SpHeat 
+ ShockTemp (i) 

C Compute the equivalent Flow Stress for Void Model 

PlastEM(i) = PlasticWorkInc (i) / 
( Sallow(i) * (1.0 - Voidf(i)) ) 

C Calculate the trace of the plastic strain rate tensor 
C as required for the Void Model 

Epdot(i) = dep(i,l) + dep(i,2) + dep(i,3) 

end do 

do i=l, nblock 

StateS(i) = edt(i) ! Don't Change 

! Don't Change 
! Don't Change 

State6 (i) = vmises (i) 

State7 (i) = ebar(i) 
State8(i) = edev(i) 

State9 (i) = density(i) 
State10 (i) = TanMod(i) 
Statell(i) = Sallow(i) 

State12 (i) = epeff (i) 
State13 (i) = ebar (i) /dt 

StatelB(i1 = yf (i) 

c PlasticWorkInc = Sallow(i) * PlastEM(i) 

State15 (i) = PlasticWorkInc (i) 
State16 (i) = eInternNew(i) 

State17 (i) = VoidY(i) 

State18 (i) = DelTemp(i) 
State19 (i) = eInelasNew(i1 

if (dt .ne. 1.0) then 

end if 

StateZl(i) = TempN(i) ! Don't 

State2O(i) = OPlEm(i) + PlastEM(i1 

! Plastic E / mass 

! Yield Function Mod 

! PEEQ from ABAQUS 

Change 

State22(i) = epInc(i,l) ! Don' t Change 
State23(i) = epInc(i,2) ! Don't Change 
State24(i) = epInc(i,3) ! Don't Change 
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StateZ5(i) = epInc(i,4) ! Don't Change 
State26(i) = epInc(i,5) ! Don't Change 
State27(i) = epInc(i,6) ! Don't Change 

State28(i) = ee(i,l) 
State29(i) = ee(i,2) 
~tate30(i) = ee(i,3) 
State31 
State32 
State33 

State34 
State35 
State36 
State37 
State38 

i) = ee(i,4) 
i) = ee(i,5) 
i) = ee(i.6) 

! Don't Change 
! Don't Change 
! Don't Change 
! Don't Change 
! Don't Change 
! Don't Change 

i) = VoidF(i) 
i) = SigTrace(i)/3.0 ! Pressure 
i) = SbarNew(i) ! Don't Change 
i) = dsEquiv(i) 
i) = eInelasNew(i) * density(i)! Plastic E / Volume ! PENER 

State39(i) = eInternNew(i) * density(i) 
State4O(i) = SigTrace(i) / Sallow(i) 

C SDV51-SDV54 Required For Void Model 

State51 (i) = Epdot (i) 
State52 (i) = PlastEM(i) 
State53(i) = Cosh(qZn(i) * SigTrace(i) / ( 2.0 * Sallow(i) ) )  
State54(i) = q2n(i) ! Don't Change 
State55(i) = SigTrace(i) ! Don't Change 

end do 

if (iFirst .le. 1) then 

end if 
write(6,*) 'End of stress returning to main' 

return 
end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 
C SUBROUTINE Von-Mises 
C 
C This subroutine calculates the stresses, strains, energies, and 
C temperatures at each material point 
C 
C Rick Martineau 
C Written: 10/10/96 
C Modified: 11/20/96 Include shock effects on Bulk and Temp. 
C Modified: 01/20/97 Converted to Cutting Plane Method to 
C allow more general yield function 
C 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine VonMises( nblock, ndir, nshr, dt, stepTime, totalTime, 
. density, eInc, SigOld, SigNew, eInternOld, eInternNew, 
. eInelasOld, eInelasNew, ebarold, ebar, dvolOld, dvol, DamOld, 
. Dam, Oedt, State5, State6, State7, State8, State9, StatelO, 
. SallowO, Statell, Statela, Statel3, Statel4, Statel5, Statel6, 
. Statel7, Statel8, Statel9, OPlEm, StateZO, Tempo, State21, 
. epol, State22, epo2, State23, epo3, State24, epo4, State25, 
. epo5, State26, epo6, State27, eel, State28, ee2, State29, ee3, 
. State30, ee4, State31, ee5, State32, ee6, State33, State34, 
. State35, State36, State37, State38, State39, V o i d F ,  State45, 
. State46, State51, State52, State53, State54, State55, 
. ShockTemp, 



. DenO, SpHeat, Tinit, Troom, Tmelt, Gs, C1, C2, C3, C4, C5, C6, 

. Smax, dsNew, sbarOld, dvdot, u, edt, Tstar, edev, Bulk) 

include 'vabaqaram.inc' 

dimension density(nblock), eInc(nblock,ndir+nshr), 
. sigold(nblock,ndir+nshr), sigNew(nblock,ndir+nshr) , 
. eInternOld(nb1ock) , eInternNew (nblock) , Dam(nb1ock) , 
. eInelasOld(nblock), eInelasNew(nblock), ebarOld(nblock), 
. ebar(nb1ock) , dvolOld(nb1ock) , dvol (nblock) , DamOld(nb1ock) , 
. Temp0 (nblock) , TempN (nblock) , ShockTemp (nblock) , 
. Oedt (nblock) , VoidF (nblock) , OPlEm(nb1ock) 

dimension State5 (nblock) , State6 (nblock) , 
. State7 (nblock) , State8 (nblock) , State9 (nblock) , 
. State10 (nblock) , Statell (nblock) , State12 (nblock) , 
. State13 (nblock) , State14 (nblock) , State15 (nblock) , 
. State16 (nblock) , State17 (nblock) , State18 (nblock) , 
. State19 (nblock) , State20 (nblock) , State21 (nblock) , 
. State22 (nblock), State23 (nblock) , State24 (nblock), 
. State25 (nblock) , State26 (nblock) , State27 (nblock) , 
. State28 (nblock) , State29 (nblock) , State30 (nblock) , 
. State31 (nblock) , State32 (nblock) , State33 (nblock) , 
. State34 (nblock) , State35 (nblock) , State36 (nblock) , 
. State37 (nblock) , State38 (nblock) , State39 (nblock) 

dimension State45 (nblock) , State46 (nblock) , State51 (nblock) , 
. State52 (nblock) , State53 (nblock) , State54 (nblock) , 
. State55 (nblock) , eel (nblock) , ee2 (nblock) , ee3 (nblock) , 
. ee4 (nblock) , ee5 (nblock) , ee6 (nblock) , Epol (nblock) , 
. Ep02 (nblock) , Epo3 (nblock) , Epo4 (nblock) , Epo5 (nblock) , 
. Ep06 (nblock) , OldPE (nblock) 

data iFirst/o/ 

dimension dsNew(nblock,6),sbarOld(nblock),dvdot(nblock), 
. dvbar (nblock) , dvolInc (nblock) , eIncAvg (nblock) , 
. edt (nblock) , edot (nblock, 6), edev(nb1ock) , 
. Bulk(nb1ock) , Yfunc (nblock), 
. TanMod (nblock) , ElasMod (nblock) 

dimension factor (nblock) , vmises (nblock) , Sallow (nblock) , 
. DelTemp (nblock) , Tstar (nblock) , PlastEM(nb1ock) , 
. PlasticWorkInc (nblock) , Sallow0 (nblock) , 
. Epdot (nblock) , dsEquiv(nb1ock) 

dimension et (nblock, 6) , epef f (nblock) , SigTrace (nblock) , 
. rm(6), ee (nblock, 6), epInc (nblock, 6), el (nblock, 6) , 
. ebarInc (nblock) , yf (nblock) , SbarNew (nblock) , 
. dep (nblock, 6) , etotal (nblock, 6) 

real const, yf, yfc, dlamda, dlamdac, smean, yfp 

C cycle counter and formats for debugging 

?First = iFirst + 1 

C Set dlamda to a very small number 

epsilon = 1.OE-08 

C Set the convergence tolerance to a small number 



ctol = 0.0001 

C 

C 

C 

C 
C 
C 
C 

C 

C 

C 
C 

C 

The strain hardening exponent must be positive 

if (C3 .le. 0.0) then 
write(6,") 'ERROR STOP because c3 must be > 0.0' 
stop 

endi f 

do i=l, nblock 

dvolInc(i) = eInc(i,l) + eInc(i,2) + eInc(i,3) 
dvol(i) = dvolold(i) + dvolInc(i) 
dvdot(i) = dvolInc(i) /dt 
dvbar(i) = dvol(i) - dvdot(i) * dt / 2.0 

Compute the Elastic Modulus 

ElasMod(i) = 9.0 * Bulk(i) * Gs / (3.0 * Bulk(i) + G s )  

end do 

if (iFirst .le. 1) then 

end if 
write(6,*) 'Working on strength model' 

ndir+nshr = 4 means 2 D  

if (ndir+nshr .eq. 4) then 

if (iFirst .le. 1) then 

end if 
write(6,") 'Working on axisymmetric strength' 

Do not have element geometry and nodal velocities, so cannot 
compute total strain rates directly. But do have strain 
increment (einc). I think this is TOTAL strain increment. 
Assumes einc has geometry correction if required (<e axisymmetric). 

do I=l,nblock 

Set the el equal to the previous elastic strains 

el(i,l) = eel(i) 
el(i,2) = ee2(i) 
el(i,3) = ee3(i) 
el(i,4) = ee4(i) 

Find the total strain 

do j=1, 4 

end do 
etotal(i, j )  = elfi, j )  + eInc(i, j )  

Average normal strain increment - TOTAL 
TOTAL means (elastic + plastic and deviator + dilatation) 

eIncAvg(i) = (eInc(i.1) + eInc(i 

Deviator strain rates 

edot(i,l) = (eInc(i,l) - eIncAvg 
edot(i,2) = (eInc(i,Z) - eIncAvg 

2) + eInc(i,3)) / 3.0 



edot(i,3) = (eInc(i,3) - eIncAvg(i)) / dt 
edot(i,4) = (eInc(i,4) ) / dt 

C equivalent plastic (deviatoric) strain rate 

edt(i) = sqrt ( ( 2 . 0 / 9 . 0 )  * ( (edot(i,l) - edot(i,2))**2 
+ (edot(i,Z) - edot(i,3))**2 + (edot(i,3) - edot(i,l))**2 
+ 6.0 * edot(i,4)**2 ) ) 

C Lower bound on strain rate for logarithm operation in flow stress calc 

edt(i) = dmaxl (edt(i1, 0 . 0 0 0 1 )  

C Calculate the old average stress for Johnson-Cook Subroutine 

sbarOld(i) = (sigOld(i,l) + sigOld(i.2) + sigOld(i,3))/3.0 

C Set edot inc to ebar from the last increment. This is necessary 
C to correctly calculate the total increment in plastic strain 

ebarInc(i) = ebarOld(i) 

end do 

C Compute flow stress - Sallow 

call JC( nblock, stepTime, totalTime, ebarOld, 
DamOld, Tinit, Troom, Tmelt, Gs, C1, C2, C3, 
C4, C5, C6, Smax, sbarold, edt, Sallow, 
Tstar, iFirst, Tempo, DelTemp, dt ) 

do i = l ,  nblock 

C Iteration Loop to find the plastic strains using 
C the cutting plane algorithm 

Converged = .False. 
j = O  
dlamdal = epsilon 
dlamda = 0.0 
dlamdac = 0.0 

do k = l ,  6 

end do 
epInc(i,k) = 0 . 0  

do while (Converged .eq. .False.) 

C Increment counter 

j = j + l  

C Update the plastic strain increment 

do k = 1, 4 

end do 
epInc(i,k) = epInc(i,k) + dlamdac * rm(k) 

C Calculate the effective plastic strain change 

epeff(i) = Sqrt(2.0/9.0) 
* Sqrt( ( epInc(i,l) - epInc(i,2) ) * * 2  

+ ( epInc(i,2) - epInc(i,3) ) * * 2  
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C 

C 

C 

C 

C 

C 

C 

C 

C 

+ ( epInc(i,3) - epInc(i,l) )**2 
+ 6.0 * (  epInc(i,4)**2 ) ) 

Update the total effective plastic strain 

ebar(i) = ebarOld(i) + epeff(i) 

Update the elastic strain increment 

do k=l, 4 

end do 
ee(i,k) = el(i,k) + eInc(i,k) - epInc(i,k) 

Update the volumetric increment 

dvolInc(i) = ee(i,l) + ee(i,2) + ee(i,3) 

Compute New stresses 

sigNew (i , 1) = (Bulk (i) - (2. /3. ) *Gs) 

sigNew ( i ,2 ) = (Bulk (i) - (2 . /3. ) *Gs) 

sigNew(i, 3) = (Bulk(i)- (2. /3.) *Gs) 

sigNew(i,4) = 2.0 * Gs * ee(i,4) 
SbarNew (i) = (SigNew (i, 1) +SigNew (i, 2) +SigNew (i, 3) ) /3.0 
SigTrace (i) =sigNew (i, 1) +sigNew (i, 2) +sigNew (i, 3) 

* dvolInc(i) + 2.0 * Gs * ee(i,l) 

* dvolInc(i) + 2.0 * Gs * ee(i,2) 

* dvolInc(i) + 2.0 * Gs * ee(i,3) 

Find the deviatoric Stress 

dsNew ( i , 1 ) = S igNew ( i , 1 ) - ( 1 . 0 / 3 . 0 ) * S igTrace ( i ) 
dsNew (i, 2) = SigNew (i, 2) - (1.0/3.0) *SigTrace (i) 
dsNew (i, 3 ) = SigNew (i, 3 ) - (1.0/3.0) *SigTrace (i) 
dsNew(i,4) = SigNew(i,4) 

Calculate the Equivalent stress from the deviatoric stress 

dsEquiv(i) = Sqrt((l.0/2.0) * ( (dsNew(i,l) 
- dsNew(i,2))**2 + (dsNew(i,2) - dsNew(i,3))**2 
+ (dsNew(i,3) - dsNew(i,l))**2 + 
6.0 * dsNew(i,4)**2) 

Equivalent stress - Mendelson p. 102 

vmises(i) = sqrt( (1./2.) * (((sigNew(i,l) 
- sigNew(i,2))**2 + (sigNew(i,2) 
- sigNew(i,3))**2 + (sigNew(i,3) 
- sigNew(i,l))**2 + 6.0 * sigNew(i,4)**2))) 

Evaluate yield function in a non-dimensional form 

yf (i) = dsEquiv(i)/Sallow(i) - 1.0 

Elastic stress Only and set elastic strains to total strains 

if ( ( (yf(i) .It. 0 . 0 )  .and. (j .eq. 1)) 
.or. (dt .eq. 1.0) ) then 

Converged = .True. 
yf(i) = 0.0 
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C Plastic Stress and Converged 

else if (abs(yf(i)) .It. ctol) then 

Converged = .True. 

else if (j .eq. 1) then 

Converged = .False. 

yfc = yf(i) 
dlamdac = dlamdal 

else if (j .gt. 1) then 

dlamdap = dlamdac 
yfp = yfc 
yfc = yf(i) 

if (yfp - yfc .ne. 0.0) then 

end if 
dlamdac = (yfc * dlamdap) / (YfP - Yfc) 

end if 

if ( ( j  .gt. 10) .and. (j .It. 100)) then 
write(6,*) yf (i), const, dlamdac, j 

else if ( j  .eq. 100) then 
write(6,*) ‘J exceed maximum, STOP’ 
write(6, * )  yf (i) , const, dlamdac, j 
STOP 

end if 

C Calculate the Mtensor which is the deviatoric stress divided by the 
C magnitude of the equivalent stress 

smean = (1.0/3.0) * (SigNew (i, 1) +SigNew (i, 2) +SigNew (i, 3) ) 

if (vmises(i) .ne. 0.0) then 

rm(1) = (SigNew(i,l) - smean) / (vmises(i)/Sqrt(3.0/2.0)) 
rm(2) = (SigNew(i,2) - smean) / (vmises(i)/Sqrt(3.0/2.0)) 
rm(3) = (SigNew(i,3) - smean) / (vmises(i)/Sqrt(3.-0/2.0)) 
m ( 4 )  = SigNew(i,4) / (vmises(i) /Sqrt(3.0/2.0)) 

end if 

end do 

end do 

do i=l, &lock 

C Set dep to the plastic strain increment 

dep(i,l) = epInc(i,l) 
dep(i.2) = epInc(i.2) 
dep(i.3) = epInc(i,3) 
dep(i,4) = epInc(i,4) 

C Update the new plastic strain 

epInc(i,l) = dep(i,l) + epol(i) 
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C 

C 

C 

C 
C 

C 

C 

c 

epInc(i,2) = dep(i,2) + epo2(i) 
epInc(i,3) = dep(i,3) + ep03(i) 
epInc(i,4) = dep(i,4) + epo4(i) 

ebarInc(i) = ebar(i) - ebarInc(i) 

Update the Plastic Work and Inelastic Energy terms 

PlasticWorkInc(i) = dsEquiv(i) * (ebar(i) - ebarOld(i)) 

eInelasNew (i) = eInelasOld ( i) + 
PlasticWorkInc (i) / density(i) 

Update the Internal Energy terms 

edev(i) = (1.0/2.0) * ( 
(SigOld(i,l) + SigNew(i,l)) * eInc(i,l) + 
(SigOld(i,2) + SigNew(i.2)) * eInc(i,2) + 

+ 
i,4) 1 

density (i) 

(SigOld(i,3) + SigNew(i.3)) * eInc(i,3) 
2.0 *(SigOld(i,4) + SigNew(i,4)) * eInc 

eInternNew(i) = eInternOld(i) + edev(i) / 

end do 

else 
write(6,*) 'MAJOR ERROR NO STRENGTH MODEL' 
stop 

end if 

Update the total temperature of the model 

do i=l, nblock 

TempN(i) = Tinit + eInelasNew(i) / SpHeat 
+ ShockTemp (i ) 

Calculate the trace of the plastic strain rate tensor 
as required for the Void Model 

Epdot(i) = dep(i,l) + dep(i.2) i dep(i,3) 

if (Epdot(i) .It. 0 .0 )  Epdot(i) = 0.0 

Compute the equivalent Flow Stress for Void Model 

PlastEM(i) = PlasticWorkInc (i) / Sallow(i) 

if (PlastEM(i) .It. 0.0) PlastEM(i) = 0.0 

end do 

do i=l. nblock 

~tateS(i) = edt(i) 
State6 (i) = vmises (i) 

State7(i) = ebar(i) 
State8(i) = edev(i) 

State9 (i) = density (i) 
StatelO(i) = 
Statell (i) = Sallow (i) 

! Don't Change 

! PEEQ 

! Don't Change 
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State12 (i) 
State13 (i) 

State14 (i) 

C PlasticWorkInc = 

State15 (i) 
State16 (i) 

State17 (i) 

State18 (i) 
State19 (i) 

= ebar(i)-ebarOld(i) 
= ebar(i)/dt 

= yf(i) 

Sallow(<) * PlastEM(i) 

= PlasticWorkInc (i) 
= eInternNew(i) 

= VoidF(i) 

= DelTemp(i) 
= eInelasNew (i) 

! Plastic E / mass 

! VoidY 

C 

State2O(i) = OPlEm 

State2l(i) = TempN 

State22(i) = epInc 
State23(i) = epInc 
State24(i) = epInc 
State25(i) = epInc 
State26 
State27 

State28 
State29 
State3 0 
State31 
State32 
State33 

i) + PlastEM(i) ! PEEQ /w voids 

i) ! Don't Change 

! Don't Change 
! Don't Change 
! Don't Change 
! Don't Change 

i) = epInc(i,5) 
i) = epInc(i,6) 

i) = ee(i,l) 
i) = ee(i,2) 
i) = ee(i,3) 
i) = ee(i,4) 
i) = ee(i,5) 
i) = ee(i,6) 

! Don't Change 
! Don't Change 

! Don't Change 
! Don' t Change 
! Don't Change 
! Don't Change 
! Don't Change 
! Don't Change 

State34(i) = 
S tate3 5 ( i ) = SigTrace ( i ) / 3 . 0 ! Pressure 
State36 (i) = SbarNew(i) 
State37 (i) = dsEquiv(i) 
State38(i) = eInelasNew(i) * density(i)! Plastic E / Volume !PENER 
State39 (i) = eInternNew(i) * density(i1 

C SDV51-SDV54 Required For Void Model 

State51 (i) = Epdot (2) 

State52 (i) = PlastEM(i) 

C 
C 
C 

State52 
State53 
State54 
State55 

end do 

if (iFirst 

i) = 0.0 
i) = 
i) = 
i) = SigTrace(i) 

.le. 1) then 
write(6,*) 'End. of stress returning to main' 

end if 

return 
end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C SUBROUTINE JOHNSON-COOK 
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C 
C This subroutine calculates the flow stress based on the Johnson-Cook 
C strength model. It accounts for strain rate and temperature. 
C In addition, the capability to account for failure is include in 
C this subroutine. 
C 
C Rick Martineau 
C Written: 10/10/96 
C Modified: 
C 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine JC( nblock, stepTime, totalTime, ebarOld, 
. DamOld, Tinit, Troom, Tmelt, G s ,  C1, C2, C3, C4, C5, 
. C6, Smax, sbarold, edot, Sallow, Tstar, iFirst, TempO, 
. DelTemp, dt ) 

include 'vabagaram.inc' 

dimension ebarOld (nblock) , DamOld (nblock) , TempO (nblock) 
. Sallow (nblock) , Tstar (nblock) , edot (nblock) , 
. DelTemp (nblock) , sbarOld(nb1ock) 

901 format (i5, 8e10.3) 
904 format (8e10.3, i3) 

do i=l, nblock 

end do 
DelTemp(i) = TempO(i) - Tinit 

if (TotalTime .eq. dt) then 

DelTemp(i) = 0.0 
do i=l, nblock 

end do 
end if 

C Compute flow stress - Sallow 

do i=l, nblock 

C Homologous temperature 
C The temperature rise above Troom (ambient) divided by (Tmelt - Troom) 
C Tstar is limited to values between 0.0 and 1.0 

C Johnson-Cook flow stress - strain and strain-rate terms 

Sallow(i) = (Cl + C2 * ebarOld(i)**C3) 
* (1.0 + C4* dlog(edot(i) ) 1 

C Johnson-Cook flow stress - thermal softening term 

if (C5 .gt. 0 . 0 )  then 

endi f 
Sallow(i) = Sallow(i) * (1.0 - Tstar(i)**C5) 

C Johnson-Cook flow stress - pressure hardening term 

if (C6 .gt. 0.0) then 
Sallow(i) = Sallow(i) + (-sbarOld(i) * C6) 



endi f 

C Johnson-Cook flow stress limited to Smax 
C If Smax=O.O, then flow stress has no upper limit. 

if (&ax .gt. 0 . 0 )  then 

endi f 
Sallow(i) = dminl (Sallow(i), Smax) 

C Zero flow stress if fractured element 

if (DamOld(i) .ge. 1.0) then 

endi f 
Sallow(i) = 0.0 

C Set Johnson-Cook flow stress to a positive value 

Sallow(i) = dmaxl (Sallow(i), 0.0) 

C if data check increment, then set Sallow = Gs (shear modulus) 
C so will give elastic response. This is required so ABAQUS will 
C compute the initial time increment properly. 

if (iFirst .le. 1) then 

if ( (stepTime .eq. 1.0) 
.and. (totalTime .eq. 1.0) ) then 

Sallow(i) = Gs 
endif 

endi f 

end do 

return 
end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C SUBROUTINE EOS 

C 

" .  

" 

C 

C Note - this routine is the same for lD, 2D. and 3D and shell elements 
C 
C This subroutine calculates the temperature rise as a result of the 
C shock. In addition, it also calculates the change in the bulk 
C modulus as are result of the shock. 
C 
C Rick Martineau 
C Written: 11/20/96 
C Modified: 
C 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C123456789012345678901234567890123456789012345678901234567890123456789 

subroutine EOS(  nblock, dt, ndir, nshr, DenO, density, 
. einc, dvolOld, Bulk, S, Co, grun0, Vis, SpHt, BulkNew, 
. State61, State62, State63, State64, State65, State66, 
. State67, State68, State69, Tempo, TempN, CharL) 
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include ‘vabaqaram.inc’ 

dimension density(nblock), einc(nblock,ndir+nshr), 
. State61 (nblock) , State62 (nblock) , State63 (nblock) , 
. State64 (nblock) , State65 (nblock) , State66 (nblock) , 
. State67 (nblock) , State68 (nblock) , State69 (nblock) , 
. TempO(nb1ock) , TempN(nb1ock) , dvolOld(nb1ock) , 
. CharL (nblock) 

dimension u (nblock) , dvolInc (nblock) , Up (nblock) , 
. Us (nblock) , ShockTemp (nblock) , VisPress (nblock) , 
. factor(nb1ock) , Ph(nb1ock) , BulkNew(nb1ock) , 
. Ptemp (nblock) 

C Volumetric strain increment is the trace of the strain tensor. 
C This is a small strain approximation 

do i=l,nblock 

u(i) = -1.0 * dvolOld(i) 

else 

u(i) = -1.0 * ( dvolOld(i) + dvolInc(i) ) 

end if 

C Calculate the particle velocity, shock 
C and Hugoniot pressure 

Up(i) = Co * u(i) / (1.0 - S * u 
Us(i) = Co + S * Up(i) 
Ph(i) = (DenO * (C0**2) * u(i)) 

/ (1.0 - S * u(i))**2 

velocity , 

i) 1 

C If particle velocity is positive then find the new bulk modulus and temp 

if (Up(i) .gt. 0 .0 )  then 

C Compute the Bulk Modulus Factor and new bulk modulus 

factor(i) = (1.0 + u(i)*S) / (1.0 - S*u(i))**3 

C Compute the new bulk modulus based on the factor above 

BulkNew(i) = Bulk * factor(i) 

C Compute the Viscosity Pressure - ABAQUS exclusive 

VisPress (i) = (density(i) * (Vis * CharL (i) * u (i) ) **2) 

C Compute the temperature rise associated with the shock and 
C and the plastic work 

PTemp(i) = TempO(i) * grunO * u(i) 

ShockTemp(i) = PTemp(i) + ( VisPress(i) * u(i) ) 
/ ( DenO * SpHt ) 



else 

VisPress(i) = 0.0 
ShockTemp(i) = 0.0 
BulkJ!?ew(i) = Bulk 

end if 

end do 

C Update state variables 

do i=l,nblock 

State6l(i) = ( VisPress(i) * u(i) ) / ( Den0 * SpHt ) 
State62 
State63 
State64 
State65 
State66 
State67 
State68 
State69 

end do 

return 
end 

i) = BulkNew(i) 
i) = ShockTemp(i) 
i) = Up(i) 
i) = Us(i) 
i) = Ph(i) 
i) = u(i) 
i) = DenO/density(i) 
i) = 1.0 - u(i) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 
C SUBROUTINE Void 
C 
C 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine void(nblock, dt, ndir, nshr, stepTime, totalTime, 
. density, einc, stress, Sflow, Statell, VfractOld, State42, 
. State43, State44, State45, State46, State47, State48, 
. State49, StateSO, TraceEdot, PlasticEM, TotalPlEm, 
. q2n, SigTrace, VoidGold, VoidNold, 
. Gs, Sn, Fn, En, 91, 92, 93, fF, fC, vFractinit, 
. w i n ,  pmax, ivNuc, ivRand) 

include 'vabaqaram.inc' 

dimension density(nblock), einc(nblock,ndir+nshr), 
. stress (nblock,ndir+nshr) , Sflow(nb1ock) , State41 (&lock) , 
. State42(nblock), State43(nblock), State44(nblock), 
. State45 (nblock) , State46 (nblock) , State47 (nblock) , 
. State48 (nblock) , State49 (nblock) , State50 (nblock) , 
. PlasticEM(nblock), TraceEdot(nblock), 
. VfractOld(nb1ock) , SigTrace (nblock) , q2n (nblock) , 
. VoidNold(nb1ock) , VoidGold (nblock) , TotalPlEm(nb1ock) 

data iFirst/O/ 

dimension dvdot (nblock), sbar (nblock) , dvbar (nblock) , 
. edot (rblock) , sdevl (nblock) , sdev2 (&lock), 
. sdev3 (nblock) , sdev4 (nblock) , sdev5 (nblock) , 
. sdev6 (nblock) , vmises (nblock) , const (nblock) 



dimension eqivplasticE(nblock), VfractNew(nblock), 
vgrowth (nblock) , vnuc (nblock) , press (nblock) , 
temp (nblock) 

rea1*8 r, rand 

901 format (10i10) 
902 format (8f15.5) 
903 format (8e15.6) 

C 

C 
C 

C 

C 

C 

C 

C 

constants 

onethd = 1.0/3.0 
twothds = 2.0 * onethd 
twoPi = 6.28318530718 
epslon = 1.0e-10 

Determine the void volume fraction at which there is a complete 
loss of stress carrying capacity in the material 

fFbar = ( ql + Sqrt(ql**2 - 93) ) / 93 

dt = 1.0 indicates that we are in the packager 

if (dt .eq. 1.0) then 

endif 
got0 1000 

Compute the new void volume fractions 

do i=l, nblock 

Compute the void growth rate based on old void volume fraction 

vgrowth(i) = ( 1.0 - VfractOld(i)) * TraceEdot(i) 

Compute the void nucleation rate 

if (iVNuc .eq. 1) then 

const(i) = (Fn / (Sn * Sqrt(twoPi))) * Exp((-1.0/2.0) 
* ( (TotalPlEm(i) - En)/Sn ) * * a  ) 

vnuc(i) = const(i) * PlasticEM(i) 

else 

vnuc(i) = 0.0 

end if 

Compute the total void volume fraction 

if ((q2n(i) .eq. q2) .and. (vgrowth(i) .gt. 0 . 0 ) )  then 

temp(i) = VfractOld(i) + (vnucfi) + vgrowth(i)) 

else 

temp(i) = VfractOld(i) 

end if 
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end do 

do i=l, nblock 

C Compute the vfract - Volumetric Void Fraction 

if (temp(i) .ge. fF) then 

VfractNew(i) = fFbar 

else if ( (temp(i) .gt. fC) .and. (temp(i) .It. fF) ) then 

VfractNew(i) = fC + ((fFbar - FC)/(fF - Fc)) 
* (temp(i) - fc) 

else if (temp(i) .le. fC) then 

VfractNew(i1 = temp(i) 

end if 

C Verify that Vfractnew is not less than zero and the element is in 
C tension. This is done to avoid the shock wave effects. 

if (VfractNew(i) .It. vmin) then 

VfractNew(i) = vmin 

end if 

end do 

C Initialize the Void Volume Fraction 

1000 if (TotalTime .eq. dt) then 

do i=l, nblock 
vgrowth(i) = 0.0 
vnuc(i) = 0.0 

if (iVRand .eq. 1) then 

r = rand( ) 
VfractNew(i) = Vfractinit + r*Vfractinit*5. 

else 

VfractNew(i) = Vfractinit 

end if 
end do 

end if 

do i=l, nblock 

State4l(i) = VfractNew(i) 
State42 (i) = vgrowth(i) 

if (dt .ne. 1.0) then 

State43 (i) = vgrowth(i) + VoidGold(i) 



State44(i) = vnuc(i) + VoidNold(i) 

end if 

State45(i) = Exp( (-1.0/2.0)*( (PlasticEM(i)*dt-En)/Sn)**2) 
State46 (i) = TraceEdot (i) 
State47 (i) = PlasticEM(i) 
State48 (i) = const (i) 

C Volume Fract Increment 

State49 (i) = temp(i) 
State50 (i) = SdgTrace(i) 

end do 

return 

end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C SUBROUTINE DEATH 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine death( nblock, iDam, Vdead, u, ebarold, ebar, 
. dvolOld, dvol, DamOld, Dam, deadold, dead, VoidF, EffPe, 
. dt, Epmax, Vfract, EPS, TKill, TotalTime ) 

include 'vabaqaram.inc' 

dimension ebarOld (nblock) , ebar (nblock) , dvolOld(nb1ock) , 
. dvol (nblock) , DamOld (nblock) , Dam (nblock) , Ef fPe (nblock) , 
. deadold (nblock) , dead (nblock) , VoidF (nblock) 

data iFirst/O/ 

dimension u (nblock) 

iDead = 0 

Do I=l,nblock 

C 
C 
C 
C 

Initialize all elements to "live" 

dead(i) = 1 

If iDead flag set, check strain criteria to see if 
element should be deleted. 

if ((iDam .eq. 1) .and. (dt .ne. 1.0)) then 
if (TotalTime .It. TKill) then 

if (ebar(i) .ge. EPS) dead(i) = 0 
if (dvol(i) .ge. Edead) dead(i) = 0 
if (EffPe(i) -ge. Epmax) dead(i) = 0 
if (ebar(i) .ge. Epmax) dead(i) = 0 
if (VoidF(i) .gt. Vdead) dead(i) = 0 

end if 
endi f 

end do 

return 
end 
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