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Rigid Bodies for Metal Forming Analysis with NIKE3D 

Bradley N. Maker 
Lawrence Livennore National Laboratory, Livennore, California, USA 

ABSTRACT: Perhaps the most common app&ximation in enginering is that, relative to its neighbors, a 
system component is structurally rigid. This paper presents a development of the rigid assumption for use in 
nonlinear, implicit finite element codes. In this method, computational economy is gained by condensing the 
size of the associated linear system of equations, eliminating the processing of rigid elements, and reducing 
the overall nonlinearity of the problem. 

1. INTRODUCTION 

Finite element methods have traditionally been 
applied to problems where complexities in geometry 
or material behavior preclude closed form analytic 
solutions. The power of the finite element 
approximation has allowed engineers to include 
considerable detail in their structural response 
calculations, potentially eliminating the need for 
simplifying assumptions. However as engineers 
investigate processes with nonlinear material and 
geometric behavior, computational resources are 
quickly exhausted, and the rigid assumption once 
again becomes valuable. An excellent example is in 
sheet metal forming, where the assumption of rigid 
tooling is very reasonable. 

ways. The simplest method is to apply very large 
elastic moduli to an otherwise deformable element. 
This "brute force" method requires no code 
modifications, yet has several shortcomings. Rigid 
elements still need to be processed during stress, 
strain, and stiffness evaluations. Nodal degrees of 
freedom associated with rigid elements remain 

Finite elements may be rendered rigid in several 

independently active. And large disparities in 
material properties lead to numerical mrs. 

This paper presents a rigid material 
implementation based on rigid body mechanics. 
Following the convention Benson and Hallquist 
[1986] used for explicit time integration, a group of 
finite elements may be defined to be a rigid body. 
The center of mass is computed, and six degrees of 
M o m  are assigned to the body - three for 
translation and three for rotation. Nodal loads and 
boundary conditions are resolved onto the center of 
mass coordinates. 

In this implicit implementation, motion of the 
rigid body is determined by solving a coupled set of 
equilibrium equations for the rigid body and any 
other deformable elements in the model. Finally, the 
current cOOrdinates of rigid body nodes axe updated 
using the center of mass wordinates and the rigid 
body assumption. The rotational motion is 
characterized using quaternion parameters, which 
also find application in computer graphics literature 
(Burger and Gillies [ 19891, Glassner [ 19901). 

This approach results in a method where stress, 
strain, and stiffness computations for rigid elements 
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may be skipped. Numerical errors from disparate 
material properties are avoided. And most 
importantly, the total number of independent degrees 
of freedom in the model is reduced. This allows 
very large numbers of elements to be included in 
rigid bodies without adding significant computing 
cost to the model, and allows existing models to be 
executed more quickly by invoking the rigid 
assumption where appropriate. 

2. FORMULATION 

The following presents an integration of rigid body 
mechanics with the updated Lagrangian ftnite 
element formulation using implicit time integration. 
The procedure is applied to the inner-most loop of 
the nonlinear equilibrium solver, during stiffness and 
force computation, and after the linear equation 
solving procedure. 

2.1. Kinematics 

The position vector x of a finite element node point 
may be written as 

x = x + u  
where X is the initial coordinate of the point and u 
is its displacement vector. If the point is associated 
with a rigid body, then 

cm 
x=X+a  

em 
where X is the current position of the center of 
mass, and a is the current vector from the center of 
mass to the point. The vector a may be written in 
terms of a,, its value in the undeformed or reference 
state, and a rotation matrix A : 

a=Aa, (2.3) 
The incremental displacement relationships used 

in implicit finite element formulations are obtained 
by linearization of the above expressions : 

(2.4) 

Linearization of the rotation matrix A, presented by 
Simo [1988], results in expressions of a convenient 
form: 

* where a = (a,,a2,a 
components of the * 

-a3 0 a, 

}T, a d  {AeI,A@2,A@3) 81e the 
gid body rotation increment 

expressed in global coordinates. 
For a model containing both defomble and 

rigid components, the nadal degrees of freedom may 
be grouped, and the above expressions used to 
obtain a condensed set of unknowns: 

where the () superscript denotes a condensed degree 
of freedom vector. Substituting this expression into 
the discrete form of the principle of virtual work, we 
obtain expressions for the condensed finite element 
stiffness matrix and residual vector for the coupled 
deformablehgid system: 

hi& , K = A ~ K A  , ~ = A ~ F  (2.7) 
This condensed system is passed to a standard linear 
equation solver, r e q i n g  rigid body translation and 
rotation increments AX and AO. These are used to 
update the center of mass, and finally the nodal 
coordinates. 

2.2. Center of mass update 

The update phase proceeds by first updating the 
center of mass degrees of freedom, and then the 
positions of each node point in the rigid body. The 
center of mass update consists of a translational and 
rotational part. The translational degrees of freedom 
are trivially updated: 

cm a a 
x ( n + I ) =  X(n)+AX 

: . 
: j  i . .. 
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We employ quaternion parameters to 
characterize the rotational configuration of the rigid 
body, allowing finite rotation increments in a single 
step without inducing deformation. These are 
updated as follows. First, the incremental 
quaternion parameters (qO, q)  are computed from the 
rotation increments A& 

- 

x 

qO=cosa , q = B A e  

where 
(2.9). 

These are normalized according to 

y=(q:+q;+q;+q:)' , (2.11) 

The total quaternion parameters (xo,x) and 
(yo ,y )  characterize the total rotation of the rigid 
body from the undeformed or reference state to 
states (n) and (n+l ) ,  respectively. The update is 
perfomed using quaternion algebra: 

where 
Y o = ~ o x o - ~ ' x  
y = q o x + x o q  + q x x  

(2.12) 

(2.13) 

The total quaternions are then normalized using the 
aforementioned procedure. From these, the current 
rotation matrix A may be computed: 

2.3. Nodalupdate 

For consistency with the updated Lagrangian finite 
element formulation, the displacement and rotation 
vectors of each rigid body node must be determined. 

' 

With the center of mass degrees of freedom updated, 
the nodal displacements may be computed using 
(2.2), (2.3), (2.8), and (2.14) simply as 

= =(,+I) - X(R) (2.15) 

The nodal rotation increments are qual to the 
center of mass rotation increments. These are 
computed similarly by diffmncing the total rotation 
vectors eF1 and e,,,. The rotation vectors are 
extracted om the total quaternions using: 

where 

3. IMPLEMENTATION 

(2.16) 

(2.17) 

The rigid body capability was implemented as a 
material attribute in the finite element code NIKE3D 
(Maker, Ferencz, and Hallquist [1991]). This proves 
convenient for users, since each part in a finite 
element model is typically assigned a unique 
material number as the model is constructed. Rigid 
bodies may be constructed from any of the element 
types available in NME3D - beams, shells, and/or 
solids. 

implemented at the element level. Processing of 
elements assigned rigid material types is skipped 
entirely. The element stiffness and internal force 
vector for all other elements are formed by the usual 
procedure. Next, deformable elements containing 
one or more rigid body nodes are passed to a 
condensation routine. This routine uses (2.5) and 
(2.6) to modify the element stiffness and internal 
force data prior to assembly. 

Although the condensation procedure reduces 
the number of global unknowns in virtually every 
model, the element level matricies may in some 
cases be expanded. This occurs, for example, when 

The condensation procedure (2.7) is 
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a single node from a trilinear continuum element is 
associated with a rigid body. The three 
(translational) degrees of freedom of that node are 
then replaced by the six (translational and rotational) 
degrees of freedom of the rigid body, increasing the 
dimension of the element matricies by three. 
However, if several of the element nodes belong to 
the same rigid body, the net size of the element 
system is indeed reduced. In general, provision must 
be made for assembly of a variable sized element 
system. In the worst case of an eight node 
hexahedral element where each node is attached to a 
merent rigid body, the element system expands 
from 24 to 48 degrees of freedom. 

All of the boundary conditions in NIKE3D are 
available for use with rigid bodies. These include 
prescribed displacement, force, pressure, and body 
forces. In the case of prescribed displacements, the 
user must prescribe the motion of the center of mass 
of the rigid body. Nodal displacement boundary 
conditions are ignored. Slide surface or contact 
boundary conditions are also available for use with 
rigid bodies. Penalty parameters for these interfaces 
are chosen using reasonable values of elastic moduli 
which are entered as rigid body material pmperties. 

4. APPLICATIONS 

The following examples demonstrate the validity of 
the implementation, and some of the potential cost 
savings from the rigid assumption. 

4.1 Rotation of rigid block 

To test the accuracy of the rotational update, a 
simple block of solid elements was rotated a total of 
360 degrees. Several simulations were perfomed, 
using from one to ten steps to complete the rotation. 
Figure 1 shows the model in several intermediate 
configurations. Deformation induced by errors in 
the update was measured by comparing initial and 
final geometry of the block. In all cases, normalized 
emr  was less than 10-6. 

4.2 Elastic I rigid beam 

A simple cantilevered beam loaded with a tip 
moment is shown in Figure 2. The beam is 
discretized using ten elements. The four center 
elements are defined as rigid, while the remaining 
elements have elastic properties. Load is applied in 
ten increments. The beam centerline is shown for 
several stages during the loading. The rigidity of the 
center section of the beam through finite translation 
and rotation is apparent. 

4.3 Hydrofonned sheet metal cover 

A hydroforming simulation fmt presented in 
Maker, 19881 was repeated using the rigid material. 
Figure 3 shows the model used to form an aluminum 
sheet into a three dimensional pan. In the hydroform 
process, the male tooling emerges from an initially 
flat blank holder surface, while subsequent external 
pressure drives the sheet to conform to the tooling 
contour. The tooling and blank holder were 
modeled using one layer of solid eight node 
elements. 

Table 1 shows the cost breakdown associated 
with two NIKE3D simulations: one with 
deformable tooling, the other with rigid tooling. The 
size of the linear system in the deformable tooling 
analysis necessitated the use of NIKE3D's EBE 
iterative linear equation solver [Ferencz, 19891, 
which dramatically reduces storage requirements by 
operating at the element level. Condensing the 
linear system using the rigid material assumption 
allowed the use of a traditional direct solver. 

Applying the rigid material decreased the total 
simulation time by over 90%, from 500 down to 37 
cpu minutes on our Cray Y/Ivl.P machine. A large 
portion of this savings was realized by skipping the 
processing of the solid elements which comprise the 
tooling, saving nearly 250 cpu minutes. The 
decreased size of the condensed linear system 
accounted for a savings of nearly 200 cpu minutes. 
In addition, the rigid tooling simplified enforcement 
of the contact constraint between the sheet and 
tooling, since only one side of this interface was 
deformable. This resulted in fewer iterations in the 

r 
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nonlinear equation solver while searching for 
equilibrium during each load step. 

5. CONCLUSIONS AND FUTURE WORK 

The rigid body capability has been implemented in 
NIKE3D for static analyses, and validated on a 
number of test problems. Significant cost savings 
have been obtained by reducing the number of 

Model Characteristics: 
sheet: 1650 shell elements 

tooling: 1550 brick elements 

d e f o n n a b l e u  
equations 1m loo00 

Linear System: 

storage (Mword) 17.0 3.2 
(EBE) 6.6 

CPU Cost Breakdown 
initialization 0.5% 
slide surfaces 1% 
brick elements 47% 
shell elements 12% 
linear solver (EBE) 40% 

2.0% 
53% 
0% 
21% 
21% 

Cray Y/MP cost 500 min. 37 min. 

rable 1: Cost of hydroforming simulation using 
jeformable or rigid tooling. The EBE iterative 
inear equation solver was required with the 
lefonnable tooling model to fit the linear system 
nto available core memory. The tooling (brick 
dements) consumed nearly half of the cost in the 
irst model, and virtually none when the rigid 
naterial was used. 

degrees of freedom in the linezu system, eliminating 
element processing for rigid elements, and by 
reducing the complexity of the contact problem. 
Additional work is required to extend the capability 
to dynamic problems, namely the solution of an 
additional (rotational) equiIibrium equation, and the 
resulting (non-symmetric) set of linear equations. 
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Figure 1 - In a test of the rigid body rotational update, a rigid block of 
elements is rotated 360 degrees using from one to ten steps. In all 
cases, normalized deformation of the body was less than lo4. 
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Figure 2 - The centerline of an elastic cantilevered beam loaded with 
an end moment is shown at several stages of deformation. The beam 
is discretized with ten elements, the centrat four elements being rigid. 
Load is applied in ten increments. The rigid behavior of the central 
portion of the beam through finite rigid body translation and rotation 
is demonstrated. 
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Figure 3 - Results from a NIKE3D hydroforming simulation show 
the tooling (top) and finished part (bottom). The tooling model is 
constructed using a single layer of eight node solid elements, making 
it an ideal candidate for the rigid material, which reduced runtime by 
over 90 percent. 
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