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When tensile shock waves overlap in a ductile
metal, extreme siates of tension are created anu
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cess, known as spallati ;
extensive metal]urglcal mvesngatlon [1 3]

spallation of ductile metals depends upon the mag-
nitude of the tensile stress, the length of time at
stress, and the metallurgical state of the metal (grain
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for void growth are available [5], there remains sev-
eral issues regarding the growth of small voids in
single crystals, the nature of the nucleation process
(homogeneou I‘h terogeneous) and nucleatlon s:tes,
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FIGURE 1, A slice through the idealized four grain microstruc-
ture used in the void nucleation simulations. The sphere of atoms
at the grain center are held fixed during processing and allowed

to evolve durine failure. The simnlation cell is exnanded in all

uve cunng

directions at a constant rate.
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METHODS

A polycrystalline copper metal with nanoscale
grains is simulated using the idealized space filling
model of Phillpot and coworkers [6]. A thin slice
through the simulation cell is shown in Figure 1. On
each of tour FCC seed SItes, wntnm tne cubic sunu-

ter of each gram is held fixed while the surroundmg
atoms are brought to the melting temperature at
P=0, then returned to T=300K. Using a 12nm simu-
lation cell, this procedure generated a four grain

PP R Re 2 Y-S . JE S Y

microstructure with N=141705 atoms. Each gram
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The embedded-atom method [7] with parame-
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ters due to Oh and Johnson [8] is used to model
copper. The equations of motion are integrated
using a Verlet leap-frog algorithm [9] with a time
step of 5fs. Considering the thermal conduction
being largely electronic and the mean free path of
the electrons being much larger than our simulation
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11, we approximate the system at constant temper-
lobhal thermostat |'10'| To

oa. fhermostat L&

s stant uniform expansion strain rate,
the position of every atom in the simulation cell is

where s [0,1] and H = {a,b,c} is a
matrix composed of the three vectors of the simula-
tion cell [11]. A constant strain rate is simulated by

specifying a constant time derivative of H .

RESULTS AND DISCUSSION

a simulated strain rate of 7.7x10°% is shown in
Figure 2, The system is elas-i&_: up to failure, which
occurs at 8.4GPa. Also wn in Figure 2 are the

results for simulations at the same strain rate with a

(b}

Figure 3. A slice through the simulation cell at time of failure (a)
v="7.7x10%", (b} v= 6.1x10°s L.
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FIGURE 4, Stress curves for two simulations with the same geo-
metric microstructure but differing in the number of atomns per
grain. The band is the range of experimentai data for copper.

small void (3.75nm) placed at the center of one
grain and at the junction between all four grains.

A thin slice from the simulation with no pre-
ex1stmg voids is shown at the tJme of Iallure in l-'lg-
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the grains and the distortion in gra.m shape. At a
strain rate of 6.1x10%'! (Figure 3b), many more
voids nucleate and decorate the grain boundaries
with very little distortion of the surrounding grains.

The affect of system size was studied by simu-

lating failure in two systems: the first was similar to

the previous simulation with different grain orienta-

tinmne and N=122400: tha cannnd viead tha cama oan.
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tw1c th ell ength in each dlrectlon The onlv dlf-
ference being the number of atoms, N=1141045 in
the larger system. The resulting stress curve is
shown in Figure 4, The curve for the smaller system
is qualitatively the same as before while the larger
system ylﬁl(]S at a much lower strain. Ulvel'l me

esis is tha th ored elasnc energy per nucleatlon
site determines the strain at which failure occurs,
This energy is greater for a given strain for the

drive

larger system and is the energy available to
the growth of voids.

Figure 2 illustrates the dependence of the num-
ber of voids nucleated at failure upon the strain rate,
To investigate this further, we consider the failure of
a single crystal so that nucleation is nomogeneous
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failure for a 6.1x107s™" strain rate is shown in Fig-
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number of voids at this and hicher/lowear ctrain ratag
1ber of voids at this and higher/lower strain rates
we quantify the dependence of void spacing on

strain rate. The result is shown in Flgure 6. Several
conclusions are evident. The data in the range of
this study is nearly linear on this log-log plot and is
well approximated by the expression I~0.005 C, /¥,
where C; = 3480m/s is the bulk sound speed and vy

is the strain rate. At high strain rates (10'1s1) the
void spacing is approaching the interatomic spac-
ing. The study of slower strain rates, in the experi-
memal range, rcqmres mucn larger sysrem sizes or

. d -
of single crystal copper at v = 7.7x10% 1. Several vmd are
nucleating,
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FIGURE 6. The dependence of void spacing on strain rate during
simulated isotropic expansion of single crystal copper.
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