
W 
cc, 
0 

UD 
UD 

LA-UR- 

TECOLOTE: AN OBJECT-ORTENTED FRAMEWORK FOR HYDRODYNAMICS 
PHYSICS 

K.S. Holian, L.A. Ankeny, S.P. Clancy, J.H. Hall, J.C. Marshall, G.R McNamara, 
J.W. Painter, and M.E. Zander 

Los Alamos National Laboratory, Los Alamos, NM 87545, USA 

Tecolote is an object-oriented framework for both developing and 
accessing a variety of hydrodynamics models. It is written in C++, and 
is in turn built on another framework -- Parallel Object-Oriented 
Methods and Applications (POOMA). The Tecolote framework is 
meant to pmvide modules (or building blocks) to put together 
hydrodynamics applications that can encompass a wide variety of 
physics models, numerical solution options, and underlying data storage 
schemes, although with only those modules activated at runtime that are 
necessary. Tecolote has been designed to separate physics from 
computer science, as much as humanly possible. The POoMA 
framework provides fields in C++ to Tecolote that are analagous to 
Fortran-9O-like arrays in the way that they are used, but that, in 
addition, have underlying load balancing, message passing, and a 
special scheme for compact data storage. The POOMA fields can also 
have unique meshes associated with them that can allow more options 
than just the normal regularly-spaced Cartesian mesh. They also permit 
one-, two-, and three-dimensions to be immediately accessible to the 
code developer and code user. 
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I. Introduction 

In today's world, the advances in physics models and numerical models that are 
used in hydrodynamics are proceeding at an increasingly rapid pace. In addition, it seems 
that new computer architectures are being put out practically daily. In this environment of 
such mind-boggling change, it is imperative to have a framework, that is relatively 
portable, in which to do rapid prototype development. It is important to be able to build on 
what others have done, rather than using valuable time to implement, on another 
architecture, or in another language, that which has already been done. 

Tecolote is an object-oriented framework, written in C++, that was designed for the 
development and implementation of a wide variety of hydrodynamics applications. It is 
also meant for the rapid development and testing of any kinds of models, numerical or 
physical, that are related to hydrodynamics. It already has a number of physics models 
(such as equation of state, material strength, and high explosive bum) implemented in the 
framework, that can be used as the building blocks for hydrodynamics applications. In 
addition, the basic modules required for an Eulerian hydrodynamics application have been 
written. We are now testing the Eulerian application on the new ASCI Blue Mountain 
computer at L.QS Alamos, in order to get a feel for the efficiency of an application that is 
written in the framework. 

II. Philosophy 

Before even designing the framework, we laid out a groundwork for the features 
that we were determined to have in any framework that we designed. We have kept these 
in mind throughout the design and implementation of Tecolote, and we feel that we have 



First, we wanted to have a framework that was object-oriented in nature. This 
means that modules are as independent from each other as possible. With (welldesigned) 
object-oriented coding, in principle the addition of new modules should be easier and more 
trouble-free than it is in a procedural code. 

We also wanted to be able to code in such a way that the computer code would look 
as much like the original physics equations as possible. And, we did not want the high- 
level physics coding to change if new underlying mesh geometries were added to the 
possibilities, as would almost surely be the case if an alternative Lagrangian-Eulerian 
(ALE) option were added to the framework In addition, we wanted the applications to be 
able to work in one, two, or three dimensions. Related to the flexibility of mesh geometry 
requirement, was the requirement that we be able to represent mesh-wide variables on a 
variety of centerings. An example of this would be a staggered-mesh application that uses 
cellcentered state variables, but vertex-centered velocities. Various physics operators, 
such as the divergence, need to h o w  the centering of a variable, in order to do the 
calculation correctly. 

Another important requirement was portability. With the new computer 
architectures that have multiple processors (or multiple boxes that each contain multiple 
processors), the question of portability is more difficult, yet also more crucial. We wanted 
to be able to code in such a way that, at the highest level, we would not have to clutter the 
coding with provisions for message passing and load balancing. We felt that this should be 
done at a lower level, in such a way that these could be tuned for different architectures. 

III. POOMALibrary 

An important aspect of the Tecolote framework is that it is built on the POOMA 
library [ 11 (also written in C++). This library provides fields for Tecolote, which are 
similar to Fortran-90 arrays, but with extra features. The POOMA fields, like Fortran-90 
arrays, automatically take care of message passing on platfms with multiple physical 
processors. But they also have a scheme for more efficient memory storage, and will have 
provisions for automatic load balancing in the future. Both of the former features are based 
on the concept of virtual nodes. In addition, the POOMA fields can be laid on top of 
different types of meshes, not just the standard Cartesian meshes of Eulerian codes. This 
will allow for future development of hydrcxlode applications that are purely or partially 
Lagrangian in nature. The POOMA library takes care of performing mathematical 
operations, such as divergence and gradient, comctly for a given mesh geometry. 

A. Compressed Storage 

As mentioned above, the compressed storage of PooMA fields is based on the 
virtual node idea. The physical geometry of the mesh over which the application is 
operating is divided up into subunits, called virtual nodes. When a field variable is 
constant over the entire virtual node, the storage for that field variable is collapsed down to 
just one value for the whole subunit, rather than one value for each point of the grid in that 
subunit. This is somewhat analagous to the compression that is regularly practiced on 
graphics files that contain a great number of repeated values. 

mesh with void in it, so that the materials in a problem may expand into the void. Often 
many zeroes are stored for a field variable, wasting a great deal of storage space. The 
POOMA fields solve this problem. Another situation is that in which one has many 
materials in a problem. Each material may have a number of state variable fields associated 
with it, such as density, energy, and pressure. These fields need to be represented on the 
entire mesh of the problem. However, each material may be found only in a small part of 
the mesh. Again, the fields can be collapsed down to storing only one value across an 
entire virtual node. 

In Eulerian hydrocodes, it is a common Occurzence to initially include a great deal of 
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In addition, POOMA automatically keeps track of the fields. As material moves 
across a mesh, virtual nodes expand and &npkss automatically, depending on the state of 
the field. 

B. Load Balancing 

Virtual nodes will also be used for automatic load balancing on multiple-physical- 
processor machines, that is planned for a future implementation. The idea is that, ideally, 
the problem in question would be divided into far more virtual nodes than there are physical 
processors. Initially, each physical processor would get one virtual node to work on in an 
expression. When a physical processor finished its work, it would get another virtual node 
to work on. Hopefully, no physical processor would be sitting idle for long. 
Implementation of the load balancing scheme is especially important, given the camp- 
storage of the fields. 

IV. Tecolote Physics Library 

The most important thing about Tecolote is that it provides a framework in which to 
develop new hydrodynamics models and methods. And we are trying to encourage code 
reuse not only in the computer science arena, but also in the physics area as well. With that 
in mine, we plan to have available a wide variety of physical and numerical solution 
modules so that the developer of a new method or model does not have to waste time 
receding, and so that his or her valuable time need only be spent on the new problem of 
interest. 

So far, the modules that we have implemented are those that are needed by an 
Eulerian hydrodynamics code (which is the first application that we have that uses the 
Tecolote framework). These include such things as a predxtor-comctor Lagrangian 
module, and a split-advection rezoner module, based on the vanLeer scheme. In addition, 
we have a module that uses the Youngs’ recOIlStNction method to calculate the interfaces 
between materials in a mixed-material cell. 

In addition, we have a number of analytic equations of state that can be used, for 
example, by the Lagrangian module. We will soon also have the SESAME tabular 
equation-of-state option [2]. 

We plan to soon implement an elasto-plastic module that calculates material 
strength, and that can use a variety of models for the yield condition of a material. Also, 
there will be a variety of options for such other physical behavior as high explosive bum 
and fracture. 

. As time goes on, and as physicist-programmers add options to the physics library 
part of Tecolote, there will be even more building blocks that will be available for 
hydrodynamics applications. 

V. Tecolote Computer Science Features 

Perhaps the most imporant part of the Tecolote complex will be its physics 
capabilities. However, we have implemented a number of computer science features that 
have been designed with the idea of easing the work required for new model developers. 
Following are the explanations of several of these features. 

A. Operators for Different Mesh Geometries 

PooMA fields have the capability of being laid out on different types of meshes. In 
addition, each layout can be in one, two, or three dimensions. Of course, different 
geometrical configurations require different solutions for operators, such as the w e n t  
operator. POoMA has implemented default operators for each type of mesh and dimension 



that is currently available. However, there are often different numerical methods for 
calculating the results of a physical operation. 

POoMA operator, or can override the default with a different customized calculation. This 
is a fairly straightforward thing to do, since we are using the object-oriented features of 
C++ for the framework. 

This was an important feature to have when we implemented the axisymmetric 
geometry for a two-dimensional mesh. The mesh itself is laid out in regular Cartesian 
coordinates. But, instead of the Cartesian x-y geometry, the mesh is meant to represent an 
axisymmetric r-z geometry, with the axis of rotation around the z-axis, and the r-coordinate 
defining the radius. The default POOMA operators in this case are for the Cartesian x-y 
geometry. We were able to easily ovenide the default operators, and provide the correct 
ones for an axisymmetric geometry (but only in the case where that is desired). 

or three-dimensional Cartesian geometry, as well as two-dimensional axisymmetric 
geometry. We will add other options, such as one-dimensional spherical geometry, as 
interest warrants. 

Another important characteristic of the operator objects is that high-level coding that 
uses an operator is written once, and will never have to be changed (with the addition of 
new geometry options). This relieves the programmer of tedious code maintenance, and 
confusing arrays of if tests for different mesh options. For example, following is a line of 
coding from the Lagrangian predictorarmtor module: 

Tmlote uses the concept of operator objects, which can either call the default 

Therefore, our Eulerian application can currently be compiled and run in one-, two, 

Velocity = 0ld.Velocity + Div(Stress, DivStress) * dt / ( VertDensity + EPSILON ) 

This line of coding updates the velocity according to the divergence of the stress. Velocity 
and 0ld.Velocity ~IE vector fields describing the velocity at two different time levels 
(required for a predictorcorrector algorithm). The divergence operator Div operates on a 
tensor field, in this case d e d  Stress. DivStress is a reference to a field that stores the 
output of the divergence operation. (It is provided solely for efficiency reasons. ) The 
parameter dt is a constant representing the time step. VertDensity is a scalar field that is the 
average density at the vertices of the mesh (calculated by averaging the densities around 
each vertex). EPSILON is a macro that just represents a very small number, to avoid a 
divide by zero. 

all dimensions. It will never have to be changed. 

chosen at run-time in the input file. This will be discussed in more detail below. 

The impressive thing is that this line of coding works for all mesh geometries and 

The actual operator used for a particular application and particular problem is 

B. DataDMory 

One traditional problem that needs to be solved in any hydrocode is how to get the 
diffemnt modules to communicate with one another. Different physics packages need to be 
able to access different sets of variables, to either modify or to use those variables. For 
example, a material strength yield surface model for a particular material might need to 
access the pressure, density, stress deviators, and strain rate for that material, but would 
not need to access other state variables. Whereas another model of the same type might 
need the density, energy, and stless deviators. The usual way of solving this problem is to 
pass the required variables, or pointers to arrays of variables, in the subroutine call for the 
model. This can lead to hard-to-maintain, or confusing coding. 

DataDirectory. The DataDirectwy is basically a map that associates the address of a field of 
variables with a unique name (represented by a string). Now, we need only pass the 
address of (or a reference to) a DataDirectory into a physics module (rather than a whole list 

The way that we have dealt with this situation in Tecolote is with what we call a 



of field addresses). That module, then, can look up the fields that it requires in the 
DataDirectory. A physics module is allowed also to put a new field into the directory that 
can then be shared with other modules. Actually, the DataDirectory can not only store 
locations to POOMA fields, but also locations for any types of variables (e.g., integer, 
Boolean, float, string, and arrays of the former) that a physics module might want to share 
with other modules. 

The DataDirectory has a tree structure, that is analagous to the Unix directory 
system. This is to accomodate the fact that, in a given application, one might require two 
sets of variables at different snapshots in time, or sets of state variables for the different 
materials. 

Perhaps it is best to illustrate the DataDirectory by an example of how it would be 
arranged for the Eulerian application. (Each application and each unique problem running 
that application work together to create a unique DataDirectory.) For the Eulerian code, 
there are a few fields of data that reside at the highest level of the DataDirectory. That is, 
they are time- and material-independent. An example of this would be the field that holds 
the cell invariant Eulerian volumes. Then, the next level down in the DataDirectory would 
include fields of variables that are required to exist simultaneously at two different time 
levels for the Lagrangian predictorcanector step of the calculation. These would be such 
fields as the average pressure or density in a cell, for which there is only one value in a cell, 
no matter how many materials in the cell. Finally, at the next level down are the fields that 
are material dependent, such as density, pressure, and energy. A unique copy of each of 
these fields is required for each material. Additionally, for each field for each material, two 
copies are required for the two times of the predictor-corrector algorithm. It is also 
possible to imagine, in the future, that there might be a further level down in the hierarchy. 
A given material might have different species, that each q u i r e  their own fields. The 
DataDirectory is infinitely adaptable. 

C. Simplified I/O 

Tecolote has many featum with regard to I/O that make it more or less automatic. 
The goal is to free the physicist-programmer from spending valuable time in coding either 
the input to hisher new model, or adding new output to the various types of dumps written 
out. 

In the case of model parameters, the programmer can merely register these 
parameters as being possible input. This is accomplished by the fact that models are 
objects, the parameters are object members, and the framework knows that certain 
“persistent” parameters can be initialized in an input file that creates speclfic instances of a 
model object. Of course, all these object members have default values, in case the 
parameters are not initialized in the input file. 

Tecolote outputs a number of different types of dumps. For example, there is a 
restart dump that contains that information required to restart aproblem from aparticular 
snapshot in time. Additionally, there me special dumps of fields that one might want to 
look at graphically, and various kinds of ASCII dumps to keep track of the progress of a 
problem. As new models are added to the physics repertoire, there will be new constants 
and variable fields that should be included in the output files. Tecolote has a method for 
registering variables for diferent kinds of output. Once the registration is specified, the 
model programmer need do nothing further. All appropriate output will be taken care of 
automatically. 

D. Run-Time Instantiation 

The algorithm and model objects required for a given simulation, using a given 
application, are created at run-time from an ASCII input file. This has several advantages. 



One is that space on the computer is not set aside until run-time. This is particularly 
important when using a large framework containing many algorithms and models, perhaps 
most of which will not be required for a given run. 

Another is that the code user can create a customized application just from the input 
file, using the existing algorithms and models provided by the framework. No recoding of 
the main program is required. 

Thirdly, one can easily compare a new model, algorithm, or operator with another 
of a like kind, and be assured that all other parts of the calculation are identical. This 
removes the comparing-apples-and-oranges problem in comparing the effectiveness and 
accuracy of different ways of doing the same operation. Also, it makes it quite easy to 
determine differences in timings for the different methods of accomplishing the same goal. 

VI. Conejo -- An Eulerian Application 

application, which we call Conejo. The physics in the application is the same that is 
represented in the MesaRagosa [3,4] family of codes. However, there is one difference in 
that the application can be compiled for one-, two-, or three-dimensional Cartesian 
geometry, or twodimension axisymmetric geometry. 

change according to the PdV work done on a cell. Then there is an advection step in which 
the material is remapped back onto the original Eulerian mesh. The remap step uses the 
vanLeer method of limiting to reduce noise in the calculation. The amount of material 
advected across a cell interface in the remap step for a mixed-material cell is caldated 
using the Youngs’ method to place interfaces between the materials in the cell. Conejo uses 
operator splitting for the advection remap, and therefore, only considers one direction at a 
time. 

a feel for the maximum size of problem that we will be able to run (for an Eulerian 
application), as well as to get a feeling for the timings, as compared to our other Eulerian 
codes. 

supercomputer (known as ASCI Mountain Blue) that was purchased by Los Alamos 
National Laboratory. The initial configuration of the machine (more capacity will be added 
later) is 8 boxes with 32 processors each. Each box has 16 Gbytes. The theoretical peak 
speed is 400 m o p s  per processor, although the likely speed for a real optimized 
application is about 50 Mflops per processor. 

At this point, it is a bit premature to report timings for our problems. More work is 
required to completely implement the compressed field structure. However, we are already 
running within a factor of 4 (on the Cray/SGI machine) of the Eulerian hydrocode written 
in C, that also runs on the same machine. 

We have been able to run a 256X256X256 7-material problem on one box of ASCI 
Blue. Again, our capacity will increase as the field compression capability is optimized. 
We are just beginning to look at various optimization issues now. 

The first application that we have implemented using the Tecolote is an Eulerian 

Conejo has a Lagrangian predictor-cmector step in which the vertices of the cells 

We have been running some simple test problems using Conejo, so that we can get 

The platform that we have beea using for the test problems is the new Cray/SGI 
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