
W
cc,
0

UD
UD

LA-UR-

TECOLOTE: AN OBJECT-ORTENTED FRAMEWORK FOR HYDRODYNAMICS
PHYSICS

K.S. Holian, L.A. Ankeny, S.P. Clancy, J.H. Hall, J.C. Marshall, G.R McNamara,
J.W. Painter, and M.E. Zander

Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Tecolote is an object-oriented framework for both developing and
accessing a variety of hydrodynamics models. It is written in C++, and
is in turn built on another framework -- Parallel Object-Oriented
Methods and Applications (POOMA). The Tecolote framework is
meant to pmvide modules (or building blocks) to put together
hydrodynamics applications that can encompass a wide variety of
physics models, numerical solution options, and underlying data storage
schemes, although with only those modules activated at runtime that are
necessary. Tecolote has been designed to separate physics from
computer science, as much as humanly possible. The POoMA
framework provides fields in C++ to Tecolote that are analagous to
Fortran-9O-like arrays in the way that they are used, but that, in
addition, have underlying load balancing, message passing, and a
special scheme for compact data storage. The POOMA fields can also
have unique meshes associated with them that can allow more options
than just the normal regularly-spaced Cartesian mesh. They also permit
one-, two-, and three-dimensions to be immediately accessible to the
code developer and code user.

RECEIVED

O S T I
FFR 0 2 1998

I. Introduction

In today's world, the advances in physics models and numerical models that are
used in hydrodynamics are proceeding at an increasingly rapid pace. In addition, it seems
that new computer architectures are being put out practically daily. In this environment of
such mind-boggling change, it is imperative to have a framework, that is relatively
portable, in which to do rapid prototype development. It is important to be able to build on
what others have done, rather than using valuable time to implement, on another
architecture, or in another language, that which has already been done.

Tecolote is an object-oriented framework, written in C++, that was designed for the
development and implementation of a wide variety of hydrodynamics applications. It is
also meant for the rapid development and testing of any kinds of models, numerical or
physical, that are related to hydrodynamics. It already has a number of physics models
(such as equation of state, material strength, and high explosive bum) implemented in the
framework, that can be used as the building blocks for hydrodynamics applications. In
addition, the basic modules required for an Eulerian hydrodynamics application have been
written. We are now testing the Eulerian application on the new ASCI Blue Mountain
computer at L.QS Alamos, in order to get a feel for the efficiency of an application that is
written in the framework.

II. Philosophy

Before even designing the framework, we laid out a groundwork for the features
that we were determined to have in any framework that we designed. We have kept these
in mind throughout the design and implementation of Tecolote, and we feel that we have

First, we wanted to have a framework that was object-oriented in nature. This
means that modules are as independent from each other as possible. With (welldesigned)
object-oriented coding, in principle the addition of new modules should be easier and more
trouble-free than it is in a procedural code.

We also wanted to be able to code in such a way that the computer code would look
as much like the original physics equations as possible. And, we did not want the high-
level physics coding to change if new underlying mesh geometries were added to the
possibilities, as would almost surely be the case if an alternative Lagrangian-Eulerian
(ALE) option were added to the framework In addition, we wanted the applications to be
able to work in one, two, or three dimensions. Related to the flexibility of mesh geometry
requirement, was the requirement that we be able to represent mesh-wide variables on a
variety of centerings. An example of this would be a staggered-mesh application that uses
cellcentered state variables, but vertex-centered velocities. Various physics operators,
such as the divergence, need to h o w the centering of a variable, in order to do the
calculation correctly.

Another important requirement was portability. With the new computer
architectures that have multiple processors (or multiple boxes that each contain multiple
processors), the question of portability is more difficult, yet also more crucial. We wanted
to be able to code in such a way that, at the highest level, we would not have to clutter the
coding with provisions for message passing and load balancing. We felt that this should be
done at a lower level, in such a way that these could be tuned for different architectures.

III. POOMALibrary

An important aspect of the Tecolote framework is that it is built on the POOMA
library [11 (also written in C++). This library provides fields for Tecolote, which are
similar to Fortran-90 arrays, but with extra features. The POOMA fields, like Fortran-90
arrays, automatically take care of message passing on platfms with multiple physical
processors. But they also have a scheme for more efficient memory storage, and will have
provisions for automatic load balancing in the future. Both of the former features are based
on the concept of virtual nodes. In addition, the POOMA fields can be laid on top of
different types of meshes, not just the standard Cartesian meshes of Eulerian codes. This
will allow for future development of hydrcxlode applications that are purely or partially
Lagrangian in nature. The POOMA library takes care of performing mathematical
operations, such as divergence and gradient, comctly for a given mesh geometry.

A. Compressed Storage

As mentioned above, the compressed storage of PooMA fields is based on the
virtual node idea. The physical geometry of the mesh over which the application is
operating is divided up into subunits, called virtual nodes. When a field variable is
constant over the entire virtual node, the storage for that field variable is collapsed down to
just one value for the whole subunit, rather than one value for each point of the grid in that
subunit. This is somewhat analagous to the compression that is regularly practiced on
graphics files that contain a great number of repeated values.

mesh with void in it, so that the materials in a problem may expand into the void. Often
many zeroes are stored for a field variable, wasting a great deal of storage space. The
POOMA fields solve this problem. Another situation is that in which one has many
materials in a problem. Each material may have a number of state variable fields associated
with it, such as density, energy, and pressure. These fields need to be represented on the
entire mesh of the problem. However, each material may be found only in a small part of
the mesh. Again, the fields can be collapsed down to storing only one value across an
entire virtual node.

In Eulerian hydrocodes, it is a common Occurzence to initially include a great deal of

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its usc would not infringe privately owned rights. Reference herein to any spc-
cific commercial product, process, or service by trade name, trademark, manufac-
turer. or otherwise does not necessarily constitute or imply its endorsement, recom-
mendirtion, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

In addition, POOMA automatically keeps track of the fields. As material moves
across a mesh, virtual nodes expand and &npkss automatically, depending on the state of
the field.

B. Load Balancing

Virtual nodes will also be used for automatic load balancing on multiple-physical-
processor machines, that is planned for a future implementation. The idea is that, ideally,
the problem in question would be divided into far more virtual nodes than there are physical
processors. Initially, each physical processor would get one virtual node to work on in an
expression. When a physical processor finished its work, it would get another virtual node
to work on. Hopefully, no physical processor would be sitting idle for long.
Implementation of the load balancing scheme is especially important, given the camp-
storage of the fields.

IV. Tecolote Physics Library

The most important thing about Tecolote is that it provides a framework in which to
develop new hydrodynamics models and methods. And we are trying to encourage code
reuse not only in the computer science arena, but also in the physics area as well. With that
in mine, we plan to have available a wide variety of physical and numerical solution
modules so that the developer of a new method or model does not have to waste time
receding, and so that his or her valuable time need only be spent on the new problem of
interest.

So far, the modules that we have implemented are those that are needed by an
Eulerian hydrodynamics code (which is the first application that we have that uses the
Tecolote framework). These include such things as a predxtor-comctor Lagrangian
module, and a split-advection rezoner module, based on the vanLeer scheme. In addition,
we have a module that uses the Youngs’ recOIlStNction method to calculate the interfaces
between materials in a mixed-material cell.

In addition, we have a number of analytic equations of state that can be used, for
example, by the Lagrangian module. We will soon also have the SESAME tabular
equation-of-state option [2].

We plan to soon implement an elasto-plastic module that calculates material
strength, and that can use a variety of models for the yield condition of a material. Also,
there will be a variety of options for such other physical behavior as high explosive bum
and fracture.

. As time goes on, and as physicist-programmers add options to the physics library
part of Tecolote, there will be even more building blocks that will be available for
hydrodynamics applications.

V. Tecolote Computer Science Features

Perhaps the most imporant part of the Tecolote complex will be its physics
capabilities. However, we have implemented a number of computer science features that
have been designed with the idea of easing the work required for new model developers.
Following are the explanations of several of these features.

A. Operators for Different Mesh Geometries

PooMA fields have the capability of being laid out on different types of meshes. In
addition, each layout can be in one, two, or three dimensions. Of course, different
geometrical configurations require different solutions for operators, such as the w e n t
operator. POoMA has implemented default operators for each type of mesh and dimension

that is currently available. However, there are often different numerical methods for
calculating the results of a physical operation.

POoMA operator, or can override the default with a different customized calculation. This
is a fairly straightforward thing to do, since we are using the object-oriented features of
C++ for the framework.

This was an important feature to have when we implemented the axisymmetric
geometry for a two-dimensional mesh. The mesh itself is laid out in regular Cartesian
coordinates. But, instead of the Cartesian x-y geometry, the mesh is meant to represent an
axisymmetric r-z geometry, with the axis of rotation around the z-axis, and the r-coordinate
defining the radius. The default POOMA operators in this case are for the Cartesian x-y
geometry. We were able to easily ovenide the default operators, and provide the correct
ones for an axisymmetric geometry (but only in the case where that is desired).

or three-dimensional Cartesian geometry, as well as two-dimensional axisymmetric
geometry. We will add other options, such as one-dimensional spherical geometry, as
interest warrants.

Another important characteristic of the operator objects is that high-level coding that
uses an operator is written once, and will never have to be changed (with the addition of
new geometry options). This relieves the programmer of tedious code maintenance, and
confusing arrays of if tests for different mesh options. For example, following is a line of
coding from the Lagrangian predictorarmtor module:

Tmlote uses the concept of operator objects, which can either call the default

Therefore, our Eulerian application can currently be compiled and run in one-, two,

Velocity = 0ld.Velocity + Div(Stress, DivStress) * dt / (VertDensity + EPSILON)

This line of coding updates the velocity according to the divergence of the stress. Velocity
and 0ld.Velocity ~IE vector fields describing the velocity at two different time levels
(required for a predictorcorrector algorithm). The divergence operator Div operates on a
tensor field, in this case d e d Stress. DivStress is a reference to a field that stores the
output of the divergence operation. (It is provided solely for efficiency reasons.) The
parameter dt is a constant representing the time step. VertDensity is a scalar field that is the
average density at the vertices of the mesh (calculated by averaging the densities around
each vertex). EPSILON is a macro that just represents a very small number, to avoid a
divide by zero.

all dimensions. It will never have to be changed.

chosen at run-time in the input file. This will be discussed in more detail below.

The impressive thing is that this line of coding works for all mesh geometries and

The actual operator used for a particular application and particular problem is

B. DataDMory

One traditional problem that needs to be solved in any hydrocode is how to get the
diffemnt modules to communicate with one another. Different physics packages need to be
able to access different sets of variables, to either modify or to use those variables. For
example, a material strength yield surface model for a particular material might need to
access the pressure, density, stress deviators, and strain rate for that material, but would
not need to access other state variables. Whereas another model of the same type might
need the density, energy, and stless deviators. The usual way of solving this problem is to
pass the required variables, or pointers to arrays of variables, in the subroutine call for the
model. This can lead to hard-to-maintain, or confusing coding.

DataDirectory. The DataDirectwy is basically a map that associates the address of a field of
variables with a unique name (represented by a string). Now, we need only pass the
address of (or a reference to) a DataDirectory into a physics module (rather than a whole list

The way that we have dealt with this situation in Tecolote is with what we call a

of field addresses). That module, then, can look up the fields that it requires in the
DataDirectory. A physics module is allowed also to put a new field into the directory that
can then be shared with other modules. Actually, the DataDirectory can not only store
locations to POOMA fields, but also locations for any types of variables (e.g., integer,
Boolean, float, string, and arrays of the former) that a physics module might want to share
with other modules.

The DataDirectory has a tree structure, that is analagous to the Unix directory
system. This is to accomodate the fact that, in a given application, one might require two
sets of variables at different snapshots in time, or sets of state variables for the different
materials.

Perhaps it is best to illustrate the DataDirectory by an example of how it would be
arranged for the Eulerian application. (Each application and each unique problem running
that application work together to create a unique DataDirectory.) For the Eulerian code,
there are a few fields of data that reside at the highest level of the DataDirectory. That is,
they are time- and material-independent. An example of this would be the field that holds
the cell invariant Eulerian volumes. Then, the next level down in the DataDirectory would
include fields of variables that are required to exist simultaneously at two different time
levels for the Lagrangian predictorcanector step of the calculation. These would be such
fields as the average pressure or density in a cell, for which there is only one value in a cell,
no matter how many materials in the cell. Finally, at the next level down are the fields that
are material dependent, such as density, pressure, and energy. A unique copy of each of
these fields is required for each material. Additionally, for each field for each material, two
copies are required for the two times of the predictor-corrector algorithm. It is also
possible to imagine, in the future, that there might be a further level down in the hierarchy.
A given material might have different species, that each q u i r e their own fields. The
DataDirectory is infinitely adaptable.

C. Simplified I/O

Tecolote has many featum with regard to I/O that make it more or less automatic.
The goal is to free the physicist-programmer from spending valuable time in coding either
the input to hisher new model, or adding new output to the various types of dumps written
out.

In the case of model parameters, the programmer can merely register these
parameters as being possible input. This is accomplished by the fact that models are
objects, the parameters are object members, and the framework knows that certain
“persistent” parameters can be initialized in an input file that creates speclfic instances of a
model object. Of course, all these object members have default values, in case the
parameters are not initialized in the input file.

Tecolote outputs a number of different types of dumps. For example, there is a
restart dump that contains that information required to restart aproblem from aparticular
snapshot in time. Additionally, there me special dumps of fields that one might want to
look at graphically, and various kinds of ASCII dumps to keep track of the progress of a
problem. As new models are added to the physics repertoire, there will be new constants
and variable fields that should be included in the output files. Tecolote has a method for
registering variables for diferent kinds of output. Once the registration is specified, the
model programmer need do nothing further. All appropriate output will be taken care of
automatically.

D. Run-Time Instantiation

The algorithm and model objects required for a given simulation, using a given
application, are created at run-time from an ASCII input file. This has several advantages.

One is that space on the computer is not set aside until run-time. This is particularly
important when using a large framework containing many algorithms and models, perhaps
most of which will not be required for a given run.

Another is that the code user can create a customized application just from the input
file, using the existing algorithms and models provided by the framework. No recoding of
the main program is required.

Thirdly, one can easily compare a new model, algorithm, or operator with another
of a like kind, and be assured that all other parts of the calculation are identical. This
removes the comparing-apples-and-oranges problem in comparing the effectiveness and
accuracy of different ways of doing the same operation. Also, it makes it quite easy to
determine differences in timings for the different methods of accomplishing the same goal.

VI. Conejo -- An Eulerian Application

application, which we call Conejo. The physics in the application is the same that is
represented in the MesaRagosa [3,4] family of codes. However, there is one difference in
that the application can be compiled for one-, two-, or three-dimensional Cartesian
geometry, or twodimension axisymmetric geometry.

change according to the PdV work done on a cell. Then there is an advection step in which
the material is remapped back onto the original Eulerian mesh. The remap step uses the
vanLeer method of limiting to reduce noise in the calculation. The amount of material
advected across a cell interface in the remap step for a mixed-material cell is caldated
using the Youngs’ method to place interfaces between the materials in the cell. Conejo uses
operator splitting for the advection remap, and therefore, only considers one direction at a
time.

a feel for the maximum size of problem that we will be able to run (for an Eulerian
application), as well as to get a feeling for the timings, as compared to our other Eulerian
codes.

supercomputer (known as ASCI Mountain Blue) that was purchased by Los Alamos
National Laboratory. The initial configuration of the machine (more capacity will be added
later) is 8 boxes with 32 processors each. Each box has 16 Gbytes. The theoretical peak
speed is 400 m o p s per processor, although the likely speed for a real optimized
application is about 50 Mflops per processor.

At this point, it is a bit premature to report timings for our problems. More work is
required to completely implement the compressed field structure. However, we are already
running within a factor of 4 (on the Cray/SGI machine) of the Eulerian hydrocode written
in C, that also runs on the same machine.

We have been able to run a 256X256X256 7-material problem on one box of ASCI
Blue. Again, our capacity will increase as the field compression capability is optimized.
We are just beginning to look at various optimization issues now.

The first application that we have implemented using the Tecolote is an Eulerian

Conejo has a Lagrangian predictor-cmector step in which the vertices of the cells

We have been running some simple test problems using Conejo, so that we can get

The platform that we have beea using for the test problems is the new Cray/SGI

VII. References

1. [to be provided]

2. K.S. Holian, “T-4 handbook of material properties data bases, Vol. IC: equations of
state”, Los Alamos National Laboratory Report LA-10160-MS (1984, unpublished).

3. K.S. Holian, D.A. Mandell, T.F. Adams, F.L. Addessio, J.R. Baumgardner, andS.M.
Mosso, ‘MESA: A 3d computer code for armor/anti-mor applications”, in Proceedings
of the Supercomputing World Conference (San Diego, CA, June 1619,1990).

4. D.B. Kothe, J.R. Baumgardner, S.T. Bennion, J.H. Cerutti, B.J. Daly, K.S. Holian,
E.M. Kober, S.J. Mosso, J.W. Painter, R.D. Smith, W.H. Spangenberg, M.D. Torrey,
“A parallel finitedifference Eulerian method for transient threedimensional multi-material
deformation and fluid flow”, Los Alamos National Laboratory Report LA-UR-93-2400
(1993, unpublished).

'ubi. Date (11)

sponsor Code (1 8)
JC Category (19)

DOE

