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Abstract 

Drift wave maps, area preserving maps that describe the motion of charged 

particles in drift waves, are derived. The maps allow the integration of par- 

ticle orbits on the long time scale needed to describe transport. Calculations 

using the drift wave maps show that dramatic improvement in the particle 

confinement, in the presence of a given level and spectrum of E x B turbu- 

lence, can occur for q(r)-profiles with reversed shear. A similar reduction in 

the transport, i.e. one that is independent of the turbulence, is observed in 

the presence of an equilibrium radial electric fieId with shear. The transport 

reduction, caused by the combined effects of radial electric field shear and 

both monotonic and reversed shear magnetic q-profiles, is also investigated. 

PACS numbers : 52.25.Fi, 52.55.-s, 52.65.-y 
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I. INTRODUCTION 

In the reversed magnetic shear experiments on the Tokamak Fusion Test Reactor 

(TFTR) [l], the particle transport behaves as though a barrier to  transport exists near 

a minimam of the h t m ,  q e -  This transport barrier persists through the course of 

the high power portion of the discharge (t -N 2.5s to 3.5 s) and correlates with the location 

of a qmin that occurs initially at r / a  21 0.35 and subsequently decreases to r /u  21 0.3 at 

t N 3s, at which time q(0) N 3.5 and qmin 2 2. It is reported that an interpretation of 

the particle transport with a diffusivity De without a pinch term shows a decrease in. De by 

a factor of about 40 in the reversed shear region ( ~ ' ( r )  < 0). Changes in the temperature 

profiles are less dramatic than those in the density profiles, although power balance studies 

with the transport code TRANSP show a large drop in the ion thermal diffusivity. Also, 

the electron temperature profiles change little and xe decreases at most by a factor of 2. 

Explaining these changes provides a puzzle that we address in this paper. 

The above results are consistent with a model of the electron thermal transport caused by 

ambient drift wave turbulence, where modest changes in the turbulence levels are consistent 

with small changes in the growth rates found in a detailed eigenmode study of Rleversed 

Shear (RS) and Enhanced Reversed Shear (ERS) plasma [2]. Dong et al. [3] also find only 

modest changes in the Ion Temperature Gradient (ITG) and trapped electron mode growth 

rates induced by reverse shear. Thus, we are lead to a picture in which there is a dramatic 

improvement in the particle confinement with reversed shear profiles, without necessarily a 

significant change in the turbulence level. Here we show how such a reduction in triLnsport 

can be explained by considering test particle motions in a fixed level of drift wave activity. 

A consequence of the reduced particle transport across the q-reversed surface is the onset 

of a growth of the core density and pressure gradient, which in turn, produces a growing 

Shafranov shift of the core plasma. Both the increasing Shafranov shift and the increasing 

&-shear reduce the drift wave growth rates. These consequences would be consistent with 

the change in the turbulence reported in Mazzucato et  al. [2]. 
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An important technique that allows the long-time integration of particle orbits is to 

replace the actual guiding-center orbits with those of a symplectic map, a map that has 

the same Hamiltonian structure as the guiding-center equations. Individual orbits obtained 

from the map can differ qualitatively from those obtained from the differential equations, 

but statistically maps tend to give correct quantitative predictions. In related studies by 

Park et al. [4] the exact ion orbits in full toroidal geometry are followed and these results 

complement the present study by maps. As a practical matter, however, only with maps can 

one follow orbits accurately for the lo6 time steps required to go from the wave correlation 

time scale T~ - 1/Aw - s to the transport time scale of rtr - a 2 / D  - 1 - 10 s. 

We derive maps that describe particle orbits in drift waves. These maps reveal that the 

improved confinement for the reversed shear profile arises from a change in the topology 

of islands and the concomitant persistence of invariant curves in a layer in the vicinity of 

the point where the shear reverses, the shearless point. Away from the shearless point, we 

show in Sec. I1 how the transport degrades to that given by the standard map. Near the 

shearless point, however, the map characterizing the motion is a nontwist map (see [5-71) that 

possesses two parameters. For the same fluctuation spectrum we show that the transport is 

substantially reduced for the reversed shear profile. 

Specifically, in Sec. I1 we derive local drift wave maps that describe the plasma transport 

in the vicinity of a given radial position with a given q-value (or rotational transform N l / q ) .  

Away from the shearless point, the local drift wave map possesses the form of the standard 

map, but at the shearless point it has the form of the standard nontwist map that was 

introduced in [5-71. In Sec. 111, we derive the global drift wave map, which retains the entire 

radial information of the q-profile. The global drift wave map is used in Secs. IV and V 

where we investigate the dependence of transport upon magnetic shear and the inclusion of 

the radial electric field with shear. A detailed depiction of the structure of the maps in the 

vicinity of the shearless point is given in Sec. VI. We summarize and conclude in Sec. VII. 
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11. DRIFT WAVE MAPS 

The physical motivation and justification for introducing a map in place of the diffelrential 

equations follows from the  electromagnetic (laser and microwave) scattering experiments 

that show a wide frequency spectrum for a fixed scattering vector k 181, [9]. Numerous 

experiments indicate that for each drift wave vector wavenumber there is a broad spectrum 

7w0, n = 1,2,  e , N of frequencies. Here wo is the lowest angular frequency with substantial 

amplitude in the drift wave spectrum. We idealize this spectrum by taking the limit I\J + 00 

and furthermore assuming phase coherence of the components. We show presently that the 

result of these assumptions for normal magnetic shear profiles is to produce the standard 

map with the well known E x B diffusivity DE = Gi7r/w0 for both the ions and electrons. 

Here, = CE x BIB2 is the drift velocity induced by turbulent fluctuation. This albeit 

over-simplification of the drift wave spectrum captures the essential features of the E X B 

turbulent transport in monotonic q(r)-profiles. 

M'e consider an electric field that possess a radial mean part plus a fluctuating pa.rt. For 

the fluctuating part we use the model drift wave spectrum 

$(LE, t )  = @m,l COS(TTZ~ - ZV - nwot)) 
m , b  

where $ is the electrostatic potential such that E = -V$. In this section we assume 4m,l to 

be constant for local maps, though we will consider it as a function of 8 and r for the global 

map in Sec. 111. In gaussian units, the guiding-center equations of motion are 

giving 

dr c lad 

r -  = V l I B  + 
- = ---- 
dt  B r a d )  

d t  
d.9 Ba c c E ~  

- 7' 

4 

(3) 

(4) 

( 5 )  



where x = (T,  29, cp) and E,. is the equilibrium radial electric field. For electrostatic modes 

B, = 0 and magnetic field errors are neglected. We also assumed B 21 B,+, >> Be as usual. 

From Eqs. (1) and (3), 

Since 

+oo +oo 
cos(nw0t) = 27r G(w0t - 2nn) and sin(w0t) = 0 

n=-m n=-ffi 
(7) 

by symmetry, 

for this model spectrum, giving impulsive jumps in r at times t n  = 27rn/w0. The jumps 

imply that every correlation time T~ the particle takes a new E x B step. 

Now, for convenience, define the action I ( T / a ) 2 ,  where a is the minor radius of the 

torus. Assuming one mode M ,  L dominates in Eq. (8), we have 

d I  2 r d r  ~ T C  - - M ~ M , L  sin(M6 - L p } x 6 ( u o t  - 27rn). - - _ - _ -  
dt  a2 d t  a2B n 

(9) 

Integrating Eq. (9) over one jump and dropping the subscript on the electrostatic potential 

4 gives 

4TC M@ 
a2B wo  IN+^ = IN  + -- sin(M29N - LpN) .  

Defining the relative phase ?,b = M - 6 ( t )  - L p ( t ) ,  from Eqs. (4) and (5) we have 

- d$ = M- 8 9  (q - =) GET - L-. Vll 
d t  rB  R 

For ions in H-mode or ERS-confinement-mode we need to keep z,.. For electrons or ions in 

Lmode drop cET/BO << vll. We ignore the term in this section and return to  the &-effect 

in Sec. V. Integrating Eq. (11) between the jumps in Eq. (9), 
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We wish to write a map for I ,  ?,b that has the form of the Standard Nontwist Map (SNM) of 

Refs. [5-71: 

Suppose we have a toroidal magnetic field with q(r) = 8 with a local minimum qm = 

q(r,),q'(T,) = 0. Since 2 = 2% = 0 at rm, q has a local minimum at Im = I(rm). 

Considering the motion of a particle near r, and Taylor expanding q about Im yields 

where q: = q"(1,). Substituting q from Eq. (14) into Eq. (12) yields 

To put d $ / d t  into the form of the SNM, we Taylor expand Eq. (15) about I = I ,  tlo find 

We integrate Eq. (16) over the time step rc to  get 

where 6 E A I  - Lq,. For I on the right-hand side we choose  IN+^ t o  make the map 

area-preserving . 

Introducing the variables, 

we can write the map in the form of the SNM: 
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All of the variables X, Y, CY, and ,O are dimensionless. We can transform these dimensionless 

taking the average, 

(Y;) = (yo’) - 2 ~ 0 ~  
t=O 

and assuming that the phase is uncorrelated between successive iterations, gives 

(28) 
(Y;) = Y: + ,P rc1s in2(2nxz) )  = Yt  + -. NP2 

2 r=O 

Noting that YO = k(I0 - Im) ,  it is seen that all constant terms in Eq. (25) vanish. Setting 

N = % I  we can solve Eq. (23) for Dr : 

2 NP2a2 T cMq5 
Dr = 16tk2rg = (K) ’ 

~ - 

variables back to the physical ones by 

1c, = 2nX,  f 2  = a2 (-) 2qms 1’2 Y + T Z .  

Mq; 

Now consider the diffusion from a point ro near r,. We define the diffusion coefficient 

Dr by 

and thus D, is given by 

Integrating through Eq. (20), 

N-1 

YN = YO - ,O s in (2n~ i ) ,  
i=O 
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The conditions on a and for Eq. (29) to  apply must be determined numerically. 

Now consider the motion of a particle near a point r = r* away from r,. Assuming 

4: = q’(r,) # 0, to first order in r - r* we have 

From Eq. (8)) we know that if one mode, say L, M ,  dominates, then 

If we integrate over one jump, as we did to get Eq. (lo), we obtain the Standard Twist Map 

(STM) : 

Calculating the diffusion coefficient about a point ro near T* gives 

which is the same D, as in Eq. (29). The conditions for the onset of diffusion are different, 

but once diffusion sets in the diffusivity is the same regardless of whether or not the q-profile 

a has vanishing derivative. 

111. THE GLOBAL MAP 

The standard twist and nontwist maps derived above are local maps that apply in the 

neighborhoods of points with the characteristic features of the rotational transform selected 

for the expansion. When maps are advanced far into the future, however, the particle may 

leave these local neighborhoods. Thus, it is of considerable practical importance t o  write 

global maps, even if qualitative in terms of the particle trajectories in the true tokamak 

system, that describe the particle orbits for all r / a  5 1. 
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The problem we wish to address is the particle transport barrier in the RS and ERS 

experiments. In the reversed magnetic shear experiment the particles act as though there 

were a barrier at the edge of the reversal region [l]. Within the context of a model, we will 

show that it is the nonmonotonicity of the l/q(r)-profile, resulting from the hollow current 

profiles, that causes, generically, a particle transport barrier. We show this phenomenon here 

without changing the fluctuation level for the onset condition for a transport barrier. The 

basic reason for the change in the nature of the transport is the change in the particle-wave 

phase relation at the qmin surface. The same type of effect occurs when certain conditions 

are met with shear in the ET profile. Whether or not the magnetic or electric field shear 

profiles dominate, depends on the species and pitch angle of the particles. 

For the global map, in order to determine the spatial variation of the mode amplitude 

q5m,~, we adapt the model of Connor and Taylor [lo] for drift waves in toroidal geometry. In 

their model, electrostatic drift wave fluctuations of frequency wo are given by 

COS [-OR (Z - m)2 /2 - (m + M ) d  + Lp - ~ o t ]  , (35) 

where $0 is the mode amplitude, OR and 01 are real and imaginary parts of 0, x = kps,  

k = Lq/r,  p = T - T O  is the radial distance from the rational surface given by M = Lq(ro), 

and S ( T )  = (r/q)(dq/dr) is the magnetic shear function. 

In Eq. ( 3 5 )  we choose CT as u = $2 for the fluctuation in positive shear region and as 

0 = -EL& wo bs for that in negative shear region in order to represent outgoing waves propagating 

away from their rational surfaces. Thus, 01 < 0 gives a convergent sum in Eq. (35) in both 

cases. Here, the diamagnetic frequency w* = (kcT,)/(eBL,), L, is the density scale length, 

E ,  = L,/(q&.r), & is the major radius of magnetic axis, r = T,/T,, b = k2p?, and pi is the 

ion gyroradius. 

Assuming the same spatial variation of the mode amplitude in Eq. (35) for whole fre- 

quency spectrum W O ,  we can get from Eqs. (3)-(5), the global map: 
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47rc a$ IN+I  = IN + -- 
woa2 B 60 ’ 

Backing the particle dynamics with the map rather than with the differential equ.ations, 

allows us to effect long time (At - 1s) integration. Integration on this time scale would be 

prohibitive with the differential equations given in Park et  al. [4]. 

IV. MAGNETIC SHEAR DEPENDENCE OF TRANSPORT 

\$’e now investigate numerically the transport properties of ions by integrating the drift 

wave map, Eqs. (36)-(38), for the model fluctuations of Eq. (35) together with the Monte 

Carlo Coulomb collisional pitch angle scattering. 

Assuming that small angle Coulomb scattering changes the direction, but not the mag- 

nitude. of the velocity, the collisional scattering operat,or for the change of the velocity 

variables was derived in Ref. [4]: 

Here, pi1 u ~ ~ / f l i ,  Ri is the ion gyrofrequency at the magnetic axis, and p mv:/21? is the 

magnetic moment. In Eqs. (39)-(40)) subscripts i and f refer to  the initial and final values, 

respectively. Two angles Q and y are determined from two random numbers 71 and 72 on 

[ O J ]  as 

Q = 27T71, 

where v is collision rate and u6t << 1 is required. 

We have performed simulations for the TFTR and TEXT system parameters. ]For the 

Levinton et al. 111 discharge in TFTR we use R = 260cm, a = 90cm, and B = 4.6T. 
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For TEXT we use major radius & = 100cm, minor radius a = 26cm, and centerline field 

B = 3T.  The results are qualitatively similar for the same q-profiles. While TEXT did not 

operate in the RS regime our earlier study 141 of transport used TEXT parameters. Two 

q-profiles, the normal Q(T)  = 1.99+1.94(~/a)~ and the reversed Q(T) = 1.99+7.76(r/c~-0.5)~ 

are used (see Fig. 1). We choose wo = 1.93 x lo5, L = 6, M = 15, L,/& = 0.2, and 6 = 0.5 

which do not contradict the assumptions for Eq. (35). 

In Fig. 2 we show the time dependences of the running diffusion coefficients, 

for an ensemble of D+ ions composed of 1024 passing particles that initially have T = 

2 - 7.2  cm for core ions and random 29's with the kinetic energy E = 1 keV and X p/& = 

1 x lo-' with &, = 0.3eV and u = Is-l. The integration time step is 0.1 x 2 N 3 . 2 6 ~ s  and 

total integration time T is IO6 timesteps. 

The running diffusion coefficients converge to well defined constant values, indicating 

that the radial transport is a diffusion process. We can obtain the diffusion coefficient from 

time series of D(t )  as 

where TO is the time at which convergence is observed to set in. 

The diffusion coefficient is smaller for the reversed shear case and it can be seen that the 

radial position of the minimum shear acts as a barrier to radial transport in that case. This 

shows that the change in particle-wave phase relation at the minimum q surface induces the 

change in the nature of the transport. 

V. ELECTRIC SHEAR DEPENDENCE OF TRANSPORT 

A decorrelation of the drift wave fluctuations with the plasma, which is similar to that 

profile is large induced by the reversed magnetic shear, also occurs if the shear in the 
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enough. For 1 ~ 1 1 1  < c l g l  the rotation in 6 is dominated by the E, profile, rather than by 

the magnetic shear. Evidently, in Eq. (37) we should replace the 6 with 

In Fig. 3 we present the running diffusion coefficients in the presence of E T  by solving 

Eqs. (36), (38), and (44) for the ensemble and system parameters used in the calculations 

of Fig. 2. The normal q-profile of Fig. l(a) is used. The integration time step is 0.2 x 

21 N 6 . 5 1 ~ s  and the total integration time T is lo6 timesteps. We use two equilibrium 

potentials for this calculation, in order to show the effect of shear on the E x B poloidal 

velocity generated by ET. In the first case, @ol(r) = -@o(l - ( T / u ) ~ )  which induces vp/r  = 

C E , . / ( T B ~ )  - 1 + E ;  i.e. the profile induces small shear in the E x B poloidal velocity. In 

contrast, the second equilibrium potential @po2 = - Q o ( l -  ( T / u ) ~ )  exp(1- r /u ) ,  results in a 

strongly sheared ep/r profile. 

wo 

For (Pol, wbch has little shear, the diffusion coefficient is not much different from that of 

the no case of Fig. 2(a). In contrast, the results for @02 shows that ET generates enough 

shear in the E x B poloidal velocity to suppress the transport induced by the drift wave 

electrostatic fluctuations, as first proposed by Biglari et al. [ll] and numerically confirmed 

for the global toroidal system in Ref. [4] by solving the coupled ordinary differential equations 

for the exact guiding-center trajectories. When we use the Er profiles in Fig. 3 in the reversed 

q equilibrium, we get diffusion coefficients each of which is smaller than their counterparts 

in Fig.3. 

For Iv,, 1 - c 1% 1 the rotation in 6 is induced by both the q and ET profiles, and the 

relative direction of rotation generated by the magnetic and electric shear is important. 

The rotation components might add up, or compensate each other, as can be easily seen in 

Eq. (44). In Fig. 4 we present the running diffusion coefficients in the presence of E,. with 

the reversed q-profile given in Fig. l(c) by solving Eqs. (36)) (38)) and (44). The ensemble 

and system parameters used in these calculations are the same as those of Fig. :2. The 

integration time step is 0.2 x 2: 6.51~s  and the total integration time T is lo6 timesteps. 
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In the first case, @ o ~ ( T )  = %,(l - (1 - ~ T / u ) ~ )  which induces VJT = cE,./(T&) > 0 for 

T < a/2, and vice versa. In this case with @o = lkeV the electric field induces poloidal 

velocity in the opposite direction to that induced by the magnetic shear, and the diffusion 

coefficient is larger than that of Fig. 2(c) for the case without radial electric field. In contrast, 

4104 = @ o ( l -  2 ~ / a ) ~ ,  induces T+/T = cz,/(TBt) < 0 for T < a/2 and, vice versa. In this case 

the diffusion coefficient is smaller than that of Fig. 2(c) 

VI. MAP STRUCTURES IN A REVERSED SHEAR PLASMA 

To isolate the effects of reversed shear and radial electric field profiles from those of the 

radial variation of mode amplitude, random noise of collisions, and others, we consider the 

simple global map including a single mode of, M , L ,  with no radial variation of the mode 

amplitude. We solve the following mapping equation, which is similar to  Eqs. (10) and (12), 

but includes the effect of equilibrium radial electric field: 

I n  

Here the equilibrium radial electric field E,.(I) = -$Irxad, the initial total energy is Et, 

and e is the charge of the particle considered. We investigate the map phase space structure 

by calculating particle trajectories with various initial conditions in configuration space, for 

the reversed shear case above. In Figs. 5 and 6 we present the map phase space for cases 

with Et = 167 and 370eV, which were chosen to make the denominator of the major rational 

rotation number near the minimum q-surface be odd and even integers for each case. In 

the case of Fig. 5 the surface with the rotation number 1 is located near the minimum 
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q-surface, and in the case of Fig. 6 the surface with the rotation number 3/2 exists. All 

the other parameters are same as those used in the calculations of Fig. 2(c)-(d). In these 

calculations we do not consider the equilibrium electric field. Figures 5 and 6 show the role 

of the minimum q-sudace, Le. the shearless curve, in producing a transport barrier, and the 

typical separatrk reconnection of odd-period and even-period orbits of the SNM (see [6]). 

We show the rotation number profiles for both cases in Fig. 7. 

To see the modification of the rotation number profile due to the radial electric field, we 

consider the model electric field 

- 0 . 6 ~  EO E, = - 

The magnitude of above radial electrostatic potential (a&) is a few keV, which is enough to 

appreciably modify the rotation number profile. The resultant total rotation number profile 

has three extremum surfaces as shown in Fig. 8(b). All of these surfaces act as confiinement 

barriers. as can be seen in Fig. 8(d). We used 4 = 6eV and rt = 1 keV for this calculation. 

Observe that the transport is suppressed where the total rotation number profile R1+ Rz is 

shearless, which is a universal property in area preserving nontwist maps [6]. 

VII. CONCLUSIONS 

We derived the drift wave maps to allow the integration of orbits on the long transport 

time scales, which is practically impossible for the differential equations governing the exact 

guiding-center orbits. Calculations using the drift wave map showed that a dramatic im- 

provement in the particle confinement, in the presence of E x B turbulence, can occur for 

reversed shear q(r)-profiles, without necessarily a significant change in the turbulence level. 

The improved confinement results from the change in the form (topology) of the invari- 

ant torii associated with the nonmonotonic winding number in the area preserving map. 

The conditions for the presence of a barrier involve both the dimensionless wave am.plitude 

parameter p and the phase parameter Q of the standard nontwist map. We show that once 
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the ,!? parameter is large enough for the onset of diffusion across the qmin surface, the dif- 

fusivity is exactly the same value as that obtained for the chaotic regime of the standard 

map, which applies in the case of monotonic (normal) q-profdes. Similar results exist in the 

case of combined &-shear and reversed shear q-profiles when account is taken of the actual 

rotation number profile for the transport of particles with a specified kinetic energy, pitch 

angle, and charge-to-mass ratio (species). 

A change in the particle-to-drift wave fluctuation phase relation, similar to that induced 

by reversed magnetic shear, also occurs if the shear in the E, profile is large enough. For 

IZIlI - c IE; - I the rotation in 19 is induced by both q and E, profiles, and the relative direction 
I of the phase rotation generated from magnetic and electric shear is important. The two 

rotational components might add up, or compensate each other, as shown in the examples. 
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FIGURE CAPTIONS 

Fig. 1 Radial profiles of safety factor q(r) and shear s ( r )  F r/qdq/dr for normal (a) and (b) 

and reversed (c) and (d) shear cases. 

Fig. 2 Time dependences of the running diffusion coefficients and the location of particles on 

the poloidal section at the last moment of simulation for normal ((a) and (b)) and 

reversed (c) and (d) shear cases. 

Fig. 3 Radial profiles of equilibrium potential and running diffusion coefficients for @ p o l  (a) 

and (b) and <Po2 ((c) and (d) in normal q equilibrium. 

Fig. 4 Radial profiles of equilibrium potential and running diffusion coefficients for <Po3 (a) 

and (b) and (c) and (d) in reversed q equilibrium. 

Fig. 5 Surface of section for the structures in the map in Eqs. (45)-(49). The drift wave 

potential amplitudes are (a) 4 = 0.3eV) (b) 4 = 3 eV, (c) 4 = 5eV, and (d) 4 = 8eV 

in the case that a period-odd orbit exists near the shearless curve of minimum q surface. 

Fig. 6 Map structures for (a) 6 = 5 eV, (b) 4 = 8 eV, (e) 4 = 12 eV, and (d) 4 = 18eV in the 

case that a period-even orbit exists near the shearless curve of minimum q surface. 

Fig. 7 Rotation number profiles for the cases in Figs. 5 and 6. 

Fig. 8 Rotation number profiles and surface of section for the map structures without (a) 

and (c) and with (b) and (d) radial electric field in Eq. (50). 
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