
FUSION RESEARCH CENTER

D O E / E R / 5 3 2 6 6 - 5 0 FRCR #454

AN OBJECT-ORIENTED DECOMPOSITION OF THE
ADAPTIVE-HP FINITE ELEMENT METHOD

PROCEEDINGS OF THE SECOND ANNUAL OBJECT-ORIENTED
NUMERICS CONFERENCE

APRIL, 1994
SUNRIVER, OREGON

J.C. W h y
Fusion Research Center

The University of Texas at Austin
Austin, Texas 78712-1068

December 13, 1994

THE UNIVERSITY OF TEXAS

Austin, Texas

An Object-Oriented Decomposition of the Adaptive-hp Finite
Element Method

J. C. WiIey
h i o n Research Center

The University of Texas at Austin
Austin, Texas 78712

Abstract
Adaptive-hp methods are^ thoae which UBO a refbment control strategy driven by a I d

error estimate to l o d y modify the element size, h, and polynomial order, p. The result in an
unstructured meah in which each node may be associated with a di&rent. polynomial order
and which generally require complex data structures to implement. Object-oriented design
strategies and languages which support them, e.g. C++, help control the complexity of them
methods.

Here an ovenriew of the major c k and class structure of an adaptive-hp finite element
code is described. The essential finite element stnrcture is described in terms of four area of
computation each with ita own dynamic charactensti . a. Implicationz~ of converthg the code
for a distributed-memory parallel emrironment are ala0 dimmed.

Introduction
Finite element technique3 have been s u d y used in engineering calculations for many years
and have' a rich 'history of fundamental mathematid support. Comparstively recent develop
menta have shown that adaptivbhp finite element m e t h h can achieve exponential a~ compared
to polynomial decrecrae in the solution error for in- resolution for certain problemn and
can therefore make fesaible the S O ~ U ~ ~ O M of problema not previoudy practical on a give size
machine[2][4}. Adaptimhp methods are those which u98 a refinement control strategy driven by
a local a poatcriori ermr estimate to locally modify the element size, h, and polynomial order,
p. The result ia 80 UIlatrnCtured mesh in which each node may be associated with a Werent
polynomial order. While these methoda gve great promise, they are not widely d Part of
the reason is that the data structurea needed to support the adaptive hp method am complex
Object-oriented design strategies and hguagea like C++ preseat the engineer ~ I L opportunity to
restructure the design of finite element codes to control.the complexity of thess modem methods
A typical design ;strategy for a finite element code examhes the pers st ions and infomation need

for each stage of the computation and then attempts to create a data structure which contains
the minimum information needed for the entire calculation. M&y efficient data structures have
been published. The problem is that even in well written codes the details of these data struc-.
tures then permeated all areas of the code and make understanding, maintaining, and modifying
the code difficult. Significant modifications to the data structure generally require a complete
rewrite of the code. Object-oriented design changes the emphasis on data structure and through
the mechanism of encapsulation attempts to isolate the details of the data structures from the
algorithmic considerations.

In this paper we present an object-oriented design of an hp finite element code primarily
intended for transient nonlinear parabolic calculations. The object oriented design is based on
work by Devloo[3] and Rude[7] and earlier hp work by Oden[2][4][6] and others. We first describe
a typical hp finite element and the constrained 1-irregular meshes. A typical finite element
calculation is then outlined and the additional steps required by the adaptive mechanism are
discussed. Next we describe a set of abstract classes called grids, meshes, and nodes which are
used to organize the actual class structure of the problem and to establish communication patterns
and responsibilities. One of the goals of the design is to allow the code to easily migrate to a
parallel distributed-memory message-passing computational environment. The problem is then
divided into four main areas: geometric, topological, algebraic, and physical/material. Each of
these areas is then divided into grids, elements, and nodes. The flow of the overall calculation is
driven by an analysis class which present high level operations to the main application program.

Object-oriented class libraries are typically considered from two view points, that of the cus-
tomer and designer. With scientific calculations, however, one finds the user often changing
viewpoints going from one in which the library is viewed as a block bax to one in which the scien-
tist/engineer would like to explore new algorithms that require changes to the internal mechanism.
One goal of this object-oriented design is to organize the calculation into a hierarchy which allows
the user/designer to easily make modifications at any level with minimum propagation through-
out the remainder of the code. This requires that each major component present a well defined
interface which minimizes access to its internal data structures. With object-oriented design we
are effectively replacing the minimum information data structure requirement with a minimum
interface requirement.

Adaptive Finite Element Method
The adaptive finite element method typically starts with a partial differential equation, PDE,
expressed in weak bilinear form over a given domain with appropriate boundary conditions. The
domain is partitioned into elements and the solution is expressed in terms of continuous polyno-
mials within each element and usually having C" continuity between elements. Each element is
mapped to a master element and integrals are performed elementwise in normalized coordinates

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

I

-*- ..- mi I v.- . _ , _.... . _ . _ . _ . . . * , ,L,,..< . . - >--I-

using the Jacobian of transformation. The element integrations yield relatively small dense ma-
trices and vectors which are then assembled (implicitly) into a large and usually sparse linear
system. This system is then solved either directly or iteratively. A error estimate is then made.
If the error is not below a specified tolerance, the partition is modified and the solution repeated.
Nonlinear problems require additional iterations.

3 6 2

Figure 1: Master element.

The nine ljoint quadrilateral shown in Fig.(l) is an example of a typical master element for
two-dimensional calculations[5]. There are three different types of nodes and associated basis
functions: corner, edge, and bubble. The basis functions are constructed from tensor products
of the hierarchical polynomials. The corner functions are nonzero at only one corner node and
fall linearly to zero at each of the other corners. For bilinear apprmimations, only the corner
basis functions are used. Edge functions represent quadratic and higher order polynomials which
are nonzero along one edge, vanish at the comers, and fall linearly to the opposite edge. Bubble
functions are tensor products of higher order polynomials and vanish along the edges. The number
of degrees of freedom, dof, associated with an element is 4 + &(pi - 1) + (p5 - 1)2 where pi is
the polynomial order. For example if each of the edge nodes is fourth order then the bubble node
would typically have nine basis functions for a total of 25 dof. The element matrix associated
with this element would then 25 x 25. It is not uncommon to have up to sixth or eight order
polynomials appearing in the problem. The size of element matrices can be seen to range from

4 x 4 for linear elements to 49 x 49 for sixth order polynomials for a single equations. For systems,
these sizes are multiplied by the number of equations. The-goal of the padaptive finite element
method is to choose an optimal p for each node in the grid. Due to the large variation in storage
required to describe each element, dynamic storage allocation is important for storage efficiency.

For systems of equations like those found in fluid calculations, primary variables may require
different polynomial approximations for consistency. For example in continuous pressure approx-
imations, the velocity components need to be one or two orders higher[9). This adds additional
complexity to the description of the element &s each component of the system may require a
different polynomial order. When computing the dof for an element, the equation type as well as
the node degree must be considered. The point is that the descriptiona of these elements can be
rather complex, and their properties change significantly throughout, a calculation. A dynamic
object provided by a object-oriented language can more easily accommod&e the complexity than
the data structures typically used in more procedural languages. Further, the objectoriented
approach provides a mechanism for hiding this complexity in a small part of the code.

The second feature of the adaptive-hp method is local mesh refinement. A small region of a
mesh that has two levels of refinement is shown in Fig (2). Note that the mesh contains irregular
nodes. A node in the mesh is regular if it is a vertex for each neighbor element, otherwise, it
is irregular. If the maximum number of irregular nodes on an element side is one, then the
mesh is l-irregular[2]. There are essentially two strategies for dealing with local refinement. One
strategy does not allow irregular nodes and creates blending elements as necessary[l]. The second
allows irregular nodes but additional constraints are placed on the basis functions to enforce
continuity of the solution. In the hpmethods considered here, we restrict the mesh to having
only l-irregular nodes. Further the mesh refinement is achieved by dividing elements so that the
refined elements are nested. The mesh retains a quasi-regular property, however, this property
also places additional constraints on the mesh refinement algorithm. &fining one node may
create a chain of refinement that propagates across the mesh and in particular in a multiprocessor
environment may cross processor boundaries. It is this property that requires the refinement
algorithm maintain a global view of the grid.

The adaptive-hp method attempts to reduce the number of degrees of'freedom needed to
achieve a prescribed accuracy by optimally modifying the local polynomial order of approximation,
p, and the mesh size, h; and thereby reduce the size of the linear system to be solved. This more
optimal approximation is achieved at the cost of increased complexity in both the elements and the
mesh and it is in controlling this complexity that the object-oriented approach makes a significant
contribution.

Figure 2: A 1-irregular mesh.

Design
A typical finite element problem can be divided into these areas: partition maintenance, element
integration, linear system solution, error estimation, mesh refinement. A typical finite element
code design would examine each of these activities and determine the minimum data required
for each activity. A data structure would then be developed and each of the activities coded in
terms of the data structure. The object-oriented method modifies this design strategy by first
identifying the components of the system and then associating the activities with the components.
This has been called a noun based rather than a verb based design. Object-oriented designs of
finiteelement d e s often focus on the element as the main object and then consider subclasses of
the element base class to represent triangular or quadrilateral elements of different orders. Here,
while we do consider different types of elements, the primary focus is on handling the complexity
of the I-irregular gird and variable elements.

The problem is divide into four main areas: the refinement tree (geometry), a domain partition
(topology), the equation and material (physical/material), and the linear system. Each of these
areas has a different lifetime during the cdculation and in a parallel environment has a different
extent across processors. The geometric partition is responsible for maintaining the relevant
history of the grid refinement and unrefinement. Its lifetime is that of the calculation and it must

have a global awareness across processors. When a solution is to be constructed, a particular
partition of the domain must be selected. This is called the topological partition since it is
composed of a logical grid of master elements. This partition is used to compute the matrix
elements. The physical object contains the description of the differential operators and evaluates
the integrands using the material coefficients supplied by the material object. Finally, the linear
system object is responsible for organizing the element matrices and solving the global linear
system. It does not necessarily assemble the global linear system. Subclasses of these class can
implement both direct and iterative linear solvers.

Abstract Classes * .

Finite elements deal with grids or arrays of elements, each of which is defined in terms of nodes.
The triple: grid, element, node, can be abstracted so that in general a grid can be considered to
be a database object which is used to store and manipulate elements and nodes. A grid represents
the whole domain, an element represents a small area, and a node a point like object. We have
used this generalized nomenclature to divided each of the four area into three parts. A grid
provides a container class for element and noda. It maintains a global view of the structure and
provides for inter-element communication. It can be considered to be a database with defined
access methods. The elements maintain local element idormation and element methods. The
elements are associated with area like objects. The nodes maintain local point information. We
have, for example, a geometric grid, a geometric element, and a geometric node. Similarly, we
have a topological grid, a topological element, and a topological node. The same terminology
can be used for the linear system in which an algebraic grid represents the global linear system,
a algebraic element is an element matrix, and a algebraic node is a single entry. While this
abstraction perhaps should not be pushed too fm, it was useful for the initial design.

Geometric' Grid
Consider some arbitrary region 51 as shown if Fig.(3). The region is divided into elements, with
pasibly curved sides. Each element is transformed by an invertible map into an image of a master
element. The geometric grid operates on a logical grid of these master elements. Traditionally
these transformations are e x p d in terms of the same basis functions that describe the solu-
tion function. Here we allow the transformations to be expressed in terms of a similar but not
necessarily identical basis set. The description of the decomposition of the domain and the trans-
formation coefficients for each element are maintained by the geometric grid class. The domain
is initially partitioned and this root level remains fixed, then, as the solution proceeds, elements
are refined and unrefined.

The domain partition can be represented as a tree, Figs.(4) (5), usually an oct-tree in three

R

Figure 3: Region 52 and the geometric grid.

dimensions or a quadtree in two dimensions. It is necessary to maintain this tree throughout the
solution so that elements can be unrefined as well .as refined. (Unused leaf nodes can of course
be deleted.) The tree is also used for multigrid schemes as the tree can contain both coarse and
fine partitions of the domain. We use a representation of the tree developed for N-body particle
simulations[8]. Each element is given a key that is derived from its location in the tree and can
be related to its location in the logical grid. In Fig.(5) the binary representations of some keys
are shown. When an element is divided into four new elements the keys for the new elements
are constructed by multiplying the parent key by four and adding 0, 1, 2, 3 respectively for the
new elements. These keys are used instead of pointers as references to the elements and provide a
global address space in a multipmessor system. The coordinates of the nodes are stored in node
objects which are labeled by a similar key derived from their coordinates. The elements store the
node keys not the actual coordinates. By setting the high bit in the node keys, the node keys
remain distinct and the nodes can be stored in the same hash table as the elements. The structure
of the key allows simple algorithms for finding the keys of an element’s parent or neighbors to be
constructed. Neighbors of elements in the initial partition may have to be explicitly stored, if the
connectivity is different from a regular grid. Elements can also be marked as holes which are not
to be refined. This allows multi-connected regions to be described.

In Fig.(5) the geometric grid contains many possible decompositions of the domain. For
example suppose the original partition was PI ={4, 5,6,7). Refining elements 4 and 6 produces
the partition fi ={16,17,18,19, 5, 24, 25,26,27, 7). Unrefining element 4 and further refining
element 24 gives the partition P3 ={4, 5, 96, 97, 98, 99, 25, 26, 27, 7) which of course violates
the 1-irregular constraint and is therefore not an acceptable partition. Note that the active
partition is not necessarily the Ieavw of the tree. If the algorithm is required to keep track of
the previous partitions, then there is a problem of where to keep the partition information. Here,

, -- I

5

Figure 4: Partition of simple region.

partition information is not kept in the geometric grid but in the topological grids which are
discussed below. The geometric elements, however, do contain flags that can be set or cleared to
denote membership in particular sets. Geometric elements have member functions which allow set
operations to be performed. These flags are used for example to mark elements for refinement or
unrefinement, to mark elements as belonging to the current active topological grid, etc. Iterators
are constructed to operate on sets of elements.

The important properties of the geometric grid are that it exists for the lifetime of the calcula-
tion, it stores the transformations from each element to the master element, and it is responsible
for computing the Jacobian. It maintains other information about the elements such as whether
the element touches a boundary, whether the element represents a hole in the region which can not
be refined, etc. The geometric grid is also responsible for implementing the h-refinement strategy.
This entails applying a refinement strategy based on an elementwise error estimate and imposed
constraints on the grid to select elements to be refined or unrefined. The 1-irregular constraint on
the grid means that the refinement of one element can trigger the refinement of other elements.
The geometric grid, therefore, must maintain a global view of the grid in both space and time.

0 maintains metric information

Summarizing properties of the Geometric grid

11oO011

Figure 5: Quadtree associated with partition in Fig.(4).

0 evaluates geometric basis functions and computes Jacobian

0 h-refinement algorithm

0 maintains refinement tree

0 global view of mesh across processors and domains

0 draws shape of elements

0 lifetime of cdculation but changes dynamically

Topological Grid
The topological grid serves as the container class for the topological elements. The topological
elements correspond to the usual finite element and have methods that perfom the usual finite
element functions. They contain the description of the local approximating polynomials and are

responsible for computing the polynomial evaluations. They control the Gaussian quadrature to
compute the element matrix elements. There is a topological base class that contains all common
functionality for the topological elements and subclasses to represent specialized elements such as
quadrilaterals or triangles.

The topological elements and nodes are maintained by the topological grid class. The topo-
logical grid is instantiated with an iterator over an acceptable partition of the geometric grid. It
is responsible for creating the topological elements and nodes, and interpreting the topology so
as to recognize constrained nodes and other special situations. Unlike the geometric grid, the
topological grid is a static structure since the number of elements and their size are known when
the topological grid is created. This means that the data structures for the topological grid are
simpler and, for example, array indexing can be used. The topological elements can be organized
in memory to maintain locality during the stiffness matrix calculations. In a multiprocessor sys-
tem, the domain can be divided into many topological grids with one or more grids per processor.
The topologic grids need to interchange boundary data, however, most of the element matrix
computations can proceed in parallel. Each topological element has a key pointing to its corre
sponding geometric element. This key allows the geometric element to be called to compute the
Jacobian as necessary. The topological grid in effect saves all the keys for a particular partition
in the geometric grid. By allowing all topological elements to set a flag in the corresponding
geometric element, we have a mechanism for recovering partitions.

The topological grid creates not only elements and nodes, but objects of a class called tags.
Tags contain the actual unknowns for the problem once the geometric constraints have been
removed. The reason that the unknowns have been separated from the nodes, is that in order
to satisfy certain constraints it is useful to have the same unknown set associated with different
nodes. We also maintain the unknowns in a tag as a vector. The unknowns are not individually
numbered but only as tags. This means that the smallest unit in the global matrix is dense matrix
of the same order as the number of unknowns in a tag. By making the smallest unit of arithmetic
operation a relatively small, dense matrix-vector operation, we attempt to maintain locality and
capitalize on the operational efficiency of RISC processors.

The topological grid is also responsible for computing the local error estimate and for imple
menting the prefinement strategy. The topological grid only needs to exits while the solution
on a particular partition of the domain is b e i i found. Once the solution is computed and an
error estimate generated, then a new topological grid is created and the old one can be deleted.
For multigrid solution, however, there may be several topological grids active at one time. The
lifetime of topological grid is therefore typically shorter than that of a geometric grid.

0 size and structure known when created

Summarizing the properties of the topological grid:

0 may be local to a processor

0 maintains normalized partition at single refinement level

0 orders unknowns

0 evaluates solution basis functions

0 does Gaussian integration to compute element matrices

0 p-refinement algorithm

0 a posten'ori error estimate

Physical and Material Grids
When a topological grid is initialized, it is given a physical element and a material element.
The physical element describes the particular differential operator being used. One of the more
powerful features of finite element methods is the great range of differential equations that can
be accommodated by the same code. Each physical element corresponds to a different problem.
A database (grid) of different physical elements can be maintained. For a particular differential
operator, different problems can be solved by simply changing the coefficients in the aifferential
equations. In much of the original finite element literature, these are known as material properties
and hence the name. Once a domain and differential operator have been defined, then different
physical situations can be described by simply changing the material elements. A user who wants
to modify the material properties of a problem that has already been programmed then only
needs to subclass the material coefficient class. A user who wants to solve a new equation set
only needs to modify the physical element class.

0 defines differential operators

0 implements boundary conditions

0 does Gaussian quadrature

0 defines equation coefficients

Summarizing the properties of the physical and material classes

Algebraic Grid
The finite element method ultimately leads to a large linear algebra problem. The global matri-
ces can be either explicitly constructed or maintained implicitly in terms of the element matrices.
Both direct &d iterative solution methods are used. The common abstract global linear algebra

I. .-, .. _.__ ~ ,. ,,*-. . , . -__ . . .- _>.... .*. ,.. - * - I

void TAnalysia::StiffProb(TTopoGrid* topoGrid, int solverType)
<
TAlgeGrid *algeGrid;
algeGrid = new TAGSparse(topoGrid);

algeGrid->Stif f ToSSB 0 ;
algeGrid->MoveSSToAA 0 ;

....
algeGrid->Solve (TAlgeGrid: : eBiCG) ;
algeGrid->XToTopoGrid() ;

delete algeGrid;
>

Listing 1

problem is encapsulated into the algebra base class. This class is then specialized for explicit or
implicit storage of the global linear system, and for different solution techniques. Each of these
classes shares a common interface with the topological class. Each topological element has a
method which creates an elemental mass, or stiffness matrix and the corresponding list of tag
numbers. The algebra class is responsible either for the assembly of the corresponding global
matrix or storage of the elemental matrices. This creates a clean separation of the problem of
computing the local element matrices from the global hear algebra problem. The common inter-
face is through comparatively small dense real matrix and vector objects. The algebra class only
needs the matrix coefficients, the associated unknown number, and possibly certain characteristics
of the unknowns.

The algebra class is designed as a simple calculator that supports load and store operations
between the registers and the topological grid. Other operations include move operations between
registers. Two of the registers are designated as A, b registers respectively to represent the linear
system h = b. When the solve operation is invoked, the linear system is to be solved and the
result is placed in register 2. The algebra class is a base class which is subclassed for different
representations of the global matrix structure. For example, the global matrix can be assembled
into a sparse matrix, and then either direct or iterative methods can be used to solve the system.
For iterative methods that operate only on the element matrices, the algebra class is subclassed by
a class that storea the individual element matrices. The algebra class provides a common template
to describe which global linear algebra problem is to be solved. An instance of a subclass of the
algebra class is given a topological element iterator so that it can obtain each of the element
matrices. It is the particular subc1ass’s responsibility to handle the stream of element matrices
and solve the linear system, when requested. At this point any of the interesting C++ libraries
that are being developed for large linear system and especially those developed for parallel sparse

systems can be used without modifying the remainder of the code. Listing (1) shows a code
fragment from a method in the analysis class that is used to solve elliptic problem. A subclass of
the algebra, class that implements a global sparse matrix is constructed. The SS and B registers
are then filled with the stiffness mat& and the load vector. The SS matrix is then moved to
the AA register and the system is solved using a bi-conjugate gradient method. The result is in
register X which is then stored into the topological elements.

Note that while the algebra class may be responsible for the major storage usage and usually
requires the majority of CPU time, it has the shortest liietime of the major components.

Summarizing properties of the Algebraic grid:

0 solves global linear system

4 major cpu user

0 shortest lifetime

Analysis Class
The analysis class is orchestrates the operation of the geometric grid, topological grid and the
algebraic grid. Given a input data set, packaged as an input class, it handles the initial con-
struction of the geometric grid. The analysis class also packages sequences of operations on the
geometric, topological, and algebraic classes into higher level commands for the main program.
The relationships among the main computational areas are shown in Fig.(G).

Supporting Classes
In addition to the major classes that define the finite element technique there are other classes
and class librariea that are used. One essential addition to the usual C++ class libraries is a
vector/matrix class. Here a simple vector class was constructed which defin-es the usual vector
and dense matrix operations. This class is relatively isolated so that other more advanced libraries
could be used to replace it.

There is also a class for describing the code input. This class was modeled after the input
definitions required for PLTMG[l] and isolates the code from the form of the input file.

Some of the more useful classes defined are the iterator classes. The geometric grid and
topological grid classes define Mend iterator classes which allows looping constructs over the
elements to be easily constructed. There are a number of geometric iterators to loop over all leaf
elements, or all elements associated with a particular topological grid, or all elements etc.

Figure 6: Relationships among components.

Conclusions
We found object-oriented design techniques useful in controlling the complexity of an adaptive
hp finite element code. The problem was divided into different computational areas with different
data structure requirements, varying computati,onal lifetimes, and different extents in multipro-
cessor systems. By encapsulating each component in its own class with well defined interfaces,
we were able to limit the range of influence of any particular data structure to a relatively small
region of the code. This allows major parts of the code to be redesigned without changing the
remainder of the code. The code then becomes simpler to build, maintain, and modi@.

Acknowledgments
The author acknowledges with pleasure many extensive discussions with Phillipe Devloo at OON-
Ski 93 on the clasa structures outlined in the paper. The author would also like to thank Prof.
3. Tinsley Men and coworkers especially Abani Patra and Yuheng Fag , for the introduction to
adaptive-hp methods and William H. Mfner, for many useful discussions. Work supported by the
U. S. Department of Energy, Grant DEFG05-88ER.53266.

References
[l] Randolph E. Bank,PLTMG: A Software Package for Solving Elliptic Partial Differential

Equations, Users' Guide 6.0, SIAM, Philadelphia, (1990).

[2] L. Demkowicz, J. T. Oden, W. Rachowicz, and 0. Hardy, "Toward a Universal h-p Adaptive
Finite Element Strategy, Part 1: Constrained Approximation and Data Structure," Comp,
Meth. in Appl. Mech. and Engrg., 77, 79-112 (1989).

[3] Philippe R. B. Devloo, "On the development of a finite element program based on the object
oriented programming -philosophy", Proceeding of the First Annual Object-Oriented Numer-
ics Conference, p.183 (1993).

[4] J. T. Oden, L. Demkowica, W. Rachowim, and T. A. Westermanu, "Toward a Universal h-p
Adaptive Finite Element Strategy, Part 2. A Posteriori Error Estimation", Camp. Meth. in
Appl. Mech. and Engrg., 77, 113-180, (1989).

[5] J. Tinsley Oden, "Optimal hpFinite Element Methods" TICOM Report 93-09, The Texas
Institute for Computational Mechanics, The University of Texas at Austin, Austin, Texaa,
Sept. (1992).

[SI W. Rachowica, J. T. Oden and L. Demkowicz, Tart 3. Design of h-p Meshes", Comp. Meth.
in Appl. Mech. and Engrg., 77, 181-212, (1989).

[7] U. Rude, "Data Structures for Multilevel Adaptive Methods and Iterative Solvers", MGNet,
Sept. 15, 1992.

[8] Michael S. Warren and John K. Salmon, "A Parallel Hashed Oct-Tree N-Body Algorithm",
Proceedings of Supercomputing '93.

[9] 0. C. Zienkiewicz and R. L. Taylor,The Finite Element Method, McGraw-Hill, New York,
4th ed., p121-122, (1989).

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or jeffect those of the
United States Government or any agency thereof.

