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A nonlinear truncation procedure for Fourier-Hermite expansion of Boltzmann-type plasma equa- 
tions is presented which eliminates fine velocity scale, taking into account its effect on coarser scales. 
The truncated system is then transformed back to (2, v )  space which results in a renormalized Boltz- 
mann equation. The resulting equation may allow for coarser velocity space resolution in kinetic 
simulations while reducing to the original Boltzmann equation when fine velocity scales are resolved. 
To illustrate the procedure, renormalized equations are derived for one dimensional electrostatic 
plasmas in which collisions are modeled by the Lenard-Bernstein operator. 

PACS: 52.25.DG, 52.35.RaI 52.64.-y 

It has long been known (see for example Refs. 1-10), that the Landau damping (or phase mixing) of an initial 
perturbed wave will take a spatial variation with a slow velocity variation and damp it spatially causing fine wiggles to 
appear in velocity space. This fine velocity scale eventually damps away due to collisions [1,2,6,7,9,10]. This concept 
has recently been discussed by Hammett and coworkers [lo] as justification for why few moment fluid equations with 
added dissipative terms may be adequate for modeling kinetic effects. Drawing upon this idea, along with analogies 
with renormalization methods in Navier-Stokes (NS) fluid turbulence [ll-131 we derive renormalized dissipative linear 
and nonlinear mode coupling terms in a Boltzmann-type equation. The renormalized equation can be used in kinetic 
simulations to reduce fine scale velocity space resolution and simply reduces to the original Boltzmann equation when 
fine velocity scale is resolved. Also, the truncation procedure described here requires no knowledge of the details of 
linear kinetic theory, and provides a way to calculate nonlinear corrections to Landau-Fluid [14] type closures. 

To illustrate the renormalization procedure we will study a uniform one dimensional electrostatic plasma with 
kinetic electrons and fixed ions where collisions are modeled using the Lenard-Bernstein operator 

(1) 
e &f + ~ & f  - -E&f = vo& ( w f  + w,”,&f) , 

me 

along with Poisson’s equation: &E = 47re (no - fdv) , where no is the ion density, f = f(z, w, t )  is the electron 
distribution function, ute is the thermal velocity, and vo is the collision frequency. The calculations presented below 
can be generalized to more complex kinetic equations and this will be presented elsewhere. 

For clarity, we begin with linearized equations (the nonlinear problem is discussed below), i.e. f(z,  w, t )  = F ( v )  + 
6 f ( ~ ,  w , t ) ,  keeping terms O(Sf), where F(w) is assumed to be Maxwellian. It is most natural to use a Fourier-Hermite 
expansion of Eq. (1) 

J k ,e 

where he(v) are orthonormal Hermite polynomials. The resulting linearized equations for the ai ’s  are then given by * 
(-iw + voqu; + i k  { 4 u y  + m u ; + 1 }  = 0, 

-iwa: + i~e {a: + f i u : }  + you: + Ek = 0 ,  

(3) 
c for t = 2 , 3 , 4 ,  ..., while the first two equations are 

(4) 

(5) 
0 -iwa, + ika: = 0.  
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The Poisson equation becomes EA = i ( 2 ~ ) ’ / ~ a 3 k .  Dimensionless units are used so that the plasma frequency, the 
Debye length and the thermal velocity are all unity, ( W p e  = 1, X D e  = 1, vte = X D e W p e  = 1). Thus, PO = V O / W p e  is the 
normalized collision frequency. Details can be found in Refs. [1,2,4]. A linear truncation of the discrete Fourier-Hermite 
expansion of the Vlasov equation using a Landau-fluid type closure has been developed by Smith and Hammett [15]. 
Here, we discuss a new truncation procedure which makes no reference to the plasma dispersion function and takes 
into account the effect of nonlinearities (which will be discussed later). 

We are interested in truncating the system at large C (which correspond to fine velocity scales), and need some 
starting point characterized by a “resolution” index e, with the property a: M 0 if C > e,. This index e,. (which is 
estimated below) determines how many coefficients are needed to fully resolve the linear problem Using at+ ’  x 0, 
the equation for a 2  becomes 

(-iw + votr)a‘,. + i k J . e ,  a‘,.-’ M 0. ( 6 )  

This relation is further simplified by considering the small frequency limit in which w is neglected compared to v&. 
(this is referred to as the investigation of long time behaviors in renormalization group theories [ll]). The solution 
for a:, in terms of a t - ’  is then inserted into the equation for a t - ’ ,  obtaining 

We also note that a t  does not appear in the other equations for a i ,  a:, . . . , a?-2 which remain unchanged. This 
procedure can be easily iterated and leads to a closed set of equations in which only the collision frequency in the last 
equation is renormalized 

where for C < e,, Eqs. (3)-(5) still apply. The “cut-off index C, determines where the iterative procedure is 
stopped. The truncation procedure involves a starting point E,. and a stopping point E,, e, < e,., where coefficients are 
sequentially removed e,., C,. - 1, C,. - 2 ,  ..., E,- 1. The validity of the truncation requires w << i7[Cc]Cc,  which in turn sets 
a lower bounds on the value of e,. The equation for the renormalized coefficient is given by the following recursion 

(9) 

We have assumed that a i  with E > C,. are negligible, which implies that a t  should also be small and have a weak 
influence on a?-’. Thus, is chosen such that filp-l M vo which requires: C,. > k 2 / u i .  Also, assuming t, >> 1, so 
that C, - 1 x C, and C[Cc - 11 x f i [Cc]  we obtain: 

If C, << k2/u: < e,. , the following approximation is valid 

lkl fip ] - - “ - a  
which is the uo -+ 0, but uo finite limit, and we note that it is independent of U O .  

Figure 1 shows a comparison of (a) the naive truncation of simply setting a: = 0 with e, = 8, (b) the new truncation 
with e, = 8, and (c) the new truncation with Cc = 256. It is seen that there is fairly good agreement at early times 
between the large e, result and the C, = 8 case with the renormalized collision term. Some recurrence is observed, 
but it is relatively small. For this example, vo = 0.005 and le = 0.5. 

At this point it is important to compare the present truncation with similar iteration schemes used in the study of 
hydrodynamic turbulence. Let us temporarily set E = 0 for simplicity (this is a convenient approximation here since 
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I 
this term does not influence linear truncation scheme). Fourier transforming f in both x and u using k and y as the 
conjugate variables, the linear equation may then be rewritten as follows: 

atf + ( I C  + voy)d,f + voy2f = 0. t 12) 

The first and last term are identical to the linear propagator in the NS problem, the middle term convects perturbations 
to larger y, which is finer velocity scale. So, the interesting question arises, is there any similarity between transfer to 
shorter (dissipative) scales in NS turbulence, and transfer to finer velocity scales where collisional dissipation dominates 
in the plasma problem? Dropping the voy term (which should be valid for kwte >> vo) we obtain dtf+kd,f+voy2f = 0. 
If the initial condition is noted fo(y), the solution at time t is given by: 

? 

* 

For example, if the initial distribution is peaked around zero (PO = S(y)), the solution at time t will be f(y) = 
S(y - k t )  exp(-vok2t3/3), which clearly demonstrates wave propagation to large y,  along with damping. Therefore, 
the transfer to finer velocity scales in the plasma problem we discuss here is essentially a linear effect while transfer 
to finer spatial scales in the NS turbulence is due to nonlinear coupling. As a consequence, the renormalization of the 
collision coefficient YO appears even in the linearized equations. In contrast, the viscosity is not renormalized in the 
NS equations when the nonlinear term is neglected (very small Reynolds number). 

0 10 20 30 40 
Wpe t 

FIG. 1. Time evolution of the density (real part of u t )  for: (a) naive truncation with l ,  = 8, short dashed line, (b) new 
truncation with l ,  = 8, long dashed line, and (c) new truncation with l ,  = 256, solid line. 

Taking the YO + 0, but vo finite, and keeping only a few coefficients the resulting equations reduce to a form similar 
to the Landau-fluid equations [14]. Multiplying Eq. (2) by hn(v) and integrating over v ,  one finds, n = ( 2 ~ ) l / ~ a O ,  
u = ( ~ T ) ~ / ~ u ' ,  and T = 1151, using the definitions of n, u, and T in Ref. [14], and keeping only linear 
quantities, from Eqs. (4) and (5), the continuity and momentum equations can be written as 

* 

Using Eqs. (8) and (11) with e, = 3, we obtain 
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This result is very similar to the 3-moment Landau-fluid closure [14,16] where the factor in the dissipative term of 
Eq. (16) is obtained here. Such good agreement may be fortuitous since 4, = 3, where as, the t, >> 1 
limit has been taken. However, good agreement would be expected for larger C, (many fluid moments) where the 
truncation is valid. 

The problem of transforming the linear truncation back to real ( 5 , ~ )  space is complicated by the fact that the 
renormalized term only appears in the last equation for u?. However, we note that a dissipative term of the form 

versus 

; 

I 

(17) 
1 a [ f l  = B ( a V  + 412r+1 f(w), 

in velocity space, appears as -(t/tc)2r+1ue in the Hermite expansion [9]. Let us consider the large (2r + 1) limit of 
this expression. The damping term Eq. (17) is then approximately zero for t < e, so it will not influence the coarse 
velocity scale. However, it will rapidly damp fine velocity scale when C > t, which is important for consistency with 
the discrete truncation. Finally, for t = t, the damping term will coincide with the renormalized collision frequency 
if it is multiplied by the factor fi[t,]t,. To determine e,, we relate it to the finest velocity scale, X we wish to resolve 

assuming t, >> 1. The factor fi[t,]C, can then be approximated by 1klX-l using Eqs. (11) and (18). The resulting 
equation in (k, w )  space is 

where the bar signifies f with velocity scales finer than X removed. For example, in a Vlasov-type simulation, X could 
be determined by the coarseness of the velocity space grid, i.e. X x Av. The Eavf nonlinearity is included and a 
second nonlinear term appears in the renormalized equations as will be discussed below. Setting T = 0 and neglecting 
N2, we obtain an equation of the same form as the original, Eq. (1) 

8tf-k i k v d  - E E k i f k - k '  = i8, ( V d  -k a v f k )  . (20) 
k' 

where Y = YO + IIEIX. However, we are cautious of the validity of Eq. (20) because the diffusive operator D, more 
accurately represents the truncation for r > 0. 

In order to transform back to real space, we use the following relation -i sign(k)gk = I[g] where 
k 

and note that Ikl= k sign(k). We then obtain the following equation for f(x, w, t )  

The fine velocity scale cut-off, X determines Cc in the expression for the operator D,, Eq. (17), using the relation 
e, = 1/X2.  Also, the larger the value of (27- + l ) ,  the more accurately the operator D, represents the discrete 
truncation. The first term on the second line of Eq. (22) is dissipative and models transfer from coarse to fine velocity 
scale by phase mixing. The second nonlinearity, N2 will be calculated below. 
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We have successfully applied the truncation procedure to the linearized Boltzmann equation, Eq (1). However, this 
technique is not restricted to linear problems. In order to illustrate this point, we briefly discuss the renormalization 
procedure including the Ea,f nonlinearity. For t > 1, the equation including the nonlinear term is 

k' 

Here again, we assume a i  M 0 for k? > e, and consider the small frequency limit. The expression for a k ,  in terms of 
a>-', is obtained from Eq. (23) and then is inserted in the equation for ai-' which results in 

{ -iw + C[k, t, - 1](t, - l)}uk-' 

k' 

where 7 [ 4 ]  = 0 and -y[t, -11 = Ic/vo. Next, we assume that the nonlinear term is O(e) smaller than the linear terms and 
treat the nonlinearity perturbatively by expanding in series of E .  The expansion parameter E relates the amplitude of 
the electric field. At this point we stress a major difference between the present approach and renormalization theories 
of hydrodynamic turbulence [12,13]. In these theories, the nonlinearity is also treated perturbatively. However, the 
limit E + 0 is singular in the sense that turbulence disappears for very small E .  We have already pointed out  that 
hydrodynamic turbulence is essentially a nonlinear problem which makes the perturbative treatment of the nonlinear 
convective term in the NS equation more difficult to justify and its range of validity not well known. Here, the 
situation is very different, where for E + 0, we simply recover the linear problem discussed before. Hence, there will 
be some range of validity for small E .  By using this expansion, we obtain 

( 2 5 )  

This solution can now be inserted into the equation for ut- '  and the procedure can be iterated using the same 
approach as for linear problem. The last equation for u p  is renormalized by two terms exactly like Eq. (24). The 
first term is the renormalized collision term and is the same as in the linear case. The second term is characterized 
by the new renormalized coupling coefficient $4 (with L = a,) which is given by , 

Eqs. (9) and (26) are recursive relations starting at the resolution index l ,  and working down to the cut-off index &, , 
tC < &. For k!, << t, , y[tc] is well approximated by 

where s1 = sign(k) and sa = sign(k - k'). Finite collsionality is needed in Eq. (27) for y to be finite for couplings 
where k ( k  - k') < 0 ,  i.e. coupling from fk-k' modes with a sign opposite to k .  Using the same kind of approximations 
as for the linear problem, we may now transform back to ( k ,  8) space. Resulting in the following nonlinear term for .* 
Eq. (19) 
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Transforming back to (z, v) space the additional nonlinearity is given by 

where q5 is the electric potential E = -&4. 
We have developed a consistent truncation of a Boltzmann-type equation where the result is a renormalized kinetic 

equation which is coarse grained in velocity space. In contrast to the hydrodynamic Navier-Stokes equation, the 
plasma Boltzmann equation is renormalized even with the nonlinear term neglected. In the linear case, the result is 
a renormalization of the collision frequency and modification of the collision operator. We have also shown that the 
procedure can be applied to nonlinear problems by perturbative expansion, using the Ea, f as an example, resulting 
in an additional mode coupling term. Here, we illustrated the procedure on a simple one dimensional unmagnetized 
electrostatic Boltzmann equation. Application of this truncation procedure to drift-kinetic and gyrokinetic equations 
with weak collisionality will be reported in the future. 
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