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ABSTRACT 

As recent world events show, criminal and terrorist access to nuclear materials is a growing national concern. The 
national laboratories are taking the lead in developing technologies to counter these potential threats to our national 
security. Sandia National Laboratories, with support from Pacific Northwest National Laboratory and the Bechtel 
Nevada, Remote Sensing Laboratory, has developed QUEST (a model to Quantify Uncertain Emergency Search 
Techniques), to enhance the performance of organizations in the search for lost or stolen nuclear material. In 
addition, QUEST supports a wide range of other applications, such as environmental monitoring, nuclear facilities 
inspections, and searcher training. 

QUEST simulates the search for nuclear materials and calculates detector response for various source types and 
locations. The probability of detecting a radioactive source during a search is a function of many different variables, 
including source type, search location and structure geometry (including shielding), search dynamics (path and 
speed), and detector type and size. Through calculation of dynamic detector response, QUEST makes possible 
quantitative comparisons of various sensor technologies and search patterns. The QUEST model can be used as a 
tool to examine the impact of new detector technologies, explore alternative search concepts, and provide interactive 
searchlinspector training. 
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1 INTRODUCTION 

There are many challenges associated with the search for nuclear material (Figure 1.1). The probability of detecting 
a radiological source is a function of many different variables. Moreover, probabilities of detection (PD) are 
unknown quantities; while the probability of detection is assumed to be high based on known detection ranges for an 
unshielded source, no quantitative estimates are available. Search requirements are often based on experience and 
intuition. Typical questions for which a quantitative analysis is necessary include: 

0 

0 

For a given source, structure, search pattern, and detector, what is the probability of detection? If no 
detector signal is received and PD is 0.95, the searcher could continue somewhere else. If no detector 
signal is received and PD is 0.45, perhaps the structure should be searched more thoroughly, or new 
detector technologies pursued. 

For a given source, structure, and detector, what is the optimum way to search? If searching both sides of a 
hallway increases PD from 0.45 to 0.9, then it would be worthwhile. If, on the other hand, searching both 
sides of the hallway increases PD from 0.95 to 0.97, then it is probably not worth expending the extra 
search time. 

What are the payoffs from new technologies and designs? If doubling the detector area increases PD from 
0.45 to 0.9, then it is worthwhile investigating lighter detectors. If doubling detector area increases PD 
from 0.45 to 0.5, then it is not worthwhile to investigate lighter detectors. 

QUEST 
process. 

provides a tool to answer these questions and others like them by simulating all aspects of the search 
QUEST provides the ability to Cali up computer models of many different building types in which a nuclear 

device may be concealed. These structures can be developed using any one of many different Computer Aided 
Design (CAD) packages. Once a structure has been 
developed, the user can import the building design into 
the QUEST search simulation. The primary QUEST 
window. displays the first-person, three-dimensional 
(3D) point-of-view (POV) of the searcher (see Figure 
2.7). A second window in the upper corner of the 
display shows the two-dimensional floor plan. The 
user then specifies the characteristics of the nuclear 
material source (for example, a nuclear weapon or 
radiation dispersal device) within the floor plan and 
selects a detector model (such as a hand-held radiation 
sensor). Once the simulation begins, the user can 
move throughout the simulated environment, analyzing 
the calculated detector response. 

QUEST is also capable of synthesizing the results of 
typical gamma-ray spectroscopy experiments. 
Specifically, QUEST allows a user to specify physical 
characteristics of a gamma-ray source, the quantity of 

Figure 1.1 : The search for nuclear material. 

the nuclides producing radiation, the structure and type of absorbers, the size and composition of the detector (Ge or 
NaI), the electronic setup used to gather the data, and background terms associated with the simulation. In the 
process of specifying the parameters needed to synthesize a spectrum, several interesting intermediate results are 
produced, including a photopeak transmission as a function of energy, a detector efficiency curve, and a weighted list 
of gamma and x-rays produced from a set of nuclides. All of these intermediate results are made available to the 
user. 

QUEST is a multithreaded application that runs on UNIX workstations and PC compatible computers, including 
multiprocessor servers and portable computer systems. QUEST contains robust support for germanium detectors, 
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and support for specific sodium iodide detectors. Spectra generated with QUEST have been compared to spectra 
obtained from National Institute for Standards and Technology (NIST) certified standards with very favorable 
results. A discussion of the use of QUEST, together with the theory behind its design and implementation, is 
presented. 

- I  
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2 USER’S GUIDE 

The QUEST application is divided into three distinct modes of operation: Scenario Definition, Simulation, and 
Analysis. Scenario Definition mode allows the user to specify all the components necessary to perform a search 
simulation (e.g. structure specification, source and detectors, etc.). Simulation mode executes the actual search 
simulation utilizing the user-specified scenario. And finally, Analysis mode allows the user to step back through data 
history files collected during a previous simulation run in order to perform more detailed analysis. The following 
three subsections describe the user interface and functionality of these three modes of operation. 

Figure 2.1 : QUEST application start-up. 

When QUEST is first started a number of windows appear (Figure 2.1). These include the QUEST copyright 
window, the primary user interface window encompassing the six control buttons, two three-dimensional display 
windows that are initially blue, and the QUEST sign-on animation window. Once the opening animation sequence is 
complete, and the QUEST copyright window has been closed, the user may begin interacting with the user interface 
controls. 
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Figure 2.2: QUEST primary window. 

The primary Graphical User Interface (GUI) is a single windowpane comprising several drop down menus, and a 
series of buttons (Figure 2.2). The drop down menus control storage and retrieval of Scenario definitions (Scenario), 
specification of a radiological database (Database), selection of output from a previous simulation run for analysis 
(Analysis), and selection of application information screens (Help). The series of buttons provide access to the three 
modes of operation. Scenario Definition is comprised of Structure(s), Source(s), Detector(s) and Backsound 
specification. When QUEST is first started, each of these subcomponents is not yet complete, and so each bears the 
label “Incomplete”. In turn, as each of these Scenario subcomponents is completed, the labels change to 
“Complete”. In a like fashion, the labels above the Simulation and Analysis mode buttons will change from “Not 
Ready” to “Ready” as each of the previous subsections are completed. Simulation mode becomes “Ready” when a 
Scenario has been completely defined (Le. all four components, Structure(s), Source(s), Detector(s), and Background 
have been defined). Analysis mode becomes “Ready” when a simulation run has been completed, and there is 
simulation data to be analyzed. 

Throughout QUEST, object specifications and generated data are stored to computer disk files according to a 
predetermined directory structure. The imposed directory structure ensures that all object data files are interpreted 
appropriately at run-time, eliminating a great deal of run-time object checking from the application. While this 
restriction will be eliminated in future releases of the application, its presence in the initial version of QUEST serves 
to simplify component object organization and access. Hence, all QUEST objects are saved and retrieved from 
predetermined subdirectories, the locations for which are always fixed relative to the parent directory of the QUEST 
application. For example, when operating within the QUEST environment, the user is always assured of finding all 
defined source specifications in the source subdirectory. For a more detailed treatment of the QUEST directory 
structure see Appendix A: Software Installation. 

2.1 SCENARIO DEFINITION MODE 

A Scenario encompasses all of the parameters required to execute a search simulation, and is comprised of the 
following: 

Structure Layout 
Structure Definition 
Material Database 
Component Grouping & Material Assignment 

Source Definition 
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Physical Composition 
Radioisotope Specification 

Detector Type & Material Specification 
Electronics 
Algorithms 

Detector Definition 

Background Definition 

Under this organization, like parameters are grouped in a natural order. For instance, all the parameters related to 
the detector specification are together. Each of the four primary subsections, Structure Layout, Source Definition, 
Detector Definitions, and Background, is accessed through its corresponding button in the QUEST Primary window 
(Figure 2.2). This grouping makes it convenient for QUEST to display information that is traditionally computed, 
such as a photon transmission curve or a detector efficiency curve. 

The title bar of the Primary window displays the version number of QUEST being executed, as well as the name of 
the current scenario. If a scenario has not yet been defined, the scenario name is listed as “Unknown”. The Scenario 
pull-down menu provides for the creation of a new scenario, “New”, or file manipulation of completed scenarios 
through the ‘‘Load, “Save”, and “Save As” choices. In addition, the Scenario pull-down menu contains the “Exit” 
menu choice for quitting the QUEST application all together. The Database pull-down menu provides access to the 
database manipulation routines. QUEST VI does not support direct manipulation of the gamma-ray or nuclides 
databases. However, the user may modify the database outside of the application (see Appendix E: Radionuclide 
Library). The Analysis pull-down menu allows the user to jump immediately to the Analysis Mode in order to 
analyze results stored from a previous simulation run (see Section 2.3: Analysis Mode). Finally, the Help pull-down 
menu provides user access to application information screens including the About QUEST, QUEST Credits, and 
QUEST Disclaimer. 

The following five subsections discuss the development of a QUEST scenario through use of the first four buttons on 
the primary QUEST window. Once defined or loaded, scenarios can be directly run through the Simulation panel 
button, and/or saved to disk file for later execution. 

2.1.1 STRUCTURES 

With a click of the Structure(s) button, the Structure Configuration window appears (Figure 2.3). Though the 
Structure Configuration window, the user may load and convert structure files stored on disk in either three- 
dimensional DXF (AutoDesk 1990) or VRML VI (Bell et al. 1995) compliant QUEST Structure File (QSF) formats. 

A library of structure files is included with QUEST. Appendix A (Software Installation) details these structures, 
their file names, and approximate display complexity specified as the number of polygons used to render them. The 
provided structure library includes simple structures for use in quick “what-if’ comparison studies, as well as 
enhanced models demonstrating structure detail such as door casings. AI1 structure library models are provided in 
both original 3D DXF and QSF file formats. The original 3D DXF structure library models can be used with a 
commercial CAD package as starting-points in the development of additional models. For a detailed treatment of 
structure file creation using a third-party CAD application refer to Appendix B: Structure Creation Guide. 

The three buttons located on the Structure Configuration window provide access to the three subcomponents that 
must be defined for each structure. As with the QUEST Primay window, a label above each button indicates the 
status of the definition for that subsection. Once a subsection has been defined, the label changes from “Incomplete” 
to “Complete”. Once all three subsections are complete, structure definition is complete. 
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Figure 2.3: Structure configuration window. 

Structure Definition 
Selection of the Structure(s) button from the Structure Configuration window brings up the Structure Definition 
window (Figure 2.4). The three pull down menus of the Structure Definition window provide access to unit measure 
specification and CAD file conversion routines. The Window pull-down menu provides the option of closing the 
Structure Definition window. Units provides the unit measure choices for the application. All QUEST vl structure 
files are manipulated in units of feet. And finally, Convert accesses the 3D DXF CAD file conversion routines. 

To convert a 3D DXF CAD file, select the Convert pull-down menu from the Structure Definition window. A list of 
available files is presented. Once selected, the 3D DXF CAD file is converted into QUEST’S internal QSF structure 
format and displayed for review in the 3D graphics window. In order to reduce the complexity in merging multiple 
CAD file specifications, 3D DXF CAD files must be converted into QSF files one-at-a-time. 

Structure definition involves the grouping of structure components into a hierarchy. To support this, the Structure 
Definition windowpane is divided into two halves. The left-hand side of the screen provides user access to structure 
file manipulation routines, including translations and rotations of substructure components. The right-hand side of 
the screen displays the current hierarchy of substructure components associated with the current structure definition 
session. The Structure Name pull-down list-box provides access to all available QSF structure file components. 
Once selected under Structure Name, a structure’s description is displayed for review in the Structure Description 
scroll window. The substructure component can then be placed into the current scenario by highlighting the desired 
position in the structure hierarchy display on the right-hand side of the screen, and pressing Znsert New Structure. 
Likewise, a structure subcomponent can be removed from the hierarchy by highlighting it and pressing Remove 
Structure. 

- 1  
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Figure 2.4: Structure definition window. 

At any time during the creation of a structure hierarchy, individual structures can be manipulated in the virtual 
environment. QUEST vl supports translations and rotations. To translate a structure subcomponent, select the 
structure component in the right-hand window, enter the translations values (X, Y, and Z), and then press Translate. 
Likewise, to rotate a structure subcomponent, select the subcomponent, enter a rotation value in degrees (Theta), .and 
press Rotate. 

Material Database 
Selection of the Material DB button from the Structure Configuration window brings up the Material Database 
window (Figure 2.5). The three pull-down menus of the Material Database window provide access to material 
manipulation routines. Specifically, the Database pull-down menu provides for the creation of a new material 
database, “New”, or file manipulation of completed material databases through the “Load”, “Save”, and “Save As” 
choices. In addition, the Database pull-down menu contains the “Close” menu choice for exiting the Material 
Database window. The Material pull-down menu accesses the individual material Insert and Remove operations, 
supporting the manipulation of material instances within the current material database. And finally, the Options pull- 
down menu supports the toggle of the material transmission chart between a Linear Plot and Log Plot. 
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Figure 2.5: Material database window. 

A material is specified under the Material Database window through the combination of five attributes: name, color, 
thickness, density, and bulk matrix specification. The name specified for the material must be unique for that 
material database. In addition, the assigned material color, accessed through the Material Color button, is displayed 
for objects during group picking and material assignment mode (see Component Grouping Definition below). 

TO insert a new material, select insert from the Material pull-down menu of the Material Database window. Once a 
new material is inserted, modify its attributes through selection of its color (Material Color), thickness (cm), and 
density (g/cm’). In addition, the bulk matrix composition for the material must be specified. This is given as an 
admixture of elements and their relative abundance by weight within the material. Once entered, the mixture is 
normalized, and the coefficient of absorption transmission chart is updated through selection of the Process button. 
For a more detailed treatment of material specification, see Section 3.3 Material Database. 

Comuonent GrouDing Definition 
Selection of the Groups button from the Structure Configuration window brings up the Component Grouping 
Definition window. Under Component Grouping Definition structural objects within the virtual environment may be 
grouped by physical or material attributes. The Window pull-down menu provides the option of closing the 
Component Grouping Definition window. 

Component groups are the mechanism by which QUEST associates physical attributes with the structure components 
that make up QUEST’S virtual environment. This mechanism was necessitated by the lack of standardized material 
assignment standards in CAD drawing packages. A group is added or removed from the collection of named groups 
through the selection of the Insert New Group and Remove Group buttons respectively. Since the groups associated 
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with a structure comprise a hierarchy of attributes, the location of insertion within that hierarchy must be selected 
prior to group insertion. 

Group Name: 
ldoor 1 

~ ~~~- 

Matterial ~ y p e :  
Wood 

Group Thickness: Units: 

1 F C  z.nooono 

, 

Define Material ... 
Group Definition window. 

A Group Name **Undefined &laterial d 

default 
--Wall 

4 

-~ 

--floor 
--window 

Figure 2.6: Component grouping definition window. 

Once inserted, a group can be assigned a default material, group thickness, and color. Future versions of QUEST 
will support the Paint Transparency attribute, simulating more realistically transparent objects such as glass. 

The hierarchy of groups within the Component Grouping Definition is significant as it defines the hierarchy of 
inherited attributes. In the example presented in Figure 2.6, if group “door” did not specify a material type, the 
material type would be inherited from its parent group, in this case “default”. Once defined, the group hierarchy 
provides a quick and simple mechanism for manipulating physical attributes of the structure components within the 
virtual environment. Take, once again, the example presented in Figure 2.6, and consider a structure where all doors 
of a structure have been appropriately assigned the group name “door”. Then it is a simple task to perform a 
simulation $udy of a given structure in which all doors are first of material type wood, and then changed to material 
of type steel. This can be accomplished through a single material attribute change of group “door”. 

Groups defined in the Component Grouping Definition window are assigned structure components, actual polygons 
within the virtual environment, through selection of Group Picking. Group Picking, as depicted in Figure 2.7, 
displays a specialized view of the structure environment by highlighting each polygon surface. The user may then 
select individual surfaces by placing the cursor over the polygon in the 3D graphics window and pressing the 
spacebar on the keyboard. Once selected, a structural component, or polygon, becomes a member of the assigned 
group and changes color to reflect its new association. 
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Figure 2.7: An example of structure component picking. 

For convenience, the Define Material button provides access to the Material Database window for defining 
additional materials while performing component grouping. 

2.1.2 SOURCES 

With the selection of the Source(s) button from the QUEST Primary window, the Source Path Assignment window 
becomes visible (Figure 2.8). Within this window, the user matches Sources to Paths, with the matching displayed in 
a table on the right-hand side of the window. To match a previously defined Source and Path, and insert this 
association into the Scenario, the desired Source and Path must be selected from the Source and Path selection pull- 
down windows. Located in the middle of the Source Path Assignment window, the Source and Path selection pull- 
down menus list all previously defined and available Sources and Paths for inclusion within the current Scenario. 
Listed below each of these selection windows is a description given to the specified object, either source or path, 
assigned by the user at the time of definition. A previously entered source-path assignment can be removed from the 
table on the right by highlighting the assignment and selecting Remove Source/Path. 

16 
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Source 

Source 

Path 

Path 

A simple path. 

Path(s) 

Window 

Figure 2.8: Source path assignment window. 

The Source Path Assignment window includes two additional buttons on the left-hand side of the window for 
defining or editing Source and Path definitions. To edit the definition of an existing Source or Path, the user need 
only select the desired Source or Path, and then push the appropriate button. To create a new Source or Path, the 
user must push the appropriate button and then select “New” from the pull-down menu that appears under the Source 
or Path Definition window. 

Selecting the Source(s) button on the Source Path Assignment window brings up the Source Configuration window 
(Figure 2.9). The Source Configuration window provides access to the two subcomponents that make up every 
source. Displayed in the title-bar of this window is the name of the source currently being manipulated. The 
Window pull-down menu provides the option of closing the Source Configuration window. The specification of a 
source is divided into two parts: physical sample properties and radionuclide specification. 

Source Physical Composition 
Selecting the Sample button of the Source Con$guration window brings up the Source Sample window. Currently, 
QUEST vl only supports point sources. However, work is underway to include disk shapes, where the bulk 
composition and thickness of the source determine the self-absorption. For finite sources, the material specification 
will include an admixture of elements and a user selected density. The Window pull-down menu provides the option 
of closing the Source Sample window. 
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Figure 2.10: Source sample window. 
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Source Radioisotove Svecification 
Selecting the Nuclidets) button from the Source Configuration window brings up the Source Definition window 
(Figure 2.1 1). This second portion of the source specification selects the radioisotopes contained in the sample. The 
pull-down menus of the Source Definition window provide access to database selection and sample radiosity 
specification. The Window pull-down menu provides the option of closing the Source Definition window. The 
Database pull-down menu provides for the selection of a radionuclide database-only the Erdtmann-Soyka (1 979) 
database is provided with QUEST VI. And finally, the Radiosity pull-down menu accesses the Source Radiation 
definition window. 

To support the specification of arbitrary radioactive sources, the Erdtmann-Soyka gamma-ray library has been 
incorporated into a relational database as have certain other data (e.g. parent-daughter branching ratios for selected 
nuclei, and stable isotopes along with their thermal and resonance neutron-capture cross sections) that were not 
included in the original compilation. 
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Figure 2.1 1 : Source definition window. 

In entering the radioisotope specification for a source, the user specifies the element (Z), atomic mass (A), and state 
(ground or metastable). As isotopes are added to a list, the quantity of the isotope is specified in one of several units. 
The completed isotope list may be subjected to decay, with daughter products automatically added to the list based 
on the specified decay time. Bateman equations are used to calculate the quantities of daughter products, and thus 
complex decay chains are modeled (Friedlander et al. 1981). With the selection of the Process button, QUEST 
searches the nuclide and gamma-ray databases and produces a sorted list of the isotopes contributing to the spectrum 
and the number of contributing gamma-rays. 

The Magnitude Ratio Cutofs field specifies a value for limiting the number of gamma-rays that make up a source 
specification. This feature is provided to enhance real-time simulation performance. The magnitude ratio is used to 
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eliminate ray counts that make a minor contribution. Energies with ray count less than the ray energy with maximum 
ray count, divided by the magnitude ratio, are eliminated from the specification. 

begin: 118o.001 .deg 

end: .deg 

1 Attenuation Coefficient I 
p 3 i i i - l  

30.00 I 80.00 I 0.70 H 

Figure 2.12: Source radiosity definition window. 

The Radiosity pull-down menu of the Source Definition window accesses the Source Radiation definition window 
(Figure 13). An anisotropic source can be specified as a radially symmetric collection of attenuation coefficients. 
The default setting, 0-1 80 degrees with an attenuation coefficient of 1 .O specifies an isotropic source. 

2.1.3 PATH DEFINITION 

Selecting the Path(s) button from either the Source Path Assignment or Detector Path Assignment windows brings 
up the Path Definition window (Figure 2.13). Through the Path Definition window, a path can be immersively 
defined through the virtual environment. To define a path, select the Record button, and move through the 
environment using the 3D graphics window and the mouse. Once the path definition is complete, the Stop button 
stops path recording. Once a path has been recorded, it can be played back through selection of the Playback mode 
(Figure 2.14). Under Playback mode, controls are provided to move through the virtual environment on the 
previously defined path. 
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Figure 2.13: Path definition window-record. 

20 



Path Definition II - I - .  - 
Path Image Preferences 

~ ~~~ 

Path Name Playback 

Play Step Parise 

rn 
Reverse Step Reset 

Figure 2.14: Path definition window-playback. 

2.1.4 DETECTORS 

The ‘detector definition portion of QUEST presently supports a combination of a general algorithm for coaxial 
germanium diodes and efficiency curves for specific sodium iodide detectors. Though only five sodium iodide sizes 
are currently supported, work is underway to develop an algorithmic model based on results of Monte-Carlo derived 
response functions for sodium iodide crystals ranging in size from 1 in. x 0.5 in. up to 10 in. x 10 in. A complete 
range of coaxial germanium detector sizes is supported, from about 20% to 100% relative efficiency (compared to a 
3 in. x 3 in. sodium iodide crystal at 1332 keV). Specifically, the germanium intrinsic detector efficiency is 
computed from fundamental detector parameters such as diameter, length, and relative efficiency using an algorithm 
developed by Gunnink and Prindle (1992). An absolute efficiency is then obtained by applying geometry factors to 
the computed intrinsic efficiency. Gunnink and Niday (1972) developed the detector geometry model as part of the 
GAMMANAL code. 

Selecting the Detector(s) button from the Primary QUEST window displays the Detector Path Assignment window 
(Figure 2.15). This window is similar to the Source Path Assignment window, and allows for the association of an 
arbitrary number of detectors and paths. 
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Figure 2.15: Detector path assignment window. 

The Pathts) button of the Detector Path Assignment window brings up the Path Definition window (see Section 
2.1.3). QUEST makes no distinction between source and detector paths. In addition, any number of objects, both 
sources and detectors, can be associated with a single path. 
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Figure 2.16: Detector configuration window. 



Selecting the Detector(s) button of the Detector Path Assignment window brings 'up the Detector Configuration 
window. The Detector Configuration window provides access to the three subcomponents that make-up every 
detector. Displayed in the title-bar of this window is the name of the detector currently being manipulated. The 
Window pull-down menu provides the option of closing the Detector Configuration window. The specification of a 
detector is divided into three parts: detector definition, electronics, and algorithms. 

Detector Definition 
Selecting the Detector button of the Detector Confguration window brings up the Detector Definition window 
(Figure 2.17 and 2.18). 
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Figure 2.17: Detector definition window, NaI detector example. 

Figure 2.17 depicts an example NaI detector configuration, and Figure 2.18 depicts a Ge detector configuration. 
Since Ge detectors are parameterized for physical characteristics such as size, length, etc., these values may be 
directly maoipulated. However, only fixed NaI detector sizes are supported by QUEST vl, therefore these fields 
only display the default values for the specified NaI detector and are unavailable for data entry. 

Other relevant detector parameters are also entered here and are used to correct the detector efficiency. For instance, 
the detector dead-layer thickness for germanium detectors can be specified, which allows the user to evaluate the 
difference between an N-type (no external dead layer) and a P-type (0.5 to 1.0 mm external dead layer) detectors. 
The effect of end-cap material is also included. 
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Figure 2.1 8: Detector definition window, Ge detector example. 

Detector Electronics 
Selecting the Electronics button from the Detector Configuration window brings up the detector’s Electronics 
Definition window (Figure 2.19). The Electronics window allows the user to configure the simulated detector to 
mimic the hardware choices a user might make in a laboratory. The hardware choices include zero, gain, and a non- , 

linearity term of the output-energy calibration. In addition, the number of data channels for the Analog-to-Digital 
Converter (ADC) can also be specified. The number of detector channels can greatly influence the real-time 
performance of the simulation, and so should be selected carefully. Displayed at the bottom of the window is the 
Energy Scale, which displays the minimum and maximum energies over the specified number of detector channels. 

The Signal pull-down menu portion of the Electronics Definition window provides for the selection of statistical 
noise to add to the generated detector spectra. This can be a useful feature when trying to match an actual laboratory 
collected spectral response. By default this option is disabled. 

Two other values are specified in the Electronics Definition window that control the performance of the simulation 
of the detector. These include the Refinement Level and Points Per Refinement. The default values for these 
parameters, 0 and 1 respectively, were chosen to maximize real-time simulation performance at the price of model 
accuracy. For a more detailed treatment of simulation performance related parameters see Section 2.2.2 
Performance Tuning. 
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Figure 2.20: Detector energy definition window. 

As sample interval and algorithm name associations are entered for the detector, the Energy and Algorithms window 
continuously calculates and updates the value of the Sample Interval Greatest Common Divisor (GCD), which is also 
the Least Common Factor (LCF). The LCF represents the least common factor of all specified sample intervals; this 
value is used as the iteration loop over which the spectral response for the detector is calculated. This has 
ramifications for performance of the model, and is provided as a user hint (see Section 2.2.2 Performance Tuning). 

The detector algorithm logic can simulate a wide variety of detector algorithms with different settings of its 
parameters. Each simulated detector collects data using one or more sample intervals, and for each of its sample 
intervals a detector may use one or more algorithms. Only one algorithm's response is displayed during a simulation 
run, but the user may switch between different algorithms. The user may choose prior to the start of the simulation 
run to save the simulation history data. The responses of all the algorithms for all detectors are then saved to disk for 
later analysis (see Section 2.3 Analysis Mode). 

The first set of parameters divides the energy spectrum into non-overlapping windows by specifying the minimum 
and maximum energy for each window. There may be any number of such windows. The user may group the energy 
windows into up to four window sets, W,, W2, W3 and W,. (For the algorithm to show any response at all, at least 
W, must be defined.) The detector represents the spectrum as counts in equally-spaced energy bins. The algorithm 
logic forms sums of the counts in the bins that fall into each window set; call them K1, K2, K 3  and K4. 
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The input to the response function is formed by combining SI, SSz, q and q according to the values of the 
parameters E, F ,  G and H .  

E.SS, i- F - S S ,  
G . 0 ,  + H -02 

R =  

The response function has the form 

wherefix) can be chosen to be log&?= 2, e or 10) or 2, where p is a positive integer. The coefficients a1 and ai, 
the logarithm base ,!?and the power p are all specified by the user. The returned response value is clamped so that it 
never falls below zero. Also, when the logarithm function is chosen, the value returned by f is truncated to an 
integer. 

SSI and 0 1  are recomputed every time the detector develops a sample. The recomputation of SS2 and e, however, 
can be made dependent on a threshold condition through the parameters hi and lo. After it computes SS, and 4, the 
algorithm logic applies a high and low threshold test; if either is satisfied, SS2 and o;_ are recomputed, otherwise they 
retain their former values. To satisfy the high threshold test, SS, must exceed (SS, + H . q )  for hi consecutive 
samples. To satisfy the low threshold test, SSI must fall below (SS, - H - q )  for lo consecutive samples. 

As an example, the parameters for a true gross count algorithm will be presented. Give the parameters the following 
values: 

A = 0 ,  B = l ,  C=O, D=1 

a] = 1 ,  b] =o, CI =o, dl = 1 

a2 = 0, 62 = 0, c?; = 0, d2 = 1 

E = ] ,  F=O,  G = l ,  H = O  

a] = 0, a?= I 

f(x,  =2 

hi=O, lo=O 

Let there be one energy window defined to cover the entire spectrum, and let energy window set Wl be defined to 
contain that window. Then the sum Kah developed from the current sample is the sum of a11 counts over the entire 
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spectrum. SSI is an average containing only the current sample value, hence is equal to Kob. The sum in the 
expression for q drops out since bl is zero, and we have 

1- K, +o  
0, = E, which leads to R = =K. l . J K , + O  

Then the response value becomes 0 + 1-R2 = Kabr which is the total number of counts over the entire spectrum, as 
desired. Once all algorithm definitions have been completed, the user can exit the Energy and Algorithms window 
through selection of “Close” through the Detector pull-down menu. It should be noted, however, that there must be 
at least one valid algorithm specified for each detector. 

Background 
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Background Definition window. 

Figure 2.22: Background definition window. 

2.1.5 BACKGROUND 

Selecting the Background button from the Primary QUEST window brings up the Background Definition window 
(Figure 2.22). The background feature of QUEST may be used to add the effects of environmental radiation to the 
detected signal. Background is specified as a source, or a spectrum, or both. 



A background source is a regular QUEST source, defined like other QUEST sources. Instead of being placed on a 
particular path, however, the background source receives special treatment to make it appear ubiquitous. 

Any spectrum file in standard IEEE or ADCAM format may be used as a background spectrum. A background 
spectrum is simply added to the spectrum developed by the normal operation of the detector. Ideally, the spectrum 
should have the same zero, gain and number of channels as the detector; if it does not, it is interpolated to fit the 
detector. 

2.2 SIMULATION MODE 

Once a scenario has been defined or loaded, it can be simulated through selection of the Sirnulation button on the 
Primary QUEST window. Doing so brings up two additional windows, the Simulation (Figure 2.23) and Simulation 
Response (Figure 2.24) windows. During execution of a simulation, simulation output can be saved to disk file for 
later analysis. Immediately prior to beginning a simulation, a decision must be made to save output data or not. 
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Play Pause stop Response Giaph: Select Detector 
-i 

IGe8192 [Circular Path] rl 
Response: Select Algorithm .r 

Step Reset ]Gross [2.001 rl 
j Simulation Run Window 
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Figure 2.23: Simulation window. 

2.2.1 SIMULATION CONTROL 

The Simulation window contains “VCR-type” controls for managing the progression of the simulation. Listed in the 
title bar of the Simulation window is the name of the scenario being simulated. The right side of the Simulation 
window displays three pull-down selection boxes used in controlling the simulation. The First Person Point of 
View: Select Path selection box governs the path on which the first-person point-of-view (POV) tracks in the primary 
3D graphics display window during progression of the simulation. The user may select any one of the defined paths. 
If a detached path is defined for the simulation, and the user switches the POV away from the detached path, the 
interactive, detached path remains stationary at that point until the POV is switched back. 
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Figure 2.24: Detector response graph window. 

I 

The Response Graph: Select Detector and Response: Select Algorithm selection box determines the algorithm and 
detector for which the response chart displays output. Due to the computational demands of the simulation, only one 
detector algorithm can be displayed at a time during a simulation. The Response Graph displays the current 
algorithm response at the y-axis, with the history streaming off to the right. 

The simulation continues until the user presses the “Stop” control button on the Simulation window. Once the button 
is depressed, the user is warned that the simulation is about to be terminated. If the user chooses to continue, all 
simulation output data is flushed to disk file and the simulation is halted. The user is then returned to the QUEST 
Main Screen. 

In addition to the provided graphical user interface controls, QUEST responds to keyboard keystrokes. Pressing the 
‘u’ key while the cursor focus is in the overhead-view graphics window will zoom-up the view. Likewise, pressing 
the ‘d’ key in the overhead-view graphics window will zoom-down the view. In general, when operating a QUEST 
simulation, the system performance is maximized by adhering to the following observations: 

Make the two graphics windows as small as possible. 
Prevent windows from overlaying each other (e.g. graphics windows and GUI control window). 
Prevent the 3D graphics windows from being “clipped“ by the outside edge of the display. 
During a simulation keep the cursor focus in a 3D graphics window. 

2.2.2 PERFORMANCE TUNING 

QUEST attempts to address two application domains at the same time. On the one hand, QUEST performs well as a 
real-time simulation tool, providing interactive, human-in-the-loop simulations of the search for nuclear material. At 
the same time, however, QUEST is capable of providing detailed spectral data for specific radionuclide source, 
detector and absorber configurations. QUEST unifies these two application domains under a single simulation 
model, providing the user with the settings to manage the trade-off in application domain performance requirements. 
Thus, QUEST was designed with the capability to make highly accurate calculations when simulating detector 
responses. Unfortunately, higher accuracy requires increased QUEST execution time. The user interface provides a 
set of modifiable parameters for controlling the accuracy and detail of QUEST’S transport physics computations- 
indirectly, this also controls real-time behavior. 
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QUEST must be capable of managing the computational demands of the four primary software components that 
comprise the application-these include the 3D graphics display (GRE) of the virtual environment, the mathematical 
model of the structural environment and the relationship between its components (CDB), the high computational 
demands of the transport physics’ (TP) calculations, and the responsiveness of the graphical user interface (GUI). It 
should be obvious that, given a limited resource of a machine’s computational capability, the requirements of these 
software components must be arbitrated based on the user’s operational demand. For example, in order to support a 
real-time, human-in-the-loop simulation of the search for nuclear material (i.e. the use of QUEST as a searcher 
training tool), an emphasis would be given to the requirements of the 3D graphics engine. In contrast, to support 
trade-off studies in the design and use of radiation detectors (i.e. the use of QUEST as a analytic design tool), an 
emphasis would be given to the requirements of the transport physics. Thus, these trade-offs depend on the intended 
use of the application, and for each run, the user must decide best how to make these performance trade-offs between 
what is essentially computational accuracy and system responsiveness. 

The user is given control of these performance trade-offs through access to various tuning parameters implemented 
in the application. The following bullets detail the major performance tuning parameters at the disposal of the user, 
their effects, and location within the simulation’s GUI. 

Complexity of the structural environment. The more polygons the 3D graphics engine must render, the 
higher the computational demands. 

O Number and complexity of sources simulated. Obviously, the greater the number of sources simulated, the 
greater the demands on the 3D graphics engine to render their movement, and the gamma-ray transport 
requirements imposed by the additional radionuclides. In the later case, the complexity of simulating a 
radioactive source is proportional to the number of gamma and x-ray lines associated with that source. 

Control: Obviously the user has control over the number of sources included in any given scenario. 
However, for each included source, the user should carefully manage the number of gamma and x- 
ray lines included. The Radionuclide window provides a ratio factor with which the user can 
eliminate all but the most energetic lines. 

Number and complexity of detectors simulated. 

Control: Once again, the user has direct control over the number of detectors include in a scenario. 
For each included detector, the complexity of device simulation can be greatly reduced by limiting 
the number of channels the detector collects samples over, the number of algorithms calculated 
(see Section 2.1.4), and the LCF of the defined detector sample intervals. 

This last point deserves greater explanation. Since spectral data for a detector is collected based 
on the sample interval defined sample-and-hold-period, the transport physics calculates the 
detector spectra for only one sample interval, regardless of the number defined for a specific 
detector. As discussed in Detector Algorithms of Section 2.1.4, this single sample interval is the 
LCF of all defined sample intervals. The smaller this value is, the greater the computational 
requirements. 

O Simulation data collection and storage to disk requirements. During the execution of a simulation scenario, 
the user is only provided with the output of one detector algorithm at a time. In order to provide the more 
detailed post-processing capabilities of the Analysis Mode, simulation data must be collected and stored to 
disk. Wholesale collection and storage of simulation data is computationally expensive. 

Control: Under the Detector Electronics window, the user is given the choice of whether simulation 
data should be stored to disk or not. 

Transuort phvsics accuracy requirements. Simulation of gamma and x-ray transport involves many com- 
plex levels of data integration over time and space. QUEST was designed with parameter controls on these 
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calculations to allow the user to make the trade-off between result accuracy and model fidelity. The 
transport physics component of QUEST computes a response for every channel of every detector that 
accounts for all emitted source photons. Thus, execution time is roughly proportional to the number of 
detectors, the number of channels in each detector, and the number of distinct photon energies emitted by 
all sources. The number of detectors is fixed for a given simulation scenario, but the other two quantities 
can be altered to influence execution time. The parameters available to the user are: 

Controls: Through the Detector Electronics window, the user has control over both the Refinement 
Level and Points per Refinement. QUEST simulates the sample and hold behavior of a detector by 
numerical integration over time. Each detector sampling period is covered by a number of equally 
spaced time samples. QUEST computes an instantaneous detector response at each time sample, 
then interpolates and integrates to get the totai response. The number of time samples computed is 
determined by available CPU time; specifically, when the real-time clock advances beyond the 
hold time of a detector, then numerical integration sops. For example, if the detector’s sampling 
period is 5 seconds and it takes 2 seconds for the computer to calculate the response at one time 
sample, then integration is based on only three sample points. This is a straightforward idea, but 
determining the optimum number of sample points is difficult when more than one detector is 
present. It turns out that responses at multiple time samples can be computed faster if they are 
“batched” together during one pass of transport physics calculations (one pass is also called one 
iteration of the “refinement loop”). The Points per Refinement parameter sets the maximum size 
of a “batch”. For example, if the parameter is 2, then the detector computes a response at 2 time 
samples before examining the real-time clock. If a simulation is running slowly because some 
detector has a large number of channels, then setting the parameter to 1 should speed that detector 
up. Conversely, if a detector has very few channels, it might run faster with its parameter set to 3.  
Refinement Level defines the number of times the sample-and-hold period of the detector is 
divided down for integration. A value of zero indicates no division, and therefore only one large 
integration is performed over the entire sample-and-hold period. This results in better real-time 
response, but might cause problems when the sample interval is large relative to the detector’s 
speed through the environment. Larger values for Refinement Level result in higher accuracy, but 
at the cost of real-time, interactive performance of the simulation. One consequence of the 
numerical time integration scheme is that execution time does not depend on the detector’s 
sampling period; that is, performance cannot be improved by using shorter sampling periods.. 
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Figure 2.25: Analysis control window. 

2.3 ANALYSIS MODE 

Once a simulation has generated output, it may be analyzed in more detail through the analysis mode. Analysis 
mode can be entered in two ways: through selection of the Analysis pull-down menu on the Primary QUEST 
window, or by pressing the Analysis button on the Primary QUEST window immediately following the run of a 
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simulation. In either case, the Analysis controI window (Fi-we 2.25) is displayed, along with one detector output 
window for each scenario specified detector. 
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Figure 2.26: Static analysis output algorithm chart window. 

The Analysis Control window provides playback controls for moving through the playback of data associated with 
the simulation. In addition, the First Person Point of View may be selected as any one of the scenario defined 
objects, sources or detectors, or an independent outside Observer. The Duration field lists the total amount of 
simulation time in seconds recorded in the output field. In addition, the Time field displays the current index of the 
output playback. This field may be directly edited. 

For each detector defined in the scenario output file, a Static Analysis Output window is displayed (Figures 2.26 and 
2.27). Two examples are given here to show the two types of output that are available for each detector, namely 
spectrum and algorithms. Figure 2.26 displays the algorithm output for a specified sample interval of the detector. 
The detector name for the output being displayed is given in the title bar of the window. The amount of algorithm 
time displayed can be changed with the DeltuT parameter, as can the algorithm being displayed. 
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Figure 2.27: Static analysis output spectrum chart window 

Figure 2.27 is an example of a Static Analysis Output window for a detector showing spectrum output. The energy 
range for the displayed spectrum can be varied through use of the Emin and Emax values. The Interval Start Time 
for the displayed spectrum is given, and one of the detector define Sample Interval /Algorithms can be selected to 
display the Algorithm Response. 
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3 THEORY 

QUEST is comprised of a number of interdependent software components, including: the Transport Physics (TP), 
Material Database (MDB), Background Radiation, Component Database (CDB), Interprocess Communication (IPC), 
Graphics Rendering Engine (GRE), and the Graphical User Interface (GUI) (Johnson et al. 1996). The TP, MDB, 
and Background Radiation components encapsulate radionuclide and gamma-ray databases, radiological source and 
detector models, as well as the radiation transport engine. The CDB provides the mathematical representation of the 
simulated environment supporting assignment of physical attributes (such as materials, thickness, color, etc.), and the 
physical relationships between structural model subcomponents. The IPC and GUI manage intercommunication 
between the software components and the visual representation of user information. And finally, the GRE maintains 
the three-dimensional graphic views, and supports interaction between the user and simulated environment, including 
real-time walk-throughs. 

Each of these components encompasses a great deal of software detail. While it is beyond the scope of this paper to 
detail all design issues associated with QUEST, the following sections provide overviews of the theory underlying 
each software system, and provides an overview of their design and individual contribution to the simulation whole. 
The first section presents an overview, for the uninitiated, of the physics addressed by QUEST. 

3.1 THE PHYSICS OF GAMMA RAY SCATIEIUNG 

As gamma rays pass through an object they interact with the particles that make up that object. These interactions 
result in an exponential decay in intensity of the gamma radiation, as may be seen through the following argument. 
Consider a thin slice of material containing targets with which the gamma ray can interact, as in Figure 3.1 (Delaney 
and Finch 1992). We model each of the targets in the material as a sphere with a cross sectional area called the 
interaction cross section, CY. A photon interacts with a target if and only if it passes through the corresponding 
sphere. The value of the cross section, CY, depends on both the energy of the incident photon and the nature of the 
target material. As will be seen in Section 3.1.2, many different types of interactions contribute to the cross section. 
However, to compute the total cross section we simply add the cross sections for each of the relevant interactions, 
i.e., 

I -  dI 

I / 

A 
Figure 3.1 : Gamma ray and material interaction. 
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The fraction of photons removed from the incident flux by the thin layer of material in Figure 3.1 is given by the 
ratio of the interaction cross sections of the targets to the total cross sectional area of the material 

where I (the intensity) is the number of photons per second passing through a unit area normal to the path of the 
incident photons, dl is the number of these photons removed by interactions in the thin layer, and N is the number of 
target particles per unit volume. Integrating both sides of equation 3.2 gives 

where 10 is the gamma ray intensity at x=O. If we introduce a new symbol & called the attenuation coefficient, with 
p = N a  equation 3.3 becomes 

I = Ioe-px. (3.4) 

As for o, the total attenuation coefficient may be obtained by adding the attenuation coefficients for each of the 
relevant interactions, i.e., 

Gamma ray photons interact with electrons, nuclei, and the electromagnetic fields associated with these particles. 
These interactions consist of either the scattering (i.e., change of direction and possible change in energy) or 
complete absorption of the incident photon (Table 3.1). Which of these effects gives the largest contribution to the 
attenuation coefficient depends on the energy of the gamma ray and the nature of the material through which the 
photon is passing. 

Target scamring Absorption 

Atomic electrons Compton scattering Photoelectric effect 

Photonuclear reactions 
Nuclear scattering Photofission Nuclei 

Electromagnetic fields Delbruck Pair production 

Table 3.1 : Attenuation effects. 

In the next section, we will describe each of the effects mentioned in Table 3.1 and discuss their relative 
contributions to the total attenuation coefficient for photon energies between 50 keV and 3 MeV. As we will see, the 
three most Smportant interactions are Compton scattering by electrons (CS), the photoelectric effect (PE), and pair 
production (PP). 

(3.6) 

The photoelectric effect and pair production result in complete absorption of the photon and are both modeled by 
QUEST. In Compton scattering, however, the photon is not absorbed but, instead, changes direction and loses 
energy. Compton scattering thus effects the detector count rate in two ways. Photons that would have hit the 
detector may be scattered away from the detector by intervening materials, and photons that would not otherwise 
have hit the detector may be scattered into the detector. 
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Figure 3.2: Attenuation coefficients versus photon energy. 
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The contribution of the first of these effects to the attenuation coefficient is computed in QUEST. However, the 
current version of QUEST does not include the second effect. This problem with Compton scattering will be 
discussed in more detail in Section 3. I .2. 

3.1.1 ATENUATION EFFECTS 

From the graphs of attenuation coefficients versus photon energy in Figure 3.2, we see that Compton scattering gives 
the dominant contribution to the attenuation coefficient for intermediate photon energies. In addition, the range of 
gamma ray energies for which Compton scattering gives the largest contribution to the attenuation coefficient is 
greater for lighter elements, such as Silicon, than for heavier elements, such as Lead. The photoelectric effect 
dominates for low energy photons and heavier atoms, while pair production is only important for photon energies 
above, approximately, 2 MeV. 

ComDton Scattering 
For photon energies much greater than electron binding energies, electrons may be treated as being essentially free. 
The scattering of photons by free particles is called Compton scattering. Since the contributions from Compton 
scattering for each electron in an atom add, the total contribution of atomic electrons to pCs is proportional to 2, the 
number of electrons in an atom. This weak dependence on Z, compared to the photoelecmc effect and pair 
production, causes Compton scattering to be relatively less important for larger atoms. The attenuation coefficient 
for Compton scattering of photons by nuclei is less than 1% that for electrons since the attenuation coefficient for 
Compton scattering is proportional to one over the square of the mass of the scattering particle. For photon energies 
(E,) above 100 keV, the attenuation coefficient is inversely proportional to E,, This insures that pair production will 
dominate for energetic photons. 

A significant complication introduced by Compton scattering is the scamring of photons into the detector. To see 
when this effect may be significant, consider the percentage of non-absorbed photons which Compton scatter when 
traversing various materials (Table 3.2). 

Table 3.2: Compton scattering of non-absorbed photons. 

For gamma ray energies of interest (50 keV to 3 MeV) and relatively light building structures, the fraction of non- 
absorbed photons which Compton scatter is typically less than 25%. We would expect the change in count rate due 
to these photons hitting the detector to be small. However, for thick structures composed of heavier elements the 
fraction of non-absorbed photons which scatter approaches 100%. In this case we would expect these scattered 
photons to contribute significantly to the detector count rate under some conditions. To better model Compton 
scattering, future versions of QUEST may account for scattering into the detector. 

Photoelectric Effect 
Instead of scattering, a photon may be totally absorbed by an electron. If the gamma ray has more energy than the 
binding energy of the electron, the electron will be ejected from the atom in a process known as the photoelectric 
effect. Interactions where the photon does not have enough energy to ionize the atom are less important since the 
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photon energy must match exactly the difference in two atomic energy levels. The photoelectric effect really consists 
of two interactions: an electron absorbs a gamma ray and interacts with another electromagnetic field to conserve 
energy and momentum. This second electromagnetic field is typically the nuclear field. Thus, the stronger the 
nuclear electromagnetic field seen by an electron, the greater that electron's contribution to pp~.  Inner shell electrons 
are in the strongest nuclear electromagnetic field and so give the largest contribution to ppE (provided the gamma ray 
energy is greater than these electrons' binding energy). The peaks on the graph of ppE versus E, in Figure 3.2 are 
located where E, becomes large enough to liberate the next closer shell of electrons. The electric potential seen by 
the innermost electrons may be written as 

ze 2' --- Nuclear Charge 
Size of Inner Electron Shell 

Electric Potential - 
1/Z 

(3.7) 

This potential depends on Z both through the nuclear charge and through the size of the inner electron shell. Thus 
ppE is highly dependent on Z (ppE = 24 - Z5) and the photoelectric effect will become increasingly important for 
materials containing heavier elements. As the incoming photon energy increases beyond the binding energy of the 
most tightly bound electrons, the electrons may be treated as being essentially free. Thus the photoelectric effect 
becomes less important while Compton scattering becomes relatively more important (see Figure 3.2.). 

Pair Production 
In pair production, a gamma ray splits into a particle antiparticle pair and one of these two new particles interacts 
with the electromagnetic field of the nucleus (usually) or another electron (less likely). The second interaction is 
necessary to conserve energy and momentum. To produce a particle antiparticle pair, the photon energy must be 
greater than or equal to the combined rest mass energies of the particle and antiparticle. For photon energies of 
interest here (E,' 3 MeV), only electron positron pairs are light enough to be produced. The minimum gamma ray 
energy sufficient to produce an electron positron pair is 

Minimum E, = 2(Rest Mass Energy of Electron)= 1.02 MeV (3.8) 

As E,  increases beyond 1.02 MeV, pfp increases as well. Since the contributions to the attenuation coefficient from 
the Compton and photoelectric effects decrease as E, increases, pair production dominates for large Ey 

As for the photoelectric effect, the stronger the nuclear electromagnetic field, the more likely pair production is to 
occur, although there is no dependence on the size of the innermost electron shell in this case. Thus the attenuation 
coefficient again depends on 2, though less strongly than for the photoelectric effect: ppp  is proportional to 2*. 

Other Effects 
The contributions of Compton scattering, the photoelectric effect, and pair production to the attenuation coefficient 
are all modeled by QUEST. As shown in Table 3.1, there are several other effects that may contribute as well. 
However, these effects are at most 1% of the first three and are ignored by QUEST. The error introduced by this 
approximation is small compared to the (typically - 10%) error caused by variations in building material 
compositions. Some of these additional effects and the reasons for their small size are discussed below. 

First, consider reactions in which there are additional electron photon interactions. Examples are multi-photon 
Compton scattering, where there is more than one photon in the final state, and radiative corrections to all three of 
the effects discussed so far. (Radiative corrections to a reaction have the same initial and final states but involve 
additional photon interactions.) However, the extra electron photon interactions in these reactions reduce their 
contribution to the attenuation coefficient to at most 1% (for E, I 3 MeV) of the combined attenuation coefficients 
from Compton scattering, the photoelectric effect, and pair production-more precisely, the extra photon interactions 
will introduce additional factors of the fine structure constant, a, where a = '/,3T 

Instead of interacting with an electron, the incoming photon may react with a nucleus. As mentioned previously, the 
attenuation coefficient for Compton scattering of photons by nuclei is smaller than that for electrons by a factor of at 
least 100. Radiative corrections to this process are called Delbruck scattering. As for radiative corrections to 
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Compton scattering by electrons, the attenuation coefficient for Delbruck scattering is M e r  reduced from that for 
nuclear Compton scattering. In a process called photofission, a nucleus absorbs a photon and splits into two or more 
nuclei. Due to the large binding energies of most nuclei, photofission only gives a significant contribution to the 
attenuation coefficient for gamma ray energies above 5 MeV. Instead of splitting a nucleus, the absorption of a 
photon may cause transitions between nuclear energy states, i.e., photonuclear reactions. However, just as for 
transitions between atomic electron energy levels, the need to fine tune the photon energy to match exactly the 
difference in two (nuclear) energy levels reduces the importance of photonuclear reactions for most materials. 
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3.2 TRANSPORT PHYSICS 

The Transport Physics (TP) is responsible for making calculations that simulate the emission and detection of 
radiation. A true radioactive sample emits gamma rays and X-rays (and possibly other particles) at specific energy 
levels. These photons may pass unimpeded through intervening materials, or possibly be absorbed, scattered, or 
reradiated before reaching a detector. Photons that pass into a detector are converted to electrical signals through a 
variety of physical processes, and these signals are processed to generate useful information. The most accurate 
model of the physics requires software simulation at the level of individual radiated photons; for example, Monte 
Carlo methods. However, the need to make calculations in a reasonably short time has led us to develop more 
approximate techniques, which are documented in the following sections. 

3.2.1 ALGORITHM OVERVIEW 

We choose to model only photon interactions occurring on a straight line between each source and detector. 
Scattering effects are approximated but treated as losses-no attempt is made to follow scattered or reradiated 
photons in the simulation. The mathematical models we use to represent.physical processes are adaptations of those 
employed in the SYNTH software of Hensley (1994). However, an important design goal of QUEST is to structure 
the calculations in a manner that allows the accuracy of the simulation to improve with the amount of computer time 
available. This makes it easy to extend the QUEST software to more powerful processing architectures. 

The physics simulation can be analyzed by considering the following topics: 

O effects of moving sources and detectors, 
O radiation losses while traveling between a source and detector crystal, 

conversion of intercepted radiation energy to electrical signals, and 
signal processing by a detector. 

Moving Sources and Detectors 
Sources and detectors in QUEST are allowed to move through space and change their axes of orientation. Thus, the 
photon flux received by a detector varies in time. Real detectors count photon interactions for a specified sampling 
period, then report the accumulated spectral information and move on to the next sampling period. The TP simulates 
sampling behavior by numerically integrating the received photon flux over time. Each detector carries out an 
inteaoration specific to its sampling period and motion through space. An adaptive integration algorithm is used to 
allow tradeoffs between simulation accuracy and execution time. 

Radiation Losses During Transmission 
Given instantaneous source-detector geometry, the TP models photon emission along straight lines between each 
source and detector. Currently, detector crystals have finite spatial extent, but sources are treated as points. This 
means a straight-line path for simulated radiation can be any line segment starting from a source and ending 
somewhere inside the detector crystal. Each source emits a certain number of photons per second at specific 
energies. This photon flux is diminished before reaching the detector by collisions with other particles along the 
path. Since the final flux at the end of a path is geometry-dependent, the total flux received by the detector is a 
volume inteeoral of individual flux contributions. We calculate the integral numerically using a special two- 
dimensional projection and an adaptive meshing technique borrowed from finite element methods. Again this allows 
the solution accuracy to increase with available computer time. 

Converting Received Photons to Electrical Signals 
A detector contains a crystal for converting received photons into electrons by a variety of physical processes, such 
as the photoelectric effect, Compton scattering, and pair production. In addition, the relatively narrow energy 
spectrum of a photon stream is spread out due to the thermal noise of the crystal atoms. Thus, a photon flux at one 
energy is detected as a set of electrons with a continuum of energies. The TP models the electron-generating process 
for each incoming photon, and adds the individual continuums together to define a continuous energy function. 
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Detector Signal Processing 
All detectors capture the energy continuum in a series of finite-width channels. As mentioned previously, they also 
integrate signals over a sampling period; thus, each reported channel is an integral over a range of energy and time. 
The user defines the energy range and number of detector channels. In addition, the TF’ models distortions due to 
nonlinearities in the electronic amplifier gain of the detector. The set of detected amplitudes in every channel is 
stored and fed into an “algorithm” defined by the user that reports a single number during the simulation. 

3.2.2 Software Design Overview 

Classes defined by the TP software are listed and described below. 

Linespectrum-An object of this class contains a set of discrete photon energies, each characterized by its flux rate 
and type of photon (X-ray or gamma ray). Two Linespectrum objects from different sources can be merged 
into a single Linespectrum. 

EmittedRay-An object of this class describes the photon flux emitted from a point source along a ray to some other 
point in space. This object inherits photon descriptions from Linespectrum. It uses the MDB to compute the 
attenuated photon flux delivered to the terminal point of the ray. 

Path-An object of this class contains a collection of Node objects that define a portion of the recent trajectory of a 
source or detector through space. The trajectory can be thought of as a sequence of time-ordered points with an 
associated orientation vector (the axis of a cylindrical detector or anisotropic source). The object receives 
Node updates from the GRE and maintains them in time order. It can generate a point and orientation vector at 
arbitrary time values using linear interpolation. Only a finite number of the most recent Node updates are 
stored in memory; hence, requests for data must be confined to this time interval. 

Detector-An object of this class defines the operating characteristics of a real detector device. Methods in this 
class provide the top-level driver for the TP algorithms, described later in this document. Briefly, a detector 
uses Path information to set up EmittedRay objects from all point sources. After computing the received 
Linespectrum of photons, the detector models physical processes that smear the discrete spectrum into a 
ChannelSpectrum object. A sequence of time-ordered ChannelSpectrum objects is analyzed to generate a 
single scalar output from each detector. 

ProjMapping-An object of this class describes an abstract coordinate mapping between three-dimensional 
It is used to make coordinate Euclidean space and an embedded two-dimensional projection space. 

transformations between the two systems. 

ProjDetector-An object of this class represents the two-dimensional projection of a detector crystal as seen by a 
particular point source. Many such objects are created and destroyed during computations made by each 
detector. Each object inherits an associated ProjMapping object to describe the projection mapping. The 
primary function of a ProjDetector is to compute the cross-sectional area of a three-dimensional detector crystal 
as seen from a particular point source. 

The following high level outline describes the operation of the TP. Its purpose is to indicate the flow of execution 
during a simulation. 

Load Detector information for the current scenario 
Wait until some Path contains enough Nodes to completely cover a detector’s sampling period 
while the simulation remains active 

for each Detector 
if simulation time > current sampling period end time + A t o  

Choose the next set of time instants for integrating the current sampling period 
for each time instant 

then save final ChannelSpectrum and start on the next sampling period 
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loop over all Sources 
Compute cumulative Linespectrum received by the Detector 

end loop 
Compute a ChannelSpectrum corresponding to this time instant 
Update the time integration for the current sampling period 

end €or 
end €or 

end while 
Deallocate memory, clean up in preparation for possible new scenario 

3.2.3 Accounting for Source and Detector Motion 

The QUEST software allows sources and detectors to move along paths, which are defined as a time-ordered 
sequence of points in space. In addition, the orientation of detectors (where they are pointed) and of anisotropic 
sources can change along the path. As a result, motion through a building with walls and doorways can cause the 
detected energy to vary suddenly along a path. 

In practice, all real detectors count photons over a finite sampling period (typically about 10 seconds) and report the 
accumulated spectral information. We divide paths into segments whose duration equals one sampling period and 
compute the detector response for each segment. The accumulated response is fundamentally given by an integral 
over time, which we approximate using an adaptive integration algorithm. 

Path Construction 
The path of each object is obtained from the GRE as a time-ordered sequence of point and orientation vectors (also 
referred to as nodes of the path). The GRE delivers a batch of nodes at regular intervals, with one time stamp for the 
whole batch. The TP uses the time stamp of the current and previous batches to attach a time to each node. A list of 
time-tagged vector pairs is then stored for each object in an array of fixed length. The length is chosen to hold 
enough path information for two sampling periods of the slowest detector (exact determination of the array length 
also depends on how fast the GRE can generate data). 

During a simulation each source and detector is associated with a Path object that contains its array of time-tagged 
position and orientation vectors. Various TP algorithms may request information from the Path at arbitrary times; it 
is the responsibility of the Path object to return meaningful data. This is done using simple linear interpolation 
between the two nearest nodes. The Path should never receive requests for data outside its storage range. Even 
though the GRE and TP operate as separate threads in QUEST, provision has been made to keep the two processes 
synchronized. 

Numerical Intesation 
Each detector has one or more sampling periods, denoted as A t D -  Multiple periods are allowed so the user can make 
comparative studies between detectors with different parameters. The TP creates a local Detector object for each 
possible sampling period, and these objects (each with a single At,) compute responses independent of one another. 

The sampling period of a detector defines a segment of time over which photons are to be counted. One can 
visualize a spatial path segment for the detector and all sources corresponding to this time interval-this is the 
geometry over which a response is calculated. However, computation of the response is not as difficult as this 
picture suggests. The detector simply queries each source for its position at certain discrete time instants and 
computes the instantaneous response. These responses are accumulated over the sampling period to provide a total 
photon count. 

Discrete time instants are chosen using numerical integration with an adaptive width parameter. Integration of a new 
sampling period starts by choosing the time instant in the middle of the period. If the available computation time for 
the TP is used up in calculating the response at this time, then we multiply the response by A t D  and quit. This 
approximates the time integral by a function value at a single point (the centroid of the sampling interval). If more 
computer time is available, then we choose the two ends of the sampling interval. Two more instantaneous responses 
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are computed, allowing the integral to be more accurately approximated from three data points. The sampling 
interval can be further subdivided as computation time permits, providing ever greater accuracy. 

Our numerical integration scheme uses the trapezoid method for computing approximate total responses. This has 
only first-order accuracy, but requires storage of just one extra instantaneous response (a Channelspectrum object, 
which can use as much as 100 Kbytes of memory). Integration can be terminated at any point in the algorithm to 
accommodate real time performance requirements. If computer time is readily available, then integration proceeds 
until the relative change in final response is smaller than a user-defined accuracy threshold. 

Note that our adaptive integration scheme may query Path objects for position information at any time instant in the 
sampling period. Therefore, integration cannot begin until all GRE data for a sampling interval has been obtained. 
This means TP computations lag by one sampling period; i.e., results are displayed up to AtD seconds late. 

3.2.4 Calculating Losses Between Source and Detector 

The basic computation in this section is the determination of the photon flux (number of photons per second) that 
passes into a detector crystal at a given instant of time. This is found by computing the photon flux radiated from all 
sources and integrating over the finite detector crystal volume. Each source is a point that emits a discrete line 
spectrum of photon energies in all directions according to some radiation pattern. We simulate photons that follow a 
straight line to some portion of the detector crystal, computing absorption and scattering losses to intervening 
materials, but we ignore photons that might reach the detector by scattering off intervening particles. The detector 
volume subtends a certain solid angle with respect to each radiating source, tracing out an irregularly shaped cone. 
The contribution of each source is given by a volume integral of photon flux computed over the set of rays within its 
subtended cone. The TP computes one integral for each source, but the solid angle is replaced by a simpler two- 
dimensional geometry. The simple algorithm below summarizes our computations. 

for each Detector 
loop over all Sources 

compute the two-dimensional projected detector region seen by the source 
loop over mesh points on the projected detector 

initialize a Linespectrum and Emitternay from source to mesh point 
multiply by the source anisotropic radiation factor 
compute attenuation due to intervening materials 
add the mesh point contribution to the photon flux integral 

end loop 
scale the integral to restore three-dimensional perspective 

end loop 
end for 

Proiecting the Detector 
Each source emits radiation that is intercepted by the detector crystal. The TP models a source as a point and 
computes the total flux radiated into the detector by adding up contributions from the cone of rays connecting the 
source and detector. Instead of integrating over this solid angle, we use a two-dimensional projection of the detector 
crystal onto a flat plane. The projection plane passes through the detector centroid and is perpendicular to the line 
between the source and detector centroid (a more proper projection would be onto the surface of a sphere centered at 
the source and passing through the centroid, but the flat projection we use is far simpler to model). We integrate 
radiation received over this two-dimensional region numerically using a triangular mesh. Each triangle vertex 
defines an EmittedRay object coming from the source, and we calculate the photon flux along this ray. The 
approximated integral is simply a linear combination of values at the vertices. 

To describe the projection operation, define a Cartesian coordinate system with the point source at the origin, the 
centroid of the detector along the positive y-axis, and the axis of the cylindrical detector in the xy-plane. (This can 
always be transformed back to the coordinate system of the original problem using translation and rotation operators 
that leave areas invariant.) Then the plane we project onto is defined by the equation y = y, where is the distance 
between the source and detector. The projection of any point (with positive y-coordinate) is found by extending a 
ray from the origin through the point and finding where it intersects the projection plane; thus, (x, y, z )  projects into 
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the point (ax,y,az), wherea = y / y .  We can use this formula to deduce an analytic expression for the projection 
of a detector in the shape of a right circular cylinder. 

Let the cylinder have diameter d and height h. Let its axis, which we specified to be in the xy-plane, make an angle 
6 with the projection plane. Making the restriction 0 I 6  I z , we see that the two endpoints of the cylinder’s axis 
are located at 

Each of these points is the center of a circular base of the cylinder. Projecting the circular outline of each base gives 
an ellipse in the projection plane. If we connect the two ellipses by tangent line segments we will have the outline of 
the projected detector, which is the two-dimensional region to integrate over. The two circular outlines are best 
expressed in terms of an angle parameter cp, which runs from 0 to 2n. For instance, the circle whose center is the 
first point given above has parameterization 

d h 
x =-sin @cosy, + -cos 8 

2 2 

d h 
2 2 

y = y--cos8cosp+-sin€J 

d 
2 

z=-sinp. 

Applying the projection formula will give a three-dimensional parameterization of the ellipse, which we know is 
confined to the projection plane y = r‘ . Let (u, v) be the two coordinates in the projection plane, where u = x and v 
= z whenever the y-coordinate is equal to 7 . Then the projected ellipse, still parameterized in terms of cp, is 

- I  

- 
Y 

h - d  y - -cos8cos y,+ - sin B 
2 2 

U =  

The next step is to eliminate cp using trigonometric identities, obtaining a quadratic equation in terms of the variables 
u and v. From this equation of the projected ellipse, we get formulas for its center and the lengths of its axes. Note 
that because we chose a coordinate system with the axis of the cylindrical detector in the xy-plane, the projected 
ellipses are rectilinear in the (u, v) coordinates. After some algebra, the answer for the first base center given above 
is 

I r‘h -(hz +d’)sinf!?+- 
4 2 

d h .  
( y + -sin 8)’ -(-cos 

2 2 

ellipse center at u,, = ycos8 

h ysinB+- 

h d (y+-sine)z --(-case)* 
2 2 

Ld 2 semi-axis lengths u,,! = - 
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The second base center yields a similar projected ellipse characterized by 

1 Fh -(hz +d2)sin8-- 
4 2 

(?--sine)*   C COS^)^ h d 
2 2 

ellipse center at u,? = ?cos8 

h Lsin 6 - - 
2 

h d (y--sin6)'  CO COS^)^ 
2 2 

semi-axis lengths' uO2 = Ei 

The two ellipses just calculated represent the projections of the circular ends of the cylindrical detector. To finish 
the outline of the projected detector, we must draw a line segment connecting the tops of the two ellipses, and a 
mirror-image line segment connecting the bottoms. The line segment must be tangent to each ellipse at the points 
where it intersects them. Finding the two points of intersection requires solving a system of four quadratic equations 
in four unknowns. Assuming that uCI < uc2, the equations are: 

where (UL, VL) and (uR, vR) are the left and right intersection points, respectively. The nonlinear system of equations 
is solved using Newton's method [Dennis], properly safeguarded to account for degenerate cases. 

Centroid Integration Method 
The two ellipses and connecting line segments completely define the outline of the two-dimensional projection of a 
cylindrical detector crystal. The region inside this outline corresponds to the region over which we integrate 
received radiation. QUEST is designed to support an adaptive triangular mesh for computing this integral; however, 
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when running in real time a simpler “centroid method of approximate integration is used. The centroid method 
computes received radiation at a single mesh point, the origin of the (u, v) coordinate system, and multiplies this by 
the area enclosed by the projected detector outline. Thus, it makes the simplifying assumption that the radiation flux 
is a constant over the whole detector. 

Source Energv SDectrum 
In the computations above we needed the photon energies that reached a particular mesh point on the detector from 
some source. These energies are expressed in the software as a LineSpectrum object, which consists of a set of 
discrete spectral lines. Each line’s strength is initialized with the total number of decays/second made by the source 
at that energy. Linespectrum objects are created for each source, taking into account the source’s elemental 
composition and mass. The Linespectrum is then affiliated with an EmittedRay vector that emanates from the source 
to a point on the detector. If the source radiates anisotropically, then the source strength is uniformly attenuated by a 
factor determined by the angle between the EmittedRay vector and the orientation axis of the source. 

Flux Attenuation 
As they travel from source to detector along an EmittedRay, radiated photons are absorbed or scattered by electrons 
in the nuclei of intervening materials. We calculate a linear attenuation coefficient p for each type of material along 
a path, and reduce the average number of photons emitted per second by the factor e-&, where d is the path distance 
through the material. The linear attenuation coefficient is calculated as p = pAE, where p is the density of the 
material (in grams per cubic centimeter), and AE is the mass attenuation coefficient (in centimeters squared per 
gram). 

The mass attenuation coefficient depends on the energy of the radiated photon and the atomic properties of the 
attenuating material. Following SYNTH, coefficients are computed using models developed from data tabulated by 
the U.S. Department of Health, Education, and Welfare in Radiological Health Handbook (1970). Attenuation 
losses from photoelectric, Compton, pair production, and K-shell effects are each computed from empirical formulas, 
then adjusted for the atomic weight of the absorbing element. Let E be the energy of a photon, 2 the atomic number 
of an absorbing element, and A the atomic weight. Then, 

-0.693ln(lOOOE) 
0.21 7 + 0.000552 

c,,, = exp[6.029 -0.6624(1n 2)  + 1.4478(1n Z)’ -0.2033(1n 2)3] 

con, = (0.066-0.0003314Z+0.000002772’)exp[4.4457(lnE) -0.04707(1nE)2] 

cp, =exp[-9.108+0.06852-0.000395Z~ +1.23l(lnE)], if E 2 2e,“ (otherwise c,, = 0 )  

with e,“ = 0.51 1006 MeV 

c , ,  = 0.10266 + 0.006798JEK + O.OO06539EK , if lOOOE < E, (otherwise cK,$,> = 1 ) 

with E, = 4.33078 + 0.021 2682 + O.OO8907Z’ + O.OOOO49 182’ 

4, = -1.0364 + 2.13 I72 + 0.00485042’ . 

Photon flux is attenuated according to the mass density of each species of element present in an intervening material. 
For example, passage through water causes an attenuation from both hydrogen and oxygen nuclei. A mass 
attenuation coefficient is calculated for each element, then multiplied by the density of the nuclei. The software 
stores the relative abundance of each element in a material as its fraction by weight; thus, the density of an element is 
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simply its relative abundance times the density of the material. Continuing the example of water, the relative 
abundance of hydrogen atoms is computed from atomic weights to be 

The density of hydrogen nuclei in water is therefore 0.1 12( 1 .OO) = 0.1 12 grams per cubic centimeter. 

Conversion to Solid Angle 
Our two-dimensional approximate integration of radiation flux yields a quantity with the units decayslsecond times 
centimeters squared. The flux function accounts for source radiation anisotropy and attenuation losses to intervening 
materials, but uses the total emitted flux of the source sample. What we want is the fraction of total emitted radiation 
intercepted by the detector crystal; therefore, we need to divide by the total surface area of a sphere that is centered 
at the source and passes through the detector. If we had projected the detector onto the surface of this sphere instead 
of a flat plane, then this calculation would give the exact solid angle subtended by the detector. Our use of a flat 
plane introduces some small error, the worst case occurring when a detector and source are close together. 

3.2.5 Modeling Detector Physics 

The computations in this section convert a discrete Linespectrum of received photon energies into a continuous 
spectrum of detected energies. Photons are converted to detectable electrons by the NaI or Ge material that makes 
up the detector crystal. The electrons generate an electrical signal that is then amplified, integrated, and processed as 
described in the next section. Here, we concentrate on the physics of detection in the crystal. 

Density of a material (@VC2) 
Mass attenuation coefficient of an element (squared cm/gm) 
Linear attenuation coefficient of a material at a particular energy 
Single discrete energy representing a stream of gamma ray photons (MeV) 
Compton energy, the upper limit of the Compton continuum (MeV) 
Rest mass of an electron, 0.5 1 I 0 0 6  MeV 
Efficiency of Ge detector (percent) 
Standard deviation of a Gaussian pulse (MeV) 
Full width of a pulse at half maximum values (MeV) 
Detector gamma ray response due to photoelectric effect (""""/,) 
Detector X-ray response due to photoelectric effect (co"""/w) 
Detector "tailing term" response due to photoelectric effect ('o"""/w) 
Detector response due to Compton effect (cou""/w) 
Detector response due to "multiple Compton" effect (countc/sec) 
Electronic sample and hold period of a detector (sec) 

Table 3.3: Symbols used to model detector physics. 

Detectable electrons are created from high-energy photons by the photoelectric effect, Compton scattering, and pair 
production. In addition, the very narrow energy spectrum of a photon stream is spread out due to the thermal motion 
of the crystal atoms. In the remainder of this section we let E, denote the discrete energy of a source photon stream, 
and describe how to compute its detectable spectrum (symbol definitions are given in Table 3.3). 

Photoelectric Effect 
This occurs when a photon collides with a bound electron in the crystal, giving up all its energy to the electron, 
which is knocked out of its atom. The photoelectric effect is the dominant detection process, producing a peaked 
energy spectrum very close to the energy of an incoming photon stream. The fraction of photons converted by the 
photoelectric process is determined by the detector's efficiency at that energy. 
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The efficiency of Ge detectors is calculated using the curve fitting models developed by Gunnink and Prindle (1  992). 
Working from real data, they defined three nonlinear curves that correlate energy (measured in MeV) versus 
efficiency on a log-log plot. The first curve covers energies below 90 keV and computes the “intrinsic” efficiency 
from the formula 

E = exd-1.5+1 .014{1n(0.9r)’}](1 -Pr{escape}) 

where Y is the radius of the detector (in cm), and the probability of electron escape is given by 

Pr(escape} = exp[-21 .I6 -8.01n E -0.8257(1n E)’]  . 

Another curve covers energies above 200 keV using a six-term polynomial of the form 

&=exp[a, +a,lnE+a,(lnE)’ +a,(lnE)’+as(lnE)4 +a,(lnE)’ . 

The coefficients are 

a, = -4.317 +0.961n(e#,,333) 

a, =O.$ -(~~]-1.13-0.0871(1nV)+0.0305(lnV)’ 

a3 = 0.333 -0.1 154111 V + O.W9427(lnV)* 
a, = -0.1456+ 0.01592lnV 
a, = -0.015 
as =-0.003+0.0092lnV-0.00124(lnV)’ 

where is the percent efficiency of the detector at 1.333 MeV (usually specified by the manufacturer), h is the 
height (or width) of the cylindrical detector (in cm), and V = 0.8zr2h approximates the volume of the detector’s 
crystal. The coefficient formulas above differ slightly from what was published by Gunnink (1992) because of errors 
contained in the article. Correct formulas were obtained directly from Gunnink’s GRPANAL software (Gunnink et 
al. 1988). 

Finally, a third curve is constructed to match the first two and cover energies from 90 keV to 200 keV. This is a 
simple quadratic interpolation given by 

~ = e x p [ l n & ? ~  +(8.092+7.55InE+1.568(1nE)’}(ln~, -In&,)], 

where &zoo and &m are the intrinsic efficiencies at 200 keV and 90 keV, respectively, as calculated from the other 
two pieces of the efficiency curve. 

The formulas above compute the intrinsic efficiency of a Ge detector at a particular energy based on the detector’s 
relative efficiency at 1.333 MeV and the size of its crystal. The intrinsic efficiency is then converted to an absolute 
efficiency by multiplying by the factor 0.0012. This number is the absolute efficiency of a 3x3 NaI detector in 
converting the 1.333 MeV photons coming from a Cobalt-60 source located coaxially 25 cm away from the face of 
the detector. Thus, the percent efficiency rating effi.333 (defined relative to a 3x3 NaI detector) is converted back to 
absolute efficiency. 

The efficiency of NaI detectors is calculated from data generated off-line by the EGS4 Monte Carlo simulation 
software developed at Stanford University. A table of efficiencies was generated for each specific crystal size, 
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usually covering the range of energies from 40 keV to 10 MeV. Efficiencies at intermediate energies are calculated 
by QUEST using linear interpolation to a log-log plot. 

For both Ge and NaI detectors it is customary to include absorption effects from other parts of the detector assembly 
in the efficiency factor. Using the e”’ loss factor described in the previous section, we account for the absorption 
from the metal casing of the detector and, in the case of Ge, from the “dead” layer of germanium that surrounds the 
active crystal. 

Photoelectric Peak Shape 
The electrons generated by the photoelectric effect are actually detected over a distribution of energies due to 
thermal motion of the crystal atoms. This continuous spectrum may be computed by mathematically convolving the 
photon spectrum distribution with a Gaussian pulse whose width reflects the resolution of the detector. A stream of 
gumma ray photons (emitted from atomic nuclei) has an extremely narrow spectrum; hence, convolution simply 
gives back the Gaussian response of the detector centered at the energy of the photon. A stream of X-rays (emitted 
from bound electrons) has a widened spectrum with a Lorentzian distribution; convolution gives a shaped Gaussian. 

The Gaussian curve characterizing detector resolution is usually specified by its Full Width at Half Maximum 
(FWHM). A general Gaussian function centered at Eo is given by 

where 0 is the standard deviation (in MeV) and A is the total area under the pulse (the number of photons converted 
by the photoelectric effect). The Gaussian function attains its maximum value at Eo, and the points where 
f =+ f (E,,) are easily seen to be 

E, t- 4- 202 In 0.5 . 

Therefore, 

FWHM = 2 Jm and o = FWHM 12.3548- 

The detector manufacturer usually indicates FWHM at one specific energy; however FWHM actually varies with 
photon energy. The variation is modeled by a simple two parameter formula: 

FWHM = Jexp[k, + k, In E,] , 

where E, is photon energy (in keV), and kl and k2 are parameters described by the equations below. In a NaI detector 
the user must supply the nominal width of the Gaussian at 661 keV (a strong emission line for Cesium-137). The 
value is specified .as a percentage, roughly meaning the percent of a 661 keV spectrum covered by the Gaussian. 
Referring to this quantity as W4,ai, the parameters for a NaI detector are: 

k, = -4.2674 + 1.998 In W,,,, 
k2 = 1.24. 

At low energies the parameterization is less accurate, so we mandate FWHM always be at least f i  = 4.47 keV. 

In a Ge detector the user must provide the nominal width at 1332.48 keV (an emission line for Cobalt-60). Unlike 
Nal detectors, it is given in units of keV. Calling this quantity W1333, Ge parameters are: 
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k, = -7.1884+1.99991nW,,, 
k,  =0.999169. 

The FWHM in this case is mandated to be at least 1 .O keV. 

A special correction factor is applied to the standard deviation of the Gaussian, reflecting the effects of representing 
the continuous energy spectrum as a sequence of finite width channels. In the GRPANAL work (Gunnink et al. 
1988, vol. 1, pp. 30-3 1) this is referred to as “Sheppard’s” correction. As in SYNTH, we use the formula: 

Typically, channel width of a detector is 1 keV, and the correction is not significant for larger Gaussian widths (for 
example, FWHMco,rccrcd = 1.208 when FWHM = 1 keV, but FWHMco,,c,d = 10.023 when FWHM = 10 keV). Note 
that the correction becomes quite large as channel width approaches infinity, the opposite of what might be expected. 
It is likely that this correction formula is appropriate only for the SYNTH fixed channel width of 1 keV. 

Summarizing, to calculate the detector response due to photoelectric effects induced by a gamma ray: 

O compute A = (number of source photons per second) x (absolute efficiency at E,> 

O compute CF from the FWHM of the detector at E, 

A the response is f , ( E )  = - 

Photoelectric Peak Shape for X-Raw 
Photons emitted by an X-ray decay process have a Lorentzian spectral distribution that can be written using the 
Breit-Wiper formula: 

The distribution is a symmetric pulse shape with total area equal to one. Its width is specified by r, the full width at 
half maximum for this function. Following SYNTH and GRPANAL (Gunnink et al. 1988, V3, p. 128), we choose it 
by the rule: 

if E, 5 0.028 MeV 
then r = (0.4E, - O.OOO4) 11000 
else r = (1.372E, - 0.02762) / I O 0 0  . 

The widths are fairly small; for instance, an X-ray photon at 90 keV has a full width at half maximum of 0.096 keV. 

The detector response is given by the convolution of its Gaussian impulse response (characterized as above by d = 
FWHM/2.3548) with the distribution q(E); that is, 

The convolution result is known as the Voigt profile, and is approximated numerically using the formulas from work 
on fitting Lorentzian peaks (Gunnink 1977) and GRPANAL (Gunnink et al. 1988, V3, p. 18 and p. 24). 
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Photoelectric Peak Tail 
In addition to the Gaussian-like pulse& or&x centered on the photon’s energy, Gunnink (1 972) adds a “tailing term” 
on the 1ow”energy side of Ey It’s a response given by 

if E I E, (otherwise,f,(E) = 0). The special parameters in this expression are 

a = exp[-2.9 + 0.44E,] 
b = 1.62 * 1000 
c = 0.4 

(“amplitude”), 
(“slope”), and 
(“fold-over constants”). 

The term involving b causes the tailing response to drop off exponentially as E becomes substantially less than Ey 
We ignore the tail completely when exp[b(E -E,)] is smaller than machine precision; Le., when E, - E > 0.025 MeV. 

Common Effect 
This occurs when a photon collides with a nearly free electron in the crystal, imparting a fraction of its energy to the 
electron, which can then be detected. The photon is actually annihilated and a new “scattered” photon of lower 
energy is reradiated in a different direction. QUEST does not model further interactions with the scattered photons. 

The fraction of photon energy acquired by the electron depends on the angle of the collision between the two 
particles. The electron picks up a maximum amount of energy in a head-on collision. This is known as the Compton 
energy, and has the value (see, for instance, Weidner et al. 1973, p. 123) 

2E, I mc 
1 + 2E, I me 

E, =E,  

The quantity me = 0.51 1006 MeV is the relativistic energy equivalent of an electron at rest. Photons that collide less 
directly with an electron deliver less energy to it; thus, electrons from the Compton effect are detected over a range 
of energies between zero and E,. The response in this is modeled from the distribution in Kopecky et al. (1967). 
They define 

to be the relative response from a single Compton scattering process, neglecting scattered photons. This response is 
normalized to equal 1 at the Compton energy and then scaled using the peak-to-Compton ratio PCR (formally, PCR 
is&(Ey> divided by the Compton response at E,). Thus, the scaled Compton response is 

The peak-to-Compton ratio is calculated from heuristic formulas that depend on detector characteristics. For Ge 
detectors the ratio is (EG&G Ortec 1991): 



PCR = PCR,,, exp[ - 0.31 9( In -&I- 0.08 l( In -&I - 0.062E;0.m’1] , 

where 

PCR,,,, = 34.75 + l.068efi3,, - 0.00496efii3, 

is a specific estimate of the peak-to-Compton ratio at 1.333 MeV. 

For NaI detectors, a simpler model from SYNTH is used: 

PCR = expfl.6 - 0.67(ln E , ) ] .  

Pair Production and Escaoe Peaks 
If a photon has energy greater than 2m, = 1.02201 MeV, then it may create an electron-positron pair of particles in 
the neighborhood of a heavy atom. The mass of the newly created particles requires exactly 2me units of energy 
from the photon. If E, exceeds this value, then the remaining energy is distributed between the electron and positron 
as kinetic energy, which can be detected. Thus, we observe a response at E, - 2m,, referred to in SYNTH as a 
“double escape peak”. Because the created particles are subject to thermal motion in the detector, the response is the 
Gaussian pulse&(@ with width FWHM that was calculated for the photoelectric effect. 

A similar pair production phenomenon involving positrons generates a “single escape peak” response at E, - me (the 
physics still requires that E, 2 2m,). Again, the peak is a Gaussian pulse. 

The fraction of photons that create escape peaks is computed using heuristic formulas from Gunnink (1972) and 
SYNTH (Hensley et al. 1994). The ratio between the maximum height of the two Gaussians is specified as 

fm” - me) = expE-5.2822 + 6.238 11 In( E, -me ) } - 2.2886{ In( E, - m, ) }’ J 
f,(E,) 

Multiple Common Region 
The region between E, and E, contains a low-level response described as a “multiple Compton” effect in SYNTH. It 
is modeled by the empirically determined formula 

+ 0.3sin(2~- 
E,  -E, 

This function does not match the Compton response at E = E,, producing an unappealing discontinuity in the 
response spectrum. Hensley computes the right side of the Gaussian impulse response at the Compton energy edge, 
and chooses the multiple Compton response to be the maximum of this function or fmc. Then discontinuities are 
further “smoothed” by applying a simple three-point averaging filter from E, - 10 keV to E, + 10 keV. 

3.2.6 Modeling Detector Signal Processing 

The processing in this section converts the continuous energy spectrum generated from the previous section into a 
Channelspectrum object. The processing models energy channelization, signal amplification, and time integration. 
Some of the issues have been introduced in earlier sections. 
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Channelization 
A detector accumulates photon counts in a number of channels that cover a given energy range. The user specifies 
the lowest energy of interest, the nominal width of each channel (also called the “gain” of the detector), and the total 
number of channels. For example, 10oO channels of width 2 keV starting at 50 keV covers the energy spectrum from 
50 keV to 2050 keV. In this example “channel 1” counts photons with energies over the interval [SO keV, 52 keV), 
‘khannel 2” over [52 keV, 54 keV), etc. 

The computations of the section above started with source Linespectrum objects at a particular time instant and 
resulted in a single continuous energy distribution. The counts recorded in a given detector channel should be the 
integral of this continuous distribution over the energy range covered by the channel. We approximate the 
integration numerically using the trapezoid method, which makes a linear interpolation between selected sample 
points of the distribution. Sample points are chosen to be uniformly separated by 1 keV or the width of the channel, 
whichever is smaller. 

Amplification 
Signal amplification within the detector may cause a nonlinear skewing of the energy spectrum that is actually 
accumulated by a channel. Following SYNTH, we model this distortion by a second-order term specified by the 
user. If we let w be the nominal channel width and Eo the lowest energy recorded by the detector, then an ideal 
detector would count photons in channel n over the range of energies given by 

lowest - channel - energy = E,, + (n - I)w 

highest - channel -energy = E, + nw . 

In our model we compute channel ranges with a second-order distortion term characterized by the constant 9. 
Distorted ranges are 

lowest - channel -energy = [%+ n - 1 )+ [%+ n- 114 
W W 

If 9 is negative, then the energy spectrum is shifted to the left with respect to nominal channel definitions; Le., 
channels contain counts from photons of higher energy than expected. If the distortion factor is positive, energies 
shift in the other direction. 

Time Integration 
A detector accumulates photon counts over a sampling period, typically measured in seconds. The ChannelSpectrum 
object computed at one time instant is really just one sample point with respect to an integration over time. The 
numerical integration scheme is described in detail in the previous section entitled “Accounting for Source and 
Detector Motion”. 



3.3 MATERIAL DATABASE 

The material database contains descriptions of materials that may be encountered in the QUEST virtual environment. 
This description includes the density, thickness, and composition by weight of the material-information needed by 
the physics model to calculate the change in photon or elementary particle spectra as these objects pass through 
materials. 

Error Estimate 
There are several possible sources of discrepancy between the data found in the material database and the actual 
densities, thicknesses, and compositions found in a particular, real world, building structure. Assuming that the 
number and types of building materials found in a structure and in a data base entry are identical, the most significant 
such discrepancies are due to allowed tolerances in thickness of building materials and local variations in 
compositions of these materials. Tolerances on the order of a few percent are typical. For example, a brick that is 
nominally 3?< thick may actually be anywhere between 34f< and 36f< thick, a 3% variation (International 
Conference of Building Officials 1994). Chemical compositions of materials can vary widely depending on the 
nature of locally available materials. Again using brick as an example, the percent by weight of silicon in bricks 
varies from 26% to 35%, Le., by approximately one third, while other elemental compositions vary even more widely 
(Brick Institute of America 1996). One can expect such variations in material compositions to introduce an 
additional uncertainty of a few to ten percent in scattering amplitudes. 

The inherent uncertainty of about 10% discussed in the previous paragraph sets the scale for needed precision in the 
density and elemental composition of building materials. Densities will be rounded to the nearest 0.1 gm/cm3. 
Elemental compositions will be rounded to the nearest 0.1 %. Correspondingly, any structural components that 
affect the final density and elemental compositions by less than these amounts need not be considered. 

Calculation of a Materials Data Base Entry 
To calculate a material database entry for a new structure one needs to express that structure as a sum of pieces 
whose composition and density are already known or can be found easily in one of the Appendices C or D. As an 
example, consider a residential interior wall. A typical residential interior wall is made up of the following 
components (Packard 1981): 

2 x '/2" gypsum boards, 
2" x 4" pine studs every 16", 
I %" stainless steel nails every 8" vertically, 
3W cavity (air). 

It should be noted that after 1982 studs may be placed 24" apart instead of 16" apart (from conversation with local 
builder and the 1994 Uniform Building Code (International Conference of Building Officials 1994)). TO complete 
the materials data base entry for a standard residential interior wall, three items must be computed: 1) total thickness, 
2)  density, and 3)  elemental composition. 

3.3.1 TOTAL THICKNESS 

The total thickness is computed by adding together the thicknesses of the appropriate components. In this case, 

Total Thickness 

Total Thickness = 4W. 

= 2 x (Thickness of 1 gypsum board) + (Thickness of 2 x 4) 
= 2 x (%") + (3%") 
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3.3.2 DENSTY 

The total density may be computed with the following formula: 

x(mass per unit area for each component) 1 Density = 
Total Thickness cmpnlcni, 

In this example, the gypsum boards have a density of 2.3 gm/cm3 and are 1" (or 2.54 cm) in total thickness. Their 
mass per unit area (or surface density) is then, 

surface density = (2.3 gm/cm3)(2.54 cm) = 5.84 ,dcm2. 

The density of pine is 0.55 gm/cm3, the studs are 3%'' thick, 1 5/81' in width and placed 16" apart. Thus, 

effective surface density of pine = (1%/16)(31/2")(2.54 cm/in)0.55 gm/cm3 = 0.50 gm/cm2. 

The nails each weigh 1.8 gm (Packard 1981) with 2 nails for every 8" x 16" (826 cm2). The effective surface density 
of the nails is then, 

(3.6 gm)/(826 cm2) = 0.004 gm/cm2 

The effective surface density of the nails is 0.1 % that of the gypsum boards and, based on the discussion in Section 
1, can be ignored. For the air occupying the wall cavity, we have, 

effective surface density = (14%/16)(31/211)(2.54 cm/in)0.0013 gm/cm3 = 0.01 gm/cm2, 

which can also be neglected. 

The effective density of the wall is thus, 

Density = 1 (5.84,4cm2 +0.50,0m/cm2)= 0.56,4cm2. 
(4.5"x2.54 ,om/in) 

3.3.3 ELEMENTAL COMPOSITION 

The elemental composition of a composite structure is given by a weighted average of the compositions of the 
constituent pieces. The weight of each constituent is given by the ratio of the mass of that constituent to the entire 
mass. For the current example, this becomes, 

0 55.8% 0 43%) / o  54.7%) 
ea 0 Ca 21.5 
s o  S 17.2 

c 3.9 
H 6  H 2.5 

- 
0 55.8% 0 54.7% 

[Ca 23.3 [z [Ca 21.5 1 

with the first term corresponding to the gypsum boards and the second to the pine studs. The elemental composition 
of gypsum was derived from its chemical formula, CaS04-2H20, as follows: 
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Percent by weight 
Element Weight (gdmole) ([previous column]/[total weight]) 

0 
Ca 
S 
H 

96.00 (6 x 16.00) 
40.08 
32.06 
4.03 (4 x 1.008) 

55.8 
23.3 
18.6 
2.3 
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3.4 BACKGROUND RADIATION 

In general, there are other sources of radiation in the environment besides the source objects that QUEST allows the 
user to place. These other sources are lumped together and considered “background”. The character of the 
background radiation depends on the sources that cause it. There is a certain distribution of radioactive elements in 
the earth’s soil worldwide. Localized sources may include geological formations and man-made items such as 
glazed bathroom tiles and rock gardens. In addition, radiation reaches the earth from space, predominantly from the 
sun. 

Within QUEST, background is specified as a source or a spectrum (or both). A background source is a regular 
QUEST source, defined like other QUEST sources. Instead of being placed on a particular path, however, the 
background source receives special treatment to make it appear ubiquitous. Any spectrum file in standard IEEE or 
ADCAM format may also be used as a background spectrum. A background spectrum is simply added to the 
spectrum developed by the normal operation of the detector. Ideally, the spectrum should have the same zero, gain 
and number of channels as the detector; if it does not, it is interpolated to fit the detector. 

Approach 
In the first release of QUEST, localized background sources are ignored. The user is allowed to add to the 
observable radiation a background spectrum that does not change with ground location. A default background 
spectrum intended to approximate the radiation emitted by soil is provided, and the user is allowed to substitute 
hisher own spectrum in place of it, or use no background spectrum at all. 

Based on the analysis in Miller and Shebell (1993) and Helfer and Miller (1988) and knowledge of the simulation of 
the detectors, the following assumptions and approximations are made: 

1. The background radiation provided by the soil can be treated as a homogeneous quantity that varies only 
with distance above the ground. 

2. The variation caused by the angular orientation of the detector can be accounted for by multiplying the 
background spectrum by a factor that depends on the detector’s orientation with respect to horizontal. 

3. The mass absorption coefficient of air is less than 1 .O x 10 cm-’ at all energies of interest. This means 
that attenuation by air is no more than 10% at altitudes up to 10 meters. 

4. Inside a building, walls attenuate the background radiation much more strongly than the air. 
5. The contribution of cosmic radiation to the background can be ignored below an altitude of 3 kilometers. 
6. The spectrum of the background provided by the soil can be approximated sufficiently closely by including 

its four main radioactive components and their naturally occurring daughter products in their 
worldwide average distributions. The four components are %, 238U, 235U and u?h. 

7. The gamma rays from the sources mentioned in (6) effect detectors over a wide range of energies. The 
computation of this response is significant and should only be done once during a simulation. 

Assuming that detectors will not be suspended high in the air, (4) and (3) imply that the attenuation of the 
background radiation by air can be neglected. Assuming that no searches of airborne aircraft will be simulated, (5) 
implies that .the contribution of cosmic radiation to the background can be ignored. 

In order to accommodate (6) and (7), the default background spectrum will be provided in the form of a Source 
specification. The default background source will be a point source consisting of the components mentioned in (6) 
with strengths corresponding to their worldwide average distributions. The user may substitute any other Source for 
the default. 

The user may also specify a uniform background spectrum that is added to the ambient spectrum at all points. The 
user may specify both forms of background (Source and uniform), either form, or neither. The spectrum for a 
uniform background may be provided in either of two standard file formats, IEEE (Institute of Electrical and 
Electronics Engineers 1993) or ADCAM. When a uniform background spectrum is specified, the user accepts 
responsibility for ensuring its compatibility with specific detectors. 
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Software Considerations 
A Background object will be created by the GUI and made part of the Scenario object controlling the simulation run. 
The object describes the background radiation in the simulated environment. If the user specifies a background 
Source object, the Background object will record its name. If the user specifies a uniform background spectrum, the 
Background object in the GUI will read the indicated file to make sure it is valid but will not retain its contents. A 
Background object residing in the TP will read the file and retain its contents for use in the simulation. 

If a uniform background spectrum is used, it will be kept in the Background object in the form of a Channelspectrum 
object. In order to be usable by a particular detector, the channel spectrum’s characteristics (zero, gain, number of 
channels) must match those of the detector. To accornpIish this, each detector will create its own Background object. 
If the characteristics of the spectrum in the specified IEEE or ADCAM file do not match those of the detector, the 
Background object will adjust them as best it can. It will perform this conversion as soon as it learns the detector’s 
characteristics, namely the first time the detector asks it to add the background contribution to one of the detector’s 
channel spectra. If any fundamental incompatibility is discovered between the characteristics of the detector and 
those of the uniform background spectrum, a warning message will be given, but the background spectrum will be 
used anyway. 

ODerations 
A Background object may be created with the following operations: 

Background (void) ; 
Background (const Background&); 

The CUI uses the first form to create the Background object that is part of the Scenario. A Detector uses the second 
form to create its own Background object. 

The operations 

RWBoolean source (RWCString name); 
RWCString source (void) ; 

are used to set and fetch the name of a Source object which is to be used to supply background radiation. The CUI 
uses the first operation to set the name, and the PBE (the Detector which owns the Background object) uses the 
second operation to fetch the name. Related operations are 

RWBoolean backgroundFromSource (RWBoolean enable); 
RWBoolean backgroundFromSource (void); 

The first operation causes the source named in the source operation to be used to provide background radiation if its 
argument is TRUE and causes it not to be used if its argument is FALSE. Initially, the background source is 
disabled, so a named source will not be used until it is enabled with a backgroundFromSource operation with TRUE 
argument. The second operation returns TRUE if the background source is enabled and FALSE if it is not. 

The operations 

RWBoolean spectrWameAndType (RWCString name, RWCString type) ; 
RWCString spectrumName (void); 
RWCString spectrumType (void); 

are used to set and fetch the name and type of the file containing the spectrum to be used to supply uniform 
background radiation. The spectrumNameAndType operation sets the name and type. The types recognized are 
“IEEE’ and “ADCAM”. The operation returns a false value if the name is null or the type is not one of the 
recognized types. The other two operations return the name of the spectrum file and its type, respectively. The 
operations 
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RWBoolean spectrumMultiplier (float multiplier); 
float spectrumMultiplier (void) ; 

set and fetch a factor by which the uniform background spectrum is multiplied. The first operation always returns 
TRUE. 

Like the background source, the uniform background spectrum may be enabled and disabled. The operations 

RWBoolean backgroundFromSpectrum (RWBoolean enable); 
RWBoolean backgroundFromSpectrum (void); 

are used for the purpose. The first operation causes the spectrum file source named in the spectrum operation to be 
used to provide background radiation if its argument is TRUE and causes it not to be used if its argument is FALSE. 
The operation always returns a TRUE value. Initially, the background spectrum file is disabled, so a named 
spectrum file will not be used until it is enabled with a backgroundFromSpectrum operation with TRUE argument. 
The second operation returns TRUE if the background spectrum file is enabled and FALSE if it is not. 

The operation 

RWBoolean complete (void) ; 

returns TRUE if the Background object has a usable set of parameters and FALSE otherwise. To have a usable set 
of parameters, it must have a complete set of source parameters and a complete set of spectrum parameters. The 
source parameters are considered complete if the source is disabled, or if it is enabled and the source name is non- 
null. The spectrum parameters are considered complete if the spectrum is disabled, or if the spectrum is enabled, the 
spectrum name is non-null and the spectrum file has been validated. Validation of a spectrum file consists of making 
sure it exists and is readable as a file of the type given by the spectrum type parameter. Validation is done only if 
necessary, as soon as possible and not more than once per spectrum name. It is deemed necessary as soon as the 
spectrum is enabled and there is a non-null spectrum name. Thus it may be done when the spectrum is enabled with 
the backgromdFromSpectrum operation or when the spectrum name and type are specified with the 
SpectrumNameAndType operation. If it fails when it is done, it causes the operation that provoked it to return a false 
value. It is not done again unless another spectrum name is specified with the SpectrumNameAndType operation. 

The operation 

void addBackground (Channelspectrum&) ; 

is used by the Detector which owns the Background object to add in the contribution of a uniform background 
spectrum. If the background spectrum is not enabled, the operation has no effect. It is up to the Detector object to 
develop and add in the effects of the background source, if one is enabled. 
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3.5 COMPONENT DATABASE 

The purpose of the Component Database (CDB) is the representation of physical structures (e.g., buildings and their 
subcomponents) in a QUEST virtual environment. Two particular requirements are placed on the CDB: it must be 
possible for the user to select subparts of the structures for manipulation (the various types of manipulation are 
described below); and it must be possible to compute the interaction of gamma rays and streams of elementary 
particles within the structures. 

Data Structures 
Every physical structure can be thought of as made up of components that stand in a hierarchical relationship to one 
another. A structure is a component that is made of subparts that are components, and so forth. During a quest run, 
all the structures in the QUEST environment are represented by a single component tree, which expresses the 
structural relationships, and one or more binary space partitioning (BSP) trees, which support the computation of the 
structure’s interactions with streams of photons or other particles. 

The component tree is implemented as an object of C++ class Component. The Component object provides all the 
services associated with the CDB and can be used by itself, which is useful in testing. In the QUEST system, 
however, it is used through the interprocess communication mechanism. Two associated C++ classes are required, 
ComponentServer, which is derived from Component, and ComponentClient. The Component object lies in the 
QUEST Physics Back End (PBE) process, along with a Componentserver object. There may be any number of 
objects of type ComponentCIient. Each pro,- which requests services of the CDB has a ComponentClient object 
through which it makes those requests. The ComponentClient object relays a request to the ComponentServer object 
in the PBE, which calls upon the Component object to perform it. After the operation is done, the ComponentServer 
object returns a response to the ComponentClient object. Interprocess communication and client-server interaction 
are described in Section 3.6. Each BSP tree is implemented as an object of C++ class BSP. Objects of class BSP 
are used only by the Component object. 

The Component Tree 
The component tree has several different types of nodes. Some of the nodes contain the structure’s geometry; other 
nodes represent attributes of the structure, such as its color or composite material. 

The component tree can be described by the following expression in Backus Normal Form (BNF) (Aho and Ullman 
1972): 

Component = { 

I 

1 
I 
I 
I 

1 

Geometry 
startSubcomponent Component 
endSubcomponent 
Attribute 
Transform 
label 
reference 

Geometry = ( vector I vector } I polygon { pc.jgon 

Transform = ( scaling I rotation I translation ) 

Attribute = ( PhysicalAttribute I groupName ) 

PhysicalAttribute = ( materialName I paintcolor I paintTransparency I thickness ) 
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The nonterminal (further defined) elements start with a capital letter and the terminal elements with a lower-case 
letter. The hierarchical nature of the structure is reflected in the recursive definition of Component. As the 
definition shows, every branching node in the tree together with its descendants can be thought of as a component. 

Structural ComDonent Groupings 
The group names mentioned in the BNF definition of Component are Structural Component Grouping (SCG) names. 
SCGs are a hierarchy of names with which attributes are associated (see Section 3.5.2). The SCG hierarchy and the 
attributes associated with the groupings are recorded in the SCG file. The user may provide a custom SCG file for 
each run, and may modify the SCGs in setting up the run (operations for doing so are given below). A default SCG 
file is provided; if not even the default file is used, a single group named "DEFAULT" is always defined. The use of 
SCGs in connection with structures is explained below. 

The OUEST Structure File 
The component tree that is constructed for a QUEST run is read from one or more QUEST Structure Files (QSF). A 
QSF represents a component; such a component is called an external component. Every structure used in QUEST is 
initially defined in an AutoCAD DXF file (AutoDesk 1990). The process of converting a DXF file to a QSF file is 
called installing the file. During this conversion, DXF layer names are interpreted as group names and DXF layer 
colors are interpreted as paint colors. Any layer'names not present in the SCG file are treated as first-level groups 
(descendants of the default group) and given the default group's attributes: 

The format of a QSF file is a subset of the Virtual Reality Modeling Language (VRML) format (Bell et al. 1995). 
VRML is an ASCII file format patterned after the Silicon Graphics Open Inventor file format (Wernecke 1994). For 
the purpose of storing it in a file, the hierarchy of the component tree must be flattened out into a one-dimensional 
form. Examples of such flattened hierarchies are the display Iists of many graphics controflers, the DXF and Open 
Inventor file formats and VRML. NFF (Sense 8 Corporation 1995), used by World ToolKit, is not such a format, 
since it has only three levels of hierarchy (entire file, NFF group and NFF object). It is desirable to use a standard 
format to make it possible to use our structures with other packages. It might be possible to extend NFF to have the 
required capability, but then it would no longer be standard. VRML already has all the needed features; besides the 
usual geometry and appearance features, it allows informational nodes and self-defining nodes, which are useful for 
Structural Component Groupings (and for any unpredictable future requirements). DXF is overly complex and does 
not have self-defining nodes. Open Inventor (01) does not have informational or self-defining nodes, but allows the 
user to define his own types as descendants of 01 types; however, the user must also supply the code to read and 
write the new types and integrate the code with the 01 file reading and writing programs. VRML appears to provide 
the simplest choice that is both adequate and standard. 

3.5.1 BINARY SPACE PARTITION TREES 

Each Binary Space Partition (BSP) tree represents the same geometry as some subcomponent of the component tree 
but in a fashion optimized for rapid spatial searching. A BSP tree may be created for any subcomponent of the tree. 
It is created by explicit user request (see below). If the subcomponent for which a BSP tree is created has 
subcomponents that already have BSP trees, the polygons of those components are not included in the new BSP tree. 
When a spatial search is done, all existing BSP trees are searched. 

A BSP tree is built one polygon at a time. Before being placed in the BSP tree, the polygon is "reconditioned" to 
remove irregularities. Any figure that has less than three vertices or is nonplanar is thrown out. Successive collinear 
vertices are removed. If the sides of the polygon intersect, the figure is broken up into polygons with non- 
intersecting sides. Finally, if a polygon is concave, it is converted into triangles, which are perforce convex. The 
triangularization code used in this version of QUEST originated at Evans and Sutherland and was obtained from the 
Graphics Research and Analysis Facility at NASA's Johnson Space Center. 

BSP trees are heavy users of storage. In order to cut down fragmentation, vectors (vertices) are allocated in 
"chunks" in an object of the Pool class. Each BSP tree has its own vector pool, which is created with it, grows with 
it and is destroyed with it. 
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Creating a Structure 
A new component tree is created by the sequence of operations 

clear { Component 3 

where clear is defined as 

void clear (void); 

and Component is one of the following operations: 

void startvectors (void); 
typedef struct Vector { 

I Vector; 
void vector (int Nvectors, Vector *v); 
void vector (Vector v); 
int polygon (int Nvertices, int *vectorIndex); 
int polygon (int Nvertices, int *vectorIndex, Vector normal); 
void group (char *groupName); 
void material (char *matName) : 

void paintcolor (float color [RGBsize]); 

void thickness (float thick); 
void label (char *text); 

float x [41; 

const int RGBsize = 3; 

void paintTransparency (float trans); 

int startsubcomponent (void); 
int startSubcomponent (char *name); 

void endsubcomponent (void); 
int reference (char *name); 
void scale (Vector scale); 
void translate (Vector translation); 
void rotate (Vector axis, float rotation); 
typedef struct Matrix4x4 { 

} Matrix4x4; 
void transform (Matrix4x4 transformation); 

float elements [41 [41; 

Note that there is one operation for every terminal in the BNF definition o Zomponent. Each o :he above operation 
(except clear) creates a node of the component tree. Each node has a unique identifier known as its position number. 
Each of the above operations above operations places a node at the current position of the component tree and 
defines that node as the new current position. Certain operation place nodes at given positions in the component 
tree, specified by a position number: 

int startSubcomponent (int positionNumber); 
int startsubcomponent (int positionNumber, char *name); 
void scale (int positionNumber, Vector scale); 
void translate (int positionNumber, Vector translation); 
void rotate (int positionNwnber, Vector axis, float rotation); 
void transform (int positionNumber, Matrix4x4 transformation); 

If the node with the given position number is a subcomponent node, the new node is made its descendant; otherwise, 
the new node is made the descendant of the parent of the node with the given positiodnumber. 

Unless the component tree is empty, a current node is always defined. The position number of the current node is 
returned by the operation 

int current (void); 

(If the component tree is empty, it returns zero.) The current node may be changed by means of the operations 
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int makecurrent (int positionNunber); 
int makeRootCurrent (void); 

If the given position number describes an existing node, the makecurrent operation makes that node current, 
otherwise it leaves the current node unchanged; in any case, it returns the position number of the current node at the 
conclusion of the operation. The makeRootCurrent operation makes the root node of the component tree the current 
node and returns its position number (or zero if the component tree is empty). 

As the operations are performed, the component tree is constructed. A state value is associated with every location 
in the component tree. The state value contains 

O a vector sequence 

O a complete set of attributes, including 
a geometric transformation 

a material 
a paintcolor 
a paintTransparency 
a thickness 
a goup name 

alabel 

Initially, the vector sequence is empty, the transformation is the identity transformation, the material is the default 
material, the paintcolor, paintTransparency and thickness are those associated with the default material, and the 
group is the default (root) group. 

The state value is inherited. That is, it continues to be in effect at subsequently defined nodes of the tree unless it is 
explicitly replaced (overridden), with the exception that any state changes made within a subcomponent do not affect 
anything outside that subcomponent (as if the state value were pushed on entry to a subcomponent and popped on 
exit from it). A vector, group, label, color, transparency or thickness node merely overrides the previous value of the 
respective type in the state; a transformation node is composed with the transformation value in the state by pre- 
multiplication. 

Once a component tree is created, it may be stored to disk with the operation 

int store (char *filename, char *path, char *fullname, char *description); 

A description of each of the above operations follows. 

The clear operation creates an empty component tree. 

The startvector operation defines a new vector sequence. Subsequent vector operations append vectors to the vector 
sequence. The sfurtVector operation inserts a node at the current position of the component tree to contain the 
vectors. 

The polygon operation includes a polygon node at the current position in the component tree. The vectorindex 
argument in the polygon operation contains indices refemng to the current vector sequence. There are two types of 
polygons. The first type is considered to have a thickness (of a certain material; see below) and the second type is 
considered to connote entry into or exit from a material. The second type requires a normal, which is given by the 
normal argument of the polygon operation. By convention, the normal points outward, out of the material. The 
integer value returned by polygon is TRUE if the polygon is valid; an invalid polygon is not inserted into the 
component tree, and a zero value is returned. Although there are many ways a polygon can be invalid, the only 
validity check that is done is to verify that the vector indices actually lie within the current vector sequence. 



The group operation includes a group node containing the groupName argument at the current position of the 
component tree. The groupName string is interpreted as the name of a structural component grouping (see Section 
3.5.2). 

The material operation includes a material node containing the matName argument at the current position in the 
component tree. The matName string is interpreted as the name of a material in the Material Database (see Section 
3.3). 

The paintColor operation inserts a color node at the current position of the component tree. The argument of 
paintColor gives RGB color components as values in the range [0,1], where 0 means none of the primary color is 
present and 1 means the maximum amount of the primary color is present. 

The paintTransparency operation inserts a transparency node at the current position of the component tree. The 
argument gives the transparency as a value in the range [0,1], where 1 means completely transparent and 0 means 
completely opaque. 

The thickness operation inserts a thickness node at the current position of the component tree. The argument gives 
the thickness of the material in inches. 

The label operation places an arbitrary text string at the current position in the tree. 

The startSubcomponent operation appends a branching node to the tree structure. All nodes appended until the next 
endSubcomponent are descendants of the branching node. The subcomponent may be given a name that can be used 
in the reference operation and the findSubcomponent operation (see below). The startSubcomponent operation 
returns the position number of the new branching node. 

The translate, rotate and scale operations specify the named transformations in an obvious fashion (the rotation is 
counter-clockwise and given in radians). The operations are composed (premultiplied) with the existing 
transformation in the current state value to form the transformation value active at the current position in the 
component tree. If there is already a transformation node in the current subcomponent, it is modified by this 
operation; if there is not, a new transformation node is inserted. 

The transform operation gives a four by four transformation mamx that may express a combination of translation, 
rotation and scaling. It is postmultiplied with the existing transformation in the current state value to form the 
transformation value active at the current position in the component tree. If there is already a transformation node in 
the current subcomponent, it is modified by this operation; if there is not, a new transformation node is inserted. 

The forms of the translate, rotate, scale and transform operations which specify position number also return the 
position number of the new or modified transformation node. The difference between the premultiplication of the 
translate, rotate and scale operations and the postmultiplication of the transfonn operation is significant. 

The store operation stores the component as a QSF file under the file namefilename.qsf. The file name may be a 
maximum of eight characters in length. The file is stored in the directory specified by the path argument. If path is 
null, the file is stored in the current directory. By convention, the component has a full name that may be up to 256 
characters; this name is supplied by thefullname argument. Also by convention, the file contains a description that 
may be of any len,gh; this description is supplied by the description argument, and it may contain newline characters. 
If the file already contains a full name (as it would if read with the load operation; see below), the given full name 
replaces it unless it is null, in which case the old full name remains; a similar remark applies to the description. The 
operation returns TRUE if the file was stored successfully. 

A subcomponent node is the root of a structure that has the same form as the component tree. Such a structure may 
be considered to be an internal component. An internal component may be given a name in the startSubcomponent 
operation. As mentioned above, a component stored as a QSF file is called an external component. The reference 
operation includes a reference to an internal or external component, which it specifies by name. The referenced 
component must already exist as an external component (Le., as a QSF file) or as an internal component already 
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defined and named in the component tree. Referring to the component has the same effect as adding a 
subcomponent that contains the referenced component (it is the same as if the component were defined "inline"). If 
the same name is used for more than one internal component, the reference operation is taken to refer to the most 
recently defined one. By using the name of an external component, a QSF file's contents can be included at the 
current position in the component tree. The reference operation returns the position number of the new reference 
node or zero if the referenced component is not defined. The component data structure must be acyclic, that is, a 
component must not refer to itself or to a component which refers directly or indirectly to the first component. It 
may not always be possible for the software to verify that this restriction is obeyed, but all bets are off if it is 
violated. 

Loading a Structure 
An existing external component may be loaded with the operation 

int load (char *filename, char *path, int external); 
int load (int positionNurnber, char *filename, char *path, int external); 

If a load is done immediately after a clear, the component is made the root component; the component tree in 
memory is then identical to the component tree which existed at the time the file was written to disk. In general, the 
first form of the operation creates a new subcomponent node at the current position in the component tree and makes 
that node the root of the loaded component; the second form put the subcomponent node at the given position. The 
filename argument gives a file name which may be a maximum of eight characters to which the suffix ".qsf" is 
appended before reading the file. The path argument gives the directory in which to look for the file and may be 
null, in which case the current directory is used. If the exreml ar=,oument is FALSE, the contents of the QSF file 
appears in the component tree; if the external argument is TRUE, the component tree contains only a symbolic 
reference to the QSF file. The second option (external argument TRUE) is not used in the QUEST system. The 
load operation returns the position number of the root node of the loaded component if the file was loaded 
successfully and zero otherwise. Another form of the load operation 

int loadDXF (char *filename, char *path); 
int loadDXF (int positionNumber, char *filename, char *path); 

is used to load a DXF file and convert it to an internal component. To be susceptible to such a treatment, the DXF 
file must satisfy certain criteria; see Structure Creation in Appendix B. 

Reading a Structure 
All the elements of the Component tree can be read in sequence with the operations 

start { nextElement } 

where the operations are defined as 

void start (void); 
void start (int positionNumber); 
int nextElement (ComponentElement *elem, int *endOfSubcomponent); 

The first form of the srart operation causes the subsequent nexrElement operations to start at the beginning of the 
component tree. The second form causes them to begin at the node with the given position number. 

The nextElernent operation remeves the next element of the component tree. If the first form of the start operation is 
used, the nextElement operation ranges over the entire tree. If the second form of the start operation is used, the 
nextElement operation is resmcted to the subtree specified by the start operation's argument (if the given position 
number is that of a subcomponent node, it is the root node of the subtree which is searched; otherwise, the given 
node's parent is the root of the subtree which is searched). The type of the first argument is defined as 

class ComponentElement { 
public : 

int id; 



ComponentElemType type; 
union { 

struct { 
int N; 
Vector *vectors; 

3 vectors; 
QPolygon polygon; 
Matrix4x4 *transformation; 
char *groupName; 
char *materialName; 
char *label; 
float color [RGBsize]; 
float thickness ; 
float transparency; 
struct { 

char *name; 
int external; 

3 subcomponent; 
struct { 

char *name; 
int id; 

1 reference; / /  C-REFERENCE 
3 u; 

ComponentElement (void) { type = C-NOTYPE; } 
-ComponentElement (void); 

3 ;  

/ /  C-VECTORS 
/ /  C-POLYGON 
/ /  C-TRANSFORMATION 
/ /  C-GROUP 
/ /  C-MATERIAL 
/ /  C-LABEL 

/ /  C-THICKNESS 
/ / C-TRANSPARENCY 

/ /  C-COLOR 

/ /  C-SUBCOMPONENT 

ComponentElemType is the enumeration 

enum ComponentElemType { 
C-VECTORS , 
C-POLYGON, 
C-SUBCOMPONENT , 
C-MATERIAL , 
C-GROUP , 
C-COLOR, 
C-THICKNESS, 
C-TRANSPARENCY, 
C-TRANSFORMATION , 
C-REFERENCE, 
C-LABEL 

I ;  

QPolygon is defined as 

typedef struct Polygon { 
int Nvertices; 
int *vertices; 
Vector *normal; 

1 Polygon; 

where the vertices field contains indices into the current vector sequence. 

The elements will be retrieved in approximately the same order in which they were specified when the component 
was created using the operations in the previous section, Creating a Structure. The unique position number 
associated with every node in the component tree is returned in the positionNumber field of the component element. 
A component element of type C-VECTORS returns the vectors in the vector sequence. It corresponds to the calls to 
sturtvectors and the subsequent calls to vector. An element of type of C-POLYGON corresponds to a call to 
polygon and is accompanied by an element of type Polygon. An element of type C-SUBCOMPONENT 
corresponds to a call to staPtSubcomponent and is accompanied by the subcomponent element. The subcomponent 
element contains the name of the subcomponent (if it has one) and an indicator which is TRUE is it is an external 
subcomponent. Each call to nextElement returns an endOfSubcompoaent indicator which contains the number of 
subcomponents (if any) that end at that point. An element of type of C-MATERIAL corresponds to a call to 

68 



material and is accompanied by the materialName element. A component type of C-TRANSFORMATION 
corresponds to calls to translate, rotate, scale and transform. The transformations are combined into one 
transformation whenever possible, and the transformation is represented by a homogeneous matrix. An element of 
type C-REFERENCE corresponds to a call to reference and is accompanied by an element containing the name and 
position number of the referenced component and an indicator which is TRUE if it is an external component. (Note 
that the elements of the referenced component are not retrieved by calls to nextElement.) An element of type 
C-LABEL corresponds to a call to label and is accompanied by an element containing the label text. 

The nextElement operation returns TRUE when a component eIement is returned and FALSE when the subtree 
specified by the start operation is exhausted. The various pointer fields, if not NULL, are allocated on the heap and 
must be freed by the caller (they are the vectors. vectors, polygon. vertices, polygon.normuL, groupNume, 
materialName, label and subcomponent.name fields). 

The start and nextELement operations described above allow the component tree to be read sequentially. The 
following two operations allow it to be read in a random access fashion: 

int getElement (ComponentElement *elem, int *endOfSubcomponent); 
int getElement (int positionNumber, ComponentElement *elem, 

int *endOfSubcomponent); 

The first version of the getElement operation returns the element at the current position of the component tree. If 
there is no tree or if the current position is past the end of the tree, if returns FALSE. The second version returns the 
element at the given position; it returns FALSE if there is no element with the given number. The 
endOjSubcomponent argument has the same meaning as for nextElement. After a getElement operation, nextElement 
may be used to read elements sequentially starting with the element after the one read by getElement. 

An operation which is similar to nextElement but which returns only polygon nodes is 

int nextElementaryComponent (ElementaryComponent *component) 

where ElementaryComponent is defined as 

class ElementaryComponent { 
public : 

int id; / /  
int surface: / /  
int Nvertices; / /  
Vector *vertices; / /  
Vector normal; / /  
char *groupName; / /  
char *materialName; / /  
float color [RGBsizel; / /  
float thickness; / /  
float transparency; / /  
int tag; / /  
ElementaryComponent (void) ; 
-El emen tarycomponen t (void ) ; 

1;  

unique identifier 
TRUE if has no thickness 
number of vertices of polygon 
the vertices 
normal to the polygon 
component's group 
component ' s material 
component's color 
component's thickness 
component's transparency 
unique QSF identifier 

The id field is the unique identifier (position number) of the polygon node. The surface field is TRUE if the polygon 
represents a surface element which is not regarded as having thickness and FALSE if it represents an element 
regarded as having thickness. The Nvertices field gives the number of vertices in the polygon, and the vertices field 
is a vector amy  containing the vertices, in order. The normal field contains a unit vector normal to the polygon. If 
the polygon represents an element with thickness, the normal vector points outward, away from the thickness of the 
element. The groupName, materialName, color, thickness and transparency fields give the attributes which are in 
force at the element. The tag gives a way of associating the elementary component (the polygon) with the QSF file 
(if any) in which it originated; the tag is the position number of the root node in the component tree that corresponds 
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to the QSF file (see the Zoad operation above). A sequence of elementary components may be fetched with the 
sequence 

start { nextElementaryComponent } 

The nextElementatyComponent operation returns TRUE when a component is returned and FALSE when the subtree 
specified by the start operation is exhausted. 

A similar operation that returns only the root nodes that correspond to QSF files is 

int nextFileComponent (int *id, char **name, int *parentId); 

The id argument is the position number of the root node of the subcomponent corresponding to the QSF file, the 
name argument is the subcomponent's name, and the parentld is the position number of the subcomponent's parent 
node. If there is no parent, the parent id is zero. A sequence of file components may be fetched with the sequence 

start { nextFileComponent } 

The nextFileComponent operation returns TRUE when a component is returned and FALSE when the subtree 
specified by the start operation is exhausted. 

Selectin!! SubDarts of a Structure 
There are two ways that subparts of a structure can be selected, by structure and by attribute. Various operations are 
provided to support structural and attribute selection. 

Structural selection designates a particular node; the node is considered selected and is called the selected element. 
The smallest selectable element contains a single polygon and is called an elementary component or eComp for 
short. When a DXF file is converted and loaded (see above), an eComp is created for each polygon of the DXF 
input file. 

Attribute selection designates all elementary components that possess a particular set of attributes (group, material, 
paintcolor, paintTransparency, or thickness); those subcomponents are considered to be selected and are called the 
current attribute-selected elements. The set of attributes used for selection may contain at most one group, at most 
one material, at most one paintcolor range, at most one paintTransparency range, and at most one thickness range. 
The current attribute-selected elements are those which belong to the selected group (if any), have the selected 
material (if any), have the selected paintcolor (if any), fall in the selected paintTransparency range (if any) and fall 
in the selected thickness range (if any). SCG inheritance holds with respect to the selected group, so an element is 
selected by group if its group is a descendant of the selected group. 

Provided the component tree is not empty, there is always a selected element (initially the root) and always a set of 
attribute-selected elements (initially empty). 

The purpose of selecting elements is to manipulate them in some fashion, perhaps to change their attributes. It is 
possible to apply operations to the selected elements (see the next section), either to those selected structurally or to 
those selected by attribute. It is also possible to apply operations to the intersection of the current subcomponent and 
the current attribute-selected elements. 

When operations are applied to attribute-selected elements or to the intersection of the current subcomponent and the 
current attributed elements, they are applied to each eComp in the set. When operations are applied to suucturally- 
selected elements, they can be applied in two fashions, either to each eComp (as with attribute-selected elements) or 
at the current position in the structure. Normally, attribute changes are applied to each eComp and transform 
changes are applied at the current position. Attribute changes may also be applied at the current position, but doing 
so is inherently trickier than applying them to each eComp; the affect they have on eComps then depends on 
inheritance and on whether they are ovemdden further down in the subcomponent. 
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The operations that support structural selection are: 

int select (int positionNumber) ; 
int selectRoot (void) ; 
int up (void); 
int down (void); 
int selected (void) ; 

The select operation sets the selected element. If the argument is a valid (existing) position number, it is made the 
selected node; in any case, the position number of the currently selected node is returned. The selectRoot operation 
makes the root the currently selected node and returns its position number (or zero if there is no component tree). 
The up operation moves the current component to the parent of the current node and returns its position number (if 
the current element is the root, it remains the root). The down operation undoes the effect of the last previous up 
operation (provided there has been an up operation since the last select operation) and returns the position number of 
the new current element (if there is no up operation to be undone, the current element remains as it is). The selected 
operation returns the position number of the current element. 

The operations that support attribute selection are given below. 

void selectGroup (char *groupName); 
void resetSelectedGroup (void); 
char *selectedGroup (void); 

The selectGroup operation sets the currently selected group name. The resetSelectedGroup operation makes the 
attribute selection set contain no group. The selectedGroup operation returns the name of the currently selected 
group (NULL if none); the character string (if not NULL) is allocated on the heap and must be deleted by the user. 

void selectMateria1 (char *materialName); 
void resetSelectedMateria1 (void); 
char *selectematerial (void); 

The selectMaterial operation sets the currently selected material. The resetSelectedMateria1 operation makes the 
attribute selection set contain no material. The selectedMateriu1 operation returns the name of the currently selected 
material (NULL if none); the character string (if not NULL) is allocated on the heap and must be deleted by the user. 

const int RGBsize = 3; 
void selectPaintColor (float low [RGBsize], float high [RGBsize]); 
void resetSelectedPaintColor (void); 
int selectedPaintColor (float low [RGBsize], float high [RGBsize]); 

The selectPaintColor operation sets the currently selected paint color range. The resetSelectedPaintColor operation 
makes the attribute selection set contain no paint color. The selectedPuintColor operation returns the currently 
selected paint color; it returns TRUE if there is one and FALSE otherwise. 

void SelectPaintTransparency (float lo, float hi); 
void resetSelectedPaintTransparency (void); 
int SelectedPaintTransparency (float *lo, float *hi); 

The seZectPuintTransparency operation sets the currently selected paint transparency range. The 
resetSelectedPaintTransparency operation makes the attribute selection set contain no paint transparency. The 
selectedPaintTransparency operation returns the currently selected paint transparency range; it returns TRUE if 
there is one and FALSE otherwise. 

void selectThickness (float lo, float hi); 
void resetSelectedThickness (void) ; 
int selectedThickness (float *lo, float *hi); 
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The selectThickness operation sets the currently selected thickness range. The resetSelectedThickness operation 
makes the attribute selection set contain no thickness. The selectedPaintTransparency operation returns the 
currently selected thickness range; it returns TRUE if there is one and FALSE otherwise. 

The entire attribute selection set can be set, emptied or queried with the operations 

void selectAttributes (Selectionset selected); 
void resetSelectedAttributes (void); 
void selecteattributes (Selectionset *selected); 

where Selectionset is defined as 

typedef struct Selectionset { 
char *groupName; 
char *materialName; 
struct I 

int selected; 
float low [RGBsizel ; 
float high [RGBsize] ; 

1 colorRange; 
struct { 

int selected; 
float low; 
float high; 

1 thicknessRange; 
struct { 

int selected; 
float low; 
float high; 

1 transparencyfiange; 
} Selectionset; 

The group name and material are considered to be in the selection set if the groupName and materialName fields, 
respectively, are non-NULL. The other attributes are considered to lie in the set if their selected booleans are TRUE. 

The operations 

int nextSelectedElement (void); 
int nextSelectedElement (ComponentElement "element); 
void StartSelectedElements (void); 
int getSelectedElements (int *N, int **positionNumbers); 

are used to obtain the selected elementary components. The two forms of the nextSelectedElement operation return 
them one at a time. The first form returns the identifier of the next selected component or zero if the selected 
components are exhausted. The second form retrieves the next selected component itself and returns TRUE, or 
returns FALSE if the selected components are exhausted. The startSe1ectedElement.s operation restarts the sequence 
of elements returned by nextSelectElernent to the beginning. The getSelectedElements operation returns all the 
selected elements together. The positionNumbers array is allocated on the heap and must be deleted by the client. 

The above operations can be used to return the attribute-selected elementary components, the structurally selected 
elementary components, or the intersection of the two. If the attribute selection set is empty, all components satisfy 
the attribute selection criteria. If the current component is an elementary component, it is the only structurally 
selected component; if the current component is a subcomponent, all elementary components contained in it are 
considered to be structurally selected. If selection intersection is turned on, the above operations return the 
intersection of the structurally selected and the attributed selected elements. Selection intersection can be turned on 
and off by the operation 

int selectIntersection (int on); 
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If the on argument is TRUE, selection intersection is turned on and it if is FALSE, it is turned off. The operation 
returns the previous value of the selection intersection indicator. The operation 

int intersectionselected (void); 

can be used to return the current value of the selection intersection indicator. To summarize, if the attribute selection 
set is empty, only the structurally selected elements are returned. If the attribute selection set is not empty and 
selection intersection is off, only the attribute-selected elements are returned. If the attribute selection set is not 
empty and selection intersection is on, those attribute-selected elements that lie within the current component are 
returned. 

Attribute Retrieval 
The attributes of a component can be retrieved by means of the operation 

char *getGroup (int positionNumber); 
char *getGroup (void); 
char "gematerial (int positionNumber); 
char *gematerial (void) ; 
void getpaintcolor (int positionNumber, float color [RGBsizel); 
void getPaintColor (float color [RGBsize]); 
float getPaintTransparency (int positionNumber); 
float getPaintTransparency (void); 
float getThickness (int positionNder) ; 
float getThickness (void) ; 
void getPhysicalAttributes (int positionNumber, 

char **materialName, 
float paintcolor [RGBsize], 
float *paintTransparency, 
float *thickness); 

float paintcolor [RGBsizel, 
float *paintTransparency, 
float *thickness); 

void getPhysicalAttributes (char **materialName, 

void getvectors (int *Nvectors, Vector *vectors); 
void getvectors (int positionNumber, int *Nvectors, Vector *vectors); 

The returned strings are allocated on the heap and must be deleted by the caller. The getvectors operations return 
the vector sequence at the current position or the position indicated by the position number argument. The vectors 
are allocated on the heap and must be deleted by the caller. 

Related operations are 

int centroid (Vector *v); 
int centroid (int positionNumber, Vector *VI;  

The first form of the operation computes the geometric centroid of the current subcomponent, and the second form 
computes the centroid of a given subcomponent. The current (given) subcomponent is the smallest subcomponent 
containing the current (given) node. 

Altering a Structure 
As mentioned above, the purpose of selecting components is to be able to alter them. Several operations are 
provided for altering the attributes of the selected elements: 

void changeGroupAllSelected (char *groupName); 
void ChangeMaterialAllSelected (char *materialName); 
void changePaintColorAllSelected (float color [RGBsize]); 
void changePaintTransparencyAllSelected (float transparency); 
void changeThicknessAllSelected (float thickness); 
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The changeGroupAllSeLected, changeMaterialAllSeLected, changePaintColorAlLSeLected, ChangePaintTransparen- 
cyAllSelected and changeThicknessAllSelected operations change, respectively, the group name attribute, the 
material attribute, the paint color attribute, the paint transparency attribute, and the thickness attribute of all selected 
elementary components. A set of attributes can be changed all at once with the operation 

void changeAttributesAllSelected (Attributeset attributes) ; 

where Attributeset is defined as 

typedef struct Attributeset { 
char *groupName; 
char *materialName; 
struct { 

int present; 
float value [RGBsize] : 

3 color; 
struct { 

int present; 
float value; 

} transparency; 
struct { 

int present; 
float value; 

1 thickness; 
1 Attributeset; 

The group name attribute is considered to be in the set if the groupName field is non-NULL, and likewise with the 
material attribute and the PnateriafName field. Note that no check is made to verify that the group name is currently 
the name of a structural component grouping or that the material name can currently be found in the material 
database (see Section 3.3). The other attributes are considered to be in the set if their present Boolean is TRUE. 

The component tree can also be modified by inserting or altering nodes at the current position in the component tree 
by using the operations defined above in the section titled Creating a Structure, namely 

void startvectors (void); 
void vector (int Nvectors, Vectors *v);  
void vector (Vector v); 
int polygon (int Nvertices, int *vectorIndex) : 
int polygon (int Nvertices, int *vectorIndex, Vector normal); 
void group (char *groupName); 
void material (char *matName); 
void paintcolor (float color [RGBsizel); 
void paintTransparency (float trans); 
void thickness (float thick); 
void label (char *text); 
int StartSubcomponent (void); 
int startsubcomponent (char *name); 
void endsubcomponent (void); 
int reference (char *name); 
void scale (Vector scale); 
void translate (Vector translation); 
void rotate (Vector axis, float rotation); 
void transform (Matrix4x4 transformation); 

These operations insert nodes only when necessary. The transformation operations (translate, rotate, scale and 
transform) in effect compose the appropriate transformation with the cumulative transformation at the current 
position. A vector operation adds vectors to the current vector sequence node is there is one (if there is not, a 
startvectors operation may be used to start one). The group, material, paintColor, paintTransparency and thickness 
operations merely alter the node of the appropriate type if there is one present in the current subcomponent and insert 
one if there is not. The polygon, label, reference, startvectors and startSubcomponent operations always insert a 
new node. 
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Removino Elements 
Operations are provided for removing parts of the component tree: 

int 
int 
int 
int 
int 
int 
int 
int 
int 
int 
int 

removeSubcomponent (void) : 
removeLabe1 (void) ; 
removeTransformatiOn (void) ; 
removevectors (void); 
removepolygon (void); 
removeReference (void) ; 
removeGroupName (void) ; 
removeMa t er ialName (void) ; 
removepaintcolor (void) ; 
removePaintTransparency (void); 
removeThickness (void); 

Separate operations are provided for the different node types as a security measure, to make it more likely that the 
user is removing what he or she thinks she or he is. The above operations remove the node of the appropriate type at 
the current position in the component tree. If the current component is of the given type, it is removed. There can be 
at most one sibling node of type group, material, color, transparency or thickness; if the removal of a node of one of 
those types is requested and the current component is a subcomponent node, its child of that type (if any) is removed. 
If the removal of a subcomponent node is requested and the current node if not a subcomponent node, its parent is 
removed. When a subcomponent node is removed, its BSP tree is destroyed if it has one (see next section). Each of 
the operations returns TRUE if a node was removed. 

There are corresponding operations for removing a node at a position in the component tree given by a position 
number: 

int 
int 
int 
int 
int 
int 
int 
int 
int 
int 
int 

removesubcomponent (int positionNumber); 
removebibel (int positionNumber); 
removeTransfomation (int positionNumber); 
removevectors (int positionNumber); 
removepolygon (int positionNumber); 
removeReference (int positionNumber); 
removeGroupName (int positionNumber); 
removeMaterialName (int positionNumber); 
removepaintcolor (int positionNumber); 
removePaintTransparency (int positionNumber); 
removeThickness (int positionNumber); 

ComDuting Material Interactions 
BSP trees are built by the following operations: 

int buildBSP (void); 
int buildESP (int positionNumber); 

The first builds one for the subcomponent at the current position. The position number of the subcomponent node 
for which the BSP tree was built is returned (zero if there is no component tree). The second builds a BSP tree for 
the subcomponent at the given position (provided the identified node is a subcomponent node) and returns the 
subcomponent’s id (or zero if the tree is not built). 

BSP trees can be removed with the operations 

int removeBSP (void) ; 
int removeBSP (int positionNumber); 

The first removes the BSP tree for the current subcomponent (if it has one) and returns the id of the current 
subcomponent node (or zero if it had no BSP tree). The second removes the BSP tree at the given position 
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(provided the identified node is a subcomponent node and has a BSP tree) and returns the subcomponent’s id (or zero 
if no tree is removed). 

The following operation is suitable for picking, if picking is not done by the GRE process: 

int finmearest (Vector x0, Vector r, Vector *at); 

ThefindNearest operation shoots a ray from point x0 in direction r. It returns the position number of the first 
elementary component the ray encounters (zero if none). If an eComp is encountered, the location of the intersection 
is returned in ut. 

The findAll operation returns a list of all the components encountered by a ray. There are two forms of the 
operation: 

void findAll (Vector x0, Vector r, 

void findAll (Vector x0, Vector r, 
int *Ninteractions, MaterialInteraction **interactions); 

int *Nintersections, Intersection **intersections); 

where MaterialInteraction is defined as 

class MaterialInteraction { 

char *mater ialName ; 
float thickness ; 

public : 

. _ .  3 ;  

and Intersection is defined as 

class Intersection { 

Vector location; 
int id; 

public: 

3 ;  

The findAZl operation shoots a ray from point x0 in direction r. The first form returns in Ninfeructions the 
(nonnegative) number of material interactions and the interactions in the interactions array. A material interaction 
consists of a material name and a thickness. Both the interactions array and the materialNume strings are allocated 
on the heap and must be deleted by the caller. The thickness value represents the thickness of the material traversed 
by the ray; it takes into account the angle at which the ray strikes the material, and whether the material is 
represented by a polygon with thickness or a polygon which is a surface element (see above). In the case of a 
polygon with a thickness attribute, the value also takes into account whether the ray enters and exits the material 
through one of the faces of the polyhedron filled with the material which is parallel to the polygon or through one of 
the (implied) faces which are perpendicular to the polygon. For each polygon encountered, the material is the 
current material at the polygon’s position in the component tree, and similarly for the thickness attribute when it is 
used. The second form offindAll returns in Nintersecfions the number of intersections that the ray makes with the 
polygons in the component tree and in intersections the position number of each polygon and the location at which 
the ray intersected it. The intersections are given in order, from the nearest to x0 to the farthest. 

SCG Operations 
Structural Component Groupings are used in conjunction with the components in the CDB; therefore various SCG 
operations are provided in the CDB. There are operations for loading and storing the SCGs, for reading the SCGs 
sequentially, for reading a particular SCG, for defining a new SCG, for modifying an existing SCG and for removing 
an SCG. 

Loading and Storing SCGs 
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The CDB initially reads the SCGs from a default file (even if the default file is not present, a group named 
"DEFAULT is defined). The SCGs may be changed during the operation of the system, by the operations described 
below or by the addition of group names when a component file is loaded (see above). The user can write out the 
current SCGs with the operations 

int storeGroups (char *filename, char *path); 
int storeGroups (void) ; 

The first operation writes the SCGs to the given filename in the directory given by the path argument. The second 
operation writes the SCGs to the file to which they were most recently written or from which they were most recently 
read. The operations return TRUE if the file was successfully stored. The user can load a new set of SCGs with the 
operations 

int 1oadGroups (char *filename, char *path); 
int loadGroups (void); 

The first loads the SCGs from the given filename and directory. The second reads them from the file from which 
they were most recently read or to which they were most recently written. The operation 

int 1oadDefaultGroups (void) ; 

restores the SCGs from the default file. All three operations return TRUE if the SCGs were successfully read. 

Readinn SCGs Sequentially 
The operations 

void startGroups (void); 
int nextGroup (char **parentName, char **groupName, int *level); 

can be used to read the SCGs sequentially. The startcroups operation resets the current SCG position to the head of 
the SCG hierarchy (the default group). The nextCroup operation produces name of the next group in the hierarchy. 
Its parent's name is also returned in order to make the hierarchical structure known to the reader. The nonnegative 
level argument expresses the hierarchical relationship among the groups. There is only one group at level zero, the 
root group (typically named "DEFAULT"). Its children have level 1 ,  their children level 2 and so on. The function 
value is TRUE if a group name is returned and FALSE is the groups are exhausted. The returned strings are 
allocated on the heap and must be deleted by the caller. 

Reading a Particular SCG 
A particular SCG can be read with the operation 

int getGroup (char *groupName, 
char **parentName, 
char **materialName, 
float color [RGBsize], 
float *thickness, 
float *transparency); 

The groupName argument gives the name of the group to be read. The returned arguments give the name of the 
group's parent, the name of the group's default material, and the group's default color, thickness and transparency. 
The operation returns FALSE if there is no group with the given name (in which case the returned arguments are 
meaningless). Because the group color aione is often desired, the operation 

int getGroupColor (char *groupName, float color [RGBsize]); 

is provided. The arguments have the same meaning as in the gerGroup operation. 

Creating a New SCG 
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A new SCG is created with the operation 

int createGroup (char *groupName, char *parentName); 
int createGroup (char *groupName, char *parentName, 

char *materialName, float color [RGBsize], 
float thickness, float transparency); 

The groupName and parentName arguments give the name of the new group and the name of its parent, respectively. 
The other arguments, if present, give the values of the attributes for the new group. If the other arguements are not 
present, the new group’s attributes are inhereted from its parents. The operation returns TRUE if the group was 
created; it fails to be created if a group of the given name already exists or if the parent does not exist. 

Changing an Existing SCG 
An existing SCG can be changed with the operations 

int changeGroupName (char *oldGroupName, char *newGroupName); 
int changeGroupMateria1 (char *groupName, char *materialName); 
int changeGroupColor (char *groupName, float color [RGBsizel); 
int changeGroupThickness (char *groupNarne, float thickness); 
int changeGroupTransparency (char *groupName, float transparency); 
int changeGroupPhysicalAttributes (char *groupNdme, float color [RGBsizel, 

float thickness, float transparency); 

The changeGroupName changes a given group name to a new name. It returns TRUE if the name was changed and 
FALSE if it was not; it is not changed if the old name is not in use or the new name is already in use. When the 
change is made, all elements of the component tree that have the old name as an attribute are changed to use the new 
name. All the other operations make the indicated changes and return TRUE if the named group exists (and the 
change is made) and FALSE if it does not. 

Removing an SCG 
A group name can be removed by the operation 

int removeGroup (char *groupName); 

The rernoweCroup operation removes the named group if it exists; it returns TRUE if the group existed and was 
removed and FALSE otherwise. If the group is removed, all elements of the component tree that have the group as 
an attribute are changed to use the group’s parent. It is impossible to remove the root group, which has the name 
“default”. 

External File Format 
A subset of the Virtual Reality Modeling Language (VRML) is used as the external file format. The node types used 
for components and the corresponding VRML constructs are given in Table 3.4. The subcomponent name argument 
corresponds to the VRML DEF keyword. The reference operation corresponds to the VRML USE keyword. 

3.5.2 STRUCTURAL COMPONENT GROUPINGS 

A Structural Component Grouping (SCG) is a hierarchy of names which can be used as attributes of the structures 
contained in the Component Data Base (CDB). When a component is installed in the CDB, the SCGs in use are 
determined by the layer names in the input DXF file and by a set of SCGs provided in an SCG file which is used as a 
second input file. Different SCG files can be used at different times. The SCGs are a hierarchically arranged set of 
group names, with physical attributes attached to the groups. The physical attributes are the material (see the 
Material Database section 3.3), the color, the thickness and the transparency. The entire set of group names can be 
thought of as being arranged in a tree with the name “Default” at the root. The Default group has, appropriately, 
default physical attributes to go along with it. The SCGs can be altered interactively by the QUEST user (see 
Section 2.1.1). 
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~~ 1 transformation ~ -r MatrixTransformation 

Material I material, paintcolor, 
Dain tTransDarencv 

A self-defining node 

Table 3.4: The subset of the Virtual Reality Modeling Language used in QUEST. 

An SCG file is an ASCII file containing the group names and their associated physical attributes. Tab characters 
before the group name indicate the level of that group in the hierarchy. The physical attributes are given in the order 
material, thickness, color, and transparency. The material is the name of a material in the MDB. Thickness is the 
thickness in inches. The color may be one of the colors recognized by AutoCAD or an RGB triple. Transparency is 
a number in the range [0,1], where 1 means completely transparent and 0 means completely opaque. Any attribute 
may be given as "parent", in which case it inherits the corresponding attribute of its parent. Trailing "parent" 
attributes may be omitted. 

Consider the following example, where Figure 3.3 expresses the simple hierarchy: 

Door Wood 2.0 BROWN 
<TAB> Interior Door parent 1.5 WHITE 
<TAB> Exterior Door Steell 2.0 BLACK 
Wall Gypsum 4.0 (-6, -5, - 4 )  
<TAB> Interior Wall 
<TAB> Exterior Wall 

' I 1 
r D~ori 

Interior Door Exterior Door 
r i 

Interior Wall Exterior Wall 

Figure 3.3: Example hierarchy of group names. 

The group "Door" has material Wood, thickness 2.0, color BROWN and the transparency of its parent "Default", 
which is 0.0. The group "Interior Door" has attributes Wood, 1.5, WHITE and 0.0. The group "Exterior Door" has 
attributes Steell, 2.0, BLACK and 0.0. The group "Wall" has attributes Gypsum, 4.0, (-6, -5, .4) and 0.0, as do 
groups "Interior Wall" and "Exterior Wall". The triple (.6, .5, .4) means (red = .6, green = .5, blue = .4), where the 
RGB values run from 0 to 1. The names are not case-sensitive. 
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3.6 INTERPROCESS COMMUNICATION 

The Interprocess Communication (IPC) logic allows a client and a server which are parts of different heavyweight 
processes to communicate with each other. The client makes Remote Procedure Calls (RF'C) that are received by the 
server. For each RPC (Birrell and Nelson 1984), the client blocks until the server informs it the call is complete. 
The client may pass input arguments to the server and the server may pass output arguments to the client. A server 
may have multiple clients. 

DescriDtion 
A server may be thought of as an object whose operations (member functions) can be invoked by clients. The clients 
can invoke the operations even if the object is remote from the clients (in a different process or on a different 
machine). The present implementation supports clients and servers that are in different heavyweight processes in the 
same machine. Future implementations will support clients and servers on different machines. However, the 
application-level logic will remain unchanged when this capability is added. 

The operations of an object which acts as a server are defined as member functions in C++. Suppose the operations 
that the server will perform are defined as member functions of class ObjType. If the client and server occupied the 
same process, an object of class ObjType would be created to play the'role of server and the client would call its 
member functions. The client and server might operate on different threads or on the same thread. In order to permit 
the client and server to occupy different processes, we will define two classes derived from ObjType, namely 
ObjTypeClient and ObjTypeServer. An object of class ObjTypeClient is instantiated in the client process, and an 
object of class ObjTypeServer is instantiated in the server process. Let the operations of ObjType be defined as 
virtual functions, so that they can be overridden in ObjTypeClient and ObjTypeServer. In order to invoke member 
function P(a,b), the client invokes it from ObjTypeClient instead of from ObjType; however, the invocation looks 
exactly the same. 

If the client and server were in the same process, the implementation of function P(a,b) within class ObjType would 
merely carry out operation P, whatever it is; however the implementation of P(a,b) within class ObjTypeClient must 
send the request to the server for it to be carried out there. The implementation of P(a,b) within class 
ObjectTypeClient accordingly looks like: 

prepare input arguments a to be passed to server, 

wait for completion of the operation, 

convert output arguments so they can be returned as 6. 

o send request for operation P to server, including input arguments, 

o take output arguments passed from server, 

These are the same steps used in conventional remote procedure calls. In standard RPC-RPC as defined by the 
Internet draft standard (Internet Engineering Task Force 1994 (RPC)), which was modeled on Sun RPC- 
preprocessors are used which to some extent conceal these steps from the programmer. The two argument 
conversion steps are needed because a single untyped transmission mechanism is used for arguments of all types. 
Note that this replicates the semantics of the ordinary procedure call, even though the caller and the called may be on 
different computers. One might say that the purpose of RPC is to allow the software technology of the past 
(procedure calls or function calls) to live on in the non-von Neumann future. It is possible to define non-blocking 
calls, but there is no advantage in doing so unless client requests are queued, in which case it would be better to go to 
full-fledged messaging using senareceive semantics. The sends can be made to look like non-blocking procedure 
calls, but the underlying mechanisms are rather different. 

One of the more annoying aspects of RPC programming, whether done as shown above or through standard Rpc 
mechanisms, is the need for the programmer to define manifest constants to identify the various remotely callable 
procedures. In standard RPC, there is only one global "identifier space", so all identifiers must be unique (at least all 
identifiers in any set of programs which will be registered simultaneously as able to provide RPC services). One 
advantage of the object-oriented technique described here is that the identifiers need to be unique only within the 
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object type. A good place to define the identifiers is in the header file in which class ObjectType is declared. The 
outline below shows how this might be done: 

class ObjType { 
... 
void PO (aO, bo); 
void P1 (al, bl); 
... 

3 ;  
enum class ObjType-Proc { 

ObjType-PO, 
ObjType-P1, 
... 

Items of type ObjType-Proc can be used for the procedureld argument of the call function of type IpcClient (see 
below). Note that even though C+t distinguishes functions with the same name but different argument types 
(overloaded functions), it is necessary to define a separate enurn value for each of the functions. 

The server object operates on its own thread. (It would be possible to use the same thread for server and client in the 
same process, but this is designed to be a general mechanism that will work no matter where the client and server 
are.) It must await a request (such as the request for operation P above), carry it out, then wait for the next request. 
The server's thread is created during construction of an object of type ObjectTypeServer. The server thread 
performs a loop that looks like this: 

while TRUE 
O wait for a request from a client 
O discover the identity of the requested operation 

switch ( operation ) 
_ . _ . .  
case P: 
O convert transmitted input arguments to typed arguments a 
O invoke function P ( a , b )  of class ObjectTypeServer 
O prepare output arguments b for transmission to client 

inform client the operation is done, passing it the 
output arguments 

. - . . .  
end switch 

end while 

Class ObjTypeServer contains two additional member functions accept and reply, which enable the server to wait for 
a request from a client and inform the client the operation is done, respectively. From this, we can see that the 
implementation of operation P(a,b) in ObjectTypeServer is exactly the same as it would have been in ObjectType in 
a single process system. Therefore, in an object-oriented scheme, the server can inherit the operations (such as P(a, 
b)) from type ObjType. The steps performed under "case P" are the same steps used in conventional remote 
procedure calls. Again, in standard RPC, preprocessors are used which mostly conceal these steps from the server 
programmer. Also, in standard RPC, logic is provided by the underlying system which takes care of the function 
performed by the part of the while loop outside "case P .  

It should be apparent from the above that RPCs cry out for automation. The steps outlined above for client and 
server could be carried out by a simple compiler or preprocessor, something like the rpcgen processor associated 
with standard RPC (rpcgen Manual Page). The uncertain state of standard RPC on Windows NT rules out its use at 
present. It is not clear that the performance of standard RPC would be adequate on a single-processor system. 

Intercommunication Mechanism 
A particular server and its client communicate through a data structure kept in shared memory. There is just one 
instance of the structure, used by the server and all the clients. In addition to a memory area used to pass the input 
arguments from the client to the server and the output arguments from the server to the client, the structure contains 
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data items (system dependent) for achieving exclusive control of the data structure, for allowing the server to wait for 
a request, and for allowing the client to wait for the completion of a request. 

The interfaces to the facilities for interprocess communication are defined in the header file ipc.h. In particular, it 
defines structure ZpcBuffer (the shared data structure), base class Ipc and derived classes IpcClient and IpcServer. 
Mutual exclusion and synchronization are achieved by means of semaphores (Dijkstra 1968). There is a largish 
untyped shared storage area for input and output arguments, which are passed back and forth as sequences of bytes. 
The derived type ZpcClient contains member function call, through which a client issues a remote procedure call and 
the data conversion functions serialize and deserialize. The calling sequence of call is 

void call fint programrd, 
int versionNunber, 
int procedureId, 
const unsigned char *inputArguments, 
unsigned int inputlength, 
unsigned char *outputArguments, 
unsigned int *outputLength) ; 

programld and versionNumber are unused but are present for compatibility with the Internet RPC standard. 
programld identifies which of the member functions of ObjectType is being called. inputArgurnents is the input 
arguments, serialized into a stream of bytes. inputLength is the length in bytes of the input argument stream. 
outpuvlrguments is the output arguments, serialized into a stream of bytes. outputkngth is the length in bytes of the 
output argument stream. 

The serialize/deseriaLize functions convert data values to/from internal machine-dependent format to External Data 
Representation (XDR) (Internet Engineering Task Force, 1994 (XDR)). The calling sequences of the serialize 
routines are 

unsigned char *serialize (int value, unsigned char *xdrValue); 
unsigned char *serialize (float value, unsigned char *xdrValue); 
unsigned char *serialize (double value, unsigned char *xdrValue); 
unsigned char *serialize (char *value, unsigned char *xdrValue); 

value is the value to be serialized, xdrValue is the serialized XDR, The returned value points to the next byte after 
the serialized value in xdrValue. 

The calling sequences of the deserialize routines are 

unsigned char *deserialize (const unsigned char *xdrValue, int *value); 
unsigned char *deserialize (const unsigned char *xdrValue, float *value); 
unsigned char *deserialize (const unsigned char *xdrValue, double *value); 
unsigned char *deserialize (const unsigned char *xdrValue, char *value, 

const int =Size); 

xdrValue is the XDR value, value is corresponding deserialized value, m S i z e  is the maximum size of the string 
value, including the ASCII NUL terminator. 

It is assumed that all compound data types used in this application are ultimately made up of in?, $oat, double and 
string values, so serialize/deseriaLize routines for compound types can be constructed from the above four routines. 
For example, consider 

/ /  DEFINITION OF TYPE T 
const int Xsize = 4; 
typedef struct T { 

int a; 
float x [Xsize] ; 

3 T; 

/ /  SERIALIZE VARIABLE OF TYPE T 
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unsigned char *serialize (T  value, unsigned char *xdrValue) { 

unsigned char *p; / /  BUFFER POINTER 
int i; / /  LOOP INDEX 

/ /  INITIALIZE OUTPUT POINTER 
p = xdrvalue; 

/ /  SERIALIZE COMPONENT a OF T 
p = serialize (value-a, p ) ;  

/ /  SERIALIZE EACH ELEMENT OF COMPONENT x OF T 
for (i = 0; i < Xsize; i++) 

p = serialize (value.x[i], p); 
3 

The derived type IpcServer contains the member functions accept and reply, through which the server waits for a 
request and informs a client the request is done, respectively; and the data conversion functions serialize-inf, 
serializefiroaf, deserialize-int and deserializefloat. The calling sequences of accept and reply are 

int accept (void); 
void reply (void); 

The accept function returns the operation code passed by the client (argument procedureid of caZ1). 

The calling sequences of the serialize functions are 

void serialize (int value); 
void serialize (float value); 
void serialize (double value); 
void serialize (const char * ) ;  

value is a value to be serialized into XDR format. The XDR is placed at the current position in the shared @Buffer 
and the current position is incremented accordingly. 

The calling sequences of the deserialize functions are 

void deserialize (int *value); 
void deserialize (float *value); 
void deserialize (double *value); 
void deserialize (char *value, int maxSize); 

value is the value that results from the deserialization of the XDR value at the current position in the shared 
ZpcBuffeer, the current position is incremented accordingly. maxSize is the maximum size of the output string value, 
including the ASCII NUL terminator. 

The discussion so far applies to a single-threaded server. A single IpcBufSer is sufficient for a single-threaded server; 
a server with N potential threads could be implemented using an array of N IpcBuffer structures. Note that a single- 
threaded server can accept any number of clients but cannot overlap its execution of the operations they request. 



3 -7 GRAPHICS RENDERING ENGINE 

The Graphics Rendering Engine (GRE) consists of two three-dimensional (3D) windows: the top-down view and the 
first person point of view. The top-down view allows the user to see hisher current view position within the 
graphics “world” from an overhead view position. The first person point of view allows the user to see the graphics 
“world” from an immersed point-of-view. An arrow marks the current position within the overhead view. The 
center of the arrow is the current view position within the graphics world. The direction of the arrow is the direction 
the user is facing within the first person view window. 

Each graphics window has means to move the view position. The top-down view position can be raised or lowered 
only. It always “looks down” on the first person view position. The user can zoom in and zoom out on the current 
position. The user is allowed to zoom in to what is the equivalent of approximately two feet above the current view 
position. The zoom out distance is unlimited. While the user holds down the keyboard letter ‘d’, the view position 
will zoom down. While the user holds down the keyboard letter ‘u’, the view position will zoom up. 

The first person point of view has two modes of movement defined by whether the left or right mouse button is 
depressed. With the left mouse button depressed the view position can be rotated left, rotated right, moved forward 
and moved backward. With the right mouse button depressed the view position can be panned up, panned down, 
panned left and panned right. 

The user should think of the first person view window as being divided in to sections with a line that divides the 
upper half from the lower half, and a line that divides the left half from the right half for purposes of first person 
view position movement. With the left mouse button depressed and the cursor is in the upper half of the first person 
view window, the first person view position will move forward in the graphics scene. With the left mouse button 
depressed and the cursor is in the lower half of the first person view window, the first person view position will move 
backward. With the left mouse button depressed and the cursor is the left half of the first person view window, the 
first person view position will rotate to the left. With the left mouse button depressed and the cursor is the right half 
of the first person view window, the first person view position will rotate to the right. The closer the cursor is to the 
outside edge of the first person view window, the greater the rate of movement or rotation in that direction will be. 
With the cursor at the center of the first person view window, there will be no movement or rotation. 

To move through a building, start with the cursor near the centerline of the first person view window. Depress and 
hold down the left mouse button and move the cursor toward the top edge of the first person view window. If the 
cursor is moved off the vertical center line of the first person view window while moving forward, the view position 
will continue to move forward and move to the left if the cursor is in the left half of first person view window or 
move to the right if the cursor is in the right half of first person view window. To “straighten out” the movement 
path, move the cursor back to the vertical center line of the first person view window. Moving in the reverse 
direction, backwards, is similar to moving forward except the cursor must be in the lower half of the first person 
view window. 

If the view position is not inside a building, the view position elevation can be changed. By depressing the right 
mouse button and moving the cursor to the upper half of the first person view window the view position will pan up 
(move up). By depressing the right mouse button and moving the cursor to the lower half of the first person view 
window the view position will pan down (move down). If the view position is inside a building, the user can use the 
up or down arrow keys on the keyboard to change hisher view position to the next upper or next lower level in the 
building. 

The user can pan left (move laterally to the left) or pan right (move laterally to the right) by depressing and holding 
down the right mouse button and moving the cursor either to the left half or the right half of the first person view 
window . 
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3.7.1 STRUCTURES 

The creation of a structure for use in the QUEST project should be made by using the computer-aided design (CAD) 
software program AutoCAD or AutoCADLt by AutoDesk, Inc. The completed drawing must be saved as a Drawing 
Interchange File format (DXF). While other CAD packages exist that can save drawings in DXF format, they do not 
create the type of elements needed by QUEST. QUEST will only accept drawings made up of 3DPOLYs and 3D 
faces. 

Level Isolation 
For the QUEST Project, it has been decided that for each multi-storied building, each level of the building will be 
drawn and saved to separate DXF files. This not only makes it easier to create, copy, and edit building drawings but 
also allows for easy level isolation within the 3D graphics rendering. The main purpose of level isolation within the 
first person 3D graphics rendering is to minimize the number of polygons that need to be rendered on each 3D 
graphics refresh cycle. By minimizing the number of polygons that need to be rendered, a faster graphic refresh 
cycle can be accomplish, thus giving a smoother appearing first person 3D graphics display. Another purpose of a 
level isolation is to allow an overheadtopdown view of the current level in a separate graphics window. This allows 
the user to see where in the current level shehe is. Unlike other graphics rendering languages such as GL or 
OpenGL, World ToolKit (WTK) does not provide a simple method of rendering the same 3D graphical object 
multiple times in different graphics windows (see One Universe Graphics vs. Individual Window Parameters). 
(Please note, unless otherwise stated, identical WTK methods of operation will be used in both the Silicon Graphics 
and Windows NT operating systems.) 

Method of GrouDing Levels 
The data that make up the 3D graphical objects is received from the CDB portion of the simulation program. In the 
3D graphics portion of the simulation, the smallest entity will be a WTK object which consist of one 3D polygon. 
Each 3D graphical object contains a user-defined data structure. Included in the data structure is a data field that 
contains the graphical object's unique identification number. The unique identification number is provided by CDB. 
Each level of a building will consist of a group of objects. Each building will consist of a linked list of pointers to 
groups of levels. The collection of buildings will consist of a linked list of buildings. Dynamically building 
polygons and WTK graphical object is not easy and not intuitive. Below is a listing taken from WTK v2.0 
Reference Manual of the necessary steps to take in creating a single WTK graphical object: 

. 

1. 
2. 
3. 

Initialize the object by calling WTobject-begin. 
Add vertices to the object using WTobject-addvertex. 
Add polygons to the object. For each polygon: 
a. Call WTpoly-begin. 
b. 

C. Call WTpoly-close 

Add vertices (that have already been added to the object with 
WTobject-addvertex) to the polygon using WTpoly-addvertex. 

4. Call WTobject-close. 

Note that only one object can be constructed at a time. You must complete the definition of one object before 
beginning the definition of a new object (no objects embedded in objects). The following example taken from 
QUEST'S GRE illustrates the use of the object constructor functions: 

void LoadBuilding (char *building) { 

int 
int 
int 
float 
BOOLEAN 
BOOLEAN 
WTobject 
WTPOlY 
WBObjectData 
WTgroup 

i, curtag, receiveqsftag; 
count = 0; 
ubcount = 0; 
xzy[31; 
ok = TRUE; 
okconstructobj = TRUE; 
*constructobj; 
*constructpoly; 
*newObjData; 
*grp = NULL; 
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ElementaryComponent * eComp ; 

curtag = -999; 

if istrlentbuilding) > 0)  { 
sscanf (building, "%d", Lreceiveqsf tag) ; 
component->start(receiveqsftag); 

receiveqsftag = component->makeRootCurrentO; 
component->start(receiveqsftag); 

} else { 

3 

/ /  GET FIRST eComp 
eComp = new(E1ementaryComponent); 

/ /  WHILE THE CDB HAS eComps RECEIVE THEM. 
while (component->nextElementaryComponent(eComp)) { 

okconstructobj = FALSE; 
ok = TRUE; 

/ /  POLYGON MUST HAVE AT LEAST THREE POINTS 
if(eComp->Nvertices c 3) 

ok = FALSE; 

else { 

/ f  INITIALIZE A NEW, EMPTY OBJECT - 
constructobj = WTobject-begin t )  ; 
okconstructobj = TRUE; 

/ /  GET VERTEX POINTS FROM THE eComp. 
f o r  (i = O;(i < eComp->Nvertices) && (ok == TRUE);i++) { 

xzyEX1 = ecomp->vertices[i] .x[X] ; 
xzy[Yl = eComp->vertices[i] .x[Y]; 
xzy[Zl = -eComp-zverticesEi1 . x [ Z l ;  

/ /  ADD VERTICES TO THE OBJECT 
ifttok == TRUE) && ((WTobject-addvertex(constructobj, 

WTvertex-newtxzy) ) ) == FALSE) ) { 
printf ( "addvertex error\n" , eComp->id, count) ; 
ok = FALSE; 

1 
3 

if (ok == TRUE) { 

/ /  BEGIN CONSTRUCTION OF A POLYGON 
constructpoly = WTpoly-begin(constructobj); 

/ f  ADD VERTICES PROVIDED BY eComp TO A POLYGON 
for (i = 0; (ok == TRUE) && (i c eComp->Nvertices); ++i) 

WTpoly-addvertex (constructpoly, i) ; 

if(ok == TRUE) { 

/ /  "WRAP UP" THE OBJECT BY CLOSING, MAKING BOTH SIDES 
/ /  OF THE OBJECT VISIBLE, SETTING COLOR, AND SETTING 
/ /  THE OVERALL VISIBILITY OF THE OBJECT. 
WTpoly-close(constructpo1y); 
WTpoly-setbothsides(constructpoly,TRUE); 
WTobject-setrgb(constructobj , (char) (255*eComp->color EO] , 

(char) (255*eComp->color [ll) , 
(char) (255*eComp-~color[2]~ ) ; 

WTobject-close(constructobj,FALSE,TRUE); 
WTobject-add(constructobj); 
WTobject-setvisibility(constructobj,TRUE); 
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/ /  GET A NEW USER-DEFINED OBJECT DATA STRUCTURE 
newObjData = (WBObjectData" )malloc (sizeof (WBObjectData) ) ; 

/ /  ASSIGN UNIQUE OBJECT IDENTIFICATION NUMBERS 
/ /  PROVIDED BY THE CDB 
(*(newObjData)).id = eComp->id; 
( *  (newObjData) ) .tag = eComp->tag; 

/ /  INITIALIZE SELECTED FIELD TO FALSE 
((newObjData)).selected = FALSE; 

/ /  ASSIGN/ATTACH THE USER-DEFINED DATA STRUCTURE 
/ /  TO THE OBJECT 
WTobject-setdata(constructobj, (void*)newObjData); . 

/ /  FIND THE GROUP THAT THE CURRENT eComp SHOULD 
/ /  BE ADDED TO OR A NEW GROUP WILL'BE CREATED 
/ /  FOR THE SPECIFIC eComp IDENTIFICATION NUMBER 
if ( (curtag ! =  eComp->tag) 1 I (grp ==NULL) { 

1 

grp = WBgroupGetToLoad(eComp->tag,receiveqsftag); 
curtag = eComp->tag; 

/ /  IF GROUP, grp, IS NOT NULL, ADD IT TO THE GROUP 

if (grp != NULL) 

else 

/ /  ELSE DELETE THE OBJECT-- 

WTgroup-addobject(grp,constructobj); 

WTobject-delete(constructobj); 

3 

3 
1 

/ /  IF UNSUCCESSFUL ON LAST eComp, DELETE THE PREVIOUS 
/ /  ATTEMPTED CONSTRUCTED OBJECT AND eComp AND 
/ /  AND TRY AGAIN ON THE NEXT eComp 
if((ok == FALSE) && (okconstructobj == TRUE)) 

WTobject-delete(constructobj); 
delete(eComp); 
eComp = new(E1ementaryComponent); 

/ /  CLEAN-UP: DELETE LAST UNUSED eComp 
delete (eComp) ; 

As one can see from the above example, the data corning from the CDB needs to be received in a specific order or 
stored so it can be used in a specific order to create WTK 3D graphical objects. The GRE needs to know how many 
vertices are in each eComp before it can construct a polygon and how many polygons there will be in an object. 
Other data needed are the color of each polygon and the polygon/,oraphical object unique identification number. 

As each graphical object is completed, it will be added to the group of 3D graphical objects that make up a level of a 
building. The eComp tag, eComp+tag, has the same value for all components originating in the same DXF file, 
therefore a change in its value signals the change of level of a building or a different building is being loaded. 

Mechanics of Isolating Current Level 
As the user navigates through the first person view, the current view position is checked with the following WTK 
function call: 

WTviewpoint-getposition(CurView,CurPos); 
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This returns the current X, Y and Z position within the current view (Curview) to the WTK defined variable, 
WT-p3, which is an array of size three of type float. The following function call is made with the current position: 

CurF = InsideBuilding(CurPos) 

If the current position is outside the defined boundariesof all the buildings a NULL pointer is returned and all the 
levels of all the buildings are graphically rendered. The boundaries of the building are kept in a data structure 
associated with each building. The boundaries are defined by the region within the minimum and maximum X, Y, 
and Z verticies. If the current position is within the defined boundaries of any building, a pointer is returned to the 
group of 3D graphical objects that make up the level of the building. Because the ceiling of the current level is made 
up of the floor of the level above, the 3D graphical objects that make up the level above are also rendered in the first 
person view. To find the level above the current level, the following function call is made: 

AutoChangeFloor(CurF, CurPos) 

If there is a level above the current level (if the user is on the roof, there won't be a level above), the group of 3D 
graphical objects that make up the current level and the level above are set so that they are made "visible" (to be 
graphically rendered) and all others are made "invisible" (not to be graphically rendered) within this function. Once 
it has been determined that the current position is inside the boundaries of a building and the current level has been 
determined, a copy of the current level is made containing all its 3D graphical objects. The copy is translated to a 
very distant region of the WTK universe (see One Universe Graphics vs. Individual Window Parameter Graphics 
below) and a second view position and view direction is created to look down at the current view position. The copy 
is then displayed in the overhead view window. If the user changes levels or exits the boundaries of the current 
building, the copy of the building is deleted and the overhead view position is set to look down at the current 
position and all of the buildings in the WTK universe are made visible (graphically rendered). 

One Universe Graphics vs. Individual Window Parameter Graphics 
WTR suffers from having only one "universe" for all of the 3D graphical windows that are rendered by a single 
WTK executable program. In contrast, in GL and OpenGL the user can have two or more 3D graphical windows 
open, each of which may have the same world coordinate boundaries. A 3D graphical object may be rendered in any 
one and not rendered in the other(s). All the 3D graphical objects that make up an entire building could be displayed 
in one window and only the 3D graphical objects that make up the current level could be displayed in the second 
window. No copy of the 3D graphical objects that make up the current level would need to be made nor translated to 
some distant part of the graphical universe to "hide" it from the main part of the graphical universe. This copying 
and translating to give different views of the same object not only takes care in implementing and time to accomplish 
but also takes up extra memory allocated for the copied 3D graphical objects. 

3.7.2 PATH SPECIFICATION 

Within the QUEST simulation, every active object, of which there are two types (detector and source), has an 
associated path. This path defines the time based movement of the active object through the synthetic environment. 
Issues of path definition, static representation, and interpretation are crucial to both the GRE and the TP. The path 
definition mechanism provides a standard set of manipulation routines, including create, delete, copy, and modify. 

Path Creation 
There are three conceivable means by which a user could initially create a path in the QUEST application: (1) first- 
person movement through the synthetic environment using the first-person-point-of-view (FPOV) graphics window, 
(2) picking an ordered series of points in the overhead graphics window which are connected together with straight 
line segments, and (3) formalized point specification within an input DXF structure file. Phase I of the QUEST 
implementation supports methods 1 and 2. Method 3 will be left to follow-on implementations, where support for 
path interpretation from an input DXF file may be used to eliminate the need for a GRE during path creation. To use 
the two path creation mechanisms, the user must preselect a single default height above ground (above the default Z 
for any given location), which is applied uniformly throughout the path's definition. 
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Immersive Path Creation 
Prior to initiating the creation of a path, the user must select the starting node for the path. The user would then 
commence path definition by moving through the envionment. Since the path is defined by the interactive movement 
of the user through the synthetic environment, path speed and movement is 
governed by the direct actions of the user. 

The path is defined by a WTK data structure (referred to as path,& which is an 
ordered set of nodes, each containing two points (x,y,z), one for position and one 
for orientation. The density of these position nodes reflects the relative speed of the 
active object at that point on the path; the closer two nodes are together, the slower -.. . 
(in relative terms) the object was traveling at that point. 

On vertical transition from one floor to another, a straight line of movement is made from the source floor to the 
destination floor. This is enforced by the path creation mechanism by placing a node at the point of vertical 
transition on the source floor, and another node directly above or below that point on the destination floor. Within 
the GRE, the transition from one floor to another is represented by a controlled, fluid motion. Once the interface is 
notified that the user would like to move up or down one floor, the GRE slowly transitions the FPOV from the 
source floor, through all intervening materials, to the destination floor. During this transition, the GRE display of the 
FPOV starts out slowly, accelerating through the intervening floor and ceiling, and then slows to a stable position 
directly above or below the original source point. 

Point Picking Path Creation 
In this mode the user selects points from a bird's eye view of the environment. 
Furthermore, the system assumes a default path speed. Using the 3D graphics 
window, the user selects a starting node for the path, enters path definition mode, 
and selects successive path points by orienting the cursor and pressing the keyboard 
space bar. Once complete, this ordered set of path points are interpreted as 
connected by straight line segments. The path points, together with connecting line 
segments, are interpreted at the default path record speed, and replaced by an 
ordered series of path nodes generating the path& data structure. In this path 
creation mode, orientation is calculated as the directed vector connecting two successive position nodes. 

i,,,; 
As a subcase of the point picking path definition method, a user can also define a specialized path consisting of a 
single point. Known as a single point path creation, such a path represents a single stationary location with a 
default, established orientation. An object with this path assignment will remain in the one location throughout its 
active assignment in the simulation system. A single point path is defined through a successive selection of the 
record and stop buttons during the normal immersive path creation mechanism. 

Vertical transition from one floor to another is handled in the same manner as presented in the section above- 
straight line movement is made from the source to the destination floor. 

Path Copy 
The user can select a path from a list of available path names through the GUI interface, to be duplicated using the 
"Save As ..."' button. Once duplicated, the path copy becomes its own unique path entity, and must be assigned a 
unique name. This facility provides the user with a means of attempting path modifications without destroying the 
original path. 

3.7.3 STRUCTURAL- COMPONENT PICKING 

Structure component picking (picking) is a mode set in GRE by the user through the GUI to allow the user to pick a 
list of 3D graphical objects. The user may initiate picking for structural component groupings. The GRE returns a 
list of unique graphical object identification numbers to the TP. 

l -  
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Method of Picking 
Once the picking mode is set from the CUI, the user may move the cursor with the mouse so that the “hot spot” of 
the cursor is located over/on the graphical object. The user may then press the space key on the keyboard to select 
the graphical object. If a previously selected object is selected again, it will be “deselected and its “selected” flag 
will be set to FALSE. A method of ”,gaphicaliy marking”, the selected object is used so the user may see the 
graphical objects selected (see Considerations for Marking). 

Mechanics of Picking 
All 3D graphical objects loaded through the CDB have a user-defined data structure attached to them. Among other 
fields in the data structure is a boolean field called “selected”. This field is used to determine if the graphical object 
is “selected.” When initialized this field is set to false (not selected). When the GUI initiates picking, a “picking 
mode” flag in the GRE will be set to true (initial default value is false). The mode flag will remain true until the CUI 
signals the GRE that the user has either canceled picking or has accepted the current list of selected 3D graphical 
objects. When either is signaled, the flag will be set to false. If the selection is accepted the GRE sends the CDB the 
unique identification numbers of all the selected objects. 

Within the 3D graphics the following code is used to pick a graphical object: 

rawmousedat = (WRnouse_rawdata*)WTsensor_getrawdata(Mouse->sensor); 
obj = WTuniverse_pickobject(rawmousedat->pos); 

The function call, WTsensorSetrawdata, returns the sensor-specific (mouse) raw data structure. The raw data 
structure for the mouse contains the current 3D location of the cursor. 

The function call, WTuniverse-pickobject, returns a pointer to the 3D graphical object located at the location of the 
cursor or returns a NULL pointer if there is no 3D graphical object at that location. If the 3D graphical object that is 
pointed to by the return of WTuniverse-pickobject does not have its “selected” flag set to true (selected), it will be 
set to true otherwise it is set to false (not selected). 

Considerations for Marking 
Marking a selected graphical object allows the user to easily identify objects that have been selected. The color of 
marked objects is changed to a user-defined color representing a structural group. In addition, a selected object is 
changed a solid-filled color to a wire-framed object. 

3.7.4 LIGHTING 

The GRE display ambiance is a set of World ToolKit functionalities used in QUEST’S to change the visual 
appearance of the background and structural components in the first-person view and the overhead view windows. 
These functionalities allow the user to change the background color and adjust ambient lighting. Settings for the 
display ambiance are changed through the GUI. To adjust the background color, the user first pulls down the GUI 
window “Image” and then selects “Background Color”. A pop-up window appears with a slider bar and an input 
window with the current value for each of the three RGB (RED, GREEN, BLUE) values that make up the 
background’color. There is a small, RGB display window in the GUI displaying the current background color. As 
the values of RGB colors are changed, the representative color will be displayed in this window. The user may 
either move a slider or type in a value in the input window for the appropriate RGB value. Legal value ranges for 
each color are 0 to 15, with 163 = 4096 colors available. When the user is satisfied with the new RGB color mix, 
selection of “accept” applies the RGB mixture to the GRE display background. 

To adjust the ambient light, the user must first pull-down the GUI window “Image” and then select “Lights”. A pop- 
up window will appear with a slider bar. The value range for the slider will be from 0% to 100% (no light to 100% 
light). The user may slide the slider bar to adjust the corresponding light value. The effects of the new values will 
be displayed in the GRE displays immediately. 

Disdav Ambiance Interface and the CUI 
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The GRE is a server to the CUI. A lightweight process, or thread, in the GRE awaits input from the CUI. The CUI 
sends character strings that contain commands for the GRE to perform. For example, if the GUI signals to change 
the background color the following command string is sent: 

“BACKGROUNDCOLOR r g b” 

The above string is first parsed in the GRE for the command “backgroundcolor”, then integer values for “r g b” are 
parsed from the string. In a similar fashion, the command to change the ambient lighting is the command string: 

“AMBIENTLIGHT al” 

The above string is first parsed in the GRE for the command “ambientlight”, then the integer value for “al” is parsed 
from the string. The value range for “al” is from 0 (zero) to 200. Whole number values are sufficient because 
incremental changes of light less than 1% are not noticeable. The following code is used to parse the above 
commands and perform their operations in the GRE: 

void DoGuiCommands(char *comd,int *threecolr, WTlight *curlight, 
float *dirlight, float *amblight) { 

short bgcolor ; 
int r, g, b; 
int lightval; 
float checklight; 

if (strstr(conunnd,”BACKGROUNDCOLOR”)) { 

/ / PARSE commnd FOR INTEGERS r, g, and b 
ParseForRGB(comand,&r,&g,&b); 

/ /  threecolr IS A “STATE VARIABLE” 
* (threecolr+O) = r; 
*(threecolr+l) = g; 
* (threecolr+2) = b; 

/ /  CONVERT r, g, b TO HEXIDECIMALS 
bgcolor = GetColorAdjust(threeco1r); 

/ /  WTH LIBRARY FUNCTION TO SET BACKGROUND COLOR 
WTuniverse-setbgcolor(bgco1or); 

1 else if (strstr(cortunnd, “AMBIENTLIGHT”) I 

/ /  PARSE commnd FOR INTEGER light 
ParseForLight(comand,&light); 

/ /  amblight IS A “STATE VARIABLE“ 
*amblight = (float) (light/lOO.O); 

/ /  WTK LIBRARY FUNCTION TO SET AMBIENT LIGHT 
WTlight-setambient(ambient1 ; 
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3.8 GRAPHICAL USER INTERFACE 

The Graphical User Interface (GUI) was developed using the portable windowing library from XVT Software 
(1994). XVT was chosen to satisfy several QUEST GUI development requirements, including portability across 
UNIX and personal computer platforms, clean C++ object organization, availability of a rich set of visual 
components, an easy to use graphical layout tool, and no run-time licensing costs. The XVT application framework 
consists of three different levels: 

O An application level that controls the program, 
O A document level that gets access to data and stores and manages data, 
O A view level that provides windows and other specialized structures in which to gather and display data and 

to manipulate graphical objects. 

Application Document -View 

Document < . View 

'r View 

Figure 3.4: The XVT application framework. 

Figure 3.4 illustrates the relationship between these three levels. The application object manages the flow of the 
entire application, initializes the startup environment, and responds to application events. This object creates the 
document levels. Access to global objects, including the desktop global that manages screen window layouts, is 
handled at this level. Before terminating the application any cleanup that is required is handled by the application. 
The document object is responsible for accessing and managing data. This object manipulates files and internal 
pieces of data. It acts as the link between the application and the views of the data. A document cannot display data 
itself, so it instantiates windows in which the data may be viewed. 

The view hierarchy is comprised of all of the classes that display some form of object on the screen when they are 
instantiated. Views can supply native controls like buttons, check boxes, scrollbars, list boxes, etc. These controls 
take on the look and feel of the native window system in which the application is running. Views can be nested 
within another view. Views can display icons, drawing shapes, spreadsheet type grids, scrollable lists, text, 
sketching areas, and two and three dimensional graphics display areas. 

OUEST Design Using XVT 
The XVT QUEST application object controls the flow of the entire QUEST application. QUEST has been 
organized into a number of XVT document objects. Each document object represents a separate type of QUEST 
file. There 'are eight different types of files that can be created or manipulated from the QUEST GUI documents. 
The overall structure is indicated in Figure 3.5. Here DocQStr is used to manipulate structure files, DocQPath is 
where paths through the structure(s) are stored, DocQSrc is used to store source information, DocQDet is used to 
store detector information, DocQMat is where the material database information can be manipulated, DocQBack is 
where the background radiation information is stored, and DocQOut is where output generated from a QUEST 
simulation run is stored. In addition, DocQConf holds the configuration information for a given scenariei t  keeps 
track of all the files used in a given scenario. 

Under each document object in the XVT hierarchy are the views or windows that are used in QUEST to obtain 
information from, or to display information to, the QUEST user. The views or windows under a particular document 
object are specifically related to that document. Each view icon represents a separate window except for under the 
document object DocQPath, where views QPathPnt, QPathImm, QPathPre, and QPathPlay represent different scenes 
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that are displayed based on a radio button selection. 
QPathImm’s view is displayed in a portion of the QPath window. 

For example if the Irnmersive radio button is chosen, 

The top level window is QConfig. QConfig, QConStr, QConSrc, and QConDet all have iarge icon buttons that bring 
up other windows in a hierarchical fashion. The icons have a status field above them that indicates &e current s ta im 
of that icon: Completefincomplete or Readymot Ready. From the toplevef window onfy one branch of logic is 
visibIe ai a time. These include Structure, Source, Detector, Background, Simulation, OT Analysis. If a number of 
windows have been opened through the use of the Structure button and its corresponding windows, and the Detector 
button is clicked, all the Structure windows are closed so Detector definition can be completed. This helps to 
minimize confusion by isolating separate sections of logic and the manipulation of their corresponding files. 

Each document object has only one window associated with it that allows file manipulation commands such as New, 
Load, Save, and Save As. All windows that end in File (e.g. QStrFilef are pop-up dialog windows that display the 
file path and name, a QUEST unique name, and a description. These windows are brought up whenever a file Load, 
Save, or Save As command is invoked. In the case of Save or Save As the user can input a new or change an old file 
path and name, QUEST unique name, and description. 

SeDaration Between the GUI and Underlying Obiects 
The QUEST CUI code is logically separated from all other underlying objects and their associated code. The GUI 
code is strictly used to gather data from the user and display data provided by the underlying objects. It is not a 
repository for the information and does not perform calculations. All other actions beyond getting information from 
the user and displaying information for the user is handled by distinctly independent objects. 

Figure 3.5: The QUEST XVT user interface blueprint. 

The Source Definition window is a good example of this separation. When the user wants to create a new Source 
this window is brought up. The CUI fills the Element pull-down menu by querying the Periodic Table object to 
obtain a list of Element object names. The CUI obtains the Isotope, Quantity, and Gamma Ray table information for 
the first element in this list by querying the Element object. The CUI inserts Element information into the 
Radionuclides table when the user clicks on the Insert Element button. The Atomic number is acquired by querying 
the Element Radionuclide object. When the user completes the definition of a source they exit this window and Save 
the source. The Source object handles its own file output, using information the CUI passes it about path, filename, 
QUEST name, and description. 
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As shown in this simple example, the GUI handles the display of list and table information, responding to user button 
clicks, user list selections, and user menu selections. The information is stored and retrieved from the Periodic 
Table, Element, Radionuclide, and Source objects. These objects are separate entities that exist independent of the 
GUI, maintaining strict separation of program logic and the user interface. 
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4 A COMPARISON OF MEASURED AND SYNTHETIC RESPONSE FUNCTIONS 

In this section we present a comparison of measured and synthetic gamma-ray detector response functions. The 
results of the validations study (first presented in Johnson et al. 1997) compare synthetic Sodium Iodide (NaI) and 
Germanium (Ge) detector responses generated by QUEST, those generated by another gamma-ray detector 
computational model, SYNTH, and those generated by real detectors deployed in the field. Quantitative models like 
QUEST are important since they, (1) allow inspection teams to maximize the probability of finding materials of 
interest, (2)  aid in the development of new instruments and detection techniques, and (3) support other diverse 
applications including environmental monitoring, nuclear facilities inspections, and radiation safety responder 
training. 

It is necessary to validate QUEST against laboratory and field tests to allow users to have confidence in its results. 
Validation can also be attained by comparing QUEST to other codes, such as SYNTH, that are regarded as 
standards. We present the results of two series of validation tests. In the first, spectra generated by QUEST were 
compared to spectra collected in the laboratory at PNNL and to spectra generated by the SYNTH program. In the 
second, detector algorithm output generated by QUEST w& compared to output of the same algorithms run against 
data collected under field conditions at the Remote Sensing Laboratory in Las Vegas. Comparison of the results is 
favorable in both cases. 

4.1 COMPARISON OF SPECTRA 

Spectral data were collected at PNNL and compared to spectra generated by QUEST runs that simulated the 
laboratory conditions. The QUEST spectra were also compared to spectra generated by the SYNTH software. 

The data acquisition system used to collect the laboratory spectra was very simple, and used off-the-shelf Nuclear 
Instrument Modules (NIM), and commercially available software. A standard NIM bin was used to house a HV-bias 
supply [for the PMT], a spectroscopy grade linear amplifier, and an ORTEC ADCAM Multi-Channel Analyzer 
[MCA]. The ADCAM module was interfaced to a laptop computer which ran an MCA emulator program to control 
the acquisition, and record the accumulated spectra. 

The laboratory records that provide traceability of 
the sources used in the laboratory were used to 
specify the quantity of the isotopes on the 
certification date of the standard, and QUEST and 
SYNTH decayed the source to date of measurement. 
The detector manufacturers’ quality assurance data 
sheets were used to specify the sodium iodide and 
germanium diode parameters. The absorbers 
specified were air, the detector end cap material, the 
iron casing surrounding the plutonium oxide source, 
and in the’ case of the germanium detectors the 
germanium dead layer. The source-to-detector 
distance and the sample time were specified, as were 
the system electronics settings for gain and zero. In 
the following examples, as parameterized in Table 
4.1, the Compton continuum was remarkably free of 
deviation down to 500 keV, below which QUEST 
underestimated the experimental value. This 
underestimation is attributed to, (1 ) self-attenuation 
of the source, and (2) gamma-ray scattering in the 
lead shield of the detector, effects that are not 
currently simulated by QUEST’S physics model. Table 4.1 : Spectra comparison configuration. 
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Figure 4. I : Comparison of Pu / NaI laboratory, synthetic SYNTH and QUEST spectra. 
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Figure 4.2: Comparison of Pu / Ge laboratory, synthetic SYNTH and QUEST spectra. 

96 



In Figure 4.1,‘QUEST and SYNTH were both setup to model the response of a 5”xY NaI(T1) detector to 
approximately 100 grams of a 20-year-old plutonium oxide source. As the laboratory spectrum was acquired with an 
unshielded detector assembly, it is composed of the signal from the Pu source as well as a significant contribution 
from the ambient background. In fact, almost all of the counts above 800 keV can be accounted for by the 208T1 (a 
decay product of 232Th), and 40K that occur naturally in the soil and in concrete. 

Below 800 keV, the shape of the laboratory spectrum is dominated by the signal from the Pu source and the 
Compton continuum from the high energy components of the ambient background. Although the energy calibrations 
were not fine tuned, both QUEST and SYNTH do reasonably well above 150 keV. Below that value, the differences 
between the two codes become more apparent. SYNTH generated spectra with and without self-attenuation are 
shown; SYNTH appears to overcorrect somewhat for self-attenuation effects in the sample. The QUEST code, on 
the other hand, uses the simpler point-source model (which makes no self-attenuation correction) and thus over 
predicts the activity of lower energy photons. In each spectra figure, legend indicated data series multipliers have 
been applied to ease comparison. 
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Figure 4.3: Comparison of HEU / Ge laboratory, SYNTH and QUEST synthetic spectra. 

The same general characteristics may be seen in the plutonium spectra that were acquired with Ge detectors, shown 
in Figure 4.2. Other than the obvious difference in detector resolution, the laboratory Ge spectrum has a better 
signal-to-background ratio (the Ge detector was smaller and less efficient, so the source-to-detector distance was 
much smaller), and the energy calibration (keV/channel) is different by almost a factor of two. 

In a separate experiment, a small quantity of Highly Enriched Uranium (HEU) was counted in the laboratory, and 
subsequently modeled by the SYNTH, and QUEST codes. The resulting spectra, shown in Figure 4.3, are 
dominated by the characteristic “signature” of 235U (and its daughters) below 250 keV. Above that energy, the bulk 
of the activity is due to trace amounts (0.1 ppb) of 232U in the material. 
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4.2 

Decay Time 

COMPARISON OF ALGOFUTHM RESPONSES 

*"Pu 2.690e-03 mCi 
"*PU 2.iOe-04 
-'Am 5.60e-04 

26 years nfa 

Data collection was done in a laboratory using standard radiological sources and off-the-shelf NaI gamma-ray 
detectors (Table 4.2). Detector output was collected during a "walk-by'' inspection for a specific laboratory 
configuration (Figure 4.4). The data was fed to the QUE§T detection algorithms and the algorithm output recorded. 
The data from the detectors was recorded at approximate one-second intervals, and consecutive samples were 
summed as necessary to simulate specific algorithms. Each inspection configuration was also simulated in QUEST 
using synthetic sources, detectors and paths, and the algorithm output was recorded and compared to that developed 
from the laboratory data. 

The laboratory data acquisition system and software employed 
were originally developed by EG&G/Energy Measurements. 
Commercial off-the-shelf pre-amplifiers and amplifiers were 
utilized. The MCA employed for data acquisition was the EG&G 
ORTEC Model 920 Spectrum Master MCA. This MCA can 
acquire 1024-channel spectra from up to 16 detectors 
simultaneously. Each detector had its amplified output fed to 
separate input on the Model 920. Running multiple detectors into 
a single Model 920 had the advantage of reducing the number of 
separate MCAs required, but it did have a disadvantage of 
increasing the dead time. Real time is the actual wall clock time. 
Live time is the time during which the MCA is not busy 
processing a pulse and, hence, is available to accept a new pulse. 
Dead time is the difference between the real and live times, 
expressed as a percentage of the real time. Although individual 
spectra were taken for each detector, the dead time for each 
spectrum was the total MCA dead time (the sum of the dead time 
from all of the detectors connected to the 920), not just the dead 
time of that single detector. QUEST makes no provision for dead 
time in the sampling interval, so it was necessary to apply a 
correction factor to the algorithm inputs equal to the ratio of live 
time to real time. 

In collecting the laboratory data, six paths were used following parallel lines approximately forty-two feet in length 
and six feet apart. The sources used were an unshielded, 2 cm diameter disk of 239Pu, and a shielded @ k o  sample. 
Two different QUE§T algorithms were used to evaluate the collected spectra: gross count and a windowed 
algorithm. The former computes the logarithm to the base two of the sum of the counts over all detector channels. 
The latter computes the logarithm to the base two of the difference between the counts in a window A (45 keV to 450 
keV) and a window B (450 keV to 3 MeV) scaled by a factor k. k represents the ratio of the background counts in A 
and B for a reference background collected using the same detector. The output of both algorithms was normalized 
to zero. 
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Figures 4.5 and 4.6 show the algorithm output for the 
laboratory data and QUEST for the '?20 sample and gross 
count algorithm. Here, the sampling period was one second, 
and the experimenter pushed the detector cart from left to 
right in front of the source. The graphs show in three- 
dimensions the relationship between inspector location (offset 
distance from the source in feet), position in time along the 
path (given in seconds), and the resulting algorithm response. 
Figure 4.7 shows a comparison of 239Pu laboratory and 
QUEST windowed algorithm response. Here, only response 
values collected at offsets of six, twelve, and eighteen feet 
from the source are given. The sampling period was two 
seconds. The asymmetric shape of the laboratory data was a 
result of the shielding effects of the laboratory cart equipment 
layout and presence of the experimenter's body alongside the 
cart. In each of the experiments, QUEST slightly 
overestimates the algorithm response since it does not account 
for self-attenuation in the source. 

< - /  
Figure 4.4: Laboratory algorithm response setup. 
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Figure 4.5: Laboratory 6oCo algorithm response. 
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Figure 4.6: QUEST 6oCo algorithm response. 
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Figure 4.7: Comparison of 239Pu laboratory and QUEST algorithm response. 
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5 SUMMARY 

QUEST is proving to be a valuable tool that allows analysts, detector developers, and search managers to 
quantitatively explore the impact of technical or procedural changes on the nuclear material search process. The 
QUEST model provides a tool for examining the impact of new detector technologies, exploring alternative search 
concepts, studying new data fusion techniques, and a wide range of other practical studies. 

QUEST was developed to be a portable, extensible simulation environment. Based in advanced object-oriented 
design methodologies, phenomenology is encoded in separate software modules that can be enhanced or replaced. 
Developed entirely in C++, OpenGL and World ToolKit, and the cross-platform user interface builder XVT, 
QUEST is portable between workstations (SGI Irix), and personal computer (Microsoft Windows) systems. In 
addition, the use of object file standards such as DXF and VRML makes possible the use of QUEST structures in 
other software packages. 

Designed from the beginning to support large-scale, real-time, human-in-the-loop simulations of the nuclear material 
search process, QUEST provides timely and valuable scientific support to both search managers in the field, and 
analysts in the laboratory. Quantitative models such as QUEST allow searchers and inspection teams to optimize 
searches and maximize the probability of finding materials that can pose a threat. Presented experiments 
demonstrate the ability of QUEST to synthesize static source behavior and detector response. In addition, employing 
user configurable detection algorithms, QUEST gives realistic output from real-time, three-dimensional simulations. 
Using these capabilities, QUEST provides a means of calculating the probability of nuclear material detection within 
a given scenario. 

Sandia National Laboratories remains dedicated to the support and development of QUEST. Work is underway to 
develop operational extensions to QUEST allowing for integration of both simulated and real-world searcher inputs. 
In addition, Sandia envisions a wide range of future applications for this simulation technology in areas as diverse as 
environmental monitoring, nuclear facilities inspections, and searcher training applications. 
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APPENDIX A: S O ~ A R E  INSTALLATION 

QUEST v2.01 is a Microsoft Win32 (Windows 95/98, Windows NT v3.51/4.0/5.0) application. The following lists 
both minimum and recommended system requirements for running the PC version of QUEST. 

Minimum Requirements Recommended System 
Intel Pentium 100 MHz system with Microsoft 

24 MBytes of system memory. 
VGA Video controller and monitor (640x480 

Hard drive with -50 MBytes free space. 

Dual Intel Pentium I1 (266 MHz) system with 

36 MBytes of system memory. 
OpenGL accelerated video card (e.g. Integraph) 

Hard drive with 100 MBytes free space. 

Windows. Microsoft Windows NT v4.0. 

resolution). and monitor (800x600 resultion). 

QUEST is distributed as a single PC zip archive. To install the application, create a clean parent directory on the 
target machine (e.g. 'IC : \Quest2Ol"), and extract the archive into that directory-remembering to include the "4' 
archive switch to create subdirectories. The application is divided into a number of directories. Prior to starting 
QUEST the host computer must have ODBC libraries installed. To determine if the ODBC drivers are already on 
the target machine, check the Windows Control Panel. If the ODBC manager is not present, the appropriate drivers 
can be installed by executing ODBC setup, "cparent>\Program\Odc\setup. exe". In addition, QUEST 
requires the presence of the graphics display library OpenGL. OpenGL is an integral part of Microsoft Windows 
NT, and hence NT users can use QUEST directly. Windows 95 users must move the OpenGL software library from 
"<parent> \ Program\Libraries \Open9132 . dl 1" to the application program directory, "<parent> \ 
Program\". Finally, the QUEST application is started by selecting the primary executable "<parent>\Program 
\QUEST. exe". 

QUEST enforces an application directory structure, as well as the consistent use of case insensitive names and the IS0 
8.3 compliant file naming convention. Assume QUEST will be stored in some parent directory, the name of which is 
unimportant, call it "Quest". Then the QUEST directory structure will be maintained beneath "Quest" as follows: 

Quest \ 
Quest\Bkground 
Quest\Database 
Quest\Detector 
Quest\Dxf s 
Quest \Material 
Quest\Path 
Quest\Program 
Quest\Program\Libraries 
Quest\Program\Odbc 
Quest\Reports 
Quest\Scenario 
Quest \ Source 
Quest \Spectrum 
Quest\Struct 

Parent directory (name unimportant). 
Background objects (* . bkg). 
Read-only databases used by the TP and GUI. 
Detectors objects (* . dtc). 
Original AutoCAD structure input files ( * . d x f ) .  
Material databases (* .mdb). 
Active object paths (* .pth, * .wtk). 
QUEST application program files. 
Additional program libraries required on certain platforms. 
Microsoft ODBC installation files. 
Generated output reports (* . txt, etc.). 
Scenario configuration files (* . scn). 
Sources objects (* . src). 
Run-time output files (* . dat, * . otp). 
Structureinput fiies(*.qsf, *.str). 

It should be noted that QUEST is computationally intensive, and will benefit by being run on a multiprocessor PC, 
and systems with an OpenGL graphics accelerator. 

- I  
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Structure Files 
QUEST includes a number of structures, both in DXF and QUEST specific QSF formats for use in search 
simulations. The following listing details the name of each structure, its description, and the structure’s relative 
graphics complexity specified in number of polygons. 

Name Description #Polygons 
Apartment: first of four structures that make up a multi-story apartment buildinn. I28 apartl .str 

apart2.str 
apart3.str 
apart4.str 

apartmnt.str 
base920.str 

roof920 
gov-lstr 
gov-2.str 
hosptl I .str 
hosptl2.str 
hosptl3.str 
hosptl4.str 
hospital.str 
rhousel .str 
rhouse2.str 
rhouse3.str 
rhousestr 
officel .str 
office2.str 
office3.str 
officestr 

printerl .str 
printer2.str 
prin ter3 .str 
printerm 
shousel .stf 
shouse2.str 
shouse3.str 
shousestr 
wall I s t r  
cubestr 

- _  - 
Apartment: second of four structures that make up a multi-story apartment building 
Apartment: third of four structures that make up a multi-story apartment building 
Apartment: fourth of four structures that make up a multi-story apartment building 
Apartment: multi-story apartment building made up of structures apartl, apart2, apart3 and apart4. 
First floor of a government-style building without a roof. 
Roof for government-style building. Must be translated into place. 
Simple one-story government-style building with a roof made up of structures base920 and roof920. 
Two-story government-style building with two instances of structure base920 and one roof920. 
Hospital: first of four structures that make up a multi-story hospital building. 
Hospital: second of four structures that make up a multi-story hospital building 
Hospital: third of four structures that make up a multi-story hospital building 
Hospital: fourth of four structures that make up a multi-story hospital building 
Hospital: multi-story hospital building made up of structures hosptll , hosptl2, hosptl3 and hosptl4. 
RHouse: first of three structures that make up a multi-story roofed house. 
RHouse: second of three structures that make up a multi-story roofed house. 
RHouse: third of three structures that make up a multi-story roofed house. 
RHouse: multi-story roofed house made up of structures rhousel, rhouse2 and rhouse3. 
Office: first of three structures that make up a multi-story office building. 
Office: second of three structures that make up a multi-story office building. 
Office: third of three structures that make up a multi-story office building. 
Office: multi-story office building made up of structures officel, office2 and office3. 
Printer Building: first of three structures that make up a multi-story printer building (office building). 
Printer Building: second of three structures that make up a multi-story printer building. 
Printer Building: third of three structures that make up a multi-story printer building (office building). 
Printer Building: muli-story printer building composed of printerl, printer2 and printer3. 
Simple House: first of three structures that make up a simple multi-story house. 
Simple House: second of three structures that make up a simple multi-story house. 
Simple House: third of three structures that make up a simple multi-story house. 
Simple House: simple multi-story house made up of structures shousel, shouse2 and shouse3. 
Walll: single polygon representing a wall with a grid on both sides of the wall (used for testing). 
Cube: simple cube structure (used for testing). 
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APPENDIX B: STRUCTURE CREATION 

QUEST supports the input and manipulation of structure files specified in the three-dimensional (3D) AutoCAD DXF 
format. While a complete treatment of structure file creation using a Computer Aided Design (CAD) package is 
beyond the scope of this paper, this section details the creation of a simple example structure for use with QUEST. 
This example details use of Autodesk‘s AutoCAD LT v2.0 for Microsoft Windows 95/NT. However, QUEST input 
structures can be created with any CAD package supporting the 3D DXF file format. The completed drawing need 
only be saved as a Drawing Interchange File format (DxF) file; QUEST will only accept drawings made up of 
3DPOLYs and 3D faces. 

The DXF file format is an ASCII-character based file format that can be imported into and rendered by a wide 
variety of 3D graphics rendering programs. The data in DXF files can also be easily manipulated in application- 
specific ways. QUEST converts the drawing data in the DXF files to a format that is more suited to fast data access. 
These converted files are called QUEST Structure Files (QSF). The user need not worry about creating these QSF 
files as they are created by a conversion program within QUEST. 

QUEST’S 3D graphics interface is created through the use of the graphics programming library World ToolKit 
(WTK). WTK will only render “closed” 3D solid-fill polygons. And, by definition, a “closed” polygon is one that 
contains at least three unique points, the first and last of which must be connected by a line segment to close the 
polygon. All other AutoCAD drawing commands, including 2D lines (e.g. the LINE command in AutoCAD) are 
ignored and not graphically rendered by QUEST. 

<\c. 
Command: 3DPOLY 
.From point 7.5.0 
- Close/Undo/<Endpoint of line>: 

Figure B. 1 : Creating 3DPOLYs. 
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€3.1 CREATING A DXF FOR USE IN QUEST 

Creating structural drawings for QUEST is not difficult, but time consuming. We recommend that the person 
creating the drawings have at least a minimal working knowledge of AutoCAD and CAD drawing methods (refer to 
the AutoCAD User’s Guide and tutorials). 

The best way to start a new DXF file is to setup a prototype file. In the prototype setup the following: Grid Lines, 
Standard Units, Viewports, Layers, and Blocks. It should be noted that the command for 3DPOLY is not in a pull 
down menu selection and must be entered at the command line (see Figure B.l). In AutoCAD, the user will only see 
the outline of each polygon. When the polygons are rendered in QUEST’S 3D graphics the outlined polygons will be 
rendered as solid-filled polygons. 

Grid lines in AutoCAD assist the user in creating a drawing. They are not used in QUEST nor do they have any 
effect on the structural drawing (see “grid” in AutoCAD User’s Guide). The recommended unit to use in creating an 
AutoCAD structural drawing is “DECIMAL” (see UNITS command in AutoCAD User’s Guide). The recommended 
measure should be ENGLISH (see Setting the System of Measurement in AutoCAD User’s Guide) (Figure B.2). For 
example, 10.3 is ten feet and three tenths of a foot. It is not 10 feet and 3 inches. 

- File Edit Draw View Assist Construct Modifv Settinos Helo 

’Units 

0 Scientific 

@ Decimal 

0 Engineering 

0 Architectural 

0 Eractional 

I Precision: I 

Angles 

@ Decimal Degrees 

0 Deg&lin/Sec 

0 Grads 

0 Radians 

0 Surveyor 

Precision: 

0 f. - 

E7-J 

c;ommand: -preferences 
Command: ‘-ddrmodes 
Command: ‘-ddunits 

Figure B.2: Setting drawing units. 

Multiple viewports may be defined in AutoCAD. Viewports allow the user to set different viewing angles and 
different scales for each viewport. This will allow the user to see the drawing from an arbitrary prespective. Use 
layers to define different groups of objects (Figure B.3). For example, doors may be defined in one layer, on another 
layer interior walls may be defined. The user may assign different colors to each layer. By using layers and making 
some layers visible and others invisible, different levels of detail of the structure may be seen within the AutoCAD 
drawing. The color associated with the layer will be the color rendered in QUEST for the graphical objects drawn 
on that layer. 
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Current Layer: 0 

WINDOW-SMALL 
WINDOW-LARGE-EXT O n .  . white CONTINUOUS 

rFull  Color Palette 

Jmrnand ‘-ddlmodes 
Jmmand. ‘-ddlrnodes 
~mmand 

Figure B.3: Defining layers. 

m 

m 

-Select Block Name 

I EXWALLSECTION 1 

I specify Parameters on Screen I 

II . . . . . .. . . . . . 
ommand: 
ommand 
ommand: -ddinsert 

Figure B.4: Creating blocks. 
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Layers should be given names that associate it with the objects drawn on, those layers (see “layer” in AutoCAD 
User’s Guide). Examples of layer names include: DOOR-WOOD, for wooden doors; DOOR-METAL, for metal 
doors; WATLINT, for interior walls; FLOOR, for floors; and ROOF, for the roof. 

A BLOCK is a group of graphical entities (Figure B.4). In some buildings there may be many wall sections that are 
exactly alike. Instead of drawing each part of a wall section repeatedly, a BLOCK can be created to represent one 
section of the wall and inserted in different locations (translated and/or rotated) to create the building. BLOCKs may 
be inserted into other BLOCKs. Elementary components, which are individual polygons, and BLOCKs form the 
hierarchy of structural picking within QUEST for material assignments. 

For convenience sake, the front left bottom corner of the drawing of the building should be assigned the origin of the 
building ( X  = 0.0, Y = 0.0,Z = 0.0). The building can later be positioned in any location within QUEST’S structure 
layout. The drawing of the building must be laid out such that when viewing the building from the outside looking at 
what would be the front of the building, AutoCAD’s Universal Cbordinate System positive X axis is pointing to the 
right, the positive Y axis is pointing in the viewing direction away from the front of the building towards the back of 
the building and the positive Z axis is up (Figure B.5). 

A 

g 
ommand: Regenerating drawing. 
ommand: 

Figure B.5: Setting coordinate axis. 

B .2 DRAWING DETAIL AND LEVELS 

The drawing of a structure should be made as simple as possible. Walls should be represented as single planes (no 
thickness). Try to avoid making walls with real thickness (creating cubes). Wall thickness is represented in QUEST 
by material type and thickness assignments the user may set. Try to avoid adding “decorator” type features to the 
structural drawings. Because the 3D graphics of QUEST is dynamic, a large number of unnecessary polygons may 
cause QUEST’S 3D graphics rendering to appear slow or “choppy”. 
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When creating multi-floor structurai drawings, attempt to create a single DXF file for each floor of the building. 
QUEST’S 3D graphics favor buildings built in “levels”. A level should consist of a single floor of a building and all 
interior and exterior walls that make up that level of the building. Do not make a separate ceiling for the current 
level. The floor of the level above should represent the ceiling for the current level. Make a separate level for roofs. 
Building structural drawings in ‘‘levels’’ allows QUEST to remove levels or floors above the current level so the user 
may have a top-down view into the current level. It also prevents QUEST from needing to render the graphic of 
levels that are not currently visible. This floor culling allows QUEST to render the graphic scenes more quickly. If 
a building is made up of floors that are identical, the user may create one level in AutoCAD and insert and translate 
that one copy of the level to create a multi-floor building inside the QUEST application. 

When the structural drawing is completed or the user wants to quit AutoCAD, use the “File” pull down menu and 
select “Save As”. In the Save File As dialog box select “DXF (* .DXF)” in the type menu selection. Give the file a 
name and select OK. When the DXF file is to be opened for editing, use the “File” pull down menu and select 
“Open”. In the “Open File” dialog box choose “DXF (* . D X F ) ” ~  the List Files of Type menu selection and the list 
of DXF file will be made visible. Choose the file desired and select OK. 
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APPENDIX c: RAW BUILDING MATERIALS 

Breakdown 

Nothino 
Air 

Sand, dry 

Brick 

Gravel 

Description 

common, burned 
(Average) 

YZ granite and 95 limestone. 

For particular gravels, see 
Stone 

Chemical Makeup 

N 75.5 
0 23.2 
A I .3 

Si 46.7 
0 53.3 
0 48.0 
Si 30.4 
A1 10.1 
Fe 3.7 
K 2.2 
Mg 1.5 
Ca 1.4 
Na 0.7 
S 0.3 
0 48.0 
Si 18.4 
Ca 17.5 
C 5.2 
A1 4.2 
K 2.5 
Fe 1.8 
Na 1.2 
Mg 0.4 
Ti 0.1 
P 0.1 
Mn 0.1 
H 0.1 

Average 

Ash 

C 49.6 
0 43.2 
H 6.2 
N 0.9 

Balsa 
Beech 
Birch 
Cedar 
Cherry 
Elm 
Hickory 
Locust 
Maple 
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Density 
(gm/cm3> 

0 
0.0013 

1.3 

1.8-2.0 
(avg. 1.96) 

1.8 

0.75 
0.12 
0.80 
0.64 
0.53 
0.80 
0.57 
0.76 
0.69 
0.68 



Oak 
Pine 
Poplar 
Spruce 
Walnut 

Aluminum 
Brass, red 

Bronze, commercial 

CoDDer 
Iron, cast gray 

Nickel 
Stainless Steel 

Carbon Steel 

Tin-lead Solder 

Zinc 

M Limestone and YZ 
Granite Aggregate 

EC-0 

S30400 

G10400 

(Sn/Pb ratio varies) 

Type I cement + sand + M 
granite and M limestone 
gravel + water 

AI 99.45+ 
Cu 85 
Zn 15 
Cu 90 
Sn 10 
c u  99.94 
Fe 94 
C 3 
S 2 
Mn 0.65 
Ni 99.4 
Fe 68 
Cr 
Ni 
Mn 
Si 
C 
P 
S 

9 
0 
2 
0.75 
0.08 
0.04 
0.03 

Fe 99 
Mn 0.75 
C 0.4 
Sn 50 
Pb 50 
Zn 99.9+ 

Ca 46.8 
0 36.0 
Si 10.1 
AI 3.3 
Fe 1.8 
Mg 1.4 
S 0.7 
0 52.0 
Si 24.8 
Ca 14.0 
C 2.4 
A1 2.4 
K 1.2 
Fe 1.1 
H 1 .I 
Na 0.6 
Mg 0.4 

Pb 0.1- 

0.75 
0.55 
0.42 
0.59 
0.67 

8.75 

8.80 

8.96 
7.60 

8.89 
8.0 

8.0 

8.85 

7.1 

3.1 

2.4 
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Limestone Aggregate 

Granite Aggregate 

?h Limestone and % 
Granite Aggregate, 
reinforced 

Type I cement + sand + 
limestone gavel + water 

Type I cement + sand + 
granite gravel + water 

Type I cement + sand + ?h 
granite and ?h limestone 
gravel + water 
+ Steel reinforcement 

1 part Portland: 
3 parts Sand 

1 part Portland: 
1 part Hydrated lime: 
5 parts Sand 

U.S.A. 

0 51.8 
Si 17.7 
Ca 21.6 
C 4.9 
AI 0.9 
K 0.2 
Fe 1.1 
H 1.1 
Mg 0.5 
S 0.1 
0 52.3 
Si 31.8 
Ca 6.3 
AI 3.8 
K 2.1 
Fe 1.1 
H 1.1 
Na 1.1 
Mg 0.3 
S 0.1 
Ti 0.1 
0 49.0 
Si 23.4 
Ca 13.2 
Fe 6.7 
C 2.3 
A1 2.3 
K 1.1 
H 1 .o 
Na 0.6 
Mg 0.4 
S 0.1 
0 56.3 
Si 23.0 
Ca 15.6 
H 2.8 
A1 1.1 
Fe 0.6 
Mg 0.5 
S 0.2 
0 53.9 
Si 25.2 
Ca 14.2 
Mn 2.5 
H 2.2 
A1 0.8 
Fe 0.4 
Mg 0.3 
S 0.2 
0 40.3 
Ca 32.5 
Mn 24.7 
H 2.5 

2.4 

2.4 

2.4 

2.2 

2.3 

1.4 
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0 48.6 
Si 33.7 
A1 7.3 
K 4.5 
Na 2.3 
Fe 1.9 
Ca 1.0 
Mg 0.3 
Ti 0.2 
P 0.1 

2.7 Stone Granite 

H 0.1 
0 47.5 Limestone 2.2 Average 
Ca 34.0 
C 10.5 
Si 3.2 
Fe 1.8 
AI 1.1 
Mg 0.6 
K 0.5 
Mn 0.1 
Na 0.1 
H 0.1 
P 0.1 
0 47.3 Marble 2.7 
Ca 39.3 
C 11.7 
Mg 0.3 
A1 0.1 
0 49.7 
Si 28.0 
A1 8.8 
Fe 4.6 
K 2.9 
Mg 1.6 
Ca 1.6 
Na 1.3 
C 0.6 
Ti 0.5 
H 0.5 

0 88.8 
H 11.2 
0 88.8 

Slate, Shales, and 
Clays 

2.7-2.8 Average 

~~ 

water 4c 1 .o Fresh Water 

Ice 0.92 

0.13 
H 11.2 
0 88.8 Snow 
H 11.2 

C 85.6 
H 14.4 
Cl 56.7 
C 38.4 

Pol ye thylene rc2H41n 0.9 Plastics 

Polyvinyl Chloride PVC: [C2H3ClIn 

EC3H61n 

1.4 

H 4.8 
C 85.6 

~ 

0.9 Polypropylene 
H 14.4 
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Glass fiber 

Polyurethane foam 

Expanded Perlite 

Gypsum, Stucco 

Glass Window 

Paper 

0 46.4 
Si 33.6 
Na 10.4 
Ca 5.7 
Mg 2.4 
A1 0.5 
C 55.8 
C1 20.4 
0 13.4 
H 8.4 
N 2.0 
0 53.8 
Si 35.0 
AI 10.6 
H 0.6 

0 55.8 
Ca 23.3 
S 18.6 
H 2.3 
0 46.4 
Si 33.6 
Na 10.4 
Ca 5.7 
Mg 2.4 
AI 0.5 
0 49 
c 4 4  
H 6 

0.02 

0.04 

0.16 

2.3 

2.5 

0.92 
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APPENDIX D: COMPONENT MATERIALS 

I Description Makeup I Breakdown 
Special Type 

Interior Wall Residential 2 x %" Gypsum board 
2 x 4 Pine studs every 16" 
1 %'I Steel nails 8" apart 

Residential Pipe 

Concrete Block --I--- 

Above + 2 Copper and 1 
PVC Pipes + 2 Copper 
Electrical Wires 

2 x 34'' Gypsum board 
2 x 4 Pine studs every 16" 
1%'' Steel nails 8" apart 
2 x 2" Cu pipes (Type L) 
1 x 4" PVC pipe 
2 x 12 gauge Cu wires 

7 I' Lightweight concrete blocks Concrete block with steel 

(95 granite and '/2 limestone aggregate) 
6", 9 gauge Stainless steel ties every 
16" 

Chemical Density Thickness 
Makeup (gm/cm3) (inches) 

0 54.7 
Ca 21.5 
S 17.2 
C 3.9 
H 2.5 
0 52.4 
Ca 20.5 
S 16.5 
C 4.2 
Cu 3.2 
H 2.4 
C1 0.8 
0 52.0 
Si 24.8 
Ca 14.0 
C 2.4 
A1 2.4 
K 1.2 
Fe 1.1 
H 1 . 1  
Na 0.6 
Mg 0.4 

0.56 4.5 

0.58 4.5 

0.76 7.6 

S 0.1 I I 

I I 
I I 
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Concrete Block and I Above + 2 Gypsum wall 

Reinforced Concrete Concrete with steel 
reinforcement 

I i I 

Exterior Wall Residential Interior residential wall + 
, Wood exterior pine siding 

Residential Interior residential wall + 
, Wood 
, Insulation polyurethane foam 

exterior pine siding c 

insulation 

r 

~ ~~~ 

7 'I Lightweight concrete blocks 
(% granite and % limestone aggregate) 
6", 9 gauge Stainless steel ties every 
16" 
2 x 9'2' Gypsum wallboards 

7 Reinforced concrete (% granite 
and '/z limestone aggregate with steel 
reinforcement) 

2 x %" Gypsum board 
2 x 4 Pine studs every 16" 
1%" Steel nails 8" apart 
W Pine siding 

2 x 1/21' Gypsum board 
2 x 4 Pine studs every 16" 
1%" Steel nails 8" apart 
,/I' Pine siding 
2" Polyurethane foam 

0 53.1 
Si 17.7 
Ca 16.6 
S 5.4 
C 1.7 
AI 1.7 
H 1.4 
K 0.9 
Fe 0.8 
Na 0.4 
Mg 0.3 
0 49.0 
Si 23.4 
Ca 13.2 
Fe 6.7 
C 2.3 
A1 2.3 
K 1 . 1  
H 1 .o 
Na 0.6 
Mg 0.4 
S 0.1 

0 53.5 
Ca 19.4 
S 15.5 
C 8.5 
H 2.8 
N 0.1 
0 52.4 
Ca 18.9 
S 15.1 
C 9.8 
H 3.0 
c1 0.6 
N 0.2 

0.94 

2.4 

0.55 

0.57 

8.6 

7 %  

5 

5 
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, Brick 

, stucco 

Concrete Block 
, Brick 

Exterior brick layer 

Exterior stucco layer 

Lightweight concrete 
blocks + Brick 

3g I' Brick and Type N Mortar 
2 x ,/,,, Gypsum board 
2 x 4 Pine studs every 16" 
1%" Steel nails 8" apart 
W Plywood siding 
Steel ties 

1 vi1' stucco 
2 x W' Gypsum board 
2 x 4 Pine studs every 16" 
1%'' Steel nails 8" apart 

3 %" Brick, type N mortar 
7 I' Lightweight concrete blocks 
(Yi granite and '/z limestone aggregate) 
9", 9 gauge, Stainless steel ties every 
16" 
5" x 5" x %" Steel angle 

0 50.3 
Si 21.2 
Ca 8.0 
AI 6.1 
S 4.6 
C 2.4 
Fe 2.3 
H 1.1 
K 0.7 
Na 0.4 
Mg 0.3 
Mn 0.3 
0 55.4 
Ca 22.5 
S 18.0 
H 2.4 
C 1.7 

0 50.2 
Si 27.3 
Ca 8.2 
AI 5.8 
Fe 2.3 
K 1.5 
C 1.1 
Mg 0.9 
H 0.7 
Na 0.6 
S 0.2 
Mn 0.2 

1.1  

0.96 

0.92 

9.1 

5.9 

14 
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I Y 

, Granite 

, stucco 

Concrete 

c 

3" Granite veneer 
7 If Lightweight concrete blocks 
(!h granite and !h limestone aggregate) 
9", 9 gauge, Stainless steel twisted 
dovetail anchors every 2 ft2 

1 'I stucco 

7 'I Lightweight concrete blocks 
(!h granite and !h limestone aggregate) 
9", 9 gauge, Stainless steel twisted 
dovetail anchors every 2 ft2 
2" Polyurethane foam insulation 

4" Thick Concrete (95 granite and 6 
limestone aggregate) 

4 

0 50.8 
Si 29.0 
Ca 7.7 
AI 4.7 
K 2.7 
Fe I .5 
Na 1.4 
C 0.9 
H 0.8 
Mg 0.4 
S 0. I 
Ti 0. I 
P 0.1 
0 53.4 
Ca 17.8 
Si 14.1 
S 8 .O 
C 1.8 
H 1.6 
AI 1.4 
K 0.7 
Fe 0.6 
Na 0.3 
Mg 0.2 
c1 0.2 

0 52.0 
Si 24.8 
Ca 14.0 
C 2.4 
AI 2.4 
K I .2 
Fe 1.1 
H 1 . 1  
Na 0.6 
Mg 0.4 
S 0. I 
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Window 

Concrete and Wood 

Wood Floor over 
Gypsum ceiling 

Glass, Single pane 
, Wood frame 

, Double pane . Wood frame 

Double hung 

Double hung with double 
pane glass 

4" Thick Concrete (% granite and % 
limestone aggregate) 
%" Plywood 
%" Oak 

95" Gypsum board 
2x8 Wood joists every 16" 
W Oak strips 
%" Plywood 

2 x (%"x2'x3') Window glass 
2 x (2x4)'s Pine 
Wood sill: I .5" x 4.5" x 3' (Pine) 
2 x frames: 47.3 in3 

4 x (*/4"x2'~3') Window glass 
2 x (2x4)'s (Pine) 
Wood sill: 1.5" x 4.5" x 3' (Pine) 
2 x frames: 47.3 in3 (Pine) 
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0 51.2 
Si 22.7 
Ca 12.8 
C 6.5 
AI 2.2 
H 1 .5 
K 1.1 
Fe I .o 
Na 0.5 
Mg 0.4 
S 0.1 
N 0.1 
0 49.4 
C 25,l 
Ca 11.5 
S 9.2 
H 4.3 
N 0.5 

0 45.7 
Si 26.6 
c 10.3 
Na 8.2 
Ca 4.5 
Mg 1.9 
H 1.3 
AI 0.4 
N 0.2 
0 46.0 
Si 29.7 
Na 9.2 
C 5.7 
Ca 5.0 
Mg 2.1 
H 0.7 
A1 0.4 
N 0.1 

1.9 

0.27 

0.14 

0.26 

_c__ 

5.5 

8% 

4.5 

4.5 



, Single pane 
, AI frame 

, Double pane 
, AI frame 

I 
Door I Wood 

, Solid 

, Hollow 

1 Steel 

I P II 

Sliding glass window 2 x (5/4"~2'x2.5') Window glass 
AI sill: 4.4" x 5' x x2 11 

2 x A1 frames: 5 I .8 in' each 
AI tracks: 2 x (1  I' x 5' x x 2  ") 

AI border: 25.8 in' 
4 x (%"x2'x2.5') Window glass 
AI sill: 5.9" x 5' x %2 $ 8  

2 x AI frames: 5 1.8 in' each 
AI tracks: 2 x (2.5" x x 2  " x 5 ' )  
AI border: 25.8 in' 

6'10' x 2'8" x 1%" Oak 
3 Brass hinges and screws 
Brass and Steel door knob and lock 

Sliding glass window with 
double pane glass 

Solid oak door 

Oak veneer door 1/16" oak veneer 
3 Brass hinges and screws 
Brass and Steel door knob and lock 
Wood honey-comb core . 

0.0598" Steel exterior 
3 Steel hinges and screws 
Steel door knob and lock 
Polyurethane core 

AI 31.8 
0 31.6 
Si 22.9 
Na 7.1 
ca 3.9 
Mg 1.6 

0 36.1 
Si 26.1 
AI 22.6 
Na 8.1 
Ca 4.4 
Mg 1.9 

C 48.5 
0 42.2 
H 6.1 
Cu 1.7 
N 0.9 
Zn 0.3 
Fe 0.2 
C 36.5 
0 31.8 
Cu 20.8 
H 4.6 
Zn 3.7 
Fe 2.0 
N 0.7 
Fe 93.6 
C 3.4 
C1 1.1 
0 0.7 
Mn 0.7 
H 0.5 
N 0.1 

0.21 

0.27 

0.77 

0.14 

0.66 

4.4 

5.9 

1% 

1% 

1% 
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APPENDIX E: RADIONUCLIDE LIBRARY 

QUEST includes an electronic version of the Erdtmann-Soyka gamma-ray library (1979). This library was compiled 
from the original source, with all of the radioactive nuclides and gamma rays based on the old “Blue Book” 
compilation. We have added the stable nuclides, neutron cross sections, and parent-daughter branching ratios for the 
natural decay chains of 238U, ”U, 232Th, and some of the fission products. The relational database, contained in 
“Quest\Database\quest .mdb” is in Microsoft Access format, and consists of two tables: “Nuclides” and 
“Gammas”. These tables are described in more detail below. Fields currently unused in QUEST are highlighted 
gray 

iZA 
Energy Photon energy (keV). 

(Z x lo4) + isotope (A) + metastable flags [m (300), n (O), a (900), b (1200), c (15OO)I. 

relative intensity, X-ray, unresolved doublet, complex line, weak line, uncertain 
transition, less-than. 

Table E. I : A portion of the Gammas table, together with field explanations. 

Ne-20 100020 
Ne-21 lOOO2l_ __ -- _ _  _I 

Ne-24- j00024 202.8 0 0 0 -  

” __. Ne-?? “?!00= _ _ _  - 
Ne23 100023 38 0 0 0  

Isotope 
izA 
Hlife Half-life (seconds). 

Isotope name: atomic symbol and Z. 
(2 x lo4) + isotope (A) + metastable flags [m (300), n (600), a (goo), b (1200), c (1500)l. 
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iP1 
iP2 

iZA of Erst p n t  (currently unused). 
iZA of second parent (currently unused). 

iD 1 
BR 1 
iD2 iZA of second daughter. 
BR2 
iD3 iZA of third daughter. 
BR3 
ABUND Natural abundance. 

i l l 1  first daughter branching ratio. 

iD2 second daughter branching ratio. 

iD3 third daughter branching ratio. 

Table E.2: A portion of the Nuclides table, together with field explanations. 
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1 
1 
1 
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MS 0451 
MS 0571 
MS 0571 
MS 0744 
MS 0759 
MS 0767 
MS 0769 
MS 0970 
MS 1131 
MS 1165 
MS 1207 
MS 9103 
MS 9201 
MS 9201 
MS 9201 
MS 9201 
MS 9201 
MS 9214 
MS 9214 
MS 9405 
MS 9405 
MS 9409 
MS 9420 

MS 0161 
MS 0899 
MS 9018 
MS 9021 
MS 9021 

R. E. Trellue 
D. J. Allen 
D. R. Waymire 
R. G. Cox 
M. K. Snell 
R. K. Wilson 
D. S .  Miyoshi 
J. R. Kelsey 
M. B. Sandoval 
J. Polito 
R. W. Moya 
G. A. Thomas 
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M. E. Goldsby 
M. M. Johnson 
T. H. West 
L. M. Napolitano 
T. D. Plantenga 
J. M. Hruby 
R. B. James 
T. L. Porter 
W. B. Wilcox 

8000 
2200 
5200 
8100 
8200 
8300 
8400 
8500 
8600 
8700 
8800 
8900 

6238 
5914 
5914 
6412 
5845 
5135 
5800 
5700 
5849 
9300 
5908 
8120 
8112 
8114 
81 14 
81 14 
8114 
8130 
8950 
8230 
8230 
8260 
8220 
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