
I c

SANDIA REPORT
SAND98-8225 UC-405
Unlimited Release
Printed January 1998

Quantify Uncertain Emergency Search
Techniques (QUEST)-Theory and
User’s Guide

M. M. Johnson, M. E. Goldsby, T. D. Plantenga, T. L. Porter, T. H. West, W. 9. Wilcox, and
W. K. Hensley

.

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those
of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
OBtice of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A07
Microfiche copy: A01

SAND98-8225
Unlimited Release

Printed January 1998

Distribution
Category UC-405

Quantify Uncertain Emergency Search Techniques
(QUEST)-Theory and User's Guide

Michael M. Johnson', Michael E. Goldsby, Todd D. Plantenga, Terry L. Porter,
Todd H. West, and William B. Wilcox

Systems Studies Department
Sandia National Laboratories
Livermore, California 94550

Walter K. Hensley
Nuclear Chemistry Section

Pacific Northwest National Laboratory
Richland, Washington 99352

ABSTRACT

As recent world events show, criminal and terrorist access to nuclear materials is a growing national concern. The
national laboratories are taking the lead in developing technologies to counter these potential threats to our national
security. Sandia National Laboratories, with support from Pacific Northwest National Laboratory and the Bechtel
Nevada, Remote Sensing Laboratory, has developed QUEST (a model to Quantify Uncertain Emergency Search
Techniques), to enhance the performance of organizations in the search for lost or stolen nuclear material. In
addition, QUEST supports a wide range of other applications, such as environmental monitoring, nuclear facilities
inspections, and searcher training.

QUEST simulates the search for nuclear materials and calculates detector response for various source types and
locations. The probability of detecting a radioactive source during a search is a function of many different variables,
including source type, search location and structure geometry (including shielding), search dynamics (path and
speed), and detector type and size. Through calculation of dynamic detector response, QUEST makes possible
quantitative comparisons of various sensor technologies and search patterns. The QUEST model can be used as a
tool to examine the impact of new detector technologies, explore alternative search concepts, and provide interactive
searchlinspector training.

email: mmjohns@ca.sandia.gov

STER

mailto:mmjohns@ca.sandia.gov

ACKNOWLEDGEMENTS

The authors wish to thank T. Dahlstrom and R. Hansen of the Bechtel Nevada, Remote Sensing Laboratory for
sharing their time and expertise throughout the development of QUEST. In addition to the paper's listed authors, our
thanks go also to the many Sandians who contributed to QUEST'S outcome, in particular C. A. Flores, K. J.
Nisewaner, G. W. Richter, and T. J. Sa. We also acknowledge support by the Department of Energy through Sandia
National Laboratories. Sandia is a multiprogam laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

QUEST v l was developed by Sandia National Laboratories.
Copyright 0 Sandia Corporation 1995-1998. All rights reserved.

QUEST vl is a Sandia National Laboratories copyrighted software. You are legally liable for any unauthorized use
of this software. If you are interested in obtaining a license for this software, please contact C. V. Subramanian,

Manager of Licensing at Sandia National Laboratories by calling 5 10/294-23 1 1.

Peak-to-Compton ratios as well as multiple Compton regions were calculated using models developed by
Hensley, et ai., as published in "SYNTH, A Computer Code to Generate Synthetic Gamma Ray Spectra",

Pacific Northwest National Laboratory, 1994.

Data for calculating the mass attenuation coefficients of absorber materials were taken from the "Radiological Health
Handbook, published by U.S. Department of Health Education and Welfare.

Efficiency curves for Germanium detectors are calculated using algorithms developed by Gunnink and Prindle, as
published in "Nonconventional Methods for Accurately Calibrating Germanium Detectors", UCRL-JC- 105283,

Lawrence Livermore National Laboratory, 199 1.

Spectral peak shapes were calculated using models developed by Gunnink and Niday, and published in
"Computerized Quantitative Analysis by Gamma Ray Spectrometry, Volume 1, Description of the GAMMANAL

Pro,gam", UCRL-5 106 1, Lawrence Livermore National Laboratory, 1972.

The shape of the Compton continuum was generated using the algorithms of Kopecky, Ratynski, and Warming, as
published in "Curves for the Response of a Ge(Li) Detector to Gamma Rays up to 1 1 MeV" NIM, 50:333.

Master Library used with permission granted to the author by
Gerhard Erdtmann, Werner Soyka
Forschungszentrum Juelich GmbH

Zentralabteilung fuer Chemische Analysen
Postfach 19 13 - D-5 170 Juelich

Verlag Chemie
Postfach 1260/1280 - D-6940 Weinheim.

Other gamma-ray libraries and nuclear data used with permission of their respective authors.

QUEST utilizes the commercial graphics library World ToolKitTM. World ToolKit is a registered
Trademark of Sense8 Corporation, Mill Valley, CA 4 15/33 1-63 1 8.

- I

4

DISCLAIMER

Portions of this document may be illegible
electronic image products. Images are
produced from the best available original
document.

.
CONTENTS

1
2

Introduction ... 7
User's Guide .. 9
2.1 Scenario Definition Mode .. 10

2.1.1 Structures .. 11
2.1.2 Sources .. 16
2.1.3 Path Definition .. 20
2.1.4 Detectors ... 21
2.1.5 Background ... 29

2.2 Simulation Mode .. 30
2.2. I Simulation Control .. 30
2.2.2 Performance Tuning .. 31

2.3 Analysis Mode .. 33
3 Theory .. 36

3.1

3.2

3.3

3.4
3.5

3 -6
3.7

3.8

The Physics of Gamma Ray Scattering .. 36
3.1 . 1 Attenuation Effects ... 39
Transport Physics ... 42
3.2.1 Algorithm Overview ... 42
3.2.2 Software Design Overview ... 43
3.2.3 Accounting for Source and Detector Motion .. 44
3.2.4 Calculating Losses Between Source and Detector .. 45
3.2.5 Modeling Detector Physics ... 49
3.2.6 Modeling Detector Signal Processing ... 54
Material Database .. 56
3.3.1 Total Thickness ... 56
3.3.2 Density .. 57
3.3.3 Elemental Composition ... 57
Background Radiation .. 59
Component Database .. 62
3.5.1 Binary Space Partition Tree .. 63
3.5.2
Interprocess Communication .. 80
Graphics Rendering Engine .. 84
3.7.1 Structures .. 85

3.7.3 Structural Component Picking .. 89
3.7.4 Lighting ... 90

Structural Component Grouping ... 78

3.7.2 Path Specification ... 88

Graphical User Interface .. 92
4 A Comparison of Measured and Synthetic Response Functions .. 95

4.1 Comparison of Spectra ... 95
4.2 Comparison of Algorithm Responses ... 98

5 Summary .. 101

References ... 102
Bibliography .. 104

Appendix A: Software Installation .. 108

Appendix C: Raw Building Materials ... 115
Appendix D: Component Materials ... 120
Appendix E: Radionuclide Library ... 126

Appendix B: Structure Creation .. 110

5

Intentionally Left Blank

6

1 INTRODUCTION

There are many challenges associated with the search for nuclear material (Figure 1.1). The probability of detecting
a radiological source is a function of many different variables. Moreover, probabilities of detection (PD) are
unknown quantities; while the probability of detection is assumed to be high based on known detection ranges for an
unshielded source, no quantitative estimates are available. Search requirements are often based on experience and
intuition. Typical questions for which a quantitative analysis is necessary include:

0

0

For a given source, structure, search pattern, and detector, what is the probability of detection? If no
detector signal is received and PD is 0.95, the searcher could continue somewhere else. If no detector
signal is received and PD is 0.45, perhaps the structure should be searched more thoroughly, or new
detector technologies pursued.

For a given source, structure, and detector, what is the optimum way to search? If searching both sides of a
hallway increases PD from 0.45 to 0.9, then it would be worthwhile. If, on the other hand, searching both
sides of the hallway increases PD from 0.95 to 0.97, then it is probably not worth expending the extra
search time.

What are the payoffs from new technologies and designs? If doubling the detector area increases PD from
0.45 to 0.9, then it is worthwhile investigating lighter detectors. If doubling detector area increases PD
from 0.45 to 0.5, then it is not worthwhile to investigate lighter detectors.

QUEST
process.

provides a tool to answer these questions and others like them by simulating all aspects of the search
QUEST provides the ability to Cali up computer models of many different building types in which a nuclear

device may be concealed. These structures can be developed using any one of many different Computer Aided
Design (CAD) packages. Once a structure has been
developed, the user can import the building design into
the QUEST search simulation. The primary QUEST
window. displays the first-person, three-dimensional
(3D) point-of-view (POV) of the searcher (see Figure
2.7). A second window in the upper corner of the
display shows the two-dimensional floor plan. The
user then specifies the characteristics of the nuclear
material source (for example, a nuclear weapon or
radiation dispersal device) within the floor plan and
selects a detector model (such as a hand-held radiation
sensor). Once the simulation begins, the user can
move throughout the simulated environment, analyzing
the calculated detector response.

QUEST is also capable of synthesizing the results of
typical gamma-ray spectroscopy experiments.
Specifically, QUEST allows a user to specify physical
characteristics of a gamma-ray source, the quantity of

Figure 1.1 : The search for nuclear material.

the nuclides producing radiation, the structure and type of absorbers, the size and composition of the detector (Ge or
NaI), the electronic setup used to gather the data, and background terms associated with the simulation. In the
process of specifying the parameters needed to synthesize a spectrum, several interesting intermediate results are
produced, including a photopeak transmission as a function of energy, a detector efficiency curve, and a weighted list
of gamma and x-rays produced from a set of nuclides. All of these intermediate results are made available to the
user.

QUEST is a multithreaded application that runs on UNIX workstations and PC compatible computers, including
multiprocessor servers and portable computer systems. QUEST contains robust support for germanium detectors,

7

and support for specific sodium iodide detectors. Spectra generated with QUEST have been compared to spectra
obtained from National Institute for Standards and Technology (NIST) certified standards with very favorable
results. A discussion of the use of QUEST, together with the theory behind its design and implementation, is
presented.

- I

8

2 USER’S GUIDE

The QUEST application is divided into three distinct modes of operation: Scenario Definition, Simulation, and
Analysis. Scenario Definition mode allows the user to specify all the components necessary to perform a search
simulation (e.g. structure specification, source and detectors, etc.). Simulation mode executes the actual search
simulation utilizing the user-specified scenario. And finally, Analysis mode allows the user to step back through data
history files collected during a previous simulation run in order to perform more detailed analysis. The following
three subsections describe the user interface and functionality of these three modes of operation.

Figure 2.1 : QUEST application start-up.

When QUEST is first started a number of windows appear (Figure 2.1). These include the QUEST copyright
window, the primary user interface window encompassing the six control buttons, two three-dimensional display
windows that are initially blue, and the QUEST sign-on animation window. Once the opening animation sequence is
complete, and the QUEST copyright window has been closed, the user may begin interacting with the user interface
controls.

9

Scenario Database Analysis Help

1 Quantify Uncertain €mergency Search Techniques
Sandia National Laboratories

Incomplete Incomplete fncomplete Incomplete Not Ready Not Ready

I 11 5y -
Structure($) Source(s) Detector@) Background Simulation Analpis

__-- Open Structure Configuration Window

Figure 2.2: QUEST primary window.

The primary Graphical User Interface (GUI) is a single windowpane comprising several drop down menus, and a
series of buttons (Figure 2.2). The drop down menus control storage and retrieval of Scenario definitions (Scenario),
specification of a radiological database (Database), selection of output from a previous simulation run for analysis
(Analysis), and selection of application information screens (Help). The series of buttons provide access to the three
modes of operation. Scenario Definition is comprised of Structure(s), Source(s), Detector(s) and Backsound
specification. When QUEST is first started, each of these subcomponents is not yet complete, and so each bears the
label “Incomplete”. In turn, as each of these Scenario subcomponents is completed, the labels change to
“Complete”. In a like fashion, the labels above the Simulation and Analysis mode buttons will change from “Not
Ready” to “Ready” as each of the previous subsections are completed. Simulation mode becomes “Ready” when a
Scenario has been completely defined (Le. all four components, Structure(s), Source(s), Detector(s), and Background
have been defined). Analysis mode becomes “Ready” when a simulation run has been completed, and there is
simulation data to be analyzed.

Throughout QUEST, object specifications and generated data are stored to computer disk files according to a
predetermined directory structure. The imposed directory structure ensures that all object data files are interpreted
appropriately at run-time, eliminating a great deal of run-time object checking from the application. While this
restriction will be eliminated in future releases of the application, its presence in the initial version of QUEST serves
to simplify component object organization and access. Hence, all QUEST objects are saved and retrieved from
predetermined subdirectories, the locations for which are always fixed relative to the parent directory of the QUEST
application. For example, when operating within the QUEST environment, the user is always assured of finding all
defined source specifications in the source subdirectory. For a more detailed treatment of the QUEST directory
structure see Appendix A: Software Installation.

2.1 SCENARIO DEFINITION MODE

A Scenario encompasses all of the parameters required to execute a search simulation, and is comprised of the
following:

Structure Layout
Structure Definition
Material Database
Component Grouping & Material Assignment

Source Definition

10

Physical Composition
Radioisotope Specification

Detector Type & Material Specification
Electronics
Algorithms

Detector Definition

Background Definition

Under this organization, like parameters are grouped in a natural order. For instance, all the parameters related to
the detector specification are together. Each of the four primary subsections, Structure Layout, Source Definition,
Detector Definitions, and Background, is accessed through its corresponding button in the QUEST Primary window
(Figure 2.2). This grouping makes it convenient for QUEST to display information that is traditionally computed,
such as a photon transmission curve or a detector efficiency curve.

The title bar of the Primary window displays the version number of QUEST being executed, as well as the name of
the current scenario. If a scenario has not yet been defined, the scenario name is listed as “Unknown”. The Scenario
pull-down menu provides for the creation of a new scenario, “New”, or file manipulation of completed scenarios
through the ‘‘Load, “Save”, and “Save As” choices. In addition, the Scenario pull-down menu contains the “Exit”
menu choice for quitting the QUEST application all together. The Database pull-down menu provides access to the
database manipulation routines. QUEST VI does not support direct manipulation of the gamma-ray or nuclides
databases. However, the user may modify the database outside of the application (see Appendix E: Radionuclide
Library). The Analysis pull-down menu allows the user to jump immediately to the Analysis Mode in order to
analyze results stored from a previous simulation run (see Section 2.3: Analysis Mode). Finally, the Help pull-down
menu provides user access to application information screens including the About QUEST, QUEST Credits, and
QUEST Disclaimer.

The following five subsections discuss the development of a QUEST scenario through use of the first four buttons on
the primary QUEST window. Once defined or loaded, scenarios can be directly run through the Simulation panel
button, and/or saved to disk file for later execution.

2.1.1 STRUCTURES

With a click of the Structure(s) button, the Structure Configuration window appears (Figure 2.3). Though the
Structure Configuration window, the user may load and convert structure files stored on disk in either three-
dimensional DXF (AutoDesk 1990) or VRML VI (Bell et al. 1995) compliant QUEST Structure File (QSF) formats.

A library of structure files is included with QUEST. Appendix A (Software Installation) details these structures,
their file names, and approximate display complexity specified as the number of polygons used to render them. The
provided structure library includes simple structures for use in quick “what-if’ comparison studies, as well as
enhanced models demonstrating structure detail such as door casings. AI1 structure library models are provided in
both original 3D DXF and QSF file formats. The original 3D DXF structure library models can be used with a
commercial CAD package as starting-points in the development of additional models. For a detailed treatment of
structure file creation using a third-party CAD application refer to Appendix B: Structure Creation Guide.

The three buttons located on the Structure Configuration window provide access to the three subcomponents that
must be defined for each structure. As with the QUEST Primay window, a label above each button indicates the
status of the definition for that subsection. Once a subsection has been defined, the label changes from “Incomplete”
to “Complete”. Once all three subsections are complete, structure definition is complete.

11

I Structure

In co rnp I ete In co m p I ete In corn pl ete I

Figure 2.3: Structure configuration window.

Structure Definition
Selection of the Structure(s) button from the Structure Configuration window brings up the Structure Definition
window (Figure 2.4). The three pull down menus of the Structure Definition window provide access to unit measure
specification and CAD file conversion routines. The Window pull-down menu provides the option of closing the
Structure Definition window. Units provides the unit measure choices for the application. All QUEST vl structure
files are manipulated in units of feet. And finally, Convert accesses the 3D DXF CAD file conversion routines.

To convert a 3D DXF CAD file, select the Convert pull-down menu from the Structure Definition window. A list of
available files is presented. Once selected, the 3D DXF CAD file is converted into QUEST’S internal QSF structure
format and displayed for review in the 3D graphics window. In order to reduce the complexity in merging multiple
CAD file specifications, 3D DXF CAD files must be converted into QSF files one-at-a-time.

Structure definition involves the grouping of structure components into a hierarchy. To support this, the Structure
Definition windowpane is divided into two halves. The left-hand side of the screen provides user access to structure
file manipulation routines, including translations and rotations of substructure components. The right-hand side of
the screen displays the current hierarchy of substructure components associated with the current structure definition
session. The Structure Name pull-down list-box provides access to all available QSF structure file components.
Once selected under Structure Name, a structure’s description is displayed for review in the Structure Description
scroll window. The substructure component can then be placed into the current scenario by highlighting the desired
position in the structure hierarchy display on the right-hand side of the screen, and pressing Znsert New Structure.
Likewise, a structure subcomponent can be removed from the hierarchy by highlighting it and pressing Remove
Structure.

- 1

12

. I - I

Window Units Convert

build921
Structure Name:

Structure De sc ripti an:

Insert New Structure Remove Structure

--government
--government
-821roof

degrees

Theta: (D.01
Rotate I

I v

1 4 1 b Translate

Structure Definition Window -___

Figure 2.4: Structure definition window.

At any time during the creation of a structure hierarchy, individual structures can be manipulated in the virtual
environment. QUEST vl supports translations and rotations. To translate a structure subcomponent, select the
structure component in the right-hand window, enter the translations values (X, Y, and Z), and then press Translate.
Likewise, to rotate a structure subcomponent, select the subcomponent, enter a rotation value in degrees (Theta), .and
press Rotate.

Material Database
Selection of the Material DB button from the Structure Configuration window brings up the Material Database
window (Figure 2.5). The three pull-down menus of the Material Database window provide access to material
manipulation routines. Specifically, the Database pull-down menu provides for the creation of a new material
database, “New”, or file manipulation of completed material databases through the “Load”, “Save”, and “Save As”
choices. In addition, the Database pull-down menu contains the “Close” menu choice for exiting the Material
Database window. The Material pull-down menu accesses the individual material Insert and Remove operations,
supporting the manipulation of material instances within the current material database. And finally, the Options pull-
down menu supports the toggle of the material transmission chart between a Linear Plot and Log Plot.

13

Database Material Optio

Material: Transmission

Pine Wood. Average
Composition

0 I000 1000 3000 4000 5000 8000 7000 8000 9000 10000

Material Calor ...

Energy (keV)

insert 1 Bulk Matrix {composition)
Element:

I

Abundance: ?k wt.
- I

Figure 2.5: Material database window.

A material is specified under the Material Database window through the combination of five attributes: name, color,
thickness, density, and bulk matrix specification. The name specified for the material must be unique for that
material database. In addition, the assigned material color, accessed through the Material Color button, is displayed
for objects during group picking and material assignment mode (see Component Grouping Definition below).

TO insert a new material, select insert from the Material pull-down menu of the Material Database window. Once a
new material is inserted, modify its attributes through selection of its color (Material Color), thickness (cm), and
density (g/cm’). In addition, the bulk matrix composition for the material must be specified. This is given as an
admixture of elements and their relative abundance by weight within the material. Once entered, the mixture is
normalized, and the coefficient of absorption transmission chart is updated through selection of the Process button.
For a more detailed treatment of material specification, see Section 3.3 Material Database.

Comuonent GrouDing Definition
Selection of the Groups button from the Structure Configuration window brings up the Component Grouping
Definition window. Under Component Grouping Definition structural objects within the virtual environment may be
grouped by physical or material attributes. The Window pull-down menu provides the option of closing the
Component Grouping Definition window.

Component groups are the mechanism by which QUEST associates physical attributes with the structure components
that make up QUEST’S virtual environment. This mechanism was necessitated by the lack of standardized material
assignment standards in CAD drawing packages. A group is added or removed from the collection of named groups
through the selection of the Insert New Group and Remove Group buttons respectively. Since the groups associated

14
-

with a structure comprise a hierarchy of attributes, the location of insertion within that hierarchy must be selected
prior to group insertion.

Group Name:
ldoor 1

~ ~~~-

Matterial ~ y p e :
Wood

Group Thickness: Units:

1 F C z.nooono

,

Define Material ...
Group Definition window.

A Group Name **Undefined &laterial d

default
--Wall

4

-~

--floor
--window

Figure 2.6: Component grouping definition window.

Once inserted, a group can be assigned a default material, group thickness, and color. Future versions of QUEST
will support the Paint Transparency attribute, simulating more realistically transparent objects such as glass.

The hierarchy of groups within the Component Grouping Definition is significant as it defines the hierarchy of
inherited attributes. In the example presented in Figure 2.6, if group “door” did not specify a material type, the
material type would be inherited from its parent group, in this case “default”. Once defined, the group hierarchy
provides a quick and simple mechanism for manipulating physical attributes of the structure components within the
virtual environment. Take, once again, the example presented in Figure 2.6, and consider a structure where all doors
of a structure have been appropriately assigned the group name “door”. Then it is a simple task to perform a
simulation $udy of a given structure in which all doors are first of material type wood, and then changed to material
of type steel. This can be accomplished through a single material attribute change of group “door”.

Groups defined in the Component Grouping Definition window are assigned structure components, actual polygons
within the virtual environment, through selection of Group Picking. Group Picking, as depicted in Figure 2.7,
displays a specialized view of the structure environment by highlighting each polygon surface. The user may then
select individual surfaces by placing the cursor over the polygon in the 3D graphics window and pressing the
spacebar on the keyboard. Once selected, a structural component, or polygon, becomes a member of the assigned
group and changes color to reflect its new association.

15

Figure 2.7: An example of structure component picking.

For convenience, the Define Material button provides access to the Material Database window for defining
additional materials while performing component grouping.

2.1.2 SOURCES

With the selection of the Source(s) button from the QUEST Primary window, the Source Path Assignment window
becomes visible (Figure 2.8). Within this window, the user matches Sources to Paths, with the matching displayed in
a table on the right-hand side of the window. To match a previously defined Source and Path, and insert this
association into the Scenario, the desired Source and Path must be selected from the Source and Path selection pull-
down windows. Located in the middle of the Source Path Assignment window, the Source and Path selection pull-
down menus list all previously defined and available Sources and Paths for inclusion within the current Scenario.
Listed below each of these selection windows is a description given to the specified object, either source or path,
assigned by the user at the time of definition. A previously entered source-path assignment can be removed from the
table on the right by highlighting the assignment and selecting Remove Source/Path.

16

- I

Source

Source

Path

Path

A simple path.

Path(s)

Window

Figure 2.8: Source path assignment window.

The Source Path Assignment window includes two additional buttons on the left-hand side of the window for
defining or editing Source and Path definitions. To edit the definition of an existing Source or Path, the user need
only select the desired Source or Path, and then push the appropriate button. To create a new Source or Path, the
user must push the appropriate button and then select “New” from the pull-down menu that appears under the Source
or Path Definition window.

Selecting the Source(s) button on the Source Path Assignment window brings up the Source Configuration window
(Figure 2.9). The Source Configuration window provides access to the two subcomponents that make up every
source. Displayed in the title-bar of this window is the name of the source currently being manipulated. The
Window pull-down menu provides the option of closing the Source Configuration window. The specification of a
source is divided into two parts: physical sample properties and radionuclide specification.

Source Physical Composition
Selecting the Sample button of the Source Con$guration window brings up the Source Sample window. Currently,
QUEST vl only supports point sources. However, work is underway to include disk shapes, where the bulk
composition and thickness of the source determine the self-absorption. For finite sources, the material specification
will include an admixture of elements and a user selected density. The Window pull-down menu provides the option
of closing the Source Sample window.

17

Source

complete incomplete 1 I

Figure 2.9: Source configuration window.

F Point Source

Finite Source

Orimiatian Ediim .,.
0.1 0.1

S e If At t enua t i on

1 1000

Figure 2.10: Source sample window.

18

Source Radioisotove Svecification
Selecting the Nuclidets) button from the Source Configuration window brings up the Source Definition window
(Figure 2.1 1). This second portion of the source specification selects the radioisotopes contained in the sample. The
pull-down menus of the Source Definition window provide access to database selection and sample radiosity
specification. The Window pull-down menu provides the option of closing the Source Definition window. The
Database pull-down menu provides for the selection of a radionuclide database-only the Erdtmann-Soyka (1 979)
database is provided with QUEST VI. And finally, the Radiosity pull-down menu accesses the Source Radiation
definition window.

To support the specification of arbitrary radioactive sources, the Erdtmann-Soyka gamma-ray library has been
incorporated into a relational database as have certain other data (e.g. parent-daughter branching ratios for selected
nuclei, and stable isotopes along with their thermal and resonance neutron-capture cross sections) that were not
included in the original compilation.

I - D - 1

Window Library Radiosity

El em e nt: Radionuclides
]Uranium

IscJtope: 1-r.J
p = l F d
Quantity:

Decay Time:

Element
Uranium
Uranium
Uranium

Gamma Ravs p i i r - l d
Insert Element

Remove Element
I

Mag. Ratio Cutoff:

I I

Process 1
Source Definition Window

, 4 t O l n i C Q

92
82
82

Isotope
235
238
232

Qna11tity
1.400 g
0.100 g
0.000 g

20.000 y
20.000 y 7 20.000 y

Lil
Total Pea l s = 1197

Ray Count Ray Energy &eV)
1.6510e-014 3268.7000
3.3683~-014 3233.3000
2.4765e-013 3 183.600 I
8.5918e-014 3160.5000
2.6449e-0 13 3142.6001

Figure 2.1 1 : Source definition window.

In entering the radioisotope specification for a source, the user specifies the element (Z), atomic mass (A), and state
(ground or metastable). As isotopes are added to a list, the quantity of the isotope is specified in one of several units.
The completed isotope list may be subjected to decay, with daughter products automatically added to the list based
on the specified decay time. Bateman equations are used to calculate the quantities of daughter products, and thus
complex decay chains are modeled (Friedlander et al. 1981). With the selection of the Process button, QUEST
searches the nuclide and gamma-ray databases and produces a sorted list of the isotopes contributing to the spectrum
and the number of contributing gamma-rays.

The Magnitude Ratio Cutofs field specifies a value for limiting the number of gamma-rays that make up a source
specification. This feature is provided to enhance real-time simulation performance. The magnitude ratio is used to

19

eliminate ray counts that make a minor contribution. Energies with ray count less than the ray energy with maximum
ray count, divided by the magnitude ratio, are eliminated from the specification.

begin: 118o.001 .deg

end: .deg

1 Attenuation Coefficient I
p 3 i i i - l

30.00 I 80.00 I 0.70 H

Figure 2.12: Source radiosity definition window.

The Radiosity pull-down menu of the Source Definition window accesses the Source Radiation definition window
(Figure 13). An anisotropic source can be specified as a radially symmetric collection of attenuation coefficients.
The default setting, 0-1 80 degrees with an attenuation coefficient of 1 .O specifies an isotropic source.

2.1.3 PATH DEFINITION

Selecting the Path(s) button from either the Source Path Assignment or Detector Path Assignment windows brings
up the Path Definition window (Figure 2.13). Through the Path Definition window, a path can be immersively
defined through the virtual environment. To define a path, select the Record button, and move through the
environment using the 3D graphics window and the mouse. Once the path definition is complete, the Stop button
stops path recording. Once a path has been recorded, it can be played back through selection of the Playback mode
(Figure 2.14). Under Playback mode, controls are provided to move through the virtual environment on the
previously defined path.

9 . 1 - I

Path Image Preferences

Path Name
rvl 0 ci e: ,
F gmmersive;
c ;>ainr i3: 1 rLi3 i . 'iT
r P'ydetined c:y
r Playback

........................

Figure 2.13: Path definition window-record.

20

Path Definition II - I - . -
Path Image Preferences

~ ~~~

Path Name Playback

Play Step Parise

rn
Reverse Step Reset

Figure 2.14: Path definition window-playback.

2.1.4 DETECTORS

The ‘detector definition portion of QUEST presently supports a combination of a general algorithm for coaxial
germanium diodes and efficiency curves for specific sodium iodide detectors. Though only five sodium iodide sizes
are currently supported, work is underway to develop an algorithmic model based on results of Monte-Carlo derived
response functions for sodium iodide crystals ranging in size from 1 in. x 0.5 in. up to 10 in. x 10 in. A complete
range of coaxial germanium detector sizes is supported, from about 20% to 100% relative efficiency (compared to a
3 in. x 3 in. sodium iodide crystal at 1332 keV). Specifically, the germanium intrinsic detector efficiency is
computed from fundamental detector parameters such as diameter, length, and relative efficiency using an algorithm
developed by Gunnink and Prindle (1992). An absolute efficiency is then obtained by applying geometry factors to
the computed intrinsic efficiency. Gunnink and Niday (1972) developed the detector geometry model as part of the
GAMMANAL code.

Selecting the Detector(s) button from the Primary QUEST window displays the Detector Path Assignment window
(Figure 2.15). This window is similar to the Source Path Assignment window, and allows for the association of an
arbitrary number of detectors and paths.

21

Window

Detector{ 5)

PathIs)

Detector
~

Nal Detector

v

Path

<detach e d> rl
This path allows first
person point of view t assignment

Insert DetectorIPath

Remove Detector!Path I

Figure 2.15: Detector path assignment window.

The Pathts) button of the Detector Path Assignment window brings up the Path Definition window (see Section
2.1.3). QUEST makes no distinction between source and detector paths. In addition, any number of objects, both
sources and detectors, can be associated with a single path.

22

Complete Complete Incomplete

Detector El e ctrs n i c s AB go rirh m {s)

Figure 2.16: Detector configuration window.

Selecting the Detector(s) button of the Detector Path Assignment window brings 'up the Detector Configuration
window. The Detector Configuration window provides access to the three subcomponents that make-up every
detector. Displayed in the title-bar of this window is the name of the detector currently being manipulated. The
Window pull-down menu provides the option of closing the Detector Configuration window. The specification of a
detector is divided into three parts: detector definition, electronics, and algorithms.

Detector Definition
Selecting the Detector button of the Detector Confguration window brings up the Detector Definition window
(Figure 2.17 and 2.18).

Window Configuration Analysis

3etector Characteristics
Elid Cap

Thickness: 10.500000 c m

d Material: bl
Dead Layer
Thickness: crn

Diameter: Clll

Length: Cll l

Efficiency: x

Detector Definition window. -

Efficiency
0.01

0.001

O.DOD1
0.01 0.1 1 10

Energy (keV>
Update Graph

Figure 2.17: Detector definition window, NaI detector example.

Figure 2.17 depicts an example NaI detector configuration, and Figure 2.18 depicts a Ge detector configuration.
Since Ge detectors are parameterized for physical characteristics such as size, length, etc., these values may be
directly maoipulated. However, only fixed NaI detector sizes are supported by QUEST vl, therefore these fields
only display the default values for the specified NaI detector and are unavailable for data entry.

Other relevant detector parameters are also entered here and are used to correct the detector efficiency. For instance,
the detector dead-layer thickness for germanium detectors can be specified, which allows the user to evaluate the
difference between an N-type (no external dead layer) and a P-type (0.5 to 1.0 mm external dead layer) detectors.
The effect of end-cap material is also included.

Window Configuration

Detector Characteristics
incl Cap

Thickness: 0.051000 Clll

Material: [AI

Efficiency

Energy (keV)
Update Graph

Figure 2.1 8: Detector definition window, Ge detector example.

Detector Electronics
Selecting the Electronics button from the Detector Configuration window brings up the detector’s Electronics
Definition window (Figure 2.19). The Electronics window allows the user to configure the simulated detector to
mimic the hardware choices a user might make in a laboratory. The hardware choices include zero, gain, and a non- ,

linearity term of the output-energy calibration. In addition, the number of data channels for the Analog-to-Digital
Converter (ADC) can also be specified. The number of detector channels can greatly influence the real-time
performance of the simulation, and so should be selected carefully. Displayed at the bottom of the window is the
Energy Scale, which displays the minimum and maximum energies over the specified number of detector channels.

The Signal pull-down menu portion of the Electronics Definition window provides for the selection of statistical
noise to add to the generated detector spectra. This can be a useful feature when trying to match an actual laboratory
collected spectral response. By default this option is disabled.

Two other values are specified in the Electronics Definition window that control the performance of the simulation
of the detector. These include the Refinement Level and Points Per Refinement. The default values for these
parameters, 0 and 1 respectively, were chosen to maximize real-time simulation performance at the price of model
accuracy. For a more detailed treatment of simulation performance related parameters see Section 2.2.2
Performance Tuning.

24

SZ

Algorithms
Sample Interval: sec.

Algorithm Name: 71

Sample Interval GCD [sec.]
2.OOOOOO

Energy

Remove I

10.000000 Ratio

Niunb er

1

bi-

Einas I'

Figure 2.20: Detector energy definition window.

As sample interval and algorithm name associations are entered for the detector, the Energy and Algorithms window
continuously calculates and updates the value of the Sample Interval Greatest Common Divisor (GCD), which is also
the Least Common Factor (LCF). The LCF represents the least common factor of all specified sample intervals; this
value is used as the iteration loop over which the spectral response for the detector is calculated. This has
ramifications for performance of the model, and is provided as a user hint (see Section 2.2.2 Performance Tuning).

The detector algorithm logic can simulate a wide variety of detector algorithms with different settings of its
parameters. Each simulated detector collects data using one or more sample intervals, and for each of its sample
intervals a detector may use one or more algorithms. Only one algorithm's response is displayed during a simulation
run, but the user may switch between different algorithms. The user may choose prior to the start of the simulation
run to save the simulation history data. The responses of all the algorithms for all detectors are then saved to disk for
later analysis (see Section 2.3 Analysis Mode).

The first set of parameters divides the energy spectrum into non-overlapping windows by specifying the minimum
and maximum energy for each window. There may be any number of such windows. The user may group the energy
windows into up to four window sets, W,, W2, W3 and W,. (For the algorithm to show any response at all, at least
W, must be defined.) The detector represents the spectrum as counts in equally-spaced energy bins. The algorithm
logic forms sums of the counts in the bins that fall into each window set; call them K1, K2, K 3 and K4.

26

+v pue EV ‘zv ‘1v siaiaueied ayi 30 s a n p ayi %pias
Aq pa~[o.~iuo:, ale papnpu! am suns p q m pur! pa8eiam a.re sums anrssamns X u r ! ~ MOH -yiioj os put! I - 9 = y J!
aldwes snorhaid aqi ~ 0 . 1 3 ‘9 = y J! aldrues iopaiap iuaun:, aqi ~ 0 . 1 3 padolahap suns ayi ale (y)”’)~ pue (y)49 a~aym

I . I

The input to the response function is formed by combining SI, SSz, q and q according to the values of the
parameters E, F , G and H .

E.SS, i- F - S S ,
G . 0 , + H -02

R =

The response function has the form

wherefix) can be chosen to be log&?= 2, e or 10) or 2, where p is a positive integer. The coefficients a1 and ai,
the logarithm base ,!?and the power p are all specified by the user. The returned response value is clamped so that it
never falls below zero. Also, when the logarithm function is chosen, the value returned by f is truncated to an
integer.

SSI and 0 1 are recomputed every time the detector develops a sample. The recomputation of SS2 and e, however,
can be made dependent on a threshold condition through the parameters hi and lo. After it computes SS, and 4, the
algorithm logic applies a high and low threshold test; if either is satisfied, SS2 and o;_ are recomputed, otherwise they
retain their former values. To satisfy the high threshold test, SS, must exceed (SS, + H . q) for hi consecutive
samples. To satisfy the low threshold test, SSI must fall below (SS, - H - q) for lo consecutive samples.

As an example, the parameters for a true gross count algorithm will be presented. Give the parameters the following
values:

A = 0 , B = l , C=O, D=1

a] = 1 , b] =o, CI =o, dl = 1

a2 = 0, 62 = 0, c?; = 0, d2 = 1

E =] , F=O, G = l , H = O

a] = 0, a?= I

f(x, =2

hi=O, lo=O

Let there be one energy window defined to cover the entire spectrum, and let energy window set Wl be defined to
contain that window. Then the sum Kah developed from the current sample is the sum of a11 counts over the entire

28

spectrum. SSI is an average containing only the current sample value, hence is equal to Kob. The sum in the
expression for q drops out since bl is zero, and we have

1- K, +o
0, = E, which leads to R = =K. l . J K , + O

Then the response value becomes 0 + 1-R2 = Kabr which is the total number of counts over the entire spectrum, as
desired. Once all algorithm definitions have been completed, the user can exit the Energy and Algorithms window
through selection of “Close” through the Detector pull-down menu. It should be noted, however, that there must be
at least one valid algorithm specified for each detector.

Background

Attenuated Background Source:

r Disabled

AmCsCo Source I
Additive Uniform Background:

Disabled

1- I I ‘ - 1 11 IEEE
Normalization Factor:

Background Definition window.

Figure 2.22: Background definition window.

2.1.5 BACKGROUND

Selecting the Background button from the Primary QUEST window brings up the Background Definition window
(Figure 2.22). The background feature of QUEST may be used to add the effects of environmental radiation to the
detected signal. Background is specified as a source, or a spectrum, or both.

A background source is a regular QUEST source, defined like other QUEST sources. Instead of being placed on a
particular path, however, the background source receives special treatment to make it appear ubiquitous.

Any spectrum file in standard IEEE or ADCAM format may be used as a background spectrum. A background
spectrum is simply added to the spectrum developed by the normal operation of the detector. Ideally, the spectrum
should have the same zero, gain and number of channels as the detector; if it does not, it is interpolated to fit the
detector.

2.2 SIMULATION MODE

Once a scenario has been defined or loaded, it can be simulated through selection of the Sirnulation button on the
Primary QUEST window. Doing so brings up two additional windows, the Simulation (Figure 2.23) and Simulation
Response (Figure 2.24) windows. During execution of a simulation, simulation output can be saved to disk file for
later analysis. Immediately prior to beginning a simulation, a decision must be made to save output data or not.

r q Fiist Person Point of View: Select Path
<detached> _- -I-

Play Pause stop Response Giaph: Select Detector
-i

IGe8192 [Circular Path] rl
Response: Select Algorithm .r

Step Reset]Gross [2.001 rl
j Simulation Run Window
- .--

Figure 2.23: Simulation window.

2.2.1 SIMULATION CONTROL

The Simulation window contains “VCR-type” controls for managing the progression of the simulation. Listed in the
title bar of the Simulation window is the name of the scenario being simulated. The right side of the Simulation
window displays three pull-down selection boxes used in controlling the simulation. The First Person Point of
View: Select Path selection box governs the path on which the first-person point-of-view (POV) tracks in the primary
3D graphics display window during progression of the simulation. The user may select any one of the defined paths.
If a detached path is defined for the simulation, and the user switches the POV away from the detached path, the
interactive, detached path remains stationary at that point until the POV is switched back.

30

current 60 1 2 0
sec seC

111.1480484 MAX RESPONSE
13,5977440 CURRENT RESPONSE

Figure 2.24: Detector response graph window.

I

The Response Graph: Select Detector and Response: Select Algorithm selection box determines the algorithm and
detector for which the response chart displays output. Due to the computational demands of the simulation, only one
detector algorithm can be displayed at a time during a simulation. The Response Graph displays the current
algorithm response at the y-axis, with the history streaming off to the right.

The simulation continues until the user presses the “Stop” control button on the Simulation window. Once the button
is depressed, the user is warned that the simulation is about to be terminated. If the user chooses to continue, all
simulation output data is flushed to disk file and the simulation is halted. The user is then returned to the QUEST
Main Screen.

In addition to the provided graphical user interface controls, QUEST responds to keyboard keystrokes. Pressing the
‘u’ key while the cursor focus is in the overhead-view graphics window will zoom-up the view. Likewise, pressing
the ‘d’ key in the overhead-view graphics window will zoom-down the view. In general, when operating a QUEST
simulation, the system performance is maximized by adhering to the following observations:

Make the two graphics windows as small as possible.
Prevent windows from overlaying each other (e.g. graphics windows and GUI control window).
Prevent the 3D graphics windows from being “clipped“ by the outside edge of the display.
During a simulation keep the cursor focus in a 3D graphics window.

2.2.2 PERFORMANCE TUNING

QUEST attempts to address two application domains at the same time. On the one hand, QUEST performs well as a
real-time simulation tool, providing interactive, human-in-the-loop simulations of the search for nuclear material. At
the same time, however, QUEST is capable of providing detailed spectral data for specific radionuclide source,
detector and absorber configurations. QUEST unifies these two application domains under a single simulation
model, providing the user with the settings to manage the trade-off in application domain performance requirements.
Thus, QUEST was designed with the capability to make highly accurate calculations when simulating detector
responses. Unfortunately, higher accuracy requires increased QUEST execution time. The user interface provides a
set of modifiable parameters for controlling the accuracy and detail of QUEST’S transport physics computations-
indirectly, this also controls real-time behavior.

31

QUEST must be capable of managing the computational demands of the four primary software components that
comprise the application-these include the 3D graphics display (GRE) of the virtual environment, the mathematical
model of the structural environment and the relationship between its components (CDB), the high computational
demands of the transport physics’ (TP) calculations, and the responsiveness of the graphical user interface (GUI). It
should be obvious that, given a limited resource of a machine’s computational capability, the requirements of these
software components must be arbitrated based on the user’s operational demand. For example, in order to support a
real-time, human-in-the-loop simulation of the search for nuclear material (i.e. the use of QUEST as a searcher
training tool), an emphasis would be given to the requirements of the 3D graphics engine. In contrast, to support
trade-off studies in the design and use of radiation detectors (i.e. the use of QUEST as a analytic design tool), an
emphasis would be given to the requirements of the transport physics. Thus, these trade-offs depend on the intended
use of the application, and for each run, the user must decide best how to make these performance trade-offs between
what is essentially computational accuracy and system responsiveness.

The user is given control of these performance trade-offs through access to various tuning parameters implemented
in the application. The following bullets detail the major performance tuning parameters at the disposal of the user,
their effects, and location within the simulation’s GUI.

Complexity of the structural environment. The more polygons the 3D graphics engine must render, the
higher the computational demands.

O Number and complexity of sources simulated. Obviously, the greater the number of sources simulated, the
greater the demands on the 3D graphics engine to render their movement, and the gamma-ray transport
requirements imposed by the additional radionuclides. In the later case, the complexity of simulating a
radioactive source is proportional to the number of gamma and x-ray lines associated with that source.

Control: Obviously the user has control over the number of sources included in any given scenario.
However, for each included source, the user should carefully manage the number of gamma and x-
ray lines included. The Radionuclide window provides a ratio factor with which the user can
eliminate all but the most energetic lines.

Number and complexity of detectors simulated.

Control: Once again, the user has direct control over the number of detectors include in a scenario.
For each included detector, the complexity of device simulation can be greatly reduced by limiting
the number of channels the detector collects samples over, the number of algorithms calculated
(see Section 2.1.4), and the LCF of the defined detector sample intervals.

This last point deserves greater explanation. Since spectral data for a detector is collected based
on the sample interval defined sample-and-hold-period, the transport physics calculates the
detector spectra for only one sample interval, regardless of the number defined for a specific
detector. As discussed in Detector Algorithms of Section 2.1.4, this single sample interval is the
LCF of all defined sample intervals. The smaller this value is, the greater the computational
requirements.

O Simulation data collection and storage to disk requirements. During the execution of a simulation scenario,
the user is only provided with the output of one detector algorithm at a time. In order to provide the more
detailed post-processing capabilities of the Analysis Mode, simulation data must be collected and stored to
disk. Wholesale collection and storage of simulation data is computationally expensive.

Control: Under the Detector Electronics window, the user is given the choice of whether simulation
data should be stored to disk or not.

Transuort phvsics accuracy requirements. Simulation of gamma and x-ray transport involves many com-
plex levels of data integration over time and space. QUEST was designed with parameter controls on these

32

calculations to allow the user to make the trade-off between result accuracy and model fidelity. The
transport physics component of QUEST computes a response for every channel of every detector that
accounts for all emitted source photons. Thus, execution time is roughly proportional to the number of
detectors, the number of channels in each detector, and the number of distinct photon energies emitted by
all sources. The number of detectors is fixed for a given simulation scenario, but the other two quantities
can be altered to influence execution time. The parameters available to the user are:

Controls: Through the Detector Electronics window, the user has control over both the Refinement
Level and Points per Refinement. QUEST simulates the sample and hold behavior of a detector by
numerical integration over time. Each detector sampling period is covered by a number of equally
spaced time samples. QUEST computes an instantaneous detector response at each time sample,
then interpolates and integrates to get the totai response. The number of time samples computed is
determined by available CPU time; specifically, when the real-time clock advances beyond the
hold time of a detector, then numerical integration sops. For example, if the detector’s sampling
period is 5 seconds and it takes 2 seconds for the computer to calculate the response at one time
sample, then integration is based on only three sample points. This is a straightforward idea, but
determining the optimum number of sample points is difficult when more than one detector is
present. It turns out that responses at multiple time samples can be computed faster if they are
“batched” together during one pass of transport physics calculations (one pass is also called one
iteration of the “refinement loop”). The Points per Refinement parameter sets the maximum size
of a “batch”. For example, if the parameter is 2, then the detector computes a response at 2 time
samples before examining the real-time clock. If a simulation is running slowly because some
detector has a large number of channels, then setting the parameter to 1 should speed that detector
up. Conversely, if a detector has very few channels, it might run faster with its parameter set to 3.
Refinement Level defines the number of times the sample-and-hold period of the detector is
divided down for integration. A value of zero indicates no division, and therefore only one large
integration is performed over the entire sample-and-hold period. This results in better real-time
response, but might cause problems when the sample interval is large relative to the detector’s
speed through the environment. Larger values for Refinement Level result in higher accuracy, but
at the cost of real-time, interactive performance of the simulation. One consequence of the
numerical time integration scheme is that execution time does not depend on the detector’s
sampling period; that is, performance cannot be improved by using shorter sampling periods..

Duration: 4.264 First Person Paint of View: Time:

Step Reverse Stop Play Step SlOW fmt
Backwai d Forward Si,eecl

* 1 Output Analysis Window I]
Figure 2.25: Analysis control window.

2.3 ANALYSIS MODE

Once a simulation has generated output, it may be analyzed in more detail through the analysis mode. Analysis
mode can be entered in two ways: through selection of the Analysis pull-down menu on the Primary QUEST
window, or by pressing the Analysis button on the Primary QUEST window immediately following the run of a

33

simulation. In either case, the Analysis controI window (Fi-we 2.25) is displayed, along with one detector output
window for each scenario specified detector.

Time Window Duration
ALGOR1THMS

im

Sample Iiiteival (sec.} : AlcJotitlini: 100

~2.000000 1 Gross 80

60

40

20

0

Update Graph 1
0 5 10 15 20 25 30 35

Time (sec)

Output Window i --

Figure 2.26: Static analysis output algorithm chart window.

The Analysis Control window provides playback controls for moving through the playback of data associated with
the simulation. In addition, the First Person Point of View may be selected as any one of the scenario defined
objects, sources or detectors, or an independent outside Observer. The Duration field lists the total amount of
simulation time in seconds recorded in the output field. In addition, the Time field displays the current index of the
output playback. This field may be directly edited.

For each detector defined in the scenario output file, a Static Analysis Output window is displayed (Figures 2.26 and
2.27). Two examples are given here to show the two types of output that are available for each detector, namely
spectrum and algorithms. Figure 2.26 displays the algorithm output for a specified sample interval of the detector.
The detector name for the output being displayed is given in the title bar of the window. The amount of algorithm
time displayed can be changed with the DeltuT parameter, as can the algorithm being displayed.

34

Energy Range

Emax: 12785.28001 I

Smnple liiteival 4,sec.) AIg oritli 111:

)2.000000 / Gross
1 e-01 0

Iiiteival Stait Time (set,):

I o.i inoon

I 1.339511

Update Graph I

SPECTRW

1 e-020
0 500 1000 1500 2000 2500 3000

Energy [keV)

Figure 2.27: Static analysis output spectrum chart window

Figure 2.27 is an example of a Static Analysis Output window for a detector showing spectrum output. The energy
range for the displayed spectrum can be varied through use of the Emin and Emax values. The Interval Start Time
for the displayed spectrum is given, and one of the detector define Sample Interval /Algorithms can be selected to
display the Algorithm Response.

35

3 THEORY

QUEST is comprised of a number of interdependent software components, including: the Transport Physics (TP),
Material Database (MDB), Background Radiation, Component Database (CDB), Interprocess Communication (IPC),
Graphics Rendering Engine (GRE), and the Graphical User Interface (GUI) (Johnson et al. 1996). The TP, MDB,
and Background Radiation components encapsulate radionuclide and gamma-ray databases, radiological source and
detector models, as well as the radiation transport engine. The CDB provides the mathematical representation of the
simulated environment supporting assignment of physical attributes (such as materials, thickness, color, etc.), and the
physical relationships between structural model subcomponents. The IPC and GUI manage intercommunication
between the software components and the visual representation of user information. And finally, the GRE maintains
the three-dimensional graphic views, and supports interaction between the user and simulated environment, including
real-time walk-throughs.

Each of these components encompasses a great deal of software detail. While it is beyond the scope of this paper to
detail all design issues associated with QUEST, the following sections provide overviews of the theory underlying
each software system, and provides an overview of their design and individual contribution to the simulation whole.
The first section presents an overview, for the uninitiated, of the physics addressed by QUEST.

3.1 THE PHYSICS OF GAMMA RAY SCATIEIUNG

As gamma rays pass through an object they interact with the particles that make up that object. These interactions
result in an exponential decay in intensity of the gamma radiation, as may be seen through the following argument.
Consider a thin slice of material containing targets with which the gamma ray can interact, as in Figure 3.1 (Delaney
and Finch 1992). We model each of the targets in the material as a sphere with a cross sectional area called the
interaction cross section, CY. A photon interacts with a target if and only if it passes through the corresponding
sphere. The value of the cross section, CY, depends on both the energy of the incident photon and the nature of the
target material. As will be seen in Section 3.1.2, many different types of interactions contribute to the cross section.
However, to compute the total cross section we simply add the cross sections for each of the relevant interactions,
i.e.,

I - dI

I /

A
Figure 3.1 : Gamma ray and material interaction.

36

The fraction of photons removed from the incident flux by the thin layer of material in Figure 3.1 is given by the
ratio of the interaction cross sections of the targets to the total cross sectional area of the material

where I (the intensity) is the number of photons per second passing through a unit area normal to the path of the
incident photons, dl is the number of these photons removed by interactions in the thin layer, and N is the number of
target particles per unit volume. Integrating both sides of equation 3.2 gives

where 10 is the gamma ray intensity at x=O. If we introduce a new symbol & called the attenuation coefficient, with
p = N a equation 3.3 becomes

I = Ioe-px. (3.4)

As for o, the total attenuation coefficient may be obtained by adding the attenuation coefficients for each of the
relevant interactions, i.e.,

Gamma ray photons interact with electrons, nuclei, and the electromagnetic fields associated with these particles.
These interactions consist of either the scattering (i.e., change of direction and possible change in energy) or
complete absorption of the incident photon (Table 3.1). Which of these effects gives the largest contribution to the
attenuation coefficient depends on the energy of the gamma ray and the nature of the material through which the
photon is passing.

Target scamring Absorption

Atomic electrons Compton scattering Photoelectric effect

Photonuclear reactions
Nuclear scattering Photofission Nuclei

Electromagnetic fields Delbruck Pair production

Table 3.1 : Attenuation effects.

In the next section, we will describe each of the effects mentioned in Table 3.1 and discuss their relative
contributions to the total attenuation coefficient for photon energies between 50 keV and 3 MeV. As we will see, the
three most Smportant interactions are Compton scattering by electrons (CS), the photoelectric effect (PE), and pair
production (PP).

(3.6)

The photoelectric effect and pair production result in complete absorption of the photon and are both modeled by
QUEST. In Compton scattering, however, the photon is not absorbed but, instead, changes direction and loses
energy. Compton scattering thus effects the detector count rate in two ways. Photons that would have hit the
detector may be scattered away from the detector by intervening materials, and photons that would not otherwise
have hit the detector may be scattered into the detector.

37

500 1

I

Silicon

I I 1 I

5 -4

0-05 i
0.01 0.05 0.2 1 5

Energy (MeV)

Lead 2000

\\
Photoelectric

\
\

20

5
\
\
\

1

0.2

0.05

0.01

0.01 0.05 0.2 1 5

Energy (MeV)

Figure 3.2: Attenuation coefficients versus photon energy.

38

The contribution of the first of these effects to the attenuation coefficient is computed in QUEST. However, the
current version of QUEST does not include the second effect. This problem with Compton scattering will be
discussed in more detail in Section 3. I .2.

3.1.1 ATENUATION EFFECTS

From the graphs of attenuation coefficients versus photon energy in Figure 3.2, we see that Compton scattering gives
the dominant contribution to the attenuation coefficient for intermediate photon energies. In addition, the range of
gamma ray energies for which Compton scattering gives the largest contribution to the attenuation coefficient is
greater for lighter elements, such as Silicon, than for heavier elements, such as Lead. The photoelectric effect
dominates for low energy photons and heavier atoms, while pair production is only important for photon energies
above, approximately, 2 MeV.

ComDton Scattering
For photon energies much greater than electron binding energies, electrons may be treated as being essentially free.
The scattering of photons by free particles is called Compton scattering. Since the contributions from Compton
scattering for each electron in an atom add, the total contribution of atomic electrons to pCs is proportional to 2, the
number of electrons in an atom. This weak dependence on Z, compared to the photoelecmc effect and pair
production, causes Compton scattering to be relatively less important for larger atoms. The attenuation coefficient
for Compton scattering of photons by nuclei is less than 1% that for electrons since the attenuation coefficient for
Compton scattering is proportional to one over the square of the mass of the scattering particle. For photon energies
(E,) above 100 keV, the attenuation coefficient is inversely proportional to E,, This insures that pair production will
dominate for energetic photons.

A significant complication introduced by Compton scattering is the scamring of photons into the detector. To see
when this effect may be significant, consider the percentage of non-absorbed photons which Compton scatter when
traversing various materials (Table 3.2).

Table 3.2: Compton scattering of non-absorbed photons.

For gamma ray energies of interest (50 keV to 3 MeV) and relatively light building structures, the fraction of non-
absorbed photons which Compton scatter is typically less than 25%. We would expect the change in count rate due
to these photons hitting the detector to be small. However, for thick structures composed of heavier elements the
fraction of non-absorbed photons which scatter approaches 100%. In this case we would expect these scattered
photons to contribute significantly to the detector count rate under some conditions. To better model Compton
scattering, future versions of QUEST may account for scattering into the detector.

Photoelectric Effect
Instead of scattering, a photon may be totally absorbed by an electron. If the gamma ray has more energy than the
binding energy of the electron, the electron will be ejected from the atom in a process known as the photoelectric
effect. Interactions where the photon does not have enough energy to ionize the atom are less important since the

39

photon energy must match exactly the difference in two atomic energy levels. The photoelectric effect really consists
of two interactions: an electron absorbs a gamma ray and interacts with another electromagnetic field to conserve
energy and momentum. This second electromagnetic field is typically the nuclear field. Thus, the stronger the
nuclear electromagnetic field seen by an electron, the greater that electron's contribution to pp~. Inner shell electrons
are in the strongest nuclear electromagnetic field and so give the largest contribution to ppE (provided the gamma ray
energy is greater than these electrons' binding energy). The peaks on the graph of ppE versus E, in Figure 3.2 are
located where E, becomes large enough to liberate the next closer shell of electrons. The electric potential seen by
the innermost electrons may be written as

ze 2' --- Nuclear Charge
Size of Inner Electron Shell

Electric Potential -
1/Z

(3.7)

This potential depends on Z both through the nuclear charge and through the size of the inner electron shell. Thus
ppE is highly dependent on Z (ppE = 24 - Z5) and the photoelectric effect will become increasingly important for
materials containing heavier elements. As the incoming photon energy increases beyond the binding energy of the
most tightly bound electrons, the electrons may be treated as being essentially free. Thus the photoelectric effect
becomes less important while Compton scattering becomes relatively more important (see Figure 3.2.).

Pair Production
In pair production, a gamma ray splits into a particle antiparticle pair and one of these two new particles interacts
with the electromagnetic field of the nucleus (usually) or another electron (less likely). The second interaction is
necessary to conserve energy and momentum. To produce a particle antiparticle pair, the photon energy must be
greater than or equal to the combined rest mass energies of the particle and antiparticle. For photon energies of
interest here (E,' 3 MeV), only electron positron pairs are light enough to be produced. The minimum gamma ray
energy sufficient to produce an electron positron pair is

Minimum E, = 2(Rest Mass Energy of Electron)= 1.02 MeV (3.8)

As E, increases beyond 1.02 MeV, pfp increases as well. Since the contributions to the attenuation coefficient from
the Compton and photoelectric effects decrease as E, increases, pair production dominates for large Ey

As for the photoelectric effect, the stronger the nuclear electromagnetic field, the more likely pair production is to
occur, although there is no dependence on the size of the innermost electron shell in this case. Thus the attenuation
coefficient again depends on 2, though less strongly than for the photoelectric effect: ppp is proportional to 2*.

Other Effects
The contributions of Compton scattering, the photoelectric effect, and pair production to the attenuation coefficient
are all modeled by QUEST. As shown in Table 3.1, there are several other effects that may contribute as well.
However, these effects are at most 1% of the first three and are ignored by QUEST. The error introduced by this
approximation is small compared to the (typically - 10%) error caused by variations in building material
compositions. Some of these additional effects and the reasons for their small size are discussed below.

First, consider reactions in which there are additional electron photon interactions. Examples are multi-photon
Compton scattering, where there is more than one photon in the final state, and radiative corrections to all three of
the effects discussed so far. (Radiative corrections to a reaction have the same initial and final states but involve
additional photon interactions.) However, the extra electron photon interactions in these reactions reduce their
contribution to the attenuation coefficient to at most 1% (for E, I 3 MeV) of the combined attenuation coefficients
from Compton scattering, the photoelectric effect, and pair production-more precisely, the extra photon interactions
will introduce additional factors of the fine structure constant, a, where a = '/,3T

Instead of interacting with an electron, the incoming photon may react with a nucleus. As mentioned previously, the
attenuation coefficient for Compton scattering of photons by nuclei is smaller than that for electrons by a factor of at
least 100. Radiative corrections to this process are called Delbruck scattering. As for radiative corrections to

40

Compton scattering by electrons, the attenuation coefficient for Delbruck scattering is M e r reduced from that for
nuclear Compton scattering. In a process called photofission, a nucleus absorbs a photon and splits into two or more
nuclei. Due to the large binding energies of most nuclei, photofission only gives a significant contribution to the
attenuation coefficient for gamma ray energies above 5 MeV. Instead of splitting a nucleus, the absorption of a
photon may cause transitions between nuclear energy states, i.e., photonuclear reactions. However, just as for
transitions between atomic electron energy levels, the need to fine tune the photon energy to match exactly the
difference in two (nuclear) energy levels reduces the importance of photonuclear reactions for most materials.

41

3.2 TRANSPORT PHYSICS

The Transport Physics (TP) is responsible for making calculations that simulate the emission and detection of
radiation. A true radioactive sample emits gamma rays and X-rays (and possibly other particles) at specific energy
levels. These photons may pass unimpeded through intervening materials, or possibly be absorbed, scattered, or
reradiated before reaching a detector. Photons that pass into a detector are converted to electrical signals through a
variety of physical processes, and these signals are processed to generate useful information. The most accurate
model of the physics requires software simulation at the level of individual radiated photons; for example, Monte
Carlo methods. However, the need to make calculations in a reasonably short time has led us to develop more
approximate techniques, which are documented in the following sections.

3.2.1 ALGORITHM OVERVIEW

We choose to model only photon interactions occurring on a straight line between each source and detector.
Scattering effects are approximated but treated as losses-no attempt is made to follow scattered or reradiated
photons in the simulation. The mathematical models we use to represent.physical processes are adaptations of those
employed in the SYNTH software of Hensley (1994). However, an important design goal of QUEST is to structure
the calculations in a manner that allows the accuracy of the simulation to improve with the amount of computer time
available. This makes it easy to extend the QUEST software to more powerful processing architectures.

The physics simulation can be analyzed by considering the following topics:

O effects of moving sources and detectors,
O radiation losses while traveling between a source and detector crystal,

conversion of intercepted radiation energy to electrical signals, and
signal processing by a detector.

Moving Sources and Detectors
Sources and detectors in QUEST are allowed to move through space and change their axes of orientation. Thus, the
photon flux received by a detector varies in time. Real detectors count photon interactions for a specified sampling
period, then report the accumulated spectral information and move on to the next sampling period. The TP simulates
sampling behavior by numerically integrating the received photon flux over time. Each detector carries out an
inteaoration specific to its sampling period and motion through space. An adaptive integration algorithm is used to
allow tradeoffs between simulation accuracy and execution time.

Radiation Losses During Transmission
Given instantaneous source-detector geometry, the TP models photon emission along straight lines between each
source and detector. Currently, detector crystals have finite spatial extent, but sources are treated as points. This
means a straight-line path for simulated radiation can be any line segment starting from a source and ending
somewhere inside the detector crystal. Each source emits a certain number of photons per second at specific
energies. This photon flux is diminished before reaching the detector by collisions with other particles along the
path. Since the final flux at the end of a path is geometry-dependent, the total flux received by the detector is a
volume inteeoral of individual flux contributions. We calculate the integral numerically using a special two-
dimensional projection and an adaptive meshing technique borrowed from finite element methods. Again this allows
the solution accuracy to increase with available computer time.

Converting Received Photons to Electrical Signals
A detector contains a crystal for converting received photons into electrons by a variety of physical processes, such
as the photoelectric effect, Compton scattering, and pair production. In addition, the relatively narrow energy
spectrum of a photon stream is spread out due to the thermal noise of the crystal atoms. Thus, a photon flux at one
energy is detected as a set of electrons with a continuum of energies. The TP models the electron-generating process
for each incoming photon, and adds the individual continuums together to define a continuous energy function.

42

Detector Signal Processing
All detectors capture the energy continuum in a series of finite-width channels. As mentioned previously, they also
integrate signals over a sampling period; thus, each reported channel is an integral over a range of energy and time.
The user defines the energy range and number of detector channels. In addition, the TF’ models distortions due to
nonlinearities in the electronic amplifier gain of the detector. The set of detected amplitudes in every channel is
stored and fed into an “algorithm” defined by the user that reports a single number during the simulation.

3.2.2 Software Design Overview

Classes defined by the TP software are listed and described below.

Linespectrum-An object of this class contains a set of discrete photon energies, each characterized by its flux rate
and type of photon (X-ray or gamma ray). Two Linespectrum objects from different sources can be merged
into a single Linespectrum.

EmittedRay-An object of this class describes the photon flux emitted from a point source along a ray to some other
point in space. This object inherits photon descriptions from Linespectrum. It uses the MDB to compute the
attenuated photon flux delivered to the terminal point of the ray.

Path-An object of this class contains a collection of Node objects that define a portion of the recent trajectory of a
source or detector through space. The trajectory can be thought of as a sequence of time-ordered points with an
associated orientation vector (the axis of a cylindrical detector or anisotropic source). The object receives
Node updates from the GRE and maintains them in time order. It can generate a point and orientation vector at
arbitrary time values using linear interpolation. Only a finite number of the most recent Node updates are
stored in memory; hence, requests for data must be confined to this time interval.

Detector-An object of this class defines the operating characteristics of a real detector device. Methods in this
class provide the top-level driver for the TP algorithms, described later in this document. Briefly, a detector
uses Path information to set up EmittedRay objects from all point sources. After computing the received
Linespectrum of photons, the detector models physical processes that smear the discrete spectrum into a
ChannelSpectrum object. A sequence of time-ordered ChannelSpectrum objects is analyzed to generate a
single scalar output from each detector.

ProjMapping-An object of this class describes an abstract coordinate mapping between three-dimensional
It is used to make coordinate Euclidean space and an embedded two-dimensional projection space.

transformations between the two systems.

ProjDetector-An object of this class represents the two-dimensional projection of a detector crystal as seen by a
particular point source. Many such objects are created and destroyed during computations made by each
detector. Each object inherits an associated ProjMapping object to describe the projection mapping. The
primary function of a ProjDetector is to compute the cross-sectional area of a three-dimensional detector crystal
as seen from a particular point source.

The following high level outline describes the operation of the TP. Its purpose is to indicate the flow of execution
during a simulation.

Load Detector information for the current scenario
Wait until some Path contains enough Nodes to completely cover a detector’s sampling period
while the simulation remains active

for each Detector
if simulation time > current sampling period end time + A t o

Choose the next set of time instants for integrating the current sampling period
for each time instant

then save final ChannelSpectrum and start on the next sampling period

43

loop over all Sources
Compute cumulative Linespectrum received by the Detector

end loop
Compute a ChannelSpectrum corresponding to this time instant
Update the time integration for the current sampling period

end €or
end €or

end while
Deallocate memory, clean up in preparation for possible new scenario

3.2.3 Accounting for Source and Detector Motion

The QUEST software allows sources and detectors to move along paths, which are defined as a time-ordered
sequence of points in space. In addition, the orientation of detectors (where they are pointed) and of anisotropic
sources can change along the path. As a result, motion through a building with walls and doorways can cause the
detected energy to vary suddenly along a path.

In practice, all real detectors count photons over a finite sampling period (typically about 10 seconds) and report the
accumulated spectral information. We divide paths into segments whose duration equals one sampling period and
compute the detector response for each segment. The accumulated response is fundamentally given by an integral
over time, which we approximate using an adaptive integration algorithm.

Path Construction
The path of each object is obtained from the GRE as a time-ordered sequence of point and orientation vectors (also
referred to as nodes of the path). The GRE delivers a batch of nodes at regular intervals, with one time stamp for the
whole batch. The TP uses the time stamp of the current and previous batches to attach a time to each node. A list of
time-tagged vector pairs is then stored for each object in an array of fixed length. The length is chosen to hold
enough path information for two sampling periods of the slowest detector (exact determination of the array length
also depends on how fast the GRE can generate data).

During a simulation each source and detector is associated with a Path object that contains its array of time-tagged
position and orientation vectors. Various TP algorithms may request information from the Path at arbitrary times; it
is the responsibility of the Path object to return meaningful data. This is done using simple linear interpolation
between the two nearest nodes. The Path should never receive requests for data outside its storage range. Even
though the GRE and TP operate as separate threads in QUEST, provision has been made to keep the two processes
synchronized.

Numerical Intesation
Each detector has one or more sampling periods, denoted as A t D - Multiple periods are allowed so the user can make
comparative studies between detectors with different parameters. The TP creates a local Detector object for each
possible sampling period, and these objects (each with a single At,) compute responses independent of one another.

The sampling period of a detector defines a segment of time over which photons are to be counted. One can
visualize a spatial path segment for the detector and all sources corresponding to this time interval-this is the
geometry over which a response is calculated. However, computation of the response is not as difficult as this
picture suggests. The detector simply queries each source for its position at certain discrete time instants and
computes the instantaneous response. These responses are accumulated over the sampling period to provide a total
photon count.

Discrete time instants are chosen using numerical integration with an adaptive width parameter. Integration of a new
sampling period starts by choosing the time instant in the middle of the period. If the available computation time for
the TP is used up in calculating the response at this time, then we multiply the response by A t D and quit. This
approximates the time integral by a function value at a single point (the centroid of the sampling interval). If more
computer time is available, then we choose the two ends of the sampling interval. Two more instantaneous responses

44

are computed, allowing the integral to be more accurately approximated from three data points. The sampling
interval can be further subdivided as computation time permits, providing ever greater accuracy.

Our numerical integration scheme uses the trapezoid method for computing approximate total responses. This has
only first-order accuracy, but requires storage of just one extra instantaneous response (a Channelspectrum object,
which can use as much as 100 Kbytes of memory). Integration can be terminated at any point in the algorithm to
accommodate real time performance requirements. If computer time is readily available, then integration proceeds
until the relative change in final response is smaller than a user-defined accuracy threshold.

Note that our adaptive integration scheme may query Path objects for position information at any time instant in the
sampling period. Therefore, integration cannot begin until all GRE data for a sampling interval has been obtained.
This means TP computations lag by one sampling period; i.e., results are displayed up to AtD seconds late.

3.2.4 Calculating Losses Between Source and Detector

The basic computation in this section is the determination of the photon flux (number of photons per second) that
passes into a detector crystal at a given instant of time. This is found by computing the photon flux radiated from all
sources and integrating over the finite detector crystal volume. Each source is a point that emits a discrete line
spectrum of photon energies in all directions according to some radiation pattern. We simulate photons that follow a
straight line to some portion of the detector crystal, computing absorption and scattering losses to intervening
materials, but we ignore photons that might reach the detector by scattering off intervening particles. The detector
volume subtends a certain solid angle with respect to each radiating source, tracing out an irregularly shaped cone.
The contribution of each source is given by a volume integral of photon flux computed over the set of rays within its
subtended cone. The TP computes one integral for each source, but the solid angle is replaced by a simpler two-
dimensional geometry. The simple algorithm below summarizes our computations.

for each Detector
loop over all Sources

compute the two-dimensional projected detector region seen by the source
loop over mesh points on the projected detector

initialize a Linespectrum and Emitternay from source to mesh point
multiply by the source anisotropic radiation factor
compute attenuation due to intervening materials
add the mesh point contribution to the photon flux integral

end loop
scale the integral to restore three-dimensional perspective

end loop
end for

Proiecting the Detector
Each source emits radiation that is intercepted by the detector crystal. The TP models a source as a point and
computes the total flux radiated into the detector by adding up contributions from the cone of rays connecting the
source and detector. Instead of integrating over this solid angle, we use a two-dimensional projection of the detector
crystal onto a flat plane. The projection plane passes through the detector centroid and is perpendicular to the line
between the source and detector centroid (a more proper projection would be onto the surface of a sphere centered at
the source and passing through the centroid, but the flat projection we use is far simpler to model). We integrate
radiation received over this two-dimensional region numerically using a triangular mesh. Each triangle vertex
defines an EmittedRay object coming from the source, and we calculate the photon flux along this ray. The
approximated integral is simply a linear combination of values at the vertices.

To describe the projection operation, define a Cartesian coordinate system with the point source at the origin, the
centroid of the detector along the positive y-axis, and the axis of the cylindrical detector in the xy-plane. (This can
always be transformed back to the coordinate system of the original problem using translation and rotation operators
that leave areas invariant.) Then the plane we project onto is defined by the equation y = y, where is the distance
between the source and detector. The projection of any point (with positive y-coordinate) is found by extending a
ray from the origin through the point and finding where it intersects the projection plane; thus, (x, y, z) projects into

45

the point (ax,y,az), wherea = y / y . We can use this formula to deduce an analytic expression for the projection
of a detector in the shape of a right circular cylinder.

Let the cylinder have diameter d and height h. Let its axis, which we specified to be in the xy-plane, make an angle
6 with the projection plane. Making the restriction 0 I 6 I z , we see that the two endpoints of the cylinder’s axis
are located at

Each of these points is the center of a circular base of the cylinder. Projecting the circular outline of each base gives
an ellipse in the projection plane. If we connect the two ellipses by tangent line segments we will have the outline of
the projected detector, which is the two-dimensional region to integrate over. The two circular outlines are best
expressed in terms of an angle parameter cp, which runs from 0 to 2n. For instance, the circle whose center is the
first point given above has parameterization

d h
x =-sin @cosy, + -cos 8

2 2

d h
2 2

y = y--cos8cosp+-sin€J

d
2

z=-sinp.

Applying the projection formula will give a three-dimensional parameterization of the ellipse, which we know is
confined to the projection plane y = r‘ . Let (u, v) be the two coordinates in the projection plane, where u = x and v
= z whenever the y-coordinate is equal to 7 . Then the projected ellipse, still parameterized in terms of cp, is

- I

-
Y

h - d y - -cos8cos y,+ - sin B
2 2

U =

The next step is to eliminate cp using trigonometric identities, obtaining a quadratic equation in terms of the variables
u and v. From this equation of the projected ellipse, we get formulas for its center and the lengths of its axes. Note
that because we chose a coordinate system with the axis of the cylindrical detector in the xy-plane, the projected
ellipses are rectilinear in the (u, v) coordinates. After some algebra, the answer for the first base center given above
is

I r‘h -(hz +d’)sinf!?+-
4 2

d h .
(y + -sin 8)’ -(-cos

2 2

ellipse center at u,, = ycos8

h ysinB+-

h d (y+-sine)z --(-case)*
2 2

Ld 2 semi-axis lengths u,,! = -

46

The second base center yields a similar projected ellipse characterized by

1 Fh -(hz +d2)sin8--
4 2

(?--sine)* C COS^)^ h d
2 2

ellipse center at u,? = ?cos8

h Lsin 6 - -
2

h d (y--sin6)' CO COS^)^
2 2

semi-axis lengths' uO2 = Ei

The two ellipses just calculated represent the projections of the circular ends of the cylindrical detector. To finish
the outline of the projected detector, we must draw a line segment connecting the tops of the two ellipses, and a
mirror-image line segment connecting the bottoms. The line segment must be tangent to each ellipse at the points
where it intersects them. Finding the two points of intersection requires solving a system of four quadratic equations
in four unknowns. Assuming that uCI < uc2, the equations are:

where (UL, VL) and (uR, vR) are the left and right intersection points, respectively. The nonlinear system of equations
is solved using Newton's method [Dennis], properly safeguarded to account for degenerate cases.

Centroid Integration Method
The two ellipses and connecting line segments completely define the outline of the two-dimensional projection of a
cylindrical detector crystal. The region inside this outline corresponds to the region over which we integrate
received radiation. QUEST is designed to support an adaptive triangular mesh for computing this integral; however,

47

when running in real time a simpler “centroid method of approximate integration is used. The centroid method
computes received radiation at a single mesh point, the origin of the (u, v) coordinate system, and multiplies this by
the area enclosed by the projected detector outline. Thus, it makes the simplifying assumption that the radiation flux
is a constant over the whole detector.

Source Energv SDectrum
In the computations above we needed the photon energies that reached a particular mesh point on the detector from
some source. These energies are expressed in the software as a LineSpectrum object, which consists of a set of
discrete spectral lines. Each line’s strength is initialized with the total number of decays/second made by the source
at that energy. Linespectrum objects are created for each source, taking into account the source’s elemental
composition and mass. The Linespectrum is then affiliated with an EmittedRay vector that emanates from the source
to a point on the detector. If the source radiates anisotropically, then the source strength is uniformly attenuated by a
factor determined by the angle between the EmittedRay vector and the orientation axis of the source.

Flux Attenuation
As they travel from source to detector along an EmittedRay, radiated photons are absorbed or scattered by electrons
in the nuclei of intervening materials. We calculate a linear attenuation coefficient p for each type of material along
a path, and reduce the average number of photons emitted per second by the factor e-&, where d is the path distance
through the material. The linear attenuation coefficient is calculated as p = pAE, where p is the density of the
material (in grams per cubic centimeter), and AE is the mass attenuation coefficient (in centimeters squared per
gram).

The mass attenuation coefficient depends on the energy of the radiated photon and the atomic properties of the
attenuating material. Following SYNTH, coefficients are computed using models developed from data tabulated by
the U.S. Department of Health, Education, and Welfare in Radiological Health Handbook (1970). Attenuation
losses from photoelectric, Compton, pair production, and K-shell effects are each computed from empirical formulas,
then adjusted for the atomic weight of the absorbing element. Let E be the energy of a photon, 2 the atomic number
of an absorbing element, and A the atomic weight. Then,

-0.693ln(lOOOE)
0.21 7 + 0.000552

c,,, = exp[6.029 -0.6624(1n 2) + 1.4478(1n Z)’ -0.2033(1n 2)3]

con, = (0.066-0.0003314Z+0.000002772’)exp[4.4457(lnE) -0.04707(1nE)2]

cp, =exp[-9.108+0.06852-0.000395Z~ +1.23l(lnE)], if E 2 2e,“ (otherwise c,, = 0)

with e,“ = 0.51 1006 MeV

c , , = 0.10266 + 0.006798JEK + O.OO06539EK , if lOOOE < E, (otherwise cK,$,> = 1)

with E, = 4.33078 + 0.021 2682 + O.OO8907Z’ + O.OOOO49 182’

4, = -1.0364 + 2.13 I72 + 0.00485042’ .

Photon flux is attenuated according to the mass density of each species of element present in an intervening material.
For example, passage through water causes an attenuation from both hydrogen and oxygen nuclei. A mass
attenuation coefficient is calculated for each element, then multiplied by the density of the nuclei. The software
stores the relative abundance of each element in a material as its fraction by weight; thus, the density of an element is

48

simply its relative abundance times the density of the material. Continuing the example of water, the relative
abundance of hydrogen atoms is computed from atomic weights to be

The density of hydrogen nuclei in water is therefore 0.1 12(1 .OO) = 0.1 12 grams per cubic centimeter.

Conversion to Solid Angle
Our two-dimensional approximate integration of radiation flux yields a quantity with the units decayslsecond times
centimeters squared. The flux function accounts for source radiation anisotropy and attenuation losses to intervening
materials, but uses the total emitted flux of the source sample. What we want is the fraction of total emitted radiation
intercepted by the detector crystal; therefore, we need to divide by the total surface area of a sphere that is centered
at the source and passes through the detector. If we had projected the detector onto the surface of this sphere instead
of a flat plane, then this calculation would give the exact solid angle subtended by the detector. Our use of a flat
plane introduces some small error, the worst case occurring when a detector and source are close together.

3.2.5 Modeling Detector Physics

The computations in this section convert a discrete Linespectrum of received photon energies into a continuous
spectrum of detected energies. Photons are converted to detectable electrons by the NaI or Ge material that makes
up the detector crystal. The electrons generate an electrical signal that is then amplified, integrated, and processed as
described in the next section. Here, we concentrate on the physics of detection in the crystal.

Density of a material (@VC2)
Mass attenuation coefficient of an element (squared cm/gm)
Linear attenuation coefficient of a material at a particular energy
Single discrete energy representing a stream of gamma ray photons (MeV)
Compton energy, the upper limit of the Compton continuum (MeV)
Rest mass of an electron, 0.5 1 I 0 0 6 MeV
Efficiency of Ge detector (percent)
Standard deviation of a Gaussian pulse (MeV)
Full width of a pulse at half maximum values (MeV)
Detector gamma ray response due to photoelectric effect (""""/,)
Detector X-ray response due to photoelectric effect (co"""/w)
Detector "tailing term" response due to photoelectric effect ('o"""/w)
Detector response due to Compton effect (cou""/w)
Detector response due to "multiple Compton" effect (countc/sec)
Electronic sample and hold period of a detector (sec)

Table 3.3: Symbols used to model detector physics.

Detectable electrons are created from high-energy photons by the photoelectric effect, Compton scattering, and pair
production. In addition, the very narrow energy spectrum of a photon stream is spread out due to the thermal motion
of the crystal atoms. In the remainder of this section we let E, denote the discrete energy of a source photon stream,
and describe how to compute its detectable spectrum (symbol definitions are given in Table 3.3).

Photoelectric Effect
This occurs when a photon collides with a bound electron in the crystal, giving up all its energy to the electron,
which is knocked out of its atom. The photoelectric effect is the dominant detection process, producing a peaked
energy spectrum very close to the energy of an incoming photon stream. The fraction of photons converted by the
photoelectric process is determined by the detector's efficiency at that energy.

49

The efficiency of Ge detectors is calculated using the curve fitting models developed by Gunnink and Prindle (1 992).
Working from real data, they defined three nonlinear curves that correlate energy (measured in MeV) versus
efficiency on a log-log plot. The first curve covers energies below 90 keV and computes the “intrinsic” efficiency
from the formula

E = exd-1.5+1 .014{1n(0.9r)’}](1 -Pr{escape})

where Y is the radius of the detector (in cm), and the probability of electron escape is given by

Pr(escape} = exp[-21 .I6 -8.01n E -0.8257(1n E)’] .

Another curve covers energies above 200 keV using a six-term polynomial of the form

&=exp[a, +a,lnE+a,(lnE)’ +a,(lnE)’+as(lnE)4 +a,(lnE)’ .

The coefficients are

a, = -4.317 +0.961n(e#,,333)

a, =O.$ -(~~]-1.13-0.0871(1nV)+0.0305(lnV)’

a3 = 0.333 -0.1 154111 V + O.W9427(lnV)*
a, = -0.1456+ 0.01592lnV
a, = -0.015
as =-0.003+0.0092lnV-0.00124(lnV)’

where is the percent efficiency of the detector at 1.333 MeV (usually specified by the manufacturer), h is the
height (or width) of the cylindrical detector (in cm), and V = 0.8zr2h approximates the volume of the detector’s
crystal. The coefficient formulas above differ slightly from what was published by Gunnink (1992) because of errors
contained in the article. Correct formulas were obtained directly from Gunnink’s GRPANAL software (Gunnink et
al. 1988).

Finally, a third curve is constructed to match the first two and cover energies from 90 keV to 200 keV. This is a
simple quadratic interpolation given by

~ = e x p [l n & ? ~ +(8.092+7.55InE+1.568(1nE)’}(ln~, -In&,)],

where &zoo and &m are the intrinsic efficiencies at 200 keV and 90 keV, respectively, as calculated from the other
two pieces of the efficiency curve.

The formulas above compute the intrinsic efficiency of a Ge detector at a particular energy based on the detector’s
relative efficiency at 1.333 MeV and the size of its crystal. The intrinsic efficiency is then converted to an absolute
efficiency by multiplying by the factor 0.0012. This number is the absolute efficiency of a 3x3 NaI detector in
converting the 1.333 MeV photons coming from a Cobalt-60 source located coaxially 25 cm away from the face of
the detector. Thus, the percent efficiency rating effi.333 (defined relative to a 3x3 NaI detector) is converted back to
absolute efficiency.

The efficiency of NaI detectors is calculated from data generated off-line by the EGS4 Monte Carlo simulation
software developed at Stanford University. A table of efficiencies was generated for each specific crystal size,

50

usually covering the range of energies from 40 keV to 10 MeV. Efficiencies at intermediate energies are calculated
by QUEST using linear interpolation to a log-log plot.

For both Ge and NaI detectors it is customary to include absorption effects from other parts of the detector assembly
in the efficiency factor. Using the e”’ loss factor described in the previous section, we account for the absorption
from the metal casing of the detector and, in the case of Ge, from the “dead” layer of germanium that surrounds the
active crystal.

Photoelectric Peak Shape
The electrons generated by the photoelectric effect are actually detected over a distribution of energies due to
thermal motion of the crystal atoms. This continuous spectrum may be computed by mathematically convolving the
photon spectrum distribution with a Gaussian pulse whose width reflects the resolution of the detector. A stream of
gumma ray photons (emitted from atomic nuclei) has an extremely narrow spectrum; hence, convolution simply
gives back the Gaussian response of the detector centered at the energy of the photon. A stream of X-rays (emitted
from bound electrons) has a widened spectrum with a Lorentzian distribution; convolution gives a shaped Gaussian.

The Gaussian curve characterizing detector resolution is usually specified by its Full Width at Half Maximum
(FWHM). A general Gaussian function centered at Eo is given by

where 0 is the standard deviation (in MeV) and A is the total area under the pulse (the number of photons converted
by the photoelectric effect). The Gaussian function attains its maximum value at Eo, and the points where
f =+ f (E,,) are easily seen to be

E, t- 4- 202 In 0.5 .

Therefore,

FWHM = 2 Jm and o = FWHM 12.3548-

The detector manufacturer usually indicates FWHM at one specific energy; however FWHM actually varies with
photon energy. The variation is modeled by a simple two parameter formula:

FWHM = Jexp[k, + k, In E,] ,

where E, is photon energy (in keV), and kl and k2 are parameters described by the equations below. In a NaI detector
the user must supply the nominal width of the Gaussian at 661 keV (a strong emission line for Cesium-137). The
value is specified .as a percentage, roughly meaning the percent of a 661 keV spectrum covered by the Gaussian.
Referring to this quantity as W4,ai, the parameters for a NaI detector are:

k, = -4.2674 + 1.998 In W,,,,
k2 = 1.24.

At low energies the parameterization is less accurate, so we mandate FWHM always be at least f i = 4.47 keV.

In a Ge detector the user must provide the nominal width at 1332.48 keV (an emission line for Cobalt-60). Unlike
Nal detectors, it is given in units of keV. Calling this quantity W1333, Ge parameters are:

51

k, = -7.1884+1.99991nW,,,
k, =0.999169.

The FWHM in this case is mandated to be at least 1 .O keV.

A special correction factor is applied to the standard deviation of the Gaussian, reflecting the effects of representing
the continuous energy spectrum as a sequence of finite width channels. In the GRPANAL work (Gunnink et al.
1988, vol. 1, pp. 30-3 1) this is referred to as “Sheppard’s” correction. As in SYNTH, we use the formula:

Typically, channel width of a detector is 1 keV, and the correction is not significant for larger Gaussian widths (for
example, FWHMco,rccrcd = 1.208 when FWHM = 1 keV, but FWHMco,,c,d = 10.023 when FWHM = 10 keV). Note
that the correction becomes quite large as channel width approaches infinity, the opposite of what might be expected.
It is likely that this correction formula is appropriate only for the SYNTH fixed channel width of 1 keV.

Summarizing, to calculate the detector response due to photoelectric effects induced by a gamma ray:

O compute A = (number of source photons per second) x (absolute efficiency at E,>

O compute CF from the FWHM of the detector at E,

A the response is f , (E) = -

Photoelectric Peak Shape for X-Raw
Photons emitted by an X-ray decay process have a Lorentzian spectral distribution that can be written using the
Breit-Wiper formula:

The distribution is a symmetric pulse shape with total area equal to one. Its width is specified by r, the full width at
half maximum for this function. Following SYNTH and GRPANAL (Gunnink et al. 1988, V3, p. 128), we choose it
by the rule:

if E, 5 0.028 MeV
then r = (0.4E, - O.OOO4) 11000
else r = (1.372E, - 0.02762) / I O 0 0 .

The widths are fairly small; for instance, an X-ray photon at 90 keV has a full width at half maximum of 0.096 keV.

The detector response is given by the convolution of its Gaussian impulse response (characterized as above by d =
FWHM/2.3548) with the distribution q(E); that is,

The convolution result is known as the Voigt profile, and is approximated numerically using the formulas from work
on fitting Lorentzian peaks (Gunnink 1977) and GRPANAL (Gunnink et al. 1988, V3, p. 18 and p. 24).

52

Photoelectric Peak Tail
In addition to the Gaussian-like pulse& or&x centered on the photon’s energy, Gunnink (1 972) adds a “tailing term”
on the 1ow”energy side of Ey It’s a response given by

if E I E, (otherwise,f,(E) = 0). The special parameters in this expression are

a = exp[-2.9 + 0.44E,]
b = 1.62 * 1000
c = 0.4

(“amplitude”),
(“slope”), and
(“fold-over constants”).

The term involving b causes the tailing response to drop off exponentially as E becomes substantially less than Ey
We ignore the tail completely when exp[b(E -E,)] is smaller than machine precision; Le., when E, - E > 0.025 MeV.

Common Effect
This occurs when a photon collides with a nearly free electron in the crystal, imparting a fraction of its energy to the
electron, which can then be detected. The photon is actually annihilated and a new “scattered” photon of lower
energy is reradiated in a different direction. QUEST does not model further interactions with the scattered photons.

The fraction of photon energy acquired by the electron depends on the angle of the collision between the two
particles. The electron picks up a maximum amount of energy in a head-on collision. This is known as the Compton
energy, and has the value (see, for instance, Weidner et al. 1973, p. 123)

2E, I mc
1 + 2E, I me

E, =E,

The quantity me = 0.51 1006 MeV is the relativistic energy equivalent of an electron at rest. Photons that collide less
directly with an electron deliver less energy to it; thus, electrons from the Compton effect are detected over a range
of energies between zero and E,. The response in this is modeled from the distribution in Kopecky et al. (1967).
They define

to be the relative response from a single Compton scattering process, neglecting scattered photons. This response is
normalized to equal 1 at the Compton energy and then scaled using the peak-to-Compton ratio PCR (formally, PCR
is&(Ey> divided by the Compton response at E,). Thus, the scaled Compton response is

The peak-to-Compton ratio is calculated from heuristic formulas that depend on detector characteristics. For Ge
detectors the ratio is (EG&G Ortec 1991):

PCR = PCR,,, exp[- 0.31 9(In -&I- 0.08 l(In -&I - 0.062E;0.m’1] ,

where

PCR,,,, = 34.75 + l.068efi3,, - 0.00496efii3,

is a specific estimate of the peak-to-Compton ratio at 1.333 MeV.

For NaI detectors, a simpler model from SYNTH is used:

PCR = expfl.6 - 0.67(ln E ,)] .

Pair Production and Escaoe Peaks
If a photon has energy greater than 2m, = 1.02201 MeV, then it may create an electron-positron pair of particles in
the neighborhood of a heavy atom. The mass of the newly created particles requires exactly 2me units of energy
from the photon. If E, exceeds this value, then the remaining energy is distributed between the electron and positron
as kinetic energy, which can be detected. Thus, we observe a response at E, - 2m,, referred to in SYNTH as a
“double escape peak”. Because the created particles are subject to thermal motion in the detector, the response is the
Gaussian pulse&(@ with width FWHM that was calculated for the photoelectric effect.

A similar pair production phenomenon involving positrons generates a “single escape peak” response at E, - me (the
physics still requires that E, 2 2m,). Again, the peak is a Gaussian pulse.

The fraction of photons that create escape peaks is computed using heuristic formulas from Gunnink (1972) and
SYNTH (Hensley et al. 1994). The ratio between the maximum height of the two Gaussians is specified as

fm” - me) = expE-5.2822 + 6.238 11 In(E, -me) } - 2.2886{ In(E, - m,) }’ J
f,(E,)

Multiple Common Region
The region between E, and E, contains a low-level response described as a “multiple Compton” effect in SYNTH. It
is modeled by the empirically determined formula

+ 0.3sin(2~-
E, -E,

This function does not match the Compton response at E = E,, producing an unappealing discontinuity in the
response spectrum. Hensley computes the right side of the Gaussian impulse response at the Compton energy edge,
and chooses the multiple Compton response to be the maximum of this function or fmc. Then discontinuities are
further “smoothed” by applying a simple three-point averaging filter from E, - 10 keV to E, + 10 keV.

3.2.6 Modeling Detector Signal Processing

The processing in this section converts the continuous energy spectrum generated from the previous section into a
Channelspectrum object. The processing models energy channelization, signal amplification, and time integration.
Some of the issues have been introduced in earlier sections.

54

Channelization
A detector accumulates photon counts in a number of channels that cover a given energy range. The user specifies
the lowest energy of interest, the nominal width of each channel (also called the “gain” of the detector), and the total
number of channels. For example, 10oO channels of width 2 keV starting at 50 keV covers the energy spectrum from
50 keV to 2050 keV. In this example “channel 1” counts photons with energies over the interval [SO keV, 52 keV),
‘khannel 2” over [52 keV, 54 keV), etc.

The computations of the section above started with source Linespectrum objects at a particular time instant and
resulted in a single continuous energy distribution. The counts recorded in a given detector channel should be the
integral of this continuous distribution over the energy range covered by the channel. We approximate the
integration numerically using the trapezoid method, which makes a linear interpolation between selected sample
points of the distribution. Sample points are chosen to be uniformly separated by 1 keV or the width of the channel,
whichever is smaller.

Amplification
Signal amplification within the detector may cause a nonlinear skewing of the energy spectrum that is actually
accumulated by a channel. Following SYNTH, we model this distortion by a second-order term specified by the
user. If we let w be the nominal channel width and Eo the lowest energy recorded by the detector, then an ideal
detector would count photons in channel n over the range of energies given by

lowest - channel - energy = E,, + (n - I)w

highest - channel -energy = E, + nw .

In our model we compute channel ranges with a second-order distortion term characterized by the constant 9.
Distorted ranges are

lowest - channel -energy = [%+ n - 1)+ [%+ n- 114
W W

If 9 is negative, then the energy spectrum is shifted to the left with respect to nominal channel definitions; Le.,
channels contain counts from photons of higher energy than expected. If the distortion factor is positive, energies
shift in the other direction.

Time Integration
A detector accumulates photon counts over a sampling period, typically measured in seconds. The ChannelSpectrum
object computed at one time instant is really just one sample point with respect to an integration over time. The
numerical integration scheme is described in detail in the previous section entitled “Accounting for Source and
Detector Motion”.

3.3 MATERIAL DATABASE

The material database contains descriptions of materials that may be encountered in the QUEST virtual environment.
This description includes the density, thickness, and composition by weight of the material-information needed by
the physics model to calculate the change in photon or elementary particle spectra as these objects pass through
materials.

Error Estimate
There are several possible sources of discrepancy between the data found in the material database and the actual
densities, thicknesses, and compositions found in a particular, real world, building structure. Assuming that the
number and types of building materials found in a structure and in a data base entry are identical, the most significant
such discrepancies are due to allowed tolerances in thickness of building materials and local variations in
compositions of these materials. Tolerances on the order of a few percent are typical. For example, a brick that is
nominally 3?< thick may actually be anywhere between 34f< and 36f< thick, a 3% variation (International
Conference of Building Officials 1994). Chemical compositions of materials can vary widely depending on the
nature of locally available materials. Again using brick as an example, the percent by weight of silicon in bricks
varies from 26% to 35%, Le., by approximately one third, while other elemental compositions vary even more widely
(Brick Institute of America 1996). One can expect such variations in material compositions to introduce an
additional uncertainty of a few to ten percent in scattering amplitudes.

The inherent uncertainty of about 10% discussed in the previous paragraph sets the scale for needed precision in the
density and elemental composition of building materials. Densities will be rounded to the nearest 0.1 gm/cm3.
Elemental compositions will be rounded to the nearest 0.1 %. Correspondingly, any structural components that
affect the final density and elemental compositions by less than these amounts need not be considered.

Calculation of a Materials Data Base Entry
To calculate a material database entry for a new structure one needs to express that structure as a sum of pieces
whose composition and density are already known or can be found easily in one of the Appendices C or D. As an
example, consider a residential interior wall. A typical residential interior wall is made up of the following
components (Packard 1981):

2 x '/2" gypsum boards,
2" x 4" pine studs every 16",
I %" stainless steel nails every 8" vertically,
3W cavity (air).

It should be noted that after 1982 studs may be placed 24" apart instead of 16" apart (from conversation with local
builder and the 1994 Uniform Building Code (International Conference of Building Officials 1994)). TO complete
the materials data base entry for a standard residential interior wall, three items must be computed: 1) total thickness,
2) density, and 3) elemental composition.

3.3.1 TOTAL THICKNESS

The total thickness is computed by adding together the thicknesses of the appropriate components. In this case,

Total Thickness

Total Thickness = 4W.

= 2 x (Thickness of 1 gypsum board) + (Thickness of 2 x 4)
= 2 x (%") + (3%")

56

3.3.2 DENSTY

The total density may be computed with the following formula:

x(mass per unit area for each component) 1 Density =
Total Thickness cmpnlcni,

In this example, the gypsum boards have a density of 2.3 gm/cm3 and are 1" (or 2.54 cm) in total thickness. Their
mass per unit area (or surface density) is then,

surface density = (2.3 gm/cm3)(2.54 cm) = 5.84 ,dcm2.

The density of pine is 0.55 gm/cm3, the studs are 3%'' thick, 1 5/81' in width and placed 16" apart. Thus,

effective surface density of pine = (1%/16)(31/2")(2.54 cm/in)0.55 gm/cm3 = 0.50 gm/cm2.

The nails each weigh 1.8 gm (Packard 1981) with 2 nails for every 8" x 16" (826 cm2). The effective surface density
of the nails is then,

(3.6 gm)/(826 cm2) = 0.004 gm/cm2

The effective surface density of the nails is 0.1 % that of the gypsum boards and, based on the discussion in Section
1, can be ignored. For the air occupying the wall cavity, we have,

effective surface density = (14%/16)(31/211)(2.54 cm/in)0.0013 gm/cm3 = 0.01 gm/cm2,

which can also be neglected.

The effective density of the wall is thus,

Density = 1 (5.84,4cm2 +0.50,0m/cm2)= 0.56,4cm2.
(4.5"x2.54 ,om/in)

3.3.3 ELEMENTAL COMPOSITION

The elemental composition of a composite structure is given by a weighted average of the compositions of the
constituent pieces. The weight of each constituent is given by the ratio of the mass of that constituent to the entire
mass. For the current example, this becomes,

0 55.8% 0 43%) / o 54.7%)
ea 0 Ca 21.5
s o S 17.2

c 3.9
H 6 H 2.5

-
0 55.8% 0 54.7%

[Ca 23.3 [z [Ca 21.5 1

with the first term corresponding to the gypsum boards and the second to the pine studs. The elemental composition
of gypsum was derived from its chemical formula, CaS04-2H20, as follows:

57

Percent by weight
Element Weight (gdmole) ([previous column]/[total weight])

0
Ca
S
H

96.00 (6 x 16.00)
40.08
32.06
4.03 (4 x 1.008)

55.8
23.3
18.6
2.3

58

3.4 BACKGROUND RADIATION

In general, there are other sources of radiation in the environment besides the source objects that QUEST allows the
user to place. These other sources are lumped together and considered “background”. The character of the
background radiation depends on the sources that cause it. There is a certain distribution of radioactive elements in
the earth’s soil worldwide. Localized sources may include geological formations and man-made items such as
glazed bathroom tiles and rock gardens. In addition, radiation reaches the earth from space, predominantly from the
sun.

Within QUEST, background is specified as a source or a spectrum (or both). A background source is a regular
QUEST source, defined like other QUEST sources. Instead of being placed on a particular path, however, the
background source receives special treatment to make it appear ubiquitous. Any spectrum file in standard IEEE or
ADCAM format may also be used as a background spectrum. A background spectrum is simply added to the
spectrum developed by the normal operation of the detector. Ideally, the spectrum should have the same zero, gain
and number of channels as the detector; if it does not, it is interpolated to fit the detector.

Approach
In the first release of QUEST, localized background sources are ignored. The user is allowed to add to the
observable radiation a background spectrum that does not change with ground location. A default background
spectrum intended to approximate the radiation emitted by soil is provided, and the user is allowed to substitute
hisher own spectrum in place of it, or use no background spectrum at all.

Based on the analysis in Miller and Shebell (1993) and Helfer and Miller (1988) and knowledge of the simulation of
the detectors, the following assumptions and approximations are made:

1. The background radiation provided by the soil can be treated as a homogeneous quantity that varies only
with distance above the ground.

2. The variation caused by the angular orientation of the detector can be accounted for by multiplying the
background spectrum by a factor that depends on the detector’s orientation with respect to horizontal.

3. The mass absorption coefficient of air is less than 1 .O x 10 cm-’ at all energies of interest. This means
that attenuation by air is no more than 10% at altitudes up to 10 meters.

4. Inside a building, walls attenuate the background radiation much more strongly than the air.
5. The contribution of cosmic radiation to the background can be ignored below an altitude of 3 kilometers.
6. The spectrum of the background provided by the soil can be approximated sufficiently closely by including

its four main radioactive components and their naturally occurring daughter products in their
worldwide average distributions. The four components are %, 238U, 235U and u?h.

7. The gamma rays from the sources mentioned in (6) effect detectors over a wide range of energies. The
computation of this response is significant and should only be done once during a simulation.

Assuming that detectors will not be suspended high in the air, (4) and (3) imply that the attenuation of the
background radiation by air can be neglected. Assuming that no searches of airborne aircraft will be simulated, (5)
implies that .the contribution of cosmic radiation to the background can be ignored.

In order to accommodate (6) and (7), the default background spectrum will be provided in the form of a Source
specification. The default background source will be a point source consisting of the components mentioned in (6)
with strengths corresponding to their worldwide average distributions. The user may substitute any other Source for
the default.

The user may also specify a uniform background spectrum that is added to the ambient spectrum at all points. The
user may specify both forms of background (Source and uniform), either form, or neither. The spectrum for a
uniform background may be provided in either of two standard file formats, IEEE (Institute of Electrical and
Electronics Engineers 1993) or ADCAM. When a uniform background spectrum is specified, the user accepts
responsibility for ensuring its compatibility with specific detectors.

59

Software Considerations
A Background object will be created by the GUI and made part of the Scenario object controlling the simulation run.
The object describes the background radiation in the simulated environment. If the user specifies a background
Source object, the Background object will record its name. If the user specifies a uniform background spectrum, the
Background object in the GUI will read the indicated file to make sure it is valid but will not retain its contents. A
Background object residing in the TP will read the file and retain its contents for use in the simulation.

If a uniform background spectrum is used, it will be kept in the Background object in the form of a Channelspectrum
object. In order to be usable by a particular detector, the channel spectrum’s characteristics (zero, gain, number of
channels) must match those of the detector. To accornpIish this, each detector will create its own Background object.
If the characteristics of the spectrum in the specified IEEE or ADCAM file do not match those of the detector, the
Background object will adjust them as best it can. It will perform this conversion as soon as it learns the detector’s
characteristics, namely the first time the detector asks it to add the background contribution to one of the detector’s
channel spectra. If any fundamental incompatibility is discovered between the characteristics of the detector and
those of the uniform background spectrum, a warning message will be given, but the background spectrum will be
used anyway.

ODerations
A Background object may be created with the following operations:

Background (void) ;
Background (const Background&);

The CUI uses the first form to create the Background object that is part of the Scenario. A Detector uses the second
form to create its own Background object.

The operations

RWBoolean source (RWCString name);
RWCString source (void) ;

are used to set and fetch the name of a Source object which is to be used to supply background radiation. The CUI
uses the first operation to set the name, and the PBE (the Detector which owns the Background object) uses the
second operation to fetch the name. Related operations are

RWBoolean backgroundFromSource (RWBoolean enable);
RWBoolean backgroundFromSource (void);

The first operation causes the source named in the source operation to be used to provide background radiation if its
argument is TRUE and causes it not to be used if its argument is FALSE. Initially, the background source is
disabled, so a named source will not be used until it is enabled with a backgroundFromSource operation with TRUE
argument. The second operation returns TRUE if the background source is enabled and FALSE if it is not.

The operations

RWBoolean spectrWameAndType (RWCString name, RWCString type) ;
RWCString spectrumName (void);
RWCString spectrumType (void);

are used to set and fetch the name and type of the file containing the spectrum to be used to supply uniform
background radiation. The spectrumNameAndType operation sets the name and type. The types recognized are
“IEEE’ and “ADCAM”. The operation returns a false value if the name is null or the type is not one of the
recognized types. The other two operations return the name of the spectrum file and its type, respectively. The
operations

60

RWBoolean spectrumMultiplier (float multiplier);
float spectrumMultiplier (void) ;

set and fetch a factor by which the uniform background spectrum is multiplied. The first operation always returns
TRUE.

Like the background source, the uniform background spectrum may be enabled and disabled. The operations

RWBoolean backgroundFromSpectrum (RWBoolean enable);
RWBoolean backgroundFromSpectrum (void);

are used for the purpose. The first operation causes the spectrum file source named in the spectrum operation to be
used to provide background radiation if its argument is TRUE and causes it not to be used if its argument is FALSE.
The operation always returns a TRUE value. Initially, the background spectrum file is disabled, so a named
spectrum file will not be used until it is enabled with a backgroundFromSpectrum operation with TRUE argument.
The second operation returns TRUE if the background spectrum file is enabled and FALSE if it is not.

The operation

RWBoolean complete (void) ;

returns TRUE if the Background object has a usable set of parameters and FALSE otherwise. To have a usable set
of parameters, it must have a complete set of source parameters and a complete set of spectrum parameters. The
source parameters are considered complete if the source is disabled, or if it is enabled and the source name is non-
null. The spectrum parameters are considered complete if the spectrum is disabled, or if the spectrum is enabled, the
spectrum name is non-null and the spectrum file has been validated. Validation of a spectrum file consists of making
sure it exists and is readable as a file of the type given by the spectrum type parameter. Validation is done only if
necessary, as soon as possible and not more than once per spectrum name. It is deemed necessary as soon as the
spectrum is enabled and there is a non-null spectrum name. Thus it may be done when the spectrum is enabled with
the backgromdFromSpectrum operation or when the spectrum name and type are specified with the
SpectrumNameAndType operation. If it fails when it is done, it causes the operation that provoked it to return a false
value. It is not done again unless another spectrum name is specified with the SpectrumNameAndType operation.

The operation

void addBackground (Channelspectrum&) ;

is used by the Detector which owns the Background object to add in the contribution of a uniform background
spectrum. If the background spectrum is not enabled, the operation has no effect. It is up to the Detector object to
develop and add in the effects of the background source, if one is enabled.

61

3.5 COMPONENT DATABASE

The purpose of the Component Database (CDB) is the representation of physical structures (e.g., buildings and their
subcomponents) in a QUEST virtual environment. Two particular requirements are placed on the CDB: it must be
possible for the user to select subparts of the structures for manipulation (the various types of manipulation are
described below); and it must be possible to compute the interaction of gamma rays and streams of elementary
particles within the structures.

Data Structures
Every physical structure can be thought of as made up of components that stand in a hierarchical relationship to one
another. A structure is a component that is made of subparts that are components, and so forth. During a quest run,
all the structures in the QUEST environment are represented by a single component tree, which expresses the
structural relationships, and one or more binary space partitioning (BSP) trees, which support the computation of the
structure’s interactions with streams of photons or other particles.

The component tree is implemented as an object of C++ class Component. The Component object provides all the
services associated with the CDB and can be used by itself, which is useful in testing. In the QUEST system,
however, it is used through the interprocess communication mechanism. Two associated C++ classes are required,
ComponentServer, which is derived from Component, and ComponentClient. The Component object lies in the
QUEST Physics Back End (PBE) process, along with a Componentserver object. There may be any number of
objects of type ComponentCIient. Each pro,- which requests services of the CDB has a ComponentClient object
through which it makes those requests. The ComponentClient object relays a request to the ComponentServer object
in the PBE, which calls upon the Component object to perform it. After the operation is done, the ComponentServer
object returns a response to the ComponentClient object. Interprocess communication and client-server interaction
are described in Section 3.6. Each BSP tree is implemented as an object of C++ class BSP. Objects of class BSP
are used only by the Component object.

The Component Tree
The component tree has several different types of nodes. Some of the nodes contain the structure’s geometry; other
nodes represent attributes of the structure, such as its color or composite material.

The component tree can be described by the following expression in Backus Normal Form (BNF) (Aho and Ullman
1972):

Component = {

I

1
I
I
I

1

Geometry
startSubcomponent Component
endSubcomponent
Attribute
Transform
label
reference

Geometry = (vector I vector } I polygon { pc.jgon

Transform = (scaling I rotation I translation)

Attribute = (PhysicalAttribute I groupName)

PhysicalAttribute = (materialName I paintcolor I paintTransparency I thickness)

62

The nonterminal (further defined) elements start with a capital letter and the terminal elements with a lower-case
letter. The hierarchical nature of the structure is reflected in the recursive definition of Component. As the
definition shows, every branching node in the tree together with its descendants can be thought of as a component.

Structural ComDonent Groupings
The group names mentioned in the BNF definition of Component are Structural Component Grouping (SCG) names.
SCGs are a hierarchy of names with which attributes are associated (see Section 3.5.2). The SCG hierarchy and the
attributes associated with the groupings are recorded in the SCG file. The user may provide a custom SCG file for
each run, and may modify the SCGs in setting up the run (operations for doing so are given below). A default SCG
file is provided; if not even the default file is used, a single group named "DEFAULT" is always defined. The use of
SCGs in connection with structures is explained below.

The OUEST Structure File
The component tree that is constructed for a QUEST run is read from one or more QUEST Structure Files (QSF). A
QSF represents a component; such a component is called an external component. Every structure used in QUEST is
initially defined in an AutoCAD DXF file (AutoDesk 1990). The process of converting a DXF file to a QSF file is
called installing the file. During this conversion, DXF layer names are interpreted as group names and DXF layer
colors are interpreted as paint colors. Any layer'names not present in the SCG file are treated as first-level groups
(descendants of the default group) and given the default group's attributes:

The format of a QSF file is a subset of the Virtual Reality Modeling Language (VRML) format (Bell et al. 1995).
VRML is an ASCII file format patterned after the Silicon Graphics Open Inventor file format (Wernecke 1994). For
the purpose of storing it in a file, the hierarchy of the component tree must be flattened out into a one-dimensional
form. Examples of such flattened hierarchies are the display Iists of many graphics controflers, the DXF and Open
Inventor file formats and VRML. NFF (Sense 8 Corporation 1995), used by World ToolKit, is not such a format,
since it has only three levels of hierarchy (entire file, NFF group and NFF object). It is desirable to use a standard
format to make it possible to use our structures with other packages. It might be possible to extend NFF to have the
required capability, but then it would no longer be standard. VRML already has all the needed features; besides the
usual geometry and appearance features, it allows informational nodes and self-defining nodes, which are useful for
Structural Component Groupings (and for any unpredictable future requirements). DXF is overly complex and does
not have self-defining nodes. Open Inventor (01) does not have informational or self-defining nodes, but allows the
user to define his own types as descendants of 01 types; however, the user must also supply the code to read and
write the new types and integrate the code with the 01 file reading and writing programs. VRML appears to provide
the simplest choice that is both adequate and standard.

3.5.1 BINARY SPACE PARTITION TREES

Each Binary Space Partition (BSP) tree represents the same geometry as some subcomponent of the component tree
but in a fashion optimized for rapid spatial searching. A BSP tree may be created for any subcomponent of the tree.
It is created by explicit user request (see below). If the subcomponent for which a BSP tree is created has
subcomponents that already have BSP trees, the polygons of those components are not included in the new BSP tree.
When a spatial search is done, all existing BSP trees are searched.

A BSP tree is built one polygon at a time. Before being placed in the BSP tree, the polygon is "reconditioned" to
remove irregularities. Any figure that has less than three vertices or is nonplanar is thrown out. Successive collinear
vertices are removed. If the sides of the polygon intersect, the figure is broken up into polygons with non-
intersecting sides. Finally, if a polygon is concave, it is converted into triangles, which are perforce convex. The
triangularization code used in this version of QUEST originated at Evans and Sutherland and was obtained from the
Graphics Research and Analysis Facility at NASA's Johnson Space Center.

BSP trees are heavy users of storage. In order to cut down fragmentation, vectors (vertices) are allocated in
"chunks" in an object of the Pool class. Each BSP tree has its own vector pool, which is created with it, grows with
it and is destroyed with it.

63

Creating a Structure
A new component tree is created by the sequence of operations

clear { Component 3

where clear is defined as

void clear (void);

and Component is one of the following operations:

void startvectors (void);
typedef struct Vector {

I Vector;
void vector (int Nvectors, Vector *v);
void vector (Vector v);
int polygon (int Nvertices, int *vectorIndex);
int polygon (int Nvertices, int *vectorIndex, Vector normal);
void group (char *groupName);
void material (char *matName) :

void paintcolor (float color [RGBsize]);

void thickness (float thick);
void label (char *text);

float x [41;

const int RGBsize = 3;

void paintTransparency (float trans);

int startsubcomponent (void);
int startSubcomponent (char *name);

void endsubcomponent (void);
int reference (char *name);
void scale (Vector scale);
void translate (Vector translation);
void rotate (Vector axis, float rotation);
typedef struct Matrix4x4 {

} Matrix4x4;
void transform (Matrix4x4 transformation);

float elements [41 [41;

Note that there is one operation for every terminal in the BNF definition o Zomponent. Each o :he above operation
(except clear) creates a node of the component tree. Each node has a unique identifier known as its position number.
Each of the above operations above operations places a node at the current position of the component tree and
defines that node as the new current position. Certain operation place nodes at given positions in the component
tree, specified by a position number:

int startSubcomponent (int positionNumber);
int startsubcomponent (int positionNumber, char *name);
void scale (int positionNumber, Vector scale);
void translate (int positionNumber, Vector translation);
void rotate (int positionNwnber, Vector axis, float rotation);
void transform (int positionNumber, Matrix4x4 transformation);

If the node with the given position number is a subcomponent node, the new node is made its descendant; otherwise,
the new node is made the descendant of the parent of the node with the given positiodnumber.

Unless the component tree is empty, a current node is always defined. The position number of the current node is
returned by the operation

int current (void);

(If the component tree is empty, it returns zero.) The current node may be changed by means of the operations

64

int makecurrent (int positionNunber);
int makeRootCurrent (void);

If the given position number describes an existing node, the makecurrent operation makes that node current,
otherwise it leaves the current node unchanged; in any case, it returns the position number of the current node at the
conclusion of the operation. The makeRootCurrent operation makes the root node of the component tree the current
node and returns its position number (or zero if the component tree is empty).

As the operations are performed, the component tree is constructed. A state value is associated with every location
in the component tree. The state value contains

O a vector sequence

O a complete set of attributes, including
a geometric transformation

a material
a paintcolor
a paintTransparency
a thickness
a goup name

alabel

Initially, the vector sequence is empty, the transformation is the identity transformation, the material is the default
material, the paintcolor, paintTransparency and thickness are those associated with the default material, and the
group is the default (root) group.

The state value is inherited. That is, it continues to be in effect at subsequently defined nodes of the tree unless it is
explicitly replaced (overridden), with the exception that any state changes made within a subcomponent do not affect
anything outside that subcomponent (as if the state value were pushed on entry to a subcomponent and popped on
exit from it). A vector, group, label, color, transparency or thickness node merely overrides the previous value of the
respective type in the state; a transformation node is composed with the transformation value in the state by pre-
multiplication.

Once a component tree is created, it may be stored to disk with the operation

int store (char *filename, char *path, char *fullname, char *description);

A description of each of the above operations follows.

The clear operation creates an empty component tree.

The startvector operation defines a new vector sequence. Subsequent vector operations append vectors to the vector
sequence. The sfurtVector operation inserts a node at the current position of the component tree to contain the
vectors.

The polygon operation includes a polygon node at the current position in the component tree. The vectorindex
argument in the polygon operation contains indices refemng to the current vector sequence. There are two types of
polygons. The first type is considered to have a thickness (of a certain material; see below) and the second type is
considered to connote entry into or exit from a material. The second type requires a normal, which is given by the
normal argument of the polygon operation. By convention, the normal points outward, out of the material. The
integer value returned by polygon is TRUE if the polygon is valid; an invalid polygon is not inserted into the
component tree, and a zero value is returned. Although there are many ways a polygon can be invalid, the only
validity check that is done is to verify that the vector indices actually lie within the current vector sequence.

The group operation includes a group node containing the groupName argument at the current position of the
component tree. The groupName string is interpreted as the name of a structural component grouping (see Section
3.5.2).

The material operation includes a material node containing the matName argument at the current position in the
component tree. The matName string is interpreted as the name of a material in the Material Database (see Section
3.3).

The paintColor operation inserts a color node at the current position of the component tree. The argument of
paintColor gives RGB color components as values in the range [0,1], where 0 means none of the primary color is
present and 1 means the maximum amount of the primary color is present.

The paintTransparency operation inserts a transparency node at the current position of the component tree. The
argument gives the transparency as a value in the range [0,1], where 1 means completely transparent and 0 means
completely opaque.

The thickness operation inserts a thickness node at the current position of the component tree. The argument gives
the thickness of the material in inches.

The label operation places an arbitrary text string at the current position in the tree.

The startSubcomponent operation appends a branching node to the tree structure. All nodes appended until the next
endSubcomponent are descendants of the branching node. The subcomponent may be given a name that can be used
in the reference operation and the findSubcomponent operation (see below). The startSubcomponent operation
returns the position number of the new branching node.

The translate, rotate and scale operations specify the named transformations in an obvious fashion (the rotation is
counter-clockwise and given in radians). The operations are composed (premultiplied) with the existing
transformation in the current state value to form the transformation value active at the current position in the
component tree. If there is already a transformation node in the current subcomponent, it is modified by this
operation; if there is not, a new transformation node is inserted.

The transform operation gives a four by four transformation mamx that may express a combination of translation,
rotation and scaling. It is postmultiplied with the existing transformation in the current state value to form the
transformation value active at the current position in the component tree. If there is already a transformation node in
the current subcomponent, it is modified by this operation; if there is not, a new transformation node is inserted.

The forms of the translate, rotate, scale and transform operations which specify position number also return the
position number of the new or modified transformation node. The difference between the premultiplication of the
translate, rotate and scale operations and the postmultiplication of the transfonn operation is significant.

The store operation stores the component as a QSF file under the file namefilename.qsf. The file name may be a
maximum of eight characters in length. The file is stored in the directory specified by the path argument. If path is
null, the file is stored in the current directory. By convention, the component has a full name that may be up to 256
characters; this name is supplied by thefullname argument. Also by convention, the file contains a description that
may be of any len,gh; this description is supplied by the description argument, and it may contain newline characters.
If the file already contains a full name (as it would if read with the load operation; see below), the given full name
replaces it unless it is null, in which case the old full name remains; a similar remark applies to the description. The
operation returns TRUE if the file was stored successfully.

A subcomponent node is the root of a structure that has the same form as the component tree. Such a structure may
be considered to be an internal component. An internal component may be given a name in the startSubcomponent
operation. As mentioned above, a component stored as a QSF file is called an external component. The reference
operation includes a reference to an internal or external component, which it specifies by name. The referenced
component must already exist as an external component (Le., as a QSF file) or as an internal component already

66

defined and named in the component tree. Referring to the component has the same effect as adding a
subcomponent that contains the referenced component (it is the same as if the component were defined "inline"). If
the same name is used for more than one internal component, the reference operation is taken to refer to the most
recently defined one. By using the name of an external component, a QSF file's contents can be included at the
current position in the component tree. The reference operation returns the position number of the new reference
node or zero if the referenced component is not defined. The component data structure must be acyclic, that is, a
component must not refer to itself or to a component which refers directly or indirectly to the first component. It
may not always be possible for the software to verify that this restriction is obeyed, but all bets are off if it is
violated.

Loading a Structure
An existing external component may be loaded with the operation

int load (char *filename, char *path, int external);
int load (int positionNurnber, char *filename, char *path, int external);

If a load is done immediately after a clear, the component is made the root component; the component tree in
memory is then identical to the component tree which existed at the time the file was written to disk. In general, the
first form of the operation creates a new subcomponent node at the current position in the component tree and makes
that node the root of the loaded component; the second form put the subcomponent node at the given position. The
filename argument gives a file name which may be a maximum of eight characters to which the suffix ".qsf" is
appended before reading the file. The path argument gives the directory in which to look for the file and may be
null, in which case the current directory is used. If the exreml ar=,oument is FALSE, the contents of the QSF file
appears in the component tree; if the external argument is TRUE, the component tree contains only a symbolic
reference to the QSF file. The second option (external argument TRUE) is not used in the QUEST system. The
load operation returns the position number of the root node of the loaded component if the file was loaded
successfully and zero otherwise. Another form of the load operation

int loadDXF (char *filename, char *path);
int loadDXF (int positionNumber, char *filename, char *path);

is used to load a DXF file and convert it to an internal component. To be susceptible to such a treatment, the DXF
file must satisfy certain criteria; see Structure Creation in Appendix B.

Reading a Structure
All the elements of the Component tree can be read in sequence with the operations

start { nextElement }

where the operations are defined as

void start (void);
void start (int positionNumber);
int nextElement (ComponentElement *elem, int *endOfSubcomponent);

The first form of the srart operation causes the subsequent nexrElement operations to start at the beginning of the
component tree. The second form causes them to begin at the node with the given position number.

The nextElernent operation remeves the next element of the component tree. If the first form of the start operation is
used, the nextElement operation ranges over the entire tree. If the second form of the start operation is used, the
nextElement operation is resmcted to the subtree specified by the start operation's argument (if the given position
number is that of a subcomponent node, it is the root node of the subtree which is searched; otherwise, the given
node's parent is the root of the subtree which is searched). The type of the first argument is defined as

class ComponentElement {
public :

int id;

ComponentElemType type;
union {

struct {
int N;
Vector *vectors;

3 vectors;
QPolygon polygon;
Matrix4x4 *transformation;
char *groupName;
char *materialName;
char *label;
float color [RGBsize];
float thickness ;
float transparency;
struct {

char *name;
int external;

3 subcomponent;
struct {

char *name;
int id;

1 reference; / / C-REFERENCE
3 u;

ComponentElement (void) { type = C-NOTYPE; }
-ComponentElement (void);

3 ;

/ / C-VECTORS
/ / C-POLYGON
/ / C-TRANSFORMATION
/ / C-GROUP
/ / C-MATERIAL
/ / C-LABEL

/ / C-THICKNESS
/ / C-TRANSPARENCY

/ / C-COLOR

/ / C-SUBCOMPONENT

ComponentElemType is the enumeration

enum ComponentElemType {
C-VECTORS ,
C-POLYGON,
C-SUBCOMPONENT ,
C-MATERIAL ,
C-GROUP ,
C-COLOR,
C-THICKNESS,
C-TRANSPARENCY,
C-TRANSFORMATION ,
C-REFERENCE,
C-LABEL

I ;

QPolygon is defined as

typedef struct Polygon {
int Nvertices;
int *vertices;
Vector *normal;

1 Polygon;

where the vertices field contains indices into the current vector sequence.

The elements will be retrieved in approximately the same order in which they were specified when the component
was created using the operations in the previous section, Creating a Structure. The unique position number
associated with every node in the component tree is returned in the positionNumber field of the component element.
A component element of type C-VECTORS returns the vectors in the vector sequence. It corresponds to the calls to
sturtvectors and the subsequent calls to vector. An element of type of C-POLYGON corresponds to a call to
polygon and is accompanied by an element of type Polygon. An element of type C-SUBCOMPONENT
corresponds to a call to staPtSubcomponent and is accompanied by the subcomponent element. The subcomponent
element contains the name of the subcomponent (if it has one) and an indicator which is TRUE is it is an external
subcomponent. Each call to nextElement returns an endOfSubcompoaent indicator which contains the number of
subcomponents (if any) that end at that point. An element of type of C-MATERIAL corresponds to a call to

68

material and is accompanied by the materialName element. A component type of C-TRANSFORMATION
corresponds to calls to translate, rotate, scale and transform. The transformations are combined into one
transformation whenever possible, and the transformation is represented by a homogeneous matrix. An element of
type C-REFERENCE corresponds to a call to reference and is accompanied by an element containing the name and
position number of the referenced component and an indicator which is TRUE if it is an external component. (Note
that the elements of the referenced component are not retrieved by calls to nextElement.) An element of type
C-LABEL corresponds to a call to label and is accompanied by an element containing the label text.

The nextElement operation returns TRUE when a component eIement is returned and FALSE when the subtree
specified by the start operation is exhausted. The various pointer fields, if not NULL, are allocated on the heap and
must be freed by the caller (they are the vectors. vectors, polygon. vertices, polygon.normuL, groupNume,
materialName, label and subcomponent.name fields).

The start and nextELement operations described above allow the component tree to be read sequentially. The
following two operations allow it to be read in a random access fashion:

int getElement (ComponentElement *elem, int *endOfSubcomponent);
int getElement (int positionNumber, ComponentElement *elem,

int *endOfSubcomponent);

The first version of the getElement operation returns the element at the current position of the component tree. If
there is no tree or if the current position is past the end of the tree, if returns FALSE. The second version returns the
element at the given position; it returns FALSE if there is no element with the given number. The
endOjSubcomponent argument has the same meaning as for nextElement. After a getElement operation, nextElement
may be used to read elements sequentially starting with the element after the one read by getElement.

An operation which is similar to nextElement but which returns only polygon nodes is

int nextElementaryComponent (ElementaryComponent *component)

where ElementaryComponent is defined as

class ElementaryComponent {
public :

int id; / /
int surface: / /
int Nvertices; / /
Vector *vertices; / /
Vector normal; / /
char *groupName; / /
char *materialName; / /
float color [RGBsizel; / /
float thickness; / /
float transparency; / /
int tag; / /
ElementaryComponent (void) ;
-El emen tarycomponen t (void) ;

1;

unique identifier
TRUE if has no thickness
number of vertices of polygon
the vertices
normal to the polygon
component's group
component ' s material
component's color
component's thickness
component's transparency
unique QSF identifier

The id field is the unique identifier (position number) of the polygon node. The surface field is TRUE if the polygon
represents a surface element which is not regarded as having thickness and FALSE if it represents an element
regarded as having thickness. The Nvertices field gives the number of vertices in the polygon, and the vertices field
is a vector amy containing the vertices, in order. The normal field contains a unit vector normal to the polygon. If
the polygon represents an element with thickness, the normal vector points outward, away from the thickness of the
element. The groupName, materialName, color, thickness and transparency fields give the attributes which are in
force at the element. The tag gives a way of associating the elementary component (the polygon) with the QSF file
(if any) in which it originated; the tag is the position number of the root node in the component tree that corresponds

69

to the QSF file (see the Zoad operation above). A sequence of elementary components may be fetched with the
sequence

start { nextElementaryComponent }

The nextElementatyComponent operation returns TRUE when a component is returned and FALSE when the subtree
specified by the start operation is exhausted.

A similar operation that returns only the root nodes that correspond to QSF files is

int nextFileComponent (int *id, char **name, int *parentId);

The id argument is the position number of the root node of the subcomponent corresponding to the QSF file, the
name argument is the subcomponent's name, and the parentld is the position number of the subcomponent's parent
node. If there is no parent, the parent id is zero. A sequence of file components may be fetched with the sequence

start { nextFileComponent }

The nextFileComponent operation returns TRUE when a component is returned and FALSE when the subtree
specified by the start operation is exhausted.

Selectin!! SubDarts of a Structure
There are two ways that subparts of a structure can be selected, by structure and by attribute. Various operations are
provided to support structural and attribute selection.

Structural selection designates a particular node; the node is considered selected and is called the selected element.
The smallest selectable element contains a single polygon and is called an elementary component or eComp for
short. When a DXF file is converted and loaded (see above), an eComp is created for each polygon of the DXF
input file.

Attribute selection designates all elementary components that possess a particular set of attributes (group, material,
paintcolor, paintTransparency, or thickness); those subcomponents are considered to be selected and are called the
current attribute-selected elements. The set of attributes used for selection may contain at most one group, at most
one material, at most one paintcolor range, at most one paintTransparency range, and at most one thickness range.
The current attribute-selected elements are those which belong to the selected group (if any), have the selected
material (if any), have the selected paintcolor (if any), fall in the selected paintTransparency range (if any) and fall
in the selected thickness range (if any). SCG inheritance holds with respect to the selected group, so an element is
selected by group if its group is a descendant of the selected group.

Provided the component tree is not empty, there is always a selected element (initially the root) and always a set of
attribute-selected elements (initially empty).

The purpose of selecting elements is to manipulate them in some fashion, perhaps to change their attributes. It is
possible to apply operations to the selected elements (see the next section), either to those selected structurally or to
those selected by attribute. It is also possible to apply operations to the intersection of the current subcomponent and
the current attribute-selected elements.

When operations are applied to attribute-selected elements or to the intersection of the current subcomponent and the
current attributed elements, they are applied to each eComp in the set. When operations are applied to suucturally-
selected elements, they can be applied in two fashions, either to each eComp (as with attribute-selected elements) or
at the current position in the structure. Normally, attribute changes are applied to each eComp and transform
changes are applied at the current position. Attribute changes may also be applied at the current position, but doing
so is inherently trickier than applying them to each eComp; the affect they have on eComps then depends on
inheritance and on whether they are ovemdden further down in the subcomponent.

70

The operations that support structural selection are:

int select (int positionNumber) ;
int selectRoot (void) ;
int up (void);
int down (void);
int selected (void) ;

The select operation sets the selected element. If the argument is a valid (existing) position number, it is made the
selected node; in any case, the position number of the currently selected node is returned. The selectRoot operation
makes the root the currently selected node and returns its position number (or zero if there is no component tree).
The up operation moves the current component to the parent of the current node and returns its position number (if
the current element is the root, it remains the root). The down operation undoes the effect of the last previous up
operation (provided there has been an up operation since the last select operation) and returns the position number of
the new current element (if there is no up operation to be undone, the current element remains as it is). The selected
operation returns the position number of the current element.

The operations that support attribute selection are given below.

void selectGroup (char *groupName);
void resetSelectedGroup (void);
char *selectedGroup (void);

The selectGroup operation sets the currently selected group name. The resetSelectedGroup operation makes the
attribute selection set contain no group. The selectedGroup operation returns the name of the currently selected
group (NULL if none); the character string (if not NULL) is allocated on the heap and must be deleted by the user.

void selectMateria1 (char *materialName);
void resetSelectedMateria1 (void);
char *selectematerial (void);

The selectMaterial operation sets the currently selected material. The resetSelectedMateria1 operation makes the
attribute selection set contain no material. The selectedMateriu1 operation returns the name of the currently selected
material (NULL if none); the character string (if not NULL) is allocated on the heap and must be deleted by the user.

const int RGBsize = 3;
void selectPaintColor (float low [RGBsize], float high [RGBsize]);
void resetSelectedPaintColor (void);
int selectedPaintColor (float low [RGBsize], float high [RGBsize]);

The selectPaintColor operation sets the currently selected paint color range. The resetSelectedPaintColor operation
makes the attribute selection set contain no paint color. The selectedPuintColor operation returns the currently
selected paint color; it returns TRUE if there is one and FALSE otherwise.

void SelectPaintTransparency (float lo, float hi);
void resetSelectedPaintTransparency (void);
int SelectedPaintTransparency (float *lo, float *hi);

The seZectPuintTransparency operation sets the currently selected paint transparency range. The
resetSelectedPaintTransparency operation makes the attribute selection set contain no paint transparency. The
selectedPaintTransparency operation returns the currently selected paint transparency range; it returns TRUE if
there is one and FALSE otherwise.

void selectThickness (float lo, float hi);
void resetSelectedThickness (void) ;
int selectedThickness (float *lo, float *hi);

71

The selectThickness operation sets the currently selected thickness range. The resetSelectedThickness operation
makes the attribute selection set contain no thickness. The selectedPaintTransparency operation returns the
currently selected thickness range; it returns TRUE if there is one and FALSE otherwise.

The entire attribute selection set can be set, emptied or queried with the operations

void selectAttributes (Selectionset selected);
void resetSelectedAttributes (void);
void selecteattributes (Selectionset *selected);

where Selectionset is defined as

typedef struct Selectionset {
char *groupName;
char *materialName;
struct I

int selected;
float low [RGBsizel ;
float high [RGBsize] ;

1 colorRange;
struct {

int selected;
float low;
float high;

1 thicknessRange;
struct {

int selected;
float low;
float high;

1 transparencyfiange;
} Selectionset;

The group name and material are considered to be in the selection set if the groupName and materialName fields,
respectively, are non-NULL. The other attributes are considered to lie in the set if their selected booleans are TRUE.

The operations

int nextSelectedElement (void);
int nextSelectedElement (ComponentElement "element);
void StartSelectedElements (void);
int getSelectedElements (int *N, int **positionNumbers);

are used to obtain the selected elementary components. The two forms of the nextSelectedElement operation return
them one at a time. The first form returns the identifier of the next selected component or zero if the selected
components are exhausted. The second form retrieves the next selected component itself and returns TRUE, or
returns FALSE if the selected components are exhausted. The startSe1ectedElement.s operation restarts the sequence
of elements returned by nextSelectElernent to the beginning. The getSelectedElements operation returns all the
selected elements together. The positionNumbers array is allocated on the heap and must be deleted by the client.

The above operations can be used to return the attribute-selected elementary components, the structurally selected
elementary components, or the intersection of the two. If the attribute selection set is empty, all components satisfy
the attribute selection criteria. If the current component is an elementary component, it is the only structurally
selected component; if the current component is a subcomponent, all elementary components contained in it are
considered to be structurally selected. If selection intersection is turned on, the above operations return the
intersection of the structurally selected and the attributed selected elements. Selection intersection can be turned on
and off by the operation

int selectIntersection (int on);

72

If the on argument is TRUE, selection intersection is turned on and it if is FALSE, it is turned off. The operation
returns the previous value of the selection intersection indicator. The operation

int intersectionselected (void);

can be used to return the current value of the selection intersection indicator. To summarize, if the attribute selection
set is empty, only the structurally selected elements are returned. If the attribute selection set is not empty and
selection intersection is off, only the attribute-selected elements are returned. If the attribute selection set is not
empty and selection intersection is on, those attribute-selected elements that lie within the current component are
returned.

Attribute Retrieval
The attributes of a component can be retrieved by means of the operation

char *getGroup (int positionNumber);
char *getGroup (void);
char "gematerial (int positionNumber);
char *gematerial (void) ;
void getpaintcolor (int positionNumber, float color [RGBsizel);
void getPaintColor (float color [RGBsize]);
float getPaintTransparency (int positionNumber);
float getPaintTransparency (void);
float getThickness (int positionNder) ;
float getThickness (void) ;
void getPhysicalAttributes (int positionNumber,

char **materialName,
float paintcolor [RGBsize],
float *paintTransparency,
float *thickness);

float paintcolor [RGBsizel,
float *paintTransparency,
float *thickness);

void getPhysicalAttributes (char **materialName,

void getvectors (int *Nvectors, Vector *vectors);
void getvectors (int positionNumber, int *Nvectors, Vector *vectors);

The returned strings are allocated on the heap and must be deleted by the caller. The getvectors operations return
the vector sequence at the current position or the position indicated by the position number argument. The vectors
are allocated on the heap and must be deleted by the caller.

Related operations are

int centroid (Vector *v);
int centroid (int positionNumber, Vector *VI;

The first form of the operation computes the geometric centroid of the current subcomponent, and the second form
computes the centroid of a given subcomponent. The current (given) subcomponent is the smallest subcomponent
containing the current (given) node.

Altering a Structure
As mentioned above, the purpose of selecting components is to be able to alter them. Several operations are
provided for altering the attributes of the selected elements:

void changeGroupAllSelected (char *groupName);
void ChangeMaterialAllSelected (char *materialName);
void changePaintColorAllSelected (float color [RGBsize]);
void changePaintTransparencyAllSelected (float transparency);
void changeThicknessAllSelected (float thickness);

73

The changeGroupAllSeLected, changeMaterialAllSeLected, changePaintColorAlLSeLected, ChangePaintTransparen-
cyAllSelected and changeThicknessAllSelected operations change, respectively, the group name attribute, the
material attribute, the paint color attribute, the paint transparency attribute, and the thickness attribute of all selected
elementary components. A set of attributes can be changed all at once with the operation

void changeAttributesAllSelected (Attributeset attributes) ;

where Attributeset is defined as

typedef struct Attributeset {
char *groupName;
char *materialName;
struct {

int present;
float value [RGBsize] :

3 color;
struct {

int present;
float value;

} transparency;
struct {

int present;
float value;

1 thickness;
1 Attributeset;

The group name attribute is considered to be in the set if the groupName field is non-NULL, and likewise with the
material attribute and the PnateriafName field. Note that no check is made to verify that the group name is currently
the name of a structural component grouping or that the material name can currently be found in the material
database (see Section 3.3). The other attributes are considered to be in the set if their present Boolean is TRUE.

The component tree can also be modified by inserting or altering nodes at the current position in the component tree
by using the operations defined above in the section titled Creating a Structure, namely

void startvectors (void);
void vector (int Nvectors, Vectors *v);
void vector (Vector v);
int polygon (int Nvertices, int *vectorIndex) :
int polygon (int Nvertices, int *vectorIndex, Vector normal);
void group (char *groupName);
void material (char *matName);
void paintcolor (float color [RGBsizel);
void paintTransparency (float trans);
void thickness (float thick);
void label (char *text);
int StartSubcomponent (void);
int startsubcomponent (char *name);
void endsubcomponent (void);
int reference (char *name);
void scale (Vector scale);
void translate (Vector translation);
void rotate (Vector axis, float rotation);
void transform (Matrix4x4 transformation);

These operations insert nodes only when necessary. The transformation operations (translate, rotate, scale and
transform) in effect compose the appropriate transformation with the cumulative transformation at the current
position. A vector operation adds vectors to the current vector sequence node is there is one (if there is not, a
startvectors operation may be used to start one). The group, material, paintColor, paintTransparency and thickness
operations merely alter the node of the appropriate type if there is one present in the current subcomponent and insert
one if there is not. The polygon, label, reference, startvectors and startSubcomponent operations always insert a
new node.

74

Removino Elements
Operations are provided for removing parts of the component tree:

int
int
int
int
int
int
int
int
int
int
int

removeSubcomponent (void) :
removeLabe1 (void) ;
removeTransformatiOn (void) ;
removevectors (void);
removepolygon (void);
removeReference (void) ;
removeGroupName (void) ;
removeMa t er ialName (void) ;
removepaintcolor (void) ;
removePaintTransparency (void);
removeThickness (void);

Separate operations are provided for the different node types as a security measure, to make it more likely that the
user is removing what he or she thinks she or he is. The above operations remove the node of the appropriate type at
the current position in the component tree. If the current component is of the given type, it is removed. There can be
at most one sibling node of type group, material, color, transparency or thickness; if the removal of a node of one of
those types is requested and the current component is a subcomponent node, its child of that type (if any) is removed.
If the removal of a subcomponent node is requested and the current node if not a subcomponent node, its parent is
removed. When a subcomponent node is removed, its BSP tree is destroyed if it has one (see next section). Each of
the operations returns TRUE if a node was removed.

There are corresponding operations for removing a node at a position in the component tree given by a position
number:

int
int
int
int
int
int
int
int
int
int
int

removesubcomponent (int positionNumber);
removebibel (int positionNumber);
removeTransfomation (int positionNumber);
removevectors (int positionNumber);
removepolygon (int positionNumber);
removeReference (int positionNumber);
removeGroupName (int positionNumber);
removeMaterialName (int positionNumber);
removepaintcolor (int positionNumber);
removePaintTransparency (int positionNumber);
removeThickness (int positionNumber);

ComDuting Material Interactions
BSP trees are built by the following operations:

int buildBSP (void);
int buildESP (int positionNumber);

The first builds one for the subcomponent at the current position. The position number of the subcomponent node
for which the BSP tree was built is returned (zero if there is no component tree). The second builds a BSP tree for
the subcomponent at the given position (provided the identified node is a subcomponent node) and returns the
subcomponent’s id (or zero if the tree is not built).

BSP trees can be removed with the operations

int removeBSP (void) ;
int removeBSP (int positionNumber);

The first removes the BSP tree for the current subcomponent (if it has one) and returns the id of the current
subcomponent node (or zero if it had no BSP tree). The second removes the BSP tree at the given position

75

(provided the identified node is a subcomponent node and has a BSP tree) and returns the subcomponent’s id (or zero
if no tree is removed).

The following operation is suitable for picking, if picking is not done by the GRE process:

int finmearest (Vector x0, Vector r, Vector *at);

ThefindNearest operation shoots a ray from point x0 in direction r. It returns the position number of the first
elementary component the ray encounters (zero if none). If an eComp is encountered, the location of the intersection
is returned in ut.

The findAll operation returns a list of all the components encountered by a ray. There are two forms of the
operation:

void findAll (Vector x0, Vector r,

void findAll (Vector x0, Vector r,
int *Ninteractions, MaterialInteraction **interactions);

int *Nintersections, Intersection **intersections);

where MaterialInteraction is defined as

class MaterialInteraction {

char *mater ialName ;
float thickness ;

public :

. _ . 3 ;

and Intersection is defined as

class Intersection {

Vector location;
int id;

public:

3 ;

The findAZl operation shoots a ray from point x0 in direction r. The first form returns in Ninfeructions the
(nonnegative) number of material interactions and the interactions in the interactions array. A material interaction
consists of a material name and a thickness. Both the interactions array and the materialNume strings are allocated
on the heap and must be deleted by the caller. The thickness value represents the thickness of the material traversed
by the ray; it takes into account the angle at which the ray strikes the material, and whether the material is
represented by a polygon with thickness or a polygon which is a surface element (see above). In the case of a
polygon with a thickness attribute, the value also takes into account whether the ray enters and exits the material
through one of the faces of the polyhedron filled with the material which is parallel to the polygon or through one of
the (implied) faces which are perpendicular to the polygon. For each polygon encountered, the material is the
current material at the polygon’s position in the component tree, and similarly for the thickness attribute when it is
used. The second form offindAll returns in Nintersecfions the number of intersections that the ray makes with the
polygons in the component tree and in intersections the position number of each polygon and the location at which
the ray intersected it. The intersections are given in order, from the nearest to x0 to the farthest.

SCG Operations
Structural Component Groupings are used in conjunction with the components in the CDB; therefore various SCG
operations are provided in the CDB. There are operations for loading and storing the SCGs, for reading the SCGs
sequentially, for reading a particular SCG, for defining a new SCG, for modifying an existing SCG and for removing
an SCG.

Loading and Storing SCGs

76

The CDB initially reads the SCGs from a default file (even if the default file is not present, a group named
"DEFAULT is defined). The SCGs may be changed during the operation of the system, by the operations described
below or by the addition of group names when a component file is loaded (see above). The user can write out the
current SCGs with the operations

int storeGroups (char *filename, char *path);
int storeGroups (void) ;

The first operation writes the SCGs to the given filename in the directory given by the path argument. The second
operation writes the SCGs to the file to which they were most recently written or from which they were most recently
read. The operations return TRUE if the file was successfully stored. The user can load a new set of SCGs with the
operations

int 1oadGroups (char *filename, char *path);
int loadGroups (void);

The first loads the SCGs from the given filename and directory. The second reads them from the file from which
they were most recently read or to which they were most recently written. The operation

int 1oadDefaultGroups (void) ;

restores the SCGs from the default file. All three operations return TRUE if the SCGs were successfully read.

Readinn SCGs Sequentially
The operations

void startGroups (void);
int nextGroup (char **parentName, char **groupName, int *level);

can be used to read the SCGs sequentially. The startcroups operation resets the current SCG position to the head of
the SCG hierarchy (the default group). The nextCroup operation produces name of the next group in the hierarchy.
Its parent's name is also returned in order to make the hierarchical structure known to the reader. The nonnegative
level argument expresses the hierarchical relationship among the groups. There is only one group at level zero, the
root group (typically named "DEFAULT"). Its children have level 1 , their children level 2 and so on. The function
value is TRUE if a group name is returned and FALSE is the groups are exhausted. The returned strings are
allocated on the heap and must be deleted by the caller.

Reading a Particular SCG
A particular SCG can be read with the operation

int getGroup (char *groupName,
char **parentName,
char **materialName,
float color [RGBsize],
float *thickness,
float *transparency);

The groupName argument gives the name of the group to be read. The returned arguments give the name of the
group's parent, the name of the group's default material, and the group's default color, thickness and transparency.
The operation returns FALSE if there is no group with the given name (in which case the returned arguments are
meaningless). Because the group color aione is often desired, the operation

int getGroupColor (char *groupName, float color [RGBsize]);

is provided. The arguments have the same meaning as in the gerGroup operation.

Creating a New SCG

77

A new SCG is created with the operation

int createGroup (char *groupName, char *parentName);
int createGroup (char *groupName, char *parentName,

char *materialName, float color [RGBsize],
float thickness, float transparency);

The groupName and parentName arguments give the name of the new group and the name of its parent, respectively.
The other arguments, if present, give the values of the attributes for the new group. If the other arguements are not
present, the new group’s attributes are inhereted from its parents. The operation returns TRUE if the group was
created; it fails to be created if a group of the given name already exists or if the parent does not exist.

Changing an Existing SCG
An existing SCG can be changed with the operations

int changeGroupName (char *oldGroupName, char *newGroupName);
int changeGroupMateria1 (char *groupName, char *materialName);
int changeGroupColor (char *groupName, float color [RGBsizel);
int changeGroupThickness (char *groupNarne, float thickness);
int changeGroupTransparency (char *groupName, float transparency);
int changeGroupPhysicalAttributes (char *groupNdme, float color [RGBsizel,

float thickness, float transparency);

The changeGroupName changes a given group name to a new name. It returns TRUE if the name was changed and
FALSE if it was not; it is not changed if the old name is not in use or the new name is already in use. When the
change is made, all elements of the component tree that have the old name as an attribute are changed to use the new
name. All the other operations make the indicated changes and return TRUE if the named group exists (and the
change is made) and FALSE if it does not.

Removing an SCG
A group name can be removed by the operation

int removeGroup (char *groupName);

The rernoweCroup operation removes the named group if it exists; it returns TRUE if the group existed and was
removed and FALSE otherwise. If the group is removed, all elements of the component tree that have the group as
an attribute are changed to use the group’s parent. It is impossible to remove the root group, which has the name
“default”.

External File Format
A subset of the Virtual Reality Modeling Language (VRML) is used as the external file format. The node types used
for components and the corresponding VRML constructs are given in Table 3.4. The subcomponent name argument
corresponds to the VRML DEF keyword. The reference operation corresponds to the VRML USE keyword.

3.5.2 STRUCTURAL COMPONENT GROUPINGS

A Structural Component Grouping (SCG) is a hierarchy of names which can be used as attributes of the structures
contained in the Component Data Base (CDB). When a component is installed in the CDB, the SCGs in use are
determined by the layer names in the input DXF file and by a set of SCGs provided in an SCG file which is used as a
second input file. Different SCG files can be used at different times. The SCGs are a hierarchically arranged set of
group names, with physical attributes attached to the groups. The physical attributes are the material (see the
Material Database section 3.3), the color, the thickness and the transparency. The entire set of group names can be
thought of as being arranged in a tree with the name “Default” at the root. The Default group has, appropriately,
default physical attributes to go along with it. The SCGs can be altered interactively by the QUEST user (see
Section 2.1.1).

78

~~ 1 transformation ~ -r MatrixTransformation

Material I material, paintcolor,
Dain tTransDarencv

A self-defining node

Table 3.4: The subset of the Virtual Reality Modeling Language used in QUEST.

An SCG file is an ASCII file containing the group names and their associated physical attributes. Tab characters
before the group name indicate the level of that group in the hierarchy. The physical attributes are given in the order
material, thickness, color, and transparency. The material is the name of a material in the MDB. Thickness is the
thickness in inches. The color may be one of the colors recognized by AutoCAD or an RGB triple. Transparency is
a number in the range [0,1], where 1 means completely transparent and 0 means completely opaque. Any attribute
may be given as "parent", in which case it inherits the corresponding attribute of its parent. Trailing "parent"
attributes may be omitted.

Consider the following example, where Figure 3.3 expresses the simple hierarchy:

Door Wood 2.0 BROWN
<TAB> Interior Door parent 1.5 WHITE
<TAB> Exterior Door Steell 2.0 BLACK
Wall Gypsum 4.0 (-6, -5, - 4)
<TAB> Interior Wall
<TAB> Exterior Wall

' I 1
r D~ori

Interior Door Exterior Door
r i

Interior Wall Exterior Wall

Figure 3.3: Example hierarchy of group names.

The group "Door" has material Wood, thickness 2.0, color BROWN and the transparency of its parent "Default",
which is 0.0. The group "Interior Door" has attributes Wood, 1.5, WHITE and 0.0. The group "Exterior Door" has
attributes Steell, 2.0, BLACK and 0.0. The group "Wall" has attributes Gypsum, 4.0, (-6, -5, .4) and 0.0, as do
groups "Interior Wall" and "Exterior Wall". The triple (.6, .5, .4) means (red = .6, green = .5, blue = .4), where the
RGB values run from 0 to 1. The names are not case-sensitive.

79

3.6 INTERPROCESS COMMUNICATION

The Interprocess Communication (IPC) logic allows a client and a server which are parts of different heavyweight
processes to communicate with each other. The client makes Remote Procedure Calls (RF'C) that are received by the
server. For each RPC (Birrell and Nelson 1984), the client blocks until the server informs it the call is complete.
The client may pass input arguments to the server and the server may pass output arguments to the client. A server
may have multiple clients.

DescriDtion
A server may be thought of as an object whose operations (member functions) can be invoked by clients. The clients
can invoke the operations even if the object is remote from the clients (in a different process or on a different
machine). The present implementation supports clients and servers that are in different heavyweight processes in the
same machine. Future implementations will support clients and servers on different machines. However, the
application-level logic will remain unchanged when this capability is added.

The operations of an object which acts as a server are defined as member functions in C++. Suppose the operations
that the server will perform are defined as member functions of class ObjType. If the client and server occupied the
same process, an object of class ObjType would be created to play the'role of server and the client would call its
member functions. The client and server might operate on different threads or on the same thread. In order to permit
the client and server to occupy different processes, we will define two classes derived from ObjType, namely
ObjTypeClient and ObjTypeServer. An object of class ObjTypeClient is instantiated in the client process, and an
object of class ObjTypeServer is instantiated in the server process. Let the operations of ObjType be defined as
virtual functions, so that they can be overridden in ObjTypeClient and ObjTypeServer. In order to invoke member
function P(a,b), the client invokes it from ObjTypeClient instead of from ObjType; however, the invocation looks
exactly the same.

If the client and server were in the same process, the implementation of function P(a,b) within class ObjType would
merely carry out operation P, whatever it is; however the implementation of P(a,b) within class ObjTypeClient must
send the request to the server for it to be carried out there. The implementation of P(a,b) within class
ObjectTypeClient accordingly looks like:

prepare input arguments a to be passed to server,

wait for completion of the operation,

convert output arguments so they can be returned as 6.

o send request for operation P to server, including input arguments,

o take output arguments passed from server,

These are the same steps used in conventional remote procedure calls. In standard RPC-RPC as defined by the
Internet draft standard (Internet Engineering Task Force 1994 (RPC)), which was modeled on Sun RPC-
preprocessors are used which to some extent conceal these steps from the programmer. The two argument
conversion steps are needed because a single untyped transmission mechanism is used for arguments of all types.
Note that this replicates the semantics of the ordinary procedure call, even though the caller and the called may be on
different computers. One might say that the purpose of RPC is to allow the software technology of the past
(procedure calls or function calls) to live on in the non-von Neumann future. It is possible to define non-blocking
calls, but there is no advantage in doing so unless client requests are queued, in which case it would be better to go to
full-fledged messaging using senareceive semantics. The sends can be made to look like non-blocking procedure
calls, but the underlying mechanisms are rather different.

One of the more annoying aspects of RPC programming, whether done as shown above or through standard Rpc
mechanisms, is the need for the programmer to define manifest constants to identify the various remotely callable
procedures. In standard RPC, there is only one global "identifier space", so all identifiers must be unique (at least all
identifiers in any set of programs which will be registered simultaneously as able to provide RPC services). One
advantage of the object-oriented technique described here is that the identifiers need to be unique only within the

80

object type. A good place to define the identifiers is in the header file in which class ObjectType is declared. The
outline below shows how this might be done:

class ObjType {
...
void PO (aO, bo);
void P1 (al, bl);
...

3 ;
enum class ObjType-Proc {

ObjType-PO,
ObjType-P1,
...

Items of type ObjType-Proc can be used for the procedureld argument of the call function of type IpcClient (see
below). Note that even though C+t distinguishes functions with the same name but different argument types
(overloaded functions), it is necessary to define a separate enurn value for each of the functions.

The server object operates on its own thread. (It would be possible to use the same thread for server and client in the
same process, but this is designed to be a general mechanism that will work no matter where the client and server
are.) It must await a request (such as the request for operation P above), carry it out, then wait for the next request.
The server's thread is created during construction of an object of type ObjectTypeServer. The server thread
performs a loop that looks like this:

while TRUE
O wait for a request from a client
O discover the identity of the requested operation

switch (operation)
_ . _ . .
case P:
O convert transmitted input arguments to typed arguments a
O invoke function P (a , b) of class ObjectTypeServer
O prepare output arguments b for transmission to client

inform client the operation is done, passing it the
output arguments

. - . . .
end switch

end while

Class ObjTypeServer contains two additional member functions accept and reply, which enable the server to wait for
a request from a client and inform the client the operation is done, respectively. From this, we can see that the
implementation of operation P(a,b) in ObjectTypeServer is exactly the same as it would have been in ObjectType in
a single process system. Therefore, in an object-oriented scheme, the server can inherit the operations (such as P(a,
b)) from type ObjType. The steps performed under "case P" are the same steps used in conventional remote
procedure calls. Again, in standard RPC, preprocessors are used which mostly conceal these steps from the server
programmer. Also, in standard RPC, logic is provided by the underlying system which takes care of the function
performed by the part of the while loop outside "case P .

It should be apparent from the above that RPCs cry out for automation. The steps outlined above for client and
server could be carried out by a simple compiler or preprocessor, something like the rpcgen processor associated
with standard RPC (rpcgen Manual Page). The uncertain state of standard RPC on Windows NT rules out its use at
present. It is not clear that the performance of standard RPC would be adequate on a single-processor system.

Intercommunication Mechanism
A particular server and its client communicate through a data structure kept in shared memory. There is just one
instance of the structure, used by the server and all the clients. In addition to a memory area used to pass the input
arguments from the client to the server and the output arguments from the server to the client, the structure contains

81

data items (system dependent) for achieving exclusive control of the data structure, for allowing the server to wait for
a request, and for allowing the client to wait for the completion of a request.

The interfaces to the facilities for interprocess communication are defined in the header file ipc.h. In particular, it
defines structure ZpcBuffer (the shared data structure), base class Ipc and derived classes IpcClient and IpcServer.
Mutual exclusion and synchronization are achieved by means of semaphores (Dijkstra 1968). There is a largish
untyped shared storage area for input and output arguments, which are passed back and forth as sequences of bytes.
The derived type ZpcClient contains member function call, through which a client issues a remote procedure call and
the data conversion functions serialize and deserialize. The calling sequence of call is

void call fint programrd,
int versionNunber,
int procedureId,
const unsigned char *inputArguments,
unsigned int inputlength,
unsigned char *outputArguments,
unsigned int *outputLength) ;

programld and versionNumber are unused but are present for compatibility with the Internet RPC standard.
programld identifies which of the member functions of ObjectType is being called. inputArgurnents is the input
arguments, serialized into a stream of bytes. inputLength is the length in bytes of the input argument stream.
outpuvlrguments is the output arguments, serialized into a stream of bytes. outputkngth is the length in bytes of the
output argument stream.

The serialize/deseriaLize functions convert data values to/from internal machine-dependent format to External Data
Representation (XDR) (Internet Engineering Task Force, 1994 (XDR)). The calling sequences of the serialize
routines are

unsigned char *serialize (int value, unsigned char *xdrValue);
unsigned char *serialize (float value, unsigned char *xdrValue);
unsigned char *serialize (double value, unsigned char *xdrValue);
unsigned char *serialize (char *value, unsigned char *xdrValue);

value is the value to be serialized, xdrValue is the serialized XDR, The returned value points to the next byte after
the serialized value in xdrValue.

The calling sequences of the deserialize routines are

unsigned char *deserialize (const unsigned char *xdrValue, int *value);
unsigned char *deserialize (const unsigned char *xdrValue, float *value);
unsigned char *deserialize (const unsigned char *xdrValue, double *value);
unsigned char *deserialize (const unsigned char *xdrValue, char *value,

const int =Size);

xdrValue is the XDR value, value is corresponding deserialized value, m S i z e is the maximum size of the string
value, including the ASCII NUL terminator.

It is assumed that all compound data types used in this application are ultimately made up of in?, $oat, double and
string values, so serialize/deseriaLize routines for compound types can be constructed from the above four routines.
For example, consider

/ / DEFINITION OF TYPE T
const int Xsize = 4;
typedef struct T {

int a;
float x [Xsize] ;

3 T;

/ / SERIALIZE VARIABLE OF TYPE T

82

unsigned char *serialize (T value, unsigned char *xdrValue) {

unsigned char *p; / / BUFFER POINTER
int i; / / LOOP INDEX

/ / INITIALIZE OUTPUT POINTER
p = xdrvalue;

/ / SERIALIZE COMPONENT a OF T
p = serialize (value-a, p) ;

/ / SERIALIZE EACH ELEMENT OF COMPONENT x OF T
for (i = 0; i < Xsize; i++)

p = serialize (value.x[i], p);
3

The derived type IpcServer contains the member functions accept and reply, through which the server waits for a
request and informs a client the request is done, respectively; and the data conversion functions serialize-inf,
serializefiroaf, deserialize-int and deserializefloat. The calling sequences of accept and reply are

int accept (void);
void reply (void);

The accept function returns the operation code passed by the client (argument procedureid of caZ1).

The calling sequences of the serialize functions are

void serialize (int value);
void serialize (float value);
void serialize (double value);
void serialize (const char *) ;

value is a value to be serialized into XDR format. The XDR is placed at the current position in the shared @Buffer
and the current position is incremented accordingly.

The calling sequences of the deserialize functions are

void deserialize (int *value);
void deserialize (float *value);
void deserialize (double *value);
void deserialize (char *value, int maxSize);

value is the value that results from the deserialization of the XDR value at the current position in the shared
ZpcBuffeer, the current position is incremented accordingly. maxSize is the maximum size of the output string value,
including the ASCII NUL terminator.

The discussion so far applies to a single-threaded server. A single IpcBufSer is sufficient for a single-threaded server;
a server with N potential threads could be implemented using an array of N IpcBuffer structures. Note that a single-
threaded server can accept any number of clients but cannot overlap its execution of the operations they request.

3 -7 GRAPHICS RENDERING ENGINE

The Graphics Rendering Engine (GRE) consists of two three-dimensional (3D) windows: the top-down view and the
first person point of view. The top-down view allows the user to see hisher current view position within the
graphics “world” from an overhead view position. The first person point of view allows the user to see the graphics
“world” from an immersed point-of-view. An arrow marks the current position within the overhead view. The
center of the arrow is the current view position within the graphics world. The direction of the arrow is the direction
the user is facing within the first person view window.

Each graphics window has means to move the view position. The top-down view position can be raised or lowered
only. It always “looks down” on the first person view position. The user can zoom in and zoom out on the current
position. The user is allowed to zoom in to what is the equivalent of approximately two feet above the current view
position. The zoom out distance is unlimited. While the user holds down the keyboard letter ‘d’, the view position
will zoom down. While the user holds down the keyboard letter ‘u’, the view position will zoom up.

The first person point of view has two modes of movement defined by whether the left or right mouse button is
depressed. With the left mouse button depressed the view position can be rotated left, rotated right, moved forward
and moved backward. With the right mouse button depressed the view position can be panned up, panned down,
panned left and panned right.

The user should think of the first person view window as being divided in to sections with a line that divides the
upper half from the lower half, and a line that divides the left half from the right half for purposes of first person
view position movement. With the left mouse button depressed and the cursor is in the upper half of the first person
view window, the first person view position will move forward in the graphics scene. With the left mouse button
depressed and the cursor is in the lower half of the first person view window, the first person view position will move
backward. With the left mouse button depressed and the cursor is the left half of the first person view window, the
first person view position will rotate to the left. With the left mouse button depressed and the cursor is the right half
of the first person view window, the first person view position will rotate to the right. The closer the cursor is to the
outside edge of the first person view window, the greater the rate of movement or rotation in that direction will be.
With the cursor at the center of the first person view window, there will be no movement or rotation.

To move through a building, start with the cursor near the centerline of the first person view window. Depress and
hold down the left mouse button and move the cursor toward the top edge of the first person view window. If the
cursor is moved off the vertical center line of the first person view window while moving forward, the view position
will continue to move forward and move to the left if the cursor is in the left half of first person view window or
move to the right if the cursor is in the right half of first person view window. To “straighten out” the movement
path, move the cursor back to the vertical center line of the first person view window. Moving in the reverse
direction, backwards, is similar to moving forward except the cursor must be in the lower half of the first person
view window.

If the view position is not inside a building, the view position elevation can be changed. By depressing the right
mouse button and moving the cursor to the upper half of the first person view window the view position will pan up
(move up). By depressing the right mouse button and moving the cursor to the lower half of the first person view
window the view position will pan down (move down). If the view position is inside a building, the user can use the
up or down arrow keys on the keyboard to change hisher view position to the next upper or next lower level in the
building.

The user can pan left (move laterally to the left) or pan right (move laterally to the right) by depressing and holding
down the right mouse button and moving the cursor either to the left half or the right half of the first person view
window .

84

3.7.1 STRUCTURES

The creation of a structure for use in the QUEST project should be made by using the computer-aided design (CAD)
software program AutoCAD or AutoCADLt by AutoDesk, Inc. The completed drawing must be saved as a Drawing
Interchange File format (DXF). While other CAD packages exist that can save drawings in DXF format, they do not
create the type of elements needed by QUEST. QUEST will only accept drawings made up of 3DPOLYs and 3D
faces.

Level Isolation
For the QUEST Project, it has been decided that for each multi-storied building, each level of the building will be
drawn and saved to separate DXF files. This not only makes it easier to create, copy, and edit building drawings but
also allows for easy level isolation within the 3D graphics rendering. The main purpose of level isolation within the
first person 3D graphics rendering is to minimize the number of polygons that need to be rendered on each 3D
graphics refresh cycle. By minimizing the number of polygons that need to be rendered, a faster graphic refresh
cycle can be accomplish, thus giving a smoother appearing first person 3D graphics display. Another purpose of a
level isolation is to allow an overheadtopdown view of the current level in a separate graphics window. This allows
the user to see where in the current level shehe is. Unlike other graphics rendering languages such as GL or
OpenGL, World ToolKit (WTK) does not provide a simple method of rendering the same 3D graphical object
multiple times in different graphics windows (see One Universe Graphics vs. Individual Window Parameters).
(Please note, unless otherwise stated, identical WTK methods of operation will be used in both the Silicon Graphics
and Windows NT operating systems.)

Method of GrouDing Levels
The data that make up the 3D graphical objects is received from the CDB portion of the simulation program. In the
3D graphics portion of the simulation, the smallest entity will be a WTK object which consist of one 3D polygon.
Each 3D graphical object contains a user-defined data structure. Included in the data structure is a data field that
contains the graphical object's unique identification number. The unique identification number is provided by CDB.
Each level of a building will consist of a group of objects. Each building will consist of a linked list of pointers to
groups of levels. The collection of buildings will consist of a linked list of buildings. Dynamically building
polygons and WTK graphical object is not easy and not intuitive. Below is a listing taken from WTK v2.0
Reference Manual of the necessary steps to take in creating a single WTK graphical object:

.

1.
2.
3.

Initialize the object by calling WTobject-begin.
Add vertices to the object using WTobject-addvertex.
Add polygons to the object. For each polygon:
a. Call WTpoly-begin.
b.

C. Call WTpoly-close

Add vertices (that have already been added to the object with
WTobject-addvertex) to the polygon using WTpoly-addvertex.

4. Call WTobject-close.

Note that only one object can be constructed at a time. You must complete the definition of one object before
beginning the definition of a new object (no objects embedded in objects). The following example taken from
QUEST'S GRE illustrates the use of the object constructor functions:

void LoadBuilding (char *building) {

int
int
int
float
BOOLEAN
BOOLEAN
WTobject
WTPOlY
WBObjectData
WTgroup

i, curtag, receiveqsftag;
count = 0;
ubcount = 0;
xzy[31;
ok = TRUE;
okconstructobj = TRUE;
*constructobj;
*constructpoly;
*newObjData;
*grp = NULL;

85

ElementaryComponent * eComp ;

curtag = -999;

if istrlentbuilding) > 0) {
sscanf (building, "%d", Lreceiveqsf tag) ;
component->start(receiveqsftag);

receiveqsftag = component->makeRootCurrentO;
component->start(receiveqsftag);

} else {

3

/ / GET FIRST eComp
eComp = new(E1ementaryComponent);

/ / WHILE THE CDB HAS eComps RECEIVE THEM.
while (component->nextElementaryComponent(eComp)) {

okconstructobj = FALSE;
ok = TRUE;

/ / POLYGON MUST HAVE AT LEAST THREE POINTS
if(eComp->Nvertices c 3)

ok = FALSE;

else {

/ f INITIALIZE A NEW, EMPTY OBJECT -
constructobj = WTobject-begin t) ;
okconstructobj = TRUE;

/ / GET VERTEX POINTS FROM THE eComp.
f o r (i = O;(i < eComp->Nvertices) && (ok == TRUE);i++) {

xzyEX1 = ecomp->vertices[i] .x[X] ;
xzy[Yl = eComp->vertices[i] .x[Y];
xzy[Zl = -eComp-zverticesEi1 . x [Z l ;

/ / ADD VERTICES TO THE OBJECT
ifttok == TRUE) && ((WTobject-addvertex(constructobj,

WTvertex-newtxzy))) == FALSE)) {
printf ("addvertex error\n" , eComp->id, count) ;
ok = FALSE;

1
3

if (ok == TRUE) {

/ / BEGIN CONSTRUCTION OF A POLYGON
constructpoly = WTpoly-begin(constructobj);

/ f ADD VERTICES PROVIDED BY eComp TO A POLYGON
for (i = 0; (ok == TRUE) && (i c eComp->Nvertices); ++i)

WTpoly-addvertex (constructpoly, i) ;

if(ok == TRUE) {

/ / "WRAP UP" THE OBJECT BY CLOSING, MAKING BOTH SIDES
/ / OF THE OBJECT VISIBLE, SETTING COLOR, AND SETTING
/ / THE OVERALL VISIBILITY OF THE OBJECT.
WTpoly-close(constructpo1y);
WTpoly-setbothsides(constructpoly,TRUE);
WTobject-setrgb(constructobj , (char) (255*eComp->color EO] ,

(char) (255*eComp->color [ll) ,
(char) (255*eComp-~color[2]~) ;

WTobject-close(constructobj,FALSE,TRUE);
WTobject-add(constructobj);
WTobject-setvisibility(constructobj,TRUE);

86

/ / GET A NEW USER-DEFINED OBJECT DATA STRUCTURE
newObjData = (WBObjectData")malloc (sizeof (WBObjectData)) ;

/ / ASSIGN UNIQUE OBJECT IDENTIFICATION NUMBERS
/ / PROVIDED BY THE CDB
(*(newObjData)).id = eComp->id;
(* (newObjData)) .tag = eComp->tag;

/ / INITIALIZE SELECTED FIELD TO FALSE
((newObjData)).selected = FALSE;

/ / ASSIGN/ATTACH THE USER-DEFINED DATA STRUCTURE
/ / TO THE OBJECT
WTobject-setdata(constructobj, (void*)newObjData); .

/ / FIND THE GROUP THAT THE CURRENT eComp SHOULD
/ / BE ADDED TO OR A NEW GROUP WILL'BE CREATED
/ / FOR THE SPECIFIC eComp IDENTIFICATION NUMBER
if ((curtag ! = eComp->tag) 1 I (grp ==NULL) {

1

grp = WBgroupGetToLoad(eComp->tag,receiveqsftag);
curtag = eComp->tag;

/ / IF GROUP, grp, IS NOT NULL, ADD IT TO THE GROUP

if (grp != NULL)

else

/ / ELSE DELETE THE OBJECT--

WTgroup-addobject(grp,constructobj);

WTobject-delete(constructobj);

3

3
1

/ / IF UNSUCCESSFUL ON LAST eComp, DELETE THE PREVIOUS
/ / ATTEMPTED CONSTRUCTED OBJECT AND eComp AND
/ / AND TRY AGAIN ON THE NEXT eComp
if((ok == FALSE) && (okconstructobj == TRUE))

WTobject-delete(constructobj);
delete(eComp);
eComp = new(E1ementaryComponent);

/ / CLEAN-UP: DELETE LAST UNUSED eComp
delete (eComp) ;

As one can see from the above example, the data corning from the CDB needs to be received in a specific order or
stored so it can be used in a specific order to create WTK 3D graphical objects. The GRE needs to know how many
vertices are in each eComp before it can construct a polygon and how many polygons there will be in an object.
Other data needed are the color of each polygon and the polygon/,oraphical object unique identification number.

As each graphical object is completed, it will be added to the group of 3D graphical objects that make up a level of a
building. The eComp tag, eComp+tag, has the same value for all components originating in the same DXF file,
therefore a change in its value signals the change of level of a building or a different building is being loaded.

Mechanics of Isolating Current Level
As the user navigates through the first person view, the current view position is checked with the following WTK
function call:

WTviewpoint-getposition(CurView,CurPos);

87

This returns the current X, Y and Z position within the current view (Curview) to the WTK defined variable,
WT-p3, which is an array of size three of type float. The following function call is made with the current position:

CurF = InsideBuilding(CurPos)

If the current position is outside the defined boundariesof all the buildings a NULL pointer is returned and all the
levels of all the buildings are graphically rendered. The boundaries of the building are kept in a data structure
associated with each building. The boundaries are defined by the region within the minimum and maximum X, Y,
and Z verticies. If the current position is within the defined boundaries of any building, a pointer is returned to the
group of 3D graphical objects that make up the level of the building. Because the ceiling of the current level is made
up of the floor of the level above, the 3D graphical objects that make up the level above are also rendered in the first
person view. To find the level above the current level, the following function call is made:

AutoChangeFloor(CurF, CurPos)

If there is a level above the current level (if the user is on the roof, there won't be a level above), the group of 3D
graphical objects that make up the current level and the level above are set so that they are made "visible" (to be
graphically rendered) and all others are made "invisible" (not to be graphically rendered) within this function. Once
it has been determined that the current position is inside the boundaries of a building and the current level has been
determined, a copy of the current level is made containing all its 3D graphical objects. The copy is translated to a
very distant region of the WTK universe (see One Universe Graphics vs. Individual Window Parameter Graphics
below) and a second view position and view direction is created to look down at the current view position. The copy
is then displayed in the overhead view window. If the user changes levels or exits the boundaries of the current
building, the copy of the building is deleted and the overhead view position is set to look down at the current
position and all of the buildings in the WTK universe are made visible (graphically rendered).

One Universe Graphics vs. Individual Window Parameter Graphics
WTR suffers from having only one "universe" for all of the 3D graphical windows that are rendered by a single
WTK executable program. In contrast, in GL and OpenGL the user can have two or more 3D graphical windows
open, each of which may have the same world coordinate boundaries. A 3D graphical object may be rendered in any
one and not rendered in the other(s). All the 3D graphical objects that make up an entire building could be displayed
in one window and only the 3D graphical objects that make up the current level could be displayed in the second
window. No copy of the 3D graphical objects that make up the current level would need to be made nor translated to
some distant part of the graphical universe to "hide" it from the main part of the graphical universe. This copying
and translating to give different views of the same object not only takes care in implementing and time to accomplish
but also takes up extra memory allocated for the copied 3D graphical objects.

3.7.2 PATH SPECIFICATION

Within the QUEST simulation, every active object, of which there are two types (detector and source), has an
associated path. This path defines the time based movement of the active object through the synthetic environment.
Issues of path definition, static representation, and interpretation are crucial to both the GRE and the TP. The path
definition mechanism provides a standard set of manipulation routines, including create, delete, copy, and modify.

Path Creation
There are three conceivable means by which a user could initially create a path in the QUEST application: (1) first-
person movement through the synthetic environment using the first-person-point-of-view (FPOV) graphics window,
(2) picking an ordered series of points in the overhead graphics window which are connected together with straight
line segments, and (3) formalized point specification within an input DXF structure file. Phase I of the QUEST
implementation supports methods 1 and 2. Method 3 will be left to follow-on implementations, where support for
path interpretation from an input DXF file may be used to eliminate the need for a GRE during path creation. To use
the two path creation mechanisms, the user must preselect a single default height above ground (above the default Z
for any given location), which is applied uniformly throughout the path's definition.

88

- I

Immersive Path Creation
Prior to initiating the creation of a path, the user must select the starting node for the path. The user would then
commence path definition by moving through the envionment. Since the path is defined by the interactive movement
of the user through the synthetic environment, path speed and movement is
governed by the direct actions of the user.

The path is defined by a WTK data structure (referred to as path,& which is an
ordered set of nodes, each containing two points (x,y,z), one for position and one
for orientation. The density of these position nodes reflects the relative speed of the
active object at that point on the path; the closer two nodes are together, the slower -.. .
(in relative terms) the object was traveling at that point.

On vertical transition from one floor to another, a straight line of movement is made from the source floor to the
destination floor. This is enforced by the path creation mechanism by placing a node at the point of vertical
transition on the source floor, and another node directly above or below that point on the destination floor. Within
the GRE, the transition from one floor to another is represented by a controlled, fluid motion. Once the interface is
notified that the user would like to move up or down one floor, the GRE slowly transitions the FPOV from the
source floor, through all intervening materials, to the destination floor. During this transition, the GRE display of the
FPOV starts out slowly, accelerating through the intervening floor and ceiling, and then slows to a stable position
directly above or below the original source point.

Point Picking Path Creation
In this mode the user selects points from a bird's eye view of the environment.
Furthermore, the system assumes a default path speed. Using the 3D graphics
window, the user selects a starting node for the path, enters path definition mode,
and selects successive path points by orienting the cursor and pressing the keyboard
space bar. Once complete, this ordered set of path points are interpreted as
connected by straight line segments. The path points, together with connecting line
segments, are interpreted at the default path record speed, and replaced by an
ordered series of path nodes generating the path& data structure. In this path
creation mode, orientation is calculated as the directed vector connecting two successive position nodes.

i,,,;
As a subcase of the point picking path definition method, a user can also define a specialized path consisting of a
single point. Known as a single point path creation, such a path represents a single stationary location with a
default, established orientation. An object with this path assignment will remain in the one location throughout its
active assignment in the simulation system. A single point path is defined through a successive selection of the
record and stop buttons during the normal immersive path creation mechanism.

Vertical transition from one floor to another is handled in the same manner as presented in the section above-
straight line movement is made from the source to the destination floor.

Path Copy
The user can select a path from a list of available path names through the GUI interface, to be duplicated using the
"Save As ..."' button. Once duplicated, the path copy becomes its own unique path entity, and must be assigned a
unique name. This facility provides the user with a means of attempting path modifications without destroying the
original path.

3.7.3 STRUCTURAL- COMPONENT PICKING

Structure component picking (picking) is a mode set in GRE by the user through the GUI to allow the user to pick a
list of 3D graphical objects. The user may initiate picking for structural component groupings. The GRE returns a
list of unique graphical object identification numbers to the TP.

l -
89

Method of Picking
Once the picking mode is set from the CUI, the user may move the cursor with the mouse so that the “hot spot” of
the cursor is located over/on the graphical object. The user may then press the space key on the keyboard to select
the graphical object. If a previously selected object is selected again, it will be “deselected and its “selected” flag
will be set to FALSE. A method of ”,gaphicaliy marking”, the selected object is used so the user may see the
graphical objects selected (see Considerations for Marking).

Mechanics of Picking
All 3D graphical objects loaded through the CDB have a user-defined data structure attached to them. Among other
fields in the data structure is a boolean field called “selected”. This field is used to determine if the graphical object
is “selected.” When initialized this field is set to false (not selected). When the GUI initiates picking, a “picking
mode” flag in the GRE will be set to true (initial default value is false). The mode flag will remain true until the CUI
signals the GRE that the user has either canceled picking or has accepted the current list of selected 3D graphical
objects. When either is signaled, the flag will be set to false. If the selection is accepted the GRE sends the CDB the
unique identification numbers of all the selected objects.

Within the 3D graphics the following code is used to pick a graphical object:

rawmousedat = (WRnouse_rawdata*)WTsensor_getrawdata(Mouse->sensor);
obj = WTuniverse_pickobject(rawmousedat->pos);

The function call, WTsensorSetrawdata, returns the sensor-specific (mouse) raw data structure. The raw data
structure for the mouse contains the current 3D location of the cursor.

The function call, WTuniverse-pickobject, returns a pointer to the 3D graphical object located at the location of the
cursor or returns a NULL pointer if there is no 3D graphical object at that location. If the 3D graphical object that is
pointed to by the return of WTuniverse-pickobject does not have its “selected” flag set to true (selected), it will be
set to true otherwise it is set to false (not selected).

Considerations for Marking
Marking a selected graphical object allows the user to easily identify objects that have been selected. The color of
marked objects is changed to a user-defined color representing a structural group. In addition, a selected object is
changed a solid-filled color to a wire-framed object.

3.7.4 LIGHTING

The GRE display ambiance is a set of World ToolKit functionalities used in QUEST’S to change the visual
appearance of the background and structural components in the first-person view and the overhead view windows.
These functionalities allow the user to change the background color and adjust ambient lighting. Settings for the
display ambiance are changed through the GUI. To adjust the background color, the user first pulls down the GUI
window “Image” and then selects “Background Color”. A pop-up window appears with a slider bar and an input
window with the current value for each of the three RGB (RED, GREEN, BLUE) values that make up the
background’color. There is a small, RGB display window in the GUI displaying the current background color. As
the values of RGB colors are changed, the representative color will be displayed in this window. The user may
either move a slider or type in a value in the input window for the appropriate RGB value. Legal value ranges for
each color are 0 to 15, with 163 = 4096 colors available. When the user is satisfied with the new RGB color mix,
selection of “accept” applies the RGB mixture to the GRE display background.

To adjust the ambient light, the user must first pull-down the GUI window “Image” and then select “Lights”. A pop-
up window will appear with a slider bar. The value range for the slider will be from 0% to 100% (no light to 100%
light). The user may slide the slider bar to adjust the corresponding light value. The effects of the new values will
be displayed in the GRE displays immediately.

Disdav Ambiance Interface and the CUI

90

The GRE is a server to the CUI. A lightweight process, or thread, in the GRE awaits input from the CUI. The CUI
sends character strings that contain commands for the GRE to perform. For example, if the GUI signals to change
the background color the following command string is sent:

“BACKGROUNDCOLOR r g b”

The above string is first parsed in the GRE for the command “backgroundcolor”, then integer values for “r g b” are
parsed from the string. In a similar fashion, the command to change the ambient lighting is the command string:

“AMBIENTLIGHT al”

The above string is first parsed in the GRE for the command “ambientlight”, then the integer value for “al” is parsed
from the string. The value range for “al” is from 0 (zero) to 200. Whole number values are sufficient because
incremental changes of light less than 1% are not noticeable. The following code is used to parse the above
commands and perform their operations in the GRE:

void DoGuiCommands(char *comd,int *threecolr, WTlight *curlight,
float *dirlight, float *amblight) {

short bgcolor ;
int r, g, b;
int lightval;
float checklight;

if (strstr(conunnd,”BACKGROUNDCOLOR”)) {

/ / PARSE commnd FOR INTEGERS r, g, and b
ParseForRGB(comand,&r,&g,&b);

/ / threecolr IS A “STATE VARIABLE”
* (threecolr+O) = r;
*(threecolr+l) = g;
* (threecolr+2) = b;

/ / CONVERT r, g, b TO HEXIDECIMALS
bgcolor = GetColorAdjust(threeco1r);

/ / WTH LIBRARY FUNCTION TO SET BACKGROUND COLOR
WTuniverse-setbgcolor(bgco1or);

1 else if (strstr(cortunnd, “AMBIENTLIGHT”) I

/ / PARSE commnd FOR INTEGER light
ParseForLight(comand,&light);

/ / amblight IS A “STATE VARIABLE“
*amblight = (float) (light/lOO.O);

/ / WTK LIBRARY FUNCTION TO SET AMBIENT LIGHT
WTlight-setambient(ambient1 ;

91

3.8 GRAPHICAL USER INTERFACE

The Graphical User Interface (GUI) was developed using the portable windowing library from XVT Software
(1994). XVT was chosen to satisfy several QUEST GUI development requirements, including portability across
UNIX and personal computer platforms, clean C++ object organization, availability of a rich set of visual
components, an easy to use graphical layout tool, and no run-time licensing costs. The XVT application framework
consists of three different levels:

O An application level that controls the program,
O A document level that gets access to data and stores and manages data,
O A view level that provides windows and other specialized structures in which to gather and display data and

to manipulate graphical objects.

Application Document -View

Document < . View

'r View

Figure 3.4: The XVT application framework.

Figure 3.4 illustrates the relationship between these three levels. The application object manages the flow of the
entire application, initializes the startup environment, and responds to application events. This object creates the
document levels. Access to global objects, including the desktop global that manages screen window layouts, is
handled at this level. Before terminating the application any cleanup that is required is handled by the application.
The document object is responsible for accessing and managing data. This object manipulates files and internal
pieces of data. It acts as the link between the application and the views of the data. A document cannot display data
itself, so it instantiates windows in which the data may be viewed.

The view hierarchy is comprised of all of the classes that display some form of object on the screen when they are
instantiated. Views can supply native controls like buttons, check boxes, scrollbars, list boxes, etc. These controls
take on the look and feel of the native window system in which the application is running. Views can be nested
within another view. Views can display icons, drawing shapes, spreadsheet type grids, scrollable lists, text,
sketching areas, and two and three dimensional graphics display areas.

OUEST Design Using XVT
The XVT QUEST application object controls the flow of the entire QUEST application. QUEST has been
organized into a number of XVT document objects. Each document object represents a separate type of QUEST
file. There 'are eight different types of files that can be created or manipulated from the QUEST GUI documents.
The overall structure is indicated in Figure 3.5. Here DocQStr is used to manipulate structure files, DocQPath is
where paths through the structure(s) are stored, DocQSrc is used to store source information, DocQDet is used to
store detector information, DocQMat is where the material database information can be manipulated, DocQBack is
where the background radiation information is stored, and DocQOut is where output generated from a QUEST
simulation run is stored. In addition, DocQConf holds the configuration information for a given scenariei t keeps
track of all the files used in a given scenario.

Under each document object in the XVT hierarchy are the views or windows that are used in QUEST to obtain
information from, or to display information to, the QUEST user. The views or windows under a particular document
object are specifically related to that document. Each view icon represents a separate window except for under the
document object DocQPath, where views QPathPnt, QPathImm, QPathPre, and QPathPlay represent different scenes

92

that are displayed based on a radio button selection.
QPathImm’s view is displayed in a portion of the QPath window.

For example if the Irnmersive radio button is chosen,

The top level window is QConfig. QConfig, QConStr, QConSrc, and QConDet all have iarge icon buttons that bring
up other windows in a hierarchical fashion. The icons have a status field above them that indicates &e current s ta im
of that icon: Completefincomplete or Readymot Ready. From the toplevef window onfy one branch of logic is
visibIe ai a time. These include Structure, Source, Detector, Background, Simulation, OT Analysis. If a number of
windows have been opened through the use of the Structure button and its corresponding windows, and the Detector
button is clicked, all the Structure windows are closed so Detector definition can be completed. This helps to
minimize confusion by isolating separate sections of logic and the manipulation of their corresponding files.

Each document object has only one window associated with it that allows file manipulation commands such as New,
Load, Save, and Save As. All windows that end in File (e.g. QStrFilef are pop-up dialog windows that display the
file path and name, a QUEST unique name, and a description. These windows are brought up whenever a file Load,
Save, or Save As command is invoked. In the case of Save or Save As the user can input a new or change an old file
path and name, QUEST unique name, and description.

SeDaration Between the GUI and Underlying Obiects
The QUEST CUI code is logically separated from all other underlying objects and their associated code. The GUI
code is strictly used to gather data from the user and display data provided by the underlying objects. It is not a
repository for the information and does not perform calculations. All other actions beyond getting information from
the user and displaying information for the user is handled by distinctly independent objects.

Figure 3.5: The QUEST XVT user interface blueprint.

The Source Definition window is a good example of this separation. When the user wants to create a new Source
this window is brought up. The CUI fills the Element pull-down menu by querying the Periodic Table object to
obtain a list of Element object names. The CUI obtains the Isotope, Quantity, and Gamma Ray table information for
the first element in this list by querying the Element object. The CUI inserts Element information into the
Radionuclides table when the user clicks on the Insert Element button. The Atomic number is acquired by querying
the Element Radionuclide object. When the user completes the definition of a source they exit this window and Save
the source. The Source object handles its own file output, using information the CUI passes it about path, filename,
QUEST name, and description.

93

As shown in this simple example, the GUI handles the display of list and table information, responding to user button
clicks, user list selections, and user menu selections. The information is stored and retrieved from the Periodic
Table, Element, Radionuclide, and Source objects. These objects are separate entities that exist independent of the
GUI, maintaining strict separation of program logic and the user interface.

94

4 A COMPARISON OF MEASURED AND SYNTHETIC RESPONSE FUNCTIONS

In this section we present a comparison of measured and synthetic gamma-ray detector response functions. The
results of the validations study (first presented in Johnson et al. 1997) compare synthetic Sodium Iodide (NaI) and
Germanium (Ge) detector responses generated by QUEST, those generated by another gamma-ray detector
computational model, SYNTH, and those generated by real detectors deployed in the field. Quantitative models like
QUEST are important since they, (1) allow inspection teams to maximize the probability of finding materials of
interest, (2) aid in the development of new instruments and detection techniques, and (3) support other diverse
applications including environmental monitoring, nuclear facilities inspections, and radiation safety responder
training.

It is necessary to validate QUEST against laboratory and field tests to allow users to have confidence in its results.
Validation can also be attained by comparing QUEST to other codes, such as SYNTH, that are regarded as
standards. We present the results of two series of validation tests. In the first, spectra generated by QUEST were
compared to spectra collected in the laboratory at PNNL and to spectra generated by the SYNTH program. In the
second, detector algorithm output generated by QUEST w& compared to output of the same algorithms run against
data collected under field conditions at the Remote Sensing Laboratory in Las Vegas. Comparison of the results is
favorable in both cases.

4.1 COMPARISON OF SPECTRA

Spectral data were collected at PNNL and compared to spectra generated by QUEST runs that simulated the
laboratory conditions. The QUEST spectra were also compared to spectra generated by the SYNTH software.

The data acquisition system used to collect the laboratory spectra was very simple, and used off-the-shelf Nuclear
Instrument Modules (NIM), and commercially available software. A standard NIM bin was used to house a HV-bias
supply [for the PMT], a spectroscopy grade linear amplifier, and an ORTEC ADCAM Multi-Channel Analyzer
[MCA]. The ADCAM module was interfaced to a laptop computer which ran an MCA emulator program to control
the acquisition, and record the accumulated spectra.

The laboratory records that provide traceability of
the sources used in the laboratory were used to
specify the quantity of the isotopes on the
certification date of the standard, and QUEST and
SYNTH decayed the source to date of measurement.
The detector manufacturers’ quality assurance data
sheets were used to specify the sodium iodide and
germanium diode parameters. The absorbers
specified were air, the detector end cap material, the
iron casing surrounding the plutonium oxide source,
and in the’ case of the germanium detectors the
germanium dead layer. The source-to-detector
distance and the sample time were specified, as were
the system electronics settings for gain and zero. In
the following examples, as parameterized in Table
4.1, the Compton continuum was remarkably free of
deviation down to 500 keV, below which QUEST
underestimated the experimental value. This
underestimation is attributed to, (1) self-attenuation
of the source, and (2) gamma-ray scattering in the
lead shield of the detector, effects that are not
currently simulated by QUEST’S physics model. Table 4.1 : Spectra comparison configuration.

95

1000oooo.0

1000000.0

1ooooo.o
0)

C
c

2 10000.0
0

100.0

10.0

1 .o
0 200 400 600 800 1000 1200 1400 1600

Energy (keV)

Figure 4. I : Comparison of Pu / NaI laboratory, synthetic SYNTH and QUEST spectra.

10000000.0

1000000.0

100000.0

v)
S
c

3 10000.0
8
a, > .- c a 1000.0 2

100.0

10.0

1 .o

___ __ __ ._ _. ,

SYNTH w/o SA (e)
SYNTH w/SA
QUEST (x4)

-
-
-
- Laboratory - - -

0 200 400 600 800 1000
Energy (keV)

Figure 4.2: Comparison of Pu / Ge laboratory, synthetic SYNTH and QUEST spectra.

96

In Figure 4.1,‘QUEST and SYNTH were both setup to model the response of a 5”xY NaI(T1) detector to
approximately 100 grams of a 20-year-old plutonium oxide source. As the laboratory spectrum was acquired with an
unshielded detector assembly, it is composed of the signal from the Pu source as well as a significant contribution
from the ambient background. In fact, almost all of the counts above 800 keV can be accounted for by the 208T1 (a
decay product of 232Th), and 40K that occur naturally in the soil and in concrete.

Below 800 keV, the shape of the laboratory spectrum is dominated by the signal from the Pu source and the
Compton continuum from the high energy components of the ambient background. Although the energy calibrations
were not fine tuned, both QUEST and SYNTH do reasonably well above 150 keV. Below that value, the differences
between the two codes become more apparent. SYNTH generated spectra with and without self-attenuation are
shown; SYNTH appears to overcorrect somewhat for self-attenuation effects in the sample. The QUEST code, on
the other hand, uses the simpler point-source model (which makes no self-attenuation correction) and thus over
predicts the activity of lower energy photons. In each spectra figure, legend indicated data series multipliers have
been applied to ease comparison.

1000000000
-SYNTH w/o SA (x4)

’
SYNTH wISA
QUEST (6)

- - I 100000000 --
. I

10000000 - Laboratory ._ - .

1000000
v)
c c g 100000

1000

100

10

1
0 500 1000 1500 2000 2500 3000

Energy (keV)

Figure 4.3: Comparison of HEU / Ge laboratory, SYNTH and QUEST synthetic spectra.

The same general characteristics may be seen in the plutonium spectra that were acquired with Ge detectors, shown
in Figure 4.2. Other than the obvious difference in detector resolution, the laboratory Ge spectrum has a better
signal-to-background ratio (the Ge detector was smaller and less efficient, so the source-to-detector distance was
much smaller), and the energy calibration (keV/channel) is different by almost a factor of two.

In a separate experiment, a small quantity of Highly Enriched Uranium (HEU) was counted in the laboratory, and
subsequently modeled by the SYNTH, and QUEST codes. The resulting spectra, shown in Figure 4.3, are
dominated by the characteristic “signature” of 235U (and its daughters) below 250 keV. Above that energy, the bulk
of the activity is due to trace amounts (0.1 ppb) of 232U in the material.

97

4.2

Decay Time

COMPARISON OF ALGOFUTHM RESPONSES

*"Pu 2.690e-03 mCi
"*PU 2.iOe-04
-'Am 5.60e-04

26 years nfa

Data collection was done in a laboratory using standard radiological sources and off-the-shelf NaI gamma-ray
detectors (Table 4.2). Detector output was collected during a "walk-by'' inspection for a specific laboratory
configuration (Figure 4.4). The data was fed to the QUE§T detection algorithms and the algorithm output recorded.
The data from the detectors was recorded at approximate one-second intervals, and consecutive samples were
summed as necessary to simulate specific algorithms. Each inspection configuration was also simulated in QUEST
using synthetic sources, detectors and paths, and the algorithm output was recorded and compared to that developed
from the laboratory data.

The laboratory data acquisition system and software employed
were originally developed by EG&G/Energy Measurements.
Commercial off-the-shelf pre-amplifiers and amplifiers were
utilized. The MCA employed for data acquisition was the EG&G
ORTEC Model 920 Spectrum Master MCA. This MCA can
acquire 1024-channel spectra from up to 16 detectors
simultaneously. Each detector had its amplified output fed to
separate input on the Model 920. Running multiple detectors into
a single Model 920 had the advantage of reducing the number of
separate MCAs required, but it did have a disadvantage of
increasing the dead time. Real time is the actual wall clock time.
Live time is the time during which the MCA is not busy
processing a pulse and, hence, is available to accept a new pulse.
Dead time is the difference between the real and live times,
expressed as a percentage of the real time. Although individual
spectra were taken for each detector, the dead time for each
spectrum was the total MCA dead time (the sum of the dead time
from all of the detectors connected to the 920), not just the dead
time of that single detector. QUEST makes no provision for dead
time in the sampling interval, so it was necessary to apply a
correction factor to the algorithm inputs equal to the ratio of live
time to real time.

In collecting the laboratory data, six paths were used following parallel lines approximately forty-two feet in length
and six feet apart. The sources used were an unshielded, 2 cm diameter disk of 239Pu, and a shielded @ k o sample.
Two different QUE§T algorithms were used to evaluate the collected spectra: gross count and a windowed
algorithm. The former computes the logarithm to the base two of the sum of the counts over all detector channels.
The latter computes the logarithm to the base two of the difference between the counts in a window A (45 keV to 450
keV) and a window B (450 keV to 3 MeV) scaled by a factor k. k represents the ratio of the background counts in A
and B for a reference background collected using the same detector. The output of both algorithms was normalized
to zero.

98

Figures 4.5 and 4.6 show the algorithm output for the
laboratory data and QUEST for the '?20 sample and gross
count algorithm. Here, the sampling period was one second,
and the experimenter pushed the detector cart from left to
right in front of the source. The graphs show in three-
dimensions the relationship between inspector location (offset
distance from the source in feet), position in time along the
path (given in seconds), and the resulting algorithm response.
Figure 4.7 shows a comparison of 239Pu laboratory and
QUEST windowed algorithm response. Here, only response
values collected at offsets of six, twelve, and eighteen feet
from the source are given. The sampling period was two
seconds. The asymmetric shape of the laboratory data was a
result of the shielding effects of the laboratory cart equipment
layout and presence of the experimenter's body alongside the
cart. In each of the experiments, QUEST slightly
overestimates the algorithm response since it does not account
for self-attenuation in the source.

< - /
Figure 4.4: Laboratory algorithm response setup.

3.5-

g 3.0
$
C

0

Distance (feet)

.-
Time (seconds)

Figure 4.5: Laboratory 6oCo algorithm response.

99

Time (seconds)

Figure 4.6: QUEST 6oCo algorithm response.

(feet)

3.5

3

a 2.5
v) C
0
$ 2
d
E

5
1.5

u)

3 1

0.5

0
2 4 6 a 10 12 14 16 i a

Time (seconds)

Figure 4.7: Comparison of 239Pu laboratory and QUEST algorithm response.

100

5 SUMMARY

QUEST is proving to be a valuable tool that allows analysts, detector developers, and search managers to
quantitatively explore the impact of technical or procedural changes on the nuclear material search process. The
QUEST model provides a tool for examining the impact of new detector technologies, exploring alternative search
concepts, studying new data fusion techniques, and a wide range of other practical studies.

QUEST was developed to be a portable, extensible simulation environment. Based in advanced object-oriented
design methodologies, phenomenology is encoded in separate software modules that can be enhanced or replaced.
Developed entirely in C++, OpenGL and World ToolKit, and the cross-platform user interface builder XVT,
QUEST is portable between workstations (SGI Irix), and personal computer (Microsoft Windows) systems. In
addition, the use of object file standards such as DXF and VRML makes possible the use of QUEST structures in
other software packages.

Designed from the beginning to support large-scale, real-time, human-in-the-loop simulations of the nuclear material
search process, QUEST provides timely and valuable scientific support to both search managers in the field, and
analysts in the laboratory. Quantitative models such as QUEST allow searchers and inspection teams to optimize
searches and maximize the probability of finding materials that can pose a threat. Presented experiments
demonstrate the ability of QUEST to synthesize static source behavior and detector response. In addition, employing
user configurable detection algorithms, QUEST gives realistic output from real-time, three-dimensional simulations.
Using these capabilities, QUEST provides a means of calculating the probability of nuclear material detection within
a given scenario.

Sandia National Laboratories remains dedicated to the support and development of QUEST. Work is underway to
develop operational extensions to QUEST allowing for integration of both simulated and real-world searcher inputs.
In addition, Sandia envisions a wide range of future applications for this simulation technology in areas as diverse as
environmental monitoring, nuclear facilities inspections, and searcher training applications.

101 I

REFERENCES

A. V. Aho and J. D. Ullman, 1972. The Theory of Parsing, Translation and Compiling, Vol. I : Parsing, Prentice-
Hall, Englewood Cliffs, NJ.

Autodesk Inc., 1990. AutoCAD Release I I Reference Manual, August 7, 1990.

G. Bell, A. Parisi, and M. Pesce, 1995. The Virtual Reality Modeling Language: Version I.0 Specijkation.

A. D. Birrell and E. J. Nelson, 1984. Implementing remote procedure calls. ACM Transactions on Computer
Sysfems, Vol. 2, No. 1, Feb. 1984, pp. 39-59.

Brick Institute of America, 1996. Personal communication through Brick Institute of America, 1 1490 Commerce
Park Dr., Reston, VA 22091.

C. F. Delaney and E. C. Finch, 1992. Radiation Detectors-Physical Principles and Applications, Clarendon Press.

J. E. Dennis, Jr., and R. S. Schnabel, 1983. Numerical methods for unconstrained optimization and nonlinear
equations, Prentice-Hall, Englewood Cliffs, NJ.

E. W. Dijkstra, 1968. Cooperating sequential processes. Programming Languages, F. Genuys (ed.), Academic
Press, NY.

EG&G Ortec, 199 1 . Detectors and Instruments Catalog, EG&G Ortec, Oak Ridge, TN, 1 99 1 - 1992.

G. Erdtmann and W. Soyka, 1979. The Gamma Rays of the Radionuclides, New York, Verlag Chemie.

G. Friedlander, J. W. Kennedy, E. S . Macias, and J. M. Miller, 198 1. Nuclear and Radiochemsitry, 3rd Edition, New
York, John Wiley & Sons.

R. Gunnink, 1977. An algorithm for fitting Lorentzian-broadened, K-series X-ray peaks of the heavy elements.
Nucl. Inst. and Methods, V143, p. 145-149.

R. Gunnink and 3. B. Niday, 1972. Computerized quantitative analysis by gamma ray spectrometry, Vol. 1:
description of the GAMANAL program. Technical Report UCRL-51061, Lawrence Livermore National
Laboratory, Livermore, CA.

R. Gunnink and A. L. Prindle, 1992. Nonconventional methods for accurately calibrating germanium detectors.
Journal of Radioanalytical and Nuclear Chemistry, V160, pp. 305-3 14.

R. Gunnink, W. D. Ruhter, and J. B. Niday, 1988. GRPANAL: A suite of computer programs for analyzing complex
Ge and alpha-particle detector spectra. Technical Report UCRL-53861, Vols. 1-3, Lawrence Livermore
National Laboratory, Livermore, CA.

I. K. Helfer and K. M. Miller, 1988. Calibration factors for Ge detectors used for field spectrometry. Health
Physics, Vol. 55, No. 1, pp. 15-29, July, 1988.

W. Hensley, A. McKinnon, H. Miley, M. Panisko, and R. Savard, 1994. SYNTH: A spectrum synthesizer. In
Proceedings of the 35th Annual Meeting of the INMM, pg. 629.

International Conference of Building Officials, 1994. I994 Uniform Building Code, Vol. 3, International
Conference of Building Officials, p. 603.

Institute of Elecmcal and Electronics Engineers, 1993. IEEE Standard Multichannel Analyzer (MCA) Histogram
Data Interchange Format for Nuclear Spectroscopy, IEEE Std. 1214-1992, New York, NY, January 28, 1993.

Internet Engineering Task Force, 1994 (RPC). Internet-Draft: RPC: Remote Procedure Call Protocol Specification
Version 2, Internet Engineering Task Force, Corporation for National Research Initiatives, Reston, VA, May
3 1, 1994, (http://www.ietf.cnri.reston.va.us).

Internet Engineering Task Force, 1994 (XDR). Internet-Draf: XDR: External Data Representation Standard, ,
Internet Engineering Task Force, Corporation for National Research Initiatives, Reston, VA, May 3 1, 1994
(http://www.ietf.cnri.reston.va.us).

102

http://www.ietf.cnri.reston.va.us
http://www.ietf.cnri.reston.va.us

M. M. Johnson, M. E. Goldsby, T. D. Plantenga, W. B. Wilcox, and W. K. Hensley, 1996. A model to quantify
uncertain emergency search techniques, theory and application. In Proceedings of the 3Th Annual Meeting of
the Institute of Nuclear Materials Management (INMM), Naples, Florida.

M. M. Johnson, M. E. Goldsby, W. B. Wilcox, W. K. Hensley, and R. G. Hansen, 1997. Computational models to
quantify uncertain emergency search techniques-a comparison of measured and synthetic gama-ray detector
response functions. In Proceedings of the 3gh Annual Meeting of the Institute of Nuclear Materials
Management (INMM), Phoenix, Arizona.

3. Kopecky, W. Ratynski, and F. Warming, 1967. Curves for the response of a Ge (Li) detector to gamma rays up to
11 MeV. Nucl. Inst. andMethods, V50, p. 333.

K. M. Miller and P. Shebell, 1993. In situ gamma-ray spectrometry: a tutorial for environmental radiation scientists.
Environmental Measurements Laboratory, US. Department of Energy, New York, NY, October, 1993.

R. Packard, 1981. Architectural Graphic Standards-7'" Edition, John Wiley and Sons, Inc.

rpcgen Manual Page. View the manual pages for rpcgen by typing man rpcgen at the command line of any of the
following UNIX-variant operating systems: SunOS (Sun Microsystems), Solaris (Sun Microsystems), IRIX
(Silicon Graphics), OSF (Digital Equipment Corporation, among others), Linux (copylefted freeware), or see
the online manual pages at http://www.uwaterloo.ca/man.

Sense 8 Corporation, 1995. World ToolKit Version 2.1 Reference Manual, Sense8 Corporation, Mill Valley, CA.

U.S. Department of Health, Education, and Welfare, 1970. Radiological Health Handbook, US. Department of
Health, Education, and Welfare, Washington, DC.

R. T. Weidner and R. L. Sells,1973. Elementary Modern Physics, 2nd edition, Allyn & Bacon, Boston.

J. Wernecke, 1994. The Inventor Mentor, Addison-Wesley, Reading, MA.

XVT Software Inc., 1994. XVT-Portability Toolkit Reference, XVT Release 4.0, XVT Software Inc.,
December, 1994.

103

http://www.uwaterloo.ca/man

BIBLIOGRAPHY

Detector Phvsics and Gamma-Rav Scattering
Aic Software, Photocoef A Nuclear Physics Utilities Program Written for IBM PCs, Aic Software, Grafton, MA,

Attix, F. H., and Roesch, W. C., Radiation Dosimetry, 2“d edition, Academic Press, New York, 1968.

January 1995.

Berger, R. T., “The x- or gamma-ray absorption or transfer coefficient: tabulations and discussion”, Radiation

Bergey, J. A., and Scott, H. L., System Efectiveness Model (SEM), software v1.03, Sandia National Laboratories,

Cohen, D. D., and Clayton, E., “Ion induced x-ray emission”, Chapter 5 , Ion Beams for Materials Analysis,

Colbert, H. M., ‘‘SAND=-A computer program for calculating combined photon-electron transport in complex

Crouthamel, C. E. (ed.), Applied Gamma-Ray Spectrometry, Pergamon Press Inc., New York, 1960.

Davisson, C. M., and Evans, R. D., “Gamma-ray absorption coefficients”, Reviews of Modem Physics, v24, n2,

Debertin, K. and Helmer, R. G., Gamma- and X-Ray Spectrometry with Semiconductor Detectors, North-Holand,

Dowdy, E. J., Henry, C . N., Hastings, R. D., and France, S . W., “Neutron detector suitcase for the nuclear emergency
search team”, Technical Report LA-7108, Los Alamos Scientific Laboratory, New Mexico, Februray 1978.

Duderstadt, J. J., and Martin, W. R., Transport Theory, John Wiley & Sons, New York, 1979.

Eisberg, R. M., Fundamentals of Modem Physics, John Wiley & Sons, New York, 1961.

Flugge, S., Practical Quantum Mechanics, Springer-Verlag, Berlin, 1974.

Glascock, M. D., “Tables for neutron activation analysis”, technical report, University of Missouri, Research Reactor

Research, v15, 1-29, 1961.

January 6, 1994.

Academic Press, Australia, 1989.

systems”, Technical Report SLL-74-0012, Sandia National Laboratories, May 1974.

April 1952, pp. 79-107.

1988.

Facility, March 1991.

Glasstone, S., and Sesonske, A., Nuclear Reactor Engineering, Van Nostrand Reinhold Company, New York, 198 1.

Grodstein, G. W., X-ray Attenuation Coeficients From IO kev to 100 MeV, United States Department of Commerce,
National Bureau of Standards Circular 583, April 30, 1957.

Gunnink, R., and Niday, J. B., “Computerized quantitative analysis by gamma ray spectrometry, Vol. 2: source
listing of the GAMANAL program”, Technical Report UCRL-51061 V2, Lawrence Livermore National
Laboratory, Livermore, California, December 6, 197 1.

Gunnink, R:, and Niday, J. B., ”Computerized quantitative analysis by gamma ray spectrometry, Vol. 3: a user’s
guide to GAMANAL”, Technical Report UCRL-51061 V3, Lawrence Livermore National Laboratory,
Livermore, California, July 8, 197 1.

Gunnink, R., and Niday, J. B., “Computerized quantitative analysis by gamma ray spectrometry, Vol. 4: auxiliary
programs for GAMANAL”, Technical Report UCRL-51061 V4, Lawrence Livermore National Laboratory,
Livermore, California, June 1 , 1972.

Heitler, W., The Quantum Theory of Radiation, 31d edition, Oxford at the Clarendon Press, London, 1954.

Hubbell, J. H., Photon Cross Sections, Attenuation CoefJicients, and Energy Absorption Coeficients From I O keV to
100 GeV, United States Department of Commerce, National Bureau of Standards, NSRDS-NBS 29, August
1969.

104

Jackson, J. D., Classical Electrodynamics, John Wiley & Sons, 1975.

Jaeger, R. G., Blizard, E. P., Chilton, A. B., Grotenhuis, M., Honig, A., Jaeger, Th. A., and Eisenlohr, H. H. (ed.),
Engineering Compendium on Radiation Shielding, Volume I: Shielding Fundamentals and Methods, Springer-
Verlag, New York, 1968.

Jaeger, R. G., Blizard, E. P., Chilton, A. B., Grotenhuis, M., Honig, A., Jaeger, Th. A., and Eisenlohr, H. H. (ed.),
Engineering Compendium on Radiation Shielding, Volume 11: Shielding Materials, Springer-Verlag, New
York, 1975.

Jauch, J. M. and Rohrlich, F., The Theory of Photons and Electrons-The Relativistic Quantum Field Theory of

Jenkins, T. M., Nelson, W. R., and Rindi, A. (ed.), Monte Carlo Transport of Electrons and Protons, Plenum Press,

Johns, H. E., Cormack, D. V., Denesuk, S . A., and Whitmore, G. F., “Initial distribution of Compton electrons”,

Meyerhof, W. E., Elements of Nuclear Physics, McGraw-Hill Inc., 1967.

Mitchell, D. J., “GADRAS-PC I , Gamma detector response and analysis software”, Technical Report SAND92-0285,
Sandia National Laboratories, May 1992.

Mitchell, D. J., Laub, T. W., and Marlow, K. W., “Semi-empirical response function for neutron detectors”,
Technical Report SAND93-2570, Sandia National Laboratories, October 1993.

Moss, C. E., Byrd, R. C., Feldman, W. C., Auchampaugh, G. F., Estes, G. P., Ewing, R. I., and Marlow, K. W., “The
detection of uranium-based nuclear weapons using neutron-induced fission”, Technical Report LA-UR-91-
3514, Los Alamos National Laboratories, December 1991.

Nelms, A. T., Graphs of the Compton Energy-Angle Relationship and the Klein-Nishina Formula from 10 Kev to
500 MeV, United States Department of Commerce, National Bureau of Standards Circular 542, August 28,
1953.

Nelson, W. R., ”The EGS4 monte carlo simulation of the coupled transport of electronics and photons”, Oak Ridge
National Laboratory, RSIC Computer Code Library, CCC-33 1, Oak Ridge, TN, contributed by Stanford Linear
Accelerator Center, Stanford University, September 1994.

O’Dell, R. D., and Alcouffe, R. E., “Transport calculations for nuclear analysis: theory and guidelines for effective
use of transport codes”, Technical Report LA-1 0983-MS, Los Alamos National Laboratory, September 1987.

Price, B. T., Horton, C. C., and Spinney, K. T., Radiation Shielding, Pergamon Press, New York, 1957.

Quittner, P., Gamma-Ray Spectroscopy, Halsted Press, New York, 1972.

Rice, A. F., and Roussin, R. W. (ea.), “Deterministic methods in radiation transport, a compilation of papers
presented February 4-5, 1992”, Technical Report ORNURSIC-54, Oak Ridge National Laboratory, Radiation
Shielding Information Center, June 1992.

Charged Particles with Spin One-half, Springer-Verlag, 1976.

New York, 1987.

Canadian Journal of Physics, v30, 1952, pp. 556-564.

Roy, R. R., and Reed, R. D., lnteractions of Photons and Leptons with Matter, Academic Press, New York, 1968.

Segre, E. (ed.), Staub, H., Bethe, H., Ashkin, J., Ramsey, N. F., and Brainbridge, K. T., Experimental Nuclear

Strode, J. N., and Van Tuyl, H. H., “PUSHLD-A code for calculation of gamma dose rates from plutonium in

Tait, W. H., Radiation Detection, Butterworth & Co Ltd, Boston, 1980.

Physics, John Wiley & Sons, New York, 1953.

various geometries”, Technical Repon HEDL-TME 73-89, Hanford Engineering Development Library.

Structure and Material Sources
AutoDesk Inc., AutoCAD LT User’s Guide, AutoCAD LTRelease 2 for Windows, Autodesk Inc., April 12, 1995.

1 05

ASM International, Engineered Materials Handbook-Vol. 4-Ceramics and Glasses, ASM International, 199 1.

Bansal, N. and Doremus, R., Handbook of Glass Properties, Academic Press, Inc., 1986.

Bowes, W., Russell, L., Suter, G., Mechanics of Engineering Materials, John Wiley and Sons, 1984.

Brady, G. and Clauser, H., Materials Handbook 131h Edition, McGraw Hill, 1991,

Carmichael, R., CRC Practical Handbook of Physical Properties of Rocks and Minerals, CRC Press, Inc., 1989.

Hornbostel, C., Construction Materials-Types, Uses, and Applications, John Wiley and Sons, Inc., 1991.

Illston, J., Dinwoodie, J., and Smith, A., Concrete, Timber, and Metals-The Nature and Behavior of Structural

Jastrzebski, Z., The Nature and Properties of Engineering Materials, 2”d edition, John Wiley and Sons, 1977.

Lubin, G., Handbook of Fiberglass and Advanced Plastics Composites, Van Nosmnd Reinhold, 1969.

McGuinness, W. and Stein, B., Building Technology-Mechanical and Electrical Systems, John Wiley and Sons,

Packard, R., Architectural Graphic Standards-7” Edition, John Wiley and Sons, Inc., 1981.

Materials, Van Nostrand Reinhold, 1979.

1977.

Schwartz, C. and Turner, R., Encyclopedia of Associations, Gale Research Inc., 1995.

Shackelford, J., Introduction to Materials Science for Engineers, Macmillan Publishing Company, 1985.

Young, J. and Shane, R., Materials and Processes, 3“ edition, Marcel Dekker, Inc., 1985.

Programming and Intemrocess Communication
Andrews, M., C++ Windows NTProgramming, M&T Books, New York, NT, 1994.

Athas, W. C., and Seitz, C . L., “Multicomputers: message-passing concurrent computers”, IEEE Computer, Aug.

Bach, M. J., The Design of the UNIX Operation System, Prentice-Hall, Englewood Cliffs, NJ, 1986.

1988, pp. 9-23.

Erikson, C., “Error correction of a large architectural model: the henderson county courthouse”, Technical Report

Garcia-Alonso, A., Serrano, N., and Flaquer, J., “Solving the collision detection problem”, IEEE Computer Graphics

Institute of Electrical and Electronics Engineers, POSIX-System Application API-Threads & Extensions, Project

Iona Technologies, Ltd., Orbix Programming Guide, Iona Technologies, Ltd., Dublin, Ireland, 1995.

TR95-013, Department of Computer Science, UNC-Chapel Hill, 1995.

and Applications, May 1994.

Number 1003.1 c*, Draft Version D10, Sept., 1994 (http://stdsbbs.ieee.org/products/catalog).

B. Janssen, D. Severson, and M. Spreitzer, 1995. ILU 1.7 Reference Manual, XeroxCorporation, Palo Alto, CA,

Keppel, D., “Tools and techniques for building fast portable threads packages”, Technical Report UWCSE 93-05-06,

Laidlaw, D. H., and Hughes, J. F., “Constructive solid geometry for polyhedral objects”, Siggruph, v20, n4, 1986.

(ftp://ftp.parc.xerox.com/pub/ilu/ilu.html).

University of Washington, Seattle, WA (ftp://ftp.cs.washington.edu/tr).

Object Management Group, The Common Object Request Broker: Architecture and Specification, Revision 1.1:

Requicha, A., “Representations for rigid solids: theory, methods, and systems”, Computing Surveys, v 12, n4,

Schmidt, D. C., Harrison, T., and Al-Shaer, E., “Object-oriented components for high-speed network programming”,

Object Management Group, 1992 (http://www.omg.org).

December 1980.

In USENIX Conference on Object-Oriented Technologies, Monterey, CA, June, 1995.

106 ..

http://stdsbbs.ieee.org/products/catalog
ftp://ftp.parc.xerox.com/pub/ilu/ilu.html
ftp://ftp.cs.washington.edu/tr
http://www.omg.org

Thibault, W. C., and Naylor, B. F., “Set operations on polyhedra using binary space partitioning trees”, Computer
Graphics, v21, n4, July 1987.

User Interface Develooment
XVT software, Inc, Guide to XVT Development Solution for C, XVT Software Inc., December 1994.

XVT Software, Inc, Guide to XVT Development Solution for C++, XVT Software Inc., November1994.

XVT Software, Inc, XVT-Architect Manual, XVT Software Inc., XVT-Architect 1 .O, March 1995.

XVT Software, Inc, X V T Graphical Extensions, Cygnus Engineering, February 1995.

XVT Software, Inc, XVT Graphical Extensions Intelface Document, Cygnus Engineering, February 1995.

XVT Software, lnc, XVT Platjiorm-Specijic Book for Windows NT, XVT Software Inc., December1 994.

XVT Software, Inc, XVT-Power++ Reference, XVT Software Inc., November1 994.

1 07

APPENDIX A: S O ~ A R E INSTALLATION

QUEST v2.01 is a Microsoft Win32 (Windows 95/98, Windows NT v3.51/4.0/5.0) application. The following lists
both minimum and recommended system requirements for running the PC version of QUEST.

Minimum Requirements Recommended System
Intel Pentium 100 MHz system with Microsoft

24 MBytes of system memory.
VGA Video controller and monitor (640x480

Hard drive with -50 MBytes free space.

Dual Intel Pentium I1 (266 MHz) system with

36 MBytes of system memory.
OpenGL accelerated video card (e.g. Integraph)

Hard drive with 100 MBytes free space.

Windows. Microsoft Windows NT v4.0.

resolution). and monitor (800x600 resultion).

QUEST is distributed as a single PC zip archive. To install the application, create a clean parent directory on the
target machine (e.g. 'IC : \Quest2Ol"), and extract the archive into that directory-remembering to include the "4'
archive switch to create subdirectories. The application is divided into a number of directories. Prior to starting
QUEST the host computer must have ODBC libraries installed. To determine if the ODBC drivers are already on
the target machine, check the Windows Control Panel. If the ODBC manager is not present, the appropriate drivers
can be installed by executing ODBC setup, "cparent>\Program\Odc\setup. exe". In addition, QUEST
requires the presence of the graphics display library OpenGL. OpenGL is an integral part of Microsoft Windows
NT, and hence NT users can use QUEST directly. Windows 95 users must move the OpenGL software library from
"<parent> \ Program\Libraries \Open9132 . dl 1" to the application program directory, "<parent> \
Program\". Finally, the QUEST application is started by selecting the primary executable "<parent>\Program
\QUEST. exe".

QUEST enforces an application directory structure, as well as the consistent use of case insensitive names and the IS0
8.3 compliant file naming convention. Assume QUEST will be stored in some parent directory, the name of which is
unimportant, call it "Quest". Then the QUEST directory structure will be maintained beneath "Quest" as follows:

Quest \
Quest\Bkground
Quest\Database
Quest\Detector
Quest\Dxf s
Quest \Material
Quest\Path
Quest\Program
Quest\Program\Libraries
Quest\Program\Odbc
Quest\Reports
Quest\Scenario
Quest \ Source
Quest \Spectrum
Quest\Struct

Parent directory (name unimportant).
Background objects (* . bkg).
Read-only databases used by the TP and GUI.
Detectors objects (* . dtc).
Original AutoCAD structure input files (* . d x f) .
Material databases (* .mdb).
Active object paths (* .pth, * .wtk).
QUEST application program files.
Additional program libraries required on certain platforms.
Microsoft ODBC installation files.
Generated output reports (* . txt, etc.).
Scenario configuration files (* . scn).
Sources objects (* . src).
Run-time output files (* . dat, * . otp).
Structureinput fiies(*.qsf, *.str).

It should be noted that QUEST is computationally intensive, and will benefit by being run on a multiprocessor PC,
and systems with an OpenGL graphics accelerator.

- I

108

Structure Files
QUEST includes a number of structures, both in DXF and QUEST specific QSF formats for use in search
simulations. The following listing details the name of each structure, its description, and the structure’s relative
graphics complexity specified in number of polygons.

Name Description #Polygons
Apartment: first of four structures that make up a multi-story apartment buildinn. I28 apartl .str

apart2.str
apart3.str
apart4.str

apartmnt.str
base920.str

roof920
gov-lstr
gov-2.str
hosptl I .str
hosptl2.str
hosptl3.str
hosptl4.str
hospital.str
rhousel .str
rhouse2.str
rhouse3.str
rhousestr
officel .str
office2.str
office3.str
officestr

printerl .str
printer2.str
prin ter3 .str
printerm
shousel .stf
shouse2.str
shouse3.str
shousestr
wall I s t r
cubestr

- _ -
Apartment: second of four structures that make up a multi-story apartment building
Apartment: third of four structures that make up a multi-story apartment building
Apartment: fourth of four structures that make up a multi-story apartment building
Apartment: multi-story apartment building made up of structures apartl, apart2, apart3 and apart4.
First floor of a government-style building without a roof.
Roof for government-style building. Must be translated into place.
Simple one-story government-style building with a roof made up of structures base920 and roof920.
Two-story government-style building with two instances of structure base920 and one roof920.
Hospital: first of four structures that make up a multi-story hospital building.
Hospital: second of four structures that make up a multi-story hospital building
Hospital: third of four structures that make up a multi-story hospital building
Hospital: fourth of four structures that make up a multi-story hospital building
Hospital: multi-story hospital building made up of structures hosptll , hosptl2, hosptl3 and hosptl4.
RHouse: first of three structures that make up a multi-story roofed house.
RHouse: second of three structures that make up a multi-story roofed house.
RHouse: third of three structures that make up a multi-story roofed house.
RHouse: multi-story roofed house made up of structures rhousel, rhouse2 and rhouse3.
Office: first of three structures that make up a multi-story office building.
Office: second of three structures that make up a multi-story office building.
Office: third of three structures that make up a multi-story office building.
Office: multi-story office building made up of structures officel, office2 and office3.
Printer Building: first of three structures that make up a multi-story printer building (office building).
Printer Building: second of three structures that make up a multi-story printer building.
Printer Building: third of three structures that make up a multi-story printer building (office building).
Printer Building: muli-story printer building composed of printerl, printer2 and printer3.
Simple House: first of three structures that make up a simple multi-story house.
Simple House: second of three structures that make up a simple multi-story house.
Simple House: third of three structures that make up a simple multi-story house.
Simple House: simple multi-story house made up of structures shousel, shouse2 and shouse3.
Walll: single polygon representing a wall with a grid on both sides of the wall (used for testing).
Cube: simple cube structure (used for testing).

128
54
1

31 1
248

1
249
497
1902
617
596
8

3123
998
72
4

1074
468
465

1
934
1478
1565

1
3044
372
414

1
787
3 3
6

t
109

APPENDIX B: STRUCTURE CREATION

QUEST supports the input and manipulation of structure files specified in the three-dimensional (3D) AutoCAD DXF
format. While a complete treatment of structure file creation using a Computer Aided Design (CAD) package is
beyond the scope of this paper, this section details the creation of a simple example structure for use with QUEST.
This example details use of Autodesk‘s AutoCAD LT v2.0 for Microsoft Windows 95/NT. However, QUEST input
structures can be created with any CAD package supporting the 3D DXF file format. The completed drawing need
only be saved as a Drawing Interchange File format (DxF) file; QUEST will only accept drawings made up of
3DPOLYs and 3D faces.

The DXF file format is an ASCII-character based file format that can be imported into and rendered by a wide
variety of 3D graphics rendering programs. The data in DXF files can also be easily manipulated in application-
specific ways. QUEST converts the drawing data in the DXF files to a format that is more suited to fast data access.
These converted files are called QUEST Structure Files (QSF). The user need not worry about creating these QSF
files as they are created by a conversion program within QUEST.

QUEST’S 3D graphics interface is created through the use of the graphics programming library World ToolKit
(WTK). WTK will only render “closed” 3D solid-fill polygons. And, by definition, a “closed” polygon is one that
contains at least three unique points, the first and last of which must be connected by a line segment to close the
polygon. All other AutoCAD drawing commands, including 2D lines (e.g. the LINE command in AutoCAD) are
ignored and not graphically rendered by QUEST.

<\c.
Command: 3DPOLY
.From point 7.5.0
- Close/Undo/<Endpoint of line>:

Figure B. 1 : Creating 3DPOLYs.

110 .

€3.1 CREATING A DXF FOR USE IN QUEST

Creating structural drawings for QUEST is not difficult, but time consuming. We recommend that the person
creating the drawings have at least a minimal working knowledge of AutoCAD and CAD drawing methods (refer to
the AutoCAD User’s Guide and tutorials).

The best way to start a new DXF file is to setup a prototype file. In the prototype setup the following: Grid Lines,
Standard Units, Viewports, Layers, and Blocks. It should be noted that the command for 3DPOLY is not in a pull
down menu selection and must be entered at the command line (see Figure B.l). In AutoCAD, the user will only see
the outline of each polygon. When the polygons are rendered in QUEST’S 3D graphics the outlined polygons will be
rendered as solid-filled polygons.

Grid lines in AutoCAD assist the user in creating a drawing. They are not used in QUEST nor do they have any
effect on the structural drawing (see “grid” in AutoCAD User’s Guide). The recommended unit to use in creating an
AutoCAD structural drawing is “DECIMAL” (see UNITS command in AutoCAD User’s Guide). The recommended
measure should be ENGLISH (see Setting the System of Measurement in AutoCAD User’s Guide) (Figure B.2). For
example, 10.3 is ten feet and three tenths of a foot. It is not 10 feet and 3 inches.

- File Edit Draw View Assist Construct Modifv Settinos Helo

’Units

0 Scientific

@ Decimal

0 Engineering

0 Architectural

0 Eractional

I Precision: I

Angles

@ Decimal Degrees

0 Deg&lin/Sec

0 Grads

0 Radians

0 Surveyor

Precision:

0 f. -

E7-J

c;ommand: -preferences
Command: ‘-ddrmodes
Command: ‘-ddunits

Figure B.2: Setting drawing units.

Multiple viewports may be defined in AutoCAD. Viewports allow the user to set different viewing angles and
different scales for each viewport. This will allow the user to see the drawing from an arbitrary prespective. Use
layers to define different groups of objects (Figure B.3). For example, doors may be defined in one layer, on another
layer interior walls may be defined. The user may assign different colors to each layer. By using layers and making
some layers visible and others invisible, different levels of detail of the structure may be seen within the AutoCAD
drawing. The color associated with the layer will be the color rendered in QUEST for the graphical objects drawn
on that layer.

111

Current Layer: 0

WINDOW-SMALL
WINDOW-LARGE-EXT O n . . white CONTINUOUS

rFull Color Palette

Jmrnand ‘-ddlmodes
Jmmand. ‘-ddlrnodes
~mmand

Figure B.3: Defining layers.

m

m

-Select Block Name

I EXWALLSECTION 1

I specify Parameters on Screen I

II
ommand:
ommand
ommand: -ddinsert

Figure B.4: Creating blocks.

112

Layers should be given names that associate it with the objects drawn on, those layers (see “layer” in AutoCAD
User’s Guide). Examples of layer names include: DOOR-WOOD, for wooden doors; DOOR-METAL, for metal
doors; WATLINT, for interior walls; FLOOR, for floors; and ROOF, for the roof.

A BLOCK is a group of graphical entities (Figure B.4). In some buildings there may be many wall sections that are
exactly alike. Instead of drawing each part of a wall section repeatedly, a BLOCK can be created to represent one
section of the wall and inserted in different locations (translated and/or rotated) to create the building. BLOCKs may
be inserted into other BLOCKs. Elementary components, which are individual polygons, and BLOCKs form the
hierarchy of structural picking within QUEST for material assignments.

For convenience sake, the front left bottom corner of the drawing of the building should be assigned the origin of the
building (X = 0.0, Y = 0.0,Z = 0.0). The building can later be positioned in any location within QUEST’S structure
layout. The drawing of the building must be laid out such that when viewing the building from the outside looking at
what would be the front of the building, AutoCAD’s Universal Cbordinate System positive X axis is pointing to the
right, the positive Y axis is pointing in the viewing direction away from the front of the building towards the back of
the building and the positive Z axis is up (Figure B.5).

A

g
ommand: Regenerating drawing.
ommand:

Figure B.5: Setting coordinate axis.

B .2 DRAWING DETAIL AND LEVELS

The drawing of a structure should be made as simple as possible. Walls should be represented as single planes (no
thickness). Try to avoid making walls with real thickness (creating cubes). Wall thickness is represented in QUEST
by material type and thickness assignments the user may set. Try to avoid adding “decorator” type features to the
structural drawings. Because the 3D graphics of QUEST is dynamic, a large number of unnecessary polygons may
cause QUEST’S 3D graphics rendering to appear slow or “choppy”.

113

When creating multi-floor structurai drawings, attempt to create a single DXF file for each floor of the building.
QUEST’S 3D graphics favor buildings built in “levels”. A level should consist of a single floor of a building and all
interior and exterior walls that make up that level of the building. Do not make a separate ceiling for the current
level. The floor of the level above should represent the ceiling for the current level. Make a separate level for roofs.
Building structural drawings in ‘‘levels’’ allows QUEST to remove levels or floors above the current level so the user
may have a top-down view into the current level. It also prevents QUEST from needing to render the graphic of
levels that are not currently visible. This floor culling allows QUEST to render the graphic scenes more quickly. If
a building is made up of floors that are identical, the user may create one level in AutoCAD and insert and translate
that one copy of the level to create a multi-floor building inside the QUEST application.

When the structural drawing is completed or the user wants to quit AutoCAD, use the “File” pull down menu and
select “Save As”. In the Save File As dialog box select “DXF (* .DXF)” in the type menu selection. Give the file a
name and select OK. When the DXF file is to be opened for editing, use the “File” pull down menu and select
“Open”. In the “Open File” dialog box choose “DXF (* . D X F) ” ~ the List Files of Type menu selection and the list
of DXF file will be made visible. Choose the file desired and select OK.

114

c

APPENDIX c: RAW BUILDING MATERIALS

Breakdown

Nothino
Air

Sand, dry

Brick

Gravel

Description

common, burned
(Average)

YZ granite and 95 limestone.

For particular gravels, see
Stone

Chemical Makeup

N 75.5
0 23.2
A I .3

Si 46.7
0 53.3
0 48.0
Si 30.4
A1 10.1
Fe 3.7
K 2.2
Mg 1.5
Ca 1.4
Na 0.7
S 0.3
0 48.0
Si 18.4
Ca 17.5
C 5.2
A1 4.2
K 2.5
Fe 1.8
Na 1.2
Mg 0.4
Ti 0.1
P 0.1
Mn 0.1
H 0.1

Average

Ash

C 49.6
0 43.2
H 6.2
N 0.9

Balsa
Beech
Birch
Cedar
Cherry
Elm
Hickory
Locust
Maple

115

Density
(gm/cm3>

0
0.0013

1.3

1.8-2.0
(avg. 1.96)

1.8

0.75
0.12
0.80
0.64
0.53
0.80
0.57
0.76
0.69
0.68

Oak
Pine
Poplar
Spruce
Walnut

Aluminum
Brass, red

Bronze, commercial

CoDDer
Iron, cast gray

Nickel
Stainless Steel

Carbon Steel

Tin-lead Solder

Zinc

M Limestone and YZ
Granite Aggregate

EC-0

S30400

G10400

(Sn/Pb ratio varies)

Type I cement + sand + M
granite and M limestone
gravel + water

AI 99.45+
Cu 85
Zn 15
Cu 90
Sn 10
c u 99.94
Fe 94
C 3
S 2
Mn 0.65
Ni 99.4
Fe 68
Cr
Ni
Mn
Si
C
P
S

9
0
2
0.75
0.08
0.04
0.03

Fe 99
Mn 0.75
C 0.4
Sn 50
Pb 50
Zn 99.9+

Ca 46.8
0 36.0
Si 10.1
AI 3.3
Fe 1.8
Mg 1.4
S 0.7
0 52.0
Si 24.8
Ca 14.0
C 2.4
A1 2.4
K 1.2
Fe 1.1
H 1 .I
Na 0.6
Mg 0.4

Pb 0.1-

0.75
0.55
0.42
0.59
0.67

8.75

8.80

8.96
7.60

8.89
8.0

8.0

8.85

7.1

3.1

2.4

116

f

Limestone Aggregate

Granite Aggregate

?h Limestone and %
Granite Aggregate,
reinforced

Type I cement + sand +
limestone gavel + water

Type I cement + sand +
granite gravel + water

Type I cement + sand + ?h
granite and ?h limestone
gravel + water
+ Steel reinforcement

1 part Portland:
3 parts Sand

1 part Portland:
1 part Hydrated lime:
5 parts Sand

U.S.A.

0 51.8
Si 17.7
Ca 21.6
C 4.9
AI 0.9
K 0.2
Fe 1.1
H 1.1
Mg 0.5
S 0.1
0 52.3
Si 31.8
Ca 6.3
AI 3.8
K 2.1
Fe 1.1
H 1.1
Na 1.1
Mg 0.3
S 0.1
Ti 0.1
0 49.0
Si 23.4
Ca 13.2
Fe 6.7
C 2.3
A1 2.3
K 1.1
H 1 .o
Na 0.6
Mg 0.4
S 0.1
0 56.3
Si 23.0
Ca 15.6
H 2.8
A1 1.1
Fe 0.6
Mg 0.5
S 0.2
0 53.9
Si 25.2
Ca 14.2
Mn 2.5
H 2.2
A1 0.8
Fe 0.4
Mg 0.3
S 0.2
0 40.3
Ca 32.5
Mn 24.7
H 2.5

2.4

2.4

2.4

2.2

2.3

1.4

117

0 48.6
Si 33.7
A1 7.3
K 4.5
Na 2.3
Fe 1.9
Ca 1.0
Mg 0.3
Ti 0.2
P 0.1

2.7 Stone Granite

H 0.1
0 47.5 Limestone 2.2 Average
Ca 34.0
C 10.5
Si 3.2
Fe 1.8
AI 1.1
Mg 0.6
K 0.5
Mn 0.1
Na 0.1
H 0.1
P 0.1
0 47.3 Marble 2.7
Ca 39.3
C 11.7
Mg 0.3
A1 0.1
0 49.7
Si 28.0
A1 8.8
Fe 4.6
K 2.9
Mg 1.6
Ca 1.6
Na 1.3
C 0.6
Ti 0.5
H 0.5

0 88.8
H 11.2
0 88.8

Slate, Shales, and
Clays

2.7-2.8 Average

~~

water 4c 1 .o Fresh Water

Ice 0.92

0.13
H 11.2
0 88.8 Snow
H 11.2

C 85.6
H 14.4
Cl 56.7
C 38.4

Pol ye thylene rc2H41n 0.9 Plastics

Polyvinyl Chloride PVC: [C2H3ClIn

EC3H61n

1.4

H 4.8
C 85.6

~

0.9 Polypropylene
H 14.4

118

Glass fiber

Polyurethane foam

Expanded Perlite

Gypsum, Stucco

Glass Window

Paper

0 46.4
Si 33.6
Na 10.4
Ca 5.7
Mg 2.4
A1 0.5
C 55.8
C1 20.4
0 13.4
H 8.4
N 2.0
0 53.8
Si 35.0
AI 10.6
H 0.6

0 55.8
Ca 23.3
S 18.6
H 2.3
0 46.4
Si 33.6
Na 10.4
Ca 5.7
Mg 2.4
AI 0.5
0 49
c 4 4
H 6

0.02

0.04

0.16

2.3

2.5

0.92

119

APPENDIX D: COMPONENT MATERIALS

I Description Makeup I Breakdown
Special Type

Interior Wall Residential 2 x %" Gypsum board
2 x 4 Pine studs every 16"
1 %'I Steel nails 8" apart

Residential Pipe

Concrete Block --I---

Above + 2 Copper and 1
PVC Pipes + 2 Copper
Electrical Wires

2 x 34'' Gypsum board
2 x 4 Pine studs every 16"
1%'' Steel nails 8" apart
2 x 2" Cu pipes (Type L)
1 x 4" PVC pipe
2 x 12 gauge Cu wires

7 I' Lightweight concrete blocks Concrete block with steel

(95 granite and '/2 limestone aggregate)
6", 9 gauge Stainless steel ties every
16"

Chemical Density Thickness
Makeup (gm/cm3) (inches)

0 54.7
Ca 21.5
S 17.2
C 3.9
H 2.5
0 52.4
Ca 20.5
S 16.5
C 4.2
Cu 3.2
H 2.4
C1 0.8
0 52.0
Si 24.8
Ca 14.0
C 2.4
A1 2.4
K 1.2
Fe 1.1
H 1 . 1
Na 0.6
Mg 0.4

0.56 4.5

0.58 4.5

0.76 7.6

S 0.1 I I

I I
I I

120

Concrete Block and I Above + 2 Gypsum wall

Reinforced Concrete Concrete with steel
reinforcement

I i I

Exterior Wall Residential Interior residential wall +
, Wood exterior pine siding

Residential Interior residential wall +
, Wood
, Insulation polyurethane foam

exterior pine siding c

insulation

r

~ ~~~

7 'I Lightweight concrete blocks
(% granite and % limestone aggregate)
6", 9 gauge Stainless steel ties every
16"
2 x 9'2' Gypsum wallboards

7 Reinforced concrete (% granite
and '/z limestone aggregate with steel
reinforcement)

2 x %" Gypsum board
2 x 4 Pine studs every 16"
1%" Steel nails 8" apart
W Pine siding

2 x 1/21' Gypsum board
2 x 4 Pine studs every 16"
1%" Steel nails 8" apart
,/I' Pine siding
2" Polyurethane foam

0 53.1
Si 17.7
Ca 16.6
S 5.4
C 1.7
AI 1.7
H 1.4
K 0.9
Fe 0.8
Na 0.4
Mg 0.3
0 49.0
Si 23.4
Ca 13.2
Fe 6.7
C 2.3
A1 2.3
K 1 . 1
H 1 .o
Na 0.6
Mg 0.4
S 0.1

0 53.5
Ca 19.4
S 15.5
C 8.5
H 2.8
N 0.1
0 52.4
Ca 18.9
S 15.1
C 9.8
H 3.0
c1 0.6
N 0.2

0.94

2.4

0.55

0.57

8.6

7 %

5

5

121

, Brick

, stucco

Concrete Block
, Brick

Exterior brick layer

Exterior stucco layer

Lightweight concrete
blocks + Brick

3g I' Brick and Type N Mortar
2 x ,/,,, Gypsum board
2 x 4 Pine studs every 16"
1%" Steel nails 8" apart
W Plywood siding
Steel ties

1 vi1' stucco
2 x W' Gypsum board
2 x 4 Pine studs every 16"
1%'' Steel nails 8" apart

3 %" Brick, type N mortar
7 I' Lightweight concrete blocks
(Yi granite and '/z limestone aggregate)
9", 9 gauge, Stainless steel ties every
16"
5" x 5" x %" Steel angle

0 50.3
Si 21.2
Ca 8.0
AI 6.1
S 4.6
C 2.4
Fe 2.3
H 1.1
K 0.7
Na 0.4
Mg 0.3
Mn 0.3
0 55.4
Ca 22.5
S 18.0
H 2.4
C 1.7

0 50.2
Si 27.3
Ca 8.2
AI 5.8
Fe 2.3
K 1.5
C 1.1
Mg 0.9
H 0.7
Na 0.6
S 0.2
Mn 0.2

1.1

0.96

0.92

9.1

5.9

14

122

I Y

, Granite

, stucco

Concrete

c

3" Granite veneer
7 If Lightweight concrete blocks
(!h granite and !h limestone aggregate)
9", 9 gauge, Stainless steel twisted
dovetail anchors every 2 ft2

1 'I stucco

7 'I Lightweight concrete blocks
(!h granite and !h limestone aggregate)
9", 9 gauge, Stainless steel twisted
dovetail anchors every 2 ft2
2" Polyurethane foam insulation

4" Thick Concrete (95 granite and 6
limestone aggregate)

4

0 50.8
Si 29.0
Ca 7.7
AI 4.7
K 2.7
Fe I .5
Na 1.4
C 0.9
H 0.8
Mg 0.4
S 0. I
Ti 0. I
P 0.1
0 53.4
Ca 17.8
Si 14.1
S 8 .O
C 1.8
H 1.6
AI 1.4
K 0.7
Fe 0.6
Na 0.3
Mg 0.2
c1 0.2

0 52.0
Si 24.8
Ca 14.0
C 2.4
AI 2.4
K I .2
Fe 1.1
H 1 . 1
Na 0.6
Mg 0.4
S 0. I

123

Window

Concrete and Wood

Wood Floor over
Gypsum ceiling

Glass, Single pane
, Wood frame

, Double pane . Wood frame

Double hung

Double hung with double
pane glass

4" Thick Concrete (% granite and %
limestone aggregate)
%" Plywood
%" Oak

95" Gypsum board
2x8 Wood joists every 16"
W Oak strips
%" Plywood

2 x (%"x2'x3') Window glass
2 x (2x4)'s Pine
Wood sill: I .5" x 4.5" x 3' (Pine)
2 x frames: 47.3 in3

4 x (*/4"x2'~3') Window glass
2 x (2x4)'s (Pine)
Wood sill: 1.5" x 4.5" x 3' (Pine)
2 x frames: 47.3 in3 (Pine)

124

W rt

0 51.2
Si 22.7
Ca 12.8
C 6.5
AI 2.2
H 1 .5
K 1.1
Fe I .o
Na 0.5
Mg 0.4
S 0.1
N 0.1
0 49.4
C 25,l
Ca 11.5
S 9.2
H 4.3
N 0.5

0 45.7
Si 26.6
c 10.3
Na 8.2
Ca 4.5
Mg 1.9
H 1.3
AI 0.4
N 0.2
0 46.0
Si 29.7
Na 9.2
C 5.7
Ca 5.0
Mg 2.1
H 0.7
A1 0.4
N 0.1

1.9

0.27

0.14

0.26

_c__

5.5

8%

4.5

4.5

, Single pane
, AI frame

, Double pane
, AI frame

I
Door I Wood

, Solid

, Hollow

1 Steel

I P II

Sliding glass window 2 x (5/4"~2'x2.5') Window glass
AI sill: 4.4" x 5' x x2 11

2 x A1 frames: 5 I .8 in' each
AI tracks: 2 x (1 I' x 5' x x 2 ")

AI border: 25.8 in'
4 x (%"x2'x2.5') Window glass
AI sill: 5.9" x 5' x %2 $ 8

2 x AI frames: 5 1.8 in' each
AI tracks: 2 x (2.5" x x 2 " x 5 ')
AI border: 25.8 in'

6'10' x 2'8" x 1%" Oak
3 Brass hinges and screws
Brass and Steel door knob and lock

Sliding glass window with
double pane glass

Solid oak door

Oak veneer door 1/16" oak veneer
3 Brass hinges and screws
Brass and Steel door knob and lock
Wood honey-comb core .

0.0598" Steel exterior
3 Steel hinges and screws
Steel door knob and lock
Polyurethane core

AI 31.8
0 31.6
Si 22.9
Na 7.1
ca 3.9
Mg 1.6

0 36.1
Si 26.1
AI 22.6
Na 8.1
Ca 4.4
Mg 1.9

C 48.5
0 42.2
H 6.1
Cu 1.7
N 0.9
Zn 0.3
Fe 0.2
C 36.5
0 31.8
Cu 20.8
H 4.6
Zn 3.7
Fe 2.0
N 0.7
Fe 93.6
C 3.4
C1 1.1
0 0.7
Mn 0.7
H 0.5
N 0.1

0.21

0.27

0.77

0.14

0.66

4.4

5.9

1%

1%

1%

125

APPENDIX E: RADIONUCLIDE LIBRARY

QUEST includes an electronic version of the Erdtmann-Soyka gamma-ray library (1979). This library was compiled
from the original source, with all of the radioactive nuclides and gamma rays based on the old “Blue Book”
compilation. We have added the stable nuclides, neutron cross sections, and parent-daughter branching ratios for the
natural decay chains of 238U, ”U, 232Th, and some of the fission products. The relational database, contained in
“Quest\Database\quest .mdb” is in Microsoft Access format, and consists of two tables: “Nuclides” and
“Gammas”. These tables are described in more detail below. Fields currently unused in QUEST are highlighted
gray

iZA
Energy Photon energy (keV).

(Z x lo4) + isotope (A) + metastable flags [m (300), n (O), a (900), b (1200), c (15OO)I.

relative intensity, X-ray, unresolved doublet, complex line, weak line, uncertain
transition, less-than.

Table E. I : A portion of the Gammas table, together with field explanations.

Ne-20 100020
Ne-21 lOOO2l_ __ -- _ _ _I

Ne-24- j00024 202.8 0 0 0 -

” __. Ne-?? “?!00= _ _ _ -
Ne23 100023 38 0 0 0

Isotope
izA
Hlife Half-life (seconds).

Isotope name: atomic symbol and Z.
(2 x lo4) + isotope (A) + metastable flags [m (300), n (600), a (goo), b (1200), c (1500)l.

1 26

iP1
iP2

iZA of Erst p n t (currently unused).
iZA of second parent (currently unused).

iD 1
BR 1
iD2 iZA of second daughter.
BR2
iD3 iZA of third daughter.
BR3
ABUND Natural abundance.

i l l 1 first daughter branching ratio.

iD2 second daughter branching ratio.

iD3 third daughter branching ratio.

Table E.2: A portion of the Nuclides table, together with field explanations.

1 27

DISTRIBUTION:

Richard G. Hansen (3)
Bechtel Nevada, Remote Sensing Laboratory

Las Vegas, Nevada 89193-8521
P.O. BOX 98521, MS RSL-21

Walter K. Hensley
Pacific Northwest National Laboratory

1 Battelle Blvd.
Richland, Washington 99352

P.O. BOX 999, MS P8-08

1 MS 9402 T. 0. Hunter
Attn: J. B. Wright

J. F. Ney (A)
M. E. John
L. A. West
W. J. McLean
R. C. Wayne
P. N. Smith
P. E. Brewer
T. M. Dyer
L. A. Hiles
D. L. Crawford

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

40
1
1
1
1
1
1
1

MS 0451
MS 0571
MS 0571
MS 0744
MS 0759
MS 0767
MS 0769
MS 0970
MS 1131
MS 1165
MS 1207
MS 9103
MS 9201
MS 9201
MS 9201
MS 9201
MS 9201
MS 9214
MS 9214
MS 9405
MS 9405
MS 9409
MS 9420

MS 0161
MS 0899
MS 9018
MS 9021
MS 9021

R. E. Trellue
D. J. Allen
D. R. Waymire
R. G. Cox
M. K. Snell
R. K. Wilson
D. S . Miyoshi
J. R. Kelsey
M. B. Sandoval
J. Polito
R. W. Moya
G. A. Thomas
L. D. Brandt
P. K. Falcone
M. E. Goldsby
M. M. Johnson
T. H. West
L. M. Napolitano
T. D. Plantenga
J. M. Hruby
R. B. James
T. L. Porter
W. B. Wilcox

8000
2200
5200
8100
8200
8300
8400
8500
8600
8700
8800
8900

6238
5914
5914
6412
5845
5135
5800
5700
5849
9300
5908
8120
8112
8114
81 14
81 14
8114
8130
8950
8230
8230
8260
8220

Patent and Licensing Office, Organization 11500
Technical Library, 4916
Central Technical Files, 8940-2
Technical Communications Department, 88 15Rechnical Library, MS 0899,49 16
Technical Communications Department, 88 15, for DOE/OSTI

128

	Introduction
	User's Guide
	2.1 Scenario Definition Mode
	2.1.1 Structures
	2.1.2 Sources
	2.1.3 Path Definition
	2.1.4 Detectors
	2.1.5 Background

	2.2 Simulation Mode
	Simulation Control
	2.2.2 Performance Tuning

	2.3 Analysis Mode

	3 Theory
	The Physics of Gamma Ray Scattering
	Attenuation Effects

	Transport Physics
	3.2.1 Algorithm Overview
	Software Design Overview
	Accounting for Source and Detector Motion
	Calculating Losses Between Source and Detector
	Modeling Detector Physics
	Modeling Detector Signal Processing

	Material Database
	3.3.1 Total Thickness
	3.3.2 Density
	3.3.3 Elemental Composition

	Background Radiation
	Component Database
	Binary Space Partition Tree
	Structural Component Grouping

	Interprocess Communication
	Graphics Rendering Engine
	3.7.1 Structures
	3.7.2 Path Specification
	Structural Component Picking
	3.7.4 Lighting

	Graphical User Interface

	A Comparison of Measured and Synthetic Response Functions
	Comparison of Spectra
	Comparison of Algorithm Responses

	5 Summary
	References
	Bibliography
	Appendix A: Software Installation
	Appendix B: Structure Creation
	Appendix C: Raw Building Materials
	Appendix D: Component Materials
	Appendix E: Radionuclide Library
	M E Goldsby
	M M Johnson
	Technical Communications Department 88 15Rechnical Library MS 0899,49

