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Probabilistic uncertainty is a phenomenon that occurs to a certain degree in many engi-
neering applications. The effects that this uncertainty has upon a given system response
are a matter of some concern. Techniques which provide insight to these effects will be
required as modeling and prediction becomes a more vital tool in the engineering design
process. The purpose of this paper is to outline a procedure to evaluate uncertainty in
dynamic system response exploiting various numerical methods. Specifically, the goal is
to attain the statistics of the response with minimal computational effort. Numerical inter-
polation and integration techniques are utilized in conjunction with the iterative form of
the Advanced Mean Value (AMV+) method to efficiently and accurately estimate statis-
tical moments of the response random process. A numerical example illustrating the use of
this analytical tool in a practical framework is presented.

Introduction

Certain response characteristics of structural dynamic systems exhibit behavior that can
only be quantified to within some level of uncertainty. These uncertainties are often incor-
porated into system models as parametric quantities, such as material and geometrical
properties. A previous paper [4] developed a technique for the analysis of this class of
uncertainty using a probabilistic approach where the system parameters are assumed to be
random variables with known probability distributions. The technique, suitable for
approximating the response cumulative distribution function (CDF) at given response
levels, is based on the AMV method, an approach that was developed specifically for
application to system reliability analysis by Wu and Wirsching [5]. AMV is strongly moti-
vated by the fact that the relationship mapping the random parameters to the response
quantity of interest is approximated using point analyses, or function evaluations. Thus,
the analytical functional relationship is not required.

In this article, the issue of evaluating statistical moments is addressed through the use of a
numerical quadrature scheme. The goal is to achieve pertinent statistical information at a
cost which is far lower than what is necessary to evaluate the full CDF. This method
discussed herein involves three steps: (1) using the iterative form of AMV, AMV+, to esti-
mate the CDF at a discrete number of abscissa values, (2) implementing interpolation tools
to approximate the CDF and corresponding PDF at arbitrary abscissa locations, and (3)
using numerical integration tools to compute the moments of the response. The work
presented here is aimed at refining the method reported in [1], which proved promising but
became inaccurate when considering highly non-Gaussian response variables.
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The Advanced Mean Value (AMYV) Method for Probabilistic System Analysis

Let Y be a scalar random variable defined as follows:

Y = g(X), (D

where X is an n -variable random vector with arbitrary joint probability distribution, char-
acterized by the joint PDF, fx(x), and g(.) is a deterministic function. The probability
distribution of the random variable Y can be characterized with the CDF of Y, F,(y), for
various values of the arbitrary scalar y. By definition

Fy(y) = P(Y<y) = PEX)<y) = [dx, [dx.fx(x), —e<y<e, (@)

g(x) <y

where the fact that the random vector X is n-dimensional has been used. The exact solu-
tion is an n-fold improper integral of the joint PDF fy(x) over a subset of the domain of
definition of the underlying random variable. The integral can only be solved in closed
form for a very limited number of cases, and many more general numerical approxima-
tions are quite expensive. In view of this, it is clear that less cumbersome, approximate
solution approaches are particularly attractive.

To approximate Eq. (2), the AMV method can be employed (see [1] for a detailed discus-
sion of AMV in this framework). To summarize, first a linear approximation to the
function in Eq. (1) is computed about an estimate of its mean using a truncated Taylor
series. A second step then approximates the n -dimensional integral associated with Eq. (2)
with a one-dimensional integral in a well-known probability space. Note, however, that the
AMY method does not yield the result Fy(y;), i = 1, ..., m. Rather, it estimates the CDF
of the random variable Y at y;,i = 1, ..., m, where in general y # y . The AMV+ method
performs these steps in an iterative loop to give a more accurate estimate of the CDF of Y.

CDF/PDF Approximation Methods

The fact that the abscissa locations y differ, in general, from the points y in the AMV
method precludes approximation of the CDF or PDF at an arbitrary point. To overcome
this difficulty, an approximation to the CDF is formulated as follows

Fyy)= @[w(y%"ﬂ = O[w(2)]. ()

Here, a and b are estimates of the mean and standard deviation of Y, and ®(-) is the CDF
of a standard normal random variable. The function w(z) is an interpolating function with

wz) = O [F)], 4)

where the points (y,Fy(y)), i = 1, ..., m, are the output of the AMV analysis. It follows
that the corresponding estimate to the PDF of Y is

rim=e[w(5)|%. )




where ¢(-) denotes the standard normal PDF function.

A least squares formulation for w(z), first suggested by Wu and Bumnside [6], was
explored in a previous paper [1]. Unfortunately, that approach was insufficient for cases
where Y exhibited highly non-Gaussian behavior. For this reason, a more general method-
ology is considered which uses two different schemes for estimating w(z) : the Artificial
Neural Network and cubic spline interpolating polynomial.

Artificial Neural Network Approximation to w(z)

An Artificial Neural Network (ANN) is one means of approximating the functional
expression in the previous section. An attractive feature is that it can provide robust, accu-
rate, and efficient interpolators for functions known only via examples of their correct
behavior. One ANN that does not appear in the literature, but is a direct extension of the
Connectionist Normalized Linear Spline (see [3]) is the Univariate Polynomial Spline
(UPS) network. In this particular network, an approximation to the function v = w(z),
known only through its realizations at z;, i = 1, ..., m, is needed. The global approxima-
tion is to be constructed from components that are accurate in local vicinities.

To summarize the development of the UPS network in this framework, consider the
identity
vB(z, c;, B) = w@)B(z, ¢ B), j = 1,..., N, ©)

where 6(+) is a radial basis function, centered at c¢;, with width parameter B . This expres-
sion is created at N locations. One can approximate w(z) on the right-hand side using the
first three terms of its Taylor series expansion, then superimpose the set of approximations
and normalize, to give

Z[(aoj' +a{z-c)+az- Cj)z)]e(za Cj B)

i Q(Z, a, B3 C) = - ‘ (7)
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The function g(-) is an ANN if its parameters can be estimated adaptively. Its specific
mathematical form is the expression given on the right. The parameters ¢;, j = 1, ..., N,

are pre-selected. The parameters ay;, a,;, a@»;, j = 1,..., N, and B are identified using a
least squares approach with the data (z;,w(z))), I = 1, ..., m. A frequently used form of
radial basis function, and the one used herein because it has the same structure as the Gaus-
sian kernel, is the quadratic exponential.

Cubic Spline Interpolation of w(z)
To approximate the CDF with a cubic spline interpolating function, the discrete points

(zw(z;)), 1 = 1,...,m, are connected via m— 1 distinct third-order polynomuals that
satisfy [2]

« W",'_x(z,') = W“,'(Zi), [ = 2, ey i — 1. (8)




This, along with conditions at the boundaries z, and z,,, results in an m -dimensional trid-
iagonal system of linear equations that can readily be solved to indirectly arrive at the
coefficients of the cubic interpolating polynomials.

In practice, this method works very well when the set of interpolating points from AMV
sufficiently spans the distribution of the response. A poor approximation may result,
however, if the interpolating points span only a segment of Fy(y) because the cubic spline
approximation is unable to extrapolate to values not contained in [y,;,y,]. One way to
allow for extrapolation is to assume

Fy(y)={° y<n ©)
1 Y> Ym

but this can lead to obvious inaccuracies in the moment computations if F(y) is not suffi-
ciently close to 0 or 1 at the endpoints.

Numerical Integration Techniques

The PDF of Y is obtained through analytical differentiation of the expression for the CDF
of Y. With this approximation to fy(y), the moments of Y can be calculated directly
utilizing a numerical integration scheme. To compute the moments of ¥ = g(X), form the
Mth moment of Y as

E[Y") = [ YfH»ndy, M = 1,2, ... (10)

As shown in [1], the Gauss-Hermite quadrature formulation converges very quickly when
considering nearly-Gaussian response variables because it can accurately account for the
tails of f,(y). When considering PDFs that-do not exhibit this characteristic, however,
slower rates of convergence and less accurate estimates of the statistics can be expected.

Example Problem

This example illustrates the synergetic operation of the three steps previously discussed to
estimate response statistics. Consider the simple function

Y = g(X1, X)) = X,/X;. ' (11)

In addition, assume the random variables X, and X, to be independent and lognormally
distributed, with means 1y = Wy, = 1 and standard deviations Gy, = Oy, = 0.2.

Closed-form expressions for the CDF, PDF, and moments of ¥ were derived in [1] and
[4]. Using these analytical expressions, the first 3 moments of Y can be computed, as
listed in Table 1. Estimates of these moments and the associated relative error using the
numerical techniques outlined in this paper are also shown. Results indicate that the
method does a good job of estimating the first three moments. The fact that the errors
remain small for higher moments when using the cubic spline is indicative that the cubic
spline does a slightly better job of approximating the tail of f,(y) than does this particular
ANN.




Table 1: Central moments of Y = g(X,, X,) with Gy, = ox, = 0.2.

Moment Exact CSI (% error) ANN (% error)
uy = E[Y] 1.1249 1.1225 (-0.213) 1.1264 (0.133)
E[(Y - uy)] 0.2741 0.2761 (0.730) 0.2703 (-1.39)
EL(Y -uy)’] 0.2149 0.2142 (-0.326) 0.1998 (-7.03)

The accuracy of the moment estimates is sensitive to some key elements of the method.
For example, the maximum and minimum abscissa values in the AMV+ analysis, y, and
Y., must sufficiently span the distribution of Y. This can be disadvantageous because,
when using this method in a typical application, one will not generally know the general
character of the output distribution.

Some simplifying assumptions have been made to facilitate this example. First, X, and X,
are specified independent; the method discussed here is not restricted to problems with
independent underlying random variables. Second, AMV was developed to address prob-
lems where no explicit knowledge of the functional relationship g(X) exists. This method
also functions in this situation, making it an ideal tool to be used in conjunction with finite
element analysis to estimate the statistical nature of systems with uncertain parameters.

Conclusions and Future Work

A technique for using Gauss-Hermite numerical quadrature coupled with the AMV+
method for the computation of the moments of the response of mechanical and other
analytical systems has been developed. The method has been applied to an example
problem in a practical framework with promising results. These techniques are efficient
and well-suited for use with general finite element analysis codes.
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