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ABSTRACT 

We present a s w e y  of artificial neural network-based computer systems that have been proposed 
over the last decade for the detection and identification of component faults in thermal-hydraulic 
systems of nuclear power plants. The capabilities and advantages of applying neural networks as 
decision support systems for nuclear power plant operators and their inherent characteristics are 
discussed along with their limitations and drawbacks. The types of neural network smctures 
used and their applications are described and the issues of process diagnosis and neural network- 
based diagnostic systems are identified. A total of thirty-four publications are reviewed. 

I. INTRODUCTION 

Since the early 90's a plethora of computer 
systems based on artificial neural networks @INS) have 
been proposed for nuclear power plant diagnostics [l- 
341. However, only a couple of early review articles by 
Uhrig [1,2] discuss the potential application of this 
technology to the operation of nuclear power plants. 
Furthermore, at the time of publication (1991), limited 
NN research was underway in the nuclear industry and 
just three applications in plant diagnostics had been 
reported at that time. 

The objective of this study is to provide a more 
comprehensive survey of computer-based diagnostic 
systems using NNs that have been proposed for the 
nuclearindustry. Due to the overwhelming number of 
proposed systems, our review is limited to systems 
designed for the detection and identification of 
component faults (sensor faults are not discussed) in 
thermal-hydraulic systems, articles published in 
English since 1990 that srppeared mainly in journals 
published by the American Nuclear Society and 
conferences held in the U.S.. and systems proposed 
specifically for the nuclear industry. 

The main tasks of the diagnostic systems 
discussed in this paper are the detection and 
identification of plant component faults based on the 
response of monitored thermal-hydraulic signals, such 
as pressure, flow, temperature, and level. Fault 

detection establishes the occurrence of a plant anomal; 
and it is usually accomplished by comparing monitored 
and expected values of thermal-hydraulic signals. 
Deviations above a specified threshold indicate the 
occurrence of an anomaly. Once detected, the 
identifkation of faulty plant components can be 
performed by correlating the deviating signals both in 
time and space and matching the correlations with 
patterns of component faults. 

The rest of the paper is organized as follows. 
Section II provides a brief description of neural 
networks followed by discussions in Section III of the 
advantages and drawbacks of using this technology for 
nuclear power plant diagnostics. Section IV presents 
the types of network structures and the types of 
applications that have been proposed for diagnosis, 
followed by a description of the major diagnostic issues 
in Section V. Finally, in Section VI we provide the 
conclusions. 

11. BRIEF LVTRODUCTION TO NEUR.-\L 
NETWORKS 

xnificial neural networks can be &f& M 
nonlinear modeling systems consisting of a number of 
mterconnecced processing units or neurons. How the 
inter-neuron connections are arranged and the nature of 
the connections determine the structure of the network. 
How the strengths of the connections, known as the 
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network weights, are obtained during the training phase 
to achieve a desiied overall behavior of the network is 
governed by the training algorithm. There are many 
different types of network structures and for each 
structure type there are a large number of training 
algorithms. 

The most widely used type of network structure, 
both for nuclear power plant diagnostics and other 
applications, is the feedfommd multilayer network 
(also known as the multilayer percepuon) with the 
backpropagation algorithm used as the training method. 
In a multilayer feedfoxwad network, the neurons are 
arranged in layers and the information signals flow via 
unidirectional connections from the input layer to the 
output layer through hidden layers. Feedforward 
multilayer networks have been classified as universal 
approximators since mathematical proofs have been 
derived [35] that show that this type of network 
structure, using arbitrary squashing functions for 
mapping the network neurons can approximate 
virtually any function of interest to any d e s i  degree 
of accuracy, provided sufficiently many neurons are 
represented in the hidden layers of the network. The 
standard backpropagation training algorithm [7,30] is 
based on gradient descent where the network weights are 
iterativelly updated such that the difference between the 
network predicted and target values is minimized. 

Most of the applications of NNs for diagnostics 
use the feedforward network structure with some 
variation of the backpropagation training algorithm [3- 
9,ll-12,14-18,21-22,24,26-331. Among the other 
types of network structures proposed for diagnostics are 
the Kohonen self-organizing network [S-9,131, the 
perceptron-like network [lo], the temporal network 
[XI, the probabilistic network [19], the Boltzman 
machine [203, and radial basis function network 1231. 
For a detailed description of most of these network 
structures and associated training algorithms the nzxk 
should refer to any NN book. 

111. ADVANTAGES AND DRAWBACKS 

Inherent in the neural networks methodology and 
their application to plant component diagnostics are 
noticeable advantages and drawbacks. Among the most 
noticeable advantages and capabilities, we may include 
their general purpose name which allows for a wick 
range of applications, their capability to provide real- 
time responses once uained, their ability to generalize 
from uained examples, and their ability to recognize 
faulty component patterns even when the information 
comprising these patterns is noisy, sparse or 
incomplete. It is the generalization capability of NNs 
that enable them to correctly classify pattern containing 
noise [lS]. Also, the non-algorithmic nature of NN 

simulations makes it possible to model complex 
system when only data of system inputs and outputs 
are available [8]. 

Among the most noticeable limitations ard 
drawbacks, we may include the fact that the training 
process is time consuming and requires large amounts 
of training data the quality of which strongly affects the 
success of the approach. When used for transient 
classification, it is necessary to anficipate all possible 
transient scenarios and use them for training. Scale-up 
to include additional transient scenarios cannot, in 
general, be performed incrementally and involves the 
modification of the network architecture and retraining 
of the entire system from scratch. Neural nets also lack 
explanation facilities and cannot explain the decision 
path of the underlying knowledge base. Also, the 
advantage of NNs to generalize from trained examples 
and perform inferences when the input data are beyond 
the scope of their knowledge can have negative 
consequences. For instance, a feedforward network 
might incorrectly give a classification answer with high 
confidence for a new type of transient on which it has 
never been trained [19]. 

IS'. STRUCTURES AND APPLICATIONS..  

Many different types of network structures have 
been proposed for various applications in the detection 
and identification of plant component faults. In 
addition to stand-alone NN-based systems, numerous 
diagnostic systems have involved the use of two or 
more networks and the combination of NNs with other 
computational tools in the development of hybrid 
diagnostic systems. In this section we present the 
types of network structures that have been proposed for 
diagnostics and discuss the types of applications used 
within each structure type. We also present the various 
diagnostic system architectures involving h e  use of 
multiple networks and hybrids of NNs with other 
computational tools. 

The vast majority of the proposed systems use 
the feedfonvard network architecture [3-9,ll-12,14- 
18.21-22,24,26-331 with different variations of the 
backpropagation training algorithm. Variations of the 
standard backpropagation algorithm were suggested to 
eliminate the excessively long training time required to 
obtain acceptable emrs [22,28-311, the selection of 
training parameters [29-3 11, the occurrence of premature 
saturation of the network output neurons [28-311, ard 
the selection of the number of neurons in the hidden 
layer [16-181. Feedfornard networks have been used 
primarily as a transient classification tool to detect rrrd 
identify a set of prespecified component failures [5- 
9,ll-12,14-18.22.2426-331. Given data representing 
the values of a set of sensor measurements (the input to 



llic nclwork), lhc network classifies the dam into one or 
more transient classes (the output of the network) 
IeiWicd during t h ~  network training phase. 

A couplc of other applications of f d m m i  
networks have also been proposed. For instance, in 
addition to transient detection and identification, Jeong 
et al. [32] applied this type of network to estimate the 
severity level of the transients. Lin et al. [21] and 
Hines et al. [34] independently proposed the use of 
feedforward networks exclusively for fault detection (not 
identification). Neural networks were used to classify 
the discrepancy or residue between measured plant 
signals and expected behavior calculated by reference 
simulation models. 

Among the other types of network structures we 
may include the Kohonen self-organizing network 
proposed by Guo and Uhrigh 18-93 to preprocess 
transient data and classify the timedependencies into 
clusters. The properties of the clusters were then used 
as diagnostic features for transient classification. 
Kohonen nets were also used by Furukawa et al. [13] 
for transient feature selection. Xing and Okrent [%I 
used an unsupervised clustering network to preprocess 
transient data of anticipated transients without scram in 
boiling water reactors. Ragheb and Campos [lo] used 
perceptron-like networks for classifying pipe break 
sizes, and Uluyol and Ragheb [25] applied temporal 
networks to recognize time-dependent patterns of 
transients. Bartal et al. [19] proposed the use of 
probabilistic nets to classify unknown transient events 
as “don’t know.” Marseguerra and Zio [20] proposed 
the use of the Boltzman machine for transient 
classification and Renders et al. [23] used radial basis 
function networks to predict the values of variables that 
were not measured from directly measured variables, 
which were then used to detect plant anomalies. 

In addition to stand-alone network architectures, 
multi-level hierarchical structures of NNs and modules 
of double networks arranged in series and in parallel 
have also been proposed. For instance, Guo and Uhrig 
[8-91 used a self-organizing network to pre-process the 
original transient data and reduce the number of trajniing 
patterns, followed by a modular structure of modified 
feedforward networks that eliminate the difficulty of 
training the networks with many transients [81. A 
similar approach was suggested by Xing and Okrent 
[24] through a two-level hierarchical structure. At the 
Fxst level, a clustering network was used to pre-process 
the data which was then provided to a fdawmi 
networks, at the second level, for transient 
classitication. Jeong et al. [ lfl used modules of double 
feedfornard ne& arranged in parallel with feedback from 
one net to the other to discriminate between two 
uansienrs with similar patem SigMtUes. Basu and 
Banlett [lS] proposed a two-level hierarchical structure 

of two fkdforward networks to reduce the size of the 
classification problem and Reifman et al. [26-271 
suggested a multi-level m y  of feedfornard networks 
that use the thermal-hydraulic characteristics of the 
plant components during n o d  operation to 
discriminate among possible faulty component 
candidates. At the First level, networks would be used 
to separate out different component types that perform 
equivalent functions, e.g., open valves and pumps, and 
at the lower levels, networks would be used to separate 
out different specific components of the same type, 
e.g., gate valve vs. globe valve, and gate valve 1 vs. 
gate valve 2. 

To alleviate some of the limitations of NNs for 
component diagnostics, hybrid diagnostic systems 
involving the combination of NNs and other 
computational tools have been suggested. For 
example, the combination of NNs and expert systems 
in a two-level hierarchical architecture has been ~prted  
by different researchers. Reifman et al. [2627l 
suggested the use of an expert system followed by an 
array of NNs where the purpose of the expert system is 
to generate hypothesis about the possible failures 
which are then tested by an array of networks to 
identify the faulty component from the hypothesized 
candidates. In contrast, Ohga and Seki [6J suggested 
the use of feedforward networks at the f i t  level,. * 

followed by an expert system. In the first level, the 
network receives analog data and hypothesizes about the 
possible component faults and in the second level, the 
expert system with a heuristically conshucted 
howledge base receives the network diagnosis and 
confirms the results using digital data of the plant 
status. Hybrids of numerical simulation programs and 
NNs have been proposed for transient detection [3- 
4,211. In this approach, simulation programs are used 
to represent reference models and NNs are used to 
classify the residue between measured plant signals and 
expected behavior calculated by the reference simulation 
models. 

V. DIAGNOSTIC ISSUES 

The diagnostics of component faults in nuclear 
power plant systems is a very complex process due 
most prominently to the possible occurrence of 
multiple faults, limited amount of instrumentation, 
transient dynamics, and noise in the measured signals. 
In addition to these issues inherent in plant diagnostics, 
new issues arise as diagnostic methodologies are coded 
into software in the development of computer-based 
diagnostic systems [ 3 4 .  The main issues of plant 
diagnostics and ,W-based diagnostic systems are 
summarized below. 



Multiple Component Faul ts .  The occurrence of 
rnultiplc component faults closely spaced in time and 
space is difficult to detect and identify because of the 
possibility of one component fault partially or 
completely canceling out the effect of another on the 
measured plant signals. Furthermore, because each 
transient event needs to be explicitly represented when 
NNs are used for transient classification, it may become 
impractical to use NNs for the diagnosis of multiple 
component faults due to the large number of possible 
fault combinations that need to be represented. To 
circumvent this combinatorial explosion, some NN 
approaches have attempted to diagnose multiple faults 
based solely on the representation of single component 
faults [7,22]. 

Transient Dynamics. Since transient events evolve 
in time, the diagnostic procedure needs to account for 
the thermal-hydraulic time constants of the plant 
systems [34]. For the types of NN structures proposed 
so far for plant diagnostics, temporal information needs 
to be explicitly represented in one of two approaches. 
In one approach, a few snapshots in time are employed 
to represent the entire history of each transient event in 
the training database [6,16-18,24,30-31,331 where the 
number of necessary snapshots is sometimes obtained 
in an iterative fashion [16-18,331. As long as care is 
taken to select snapshots representative of the entire 
transient, this appoach should be adequate to handle the 
transient dynamics. In another approach, the entire 
time history of the transient is employed 
[S, 10,12,15,22,25,32] which increases the already time- 
consuming process of NN training. 

Corrupted Signal Observation. Advisory 
systems are expected to operate under real plant 
conditions where the plant signals are cormpted with 
noise. The intrinsic ability of NNs to filter noisy data 
while preserving its structure and detail is perhaps one 
of the major advantages of using NNs for fault 
detection and identification. The majority of the 
reviewed articles discuss the diagnosis performance of 
NNs with noise added to the data [5-7.10-12,15- 
18,20,22,24-25,321 and concluded that NNs can 
successfully classify transient events when a 10% noise 
(equivalent to approximately 3 standard deviations) is 
present in the data. The results also indicate that NNs 
trained with input noise appear to become less sensitive 
to input noise in the test data [12,17]. 

Verification & Validation (VSrV). Verification 
is the process of determining whether or not the system 
is working as designed and validation is the process of 
evaluating whether or not the system performs its 
intended function. Le., arrives at the correct answer. 
Incorrect inferences made by software systems during a 
plant emergency condition could confuse and mislead 
operators with the potential to produce catastrophic 

consequences. This possibility is perhaps grater with 
NN-based software than with conventional simulation 
programs since NN-based systems will provide answers 
even if the question is beyond the scope of their 
knowledge [19]. Clearly, one of the V&V challenges 
of NN-based advisory systems is to be able to delineate 
the boundaries and determjne the functional correctness 
and completeness of their knowledge. However, except 
for the work of Kim and Bartlett [331, no other efforts 
have been made in the nuclear community to study the 
V&V issues of N N S .  

VI. CONCLUSIONS 

Neural networks were initially applied in the 
diagnosis of component faults in nuclear power plant 
systems as a classification tool for the direct mapping 
of plant signals into component faults. Due to the 
need to anticipate the possible fault scenarios and the 
availability of the associated transient data for training 
purposes, this use of neural networks is undesirable 
when applied to complex plant systems composed of a 
large number of components each of which having 
different failure modes. More recently, neural networks 
have been applied to the characterization of normal 
operating plant conditions and transient data pre - 
processing, and have been combined with other 
computational tools in the development of hierarchical 
multi-level diagnostic systems. The synergism of 
hybrid computer systems combining neural networks 
with other computational tools have the potential of 
addressing some of the major challenges in nuclear 
power plant diagnostics Future research shodd 
concentrate in the development of V&V methodologies 
to delineate the boundaries of the howledge base of 
neural networks and to provide error bounds for their 
inferences. 
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