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Abstract 
This is the final report of a four-month, Laboratory Directed Research and 
Development (LDRD) project carried out at the Los Alamos National 
Laboratory (LANL). There is a great need for a new and effective 
technology with a wide scope of industrial applications to investigate media 
internal properties of which can be explored only from the backscattered 
data. The project was dedicated to the development of a three-dimensional 
computational inversion tool for seismic exploration. The new 
computational concept of the inversion algorithm was suggested. The goal 
of the project was to prove the concept and the practical validity of the 
algorithm for petroleum exploration. 

Background and Research Objectives 

Today only a few conceptually different tools are used routinely in seismic 
exploration. They fall into these groups: deconvolution, stacking, migration and forward 
modeling. None of the mentioned methods provides adequate inversion without interactive 
and multi-step corrections and adjustments made by humans (“interpreters”). The ideas 
used today are fifty years old, they were born when computing was performed with a slide 
rule. The new generations of supercomputers have brought about new possibilities to 
explore the large-scale regression methods that require hundreds of macroscopic forward- 
modeling runs-something that was not possible even five years ago. Although the three- 
dimensional (3-D) inversion remains a formidable and mathematically ill-posed problem, 
even for the simplified approximations, the “solution” seems conceivable. The research 
objective of the project was to prove the concept of the new mathematical approach, test it, 
and to explore feasibility of its industrial applications. The proposed method could 
potentially improve the existing technology in the gas and oil industry. 

* Principal Investigator, E-mail: gavrilov@lanl.gov 
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Importance to LANL’s Science and Technology Base and National R&D 
Needs 

The crucial stage of the current gas and oil exploration technology is the creation 
and analysis of seismic surveys. Today, the average price tag for one drill hole starts at 
$10M. The risk of getting a “dry” hole can be rather high. That is why the companies 
today spend on the average up to $5M to get the preliminary survey and analysis of the 
potential field. The huge redundancy of gathered data and the subsequent computer and 
human analysis of the results explain the high cost of this stage. Still, the accuracy of the 
current methods cannot be mathematically expressed because it is a human who “draws” 
the frnal result, not a computer. Interpreters, not the mathematical algorithm, make the 
conclusion about the structure of the ground. Clearly, it would have been a tremendous 
breakthrough if there was a self-consistent tool that would eliminate the human involvement 
and human errors. It would have been even better if the new methods could also reduce the 
redundancy of the gathered data thereby increasing production efficiency. 

use 3-D codes and a pretty high resolution. The problem cannot be scaled down to the 
smaller space dimensions because the fundamental solution of the wave equation is 
completely different for 1-D, 2-D, and 3-D spaces. At this time, it seems that only the 
National Laboratories with their great computational power are capable to attack this kind of 
problem. Just a few major oil companies have comparable computer power, but it is 
mostly dedicated to the current production regime. The development of a new and better 
technology for the energy industry is within the Laboratory and DOE missions, and 
national science interests. 

The formidability of the problem comes from the fact that to test an idea one should 

Scientific Approach and Accomplishments 

The general statement of the inverse problem can be formulated in a simplified form 
as follows. There is an investigated nonuniform media. There are sources S (that will 
send the signals of a given shape into the media) and receivers R on top of the media. It is 
presumed that everything can be measured only on top of the media (see Fig.1). The 
problem is to find the properties of the media (in our case the velocity C(x,y,z) ) from the 
signals recorded at the receivers (backscattered data). 

C(x,y,z) will result in a unique pattern recorded by receivers), and the problem is known 
It is still an open question whether the problem has a unique solution’ (unique 
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as ill-posed,2 i-e., small changes in C(x,y,z) will generate a totally different pattern of 
receiver records. 

Three approaches were considered to attack the inverse problem in the current 
project. All three methods use scalar 3-D nonuniform wave equation as a forward 
modeling tool. The code for the 3-D wave equation was developed at LANL, together with 
the French Petroleum Institute (IFP), under the gas and oil national information 
infrastructure project. The code runs on a massively parallel computer, Cray T3D, and is 

capable of simulating realistic problem sizes (up to 10 km3 ). The parallel code for the 
T3D has been implemented at the Advanced Computing Laboratory (ACL) at LANL by one 
of the authors (Eugene Gavrilov). The code has two types of boundary conditions for the 
top ground layer, i.e., the absolute reflection to simulate acoustic waves and the transparent 
boundary conditions to simulate electromagnetic wave propagation. The walls and bottom 
of the computational box are transparent to simulate the infinite domain. The typical run 
takes about an hour on the 64-node partition of T3D for one forward simulation. This code 
was used to check the inverse problem algorithms as well as to construct the regression-like 
algorithm for the inverse problem. Below we describe briefly the ideas and algorithms 
used to approach the problem and our accomplishments. 

The first method is based on the possibility of extracting information about the 
nonunifom media from the data recorded on top of the surface with the recurrent chain of 
functions that relate directly the signal at the receiver with the velocity C(x,y,z). This 
method is based on the forward model and its discrete approximation. Let us consider the 
scalar wave equation in acoustic approximation: 

Here u is the acoustic pressure in the media, C = C(x,y,z) is the velocity in the media, 
f ( t )  is the time profile of the source, located at X s .  One of many finite-difference 

approximations for the equation above can be as follows: 

?,A - , 
This equation approximates the original wave equation and will provide the solution with a 

priori chosen accuracy as long as computational parameters, such as the time-step z and 

space step h, are chosen correctly to provide stability and convergence of the scheme. But 
the same equation can be considered as a recurrent functional that maps the value of the 
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pressure u(x,t) at an arbitrary point in space x, e.g., on the surface, to the space of 
C(x,y,z). The initial value problem 

u(x,t = 0 )  = 0 
U,(X,t = 0 )  = 0 

(3)  
( 4 )  

makes this functional mapping finite in C(x,y,z) space for the finite time of solution. 

That means that for an arbitrary sourcef(t) it is possible to construct the function @ in 

such a way that 

Hence, the records at the receivers xr can provide information about the distribution of 

velocity in the finite domain surrounding the source and receivers (we assume there are no 

singularities in the media). The problem then becomes how to find d5 (-l) (inverse to @ )  

that will “invert” the records into numerical values of C(x,y,z). One approach that we 
have chosen was to iteratively solve Eq. (2) with respect to C(x,y,z) using the records 
u(x,t) obtained from forward modeling. The idea was very attractive; however, even for 

the second-order finite-difference approximation [a. (2)], the computational intensity 
simply did not let us move any further then just a few points from the receiver location, 

even with the massively parallel computer. The structure of Qi (-l) is so severe, from the 

computational point of view, that currently it does not make sense even to speak about the 
practical value of the approach. All attempts to use the layering approach (linearization) in 
decomposing Eq. (5) led us to the absolutely unstable algorithms that usually blew up just 

after a few steps. There was no way to regularize the function @ (-l) because it is a 

nonlinear recurrent mapping and there are no techniques to do this. Although 
mathematically this approach seemed to he a conceivable way to solve the problem, only 
negative results were obtained and the authors have to admit that the method simply did not 
work out. 

The second method we tiied was based on the idea of regression approximation of 
the solution u(x,t) via the set of basis functions constructed from the velocities C(x,y,z) 

and time-dependent coefiicients p(t)- The goal was to find a correlation between particular 

space distribution of the velocity in the media and the responses that are collected on the 



ground surface. Again, Eq. (2) was chosen as an approximation of the functional 
dependencies. It should be pointed out that for this approach, Eq. (1) should be 
dimensionless and all values normalized with respect to the "natural" or characteristic 
values. Our normalization was the following: 

t = t V  

where v is the central frequency of the source, R is the characteristic wavelength, cs is the 

velocity at the source position, and A is the amplitude of the source. Choosing these 
natural variables the velocities of the dimensionless wave-equation are expressed in terms 
of the velocities at the source location, the time is expressed in inverse frequency and the 
pressure is normalized on the amplitude of the source. The actual approximate relations 
between u and C were chosen as follows: 

Here uJt) is the recorded pressure at the receiver, located at the same position as the 

source, p,(t) are the time-dependent coefficients that relate dimensionless ur(t) and 

dimensionless velocities ci in the finite domain. Eq. (lo) states that there is an 

approximate relation between the records and the velocities in linear approximation. If Eq. 

(10) holds, then the inverse matrix B would immediately provide information about the 

velocities from the records, i.e.: 

... .. ... ... ... 
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To obtain the matrix B we had to use the Galerkin projection method3 and made 
several dozens of forward model runs. In fact, the more runs we have the better we can 
“memorize” the different velocity structures and the trace record patterns corresponding to 
these velocities. This is a regression approach. It is also implied that the chosen 
projection, Eq. (lo), will have good generalization ability, Le., it will produce, with 
reasonable accuracy, the proper trace records not only for the velocities that we used to 

“train” it but also for the arbitrary velocity structures. The matrix B coefficients are 

calculated as follows: 

Here the angle brackets mean scalar product (integration over the set of runs). The 

approach is formidable because to compute matrix B one should first have “enough” 

forward runs to solve the system [Eq. (13)]. Also, the system [Eq. (13)] is a function of 

time, i.e., it provides a solution only for one row of the matrix B. We have to remember 

that in order to get reasonable accuracy one should have enough time and space resolution, 

Le., for parameters of practical interest, e.g., when v = 10 Hz, c = 2000 m/s, h = 200 m, 

and domain of interest up to 10 km in each direction, the size of the matrix B is large (at 

least 1000x1 000). It is clear that to compute a “good” B one needs at least several dozens 

of forward runs from which approximately 1000 solutions have to be obtained for the 

linear systems of the size I0OOxl000. Clearly this problem is for supercomputers. It 

would have taken about a week of computer time only to accumulate enough runs. 

However, once computed, matrix B can he used to invert the velocities for practical 

applications over and over again. It would have been even possible to “hardwire” the 
matrix and the linear J2q. (12) on a PC board to have a real-time inverter. 

method will provide adequate results, at least approximately. The goal was to test the 
concept. Due to the very short time allocated for this project, thorough investigation was 
not possible but some preliminary results are available. We have chosen the following 

At this stage we have tried to scale down the problem a bit to see whether the 
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method of finding the matrix B. The forward runs were done at the ACL on the Cray T3D. 

These runs provided the record sets for the corresponding sets of arbitrarily chosen 
velocities. The decimated velocity grids { c I....c ,}with corresponding trace records u(t ’) 
were stored to use the Galerkin method to solve system (1 3). The systems were solved on 
the massively parallel computer, CM-5, at the ACL at Los Alamos. This computational 
“setup” allowed us to speed up the overall computational time and may be considered as 
our main result at this stage. We also found that, on the small models, Eq. (12) has a 
reasonable generalization ability, at least for the simple-layered or clustered velocity 
structures. However, there is a need to investigate this approach further. 

The third method used explores the fact that one can use electromagnetic waves for 
petroleum exploration (from short waves to decimeter diapason waves) (e-g., Ref. 4 and 
Ref. 5). The fact is that the ground mostly has constant dielectric permeability for a wide 
range of electromagnetic frequencies, and there is a rather big difference between the 
ground permeability and permeability of gas and oil type clusters. This fact is being used 
today by many gas and oil and service companies in their production exploration. There 
are good methods developed for this approach (frequency domain); see a good survey of 
these methods in Ref. 6. The third computational method that we have developed neither 
solves the inverse problem, nor uses a new mathematical idea. However, the 
computational implementation provides the capability to reconstruct underground images in 
search for gas and oil and any other conductive deposits (metals). Since for 
electromagnetic waves the discontinuities of permeability most probably are due to the 
presence of conductive type structures, one can reconstruct a 3-D image of these clusters. 
The images of the cluster surfaces will not he optically distorted and can be used to get an 
estimation of size and location depth of these clusters. 

The idea of image reconstruction is the same that is used in holography, i.e., a 
stationary electromagnetic source sends a continuous signal and a few receivers collect 
backscattered radiation. The receivers collect amplitude and phase information. This can 
be done either by applying a reference signal of known frequency or by using a computer 
post-processing of time-varying receiver signals. Either way we can reconstruct the 
amplitude and the phase for the surface layer. This information is used as a bhundary 
condition to solve the Helmholtz equation for the 3-D space above the s u r f F  layer. The 
solution is a field generated by scattered centers. The amplitude of the 3-D held is a 3-D 
image of the clusters. 
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The Helmholtz equation for the outer space can be solved using Fresnel-Kirchgoff 
theory or Huygens’ principle: i.e., field u(x)  can be computed as the convolution of the 
surface field (or field just from few receivers) and Kirchgoff kernel: 

u( XI k) -- Jj A( ?’)K( X - 2’1 k)&’ 

where 

ik 
4n 

K ( 2 )  = - - ( I+cosa)  

Here k is the wave number corresponding to the wave number for outer space (for practical 

applications k is just a computational parameter), a is an angle between the surface normal 
+ 

and direction toward x’ ,  A(x) is the amplitude and phase information (hologram), 

collected on the surface, K(x) is the Kirchgoff kernel. We implemented integration of Eq. 
(14) on the Cray-T3D at the ACL. Below we present a few pictures that we have obtained 
by applying this method to the synthetic data set. The forward model was used to calculate 
A(x,y) for the chosen C(x,y,z). Then A(x ,y )  was used to reconstruct the image of 
C(x,y,z). For this particular example we considered a 3-D case when a source generated 
electromagnetic waves into the media that had a nonuniform cluster (spherical shape of a 
given radius) located in the middle of the computational box. Velocity contrast (ratio of 
velocities for surrounding media and the cluster) was equal to 0.5. There was one source 
located on the surface and shifted toward the upper left corner of the computational box. 

Figure 2 shows the hologram A(x,y) (amplitude-phase information) recorded on 
the surface from forward modeling. This hologram was used to reconstruct the wave field, 
Le., to invert the wave-front using Eq. (14). From the inverted wave-field u(x,y,z) we 

have calculated the amplitude u2(x,y,z). Figures 3(a) and 3(b) show the vertical slice 
across the center of the 3-D computational box: Fig. 3(a) - the actual velocity structure, Fig. 
3(b) - the reconstructed amplitude that shows our cluster. Fig. 4(a) shows the vertical slice 
of the 3-D velocity model, slightly shifted, compared to Fig. 3(a). Fig. 4(b) shows the 
vertical slice, same location as in Fig. 4(a), of the 3-D reconstructed amplitude. 

The results show that the method has great potential for practical applications but, 
again, further analysis and optimization are needed to convert it from a working idea to a 
practical tool. 
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Fig. 1. Inverse problem spatial layout. C(x,y,z)-Velocity to be determined; S-Source; 
R-Receivers. 

Fig. 2. Hologram A(x,y) from forward modeling. 



Fig. 3. (a)Vertical slice of velocity across the center, Synthetic Model. @)Vertical slice of 
reconstructed amplitude across the center of the model. 

Fig. 4. (a)Vertical slice of velocity slightly shifted from the center position. -.(b)Vertical 
slice of reconstructed amplitude for the same spatial location as in Fig. 4(a). ~ 
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