
Dynamical System Modeling Via Signal Reduction
and Neural Network Simulation

Thomas L. Paez
Experimental Structural Dynamics Department

Sandia National Laboratories
Albuquerque, New Mexico

e-mail: tlpae@sandia.gov
(505) 844-7052

Many dynamical systems tested in the field and the laboratory display significant
nonlinear behavior. Accurate characterization of such systems requires modeling in a
nonlinear framework. One construct forming a basis for nonlinear modeling is that of the
artificial neural network (ANN). However, when system behavior is complex, the amount
of data required to perform training can become unreasonable. We reduce the complexity
of information present in system response measurements using decomposition via
canonical variate analysis. We describe a method for decomposing system responses, then
modeling the components with ANNs. A numerical example is presented, along with
conclusions and recommendations.

INTRODUCTION

Artificial neural networks (ANNs) have been shown capable of simulating the responses of many types of systems,
among them, structural systems. For example, Paez, O'Gorman, and Tucker, (1997a, 1997b) have demonstrated that
structural system outputs can be faithfully reproduced using layered perceptron ANNs and connectionist normalized
linear spline ANNs in the autoregressive (or recurrent) h e w o r k . The potential advantage of system simulation
with A N N s is that relatively accurate simulations can be obtained in efficient, fast models. ANNs are inductive in
nature, and therefore, require training data This means that data from physical experiments or other numerical
simulations can be used to train A N N s .

With regard to the practical simulation of structural system response, though, it has been noted that there are
substantial difficulties in simulating the motions of large, complex systems; these difficulties arise from several
sources. First, complexity in a structural system implies that the system may have many components, that are,
perhaps, nonlinear. This implies that the autoregressive mapping of past system states and excitation values to
future states may involve numerous input variables. ANN size influences its feed forward run time, and therefore, the
efficiency of simulation. But more important, size influences training time and the number of exemplars required to
train the ANN. Both training time and the number of exemplars increase rapidly with ANN size. Because of this,
means must be sought to model complex systems in terms of simpler components.

There are numerous approaches to the decomposition of complex signals. (See, for example, Paez, O'Gorman, and
Tucker, 19978.) The approach most familiar to structural engineers is linear modal analysis, and this can be easily

mailto:tlpae@sandia.gov

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or senice by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, mom-
mendotion, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

extended to the nonlinear regime. There are several methods for executing modal analyses. One method that is very
efficient and adaptable to nonlinm applications is canonical variate analysis (CVA). CVA is a method that uses
structural input and response waveforms to establish a transformation to state space. It can be used for response
prediction, and in this h e w o r k it uses information from the past of a time series to predict future time series
waveforms. Input waveform selection is based on a generalized singular value decomposition.

In this paper we present a detailed description of the CVA method for structural analysis in which the nonlinear state
map required by CVA is embodied in an ANN. The following section is a description of the CVA technique. Next,
the multivariate linear spline (MVLS) ANN is derived for the local linear state map. An example is presented, ad
the results show that the MVLS network operates much faster than the corresponding classical CVA analysis.

CANONICAL VARIATE ANALYSIS (CVA)

There are numerous instances when time series analysis is used to form an empirical model of a dynamic system.
Models may be constructed directly (in a single computational step) from the time series using autoregressive
moving average (ARMA) or pure ANN models. This form of model can be quite useful, but often hides structure
inherent in the system. In contrast to direct application of ARMA or ANN models, where the potential model
dimension is potentially quite high, a more robust approach seeks to exploit characteristics present in the data to
derive a reduced order model. The redd order model is then used for response prediction or studies of system
structure. A number of approaches have been proposed for constructing reduced order models. Indeed, the optimal
reduction suategy is dependent on the data and the desired model form. Canonical variate analysis (CVA) is a robust
model reduction technique for time series data. (Lanmore , 1983). In the following paragraphs, we develop the
equations of CVA.

Canonical Variate Analysis was developed by Hotelling, who developed state models based on linear transformations
of measured time series data. CVA has been improved and robust methods have been developed where CVA is used
to estimate state models of linear systems from time series data (Larimore, 1983). R e d u d order nonlinear models
have also been constructed from time series data. Prediction of future time series values, estimation of state rank,
and computation of Lyapunov exponents are described by Priestly (Priestly 1980), Tong (Tong 1990), Packad
(Packard, 1980), Farmer (Farmer 1988), and Larimore (Larimore, 1991).

Our approach combines the advantages of ANNs and CVA. Initially we assume that the state model form is
potentially nonlinear, and construct a number of local linear models using CVA. The idea behind CVA is that past
waveforms are selected for their utility in predicting future waveforms, in contrast to the ARMA approach, in which
past time series values are used to predict a future time series value. We define the past and the future of a
multivariate time series as:

They’s are sampled response time series values (potentially vectors, in the multiple response case) and the u’s are
sampled time series input values. The subscript on the time value is the time index, Le., to is the time at index 0.
The variable z is the time increment, j is the number of input lags and k is the number of response lags. Matrices of
past and future behavior are constructed from sets of past and future waveforms as follows.

P =

F =

y(ro + T) y(to +27) ... y(to + k ~) -
y(tl +T) y(il +2r) ... y(rl +kr)

y(r, + T) y(t , +27) ... y (t , + k ~)
...

-

where t i , i = 0, ..., rn, is a sequence of time values. Minimization of the error in predicting the future At) from the
past p(t) is accomplished using a series of singular value decompositions on P and F , leading to a transformation
matrix T, which selects from the past the information critical to the prediction of the future (Larimore, 1983). T is
formed from

S V D [(P ~ P) - * / 2 (P ~ F ~ F ~ F) - 1 / 2] = UWV* (4)

and SVD(.) denotes the singular value decomposition. The selection of an optimal “memory” of the past is described
by

m(t) = Tp (5)

Once m(t) is evaluated at every time t , the state equations may be obtained in a least squares sense using

m(i + 1) = Arn(i) + Bu(i) + w(i)
y(i) = Cm(i) + Du(i) + Ew(i) + v(i)

In Eq. (6) m(i), u(i),andy(i) are known at any time t i , w(i) and v(i) are white noise processes which result from
errors in the solution, and A, B, C, D, and E are determined using least squares. The term Ew(i) allows for
possible correlation between the state noise w(i) and measurement noise v(i) . The possibility of this correlation is
necessary to obtain a minimal order state space representation of the process. This process is described in detail in
Larimore (1983).

Dealing with the nonlinear case requires use of potentially nonlinear maps which: (1) Transform the past and future
matrices P and F and into the estimated states m. (Eq. (5) - the transformation map) (2) Map past states m(i) into
future states m(i+l). (Eq. (6a) - the state map) (3) Predict future time series values from state and input values. (Eq.
(6b) - the prediction map)

In contrast to global modeling, local modeling uses a specially selected set of past and future waveforms to formulate
the P and F matrices in Eq. (2) above. In local modeling, the current past waveform p(t ,) is consided a reference
waveform. The cartesian distance between other past waveforms and the reference past is

m 2 2
y (t , - r) - y (t , - r)] +...+[At, - k r) - y (t , -kr)] }

The quantity d(r,n) is the distance between a waveform at time index IZ and the reference waveform at time index r.
Each past waveform has a distance from the reference waveform. In local modeling, m waveforms that have the
smallest distance from the reference waveform are used to formulate the matrices P and F of past and future vectors.
Intuitively this means that wave shapes which are similar to the reference waveform are used to formulate the local
linear model.

The local linear formulation requires repeated evaluation of equations 2-6 for every time series point p for which a
model formulation or prediction of the futuref is required. In each case neighbors of the reference past are used to
formulate the past and future matrices P and F, the transformation matrix T is computed, and the A , B, C , and D
matrices calculated. This approach is computationally tractable and allows lots of change in the form of all three of
the maps described: the transformation map, the state map, and the prediction map. Repeated local linear formulation
is, however, computationally expensive, especially in finding nearest neighbors from a large set of training data ind
in the computation of singular value decomposition.

This computational expense, combined with our knowledge of the versatility and robustness of A N N s , motivates us
to formulate the three mappings of CVA in ANN form. Our procedure utilizes CVA to compute a representative set
of transformation matrices, state maps, and prediction maps. With a representative set of known exemplars spanning
the model space, we construct neural networks which accurately embody the mappings. Once these mappings are
completed, we can readily formulate future predictions, map past states to future states, and past values to states
without encountering the computational overhead of SVD. As a start, we concentrate in this paper on the state map,
mapping past states into future states, Eq. (6a).

THE MULTIVARIATE LINEAR SPLINE NETWORK

The multivariate linear spline (MVLS) network is an artificial neural network (ANN) of the radial basis function
type. The radial basis function artificial neural network was developed by Moody and Darken (1989). It simulates
mappings via the superposition of radial basis functions. It is an accurate local approximator, and it trains rapidly,
but has the potential for size difficulties as the dimension of the input space grows. A generalization of the radial
basis function ANN is the connectionist normalized linear spline (CNLS) network. This was developed by Jones, et
al., (1990), and seeks to simulate a mapping by using radial basis functions in a higher order approximation than the
radial basis function network. It also has good local accuracy, and is fast-training.

The MVLS network generalizes the CNLS network to multiple output dimensions, and in the framework of its
present implementation, views training in a construct more familiar to engineers than that used for the CNLS
network. The objective of the MVLS network is to provide a model framework for the simulation of multiple
input/multiple output mappings. The model framework must be trainable using exemplars - examples of the correct
inpudoutput behavior of the system being simulated.

To commence development of the MVLS network, we let x be an n-dimensional vector input to the system being
modeled, and let z = g(x) be its corresponding rn-dimensional vector output. We assume that the function g(.) is
single valued and deterministic, but that its form and parameters are unknown. We can approximate the mapping
from x to z in a region of the input/output space using the linear form:

z y = A(x - C)

wherey is an approximation to z, c is a vector with the same dimension as x in the vicinity of which the
approximation is made, and A is an mxn matrix of constants. (In practice, the vector x may be augmented with a 1,
the vector c augmented with a 0, and the matrix A augmented with a column of constants to account for the
possibility of an offset in the linear model. The vector and matrix dimensions are modified accordingly.) This
approximation could be optimized using least squares or weighted least squares, and it would be accurate in the
vicinity of the data used to develop it as long as the behavior of the mapping in the neighborhood is truly linear.
This optimization is discussed in the following section. The vector c is the "center" of the local linear
approximation, and it is therefore called a center vector, or simply a center.

We can develop similar approximations in other neighborhoods of the input vector space. To account for this, we
append the subscriptj to the coefficient matrix and the center vector:

z = Y = A , (x - c ,) j = o , ..., N-1 (9)

where N is the number of regions of approximation.

Having developed local linear approximations of the x to z mapping, we can now combine the local approximations
to create an approximate, global map. The approximation takes an input vector xo and maps it into yo, an
approximation to g(xo). To accomplish this approximation, we superimpose several of the linear approximations
in a series. We weight each component in the series according to its distance from the input vector xo . Local linear
models that are near xo are weighted heavily, and those that are further away are lightly weighted. The series is:

where the w, are the weights attached to the local linear models. The output vector yo on the left side is independent
of the index j , so it can be removed from the sum and the equation can be simplified to:

i Yo =

This is the parametric form of the MVLS network.

We choose the form of the multivariate Gaussian probability density function for the weighting expression. It is
known as a radial basis function and has the form:

The quantity p is a network parameter related to the width of the radial basis functions; it is to be optimized, and this
will be discussed later in the section.

The MVLS network is used in feed forward operation by specifying the input vector xo , evaluating the weights wj
using Eq. (12), substituting the weights and input vector into Eq. (1 l), and evaluating the output, yo, in Eq. (11).
This output should present an interpolation among the training outputs that corresponds to the input as an
interpolation among the training inputs.

Note that the range of the summation indexj is not specified in Eq. (11). It is clear that the summation should be
carried out over those linear models nearest the input vector xo . There are several ways to accomplish this. In the
present code we use a preestablished number of models (Eq. (9)), and choose the ones nearest in cartesian space to
make each prediction.

There are two groups of quantities and one scalar that need to be identified in order to establish the MVLS network as
an approximator to the relation z = g(x). These are the linear coefficient matrices A i , j = 0, ..., N - 1, the centers
c j , j = 0, ..., N - 1, and the radial basis function width parameter p. There are clearly many ways in which the
parameters could be identified. We have chosen the following approach.

Assume that there are m exemplars of the system input/output behavior, either measwed from the system of
computed from another model that is to be simulated. Denote these xi, z,, j = 0, ..., m - 1. If the input and output

exemplars have not been normalized, then they are now normalized by subtracting off the mean, and dividing by the
standard deviation. We select at random from among the m normalized exemplars m, (m,<m) cases to be used in
training the MVLS network. The remaining m- m, cases are used to test the trained MVLS network (Often, 80 to
90% of the exemplars are used to train the network, and the remaining 10 to 20% are used to test it.) Denote the
training exemplars xi, z,, j = 0, ..., mu - 1. (It is important to emphasize that these are not normally taken in any
preestablished order from the initial set of exemplars.)

To establish the centers c j , j = 0, ..., N - 1, we start by choosing at random from among the input training
exemplars x j , j = 0 ,..., m, - 1, a set of vectors v j , j = 0 ,.... N - 1. We allow the collection of vectors
vi, j = 0, ..., N - 1, to self organize so that they become representative of the entire set of input training exemplars.
The self organization operation is carried out as follows: (0) Specify two convergence parameten a E (0,1), and
y E (0,l). (1) Start an epoch of self organization by randomly shuffling the set of input training exemplars. (2) For
each input exemplar in the shuffled set: (a) Determine which of the vectors v, is nearest (in cartesian space). (b)
Move the vector v j in a straight line toward the training exemplar, a fraction a of the total distance. (3) After this
operation has been repeated for all the training exemplars, diminish a by multiplying it by y. (The convergence
parameters a and y are often chosen around 0.5.) (4) This concludes one epoch of self organization; repeat the
operations a preestablished number of times (Often, seven to ten epochs of self organization are carried out.), or until
a preestablished degree of convergence (as judged by changes in the vectors vi) is attained. After the self organization
is completed, we can evaluate the distance d,, between the two most distant vectors vi, then evaluate the distance
between every pair of vectors. When a pair of vectors is closer than some preestablished fraction of d,, (say one
percent), then one of the pair can be eliminated without much loss in the capacity of the v, to represent the input
training exemplars. The remaining vi defme the centers c j , j = 0, ..., N - 1 (where N may be smaller than its
initially specified value).

The next step in training the MVLS network is to specify a width parameter fi . Then based on a user-specified
option, either identify the L n m s t neighbors to each center vector cj from among the set of input training
exemplars, xi, z j , j = 0, ..., m, - 1, or identify all the nearest neighbors to the center vector from among the set of
input training exemplars xi, z j , j = 0, ..., m, - 1, within a hypersphere of preestablished radius. Use these neighbors,
and a weighted least squares approach to identify the coefficient vectors x, , z j , j = 0, ..., m, - 1. Each coefficient A,
corresponds to a center vector c,; it identifies the linear model in the neighborhood of the center.

Let xi , zi, i = 0, ..., m - mu - 1, denote the exemplars that have been set aside for testing the MVLS network. Using
each testing input xi we can operate the MVLS network in feed forward mode to evaluate the predicted output, zi.
The prediction error is:

Given this error measure, there are many potential approaches to optimization of the MVLS network parameters. A
simple approach, actually implemented in the software, is to allow the centers to self organize, then allow them to
remain fixed. Vary the value of the width parameter p, and evaluate the linear term coefficients for each p. Optimize
the network with respect to p. Then the network is optimal for the particular set of fixed centers. The analyst can
repeat the process (randomizing the initial center locations at each iteration) till the error measure is satisfactorily
minimized. A more complex approach would simultaneously vary the width parameter and the centers to optimize
the MVLS network.

The MVLS network was implemented in MATLAB.

‘ r .. ‘

NUMERICAL EXAMPLE - APPLICATION TO A NONLINEAR HARDENING OSCILLATOR

To illustrate the effective utilization of the combined CVA-ANN approach, we use the nonlinear hardening oscillator
of Figure 1 and Eq. (14), which is simulated using an analog computer.

T
Figure 1. A nonlinear hardening oscillator.

The terms c and k in Figure 1 indicate damping (dashpot) and stiffness (spring) behavior. Equation (14) defines the
system dynamics in detail. The dashpot coefficient c in Figure 1 is 2C0, and the stiffness k at small values of
1x1 - xol approaches w:, where the natural frequency is f, = 2 m , = 11.5 Hz . At larger values of 1x1 - xol the
quadratic terms are dominant and the resonant frequency increases with increasing test level. For positive excursions
of x1 - .q the quadratic and absolute value terms add. For negative excursions they subtract. Since p>a we expect
increasing stiffness in either direction, but less stiffness increase occurs in the direction of negative X I - XO. In this
experiment the level of the band limited random drive jr, is adjusted to excite about qual root mean sqm (rms)
responses in the linear and quadratic terms.

Theresponse acceleration fl and the drive acceleration xo are digitized at 150 samples/second. The excitation and
response were measured for a duration of about 14 seconds, so that about 2000 samples of the digitized excitation and
response could be mrded. For the CVA analysis, past values of the time series are obtained by using six past
values of the acceleration drive and response. A local CVA model with two states was used to compute the
transformation map T.

The transition map relating a specific set of states to future states was modeled using an MVLS network. The first
1800 data points were set aside for training and testing of the MVLS network. The training set included 1600
input/output data points, and the testing set included 200 input/output data points. The input to the MVLS network
was defined as the two system states at two consecutive times, and the input excitation at the current time and the

next consecutive time. That is, if we denote the states as ml(j). ~ (j) , j = 0, ..., 1799, and the input excitation as
i&), j = 0 ,..., 1799, then an input to the ANN would be

forj=l, ..., 1799. The corresponding ANN output would be

An MVLS network with 30 centers was specified, and the 45 nearest neighbors were used to train each local linear
model. The predictions of ANN outputs based on ANN inputs were made using the three local linear models with
centers nearest to the input. A training error (Eq. (13)) of about 0.20 was achieved on the normalized data.

The MVLS network predictions are plotted versus the corresponding testing exemplars for the two states, in Figures
2a and 2b. If the MVLS network prediction were a perfect match to the exemplars, then all the data in the figures
would fall along the diagonal. However, the ANN provides only an approximate representation of the physical
system, therefore, the representation is imperfect. The representation could be improved, in principle, by increasing
the number of centers, the number of exemplars, etc., but then training would take longer, the ANN would run
longer, etc.

3

2

'E 1

2 0

z -1 a

S
0
0
U

a

.-

z

-2

-3

/

-2 0 2
Measured data

3

2

'E 1

2 0

z -1 a

S
0
0
U

a

.-

z

-2

-3
-2 0 2

Measured data

Figure 2a. MVLS network predictions versus
training exemplars for state 1.

Figure 2b. MVLS network predictions versus
training exemplars for state 2.

Following training, the MVLS network was used to predict the response of the nonlinear system in Figure 1. A
response prediction was executed using some of the transformed data not previously used for training or testing. To
perform the prediction, the MVLS network was provided with the initial conditions and the input excitation. The
response was computed over the duration of the input, 256 points. The results are shown in Figure 3, for state 1.
The solid line shows the transformed measured data, and the dashed line shows the MVLS network prediction.
Though the prediction appears to stay in phase with the transformed measured signal, this is not always the case.

To further judge the quality of the prediction relative to the transformed measured data, some measures of the time
domain responses were computed. Figure 4 shows the estimated spectral densities of the measurement-based and the
predicted states. The former curve is shown as solid, and the latter is shown as dashed. The match is good,
particularly where the mean square power is high. The simulation apparently has some high frequency harmonics at
very low level where none exist in the measurement-based signal. Figure 5 shows the kernel density estimators

(estimators of the probability density functions) of the measurement-based and the predicted states. The former curve
is shown as solid, and the latter is shown as dashed. The match is fairly good. The amplitudes in the prediction tend
to undexpredict the measurement-based state.

-3 ' I I I I I I I I

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Time, t, sec

Figure 3. Time histories of state based on measured data (solid line) and predicted state (dashed line).

0.4

0 1 oo 10' 1 o2
Frequency, Hz

-2 0 2
xl

Figure 4. Estimated spectral densities of
measmment-based state (solid line) and predicted
state (dashed line). line).

Figure 5. Kernel density estimators measurement-
based state (solid line) and predicted state (dashed

CONCLUSIONS

A method for performing local linear analysis on a system to obtain nonlinear system response states, then modeling
the temporal evolution of these states with an artificial neural network has been developed. Canonical variate
analysis has been used to perform a local linear transformation of the response of a globally nonlinear system to
obtain simple response states. The state evolution was then modeled using a multivariate linear spline network An
example shows that the method can yield accurate results.

Experience using canonical variate analysis in its traditional h e w o r k indicates that the use of an artificial neural
network in the current predictive framework substantially speeds the prediction process. In fact, speed increases of
approximately an order of magnitude , or more, have been realized.

Further, the use of an artificial neural network to predict states of system response rather than the response itself
enables the practical use of artificial neural networks. The dimension of the network is reduced thereby diminishing
the training data and training time requirements to the artificial neural network.

ACKNOWLEDGMENT

This work was sponsored by the United States Department of Energy undex contracts with Sandia National
Laboratories and Los Alamos National Laboratory.

REFERENCES

Farmer, J., (1988), “Exploiting Chaos to Predict the Future and Reduce Noise,” in Evolution, Learning and
Cognition, Y. C. Lee, Ed., World Scientific, Singapore, pp. 277-330.

Jones, R. D., et. al., (1990), “Nonlinear Adaptive Networks: A Little Theory, A Few Applications,” Cognitive
Modeling in System Control, The Santa Fe Institute.

Larimore, W., (1983), “System Identification, Reduced Order Filtering, and Modeling Via Canonical Variate
Analysis,” Proceedings of the 1983 American Control Conference, H. S . Rao and P. Dorato, Eds., 1982, pp.
445-45 1.

Larimore, W., (1991), “Identification and Filtering of Nonlinear Systems Using Canonical Variate Analysis,” In
Nonlinear Prediction and Modeling, M. Casdagli and S. Eubank, Eds., Addison Wesley. A Proceedings Volume
in the Santa Fe Institute Studies in the Sciences in Complexity.

Moody, J., Darken, C., (1989), “Fast Learning in Networks of Locally-Tuned Processing Units,” Neural
Computation, V. 1, pp. 281-294.

Packard, N., Crutchfield, J., Farmer, J., Shaw, R., (1980), “Geometry from a Time Series,” Physical Review
Letters, V. 45, No. 9.

Paez, T., Tucker, S., O’Gorman, C., (1997a), “Complex Structure Simulation with Neural Networks,“ Intelligent
Civil Engineering Materials and Structures, ASCE, New York.

Paez, T., OGorman, Tucker, S., (1997b), “Simulation of Nonlinear Random Vibrations Using Artificial Neural
Networks,” Proceedings of the Sixth International CoryCerence on Recent Advances in Structural Dynamics,
Institute of Sound and Vibration Research, Southampton, United Kingdom.

Priestly, M., (1980), “State Dependent Models: A General Approach to Nonlinear Time Series Analysis,’’ Journal of
Time Series Analysis, V. 1, pp. 47-71.

Tong, H., (1990), Nonlinear Time Series Analysis - A Dynam‘cal Systems Approach, Clarendon Press, Oxford,
1990.

