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Abstract 

The manufacturing complex for the Department of Energy (DOE) is distributed: design 
laboratories, manufacturing facilities, and industrial partners. Designers must have a 
concurrent engineering environment to support all aspects of the cradle-to-grave product 
realization process across the distributed sites. Engineers must be able to analyze and 
simulate processes, retrieve and process heterogeneous information, both archived and 
current, and access multiple databases. Manufacturers must be able to coordinate activities 
of various manufacturing centers, which may involve a negotiation process. Furthermore, 
Sandia must be able to export manufacturing capabilities, such as on-machine acceptance, 
to outside suppliers. A key element to making this a reality is a flexible information 
architecture. 

I 

The DOE information architecture must support a wide-area virtual enterprise, with 
distributed intelligent software components. The architecture must provide for 
asynchronous communication; multiple programming languages and operating systems; 
incorporation of geographically distributed manufacturing services; various hardware 
platforms; and heterogeneous workstations, PC's, machine tool controllers, and special- 
purpose compute engines. Further, it is critical that manufacturing facilities are not isolated 
from design, planning, and other business activities and that information flows easily and 
bidirectionally between these activities. To accomplish this seamlessly, heterogeneous 
knowledge must be exchanged across both domain and organizational boundaries. 
Distributed object and software agent technologies are two methods for connecting such 
engineering and manufacturing systems. The two technologies have overlapping goals - 
interoperability and architectural support for integrating software components - though to 
date little or no integration of the two technologies has been made. The primary difference 
between these two technologies is that distributed object technologies focus on the 
problems inherent in connecting distributed heterogeneous systems whereas software agent 
technologies focus on the problems involved with knowledge exchange across domain 
boundaries. 

This project addresses the integration of these technologies in support of concurrent 
engineering, team collaboration, and manufacturing across organizational and geographic 
boundaries. We discuss our experiences with both technologies, explore both in the 
context of enterprise integration, and suggest future research in this area. 
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1 INTRODUCTION 
The DOE manufacturing enterprise must be agile. Agile manufacturing [ 11 refers to rapid response 
to changes in product mix, batch size, manufacturing processes, customer requirements, and 
technology while at the same time providing cost-effectiveness, reduced cycle times, and high 
quality and accuracy. A robust software architecture is key to achieving this agility and to realizing 
the integration of the extended enterprise. The information architecture must be scalable, 
interoperable, and reconfigurable. Internet technology, electronic data exchange, and industry 
standards for interoperability are core to the infrastructure. It comes as no surprise that the 
February 1996 Communications of the ACM devoted an entire issue to the growing role of 
computer science and software in manufacturing [2] or that entire workshops devoted to the role of 
plug-and-play software for agile manufacturing [3] are being sponsored by engineering 
professional organizations. 
Given the requirement for agility, the heterogeneous computing resources, and the need to connect 
to an extended enterprise, there are several demands placed on software in the DOE manufacturing 
enterprise. Specifically, the software must support a variety of platforms, operating systems, and 
programming languages. It must support rapid and easy customization, integration, and 
reconfiguration. The software must facilitate information flow through the product realization 
cycle - from design and analysis to planning to fabrication and inspection. The software must be 
easy to deploy and usable throughout engineering and manufacturing facilities. Manufacturing 
cells must be easily integrated into the extended enterprise such that manufacturing process data 
(for example, inspection reports and on-machine measurements) can be stored in a database for use 
by designers and process engineers in the future. Finally, knowledge must be represented in + 
formal and unambiguous manner and exchanged between the various domains and organizations in 
the enterprise. 
In this section, we provide terminology and discuss background technologies related to distributed 
objects and software agents. 

1.1 Distributed Object Technology 
Distributed object technology [4] allows computing systems to be integrated such that objects or 
components work together across machine and network boundaries. Examples of current 
distributed object or component technologies include CORBA[S], OLE[6], and OpenDoc[7]. A 
distributed object is not necessarily a complete application but rather a reusable, self-contained 
piece of software that can be combined with other objects in a plug-and-play fashion to build 
distributed systems. A distributed object can execute either on the same computer or on another 
networked computer as other objects. Thus a client object may make a request of a server object 
and the operation proceeds unaffected by their respective locations. Following the principles of 
object-oriented design, a distributed object has a well-defined interface, describing the data and 
functionality it exposes to other objects. 
The most common standard for the deployment of wide-area distributed objects today is the 
Common Object Request Broker Architecture (COMA). CORBA addresses issues of 
interoperability in a distributed heterogeneous system. 

1.2  Common Object Request Broker Architecture (CORBA) 
CORBA [5 ]  is an industry middleware standard for building distributed, heterogeneous, object- 
oriented applications. COMA is specified by the Object Management Group (OMG), a non-profit 
consortium of computer hardware and software vendors. At this time, CORBA provides the best 
technical solution for integrating distributed enterprises; it is open, robust, heterogeneous, 
interoperable, multi-platform, and multi-vendor supported. 
The OMG Interface Definition Language (IDL) is used to define interfaces in CORBA. An IDL 
interface file describes the data types, and methods or operations that a server provides for an 
implementation of a given object. IDL is not a programming language, but rather a language that 
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describes only interfaces: there are no implementation-reltited constructs in the language. The 
OMG does specify mappings from IDL to various programming languages including C, C++, 
Java, and Smalltalk. We will use IDL in Section 2 to show our interfaces to manufacturing 
devices, the task sequencer, and other CORBA objects in a manufacturing cell. Our vendor- 
supplied ORB product is Orbix from IONA Technologies. 
The Object Request Broker (ORB) is the communication hub for all objects in the system; it 
provides the basic object interaction capabilities necessary for components to communicate. 
CORBA object services are common services needed in distributed object systems; these semices 
add functionality to the ORB. CORBA objiect services include, for example, standards for object 
life cycle, naming, persistence, event notification, transactions, and concurrency. CORBA 
common facilities provide a set of general-purpose application capabilities for use by object 
systems, including accessing databases, printing files, docuiment management, and electronic mail 
in a distributed system. 
The Internet Inter-ORB Protocol (IIOP) is defined in the CORBA 2.0 specification; it is an open 
Internet protocol for connecting large distributed applications across the Internet. Specifically, it 
provides for ORB-to-ORB communication built on top of TCP/IP. IIOP can connect applications 
running on different computers and is scalable from the LAN to the Internet. 

1 . 3  Software Agents 
There are a number of definitions of sofhvare agents [8]. In the context of this research and agent- 
based engineering, an agent is defined as an autonomous, persistent, encapsulated software 
component that communicates with other agents using an agent communication language. We 
expand on each of these properties: 

Autonomous: Each agent operates independently and asynchronously and interacts with 
other agents on a peer-to-peer level, and not a strictly client-server communkation 
structure, 

Persistent: Each agent maintains its own state, which is changing over the lifetime of the 
agent. If the agent goes off-line, there will be some method of storing any agent messages 
until the agent returns. 

Encapsulated: Agents serve as containers for a collection of procedural and declarative 
knowledge representing some engineering functionality. This knowledge is only accessible 
via communication in the appropriate agent communication language. 

Agent Communication Language: An agent commimication language possesses formally 
defined syntax and semantics and can be unambiguously represented in machine Ei&ible 
format. Examples of such agent communication languages are KQML [9], KIF[lCI] and 
PDES/STEP (Product Data Exchange using STEPBtandard for the Exchange of Product 
model data) [l  13. By exchanging messages, agents act in a community in order to 
accomplish tasks. 

1 . 4  Agent Communication Languages 
The ARPA Knowledge Sharing Effort has proposed an agent communication language, which 
addresses a protocol for software agents to exchange knowledge. The agent communication 
language is comprised of three parts: a messaging language and protocol, the Knowledge Query 
and Manipulation Language (KQML) [9], for the transfer of asynchronous messages; a content 
language, Knowledge Interchange Fomzat (KIF) [lo], based on formal logic and predicate 
calculus; and domain ontologies [ 121, vocabularies and formal relationships among entities in the 
ontology. 
KQML is a performative-based language based on speech act theory. The language specifies three 
layers: content, message, and communication. The content layer is independent of KQML; 
currently, the only limtation on this language is that it is ASCII text. The message layer is speech 
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act performative, which specifies the protocol for agent communication. Examples of KQML 
performatives include tell, ask, reply, subscribe, and advertise. The communication layer specifies 
a set of features that describe lower level communication parameters, such as sender, receiver, and 
message ID. In addition, many agent systems built with KQML specify a content-independent 
message router and a facilitator (specialized agent that maintains information about other agents). 
KQML supports both synchronous and asynchronous messages. KQML is also an extensible 
language, allowing users to define their own performatives as the need arises. 
This AEWA Knowledge Sharing effort lacks the low-level technology for enabling distributed 
collaboration among heterogeneous software components in a wide area environment though the 
KQML protocol can be built on top of a distributed object middleware, such as CORBA. 

1 .5  Knowledge Representation 
An important element in any distributed engineering system is the mechanism used to represent 
domain information. Both the academic and industrial communities have recognized the need for a 
semantically unambiguous and machine-readable language for encoding relevant knowledge [ 13- 
151. Successful integration of multiple engineers and their tools requires the entire enterprise to 
share a common model of relevant product and domain data. Inconsistencies or discrepancies 
between the different information models severely degrade overall system performance and hinder 
scalability. In the manufacturing domain, ambiguities in the product data exchanged between the 
designer and manufacturing will usually result in a non-functioning product and necessitate another 
development cycle. 
The PDEWSTEP standardization effort [ 1 1,161 represents a major international drive to develop a 
mechanism for the exchange of product information using a formal, machine-readable syntax, the 
EXPRESS language [ 17,181, with unambiguous semantic content (provided by integrated 
resources) [ 19-24]. In a concurrent engineering system, information concerning part geometry, 
topology, features, material properties and tolerances (STEP Parts 41, 42, 43, 45, 47 & 48) [19- 
241 must be represented and exchanged. Several concurrent engineering systems have been 
developed which utilize portions of the STEP standard for information representation and 
exchange. [25-281 

1 . 6  Agent Architecture and Knowledge Sharing 
Realization of a concurrent engineering environment which uses machine-specific capability 
models requires the exchange of detailed process and product models between the designer and the 
manufacturing service. Because manufacturing services may be remotely located from the 
designer, the mechanism used to exchange process capability models must provide reliable, 
distributed exchange of machine-readable information. Previous collaborative engineering systems 
have satisfied this need with autonomous software agents which encapsulate the individual system 
components and communicate using a formal agent-communication language [ 13- 15,26,29]. 
These systems used agent-based architectures to facilitate modularization and integration of 
distributed heterogeneous engineering systems. By using the Internet for reliable byte-level data 
connectivity, a truly world-wide distributed system is created [ 131. 

In Section 2 we present our experiences with manufacturing integration using a distributed object 
environment. In Section 3 we present our experiences with engineering integration using a 
software agent architecture. In Section 4 we discuss integration goals and evaluate the distributed 
object approach and the software agent approach to integrating manufacturing and engineering 
enterprises. In Section 5 we discuss future research needs in this area. 



2 EXPERIENCES WITH INTEGRATION USING DISTRIBUTED OBJECT 
TECHNOLOGIES 

We have implemented a COMA-based object-oriented integration of a manufacturing cell in the 
Sandia Agile Manufacturing Testbed (SAMT). We explain the development activities briefly here. 
This work has been published in greater detail in [30-3 11, 

2.1 Sandia Agile Manufacturing Testbed 
The SAMT [32] is a manufacturing research facility at Sandia National Laboratories in Livermore, 
California. The project objective is to develop agile manufacturing processes for various machined 
and welded products. The physical component in the SAMT is a networked manufacturing cell 
containing a conventional milling machine (Cincinnati 4-axis mill), a milling machine equipped 
with an open architecture controller (Haas 4-axis mill), a lathe, a gas tungsten arc welder, a 
coordinate measuring machine (CMM), various storage devices, and a Staubli robot which services 
some of the manufacturing and storage devices. The computers in the manufacturing cell include 
both PC’s, running the Windows NT operating system, and Unix workstations. 
The SAMT is an attempt to address the following product realization cycle: design, planning, cell 
management, and fabrication. During design, engineers use computer-aided design (CAD) tools, 
simulation tools, and analysis tools to design parts that meet the customers’ requirements, The 
planning phase includes planning for fabrication, assembly and inspection; fixturing, tooling, and 
analysis tools assist the process engineer during this stage. The cell management activities include 
scheduling, tracking, and job dispatching to the shop floor. The cell management software and 
machine operators need access to design and planning data. The product realization cycle is by no 
means sequential, but rather iterative; for example, incomplete designs may be planned to guarantee 
that a part is manufacturable. Information from fabrication and inspection must be stored, 
analyzed, and accessible to designers and process engineers at a later time. 

2.2 Manufacturing Cell Software 
An underlying objective of the cell management software is tinfumation-driven manufacturing, that 
is, to first automate the flow of information to facilitate all those processes which preced.e and 
follow the actual machining of a part. Where it makes sense, the cell management software also 
permits the automation of the machining itself. 
Each manufacturing device in the S M  implements the same OMG IDL interface: by 
manipulating the software interface, a client program can control the corresponding machine. The 
client software, the cell management software components, controls the manufacturing activities in 
the SAMT. 
The cell management software components are responsible for the following tasks: 

entering process plans into the cell from the S A M T  process planning node or external 
source 
directing the development of a production plan from a process plan (Le., producing a 
physical realization of a process plan) 
assigning production plans to be sclheduled 
maintaining cell schedules, both long-term and short-term 
dispatching jobs to machines in the cell 
coordination of manufacturing devices in the cell 
event logging of all cell activities and storage of all cell data (on-machine inspection [33], 
CMM inspection, etc.) 
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interface to inventory system. 

gathering data and statistics on machining processes (tool utilization, for example) 
interface to planner for replanning of machining based on sensory input 
interface to material handling system 

2.3 Manufacturing Devices 
Each of the physical manufacturing objects in the agile manufacturing cell is controlled by a 
corresponding CORBA software object. In spite of the apparent differences among the various 
devices (lathe, robot, storage table, etc.), these objects all support the same software interface, an 
IDL interface called Device. As seen in Figure 1 ,  the "plug-in" jack at the top represents the 
IDevice interface itself. This is the network-visible interface that each manufacturing device in the 
cell is required to implement. 

IDevice Interface * Network client 

Device independent 
CDevice class 

Figure 1. Implementation layers of Device. 
Below this is a largely device-independent layer that is common to all of our Device 
implementations. While dealing with issues like presenting the CORBA interface, threads, access- 
control, version strings, etc., the functionality of this layer does not vary greatly for different 
manufacturing devices. However, the IDevice object is ultimately required to access the hardware 
level of a device, for example, to open a chuck or execute a block of NC code. The mechanisms 
for accomplishing this do vary greatly and the functionality required of this machine-dependent 
layer is captured in our standardized CDevice C++ class. We refer the reader to [30] for a more 
detailed discussion of CDevice. 

2.4  IDevice Interface 
The IDL for the Device interface is as follows: 

interface Device : IBaseDev, IAllocDev, IRunDev, IMovePart 
{ 
// Locate program database for device. 
IProgDB GetProgDBO; 
// Locate operator console for device. 
IConsole Getconsole(); 
1; 

Device inherits operations and attributes from the following other interfaces: 

IBaseDev- Naming and operational status for the machine. 
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IAllocDev- Controlling access to the machine. 
IRunDev- 

e 

Running processing activities on the machine (Le., machining a part). 
Transferring material into and out of a machine. IMovePart - 

The GetProgDBO operation within Device returns a value of type IProgDB , which is an object 
reference to its database of manufacturing numerical control (NC) programs. This type 
corresponds to another IDL interface, thus, the returned object reference can be used to access the 
database of NC programs available for the device. ProgDB assumes nothing about the underlying 
database. Similarly, the Getconsole() function returns a reference to an IConsole object. This 
object can be used to access the operator's console for the device, enabling communication with a 
human operator. 
In the CORBA IRunDev interface we provide both synchronous and asynchronous methods for 
running programs. A call to the synchronous RunThisProgram() returns only when the operation 
is complete, causing the caller to block during processing. An asynchronous call 
S tartThisProgram0 immediately returns a boolean success/fail value, indicating whether the 
operation was successfully initiated. The string output value that would have been returned by 
RunThisProgramO is instead posted to a passed notification object when the Operation is 
completed. Details can be found in [30]. The creation of a notification object for a call-back alllows 
a client to exit or process other jobs without the results being lost. 
In the JMovePart interface, material movement is accomplished with the oper,ations 
TakeFromPartnerO and GiveToPartnerO a Using these. operations, direct device-to-device 
communications affect exchanging a part without micro-management of cell manager. A robot 
device, for example, has an object reference to its partner in the exchange (set in a previous call t6 
the robot's SetPartnerO operation), the robot object can maniipulate the lathe directly. Thus a call to 
the GiveToPartnerO operation on the robot results in its assuming responsibility for the transfer, 
invoking operations on the lathe interface as needed, and awaiting its replies. This kind of pe:er-to- 
peer interaction is very natural and easy to implement with distributed objects, and is a real strength 
of the CORBA technology. 
In many cases, the operation of machines in the manufacturing cell is not completely automated. 
This may be because of limitations in the machine controller, or just because we still rely on the 
expertise of human machinists in various manufacturing processes. Further, the removal of 
humans from the manufacturing process is not a design goal of our system. Our CORBA-based 
software architecture in place for the S W  cell control isupports both automated and nrmual 
activities. Consider, for example, the operation RunNamedProgram()in interface IRunDev. This 
operation accepts as an input string the name of the NC program to run in the manufacturing 
device, and it is the obligation of the Device object implementation to do whatever is necessq to 
carry out the requested machining operation. In the fully automated case, the software can carry 
out the task by itself. It looks up the provided name in the program database (using the IProgDB 
interface) associated with the machine, downloads the resulting NC code into the machine:, and 
runs the code on the machine. 
In the case that the machine does not support automated operation, it still must be a part of the 
information flow in the cell. Thus, we still provide an Device object for the machine which 
implements, for example, the RunNamedProgram() Operation. The implementation of this 
operation is obliged to do whatever is necessary to csury out the task. In this case, the 
implementation uses an IConsole interface to perform the operation. The IConsole inbedace 
provides operations needed to carry on a dialog with a hurnan operator. The IConsole intlerface 
gives the machine operator access to an electronic traveler, described in [31]. The Device 
implementation uses these operations to request that the operator run the named NC program on the 
machine, for example. 
As seen in Figure 2, from the cell management software perspective, both automated and manual 
operations appear the same. This design decision allows us to implement a wider range of 
manufacturing devices without changing any cell management software. 
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Cell Sequencer Cell Sequencer 

RunNamedProgram ( ) RunNamedProgram ( ) I T I  -- ----- --- --- 

Figure 2. Automated and manual operations. 

2.5 Cell Management Software 
Thecell sequencer dynamically attaches to devices, hence, there is no need to re-compile when a 
new machine tool comes on-line or a machine tool disappears. The sequencer accepts jobs, 
dispatches tasks in the cell, prevents deadlock situations and guards against starvation of any single 
job. An abbreviated IDL for the sequencer, ICellSeq, is as follows: 

interface ICellSeq 
{ 
readonly attribute string CellName; 
long 
void Pause (in long JobID); 
void Resume (in long JobID); 
void Abort (in long JobID); 
boolean DeleteJob (in long JobID); 

boolean AddDevice (in string DevName, in Device Dev); 
boolean AddRobotDevice (in string DevName, in Device Dev); 
boolean RemoveDevice (in string DevName); 
Device QueryDevice (in string DevName); 

AddJob (inout ITraveler, in INotify WhenDone); 

1; 
The attribute CellName contains the name of the manufacturing cell, allowing for several cell 
sequencers to be coordinated by a shop floor scheduler. A new job can be added to the sequencer 
with the AddJob0 operation. This operation takes an ITraveler object reference as an argument. 
When it comes into the cell, the ITraveler object will contain all of the necessary information to 
execute the job, including a “script” of high-level instructions to be accomplished in the cell. The 
AddJob operation also takes an INotify object reference so that the sequencer’s client can be 
notified of job completion or error conditions encountered. The return value of the AddJob0 
operation is of type long, indicating the assigned JobID given by the sequencer; this JobID can 
then be used to Pause(), Abort(), Resume(), or Delete() a job in the sequencer, even while the task 
dispatcher is operating. Though the cell sequencer coordinates cell activities, many operations will 
be accomplished intelligently by the devices. For example, we have mentioned that all material 
transfer is performed as peer-to-peer object interaction, independent of the supervisory control of 
the task sequencer. 
There are four operations in ICellSeq which allow a client to manipulate devices known to the 
sequencer: AddDeviceO, AddRobotDevice(), RemoveDevice(), and QueryDeviceO. Notice that 
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there are two different operations to add a device to the sequencer: the AddRobotDeviceO is 
necessary to distinguish robot and transport vehicles from all other manufacturing and storage 
devices known by the sequencer. The sequencer must know if a device is a transport device in 
order to prevent certain deadlock conditions in the cell. By including operations for dynamically 
adding and removing devices in a cell sequencer, the sequencer will never have to be recompilled or 
restarted when a new Device object is available on the network. In theory, this architecture 
supports a cell sequencer remotely dispatching jobs to any Device objects. 
The current task sequencer is quite simple, with no scheduling optimization criteria. This task 
dispatcher can be used by a smart scheduling object. This elaborate scheduler will call ICellSeq to 
dispatch jobs once it has optimized on “time”, ”cost”, and ”priority” values on jobs. 
Another strength of our CORBA implementation is that the current interface and implementation of 
ICellSeq should remain constant as desmibed above even when we add this and other new 
components to the cell management activities. 

2.6 Integrating Enterprise Applications Using CORBA 
From our experience, there are many ways to integrate existing and new applications within our 
COMA-based manufacturing environment. We discuss these here. 

2.6.1 Integrating CAD systems and COTS software 
A large number of design, analysis, and rnanufacturing applications are commercial off-the-shelf 
(COTS) software packages. For example, at Sandia most mechanical designers use 
ProENGINEER from Parametric Technology Corporation as the CAD system of choice. 
ProDEVELOP is a software developer’s toolkit with a C API for allowing Pro/ENGINEER to 
access other applications. Through this API, a designer’s standard interface can be customized to 
be a client to any CORBA (or Java) object in the enterprise, 
Any commercially available software package that has an API or a scripting language can be 
wrapped with a CORBA interface and made available on the network. Further, any COTS package 
that has an extensible GUI can be extended to be a CORBA client. 

2.6.2 Integrating legacy software and databases 
In a manufacturing enterprise, it may be necessary to integrate legacy codes into a design or 
manufacturing environment. In the SAW environment, we had several legacy design and 
analysis codes written in FORTRAN. These particular codes were solid engineering codes, yet 
they did not execute because the UO required an old graphics terminal. C O M A  provided a solution 
to making this code accessible again, without having to rewrite the code. First, we stripped out 
any UO from the source code, and created a FORTRAN library, which could be called from C or 
C++ code. Second, we defined a CORBA IDL to the code, providing functionality for putting data 
into the analysis code, executing any engineering functions, and extracting data from the analysis 
code. This software component then becomes available over the network to any C O M A  client. (In 
Section 2.6.3, we discuss a number of methods for developing client software to 03RBA 
objects.) A new graphical user interface or web interface to the code can be developed. easily 
without changing the engineering functionality in the analysis code. 
The same approach can be used wrapping relational databases as CORBA objects, accessible on 
the network. Providing CORBA access to databases is critical to the development of software to 
support a small manufacturing cell or the extended enterprise. New databases can be added to the 
enterprise by implementing the common IDL database interface. Because COMA-based 
applications expose standard interfaces to the network, the application becomes availabk as a 
component to other COMA-based applications and other CORBA clients on the Internet or a 
restricted corporate Intranet. This functionality allows soft ware developers to build up collections 
of reusable, large-grained services that can be used and customized by other developers to 
assemble new applications or integrate existing applications. 
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2.6.3 Support for a variety of software clients 
While CORBA allows two CORBA objects on two different machines, operating under two 
different operating systems, and written in two different programming languages to access each 
other’s attributes and methods seamlessly across a network, it also allows many different client 
applications to be integrated into the environment. We have adopted this software engineering 
development technique: as much as possible, we attempt to separate the GUI from the ‘%ompute 
engine”, so to speak. This philosophy allows for more software reuse, especially given how 
rapidly new GUI development toolsAanguages and browser extensions evolve. Examples of the 
speed of the technology development curve is the decreasing development time between new web 
browser versions or the increasing growth of the Java programming language in just one year. 
Figure 3 shows how CORBA objects can easily be accessed by a variety of client programs on a 
variety of hardware platforms. In the left-hand column of the figure, CORBA objects are located. 
In the right-hand column, a number of client technologies are presented. Any client on the right 
can access any CORBA object, by using an “adapter”. An “adapter” is the technology (either 
vendor-provided or developed elsewhere) that allows a COMA object to be accessed by a desktop 
client or a client written in some GUI development language. The figure illustrates this plug-and- 
play client technology, by matching adapter jacks and client jacks. 
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Figure 3. Integrating a variety of software clients into our software architecture. 
We have developed GUI’s and client applications for cell monitoring and cell management using 
the Tcl/Tk [34] programming language. The T c n k  applications were developed using an 
extension [35] of Tcl/Tk, TclDii, which allows the use of distributed CORBA objects from within 
Tcl. One of the great strengths of T c l m  is the ease with which X-Windows based user interfaces 
can be assembled, and this CORBA-based extension to Tcl is a very useful tool for rapid- 
prototyping GUI’s and for debugging CORBA components. The resulting client GUI is portable 
across several platforms. 

2.6.4 Integrating to World Wide Web 
Today more and more manufacturing companies have an Internet presence and this is central to 
their way of doing business with customers, suppliers, and business partfiers. In addition to the 
Internet, Intranets (i.e., internal restricted-access networks, possibly connected by a firewall to the 
Internet) and Extranets (Le., restricted networks shared between partnering business entities) are 
becoming commonplace in today’s corporations and laboratories. Web browsers can be used to 
navigate Intranets and execute applications, which can be quite sophisticated. 
There are several ways in which a COMA-based distributed system is accessible on an Intranet or 
the Internet. One powerful way is with the inclusion of Java client applets that communicate with 
CORBA objects, executing on other computers in the enterprise. Java [36] is an object-oriented, 
platform-independent programming language that has libraries for Internet access. Most web 
browsers allow Java applets to execute in the web browser when a web page is downloaded. Since 
the web browser loads and executes applets on the fly, new applications and modifications to 
applications can be deployed instantly. Many ORB vendors have solutions for the integration of 
Java clients (and Java servers); we have used OrbixWeb from IONA Technologies. Java clients 
supporting IIOP will be transportable across ORBS. Not all Java-COMA integration strategies 
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will work through a corporate firewall since some may require an open socket connection from the 
applet to the ORB daemon; furthermore, some firewalls block Java execution. 
Another method of allowing web access to CORBA objects is by using CGI (Common Gatleway 
Interface) scripts which are clients to the CORBA objects. This may be helpful when a firewall is 
an issue. We have successfully used Tcl, C ,  C++, and Per1 as languages for writing CGI 
programs that are clients to CORBA servers. These other papers [37,38] discuss the integratilon of 
the World Wide Web and distributed objects (i.e., CORBAJ, and the consensus is that this is a 
very complimentary and powerful technology integration. 
Current releases of Netscape client and server software include Netscape ONE [39], the open 
network environment, which supports IIOP. Thus any Netscape application can communicate 
transparently with any CORBA enterprise application. 

2.6.5 Integrating to PC applications software 
Orbix allows access to OLE [6] objects by providing an OLE adapter provided by IONA 
Technologies. This adapter allows CORBA objects and OLE objects to interact, thus enabling 
access to and from many PC and Mac desktop applications. We have used this technology to input 
numerical data from a Microsoft Excel spreadsheet into a COMA design code on the networlk; the 
resulting output comes into Excel, and the output can be graphed in Excel. We have used the same 
adapter to build Visual Basic applications that execute on a PC and communicate with CCiBA 
objects across a network. Visual Basic is a. good language for rapidly building GUI’s and clients 
for a PC and for interfacing to OLE objects, 

2.7 Strengths and Weaknesses of Our CORBA-Based Manufacturing Integration 
In our CORBA-based manufacturing environment, the distributed object CORBA interfaces for 
management of a manufacturing cell are robust, allowing for easy addition, deletion, and updating 
of manufacturing devices in a plug-and-play fashion. Further, this architecture supports not only 
manufacturing automation, but human integration by providing console interfaces to manufacturing 
devices. COMA enhances the system integration because it is an industry-standard for 
interoperable, distributed objects across heterogeneous hardware and software platforms. The 
resulting architecture is scalable and extensible across a wide-area enterprise. 
CORBA supports integration with many different information technologies: World Wide Web, 
OLE, Java, and different programming languages. In time, as commercial software vendors, for 
example, database vendors, provide CORBA interfaces to various software components, it will be 
easy to integrate them with our developed manufacturing software. Our experience with CORBA in 
this environment was quite positive. While it would no doubt have been possible to implement a 
manufacturing environment using a non object-oriented distributed computing technolog:y, we 
believe that CORB A substantially eased the implementation of a good, scalable, manufacturing 
architecture. Specifically, the ease with which object references can be used as return values and 
calling arguments for operations was central to the architecture we designed. While anallogous 
functionality is presumably possible with other distributed computing technologies, it seems not to 
be as easy and natural as it is with CORBA. 
The manufacturing cell integration is a very specific manufacturing application (cell control), -which 
is very well-suited to the vertical integration framework that we applied. (In a vertical integration, 
the software components are connected in a vertical fashion, where interfaces between components 
are well-defined and well understood.) Adding additional tools and databases into the larger 
manufacturing enterprise can break this type of framework, hence, a horizontal integration 
framework, one that allows any software tool to be plugged into the enterprise, is a better 
integration strategy for the enterprise. The Product Realization Environment (PRE) [40], being 
developed at Sandia National Laboratories for Defense Programs, is an example of a horizontal 
enterprise integration framework. Some of the advantages of PRE include these: 
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Elimination of ad-hoc integration 
Provision for simple, non-intrusive application integration 

0 Provision for simple, dynamic integration of new applications into enterprise 
Standard set of objects shared by all applications 

0 Standard solutions to common problems, which reduces the programming effort and 
redundancy while providing for robust, common systems 

0 Software development tools and standards 
0 Shielding application programmers from bugs in CORBA software, compilers, and 

operating systems 
0 Common services 

Elimination of difficult and/or repetitive programming 
In our manufacturing cell, all software interfaces were designed and implemented within a single 
organization, Le., Sandia National Laboratories. The same integration would have been difficult, 
though not impossible, if the manufacturing cell was spread across several organizations. In this 
latter case, software developers from each organization would need to agree on the interfaces. 
As a solution to this problem, SEMATECH has proposed CORBA IDL for a computer integrated 
manufacturing (CIM) framework [41]; this framework will likely be updated as a result of 
recommendations made at NIST [42] and experiences at SEMATECH [43]. A key concern we 
have is the degree to which the SEMATECH architecture supports information-driven 
manufacturing with human integration and the degree to which outside manufacturing softwar? 
suppliers adopt these interfaces. A second concern that we have is that because these interfaces 
have been designed by a consortium committee, the interfaces themselves are rather complex. A 
third concern of ours is the extent to which other engineering applications can be easily integrated, 
as in a horizontal framework. A final concern of ours is that no real implementation of the 
SEMATECH framework exists, even though this has been proposed for several years now. 

3 EXPERIENCES WITH AGENT-BASED INTEGRATION TECHNIQUES 
In joint research with the Center for Design Research at Stanford University, we proposed an 
agent-based concurrent engineering architecture [44]. We focused on the design phase and the 
mechanisms necessary to exchange process capability data between a manufacturing service and 
the designer. This architecture provides a mechanism for utilizing dynamic capability information 
taken from an on-machine inspection process [33] to realize a concurrent design environment. The 
implementation of this concurrent engineering environment addresses four primary challenges: 

1. Process model generation. 
2. Acquisition of the model by the designer. 
3. Mapping of the model into the design space. 
4. Applying model information during design. 

The goal of our architecture was not to develop “the solution to concurrent engineering, but rather 
to implement a concurrent engineering system which explores solutions to the challenges listed 
above, focusing specifically on the need for machine-specific capability information. 

3.1 Representation of Process Capability Models 
The proposed architecture uses a formal object-oriented conceptual model (written in EXPRESS) 
to represent the capability information for an on-machine inspection process. This model 
represents both the objects present in the development cycle and their relationship to one another 
during execution of the development cycle. In this model, knowledge relating to geometry, 
topology, materials, tolerances and features is represented using STEP Parts 41,42,43,45,47 and 
48. The entire process capability model hierarchy can be found in [44]. 
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3.2 Agent Architecture 
In our agent architecture shown in Figure 4, knowledge and functionality are encapsulated inside 
agents. The primary benefit of an agent-based architecture is that it facilitates the modularization 
and integration of large systems comprised of distributed, heterogeneous components. The 
integration of multiple designers with multiple manufacturing services represents such a system. 
An agent information infrastructure facilitates the integration of heterogeneous software tools, 
databases, legacy software, CAD/CAM commercial packages, and newly developed software. 
Agents logically unify heterogeneous distributed information and knowledge. This particular 
architecture is geographically distributed, with the designer residing at Stanford University, and the 
manufacturing facility and on-machine acceptance capability (OMA) residing at SandidCalifoimia. 

Figure 4 Agent Architecture. 
In our implementation, manufacturing process knowledge is represented using portions of the 
STEP standard and this knowledge will be exchanged as agent messages written in EXPRESS. 
KQML is used for the outer structure of all agent messages. Agent messages are sent ovler the 
Internet using the TCP/IP transport protocol. 
Information, in the form of STEP schemas, that is exchanged from the inspection process to the 
design processes is displayed graphically to designers as Java applets. Java [36] is a platform- 
independent, interpreted language which allows for the rapid prototyping of GUI’s and execution 
of client programs within a web browser. The designer,, therefore, does not need to learn or 
understand STEP and/or EXPRESS, and the design environment requires no additional software 
since most web browsers support the transport and display of Java applets. Thus, the features and 
part information will be mapped to STEP as a method of knowledge exchange, and the designer 
will view this information in a format that is useful and readable to himher. 
When the designer requests information and process constraints from manufacturing services, the 
work is performed by the design agent, interfacing to the CAD system. The design agent serves 
two functions: first, as incoming agent messages are received, the contents are interpreted and 
based on the message contents, the CAD tool (and hence designer) is notified accordingly; and 
second, as design phase events occur, agent messages are: constructed and sent to coordinating 
agents. Similarly, the cell manager agent receives all requt:sts from outside of the manufacturing 
cell, forwards requests to internal manufacturing agents as appropriate, combines any responses, 
and returns one or more messages to the sending agent. 
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3.3 Application of Capability Information During Design 
The concurrent engineering architecture uses a feature-based design system [29,45,46] which 
enables designers to evaluate the inspectability of each feature as it is added to a design. The 
system consists of a CAD system, in our case, PROENGINEER by Parametric Technology 
Corporation, a design agent, and a constraint manager. (Note: this architecture can support any 
commercial or publicly available CAD tool.) As shown in Figure 5,  the design agent and 
constraint manager will communicate with the CAD system via the prescribed API. The appropriate 
process capability models and all relevant inspection constraints for the selected manufacturing 
service and machine will be acquired by the design agent (according to the above protocol) mapped 
into the local representation format (dependent on the CAD system and constraint manager) and 
loaded into the both the CAD system and constraint manager. The set of feasible fabrication 
features and stock parts will be loaded into the CAD system. The related process, machine and 
manufacturing service constraints on the fabrication features will be loaded into the constraint 
manager. 
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Figure 5. Design Agent: Internal Architecture. 

Once the capability information has been acquired and loaded, the designer uses the CAD system to 
select a feasible stock and uses CSG operations with feasible fabrication features to design a part. 
As each fabrication feature is applied to the part, the designer must identify, for the set of resulting 
inspection features, the desired tolerance. The specified tolerance, along with the nominal feature 
geometry and its position relative to the current part will be submitted to the constraint manager to 
determine constraint satisfaction. The constraint manager will apply all relevant declarative and 
procedural constraint information. If any constraint violations are found they will be reported to the 
designer, who may alter the applied feature or renegotiate the OMA constraints to satisfy the 
constraints or continue with the violating design. 



The machining agent is implemented with an agent wrapper around the manufacturing cell software 
presented in Section 2. This wrapper can be seen in Figure 6.  
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Figure 6. Machining Agent: Internid Architecture. 

This architecture is implemented with the Java Agent Template (JAT) [47], a t mplate for creating 
KQML-speaking agents in Java, designed by Rob Frost. The JAT makes it easy for prototyping 
software agents in Java; however, this doles not have the same services as standard distributed 
object technologies such as CORBA. Hence, software developers still have to implement many 
agent services. 

3 . 4  Integrating Enterprise Applications in the Agent-Based Architecture 
Any COTS software package that has an API or a scripting language can be wrapped as an agent; 
though the process of creating an agent interface (including determining what knowledge must be 
defined, exchanged, and interpreted) will be more complex than it is in making this same software 
available as a CORBA object. Any legacy software and any database can also be “wrapped” as an 
agent. 
Further, any COTS package that has an extensible GUI can be extended to be an agent which 
sends messages to other agents. 
Java is an excellent programming language for creating agents that are available on the World Wide 
Web. The Java Agent Template is one example of a KQML agent toolkit written entirely in Java. 
Though it is possible to create interfaces to other componen:t software technologies, such as OLE, 
there are no vendor-supplied tools for doing so, and hence, the sooftware development cost is 
high. 

3 . 5  Strengths and Weaknesses of Our Agent-Basled Integration 
We have developed an agent-based architecture and related knowledge representation for using an 
on-machine inspection process in a concurrent engineering environment. This allows designers to 

of process planning. This agent architecture supports a geographically and organizatimi.lly 
distributed system where the design agent resides at one liocation and the manufacturing agents 
reside at Sandia National Laboratories in Livermore, California. Agent messages are constiructed 
in an unambiguous agent communication language, and they are sent between a designer and 
manufacturing services across the Internet. This concurrent engineering approach can be adapted 
easily to other design environments and also to other manufacturing and inspection processes. 
We have shown the feasibility of the knowledge exchange between a design agent and a 
manufacturing agent, yet there are still many challenges in this area. First of all, even though we 
used EXPRESS to define our knowledge, our particular ontology is not at all standard and it is 
unlikely that it ever will be. Our knowledge exchange is dependent on a simplified on-machine 
inspection process model, which does not include thermal effects and has a number of simplifying 
assumptions. Further, the OMA model should be enhanced with the addition of historic on- 
machine acceptance data. With respect to constraints, we lhave only proposed to support simple 

design parts for manufacturability and inspectability, and hopefully reduces the computationd 6 cost 
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geometries and features, yet in order to be production worthy, we need to add more complex 
geometries and features, costs associated with constraints, and fabrication constraints. Currently, 
fabrication feature constraints are not represented because the same machine is used for both 
fabrication and inspection; however, the process capability model used to generate the inspection 
constraints should be largely reusable for creating fabrication constraints and thereby incorporating 
design-for-manufacturability. This concurrent design architecture will become more powerful as 
functionality is added to additional agents, and additional manufacturing processes (e.g., process 
planning and assembly) are encapsulated as agents. At this time, there is a significant startup effort 
for other design and manufacturing entities to plug into this architecture, and most industry 
partners will be reluctant to spend the time and energy for the software development. 
The software development costs in this project are high at this time because developers are forced 
to deal with the low-level network and agent messaging requirements; The JAT, a publicly 
available research software package, hides some of the KQML parsing and TCP/IP message 
requirements, though this tool is not professionally developed, not supported, not robust, and not 
industry-standard. Finally, there are no real equivalent development tools such that KQML 
integrates with other technologies as seamlessly as CORBA does. 

4 SOFTWARE INTEGRATION ISSUES 
There are a number of software integration issues that should be considered when developing an 
enterprise architecture. We list them here. 

e 

e 

e 

e 

e 

Object-oriented abstractions: An object-oriented abstraction of a software component 
reduces complexity and time-to-market since interfaces are well-defined and new modules 
can be plugged and played into the architecture. An object-oriented abstraction also 
provides software reuse of common services. 

Heterogeneity: Most manufacturing enterprises will be heterogeneous with respect to 
hardware platforms, operating systems, and programming languages. 

Ease of development: There is always a need for the enterprise to grow, such that new 
services and applications can be used by other software components. It is necessary that 
new software can be developed and integrated into the enterprise. 

Support for distributed applications: The enterprise is, by definition, distributed. Data and 
knowledge will be exchanged across the enterprise. It is necessary that software 
development of distributed components is easy and that the network layer is hidden from 
the software developer. 

Interoperability: Interoperability defines the ability for two software components (objects or 
agents) on heterogeneous machines to read the data that is exchanged on the network. 

Extensibility: The enterprise is constantly growing to include new software, new partners, 
and new computer systems. The software integration architecture must be flexibly enough 
to adapt to this. 

Security: Since the enterprise is extended to include partners outside of organizations, the 
Internet will often be used to transport data, Computer security must be present in several 
forms. First of all, users to engineering and manufacturing tools may have to be 
authenticated. Second, data might be proprietary or sensitive in nature, and hence, to 
support the transport of this data over the Internet, it must be encrypted. 

Maturity of applications: The underlying infrastructure should be mature enough so that 
changes made to the low-level infrastructure have little or no effect on the applications in 
the enterprise. 
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Standards compliance: By complyirig to standards at the middleware level, it makes it easy 
to plug-and-play applications and to purchase applications that comply to the same 
standard. 

Integration with software component software: It is important to be able to integrate with 
component software, e.g., OLE, DCOM, CORBA, and DCE, so that desktop applications 
and existing Unix infrastructures are readily available for use in the enterprise. 

Cost: There are many costs associated with enterprise integration: the cost of purchasing 
software, the cost of developing in-house software, the cost of integrating software, the 
cost of software maintenance, and the cost of re-doing the enterprise if an software design 
is made. 

Agent Communication Protocol: When there are many agents (or objects) in a distributed 
system, there should be some agent (or object) protocol for how these distributed 
components communicate. 

Coordination: Coordination refers to the process of multiple agents (or objects) 
communicating to accomplish a goal. 

Semantic Unification: When two or more agents (or objects) talk about a “part”, for 
instance, both must be referring to the same thing. Without an agreed upon vocabulary, 
potential problems arise. 

We first discuss integration strategies or frameworks. We then revisit the specific integration 
problems that we encountered in the CODA-based manufacturing environment and the agent: 
based concurrent engineering environment. Then we surve:y the CORBA-based approach and the 
agent-based approach to integration with respect to the above criteria. 

4 . 1  Integration Strategies 
Neither of distributed object approach nor the software agent approach alleviate the need for an 
integration strategy or framework. CORBA and KQML are only tools, and still the software 
development in the enterprise must be done with an integration strategy. In the CORBA-based 
manufacturing cell, our integration strategy was to provide well-defined interfaces in a vcxtical 
integration of a manufacturing cell. In the agent-based engineering, our integration strategy was to 
define specific interfaces for each agent or service in the system. Without an integration strategy, 
tools, data and applications are integrated into the enterprise in an ad-hoc fashion Ad-hoc 
integration leads to the following problems: 

The resulting system is not scalable and can in fact collapse at some point. 

There is an N2 problem, where N is the number of applications in the system. Adding one 
new application often requires N other applications to change to accommodate the: new 
application. The enterprise itself is very brittle. 

Integration and software problems are solved as they arise, which can result in a 
duplication of effort since each software developer in the enterprise may have to write: code 
which solves the same problem. 

It becomes nearly impossible to plug in new applications. 
Hence, with either approach, it is critical to have an enterprise integration framework to sutpport 
scalability of the enterprise. 

22 



4 .2  Problems With Using CORBA to Integrate Enterprises 
One current limitation of CORBA is that it does not define a protocol for knowledge exchange thus 
the support for software agents is not at all easy or standard. Furthermore, CORBA does not 
enforce standard interfaces nor common terminology for the easy integration of related software 
components. Thus, integration between domains and organizations is not trivial. Finally, as we 
mentioned in Section 4.1, an ad-hoc integration in CORBA, without an integration framework, can 
lead to scalability problems. The manufacturing cell that we developed had a very well-defined 
vertical integration framework. 

4 .3  Problems With Using Software Agent Communication Languages to Integrate 
Enterprises 

There are several problems with using software agent communication languages to integrate 
manufacturing and engineering enterprises. First of all, there is no standard way for the agents to 
connect to and use non-agent applications, e.g., databases, in the enterprise. Second, KQML and 
other agent-based approaches are not widely used; thus, there are no development tools, no 
applications from which to leverage, and no vendor-supplied software on which to develop. 
Third, the KQML standard is up-in-the-air, currently there is no real formal protocol for 
performatives and any number of new performatives can be arbitrarily defined by users. So, even 
in an agent-based enterprise, the software developers have to cooperate on interfaces prior to new 
agents being plugged into the architecture. Fourth, the development of ontologies and the 
knowledge exchange problem are difficult problems and thus there is no simple solution that you 
can pick up and integrate into an architecture. Finally, there is no built-in security (authentication 
or encryption) in KQML. 

4 .4  Evaluating Distributed Object Techniques and Software Agent Approaches to 
Enterprise Integration 

CORBA provides an interface language for creating an object-oriented abstraction of an enterprise 
software component. Agent communication languages such as KQML do not provide the same 
abstraction. However, using an object-oriented programming language, such as Java, can be used 
to build KQML-speaking agents, thus, agents can be developed with object-oriented abstractions. 
Both CORBA and the agent-based approach are integration techniques that can be applied 
regardless of hardware platform or programming language. CORBA expZicitZy supports a higher 
level of integration, i.e., at the distributed object level, and it provides a number of services that are 
useful to distributed object systems. KQML agents can be built on top of CORBA. 
In our experience, the software in our CORBA-based manufacturing environment was much easier 
to develop than the manufacturing agents in the agent-based enterprise. This is primarily because 
the low-level network interface and marshalling of arguments across distributed components was 
provided by CORBA, and hence, the software developers did not have to write low-level network 
software to deal with the heterogeneous, distributed system. In the agent-based approach, we 
developed home-grown, academic software, which was perfect for our showing a proof-of- 
concept rather providing a production quality manufacturing environment. However, the agent- 
based approach was not built on top of middleware software such as COMA, and the software 
developers had to worry about low-level network details. By using the JAT to integrate an agent- 
based enterprise, some of the development effort is done in this template, relieving the software 
developer of low-level details. On the other hand, the JAT itself is supported by an academic 
department and the Java programming language itself is currently undergoing changes, 
While both the agent approach and the distributed object approach have goals of supporting 
distributed applications, only the CORBA approach to building enterprise systems has explicit 
support for developing distributed applications. Likewise, only CORBA, and not KQML, is 
designed to solve the issue of interoperability. 
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Both the distributed object approach and the agent approach to enterprise integration are extensible, 
yet as the number of objects (or agents) increase, there will be problems with scalability. In both 
approaches, there must be methods for dealing with the scalability of the enterprise design. 
One of the necessary missing features in both strategies is security. The OMG has specified a 
CORBA security standard, yet not many vendors have implementations of this OMG security 
specification at this time. In our manufacturing cell, the manufacturing devices and cell 
management software are only accessible on Sandia’s restricted Intranet, so the firewall provides 
some security. The agent software, however, has no security implementation. When a vendor- 
supplied CORBA security implementation is available, the CORBA-based manufacturing system 
can be updated to take advantage of security needs. 
Regarding maturity of applications, academic researchers have done , some prototyping with 
integrating engineering and manufacturing enterprises with software agents; however, the resulting 
systems are not robust, not complex, and not distributed in a wide-area geographically distributed 
environment. Furthermore, the KQML technology is not mature or widely used. On the other 
hand, industry is using distributed object technologies and standards, such as CORBA, to build 
enterprise systems, and this technology is mature. CORI3A has proven applications, vendor- 
implemented object services, and some object facilities. 
CORBA is an industry standard for building distributed object systems. Though there have been 
efforts to “standardize” KQML as an agent communication language, to date, this has not 
happened. Furthermore, because researchers do not agree upon the semantics for the basic :set of 
KQML performatives and KQML is extensible, a standards effort is difficult. 
As discussed in Section 2, CORBA is interoperable with other component software. At this time, 
there is no adapter or facility to allow component software and agent communication languages to 
interoperate. 
Whereas academic researchers are usually not willing tc) pay for vendor-supplied software, 
industry realizes that the cost to develop software in-house is usually much higher. Most ORB 
products are supplied by vendors, though some public domain ORES’S are planned. KQML is 
“free”, so to speak, though the in-house software development costs to build the undeirlying 
infrastructure are high. 
As we have mentioned in Section 4.2, COMA is not an agent communication language and there 
is no agent facility in CORBA, and thus if an agent architecture were developed on top of CORBA, 
some protocol for how agents communicate must be used. KQML is an agent communication 
language. 
There is no semantic unification as part of the CORBA standard or being developed by the OMG. 
KIF, PDES/STEP, and ontologies all provide semantic Unification. If agents are developed in 
CORBA or if agents use KQML, there is still a need to add the semantic unification to the 
architecture. In the agent-based engineering scenario that wt: developed in Section 3, we used the 
OMA model presented in EXPRESS format for semantic unification. 
Finally, neither CORBA nor KQML directly provides coordination of agents. This is something 
that the software designers and developers :must build into tlhe architecture. Because KQML is an 
agent communication language, it will be easy to develop coordinating agents based on the 
message exchange. However, agents can be built with CCRBA thus that various methods cause 
the agents to coordinate. 

4 . 5  Using Java To Integrate Manufacturing and Engineering Enterprises 
Many researchers [48] are exploring Java as a way to build distributed computing systems, in 
essence, an alternative to CORBA. Java has a distributed object model, the Remote Method 
Invocation ( M I )  [49]. Java has the following features wlhich are useful in a distributed object 
system: close integration with the web, security, multi-threaded language, absence of coimon 
error-prone language semantics and addition of useful language features (for example, exception 
handling and garbage collection), and portability across hardware and operating system platforms. 
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Java has the following strengths beyond CORBA: 

Mobility of code: allowing any Java application to dynamically download the classes of 
remote objects, their interfaces, stubs, parameter, and return values. 

Pass by value: Java RMI passes non-remote arguments and results by value and remote 
objects passed by reference. CORBA passes all objects by reference, leading for inelegant 
solutions when pass by value is needed. The OMG, however, has issued a request for 
proposal (RF'P) to address this issue. 

CORBA, however, is still a more mature technology, had the following strengths over the Java 

Language neutrality: CORBA specifies mappings from IDL'to many programming 
languages, allowing software developers to select the programming language that is best 
suited for hisher application. 

Integration with legacy systems: CORBA allows an IDL wrapper to be written to support 
the legacy system. With the Java RMI, you can only wrap applications with C and C++ to 
integrate to existing systems. 

Advanced communication patterns: CORBA provides both synchronous and asynchronous 
methods. With the Java RMI, all method invocations are synchronous. 

Associated services: The OMG has defined a significant number of services, among them, 
naming, event, security, and notification. The Java RMI is not as mature as CORBA, and 
in time many of these services may become available. 

Security: Even though the Java RMI class loader imposes the same security as those 
imposed by the applet class loader, the COMA security service is a low-level framework 
which support authentication, authorization, encryption, auditing and logging, and 
credential management. 

Integration with other distributed object technologies: Java does not integrate with OLE and 
DCE as CORBA does at this time. 

Pe$omnce: Because the Java Virtual Machine must interpret byte code at run-time, the 
speed of a Java server will not be fast as the speed of a CORBA server written in C or 
C++. The arrival of Java Just-In-Time (JIT) compilers in the future should make this a 
non-issue. 

Our current recommendation is that CORBA provides a more mature infrastructure for building 
distributed object systems than the Java RMI. However, there are many useful ways to use Java 
within a CORBA-based environment (see Section 2.6.4). The Java/RMI and COMA 
technologies are merging. The OMG has specified a mapping from IDL to Java, and hence, any 
client or server can be written in Java. Java, because of its GUI component classes and integration 
in web browsers, is a very attractive language for writing client software. In addition, future 
releases of Netscape will provide IIOP capability in their Java Virtual Machine, and hence, and 
applet can be an IIOP client to a CORBA server, regardless of the use of the Java RMI. Further, 
Javasoft plans to support IIOP in a future release of the Java RMI, making many of the COMA 
services and CORBA strengths available from the Java M I .  

4 .6  Recommendations for Integrating Manufacturing and Engineering Enterprises 
The three technologies that we have presented in this section - CORBA, J a v W  and KQML - 
are not mutually exclusive. In fact they are complementary in many ways. In the previous section 
we discussed how CORBA and the Java programming language are compatible. In earlier 
sections, we mentioned that KQML, or another agent communication language, can be layered on 
top of CORBA to take advantage of the strengths of this distributed object technology. We believe 
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at this time, however, that KQML and agent communication languages are not yet developed to the 
extent that they should for integrating into the enterprise, and the inclusion of software agents into 
a distributed framework should be explored more fully. 
Some considerations when making a decision about enterprise integration include enterprise 
integration costs, the size of the enterprise that needs to be integrated, and the extent to which 
standards are important. 

5 CONCLUSIONS AND FUTURE WORK 
We have presented two different approaches to integrating engineering enterprises: a CODA- 
based manufacturing environment and an agent-based architecture for design and manufacturing. 
We have also come up with a list of criteria that are important for building enterprise inforniation 
architectures. We have evaluated both enterprise integration techniques and have made 
recommendations regarding which technology is better suited for each of the enterprise integration 
issues. Our general belief is that a combination of the two1 technologies is needed for achieving 
advanced, intelligent integration. 
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