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Abstract 

Transient solid dynamics simulations are among the most widely used en- 
gineering calculations. Industrial applications include vehicle crashworthiness 
studies, metal forging, and powder compaction prior to sintering. These cal- 
culations are also critical to defense applications including safety studies and 
weapons simulations. The practical importance of these calculations and their 
computational intensiveness make them natural candidates for parallelization. 
This has proved to be difficult, and existing implementations fail to scale to 
more than a few dozen processors. In this paper we describe our parallelization 
of PRONTO, Sandia's transient solid dynamics code, via a novel algorithmic 
approach that utilizes multiple decompositions for different key segments of 
the computations, including the material contact calculation. This latter cal- 
culation is notoriously difficult to perform well in parallel, because it involves 
dynamically changing geometry, global searches for elements in contact, and 
unstructured communications among the compute nodes. Our approach scales 
to at least 3600 compute nodes of the Sandia/Intel Teraflop computer (the 
largest set of nodes to which we have had access to  date) on problems involving 
millions of finite elements. On this machine we can simulate models using more 
than ten-million elements in a few tenths of a second per timestep, and solve 
problems more than 3000 times faster than a single processor Cray Jedi. 

Introduction 
Transient dynamics simulations are among the most widely used engineering cal- 
culations. The industrial application which consumes more time on Cray vector 
supercomputers than any other is crash simulations, a prototypical transient dynam- 
ics calculation[7]. Other industrial applications include simulations of metal forging, * 
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powder compaction prior to sintering and other processes involving high stresses and 
strains. These calculations are also critical to defense applications including safety 
studies and weapons simulations. A number of commercial and government solid dy- 
namics codes have been developed including DYNA, PamCrash and ABACUS. Sandia 
also has a long history of research and code development in this area, headlined by the 
PRONTO code suite. PRONTO is similar in scope to the commercial codes, but also 
includes smoothed particle hydrodynamics (SPH) , which allows for simulations with 
very high strains (e.g., explosions) or coupled fluid/structure interaction problems. 
A discussion of some PRONTO simulations can be found Section 7. The practical 
importance of transient dynamics simulations, combined with their computational 
intensiveness would seem to make them natural candidates for parallelization. Unfor- 
.tunately, this has proved to be quite difficult. For reasons discussed below, existing 
parallel ,implementations fail to scale to more than a few dozen processors. These 

I' disappbhting results have convinced leaders in the solid dynamics community that 

In Section 2 we describe the functionality and structure of PRONTO. In Section 3 
we explain why transient dynamics simulations have been difficult to parallelize. Our 
parallelization strategy is sketched in Section 4 and some further performance en- 
hancements are described in Section 5. The performance of the code on some scalable 
problems is discussed in Section 6 .  A discussion of applications enabled by parallel 
PRONTO follows in Section 7. Conclusions are drawn in Section 8. 

~ parallel computing can not yet make a significant impact in this field[2]. 

2 What is PRONTO? 
PRONTO is a three-dimensional, transient solid dynamics code which is used for an- 
alyzing large deformations of nonlinear materials subjected to high rates of strain[3]. 
Developed over the past 10 years, PRONTO is a production-level code used by over 50 
organizations inside and outside Sandia. Input to  the code includes an unstructured 
grid consisting of an arbitrary mixture of hexahedral elements, shell elements, rigid 
bodies and smoothed particles. PRONTO implements a Lagrangian finite-element 
method with explicit time integration and adaptive timestep control to integrate 
the equations of motion. The finite-element formulation uses eight-node, uniform 
strain hexahedral elements and four-node quadrilateral uniform strain shell elements. 
Either the Flanagan-Belytschko hourglass control scheme or an assumed-strain hour- 
glass control scheme can be used to  control element distortions. PRONTO contains 
a variety of complex, nonlinear material models, including elastic-plastic materials 
with various types of strain hardening. A critical feature of the code is a robust al- 
gorithm for detecting when one material surface contacts another, for example in an 
automobile collision when the bumper buckles into the radiator. Correctly identifying 
surfaces in contact requires sophisticated algorithms for searching the global set of 
finite-elements. In a complex simulation, the cost of contact detection alone can be 
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more than 50% of the run time on a sequential machine. A PRONTO timestep has 
the following structure. 

1. Perform finite element analysis to compute forces on elements. 
2. Compute forces between smoothed particles. 
3. Predict new locations of particles and grid elements. 
4. Search for contacts between mesh elements, or between elements and particles. 
5. Correct the locations by pushing back objects in contact. 

Stages (l), (2) and (4) dominate the sequential run time. The contact search in 
stage (4) typically consumes 30-60% of the time, so a great deal of effort has been 
expended over the years to make this computation fast[4]. The result of this effort 
was the replacement in PRONTO of floating point operations with a faster approach 
involving sorting and searching in integer lists. 

3 Why is Parallelization Difficult? 
Parallelizing transient dynamics codes is challenging for several reasons. For PRONTO 
there is the obvious complexity of starting with a fully featured production code. All 
its functionality must be parallelized in a scalable way. Even more daunting is the 
inherent difficulty of parallelizing several key kernel operations which operat e on dif- 
ferent data sets. The first task is to parallelize the finite element (FE) portion of the 
code. This is conceptually straightforward: partition the elements among processors 
in a way that balances computation while minimizing communication[5]. But par- 
allelizing contact detection (which is performed on only the surface mesh - not the 
volumetric FE mesh) is much harder. To our knowledge, no previous attempts at 
parallelizing contact detection have scaled to more than a few dozen processors[8, 91. 
Since, in principle, on a given timestep any surface can contact any other, contact 
detection requires some kind of global search. As the geometry of the simulation 
evolves, this requires dynamic load balancing and irregular communication. Prob- 
lems which exhibit any global, dynamic or irregular behavior are challenging to par- 
allelize; contact detection exhibits all three. Parallelizing smoothed particle hydro- 
dynamics (SPH) is also a challenging problem. Particles with time-dependent radii 
interact if they are geometrically near each other, and their density can vary greatly 
as the calculation proceeds, posing a load-balancing problem. Computing the physics 
of the SPH interactions also requires several stages of inter-processor communication 
within a timestep. The key difficulty in making a code like PRONTO perform well 
on a large parallel machine is that all of these computational kernels must be par- 
allelized efficiently within the same timestep. And each of the kernels operates on a 
different data set (volumetric mesh, surface mesh, particles) whose spatial density is 
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dynamically changing. 

4 Our Parallel Implementation 
We only sketch our parallelization strategy here. More details can be found in some 
of the references[l, 6, lo]. Most previous attempts to parallelize transient dynamics 
codes have relied upon a single decomposition of the mesh for both finite elements 
and contact detection. But these operations demand very different decomposition 
properties. The finite element analysis performs optimally only if each processor has 
the same number of elements and interprocessor boundaries are minimized. This 
decomposition can be generated once and used throughout the calculation. In con- 
trast, contact detection and SPH depend upon geometric proximity, so a geometric 
decomposition is most appropriate. As the elements and particles evolve, the decom- 
positions should change dynamically. The key idea behind our parallelization strategy 
is that we construct and maintain different decompositions for the different portions 
of the calculation. We choose appropriate decompositions to  optimize performance 
of each phase: a graph-based static method for the finite element analysis generated 
by Chaco[5] , and dynamic, geometric decompositions for contact detection and SPH. 
For the latter we use recursive coordinate bisection (RCB) which has a number of 
attractive properties for this application. The advantage of this approach is that we 
can achieve high performance in all phases of the calculation. The downside is that 
we need to communicate considerable information between the different decomposi- 
tions which is expensive in both time and memory. But by carefully implementing 
the communication routines we can limit the run time cost, and solid dynamics calcu- 
lations are not generally memory-bound. As our results will indicate, the advantages 
of 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

multiple decompositions greatly outweigh the costs. 
A timestep of parallel PRONTO has the following structure. 

Perform finite element analysis to compute forces on elements. 
Update the RCB decomposition of smoothed particles. 
Compute forces between smoothed particles. 
Predict new locations of particles and grid points. 
Ship data to previous decomposition of the contact problem. 
Update the RCB decomposition of the contact problem. 
Search for contacts between mesh elements, or between elements and particles. 
Communicate contact results back to finite element and SPH decompositions. 
Correct the locations by pushing back objects in contact. 

Our parallelization of PRONTO required about 15,000 lines of new code. In 
addition, much of the original PRONTO code was restructured for the parallel version 
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to  improve data locality on cache-based architectures. 

5 Maximizing Performance 
The goal of both serial and parallel PRONTO is to enable very large problems to  
run as quickly as possible. The dominant steps in the above outline are stages (1) 
and (7). (In this and the next section we focus on mesh-only problems though SPH 
computations can also be time consuming.) The fastest way to  perform the global 
searches inherent in stage (7) is to do virtually no flops at all, but rather to use integer- 
based sort and search operations. Our calculations were performed on the 3600-node 
Sandia Teraflop computer. Each node of this machine has 128 Mbytes of memory 
and two 200 Mhz Pentium-Pro processors, each of which runs at 200 Mflops peak. 
We specially coded the kernel operations of the finite element computation to  use the 
second processor for computation wherever possible. In practice the speed-up thus 
obtained is limited by memory bandwidth since the two processors share the same 
memory bus. We also reorganized some data structures to improve cache locality. 
These efforts improved the performance of the finite element computation from 40 
Mflops per node to over 120 Mflops per node. For the contact Computation, our 
algorithm already insures load-balance of the basic sort and search operations. We 
further optimized by altering the basic algorithm to avoid a global search on most of 
the timesteps. To accomplish this we occasionally perform a full search which stores 
all pairs of nearby surfaces. On subsequent timesteps we need only scan this list 
instead of searching the processor’s entire domain. When the geometry has evolved 
enough that the lists could miss possible contacts, a new global search is triggered. 
This method requires extra memory for storing the lists, but it halved the overall 
contact computation time. 

6 Performance 
Depending on the physical problem being modeled, parallel PRONTO can run as a 
pure finite element computation without contacts, as finite elements with contacts, 
as pure SPH particles (no finite elements), or as coupled finite elements and SPH 
particles with contacts. Here we focus on the performance of the first two cases. 
In all of the performance numbers we present, we timed the outermost timestepping 
loop of PRONTO to determine CPU time per timestep. Problem setup time (which is 
constant independent of the number of timesteps simulated), was not included since it 
is insignificant in production-scale runs. We counted floating-point operations using 
hardware counters on the Pentium Pro chips. This hardware counts floating point 
divides, adds and multiplies as one flop each. 

To test the performance of a pure finite element run of parallel PRONTO, we 
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modeled a steel bar with hexahedral elements vibrating due to an oscillatory stress 
while being pinned at the ends. This simple problem was selected since it is easy to 
scale to different sizes. Strains induced between adjacent elements and the material’s 
equation of state are modeled in the FE computation, but the bar does not bend 
enough to create contacts. We observed nearly 100% parallel efficiency in running 
this problem if we scaled the problem size (number of mesh elements) linearly with 
the number of processors. As mentioned above, the FE computational kernels run 
at about 120 Mflops/node. Interprocessor communication is only a few percent of 
the total run time. Other lower flop-rate overhead within the timestep (boundary 
conditions and time integration) takes about one half the CPU time regardless of 
the number of processors. Scaling the problem to the full Teraflop machine, we ran 
a 14.04 million element version of the beam problem on 3600 nodes at 224.9 Gflops 
(62.5 Mflops/node), requiring 0.166 CPU secs/timestep. 

Our second benchmark is more interesting as it is prototypical of the problems for 
which PRONTO was designed. We simulated the crush of an idealized steel shipping 
container by an inclined wall, as shown in Fig. 1. As with the first benchmark, this 
computation is easily scaled due to  its regular geometry. However, this calculation is 
considerably more complex. The crumpling of the folded surfaces is a stringent test 
of the contact algorithm’s accuracy and performance. A symmetry plane was used so 
that only half the container was actually simulated. An elastic-plastic material model 
was used for the steel in both the can and wall. Within the contact algorithm, global 
searches were conducted about every five timesteps. 

0 ms 1.6 ms 3.2 ms 

Figure 1: Crushing of idealized shipping container. 

Parallel timings are shown in Fig. 2 for a set of small scaled simulations with 
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1875 elements/node. Every time the number of processors P is doubled, the mesh is 
refined in one of the three dimensions so that the number of mesh elements N also 
doubles. Thus the leftmost data points are for a 3750 element simulation running on 
2 processors. The rightmost data points are for a 6.57 million element simulation on 
3504 processors. 
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Figure 2: Scaled speedup for small container-crush problem. 

The topmost curve is the total CPU time per timestep averaged over a 100 mi- 
crosecond (problem time) run. On the small problems this is a few hundred timesteps; 
on the large problems it is several thousand, since the timestep size must shrink as the 
mesh is refined. The lowest curve is the portion of time spent in the FE computation. 
Contact detection is the time between the lowest and middle cmves. Overhead is the 
time between the top two curves. We again see excellent scalability to very large N 
and P. Perfect scalability would be a horizontal line on this plot. The FE computation 
scales essentially perfectly. The contact detection time varies from one probIem size 
to the next due to  variations in surface-to-volume ratios of mesh elements as refine- 
ment is done in different dimensions, but is also roughly horizontal. The overhead 
time is also a constant portion of the total run time (Le. scalable) as P increases until 
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the P=2048 and P=3504 data points. The reason for the non-scalability here is that 
the overhead timing includes the cost to push-back contacts that are detected. This 
normally small computation becomes somewhat unbalanced in this problem on very 
large numbers of processors. The overall flop performance of parallel PRONTO on 
this problem is 76.05 Gflops on 3504 nodes of the Teraflop machine. Essentially all 
the flops are computed within the FE computation (lowest curve) which again runs 
at about 120 Mflops/node. The majority of the remaining CPU time is spent in the 
integer-based contact searches and sorts (no flops). 

A set of larger simulations of the container crush was also performed where each 
run used a mesh with about 3800 elements/node. These timings are shown in the 
Fig. 3. As before, the upper curve is total CPU time per timestep. PRONTO again 
evidences excellent scalability, since all of the timing curves are roughly horizontal. 
The largest problem (rightmost data points) is a simulation of 13.8 million mesh 
elements on 3600 nodes of the Teraflop machine. It runs at a sustained rate of 120.4 
Gflops or 33.4 Mflops/node. 
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Figure 3: Scaled speedup for large container-crush problem. 
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7 Applications 
Parallel PRONTO has been used to perform a range of calculations which were pre- 
viously impractical or impossible. Here we briefly sketch three representative appli- 
cations. 

7.1 . Application I: Airplane Crash Fuel Dispersal 
In an airplane crash, fires fed by ruptured fuel tanks are a great threat to survivors 
and to  hazardous cargo. The danger posed by such a fire depends critically on the 
dispersal pattern of the fuel. Parallel PRONTO is ideally suited for simulating these 
kinds of incidents since it can combine structural analysis for the plane with smoothed 
particle hydrodynamics for the fuel. Fig. 4 shows a simulation of an airplane wing 
striking a vertical pole. In the image on the left, the purple dots are SPH particles 
representing the resulting fuel cloud. The image on the right shows the damage 
to  the wing itself. Note that the collision tears the wing. This particular example 
illustrates how pronto allows the surface to be adaptively redefined as portions of 
model experience failure. If the strain in a given element becomes too large, failure 
is simulated by deleting the element. Allowing the elements to be adaptively deleted 
requires the parallel contact algorithm to be capable of tracking and updating the 
changing contact surface as the problem progresses. This calculation was run on 128 
nodes of the Teraflop computer using about 110,000 hexahedral and shell elements 
to  model the structures and about 130,000 SPH elements to model the fuel. More 
detailed versions of this problem are being developed which will include the entire 
airplane and a soil model for impact. the current limitation lies in the tools to  build 
the computational mesh. These calculations are being performed by John Pott at 
Sandia. 

7.2 
A problem of great interest to  the DOE is the integrity of shipping containers for 
transporting weapons and hazardous waste. Specifically, will the containers function 
properly in the event of a vehicular collision? An image of such a simulation of 
interest is depicted in Fig. 5, where the container is about to  be crushed between two 
steel walls. This simulation involves more than 1.3 million elements, and includes 
both hexahedral and shell elements. The large number of elements is necessary to 
resolve critical small-scale structural details of the container. Studies of this model 
with parallel PRONTO are ongoing. This work is being performed by Jeff Gruda at 
Sandia. % 

Application 11: Shipping Container Integrity 
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Figure 4: Simulation of wing hitting vertical pole. 

7.3 

Foams of various types are widely used to distribute impact forces or to absorb en- 
ergy in collisions. The macroscopic properties of foams depend upon their fine-scale 
structure in a complex manner that is not well understood. Better constitutive mod- 
els of foam properties can be obtained through simulations of small-scale behavior. 
Unfortunately, very large simulations are necessary to be able to  compare computa- 
tions to experiments. Until the parallelization of PRONTO, such simulations were 
impossible. This example illustrates how parallel PRONTO has enabled qualitatively 
new and different engineering studies. 

Fig. 6 depicts a simulation of an open-cell foam, with cells about lmm in diame- 
ter. A linear elastic material model was used, but the complex buckling and folding 
generates complex nonlinear behavior. The foam is being crushed from above by a 
fast moving plate. 

As the picture reveals, there is some crush near the impacting plate, but much 
more on the opposing boundary. This is due to the reflection of stress waves off of 
the bottom plate. This behavior is consistent with experimental observations. 

Each of the foam struts was modeled with multiple hexahedral elements, totaling 

Application 111: Constitutive Models of Foams 
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Figure 5: Simulation of shipping container crushed between steel walls. 

more than 900,000. While one could use beam finite elements, the complex deforma- 
tion patterns associated with large crush could cause the beam elements difficulty. In 
particular, the beam-on-beam contact would be very hard to detect. By using hexa- 
hedral elements, we are able to model very complex contact conditions. The drawback 
to using hexahedral elements, aside from the number of elements required, is that a 
very small timestep is required to properly integrate the motion. The problem was 
run on 512 nodes of the Teraflop computer and required 8.8 hours of CPU time. Over 
650,000 timesteps were used to integrate the motion in this problem. The complexity 
of the model and the physics can be appreciated in the close-up view shown in Fig. 7. 
The large number of finite elements comprising the struts are clearly visible, as is the 
complicated folding and contact patterns. The red regions are those with the highest 
stresses. This study is being conducted by Mike Neilsen and Stephen Attaway at 
Sandia. 
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Figure 6: Simulation of partially crushed, open-cell foam. 

Conclusions 
We have successfully parallelized a large-scale production solid dynamics code with a 
novel algorithmic approach that utilizes multiple decompositions for different key seg- 
ments of the computations. On our 3600-node Teraflop computer, parallel PRONTO 
runs complex finite element (FE) simulations with global contact searches at rates of 
up to 120 Gflops. The finite element kernel can run contact-free FE simulations at a 
rate of 225 Gflops. While these flop rates may not seem impressive when compared 
to other kinds of simulations or the peak rate of the Pentium Pro chips, some con- 
text may be useful. First, to be able to  simulate a more than ten million element 
model in a few tenths of second per timestep is unprecedented for solid dynamics 
simulations, especially when full global contact searches are required. The key reason 
is our new algorithm for efficiently parallelizing the contact detection stage. To our 
knowledge scalability of this computation had never before been demonstrated on 
more than 64 processors. This has enabled parallel PRONTO to become the only 
solid dynamics code we are aware of that can run effectively on 1000s of processors. 
More importantly, our parallel performance compares very favorably to  the original 
serial PRONTO code which is optimized for vector supercomputers. On the container 
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Figure 7: Close-up view of partially crushed, open-cell foam. 

crush problem, a Teraflop node (two Pentium Pro processors) is as fast as a single 
processor of the Cray Jedi. This means on 3600 nodes of the Teraflop machine we can 
now run simulations with tens of millions of elements over 3000 times faster than we 
could on the Jedi! This is enabling transient dynamics simulations of unprecedented 
scale and fidelity. Not only can previous applications be run with vastly improved 
resolution and speed, but qualitatively new and different analyses have been made 
possible. 
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