
ANUDISRM-43

Assigning Functional Meaning
to Digital Circuits

by S.T. Eckmann and G.H. Chisholm

Decision and Information Sciences Division,
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439

July 1997

Work sponsored by the United States Department of Defense

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, proctss, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not neccssarily state or
reflect thwc of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
electronic image products. Images are
produced from the best available original
document.

CONTENTS

ACKNOWLEDGMENTS ..

ABSTRACT ...

REPORT OBJECTIVE. SCOPE. AND ORGANIZATION ..

BACKGROUND ..

2.1 Reverse Engineering ..
2.2 Reverse Engineering Assistant ..
2.3 Example Reverse Engineering Problem ..

CANONICAL REPRESENTATIONS ..

3.1 Representing Circuits as Logical Formulas ...
3.2 exor / and Canonical Form ...
3.3 Binary Decision Diagrams ..

CANONICALIZATION ISSUES ..

4.1
4.2

Input Order for exor / and Representation ...
Input Order for Binary Decision Diagram Representation ..

CONCLUSIONS AND RECOMMENDATIONS ...

BIBLIOGRAPHY ..

APPENDIX A: Rewriting 2-Bit Adder Outputs to Canonical Form

APPENDIX B: Equivalence of Figure 9 and Figure 10 ...

APPENDIX C: Equivalence of Figure 2 and Figure 4 ...

V

1

1

2

2
2
2

6

6
7

11

15

15
17

24

25

27

35

53

TABLES

1 Truth Table for 1-Bit Full Adder ..

2

3

Logical Functions of Two Variables ..

Signatures for Hypothetical Function ...

4 4-Bit ALU Suspects Sets ..

FIGURES

1 Schematic of 1-Bit Adder ...

2 Schematic of 2-Bit Adder. Gate-Level View ...

3 Schematic of 2-Bit Adder. Structural View ...

4 Schematic of 2-Bit Adder, exor /and Implementation ...

5 Schematic of 1-Bit Adder, Functional Form ..

6 Schematic of exor /and Canonical Forms for 2-Bit Adder ..

7 Schematic of Binary Decision Tree for cout ...

8 Schematic of Binary Decision Diagram for cout for Input Order
of a0 < b O < a1 < b l < c i n ..

9 Schematic of exor /and for cout for Input Order
of a0 < bO < a1 < b l < c i n ..

10 Schematic of exor/and for cout for Input $Order
o f i O < il < i 2 < i 3 < i 4 ...

11 Schematic of Binary Decision Diagram for cout for Input Order
of a0 < bO < c i n < a1 < b l ..

3

7

20

23

8

10

12

14

15

16

17

iv

ACKNOWLEDGMENTS

We wish to offer our thanks to the following individuals for their help: Luther Martin, for
bringing an interesting problem to our attention and providing guidance in our research and
development efforts; Ken Dritz, Bob Veroff, and Anthony Wojcik, for providing insight and
useful criticism; the participants in a brainstorming and review meeting held in Colorado Springs
- David Castaiion, Joanne DeGroat, Dick Kemmerer, and Brian Smith - for suggesting the
idea of applying test vectors; and Travis Doom, for suggesting the use of suspect sets in refining
the application of test vectors.

V

I

ASSIGNING FUNCTIONAL MEANING TO DIGITAL CIRCUITS

by

S.T. Eckmann and G.H. Chisholm

ABSTRACT

During computer-aided design, the problem of how to determine the
logical function of a digital circuit arises in many contexts. For example,
assigning functional meaning to a circuit is a fundamental operation in both
reverse engineering and implementation validation. This report describes such a
determination by discussing how a higher-level functional representation is
constructed from a detailed circuit description (i.e., a gate-level netlist, which is a
list of logic gates and their interconnections). The approach used involves
transforming parts of the netlist into a functional representation and then
manipulating this representation. Two types of functional representations are
described: (1) a mathematical representation based on the logical operators
“exor” and “and” and (2) a directed acyclic graph representation based on
binary decision trees. Each representation provides a canonical form of the logical
function being implemented (i.e., a form that is independent of implementation
details). Such forms, however, have a well-known problem associated with the
ordering of inputs: for each order, a unique form exists. A solution to this problem
is given for both representations. Experimental results that demonstrate the use of
these representations in the process of assigning functional meaning to a circuit
are provided. The report also identifies and discusses issues critical to the
performance required of this fundamental operation.

1 REPORT OBJECTIVE, SCOPE, AND ORGANIZATION

The primary objective of this report is to identify promising directions for near-term
efforts in assigning functional meaning to digital circuits. The scope of the report includes
techniques, issues, and possible solutions. The broader topics of reverse engineering,
implementation verification, and functional matching are beyond the scope of this report.
Information presented in Section 2 is the basis for the discussion and supports the
recommendations. Section 3 illustrates two candidate representations, and Section 4 presents a
high-level algorithm for reverse engineering that is based on these forms. Section 5 illustrates
and discusses experimental results from using the two representations discussed in Section 3.
Finally, Section 6 offers some recommendations. Throughout this document, logical expressions
and formulas, computer code segments, and other technical terms appear in a different font from
that used for the rest of the text.

2

2 BACKGROUND

2.1 REVERSE ENGINEERING

R.everse engineering is the construction of a higher-level functional representation of an
implementation, designed to facilitate understanding of a system. Such a representation is
developed by partitioning a detailed circuit description and assigning functional meaning to
elements of that partition.

2.2 REVERSE ENGINEERING ASSISTANT

The Reverse Engineering Assistant (REA) is a tool set being researched and developed at
Argonne National Laboratory (ANL) to help analysts in the reverse engineering of digital
circuits. We expect the inputs to be (1) a gate-level netlistl representing some circuit of interest
and (2) one or more component “libraries” that contain circuits representing components that
might be embedded in the given circuit. The objective is to find embedded components.

A, fundamental operation of the REA will be to determine the logical function of a digital
circuit. In particular, the REA must provide an efficient means of determining whether some
subnet of a given netlist implements some function in the cell library.

2.3 EXAMPLE REVERSE ENGINEERING PROBLEM

Consider a simple instance of a reverse engineering problem. We are given a library
containing the function “1-bit full adder.” Table 1 is a truth table for this function, and Figure 1
depicts a! nand-gate implementation of this function. We are also given the circuit depicted in
Figure 2, a 2-bit full-adder built from two of the 1-bit full adders in Figure 1. The signal labeled
s8 connects the “carry-out’’ bit of the first 1-bit adder to the “carry-in” bit of the second. We
would like the REA to determine the functionality of the two subcircuits &e., identify a pair of
embedded 1-bit full adders) and yield the circuit shown in Figure 3.2

A netlist is a list of nodes and interconnections (signals or nets) between them. A gate-level netlist is a netlist in
which each node is a logic gate.

In more general terms, we want the REA to find all instances of all library components and return to the analyst a
“reduced” (or abstracted) circuit, in which all matched gates have been replaced by the components of which they
are constituents.

3

TABLE 1 Truth Table
for 1-Bit Full Adder

Imut O U t D U t

a b cin sum cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

couf

FIGURE 1 Schematic of 1-Bit Adder

4

a0 -

54

sum0
bO ---

tin -

5 8 (carry from bit 1 sum)

a f -

b f -

FIGURE 2 Schematic of 2-Bit Adder, Gate-Level View

s u m l

cout

a0

bO

cin

sum0 A 1

1-bit f u l l adder

S8

a1

b l
s u m l A 2

1-bit f u l l adder cout

FIGURE 3 Schematic of 2-Bit Adder, Structural View

5

Perhaps the most obvious matching technique is to compare the library component and
the candidate subnet structurally. Structural matching is inherently syntax matching. For
example, the REA includes an implementation of the SubGemini subgraph isomorphism
algorithm (Ohlrich et al. 1993) as its structural matching tool. However, any logic function may
be realized in silicon in numerous ways. For example, Figure 4 shows another implementation of
the 2-bit full adder; it has exor (exclusive-or) and and gates. This 2-bit adder is functionally
equivalent to the circuit shown in Figure 2 but not structurally equivalent.

Circuits may include both unusual implementations or intentionally obfuscated
implementations. This potential diversity of implementations limits the applicability of structural
matching because a component library cannot include all possible implementations. The REA
needs a more general, semantic technique to handle circuits for which syntactic matching fails. In
this report, “semantic” matching is referred to as “functional” matching to emphasize that the
intent is to compare circuit functions instead of circuit structures.

cin

a1

bf

FIGURE 4 Schematic of 2-Bit Adder, exor/and Implementation

One approach to functional matching is to convert circuits into logical formulas,
transform the formulas into canonical form, and compare these forms with those in a library (all
library elements were previously converted to this canonical form). In this context, a canonical
form is one to which all equivalent forms can be transformed via a well-defined algorithm, such
that any two instances of a given function will be identical. In other words, we are guaranteed
that functionally identical circuits are mapped to equivalent logical formulas. Given a canonical
form, functional matching becomes a simple two-step procedure: (1) convert the subject circuits
(e.g., sublnet and cell) to canonical form and (2) test the resulting formulas for equality.

3.1 REPRESENTING CIRCUITS AS LOGICAL FORMULAS

Shannon (1938) first postulated a mathematical theory of switching circuits based on a
two-valued Boolean algebra. Thus, we can derive the behavior of digital circuits from a gate-
level description and express this behavior as logical formulas in propositional logic. The set of
switching functions used to represent a 2-bit switching function will have 22 possible
combinations of these variables and 22n different switching functions (Table 2).

Any logical function can be expressed in terms of sets of operations (e.g., {A, v, T}), and
there are several canonical and functionally complete sets of operations. However, our selection
of a set of operations for our application will be constrained by our use of an automated theorem-
proving program, OTTER (Organized Techniques for Theorem Proving and Effective Research).
Such a program provides an environment for rapidly constructing and executing experiments on
represent ations of digital circuits. Specifically, we will be using rewrite rules to simplify and
canonicalize expressions that represent digital circuits. The set of rules must be constructed such
that:

The order of applying the rules does not affect the final outcome and

The application of the rules ends with a unique expression.

If we admit simplification rules within our set of rules, we will be restricted to the use of
the { 0, A } set of operations for expression of logical functions. This restriction results from the
fact that a finite, complete set of rewrite rules exists for the canonicalization and simplification of
expressions constructed with the { 0, A } set of operations.

7

TABLE 2 Logical Functions of Two
Variables"

A B A B A B A B
Operation 0 0 0 1 1 0 1 1

Logical 0 0
A A B 0
A A ~ B 0
A 0
T A A B 0
B 0
A O B 0
A v B 0
~ (A v B) 1
A H B 1
i B 1
B + A 1
i A 1
A + B 1
- I (A A B) 1
Logical 1 1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

a 7 = not; A = and; 0 = exclusive or;
+ = implication; and v = or.

3.2 exor/and CANONICAL FORM

Logical formulas are readily represented as expressions. For example, the 1-bit full adder
depicted in Figure 1 may be represented as shown in Figure 5. In other words, the circuit's two
outputs are defined in terms of the logical functions of its inputs. Figure 5 illustrates an
expression of the 1 -bit adder in a logic framework.

OTTER is a resolution-style automated reasoning program that operates on statements
(called clauses) written in first-order logic with equality (McCune 1994; Wos et al. 1992).
OTTER uses inference for deducing new clauses and demodulators for simplifying and rewriting
clauses. OTTER is used here to illustrate the exor / and canonical form.

In OTTER notation, the canonicalizing set of rewrite rules for {exor,

exor (0, x) =x .
exor (x, 0) =x.
exor (x, x) = O .

and} is as
follows:

8

cout = nand2 (nand2 (nand2 (nand2 (a , nand2 (a , b)) ,

nand2 (a , b))) .
nand2(nand2(a1b),b)),cin),

sim = nand2 (nand2 (nand2

nand2

nand2(a,nand2(aIb)),nand2(nand2(a,b),b)),
nand2 (nand2 (nand2 (a , nand2 (a , b)) ,

nand2 (nand2 (a , b) ,b)) ,
tin)) ,

nand2 (nand2 (nand2 (a , nand2 (a , b)) ,
nand2 (nand2 (a , b) , b) 1 ,

c i n) ,
c in))) .

exor
exor
exor

FIGURE 5 Schematic of 1-Bit Adder, Functional Form

xor (y , z) 1 .

x, exor (x ,y)) =y.
x, y) =exor (y , x) .
y, exor (x , z)) =exor (x,

a.nd (0 , x) = 0 .
and(x, 0) = O .
a n d (l , x) = x .
and(x, 1) =x.
and(x,x) =x.
amd (x, and (x , y)) =and
and(x,y) =and(y,x) .
and(y,and(x, z))=and

X,Y) -
x, and

a.nd(x,exor(y,z))=exor(and(x ,y) , a n d (x , z)) .

The variables x, y, and z represent arbitrary logical formulas. The logical values false and true
are represented by 0 and 1, respectively. The first six rules apply to formulas that contain only
exor, the next eight apply to formulas that contain only and, and the last one applies to
formulas; that contain both. For example, the first rule says any formula of the form exor(0 , x)
should be replaced by the formula represented by the variable x.

This set of rewrite rules and a procedure for applying them are all that is needed to
canonicalize formulas that contain only exor and and. To canonicalize formulas that contain
other logical operators, such as or, nand, etc., we must first translate such formulas into
exor/a:nd form, then apply the canonicalization rewrite rules. The translation can be done with
another set of rewrite rules. For example, the following set of rules translates all operations in the
8-bit arithmetic logic unit (ALU) implementations with which we have been experimenting:

9

bufl(x) = x.

inv(x) = exor(x,l) .
and2 (~ 1 ~ x 2) = and(xl,x2).
and3(xlrx2,x3) = and(xlJand(x2,x3)).
and4 (xl , x2 , x3 , x4) = and (xl , and (x2, and (x3 , x4))) -
and5(xl,x2,~3,~4,x5) = and(xl,and(x2,and(x3,and(x4,~5)))).
and8 (xl , x2 , x3 , x4 , x5 , x6 , x7 , x8) =

and(and4(x1,x2,x3,x4),and4(x5,x6,x7,x8)).

or2(xl,x2) = inv(and(inv(x1) ,inv(x2))).
or3 (xl,x2,x3) = inv(and3 (inv(x1) ,inv(x2) ,inv(x3))).

,x2,x3,x4) = inv(and4(inv(xl) ,inv(x2) ,inv(x3) ,inv(x4))). or4 (x

exor2

xnor2

~ 1 ~ x 2) = exor(xl,x2).

xl,x2) = inv(exor(xl,x2)) .
nor2 (~ 1 ~ x 2) = and(inv(x1) , inv(x2)) .
nor3 (xl , x2 , x3) = and3 (inv (xl) , inv (x2) , inv (x3)
nor4 (xl , x2 , x3 , x4) = and4 (inv (xl) , inv (x2) , inv (x3) , inv (x4)) .
nor8 (xl , x2, x3, x4 , x5 , x6 , x7 , x8) =

-

and8(inv(xl),inv(x2) ,inv(x3) ,inv(x4) ,

inv(x5) , inv(x6) , inv(x7) , inv(x8) 1 .
nand2(xltx2) = exor(and(xl,x2) ,1) -
nand3(xl,x2,~3) = exor(and3(xl1x2,x3) ,1).
nand4(xlrx2,x3,x4) = exor(and4(xl,x2,x3,x4),1).
nand5(xlrx2,x3,x4,x5) = e x o r (a n d 5 (x l , x 2 , ~ 3 , ~ 4 , x 5) , 1) .

As an example, consider the canonicalization of a 2-bit adder. The first step in
canonicalizing a circuit given as a netlist is to express the circuit’s outputs in a functional form.
The implementation in Figure 2 has three outputs, which, by composing gates, can be expressed
functionally as follows:

sumo =
nand2 (nand2 (nand2 (nand2 (aO,nand2 (a0,bO)) ,nand2 (nand2 (a0,bO) ,bo) ,

nand2 (nand2 (nand2 (a0 , nand2 (a0 , bO)) ,
nand2(nand2(aO,bO),bO)) ,

tin) 1 I
nand2 (nand2 (nand2 (nand2 (a0 , nand2 (a0 , bO)) ,

nand2 (nand2 (a0,bO) ,bo)) ,
cin) ,

cin))) .

sum1 =
nand2(nand2(nand2(nand2(al,nand2(al,bl)),nand2(nand2(al,bl) ,bl)),

nand2 (nand2 (nand2 (a1 , nand2 (a1 , bl)) ,
nand2 (nand2 (a1,bl) ,bl)) ,

s 8) 1 ,

IO

nand2 (nand2 (nand2 (nand2 (a1 , nand2 (a1 , b l)) ,
nand2 (nand2 (a1 ,b l) , b l)) ,

s 8) I
~ 8))) .

cout = nand2 (nand2 (nand2 (nand2 (a1 , nand2 (a1 , b l)) ,
nand2 (nand2 (a1 ,b l) , b l)) , s8) ,

nand2 (a1 ,b l))) .

where

s8 = nand2 (nand2 (nand2 (nand2 (aO,nand2 (a0,bO)) ,
nand2 (nand2 (a0,bO) ,bo)) , c in) ,

nand2 (a0,bO))) .

The adder’s three output ports - sumo, suml, and cout - are defined in terms of logical
functions on its input ports - a0 , bO , a1 , bl, and cin. Signal s8 connects the carry-out
bit of the first 1-bit adder to the carry-in bit of the second. It is used in the formulas as a
shorthand.

When the adder’s inputs are ordered a0 -= bO < a1 < bl < cin, the resulting
exor /and canonical forms for the three outputs are as shown in Figure 6.

The OTTER ATP program was selected as a tool to manipulate the derived logical
formulas.. One consequence of this selection is the necessity of maintaining a canonical form of

sum0 = exor (aO, exor (bo, c in))) .

sum1 =
exoir(al,exor(bl,exor(and(aO,bO) ,exor(and(aO,cin) ,and(bO,cin)) 1) 1) .

cout = exor(and(aO,and(bO,al)),
exor (and (a0 , and (bo , b l)) ,

exor(and(aO,and(al,cin)) ,
exor (and(a0, and(b1, c in)) ,

exor (and (bo , and (a1 , c in)) ,
exor (and (bo , and (b l , c in)) ,

a n d (a 1 , b l)))))))) .

FIGURE 6 Schematic of exor/and Canonical Forms for 2-Bit Adder

these formulas during processing by the software. Specifically, we must ensure that any arbitrary
expression used as input produces a canonical form.3

The above results were obtained by using OTTER and the rewrite rules presented above.
Details are provided in Appendix A. Because exor/and is a canonical form, any other
implementation of these three output functions will reduce to the same three formulas, if the
same order is used for the adder inputs. Section 4.1 discusses the dependence of canonical forms
on input order. A canonical representation supports one’s intuition about the functionality of the
circuit but removes any structural information that may be applied in the discovery of subcircuit
functionality. For example, the structurally different 2-bit adders depicted in Figures 2 and 4
implement the functionality of a full 2-bit adder.

3.3 BINARY DECISION DIAGRAMS

Binary decision diagrams (BDDs) were introduced and proven to be a canonical form in
Bryant (1986). Bryant (1992) is a good survey. Three basic definitions from Brace et al. (1990)
are provided here:

Binary decision diagram is a directed acyclic graph (DAG). The graph has
two sink nodes labeled 0 and 1 representing the Boolean functions 0 and 1.
Each nonsink node is labeled with a Boolean variable v and has two out-edges
labeled 1 (or then) and 0 (or else). Each nonsink node represents the
Boolean function corresponding to its 1 edge if v = 1 or to its 0 edge if
v = 0.

Ordered binary decision diagram (OBDD) is a BDD with the constraint that
the input variables are ordered and that every source-to-sink path in the OBDD
“visits” the input variables in ascending order.

Here is a more precise discussion of the OTTER constraints. Given a set of expressions (e.g., all well-former
formulas restricted to operators { exor, and}, variable symbols, and propositional symbols), consider an
equivalence relation (in this case, logical equivalence) that partitions the set of formulas.

In the broadest sense, a canonical form is any member of a subset distinguished from the original set of
expressions. Each of these distinguished expressions represents the equivalence class to which it belongs. (Note all
commutative and associative variants of a formula in conjunctive normal form [CNF] are canonical forms; for
example, { and, o r , not } expressions with no notion of lexical order.)

We strive for:

A unique form such that the equivalence class has exactly one member in the unique form and

A finite procedure P that takes an arbitrary expression E as input and produces its unique form P(E)
as output.

Then two expressions, A and B, are equivalent if, and only if, P(A) is identical to P(B).

12

Reduced ordered binary decision diagram (ROBDD) is an OBDD in which
each node represents a distinct logic function.

Many digital design tools use BDDs internally (e.g., see Abstract Hardware Limited
[19961). Most applications of BDDs use ROBDDs exclusively. Because our reverse engineering
application will use only ROBDDs, too, BDD as used in the rest of this report means ROBDD.

Consider as an example a construction of the BDD for the 2-bit adder’s cout output
port. Again we start with this function:

cout = nand2(nand2(nand2(nand2 (al,nand2 (a1,bl) 1 ,
nand2(nand2(al,bl),bl)),s8),

nand2 (a1,bl))).

where

s8 = nand2 (nand2 (nand2 (nand2 (aO,nand2 (a0,bO)) ,
nand2(nand2(aOfbO) ,bo)) ,tin) ,

nand2 (a0 , bo))) .

Also, again we use the input order a0 < bO < a1 < bl < cin. Conceptually, a BDD can be built
by starting with the complete binary decision tree for the function of interest. For the cout
function, the tree is shown in Figure 7.

FIGURE 7 Schematic of Binary Decision Tree for cout

13

Each left out-edge is implicitly labeled 0, and each right out-edge is implicitly labeled 1.
This tree is almost an OBDD. All that needs to be done is to replace the multiple leaf nodes with
a single node labeled 1 and another labeled 0, and to redirect all edges appropriately; the
resulting DAG will be an OBDD. The next step in a manual construction is to eliminate
redundancy, yielding an ROBDD. For example, the five cin nodes with both out-edges going to
0 could be collapsed into a single node. There is a simple recursive procedure for reducing the
OBDD into an ROBDD that is guaranteed to yield a canonical form. For the cout output of the
2-bit full adder, the BDD is shown in Figure 8 in graphical form.

BDDs are used extensively in the digital design community because (1) they are typically
a much more compact representation than any logical canonical form (e.g., exor/and) and
(2) very efficient implementations are available. The three BDD packages we evaluated, which
were from Carnegie-Mellon University and the University of California (Berkeley and
Santa Barbara), are based on the implementation described in Brace et al. (1990). Key features
include (1) hash table implementations, which typically provide linear time construction (the
intermediate steps in the manual construction described above are eliminated) and constant time
comparison operations; (2) libraries of operations for building and manipulating BDDs; and (3)
access to BDDs only through a BDD manager that hides implementation details (hash tables,
etc.) from the application.

14

FIGURE 8 Schematic of Binary Decision Diagram for
cout for Input Order of a0 < bO < a1 < bl <
c i n

15

4 CANONICALIZATION ISSUES

4.1 INPUT ORDER FOR exor/and REPRESENTATION

Since both the exor/and form and BDD form are known to be canonical, it is not
surprising that all implementations of the 2-bit adder were canonicalized to the same form in our
experiments. What may be surprising is that this is true only for a given order of input signal
names.

Recall that our goal is to demonstrate functional equivalence between an unknown circuit
and a library circuit. The netlist for the unknown circuit provides no information about how to
order the input signals; Le., input signals are assigned names that may result in their random
ordering. Figure 9 depicts the cout function for a 2-bit full adder with the input signals of a0 <
bO < a1 < bl < cin. This represents a library circuit for which we have full knowledge
about input signal names and order. Figure 10 depicts an unknown circuit with input signals of
io < il < i2 < i 3 < i4. The expressions for both circuits (Figures 9 and 10) are in
canonical forms with respect to the order of their input signals. However, simply using rewrite
rules and demodulation fails to demonstrate that the two circuits are equivalent.

FIGURE 9 Schematic of exor/and for cout for Input Order of a0 < bO < a1 < bl < cin

F1GURE:lO Schematicofexor/andforcoutforInputOrderof io < il < i2 < i3 < i4

Canonical forms are defined with respect to certain parameters; if you change the
parameters, a different canonical form results. When OTTER is used to transform and
canonicalize expressions, the set of rewrite rules may include rules that depend on lexicographic
order. Such rules exist in the set being applied in the following example:

exor(x,y)=exor(y,x) . % Commutativity of exor.
and (x, y) =and (y, x) . % Commutativity of and.
exor (y, exor (x, 2)) =exor (x, exor (y, z)) . % Rotation of exor.
and(y,and(x,z))=and(x,and(y,z)) . % Rotation of and.

These rules do not change the syntactical form of the terms to which they apply, and they
raise the possibility of endless applicationheapplication to the same terms (ie., nontermination).
To guarintee termination, OTTER imposes a lexical order on constants and function symbols.
The lexical order of constants (used to name input signals) and function symbols (e.g., exor and
and) can be specified in a “lex” list. This dependence on the order of input signal names in
0TTER”s lex list poses a problem for trying to demonstrate the equivalence between the
functionally identical circuits depicted in Figures 9 and 10. Appendix B includes OTTER data
sets that were used to demonstrate such equivalence. The approach used for these demonstrations
is independent of OTTER’S lex list and shows how the equivalence between a circuit with
unknown inputs and a library circuit was determined.

The essence of this approach is to consider the library circuit as a specification of a
function. In an OTTER representation of a specification, variables represent inputs. The

17

unknown circuit is represented by constants and function symbols, as it was before, except that
we represent the circuit in netlist form. In the previous examples, OTTER applied rewrite rules to
manipulate the circuit description. For this example, we use different inference rules
(i.e., hyperresolution and paramodulation; see Wos et al. 1992).

4.2 INPUT ORDER FOR BINARY DECISION DIAGRAM REPRESENTATION

The BDDs for those two input orders also differ, but a better illustration results from
comparing Figure 8 with Figure 11, which shows the BDD for the 2-bit adder’s cou t output
with input order of a0 , bO , cin, al, bl.

In most contexts in which canonical forms are used to compare functions, the variables
(inputs) are known for both circuits, so variable ordering is of minor importance. In the context
of reverse engineering, however, we do not know the inputs for one of the functions; when we

FIGURE 11 Schematic of Binary
Decision Diagram for cout for
InputOrderofaO < bO < cin
< a1 < bl

18

partition a netlist, we get a set of inputs, but no clues about what they might represent. Matching
input order is therefore a problem unique to this application. There are no algorithms for
choosing identical orders; it must be done heuristically. Therefore, for each candidate subcircuit
that we wish to test, we may have to enumerate all possible input orders. A circuit with m inputs
has m ! possible input orders. Exhaustive enumeration of input permutations is therefore not
feasible for subcircuits with more than about 10 distinct inputs. We can generalize from the
exor/and and BDD examples that all canonical forms suffer from this sensitivity to input
order. The rest of this section discusses how the input order sensitivity problem is handled by our
two chosen canonical forms.

Appendix B and SectionC.2 of AppendixC illustrate an approach to using OTTER to
determine the functionality of a circuit, irrespective of the signal names assigned to the inputs.
This approach is based on describing the function (e.g., a 2-bit adder) as an expression for which
the input signals are represented by variables. The circuit under study is input as a netlist.
OTTER manipulates these inputs and determines whether the netlist is an instance of the
specification. (See the appendixes for details.)

We are investigating signature testing as being the most promising method for avoiding
the enumeration of all input permutations for BDDs. The idea is to apply input vectors to a
candidatle subcircuit and check whether its output signature matches that of a library component.
If not, the candidate cannot possibly be an instance of the library component. Only when a
candidatle passes the signature tests is it considered a candidate for detailed (i.e., input
permutation) testing.

The specific input test vectors with which we have experimented for signature testing are
constant vectors and unit vectors:

c l - all 1 bits,
c0 - all 0 bits,
ul - single 1 bit (any single input; all other inputs are 0), and
u0 - single 0 bit (any single input; all other inputs are 1).

The signature function associated with these input vectors is the number of 1 bits in the set of
library module outputs. A candidate subcircuit is tested for feasibility as follows:

1. If the candidate signature for the c, test vector f: signature(c,), then it fails.

2. If the candidate signature for the c, test vector # signature(c,), then it fails.

3. For each of the n u, test vectors vi (for a circuit with n inputs), if none of the
u, test vectors applied to the candidate has a signature of signature(v,), then it
fails.

19

4. For each of the n u, test vectors vi (for a circuit with n inputs), if none of the
u, test vectors applied to the candidate has a signature of signature(v,), then it
fails.

A candidate subcircuit that passes these steps is a feasible match, but this algorithm does
not eliminate the potential need to check all input permutations to determine whether a feasible
match is an actual match. A refinement of steps 3 and 4 keeps track of which candidate inputs
could possibly match which module inputs. The sets suspects (i) , one for each of the library
module’s inputs, identify candidate inputs that could possibly match input i. The sets
nonsuspec ts (i) identify candidate inputs that cannot possibly match input i and will
therefore be excluded from subsequent tests of input i. Both sets are initialized to Empty. The
set of input permutations that must be tested is built from the suspects sets instead of an
exhaustive enumeration of all permutations of the candidate’s inputs. The refined steps 3 and 4
look like this:

3. For each of the n u, test vectors vi (for a circuit with n inputs):
Initialize suspects (i) andnonsuspects (i) to Empty
For each candidate input j {

If candidate signature for vj matches signature(v,) then

Else
add j to suspects (i)

add j to nonsuspects (i)
1
If suspects (i) is Empty then fail

4. For each of the n u, test vectors vi (for a circuit with n inputs):
For each candidate input j {

If j is already in nonsuspects (i) then

Else if candidate signature for vj does not match signature(v,) then
skip j

add j to nonsuspects (i) , and remove j from suspects (i)
1
If suspects (i) is Empty then fail

As the inner loop in step 3 is repeatedly executed, each candidate input j is added either to
suspects (i) or to nonsuspects (i) . At the end of step 3 (and throughout step 4), it must
be the case that, for each module input i, suspects (i) u nonsuspects (i) =
{ candidate inputs }, and also suspects (i) and nonsuspects (i) are disjoint. If
at the end of step 3 each set suspects (i) contains at least one element (meaning there is at
least one candidate input that might match module input i) , then step 4 is performed. The
inner loop for step 4 differs from that for step 3 because the suspects and nonsuspects
sets have now been populated.

20

As an example, consider application of the refined signature testing algorithm to the
hypothetical function partially described by Table 3, which lists input vectors, outputs, and
signatures (but is not a complete truth table).

Suppose we are considering a candidate subcircuit that is an instance of this function. All
of the signature tests obviously will succeed, in the sense that the candidate will be identified as a
feasible match. The interesting part of the algorithm will thus be the construction of suspects
sets. Further suppose that the candidate’s inputs are named sl , s2 , s3 , and s4 and that
the correct mapping between module inputs and candidate inputs is as follows:

[h + s 2 , i + s 3 , j -+ sl, k + s41.

The first iteration of the outer loop of step 3 sets h = 1, and i = j = k = 0. The signature
for this test vector, per the appropriate row in Table 3, is 1. The inner loop of step 3 tests with
each of the four u, input vectors applied to the candidate’s inputs. The first sets s l = 1, and
s2 = s3 = s4 = 0. This corresponds to j = 1, and h = i = k = 0 (based on the known
name mapping), which yields a signature of 2 (the implementation actually computes the
signature. from the candidate’s output BDDs, since it does not know the correct mapping between
module inputs and candidate inputs). Therefore s l cannot match h, so we add s l to
nonsuspects (h) .

TABLE 3 Signatures for Hypothetical Function

Inputs outputs
Type h i j k P 9 r Sig
C1 1 1 1 1 1 0 1 2
CO 0 0 0 0 0 1 0 1

1 0 0 0 1 0 0 1
U1 0 1 0 0 0 0 1 1

0 0 1 0 1 1 0 2
0 0 0 1 0 1 1 2
0 1 1 1 0 0 0 0

UO 1 0 1 1 1 1 1 3
1 1 0 1 0 0 1 1
1 1 1 0 0 0 1 1

21

The second iteration of the inner loop of step 3 sets s2 = 1, and sl = s3 = s4 = 0. This
corresponds to h = 1, and i = j = k = 0, which has a signature of 1. Therefore s2 could
match h, so we add s2 to suspects (h) . After the third and fourth iterations of the inner loop,
we will have:

- s u s p e c t s (h) -

nonsuspec t s (h) =
{ s 2 , s 3) a n d
{sl, s4).

The other three iterations of the outer loop of step 3 are similar, and after step 3 finishes
(testing with u,-type vectors), the s u s p e c t s and n o n s u s p e c t s sets will be:

- suspects (h) -
n o n s u s p e c t s (h) =
s u s p e c t s (i) -
nonsuspects (i) =
suspects (j) -
nonsuspects (j) =
suspects (k) -
n o n s u s p e c t s (k) =

-

-

-

which says that inputs h and i are indistinguishable on the basis of u,-type vectors, but they are
different from j and k. Similarly, j and k are indistinguishable on the basis of ul-type vectors,
but they are different from h and i.

The first iteration of the outer loop of step 4 sets h = 0, and i = j = k = 1. The
signature for this test vector, per the appropriate row in Table 3, is 0. The inner loop of step 3
tests with each of the four u, input vectors applied to the candidate’s inputs. The first iteration
skips sl because it is already in n o n s u s p e c t s (h) .

The second iteration of the inner loop of step 4 sets s2 = 0, and sl = s 3 = s4 = 1
(s2 is not in n o n s u s p e c t s (h) , so this iteration is not skipped). This corresponds to h = 0,
and i = j = k = 1, which has a signature of 0. Therefore s2 is still a possible match for h,
so nothing is done.

The third iteration of the inner loop of step 4 sets s3 = 0, and s l = s2 = s4 = 1 (s3
is not in nonsuspects (h) , so this iteration is not skipped). This corresponds to i = 0, and h
= j = k = 1, which has a signature of 3. Therefore s3 is no longer a possible match for h,
and it is moved from s u s p e c t s (h) to nonsuspec ts (h) .

22

The fourth iteration of the inner loop of step 4 is skipped because s4 is already in
nonsuspects (h). So we have:

suspects (h) = { s 2 } and
nonsuspects(h) = {sl, s3, s 4 } .

The other three iterations of the outer loop of step 4 are similar, and after step 4 finishes
(testing with u,-type vectors), the suspects sets will be:

suspects(h) = { s 2) ,
suspects(i) = { s 3) ,
suspects(j) = {SI, s4), and
suspects(k) = {sl, s4)

because inputs h and i have different u, signatures, but inputs j and k still cannot be
distinguished. Therefore, in this example, there are 4 @e., 1 x 1 x 2 x 2) permutations to try
instead of 24 (4!). Although this smaller number is not a significant improvement, results to date
do suggest that this signature testing scheme with the suspects sets refinement is very precise,
in the sense that the suspects sets are typically much smaller than the entire set of inputs. For
example, in a test with a 4-bit ALU, which has 14 inputs, the number of permutations to be
examined was reduced from 87,178,291,200 (14!) to 8,640. The actual suspects sets for that
test case are shown in Table 4. The nonsuspects sets nonsuspects (i) are just {all
candidate inputs} minus suspects (i) . For example, since

{al:l candidate inputs} = { S-3, S-2, S-0, B-7, B-6, B-5,
B-4, A-4, S-1, NET6, M, A-7, A-6,
A-5 1

and

suspects(S3) = { s-3 } ,

we can deduce that

nonsuspects (S3) = { S-2, S-0, B-7, B-6, B-5, B-4,
A-4, S-1, NET6, M, A-7, A-6, A-5)

23

TABLE 4 4-Bit ALU Suspects Sets

suspects [S3 I S-3
suspects[S2] S-2 S-0 B-7 B-6 B-5 B-4
suspects [Sl]. S-1 NET6
suspects[SO] S-2 S-0 B-7 B-6 B-5 B-4
suspects[A3] A-7 A-6 A-5
suspects[A2] A-7 A-6 A-5
suspects[Al] A-7 A-6 A-5
suspects [A0 I A-4
suspectsEB31 S-2 S-0 B-7 B-6 B-5 B-4
suspects[B2] S-2 S-0 B-7 B-6 B-5 B-4
suspects[Bl] S-2 S-0 B-7 B-6 B-5 B-4
suspects[BO] S-2 S-0 B-7 B-6 B-5 B-4
suspects [MI M
suspects [CN] S-1 NET6

Steps 3 and 4 apply two different “families” of test vectors. Additional families of test
vectors (e.g., the family of vectors with two 1 bits) could be applied, the expectation being that
each family will reduce the size of some s u s p e c t s sets. Taken to the limit, this approach
would effectively apply a complete truth table to the candidate’s inputs to determine whether it
matches the library module; however, the simplest two families (ul and uo) may be sufficient. In
the worst case, s u s p e c t s (i) will still contain the entire set of candidate inputs for all module
inputs i, but this should happen only for modules with completely symmetric inputs (e.g., a
parity circuit).

It seems reasonable that the precision of signature testing will increase for components
that have more inputs and outputs. This result is exactly what is needed: as the number of
permutations increases factorially, we want greater assurance that only very likely candidates
make it past that stage of comparison.

24

5 CONCLUSIONS AND RECOMMENDATIONS

The advantage of using a canonical form is that it gives us positive information relatively
efficiently on whether two circuits perform the same logical function, because given an order for
inputs, all implementations of a function will reduce to the same canonical form.

When the exor /and representation is manipulated by an automated reasoning program,
a unique canonical form of all implementations of a function is obtained. This unique form
implies that, irrespective of input order, the functional equivalence of two circuits is
demonstrable. However, experimentation with the specification and implementation of a 4-bit
ALU indicates that the exor / and representation suffers from a combinatorial “explosion”
problem: The files associated with the higher order functions in the ALU are too large to process.
For this reason, we decided to adopt the BDD representation as the canonical representation for
the remainder of our investigations on assigning functional meaning to circuits.

Signature testing is a mechanism that eliminates the need to test all permutations when
BDDs are being applied to demonstrate the functional equivalence of two circuits.

We are currently experimenting with both the exor/and and BDD canonical
representations. At this time, it appears that structural matching is the best method for finding
large cornponents with standard implementations, while functional matching is best used for
finding small components with nonstandard implementations.

25

6 BIBLIOGRAPHY

Brace, K.S., R.L. Rudell, and R.E. Bryant, 1990, “Efficient Implementation of a BDD Package,’’
pp. 40-45 in Proceedings of the 27th ACMLEEE Design Automation Conference.

Bryant, R.E., 1986, “Graph-Based Algorithms for Boolean Function Manipulation,” IEEE
Transactions on Computers C-35(6):677-69 1, August.

Bryant, R.E., 1992, Symbolic Manipulation with Ordered Binary Decision Diagrams, Report
CMU-CS-92- 160, URL: ftp://reports.adm.cs.cmu.edu/usr/anon/ 1992KMU-CS-92- 160.p~.

Knuth, D., and P. Bendix, 1970, “Simple Word Problems in Universal Algebras,” pp. 263-297 in
Computational Problems in Abstract Algebras, J. Leech (editor), Pergamon Press, Oxford,
England.

McCune, W.W., 1994, Otter 3.0 Reference Manual and Guide, Report ANL-94/6, Argonne
National Laboratory, Argonne, Ill., URL: ftp://info.mcs.anl.gov/pub/Otter/Papers/
otter3-manua1.ps.g~.

Mailhot, F., 1991, “Technology Mapping for VLSI Circuits Exploiting Boolean Properties and
Operations,” Ph.D. dissertation, Department of Electrical Engineering, Stanford University.

Ohlrich, M., C. Ebeling, E. Ginting, and L. Sather, 1993, “SubGemini: Identifying Subcircuits
Using a Fast Subgraph is Omorphism Algorithm,” pp. 31-37 in Proceedings of the 30th
ACM/IEEE Design Automation Conference.

Shannon, C.E., 1938, “A Symbolic Analysis or Relay and Switching Circuits,” Transactions of
the American Institute of Electrical Engineers 57:7 13-723.

Wos, L., R. Overbeek, E. Lusk, and J. Boyle, 1992, Automated Reasoning, 2nd ed., McGraw-
Hill.

ftp://reports.adm.cs.cmu.edu/usr/anon
ftp://info.mcs.anl.gov/pub/Otter/Papers

27

APPENDIX A:

REWRITING 2-BIT ADDER OUTPUTS TO CANONICAL FORM

One way to obtain canonical forms is to use a “rewrite rule” system. The OTTER
automated reasoning program excels at this sort of task. For example, consider canonicalizing the
2-bit adder. We start by separating the gates of the netlist into internal and output gates: output
gates provide the circuit’s externally visible outputs; internal gates provide all the rest. The
output gates of the 2-bit adder are therefore those that generate the carry-out bit and the two sum
bits (i.e.7 sum0 and suml). The objective of this first step is to transform the netlist into a set of
functional representations of the circuit’s outputs. In the following OTTER input file, internal
signal s 8 is also specified as an output gate to match the presentation in Section 3:

set (demod-inf) .
set (prettysrint) .

% internal gates
list (demodulators) .

EQUAL(s1, nand(a0,bO)).
EQUAL(s2, nand(a0,sl)).
EQUAL(s3, nand(s1,bO)).
EQUAL(s4, nand(s2,s3)).
EQUAL(s5, nand(s4,cin)).
EQUAL(s6, nand(s4,s5)).
EQUAL(s7, nand(s5,cin)).
EQUAL(sl0, nand(a1,bl)).
EQUAL(sl1, nand(a1,slO)).
EQUAL(sl2, nand(sl0,bl)).
EQUAL(sl3, nand(sll,sl2)).
EQUAL (s 14, nand (s13, s 8)) .
EQUAL(sl5, nand(sl3,sl4)).
EQUAL(sl6, nand(sl4,s8)).

end-of-list.

% output gates
list (s o s) .

OUTPUT(sum0, nand(s6,s7)).
OUTPUT (s 8 , nand(s5, sl)) .
OUTPUT(cout, nand(sl4,slO)) .
OUTPUT(sum1, nand(sl5,sl6)).

end-of-list.

28

If we feed the above lines to OTTER, we get something like this:

_ _ _ _ _ Otter 3.0.4, August 1995 -----
The job was started by eckmann on eckmann.home, Tue Apr 22 19:58:44 1997
The command was "otter".

set (demod-inf) .

list(demodu1ators).
1 [I EQUAL(sl,nand(aO,bO)) .
2 [I EQUAL(s2,nand(aO,sl)).
3 [I EQUAL(s3,nand(sl,bO)) -
4 [I EQUAL(s4,nand(s2,~3)).
5 [I EQUAL(s5,nand(s4,cin)).
6 [I EQUAL(sG,nand(s4,~5)).
7 [I EQUAL(s7,nand(sS,cin)).
8 [I EQUAL(slO,nand(al,bl)).
9 [I EQUAL(sll,nand(al,slO)).
10 [I EQUAL(sl2,nand(slO,bl)).
11 [I EQUAL(sl3,nand(sll,sl2)).
12 [] EQUAL (s14, nand (s13, s8)) .
13 [] EQUAL (s15, nand (s13, s14)) .
14 [I EQUAL(slG,nand(s14,~8)).
end-of-list.

list(sos) .
15 [I OUTPUT(sumO,nand(s6,~7)).
16 [] OUTPUT(s8,nand(sS,sl)).
17 [I OUTPUT(cout,nand(sl4,slO)).
18 [I OUTPUT(suml,nand(slS,sl6)).
end-of-list.

end of input processing ======= - - - - - - - - .- - - - - -

given clause #1: (wt=5) 15 [I
OUTPUT(sumO,nand(s6,~7)).
** KEPT (pick-wt=43) : 19
[15,demod, 6,4,2,1,3,1,5,4,2,1,3,1,7,5,4,2,1,3,1]
OUTPUT (

sumo,
nand (

nand (
nand(nand(aO,nand(aO,bO)),nand(nand(aO,bO),bO) 1,
nand(nand(nand(aO,nand(aO,bO)),n~d(nand(aO,bO),bO)),cin)),

nand(nand(nand(nand(aO,nand(aO,bO)),
nand(nand(aO,bO),bO)),cin),cin))).

given clause #2: (wt=5) 16 [I
OUTPUT(s8,nand(sS,sl)) .
** KEPT (pick-wt=19) : 20 [16,demod,5,4,2,1,3,1,11
OUTPUT (

sa,
nand(nand(nand(nand(aO,nand(aO,bO)),nand(nand(aO,bO),bO)),cin),

nand(a0,bO))
1 .

given clause #3: (wt=5) 17 [I

29

OUTPUT(cout,nand(sl4,slO)).
** KEPT (pick-wt=19): 21 [17,demod,12,11,9,8,10,8,8]
OUTPUT (

cout ,
nand(nand(nand(nand(al,nand(al,bl)),nand(nand(al,bl),bl)),s8),

nand (al, bl))
1 .

given clause #4: (wt=5) 18 [I
OUTPUT(surnl,nand(sl5,~16)).
** KEPT (pick-wt=43): 22

OUTPUT (
[18,demod, 13,11,9,8,10,8,12,11,9,8,10,8,14,12,11,9,8,10,8]

suml,
nand (

nand (
nand (nand (al, nand (al, bl)) , nand (nand (al, bl) , bl)) ,
nand(nand(nand(al,nand(al,bl)),nand(nand(al,bl),bl)),s8)),

nand(nand(nand(nand(al,nand(al,bl)),
nand(nand(al,bl),bl)),s8),~8))

I .

given clause # 5 : (wt=19) 20 [16,demod,5,4,2,1,3,1,1]
OUTPUT (

s8,
nand(nand(nand(nand(aO,nand(aO,bO)),nand(nand(aO,bO),bO)),cin),

nand (a0 , bO))
1 -

given clause # 6 : (wt=19) 21 [17,demod,12,11,9,8,10,8,8]
OUTPUT (

cout ,
nand(nand(nand(nand(al,nand(al,bl)),nand(nand(al,bl),bl)),s8),

nand(a1,bl))
) .

given clause #7: (wt=43) 19
[15,demod,6,4,2,1,3,1,5,4,2,1,3,1,7,5,4,2,1,3,1~
OUTPUT (

sumo,
nand (

nand (
nand(nand(aO,nand(aO,bO)) ,nand(nand(aO,bO),bO)),
nand(nand(nand(aO,nand(aO,bO)),nand(nand(aO,bO),bO)),cin)),

nand(nand(nand(nand(aO,nand(aO,bO)),

1 .
nand(nand(aO,bO),bO)),cin),cin))

given clause # 8 : (wt=43) 22

OUTPUT (
[18,demod,13,11,9,8,10,8,12,11,9,8,10,8,14,12,11,9,8,10,81

suml ,
nand (

nand (
nand(nand(al,nand(al,bl)),nand(nand(al,bl) ,bl)) ,
nand(nand(nand(al,nand(al,bl)),nand(nand(al,bl),bl)),s8)) ,

nand(nand(nand(nand(al,nand(al,bl)),
nand(nand(al,bl),bl)),s8),~8))

30

Search stopped because sos empty

The “KEPT” lines contain the functional representations of each output. In the actual
REA implementation, we do not manually determine the output and internal gates; this
determination is easy to make automatically. Given functional representations of the candidate
subcircuit’s outputs, the next step is to apply canonicalization rules to them, yielding a single
canonical form for each of the functional representations. The following lines actually combine
the previous step (rewriting output signals to functional form) and the canonicalization step:

include (”translate. lib”) .
include (“canonicalize. lib”) .

% internal gates; i.e., gates whose outputs are internal to the
circuit.
list (demodulators) .

EQUAL (sl,
EQUAL (s2,
EQUAL (s3,
EQUAL (s4,
EQUAL (s5,
EQUAL (s 6,
EQUAL (s7,
EQUAL (s8,
EQUAL (s10,
EQUAL (sll ,
EQUAL (s12,
EQUAL (s13,
EQUAL (s14,
EQUAL (s15,
EQUAL (s16,

end-of-list.

nand(a0,bO)).
nand(a0,sl)).
nand(s1,bO)) .
nand(s2,s3)).
nand (s4, cin)) .
nand (s4, s5)) .
nand (s5, cin)) .
nand(s5,sl)).
nand(a1,bl)) .
nand (al, s10)) .
nand(sl0,bl)).
nand(sll,sl2)).
nand(sl3,s8)).
nand(sl3,sl4)).
nand(sl4,s8)).

% external gates; i.e., gates whose outputs are also circuit outputs.
list (sos) .

OUTPUT(sum0, nand(s6,s7)).
OUTPUT(cout, nand(sl4,slO)).
OUTPUT(sum1, nand(sl5,sl6)).

end-of-list.

The input file above included two other files. The first is translate. l ib , which
translates various logical operators to exor / and form:

% $Id: translate.lib,v 1.1 1996/10/31 19:21:26 eckmann Exp eckmann $
%
% Rewrite rules (demodulators) and OTTER configuration to
8 translate a variety of logical formulas to EXOR/AND form,
% prior to canonicalization.
%
% Add additional rewrite rules as necessary to eliminate
% operators other than EXOR and AND.

set(demod-inf).
set (dynamic-demod) .

31

% these weights cause OTTER to orient rewrite rules properly.
weight-list(terms) .

weight(and($(O),S(O)),-2).
weight(exor(S(0) , $ (O)) ,-2).

end-of-list.

list (demodulators) .

bufl(x) = x.

inv(x) = exor(x,l) .
and2 (xl,x2) = and(xl,x2) .
and3 (xl,x2,x3) = and(xl,and(x2,x3)).
and4(xl,x2,~3,x4) = and(xl,and(x2,and(x3,~4))).
and5(xl,x2,~3,~4,~5) = and(xl,and(x2,and(x3,and(x4,~5)))).
and8 (xl , x2, x3, x4, x5, x6, x7, x8) =

and(and4(x1,x2,x3,x4),and4(x5,x6,x7,x8)).

or2(xl,x2) = inv(and(inv(xl),inv(x2))).
or3(xl,x2,x3) = inv(and3(inv(xl) ,inv(x2) ,inv(x3))).
or4 (xI,x2,x3,x4) = inv(and4 (inv(x1) , inv(x2), inv(x3), inv(x4))) .
exor2(xl,x2) = exor(xl,x2).

xnor2 (xl,x2) = inv(exor(xl,x2)).

nor2 (xl,x2) = and(inv(x1) , inv(x2)) .
nor3 (xl,x2,x3) = and3 (inv(x1) ,inv(x2) ,inv(x3)).
nor4(xl,x2,~3,x4) = and4(inv(xl) ,inv(x2) ,inv(x3) ,inv(x4)).
nor8~x1,x2,x3,x4,x5,x6,x7,x8) = and8(inv(xl),inv(x2),inv(x3),inv(x4),

inv(x5),inv(x6),inv(x7),inv(x8)).

nand(xl,x2) = nand2(xl,x2).
nand2(xl,x2) = exor(and(xl,x2),1).
nand3(xl,x2,x3) = exor(and3(xl,x2,x3) ,1) .
nand4(xl,x2,~3,x4) = exor(and4(xl,x2,~3,~4),1).
nand5 (xl , x2, x3, x4, x5) = exor (and5 (xl , x2, x3, x4, x5) , 1) .

end-of-list

The second included file is canonicalize . lib, which canonicalizes formulas
expressed entirely in terms of exor and and:

%
%
%
%
%
%
%
%
%
%
%

$Id: canonicalize.lib,v 1.1 1996/10/31 19:21:26 eckmann Exp eckmann $

Rewrite rules (demodulators) and OTTER configuration
to canonicalize EXOR/AND formulas.

Assumptions:
1. other logical operators have already been translated

2. files that include this library have a lex list that
to EXOR/AND form using rewrite rules in translate.lib.

specifies order of constants (otherwise you get a normal
form, but not a canonical form).

set (demod-inf) .
clear(demod-history).
assign (demod-limit, -1)

32

assign(max-mem, -1) .
assign (stats-level, 0) .
list (demodulators) .
exor (0, x) =x.
exor (x, 0) =x.
exor(x,x)=O.
exor (x, exor (x,y)) =y.
exor (x, y) =exor (y, x) .
exor (y , exor (x, z)) =exor (x, exor (y, z)) .
and (0, x) = O .
and(x,0)=0.
and(l,x)=x.
and(x, 1) =x.
and(x,x)=x.
and(x,and(x,y))=and(x,y).
and(x,y)=and(y,x) .
and(y,and(x,z))=and(x,and(y,z)).

and (x, exor (y , z)) =exor (and (x, y) , and (x, z)) .
end-of-list.

Given the input file above and the two included files, OTTER will produce something
like this:

Otter 3.0.4, August 1995 ----- _ _ - - -
The job was started by eckmann on eckmann-home, Tue Apr 22 20:01:23 1997
The command was "otter".

include ("translate. lib") .
- - - - - - - start included file translate.lib-------
set (demod-inf) .
set (dynamic-demod) .

dependent: set (order-eq) .
weight-list (terms) .
weight(and(S(0) , $ (O)) ,-2).
weight (exor ($ (0) , $ (0)) , -2) .
end-of-list.

list (demodulators) .
1 [I bufl(x)=x.
2 [I inv(x)=exor(x,l).
3 [I and2(xl,x2)=and(xl,x2).
4 [I and3 (xl,x2,~3)=and(xl,and(x2,~3)).
5 [I and4(x1,x2,x3,x4)=and(xl,and(x2,and(x3,x4))).
6 [I and5(x1,x2,x3,x4,x5)=and(xl,and(x2,and(x3,and(x4,~5)))).
7 [I and8(x1,x2,x3,x4,x5,x6,x7,x8)=

and(and4(x1,x2,x3,x4),and4(x5,x6,x7,x8)).
8 [I or2 (xl,x2)=inv(and(inv(xl), inv(x2))) .
9 [I or3(xl,x2,x3)=inv(and3(inv(xl) ,inv(x2) ,inv(x3))).
10 [I or4(x1,x2,x3,x4)=inv(and4(inv(xl),inv(x2),inv(x3),inv(x4))).
11 [I exor2(xl,x2)=exor(xl,x2).
1.2 [I xnor2(xl,x2)=inv(exor(xl,x2)).
13 [I nor2(xl,x2)=and(inv(xl) ,inv(x2)).
14 [I nor3(x1,x2,x3)=and3(inv(xl) ,inv(x2) ,inv(x3)) -

33

15 [I nor4(x1,x2,x3,x4)=and4(inv(xl),inv(x2),inv(x3),inv(x4)).
16 [I nor8(x1,x2,x3,x4,x5,x6,x7,x8)=

and8(inv(xl),inv(x2),inv(x3),inv(x4),
inv(x5),inv(x6),inv(x7),inv(x8)).

17 [3 nand (xl , x2) =nand2 (xl , x2) .
18 [I nand2(xl,x2)=exor(and(xl,x2),1).
19 [I nand3(xl,x2,x3)=exor(and3(xl,x2,~3) ,1).
20 [I nand4(x1,x2,x3,x4)=exor(and4(xl,x2,~3,~4) ,1).
21 [I nand5(x1,x2,x3,x4,x5)=exor(and5(xl,x2,x3,~4,~5),1).
end-of-list.
- - - - - - - end included file translate.lib-------
include ("canonicalize. lib") .
- - - - - - - start included file canonicalize.lib-------
WARNING: set(demod-inf) flag already set.
set (demod-inf) .
clear(demod-history) .
assign(demod-limit,-1) .
WARNING: assign(max-mem,-1) already has that value.
assign (max-mem, -1) .
assign(stats-level,o).

list (demodulators) .
22 [I exor(O,x)=x.
23 [I exor(x,O)=x.
24 [I exor(x,x)=O.
25 [I exor(x,exor(x,y))=y.
26 [I exor(x,y)=exor(y,x).
27
28 [I and(O,x)=O.
29 [I and(x,O)=O.
30 [I and(l,x)=x.
31 [I and(x,l)=x.
32 [I and(x,x)=x.
33 [I and(x,and(x,y))=and(x,y).
34 [I and(x,y)=and(y,x).
3 5
36 [I and(x,exor(y,z))=exor(and(x,y) ,and(x,z)) .
end-of-list.
- - - - - - - end included file canonicalize.lib-------

[1 exor (y , exor (x, z)) =exor (x, exor (y, z)) .

1 and (y, and (x, z)) =and (x, and (y, z)) .

list (demodulators) .
37 [I EQUAL(sl,nand(aO,bO)).
38 [I EQUAL(s2,nand(aO,sl)).
39 [I EQUAL(s3,nand(sl,bO)).
40 [] EQUAL(s4,nand(s2,~3)).
41 [1 EQUAL (s5, nand (s4, cin)) .
42 [I EQUAL(sG,nand(s4,~5)).
43 [I EQUAL(s7,nand(sS,cin)) .
44 [I EQUAL(s8,nand(s5,sl)).
45 [I EQUAL(slO,nand(al,bl)) .
46 [I EQUAL(sll,nand(al,slO)).
47 [I EQUAL(sl2,nand(slO,bl)).
48 [I EQUAL(sl3,nand(sll,sl2)).
49 [1 EQUAL (s14, nand (s13, s8)) .
50 [I EQUAL(sl5,nand(sl3,~14)).
51 [I EQUAL(slG,nand(s14,~8)).
end-of-list.

list (s o s) .
52 [I OUTPUT(sumO,nand(s6,~7)) -
53 El OUTPUT(cout,nand(sl4,slO))

34

54 [I OUTPUT(suml,nand(s15,~16)).
end-of-list.
lex dependent demodulator: 2 6 [I exor (x,y) =exor (y,x) .
lex dependent demodulator: 27 [I exor(y,exor(x,z))=exor(x,exor(y,z)).
lex dependent demodulator: 34 [I and(x,y)=and(y,x).
lex dependent demodulator: 35 [I and(y,and(x,z))=and(x,and(y,z)).

given clause #1: (wt=5) 52 [I OUTPUT(sumO,nand(s6,s7)).
** KEPT (pick-wt=7): 55 t52,demodl OUTPUT(sumO,exor(aO,exor(bO,cin)).

given clause #2: (wt=5) 53 [I OUTPUT(cout,nand(sl4,slO)) -
** KEPT (pick-wt=41): 56 t53,demodl

OUTPUT (cout ,
exor(and(aO,and(al,bO)),

exor(and(aO,and(al,cin)),
exor(and(aO,and(bO,bl)),

exor(and(aO,and(bl,cin)),
exor(and(al,bl),

exor(and(al,and(bO,cin)),
and(bO,and(bl,cin))))))))).

given clause #3: (wt=5) 54 [I OUTPUT(suml,nand(sl5,~16)).
** KEPT (pick-wt=17) : 57 t54,demodl

OUTPUT (sum1 ,
exor(al,exor(bl,exor(and(aO,bO),

exor(and(aO,cin),and(bO,cin)))))).

given clause #4: (wt=7) 55 [52,demod]
OUTPUT(sumO,exor(aO,exor(bO,cin))) .
given clause #5: (wt=17) 57 [54,demodl

given clause # 6 : (wt=41) 56 [53,demod]

exor (and(a0, and(b0, bl)) , exor (and(a0, and(b1, cin)) ,
exor(and(al,bl),exor(and(al,and(bO,cin)),and(bO,and(bl,cin))))))))).

OUTPUT(cout,exor(and(aO,and(al,bO)),exor(and(aO,and(al,cin)),

Search stopped because sos empty.

The three “KEPT” clauses specify the canonical forms for the 2-bit adder’s three outputs.

35

APPENDIX B:

EQUIVALENCE OF FIGURE 9 AND FIGURE 10

One way to identify the functional equivalence of a circuit is to specify the functionality
of the circuit and show that a specific circuit implies that specification. This approach is
illustrated by using Figures 2 and 4 as an example. Recall that Figure 2 depicts an
implementation of a full 2-bit adder using nand gates. Figure 4 depicts an implementation
using exor / and gates. Figure 7 depicts an expression describing the functionality of a full 2-bit
adder. The first section of this appendix describes the use of OTTER to prove the implication
that Figure 2 is an implementation of the specification described by Figure 7. The second section
describes the proof that Figure 4 is an implementation of the same specification by using a new
approach. If Figures 2 and 4 are implementations of the same specification, they must be
functionally equivalent.

Section B .2 discusses an approach for demonstrating the equivalence between a
specification and an implementation. This demonstration does not depend on the order of the
input signal names. We use this approach here to show that the two implementations depicted in
Figures 10 and 11 are equivalent. The approach is in two parts. First we demonstrate that
Figure 10 is an implementation of the specification for a 2-bit adder. Second we repeat this
demonstration for Figure 11. If both circuits are implementations of the same specification, they
must be equivalent. These demonstrations may also be interpreted as assigning the identical
functional meaning to each of the circuits.

B.l DEMONSTRATING THAT FIGURE 10 IS AN INSTANCE
OF THE 2-BIT ADDER SPECIFICATION

The following is the OTTER input file:

% inference rules
set (neg-hyper-res) .
set (ur-res) .
set (unit-deletion) .
set (para-into) .
clear (para-from-right) .
% search
set (prettysrint) .
set(input-sos-first) .

% processing limits
assign (max-mem, 96000) .
assign(max-weight, 99).

% printing
clear (print-kept 1 .
% lexical ordering -- exor must be last for the canonicalization
strategy
lex([s(x),aO,al,bO,bl,cin,sumO,suml,ovfl,and(x,y),exor(x,y)]).

weight-list(pick-and_purge).

weight(s(S1) ,0)

% special interest in the output signals
weight(GATE(ovfl,$(l)),-10).
weight(GATE(sumO,$(l)),-10) .
weight(GATE(suml,$(l)),-10).

% it suffices to consider the original "labels" for the gates
weisht(GATE(and($(1),$(1)),$(1)),999).
weight (GATE (exor ($ (1) , $ (1)) , $ (1) 1 ,999) .

end-of-list.

list (usable) .

EQ (x, x) .
% The following is the specification for a 2-bit adder

-GATE(xsumO,exor(xaO,exor(xbO,xcin))) I
-GATE(xsuml,

exor (xal ,
exor (xbl ,

exor (and (xaO, xbO) ,
exor(and(xaO,xcin),

and(xb0,xcin)))))) I
-GATE (xovf 1,

exor(and(xaO,and(xal,xbO)),
exor (and (xaO, and (xal, xcin)) ,

exor (and (xaO, and(xb0, xbl)) ,
exor(and(xaO,and(xbl,xcin)),

exor (and (xal, xbl) ,
exor(and(xal,and(xbO,xcin)),

and (xb0, and (xbl, xcin))))))))) 1
TWO-BIT-ADDR(xaO,xal,xbO,xbl,xcin) .

end-of-list.

list (usable) .

% A Second version of the Netlist for Figure 10 -- paramodulating
% from these equality units into a GATE literal expands the

% for a gate's functionality
expression

EQUAL (sumo, exor (aO, s (1))) .
EQUAL (s (1) , exor (bo, cin)) .
EQUAL (suml, exor (al, s (2))) .
EQUAL (s (2) , exor (bl, s (3))) .
EQUAL(s(3) ,exor(s(4) ,s(5))).
EQUAL(s(4) ,and(aO,bO)) .
EQUAL(s(5) ,exor(s(6) , s (7))) .

37

EQUAL(s(6) ,and(bO,cin)).
EQUAL (s (7) ,and (aO, cin)) .
EQUAL (ovfl, exor (s (8) , s (10))) .
EQUAL(s(8) ,and(aO,s(9))).
EQUAL(s(9) ,and(bO,al)).
EQUAL(s(lO),exor(s(ll),s(13))).
EQUAL(s(l1) ,and(aO,s(l2))).
EQUAL(s(l2) ,and(bO,bl)) .
EQUAL(s(l3),exor(s(l4),s(l6))).
EQUAL (s (14) , and (a0 , s (15))) .
EQUAL(s(l5),and(al,cin)).
EQUAL (s (16) , exor (s (17) , s (19))) -
EQUAL (s (17) , and (aO, s (18))) .
EQUAL(s(l8) ,and(bl,cin)) .
EQUAL(s(19),exor(s(20),~(22))) -
EQUAL (s (2 0) , and (bo, s (21))) .
EQUAL (s (21) , and (a1 , cin)) .
EQUAL(s(22),exor(s(23) ,s(25))) -
EQUAL(s (23) ,and(bO, s (24))) .
EQUAL(s(24) ,and(bl,cin)).
EQUAL (s (25) , and (al, bl)) .

end-of-list.

list (s o s) .

% The gate-level netlist description of Figure 10

GATE(sumO,exor(aO,s(l))).
GATE(s(1) ,exor(bO,cin)).
GATE(suml,exor(al,s(2))).
GATE(s(2),exor(bl,s(3))).
GATE(s(3) ,exor(s(4) , s (5))) .
GATE(s(4) ,and(aO,bO)).
GATE(s(5) ,exor(s(6) ,s(7) 1) .
GATE(s(6) ,and(bO,cin)).
GATE(s(7) ,and(aO,cin)).
GATE(ovfl,exor(s(8) ,s(lO))) .
GATE(s(8) ,and(aO,s(9))).
GATE(s(9) ,and(bO,al)) .
GATE(s(l0) ,exor(s(ll) ,s(13))).
GATE(s(l1) ,and(aO,s(l2))).
GATE(s(l2),and(bO,bl)).
GATE(s(l3),exor(s(l4),s(l6))).
GATE(s(l4) ,and(aO,s(l5))).
GATE(s(l5) ,and(al,cin)).
GATE(s(l6) ,exor(s(l7) ,s(19))).
GATE(s(17) ,and(aO,s(18) 1) .
GATE(s(18) ,and(bl,cin)) .
GATE(s(19) ,exor(s(20) ,s(22))).
GATE(s(20) ,and(bO,s(21))).
GATE(s(21) ,and(al,cin)) .
GATE(s(22),exor(s(23),~(25))).
GATE(s(23) ,and(bO,s(24))).
GATE(s(24) ,and(bl,cin)).
GATE(s(25) ,and(al,bl)) .

% denial of theorem

-TWO-BIT-ADDR(xaO,xal,xbO,xbl,xcin) .

end-of-list.

list(demodu1ators).

% canonicalize exor with respect to commutativity and associativity
EQ(exor(x,y) ,exor(Y,x) 1 .
EQ(exor(x,exor(y,z)) ,exor(y,exor(x,z))) .
EQ(exor(exor(x,y) ,z) ,exor(x,exor(y,z))) .
% canonicalize and with respect to commutativity and associativity
EQ(and(x,y) ,and(y,x) 1 .
EQ(and(x,and(y,z)),and(y,and(x,z))).
EQ(and(and(x,y),z),and(x,and(y,z))).

% distribute and over exor
EQ (and (x, exor (y, z)) , exor (and (x, y) , and (x, z))) .
EQ(and(exor(y,z) ,x) ,exor(and(x,y) ,and(x,z))).

end-of-list.

The following is the proof from the OTTER output file:

2 [I
-GATE(xsumO,exor(xaO,exor(xbO,xcin))) I
-GATE (

xsuml,

exor (xal , exor (xbl , exor (and (xaO , xbO) , exor (ani

) I
-GATE (

xovf 1,
exor (

and(xaO,and(xal,xbO)),
exor (

and(xaO,and(xal,xcin)),
exor (

and(xaO,and(xbO,xbl)),
exor (

and(xaO,and(xbl,xcin)),
exor (

and xal, xbl

and (xbO

)
)

) I
TWO-BIT-ADDR(xaO,xal,xbO,xbl,xcin) .
4 [I
EQUAL(s(l),exor(bO,cin)).
6 [I
EQUAL (s (2) , exor (bl, s (3))) .
7 1 1
EQUAL(s(3),exor(s(4),~(5))).
8 [I
EQUAL(s(4) ,and(aO,bO)).

and

[xa, , xcin) , anc

xb1,xcin)))

39

9 [I
EQUAL
10 1 1
EQUAL
11 [I
EQUAL
13 [I
EQUAL
14 [I
EQUAL
15 [I
EQUAL
16 [I
EQUAL
17 [I
EQUAL
18 1 1
EQUAL
19 [I
EQUAL
20 [I
EQUAL
21 E l

s(5),exor(s(6),~(7))).

s(6) ,and(bO,cin)) .
s(7) ,and(aO,cin)) .

s (8) ,and(aO,s(9) 1) -
s(9) ,and(bO,al)) .

s(l0) ,exor(s(ll),s(l3))).

s(l1) ,and(aO,s(l2))).

s(12) ,and(bO,bl)).

s(13) ,exor(s(l4) ,s(16))).

s(14) ,and(aO,s(15))).

s(15) ,and(al,cin)).

EQUAL(s(lG),exor(s(l7) ,s(19))).
22 [I
EQUAL(s(l7),and(aO,s(l8))).
23 [I
EQUAL(s(l8) ,and(bl,cin)).

EQUAL(s(l9) ,exor(s(20) , s (2 2))) .
25 [I
EQUAL (s (20) , and (bo, s (21))) .
26 [I
EQUAL(s(21) ,and(al,cin)).
27 [I
EQUAL(s(22),exor(s(23),~(25))).
28 [I
EQUAL(s(23) ,and(bO,s(24))).
29 E l
EQUAL(s(24) ,and(bl,cin)).
30 [I
EQUAL(s(25) ,and(al,bl)).
31 [I
GATE(sumO,exor(aO,s(l)) 1 .
33 [I
GATE (suml, exor (al, s (2))) .

GATE(ovfl,exor(s(8) ,s(lO))).
59 11
-TWO-BIT-ADDR(xaO,xal,xbO,xbl,xcin).
60 [I
EQ(exor(x,y) ,exor(y,x)).
61 [I
EQ(exor(x,exor(y,z)) ,exor(y,exor(x,z))).
63 [I
EQ(and(x,y) ,and(y,x)).
64 [I
EQ(and(x,and(y,z)),and(y,and(x,z))).
68 [para-into,31.1.2.2,4.1.1]
GATE (sumo, exor (aO, exor (bo, cin))) .
69 [para~into,33.1.2.2,6.1.l,demod,60,611

24 [I

40 [I

40

GATE(suml,exor(s(3) ,exor(al,bl))) .
75 [para-into, 40.1.2.1,13.1.l,demod, 63,601
GATE(ovfl,exor(s(lO),and(s(9),aO))) -
93 [neg-hyper, 59,2 I
-GATE(x,exor(y,exor(z,u))) I
-GATE (v, exor (w, exor (v6, exor (and (y, z) , exor (and (y , u) , and (z , u)))))) 1
-GATE (

v7,
exor (

and(y,and(w, z)) ,
exor (

and(y,and(w,u)),
exor (

and(y,and(z,v6) 1 ,
exor (

and(y,and(v6,~)),

exor(and(w,v6),exor(and(w,and(z,u)),and(z,and(v6,u))))
1

)
)

1 -
94 [para~into,69.1.2.1,7.1~1,demod,61,60,61,60,61,61]
GATE (suml, exor (s (4) , exor (s (5) , exor (al, bl)))) .
96 [para-into,75.1.2.2.1,14.1.l,demod,63,63]
GATE(ovfl,exor(s(lO),and(aO,and(al,bO)))).
99 [para~into,96.1.2.1,15.l.l,demod,60,61,60]
GATE(ovfl,exor(s(ll),exor(s(l3),and(aO,and(al,bO))))).
100 [para~into,94.1.2.1,8.1.1,demod,61,61,60]
GATE(suml,exor(s(5),exor(al,exor(bl,and(aO,bO))))).
106 [para~into,100.1.2.1,9.1.1,demod,61,61,60,61,60,61,61,61,611
GATE(suml,exor(s(G) ,exor(s(7) ,exor(al,exor(bl,and(aO,bO))))) I .
109 [para- into,99.1.2.1,16. l ,demod,63,63,61]
GATE(ovfl,exor(s(l3),exor(and(s(l2),aO),and(aO,and(al,bO))))).
120 [para~into,106.1.2.1,10.1.1,demod,61,61,61,601
GATE(suml,exor(s(7),exor(al,exor(bl,exor(and(aO,bO),and(bO,cin)))))).
1 2 5 [para~into,109.1.2.2.l.l,l.7.1.l,demod,63,60]
GATE(ovfl,exor(s(l3),exor(and(aO,and(al,bO)),and(aO,and(bO,bl))))).
134 [para~into,l20.1.2.1,1l.l.l,demod,61,61,61]
GATE(suml,exor(al,exor(bl,exor(and(aO,b0),exor(and(aO,cin),and(bO,cin)))
1)) -
138 [para~~nto,125.1.2.1,18.1.1,demod,61,60,61,60,61,61]
GATE(ovfl,exor(s(l4),exor(s(l6),exor(and(aO,and(al,bO)),and(aO,and(bO,bl
1))))) -
1'70 [para~into,138.1.2.1,19.l.l,demod,63,61]
GATE (

ovf 1,

exor(s(l6),exor(and(s(l5),a0),exor(and(aO,and(al,bO)),and(aO,and(bO,bl))
1))
1 -
225 [para~into,170.1.2.2.1~1,20.l.l,demod,63,61]
GATE (

ovf 1,
exor (

s (161,

exor(and(aO,and(al,bO)),exor(and(aO,and(al,cin)),and(aO,and(bO,bl) 1))

1 -
)

41

280 [para_~nto,225.1.2.1,21.1.1,demod,61,61,60,61,60,61,61,61,61]
GATE (

ovf 1,
exor (

s (17),
exor (

s(19) I

exor (
and(aO,and(al,bO)),
exor(and(aO,and(al,cin)),and(aO,and(bO,bl)))

)
)

)
) .
449 [para_into,280.1.2.1,22.1.1,demod,63,61]
GATE (

ovf 1,
exor (

s (191,
exor (

and(s(l8) ,aO),
exor (

and(aO,and(al,bO)),
exor(and(aO,and(al,cin)),and(aO,and(bO,bl)))

1
)

1
1 -
701 [para~into,449.1.2.2.1.1,23.1.1,demod,63,61,61,60]
GATE (

ovf 1,
exor (

s (19) I
exor (

and(aO,and(al,bO)),
exor (

and(aO,and(al,cin)),
exor(and(aO,and(bO,bl)),and(aO,and(bl,cin)))

)

1
) .
956
[para_~nto,701.1.2.1,24.1.1,demod,61,61,61,60,61,60,61,61,61,61,61,61]
GATE (

ovf 1,
exor (

s (20) I
exor (

s (2 2) I

exor (
and(aO,and(al,bO)),
exor (

and(aO,and(al,cin)),
exor(and(aO,and(bO,bl)),and(aO,and(bl,cin)))

1
1 -
1397 [para-into,956.1.2.1,25.l.l,demod,63,61]

W

rl
W

rl
W

h

h

h

h -
h

rl
W

rl
W

r-i
W

0
v)

a
d a

rl
W

rl
W

rl
W

*
W

m
W

0
Q
v

rl
Q
Y

a
5

a c a
0
W

rl

rl
a -

rl
W

rl
W

rl
w
rl
W

Y

a
5
h

d
-4
V

- 4
- Q . rl- - Q a - - e c o a

- a a
rl c - a ma - e

. .

-rl u e.0'

a :.!? 5 - k

Y

- a 0
0 d X a - a a l
- k a 0
d X - a @

k
0

h

8

0
id
v

rl
a
v

W

0
W a

5
h

h

r-i
Q

a
5

a
2
a"

a
0

a $
rl

rl

0
m
rl

N

N

rl

P
N
r-i

h N

0
c,

r n k d
.rl

N O - x I
Id
k . - m a l a d k

- 0 a l
c o w
c o E i

4
- N w

e-

h

a w o > x
Y

h

h

h e
.rl
u

0

%I
Y

rl

a
5

rl
h

h

0 a
rl a
a c
id
0
a

v

v

rl
rb
Y

h

c
-4

W
N

rl

rl

h

0
Q 0

id h

0
Q
rl a
a
d a

a
a c a

v

0

v

V a
5 rl

a rl a
Y

a c a
v

rl

0
a
v

v

a
d a

a
d a

N

0
Q

k
0

3
a
5 0

id
0 a k

0 z
P
cn
m
rl

0 u
d

-4
I a

k a
D.
u

rn
W
rl

m

Y

a
5

-
a
5

a
- 5
8
k
0

v h h

m
N

k
0

3
k
0

$
a
5

m
m
W
r-i

0
cl c
.rl

I

h v

k
0

3
k
0
X
al

k
0 z

N
N

v)

v

m
c\1

m
v

v .-
d k w o > x o a l

.-
d k
w o
> X o a l

d
W >
0

k
0

8 Y

w e
8

v

w
Ei
4 w

a'
k a a
Y

v

P
N
rl
N

w e
$

43

and(aO,and(al,bO)) ,
exor (

and(aO,and(al,cin)),
exor (

and(aO,and(bO,bl)),
exor (

and(aO,and(bl,cin)),
exor(and(al,bl),and(al,and(bO,cin)))

)

1
I .
2527 [para-into,2388.1.2.1,28.1.l,demod,63]
GATE (

ovf 1,
exor (

and(s (24) ,bo),
exor (

and(aO,and(al,bO)) ,
exor (

and(aO,and(al,cin)),
exor (

and(aO,and(bO,bl)) ,
exor (

and(aO,and(bl,cin)),
exor(and(al,bl),and(al,and(bO,cin)))

1

)
1

) -
2658 [para~~nto,2527.1.2.1.1,29.1.1,demod,63,61,61,61,61,61,60]
GATE (

ovf 1,
exor (

and(aO,and(al,bO)) ,
exor (

and(aO,and(al,cin)),
exor (

and(aO,and(bO,bl)),
exor (

and(aO,and(bl,cin)),
exor (

and(al,bl),
exor(and(al,and(bO,cin)),and(bO,and(bl,cin)))

1

)
) -
2866 [ur, 93,134,26581
-GATE (x, exor (a0 , exor (bo, cin))) .
2867 [binary, 2866.1,68.1]

44

B.2 DEMONSTRATING THAT FIGURE 11 IS AN INSTANCE
OF 'THE 2-BIT ADDER SPECIFICATION

The following is the input file for this example:

% inference rules
set (neg-hyper-res) .
set (ur-res) .
set (unit-deletion) .
set (para-into) .
clear (para-from-right) .
% search
set (prettysrint) .
set(input-sos-first) .
% processing limits
assign (max-mem, 96000) .
assign (max-weight, 99) .
% printing
clear (print-kept) .
% lexical ordering -- exor must be last for the canonicalization
strategy
lex([s(x),aO,bO,al,bl,cin,sumO,suml,ovfl,and(x,y),exor(x,y)]).

weight-list(pick-and_purge).

weight (s ($1), 0) .
% special interest in the output signals
weight(GATE(ovfl,$(l)),-10).
weight(GATE(sumO,$(l)),-10) .
weight(GATE(suml,$(l)),-10) .

% it suffices to consider the original "labels" for the gates
weight (GATE(and($ (l), $ (1) 1 , $ (1) 1 ,999) .
weight (GATE (exor ($ (1) , $ (1)) , $ (1)) , 9 9 9) .

end-of-list.

l is t (usable).

EQ (x, x) .
% The following is the specification for a 2-bit adder

-GATE(xsumO,exor(xaO,exor(xbO,xcin))) I
.-GATE (xsuml ,

exor (xal ,
exor (xbl ,

exor (and (xaO , xbO) ,
exor(and(xa0,xcin) ,

45

and(xb0,xci.n)))))) I
-GATE(XOVfl,

exor(and(xaO,and(xal,xbO)),
exor(and(xaO,and(xal,xcin)),

exor(and(xaO,and(xbO,xbl)) ,
exor(and(xaO,and(xbl,xcin)),

exor (and (xal, xbl) ,
exor(and(xal,and(xbO,xcin)),

and(xbO,and(xbl,xcin))))))))) I
TWO-BIT-ADDR(xaO,xal,xbO,xbl,xcin) .

end-of-list

list (usable)

% A Second version of the Netlist for Figure 11 -- paramodulating
% from these equality units into a GATE literal expands the

% for a gate's functionality
expression

EQUAL(s(1) ,and(bl,cin)).
EQUAL(s(2) ,and(bO,cin)).
EQUAL (s (3) ,and (bo, s (1))) .
EQUAL(s(4) ,and(al,s(2))).
EQUAL(s(5),exor(s(3),~(4))).
EQUAL(s(6),and(al,bl)).
EQUAL(s(7),exor(s(5),~(6))).
EQUAL(s(8) ,and(bl,cin)) .
EQUAL(s(9) ,and(aO,s(8))).
EQUAL(s(l0) ,exor(s(7) ,s(9))).
EQUAL(s(l1) ,and(bO,bl)) .
EQUAL (s (12) , and (aO, s (11))) .
EQUAL(s(l3) ,and(al,cin)).
EQUAL(s(l4),exor(s(lO) ,s(12))) -
EQUAL(s(l5) ,and(aO,s(13))).
EQUAL (s (16) , exor (s (14) , s (15))) -
EQUAL (s (17) , and(a1, bo)) .
EQUAL (s (18) ,and (aO, s (17))) .
EQUAL (ovf 1, exor (s (16) , s (18))) .
EQUAL (ss (01) , exor (bo, cin)) .
EQUAL (sumo, exor (aO, ss (01))) .
EQUAL(ss(l1) ,and(bO,cin)).
EQUAL(ss(l2),and(aO,cin)).
EQUAL(ss(l3) ,exor(ss(ll) ,ss(12))).
EQUAL(ss(l4) ,and(aO,bO)) .
EQUAL (ss (15) , exor (ss (13) , ss (14))) .
EQUAL (ss (16) , exor (bl , ss (15))) .
EQUAL (suml, exor (al, ss (16))) .

end-of-list.

list (sos) .
% The gate-level netlist description of Figure 11

GATE(s(1) ,and(bl,cin)).
GATE(s(2),and(bO,cin)).
GATE(s(3) ,and(bO,s(l))) .
GATE(s(4) ,and(al,s(2))).
GATE(s(5),exor(s(3),~(4))).
GATE(s(6) ,and(al,bl)) .

46

GATE(s(7) ,exor(s(5) ,s(6))).
GATE(s(8),and(bl,cin)).
GATE(s(9) ,and(aO,s(8))).
GATE(s(l0) ,exor(s(7) , s (9))) .
GATE(s(l1) ,and(bO,bl)) -
GATE(s(l2),and(aO,s(ll))).
GATE(s(l3) ,and(al,cin)) .
GATE(s(l4),exor(s(lO),s(l2))).
GATE (s (1 5) , and (a 0 , s (13))) .
GATE(s(l6),exor(s(l4),~(15)))-
GATE(s(l7),and(al,bO)).
GATE (s (18) , and (a0 , s (17))) .
GATE (ovfl, exor (s (16) , s (18))) .
GATE (s s (01) , exor (bo, cin)) .
GATE(sumO,exor(aO,ss(Ol))) .
GATE(ss(ll),and(bO,cin)) .
GATE(ss(l2),and(aO,cin))-
GATE(ss(l3),exor(ss(ll),ss(l2))).
GATE(ss(l4) ,and(aO,bO)).
GATE(ss(l5),exor(ss(l3),ss(l4))).
GATE (s s (16) , exor (bl, ss (15))) -
GATE (suml, exor (al, ss (16))) .

% denial of theorem

end-of-list.

list (demodulators) .
% canonicalize exor with respect to commutativity and associativity

EQ(exor(x,exor(y,z)) ,exor(y,exor(x,z))) .
EQ(exor(exor(x,y),z),exor(x,exor(y,z))).

EQ(exor(x,y) ,exor(y,x) 1 .

% distribute and over exor
EQ(and(x,exor(y,z)),exor(and(x,y),and(x,z))) .
EQ(and(exor(y,z),x),exor(and(x,y),and(x,z))) .

end-of-list.

The following is the proof excerpted from the OTTER output file:

2 [I
-GATE(xsumO,exor(xaO,exor(xbO,xcin))) I
-GATE (

xsuml ,

exor(xal,exor(xbl,exor(and(xaO,xbO),exor(and(xaO,xcin),and(xbO,xcin) 1)))
) I
-GATE (

xovf 1,
exor (

47

and(xaO,and(xal,xbO)),
exor (

and(xaO,and(xal,xcin)),
exor (

and(xaO,and(xbO,xbl)),
exor (

and(xaO,and(xbl,xcin)),
exor (

and (xal , xbl) ,

exor(and(xal,and(xbO,xcin)),and(xbO,and(xbl,xcin)))
1

1
1

)
1

) I
TWO-BIT-ADDR(xaO,xal,xbO,xbl,xcin).
3 [I
EQUAL(s(1) ,and(bl,cin)) -
4 [I
EQUAL(s(2) ,and(bO,cin)) -
5 [I
EQUAL(s(3) ,and(bO,s(l))).
6 [I
EQUAL(s(4) ,and(al,s(2))).
7 [I
EQUAL(s(5) ,exor(s(3) ,s(4))).
8 [I
EQUAL(s(6) ,and(al,bl)).
9 [I
EQUAL(s(7) ,exor(s(5) ,s(6))).
10 [I
EQUAL(s(8) ,and(bl,cin)).
11 [I
EQUAL(s(9) ,and(aO,s(8))).
12 [I
EQUAL(s(lO),exor(s(7) ,s(9))).
13 [I
EQUAL(s(l1) ,and(bO,bl)).
14 [I
EQUAL (s (12) , and (a0 , s (11))) .
15 [I
EQUAL(s(l3) ,and(al,cin)) .
16 [I
EQUAL(s(l4),exor(s(lO) ,s(12))).
17 [I
EQUAL (s (15) , and (a0 , s (13))) .
18 [I
EQUAL(s(l6),exor(s(l4) ,s(15))).
19 [I
EQUAL(s(l7) ,and(al,bO)).
20 1 1
EQUAL (s (18) ,and (aO, s (17))) .
22 1 1
EQUAL (ss (0 1) , exor (bo, cin)) .
EQUAL(ss(l1) ,and(bO,cin)).
25 [I
EQUAL(ss(l2) ,and(aO,cin)) .
26 11

24 [I

48

EQUAL(ss(l3) ,exor(ss(ll) ,ss(12))).
27 E l
EQUAL (ss (14) , and (a0 , bO)) .
28 11
EQUAL(ss(l5) ,exor(ss(l3) ,ss(14))).
29 [I
EQUAL (s s (16) , exor (bl , ss (15))) .
49 [I
GATE(ovfl,exor(s(16) ,s(18))).
51 [I
GATE (sumo, exor (aO, ss (01))) .
58 [I
GATE(suml,exor(al,ss(l6))).
59 [I
-TWO-BIT-ADDR(xaO,xal,xbO,xbl,xcin) .
60 [I
EQ(exor(x,y) ,exor(y,x) 1 .
61 [I
EQ(exor(x,exor(y,z)) ,exor(y,exor(x,z))) .
63 [I
EQ(and(x,y),and(y,x)).
64 [I
EQ(and(x,and(y,z)),and(y,and(x,z))).
85 [para-into,49.1.2.2,20.l.l,demod,631
GATE(ovfl,exor(s(lG) ,and(s(l7) ,aO))).
86 [para-into,51.1.2.2,22.1.1]
GATE(sumO,exor(aO,exor(bO,cin))) .
92 [para-into,58.1.2.2,29.1.1]
GATE (suml, exor (al, exor (bl, ss (15)))) .
93 [neg_hyper,59,21
-~~~~(~,exor(y,exor(z,u))) I
-GATE(v,exor(w,exor(v6,exor(and(y,z),exor(and(y,u),and(z,u)))))) I
-GATE (

v7 I

exor (
and(y,and(w,z)),
exor (

and(y,and(w,u)),
exor (

and(y,and(z,v6) 1 ,
exor (

and(y,and(v6,u)),

)
1

1 -
94 [para-into,92.1.2.2.2,28.1.1]
GATE(suml,exor(al,exor(bl,exor(ss(l3),~~(14))))).
96 [para-into,85.1.2.2.1,19.1.l,demod,63,63]
GATE(ovfl,exor(s(l6),and(aO,and(bO,al)))).
99 [para~into,96.1.2.1,18.l.l,demod,60,61,60]
GATE (ovf 1, exor (s (14) , exor (s (15) , and (aO, and (bo, al))))) .
101 [para-into,94.1.2.2.2.2,27.1.l,demod,60]
GATE(suml,exor(al,exor(bl,exor(and(aO,b0),~~(13))))).
106 [para~into,101.1.2.2.2.2,26.1.1]
GATE(suml,exor(al,exor(bl,exor(and(aO,bO) ,exor(ss(ll) ,ss(12)))))).
110 [para-into,99.1.2.2.1,17.1.l,demod,63]
GATE(ovfl,exor(s(14) ,exor(and(s(l3) ,aO) ,and(aO,and(bO,al)) 1) 1 .

49

120 [para-into,106.1.2.2.2.2.1,24.1.1]
GATE(suml,exor(al,exor(bl,exor(and(aO,b0),exor(and(bO,cin),ss(l2)))))).
125 [para~into,110.1.2.2.1.1,15.1.1,demod,63,60]
GATE(ovfl,exor(s(l4),exor(and(aO,and(bO,al)),and(aO,and(al,c~n))))).
134 [para-into,120.1.2.2.2.2.2,25.1.l,demod,60]
GATE(suml,exor(al,exor(bl,exor(and(aO,bO),exor(and(aO,c~n),and(bO,c~n)))
)) I .
138 [para-into,l25.1.2.1,16.l.l,demod, 61,60,61,60,61,61]
GATE(ovfl,exor(s(lO),exor(s(l2),exor(and(aO,and(bO,al)),and(aO,and(al,ci

171 [para-into,138.1.2.2.1,14.1.1,demod,63]
GATE (

n)))))).

ovf 1,
exor (

s (10) #

exor(and(s(ll),a0),exor(and(aO,and(bO,al)),and(aO,and(al,cin))))
)

1 .
224 [para~into,171.1.2.2.1.1,13.1.l,demod,63,61]
GATE (

ovf 1,
exor (

s (10) I

exor(and(aO,and(bO,al)),exor(and(aO,and(bO,bl)),and~aO,and(al,cin))))

1 -
284 [para~into,224.1.2.1,12.1.1,demod,61,61,60,61,60,61,61,61,61]
GATE (

)

ovf 1,
exor (

s(7) I
exor (

s (9) I

exor (
and(aO,and(bO,al)),
exor(and(aO,and(bO,bl)),and(aO,and(al,cin)))

1
1

1
) *
443 [para-into,284.1.2.2.l,ll.l.l,demod,63]
GATE (

ovf 1,
exor (

s (7) I
exor (

and(s(8) ,aO),
exor (

and(aO,and(bO,al)),
exor(and(aO,and(bO,bl)),and(aO,and(al,cin)))

)
)

1
) -
670 [para~into,443.1.2.2.1.1,10.1.1,demod,63,61,61,601
GATE (

ovf 1,
exor (

s(7) I

exor (

50

and(aO,and(bO,al)) ,
exor (

and(aO,and(bO,bl)),
exor(and(aO,and(al,cin)),and(aO,and(bl,cin)))

)
)

) -
884
[para_~nto,670.1.2.1,9.1.1,demod,61,61,61,60,61,60,61,61,61,61,61,61]
GATE (

ovf 1,
exor (

s (5) I
exor (

s(6),
exor (

and(aO,and(bO,al)),
exor (

and(aO,and(bO,bl)),
exor(and(aO,and(al,cin)),and(aO,and(bl,cin)))

)
1

1
1

) .
1307
GATE (

[para-into, 884.1.2.2 .l, 8.l.l,demod, 61,61,61,60]

ovf 1,
exor (

s (5) I
exor (

and(aO,and(bO,al)),
exor (

and(aO,and(bO,bl)),

exor(and(aO,and(al,cin)),exor(and(aO,and(bl,cin)),and(al,bl)))
)

)

1 -
1617
[para_~nto,1307.1.2.1,7.1.1,demod,61,61,61,61,60,61,60,61,61,61,61,61,61
,61,611
GATE (

ovf 1,
exor (

s (3) ,
exor (

s(4) I
exor (

and(aO,and(bO,al)),
exor (

and(aO,and(bO,bl)),
exor (

and(aO,and(al,cin)),
exor(and(aO,and(bl,cin)),and(al,bl))

)

51

)
) -
2046 [para~into,l617.1.2.1,5.l.l,demod,63,61]
GATE (

ovf 1,
exor (

s(41 I

exor (
and(s(1) ,bo),
exor (

and(aO,and(bO,al)),
exor (

and(aO,and(bO,bl)),
exor (

and(aO,and(al,cin)),
exor(and(aO,and(bl,cin)),and(al,bl))

1
1

1
)

1
) .
2291 [para~into,2046.1.2.2.1.1,3.1.1,demod,63,61,61,61,61]
GATE (

ovf 1,
exor (

s(4) r

exor (
and(aO,and(bO,al)),
exor (

and(aO,and(bO,bl)),
exor (

and(aO,and(al,cin)),
exor (

and(aO,and(bl,cin)),
exor (and (bo, and (bl, cin)) , and (al, bl))

1
)

)
)

1
1 .
2422 [pa ra - in to ,2291 .1 .2 .1 ,6 . l , demod ,63]
GATE (

ovf 1,
exor (

and(s (2) ,al),
exor (

and(aO,and(bO,al)),
exor (

and(aO,and(bO,bl)),
exor (

and(aO,and(al,cin)),
exor (

and(aO,and(bl,cin)),
exor (and(b0, and(b1, cin)) , and(a1, bl))

1
)

)
)

1

52

1 .
2549 [para~into,2422.1.2.1.1,4.1.1,demod,63,64,61,61,61,611
GATE (

ovf 1,
exor (

and(aO,and(bO,al)),
exor (

and(aO,and(bO,bl)) ,
exor (

and(aO,and(al,cin)),
exor (

and(aO,and(bl,cin)),
exor (

and(bO,and(al,cin)),
exor(and(bO,and(bl,cin)) ,and(al,bl))

1

)
1

) .
2747 [ur,93,86,134,dernod,63,64,61,60,611
-GATE (

X ,
exor (

and(aO,and(bO,al)),
exor (

and(aO,and(bO,bl)),
exor (

and(aO,and(al,cin)),
exor (

and(aO,and(bl,cin)),
exor (

and(bO,and(al,cin)),
exor(and(bO,and(bl,cin)),and(al,bl))

)

53

APPENDIX C:

EQUIVALENCE OF FIGURE 2 AND FIGURE 4

Appendix A demonstrates how rewrite rules transform a gate-level netlist - expressed as
a set of GATE(. . .) clauses - into logical expressions for the outputs of a 2-bit adder. These
logical expressions were in an exor/and canonical form based on the default OTTER lexical
order. This appendix builds on the Appendix A approach by illustrating how OTTER
demonstrates the equivalence of the circuits depicted in Figures 2 and 4 of the report.

C.l. EQUIVALENCE OF FIGURE 2 AND FIGURE 4 USING REWRITE RULES

The following statements indicate that the two libraries described in Appendix A
(i.e., translate. l i b and canonicalize. lib), will be included:

- _ _ _ _ Otter 3.0.3k, July 1995

include ("translate. lib") .
include ("canonicalize.lib") .
set(sos-queue) .

list (demodulators) .

The following is a gate-level description of the circuit depicted in Figure 4 of the report:

37 [I
38 [I
39 [I
40 [I
41 [I
42 [I
43 [I
44 [I
45 [I
46 [I
47 [I
48 [I
49 [I
50 [I
51 [I
52 [I
53 [I
54 [I
55 11
56 [I
57 [I
58 [I
59 [I
60 [I
61 [I
62 [I

EQUAL(sl,and(bl,cin)) .
EQUAL(s2,and(bO,sl)).
EQUAL(s3,and(aO,sl)).
EQUAL(s4,and(bO,bl)).
EQUAL(sS,and(aO,s4)).
EQUAL (s6, exor (s2, s3)) .
EQUAL(s7,exor(s5,~6)).
EQUAL(s8,and(cin,al)) .
EQUAL(sg,and(al,bO)).
EQUAL (s10, and (bo, s8)) .
EQUAL(sll,and(aO,s8)) .
EQUAL (s 12, and (a0 , s9)) .
EQUAL(sl3,exor(slO,sll)).
EQUAL(sl4,exor(sl2,~13)).
EQUAL(slS,exor(s7,~14)).
EQUAL(slG,and(al,bl)) .
EQUAL(oflow,exor(sl5,sl6)) .
EQUAL(ssOl,exor(bO,cin)) .
EQUAL(smO,exor(aO,ssOl)) .
EQUAL (ssll, and(b0, cin)) .
EQUAL(ssl2,and(aO,cin)) .
EQUAL(ssl3,exor(ssll,ssl2)).
EQUAL(ss14,and(aO,bO)) .
EQUAL (ss15, exor (ss13, ss14)) .
EQUAL(ssl6,exor(bl,ssl5))~
EQUAL (sml, exor (al, ss16)) .

54

The following is a gate-level description of the circuit depicted in Figure 2 of the report:

63 [3 EQUAL (s (1) ,nand (aO, bo)) .
64 [I EQUAL(s(2) ,nand(aO,s(l))).
65 [I EQUAL(s(3) ,nand(s(l
66 [I EQUAL(s(4) ,nand(s(2
67 [I EQUAL(s(5) ,nand(s(4
68 [I EQUAL(s(6) ,nand(s(4
69 [I EQUAL(s(7) ,nand(s(5
70 [I EQUAL(s(8) ,nand(s(5
71 [I EQUAL(s(l0) ,nand(al
72 [I EQUAL(s(l1) ,nand(al,s(lO))) .
73 [I EQUAL(s(l2) ,nand(s(lO) ,bl)).
74 [I EQUAL(s(l3) ,nand(s(ll) ,s(12))).
75 [I EQUAL(s(l4) ,nand(s(l3) ,s(8) 1) .
76 [I EQUAL(s(l5),nand(s(l3),~(14))).
77 E 3 EQUAL(s(l6) ,nand(s(l4) ,s(8) 1) .
7 8 [3 EQUAL (sumo, nand
7 9 [] EQUAL (sum1 , nand
8 0 [3 EQUAL (ovf 1, nand
end-of-list.

list (s o s) .

Our approach for this demonstration will be to state that one circuit is a 2-bit adder:

81 [] TWO-BIT-ADDER (smO , sml , of low) .

and that .the other is not. If the two circuits are equivalent, on the basis of the rules described in
translate. lib and canonicalize. lib, OTTER will find a conflict. Specifically, if
both circuits are instances of a 2-bit adder, a contradiction exists, and this constitutes a proof that
both circuits are 2-bit adders.

82 [I -TWO-BIT-ADDER(sumO,suml,ovfl).
end-of-list.
lex dependent demodulator: 26 [] exor (x, y) =exor (y, x) .
lex dependent demodulator: 27 [I exor (y, exor (x, z)) =exor (x, exor (y, z)) .
lex dependent demodulator: 34 [I and(x,y)=and(y,x) .
lex dependent demodulator: 35 [I and(y,and(x,z))=and(x,and(y,z)).

Srarting on level 1, last kept clause of level 0 is 82.

given clause #1: (wt=4) 81 [I TWO-BIT-ADDER(smO,sml,oflow).
' KEPT (pick-wt=6O) : 83 [81, demod]
TWO~BIT~ADDER(exor(aO,exor(bO,c~n)),exor(al,exor(bl,exor(and(aO,bO),exor
(and(aO,cin),and(bO,cin))))),exor(and(aO,and(al,bO)),exor(and(aO,and(al,
cin)),exor(and(aO,and(bO,bl)),exor(and(aO,and(bl,cin)),exor(and(al,bl),e
xor(and(al,and(bO,cin)),and(bO,and(bl,cin))))))))) .

given clause #2: (wt=4) 82 [I -TWO-BIT-ADDER(sumO,suml,ovfl).

55

* * KEPT (pick-wt=60) : 84 [82,demod] -
TWO-BIT-ADDER(exor(aO,exor(bO,cin)),exor(al,exor(bl,exor(and(aO,bO),exor
(and(aO,cin),and(bO,cin))))),exor(and(aO,and(al,bO)),exor(and(aO,and(al,
cinl),exor(and(aO,and(bO,bl)),exor(and(aO,and(bl,cin)),exor(and(al,bl),e
xor(and(al,and(bO,cin)),and(bO,and(bl,cin))))))))).

_ _ _ _ > UNIT CONFLICT at 0.29 sec ----> 85 [binary,84.1,83.1] $F.

Length of proof is 2. Level of proof is 1.

The following is a summary of the OTTER proof

81 [I TWO-BIT-ADDER(smO,sml,oflow) .
82 [I -TWO-BIT-ADDER(sumO,suml,ovfl).
83 81, demodl
TWO~BIT~ADDER(exor(aO,exor(bO,c~n)),exor(al,exor(bl,exor(and(aO,bO),exor
(and(aO,cin),and(bO,cin))))),exor(and(aO,and(al,bO)),exor(and(aO,and(al,
cin) l,exor(and(aO,and(bO,bl)),exor(and(aO,and(bl,cin)),exor(and(al,bl),e
xor(and(al,and(bO,cin)),and(bO,and(bl,cin))))))))) .
84 L82,demodI -
TWO-BIT-ADDER(exor(aO,exor(bO,cin)),exor(al,exor(bl,exor(and(aO,bO),exor
(and(aO,cin),and(bO,cin))))),exor(and(aO,and(al,bO)),exor(and(aO,and(al,
cinl),exor(and(aO,and(bO,bl)),exor(and(aO,and(bl,cin)),exor(and(al,bl),e
xor(and(al,and(bO,cin)),and(bO,and(bl,cin))))))))).
85 [binary, 84.1,83.1] $F.

Search stopped by max_proofs option.

However, this approach is of limited use with regard to reverse engineering. The problem
is that both circuits, as described in the GATE(...) cIauses, have identical input signal names.
This situation raises two issues:

1. OTTER assumes a lexical order based on the appearance of terms in its input
file. The identical signal names in conjunction with this order simplifies
processing.

2. The gate-level netlists that are the subject of a reverse engineering analysis
will have inputs with randomly ordered input signal names.

Thus, the above proof is propitious and, unfortunately, inappropriate for our application. The
next section demonstrates an improved approach.

56

C.2. EQUIVALENCE OF FIGURE 4 AND FIGURE 7

One way to identify the functional equivalence between two circuits is to specify the
functionality of the circuits and show that both instances of circuits imply that specification. This
approach is illustrated by using Figure 4 as an example. Recall that Figure 4 depicts an
implementation of a 2-bit adder using exor/and gates. Figure 7 depicts an expression
describing part of the functionality of a full 2-bit adder. This section of Appendix C describes
how OTTER proves the implication that Figure 4 is an implementation of the specification
described by Figure 7.

The following information is excerpted from the actual OTTER input file. In this
example, the set of inference rules being used differs from that used in the previous example.
These rules (in conjunction with weighting and lexical ordering) intuitively direct OTTER in
search of the desired proof. An explanation of these inference rules is beyond the scope of this
report; see McCune (1994) for further information.

A further distinctive feature of this approach is that it removes dependence on lexical
order. To illustrate this change, the inputs to the netlist have been arbitrarily assigned.
Specifically, the inputs are randomly assigned the names io-i4, and there is no correlation
between this assignment and the previously assigned names of a0 , a1 , bo, bl, and cin.

% inference rules
set (neg-hyper-res) -
set (ur-res) .
set (unit-deletion) .
set (para-into) .
clear(para-from-right) .
set (demod-inf) .
set (dynamic-demod) .
% search
set(input-sos-first) .

% processing limits
assign(max-mem, 96000).
assign(max-weight, 99) .

% printing
clear (print-kept) .

% lexical ordering -- exor must be last for the canonicalization
strategy
lex([s(x),i0,il,i2,i3,i4,sumO,suml,ovfl,and(x,y),exor(x,y)l) .

weight-list(pick-and_purge)

weight(s(S1) , 0) .
% special interest in the output signals
weight (GATE (ovf 1, $ (1)) , -10) .
weight(GATE(sumO,$(l)) ,-lo).
weight(GATE(suml,$(l)),-lO).

57

% it suffices to consider the original "labels" for the gates
weight(GATE(and($(1),$(1)),$(1)),999).
weight (GATE(ex0r ($ (1) , $ (1) 1 , $ (1) 1 , 9 9 9) .

end-of-list.

list (usable) .

EQ (x,x) .
% specify the functionality of a 2-bit adder

-GATE(xsumO,exor(xaO,exor(xbO,xcin))) I
-GATE (xsuml ,

exor (xal ,
exor (xbl ,

exor (and(xa0,xbO) ,
exor(and(xaO,xcin),

and(xb0,xcin)))))) I
-GATE (xovf 1,

exor(and(xaO,and(xal,xbO)) ,
exor(and(xaO,and(xal,xcin)),

exor(and(xaO,and(xbO,xbl)),
exor(and(xaO,and(xbl,xcin)),

exor (and(xa1,xbl) ,
exor(and(xal,and(xbO,xcin)),

and(xbO,and(xbl,xcin))))))))) I
TWO-BIT-ADDR(xaO,xal,xbO,xbl,xcin) .

end-of-list.

The following is a description of the circuit depicted in Figure 4. This description is
repeated in the set of support list, substituting GATE for EQ. The combination of these two
descriptions allows OTTER to rewrite atoms as necessary to prove that the circuit as described
by a netlist implements the functions specified above.

list (usable) .
EQ(sumO,exor(s(3) ,il)).
EQ(s(1) ,and(i4,il)).
EQ(s(2) ,and(i2,i4)).
EQ(s(3) ,exor(i2,i4)).
EQ(s(4),and(i2,il)).
EQ(s(5) ,exor(s(l) ,s(2)) 1 .
EQ(s(6) ,exor(s(4) , s (5)) 1 .
EQ(s(7) ,and(i3,s(6))).
EQ(s(8) ,and(iO,i3)).
EQ(s(9) ,exor(iO,i3)).
EQ(s(l0) ,and(s(6) ,io)).
EQ(s(ll),exor(s(7) , s (8))) .
EQ(surnl,exor(s(G),s(9))).
EQ(ovfl,exor(s(lO) ,s(ll))).

end-of-list.

list (s o s) .

The next set of clauses describe the gate-level netlist.
GATE (sumo, exor (s (3) , il)) .

GATE(s(1) ,and(i4,il)).
GATE(s(2) ,and(i2,i4) 1 .
GATE(s(3) ,exor(i2,i4)).
GATE(s(4) ,and(i2,il)).
GATE(s(5) ,exor(s(l) , s (2))) .
GATE(s(6),exor(s(4),~(5))).
GATE (s (7) ,and (i3, s (6))) .
GATE(s(8) ,and(iO,i3) 1 .
GATE(s(9) ,exor(iO,i3)).
GATE(s(lO),and(s(6),iO)).
GATE(s(ll),exor(s(7),~(8))).
GATE(suml,exor(s(6) ,s(9))).
GATE(ovfl,exor(s(lO) ,s(ll))) .

The following denial is used to state that the circuit as described by the gate-level netlist
does not implement the functionality described for a TWOBlT-ADDR with five input signals
(xaO,xal,xbO,xbl,xcin) .

% denial of theorem
-TWO-BIT-ADDR (xaO , xal , xb0, xbl , xc in) .
end-of-list.
list(demodu1ators).

The first set of demodulators (called rewrite rules in the report; demodulators are
OTTER’S way of applying rewrite rules) ensures that a canonical form is maintained within the
OTTER environment (recall that this form is relative to the lex list noted at the beginning of
Appendix B). Without a canonical form and a lexlist, OTTER would be unable to efficiently
perform the required processing.

% canonicalize exor with respect to commutativity and associativity
EQ(exor(x,y) ,exor(y,x) 1 .
EQ(exor (x, exor (y, z)) , exor (y, exor (x, z))) .
EQ(exor(exor(x,y) ,z) ,exor(x,exor(y,z))).

% canonicalize and with respect to commutativity and associativity
EQ(and(x,y) ,and(y,x)).
EQ(and(x,and(y,z)),and(y,and(x,z))).
EQ(and(and(x,y) , z) ,and(x,and(y,z) 1) .

% distribute and over exor
EQ(and(x,exor(y,z)),exor(and(x,y),and(x,z))).
EQ(and(exor(y,z),x) ,exor(and(x,y),and[x,z))).

The following is an outline of the proof generated by OTTER.

PROOF _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1’7 11
-GATE(xsumO,exor(xaO,exor(xbO,xcin))) I
-GATE (

xsuml ,

exor(xal,exor(xbl,exor(and(xaO,xbO),exor(and(xaO,xcin),and(xbO,xcin) 1)))
) I
-GATE (

xovf 1,
exor (

59

and(xaO,and(xal,xbO)) ,
exor (

and(xaO,and(xal,xcin)) ,
exor (

and(xaO,and(xbO,xbl)) ,
exor (

and(xaO,and(xbl,xcin)),
exor (

and(xal,xbl),

exor(and(xal,and(xbO,xcin)),and(xbO,and(xbl,xcin)))
1

1
1

1
1

) I
TWO-BIT-ADDR(xaO,xal,xbO,xbl,xcin) .
19 [I
EQ(s(1) ,and(i4,il)).
20 [I
EQ(s(2) ,and(i2,i4)).
21 [I
EQ(s(3) ,exor(i2,i4)).
22 [I
EQ(s(4) ,and(i2,il)).
23 [I
EQ(s(5),exor(s(l),s(2))) -
24 [I
EQ(s(6) ,exor(s(4) ,s(5) 1) -
25 [I
EQ(s(7),and(i3,~(6))).
26 [I
EQ(s(8) ,and(iO,i3)).
27 [I

EQ(s(l0) ,and(s(6) ,io)).
29 [I

GATE (sumo, exor (s (3) , il)) .
44 [I
GATE(suml,exor(s(6) ,s(9)) 1 .
45 [I
GATE (ov f 1 , exor (s (1 0) , s (1 1))) .
46 [I
-TWO-BIT-ADDR(xaO,xal,xbO,xbl,xcin) .
5 5 [para-into,32.1.2.1,2l.l.l,demod]

On the basis of weighting, OTTER, when selecting which clause to process next, will
concentrate its search on clauses that match the structure indicated by the following three clauses:

GATE(sumO,exor(il,exor(i2,i4))).
68 [para-into,44.1.2.2,27.1.1]
GATE (suml, exor (s (6) , exor (io, $3))) .
69 [para-into,45.1.2.1,28.l.l,demod]
GATE(ovfl,exor(s(ll),and(s(6),iO))).
71 [neg-hyper, 46,171
-GATE (x, exor (y , exor (z, u))) I

60

-GATE(v,exor(w,exor(v6,exor(and(y,z),exor(and(y,u),and(z,u)))))) I
-GATE (

v7 t
exor (

and(y,and(w,z) 1 ,
exor (

and(y,and(w,u) 1 ,
exor (

and(y,and(z,v6)),
exor (

and(ytand(v6,u) 1 ,

exor(and(w,v6),exor(and(w,and(z,u)),and(z,and(v6,~))))
1

1
1

1
I -
72 [para~into,68.1.2.1,24.l.l,demod]
GATE (suml, exor (s (4) , exor (s (5) , exor (io, i3)))) .
74 [para~into,69.1.2.2.1,24.l.l,demodI
GATE(ovfl,exor(s(ll) ,exor(and(s(4) ,io) ,and(s(5) ,io) 1)) .
79 [para-into,72.1.2.1,22.l.l,demod]
GATE(suml,exor(s(S),exor(iO,exor(i3,and(il,i2))))).
87 [para~into,79.1.2.1,23.l.l,demodl
GATE (suml, exor (s (1) , exor (s (2) , exor (io, exor (i3, and (il, i2)))))) .
93 [para~into,74.1.2.2.1.1,22.1.l,demodl
GATE(ovfl,exor(s(ll),exor(and(s(5),iO),and(iO,and(il,~2))))) .
102 [p a r a ~ ~ n t o , 8 7 . 1 . 2 . 1 , 1 9 . l , d e m o d]
GATE (suml, exor (s (2) , exor (io, exor (i3, exor (and (il , i2) , and (il, i4)))))) .
107 [para~into,93.1.2.2.1.1,23.1.l,demodl
GATE(ovfl,exor(s(ll),exor(and(s(1),iO),exor(and(s(2),~O),and(i0,and(il,~
2) 1) 1) I .
110 [para~into,l02.1.2.1,2O.l.l,demod]
GATE(suml,exor(iO,exor(i3,exor(and(il,i2),exor(and(il,i4),and(i2,i4)))))
1 .
134 [para~into,107.1.2.2.1.1,19.1.1,demod]
GATE (

ovf 1,

exor(s(ll),exor(and(s(2),iO),exor(and(i0,and(il,i2)),and(iO,and(il,i4)))
1)
1 -
151 [para-into, 134.1.2.2.1.1,20.l.l,demod]
GATE (

ovf 1,
exor (

s (11) I

exor(and(iO,and(il,i2)),exor(and(i0,and(il,i4)),and(iO,and(i2,i4))))

1 -
157 [para~into,l51.1.2.1,29.l.l,demod]

)

GATE (
ovf 1,

exor (
s(7) I

exor (
~ (8 1 ,
exor (

and io, and il,i2)),

61

exor(and(iO,and(il,i4)),and(iO,and(i2,i4)))
)

)
1

) -
206 [para-into,157.1.2.2.1,26.1.11
GATE (

ovf 1,
exor (

s (7) I
exor (

and(iO,i3),
exor (

and(iO,and(il,i2)),
exor(and(iO,and(il,i4)),and(iO,and(i2,i4)))

1
)

1
) .
239 [para~into,206.1.2.1,25.l.l,demodl
GATE (

ovf 1,
exor (

and(s(6) ,i3),
exor (

and(iO,i3),
exor (

and(iO,and(il,i2)),
exor(and(iO,and(il,i4)),and(iO,and(i2,i4)))

)
)

1
1 .
255 [para~into,239.1.2.1.1,24.1.l,demodl
GATE (

ovf 1,
exor (

and(s (4) , i3),
exor (

and(s(5) ,i3),
exor (

and(iO,i3],
exor (

and(iO,and(il,i2)),
exor (and (io, and (il , i4)) , and (io, and (i2, i4)))

1
)

)
1

1 -
341 [p a r a ~ i n t o , 2 5 5 . 1 . 2 . 1 . 1 , 2 2 . l , d e m o d]
GATE (

ovf 1,
exor (

and(s(5) ,i3),
exor (

and(iO,i3),
exor (

and(iO,and(il, i2)) ,
exor (

and(iO,and(il,i4)),

a
5

a e a

a
5
v

$4
0

8

h

h

B
G a

r i

rl

m
N

rl

d

N

d

h

cn
ul
m

h

h

h

m
-rl

a
5
rl
-4
v

a
5
h

w
-ri

-cu - -4
-4- . -4 a - - e - r l a

N -4 .
.rl - 0 - a -4
rl c -
-4 d a - e
a - - k - * a 0 - 0 e x - m ~ I - c d a ,

. .

v

2 .? m

h -rl - - k
m - a 0
-4 0 c x . . - r l - a a ,

h h - h
m N a 0
.4 - G X . m - a a ,

- - k a 0
$ 3

h

-
h

63

1
)

)
)

1 -
462 [ur,71,55,llO,demodl
-GATE (

X,
exor (

and(iO,i3),
exor (

and(iO,and(il,i2)),
exor (

and(iO,and(il,i4)),
exor (

and(iO,and(i2,i4)),
exor (

and(il,and(i2,i3)),
exor(and(il,and(i3,i4)),and(i2,and(i3,i4))

1
)

1
1

1
) -
463 [binary,462.1,434.1].

This clause is interpreted as follows: The contradiction between clause 463 and 434
proves that the circuit, as implemented with a random variable order of the input signals, is an
instance of the specification.

