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1. Introduction 

The purpose of this paper is to explore issues related to the computation and 
communication performance of the Basic Linear Algebra Subroutines (BLAS- 1) and related 
kernels on the SGI/Cray Origin 2000 parallel computer. Experiments are performed both 
on vendor-supplied mathematical library routines as well as hand-coded loops and array 
syntax. The god of this study is to get a better understanding of performance issues 
pertaining to the Origin 2000 architecture. 

2. Architecture 

The Cray/SGI Origin 2000 supercomputer is based on the RlOOOO RISC processor with a 
clock speed of 195Mhz. Each CPU has 32KB of L1 cache, 4MB of L2 cache and 128MB 
of main memory. Two CPU chips and their associated hardware form one node that is 
connected to the rest of the machine via the databus in a fat-bristled hypercube topology. 

Due to the two levels of cache memory, some explanation is in order regarding their usage 
and resulting performance. As a general rule-of-thumb, the closer data is to the CPU in the 
register/cache/RAM hierarchy, the faster the computations will be. When data is in the 
registers on the CPU chip, very little effort is needed to get the data processed. Once the 
registers are full or data is needed that is not already in registers, the L1 cache is searched. 
The latency period to load data from L1 cache to be processed is 2-3 clock cycles or 
roughly 1511s. When the data is in the L2 cache, 8-10 cycles are needed to retrieve it. If 
that data is out in the main memory on the local node, approximately 30011s or 60 clock 
cycles are needed. If the data is on another node’s memory, up to 1 lOOns are required to 
fetch it depending on how many routers are encountered along the way. 

It is clearly in the best interest of the code developer to utilize arrays that stay in the memory 
closest to the processor using the data. This of course cannot always happen and so the 
operating system must clear the cache out in order to move needed data in. This process is 
determined on a Least Recently Used (LRU) basis; the data that has not been used for the 
longest period of time is flushed out of the cache first. Because the L1 cache is 2-way set- 
associative, the data may reside in one of two places determined by the low-order bits of 
the data’s address. If two pieces of data have the same low-order bits, both may be in the 
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cache at once. If a third piece of data with the same low-order bits is needed, the least- 
recently used piece of data at that address is replaced. If much of the data is not in the 
cache or keeps getting cleared from the cache at the time it is needed, the program’s 
performance can degrade substantially. 

3. Description of the BLAS-1 Experiments 

All of the experiments were done on the Origin 2000 machine at Los Alamos National 
Laboratory. It is currently configured with 128 processors but is expected to be expanded 
in the near future. All of \:he experiments were compiled with the command “f 90 -c -64 
-mips4 -03 -r10000 -3PT:roundoff=3 -0PT:IEEE_arithmetic=3”. 

We tested the following double precision (&bit) BLAS-1 operations (note: n and y are 
vectors and a is a scalar): 

call DAXPY(n,a,x,l,y,l): 
0 call DCOPY(ii,x,l,y,l): 

call DSCAL(ri,a,y,l): 
a = DDOT(n;r,l ,y,l): 

0 a = DNRM2(ri,y,l): 

a = DASUM(ii,y,l): 

y = y + a x  

4. BLAS-1 Kernel Performance as a Function of Vector Length 

This section of the paper describes the performance of BLAS-1 kernels as a function of 
vector length. The experiments are done for vector lengths from 22 to 225.5 words. The 
vectors are stored in a single array with some padding between where the first array ends 
and the second array begins to avoid performance problems with power-of-two multiples 
of array length. The array alignment in memory was kept constant for these experiments. 
Stride-1 arithmetic is used in all cases. In order to get accurate timings, the given operation 
was placed in a loop and executed many times in order to get the timing value. The 
gettimeofday system call was used to obtain the timings. The runs were performed in a 
dedicated batch queue on i.he Origin 2000. 

The results of all six BLAS routines are similar: the performance starts out poorly and 
increases to a maximum until the array is too large for L1 cache at which time the 
performance drops significantly to a near constant level in the L2 cache. When the arrays 
become too large for the L 2  cache, performance drops again while the machine has to use 
the main memory to store the data. The use of the array padding dramatically smoothed out 
the performance levels for the arrays within the L2 cache memory size. 

Each method of coding the function, whether it was the system BLAS function, the do- 
loop syntax or the array syntax, yielded plots of similar shape. The best performance came 
from the arrays with sizes between 500 and 2000 elements, in which case both vectors stay 
in L1 cache. In almost all cases, each of the three methods performed about equally well 
near the peak. The exceptions were the do-loop syntax on the DASUM code and the 
system routine on DNRMZ. In both of those cases, they performed very poorly compared 
to the other methods. In addition, the array syntax on the DCOPY code performed at only 
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about half the speed of the other two methods. For arrays of length less than about 32 
elements, the system routine always suffered the worst performance, due mainly to the 
overhead of the subroutine call. Unfortunately, in some cases the BLAS routine 
underperformed the do-loop or array syntax versions, even for long vectors, in some cases 
significantly. 

Some of the graphs denote a downward performance spike at vector length approximately 
216'. This behavior was repeatable from run to run. We have no explanation for this 
behavior at present. 
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DDOT, Variable Array Length 
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DSCAL, Variable Array Length 

5. BLAS-1 Kernel Performance as a Function of Vector Alignment 

In this series of experiments, the locations of the x and y vectors were vaned within a 
larger array to examine how alignment affected performance. The y array was started at the 
first location in the larger array and then the x array was moved at 4 word increments. 
Thus the relative starting locations of the two vectors was vaned through a range of values 
modulo the size of an L1 cache image. 

The length of the x and y arrays were kept constant at 1024 elements each. Three methods 
of coding each B U S  function were run; the B U S  system routine, the do-loop syntax and 
the array syntax. 

The performance of the operations requiring the use of just one array (DSCAL, DASUM 
and DNRM2) remained constant. Their performance is shown in the following table. 

Performance in MFlops 
Function Name BLAS Routine Do-Loor, Svntax Arrav Syntax 
DSCAL 181 181 181 
DASUM 
DNRM2 

30 
76 

85 
48 

85 
377 

The performance of the B U S  functions requiring two arrays is considerably more 
interesting. As the array locations in memory start to overlap in cache, the performance 
drops considerably as the cache is thrashed. The following three graphs illustrate these 
results. 
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DCOPY, Variable Array Alignment 
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Both the L1 cache and the L2 cache on the Origin ZOO0 processor are two-way set 
associative; thus, it should be possible to store two vectors in the cache without any 
performance hit. However, the L2 cache behaves in such a way that whenever a switch is 
made between lines in a cache set, a stall is incurred. Nonetheless, the above experiments 
are for short vectors that fit into L1 cache; thus, we cannot fully explain the performance 
dropoff when the vectors line up evenly in the L1 cache. 
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6. BLAS-1 Routines on Multiple CPUs 

The next set of experiments was done with the same six BLAS-1 routines but involved 1-8 
CPUs. The array length was varied from 22 to 2255 elements. The array alignment was not 
a variable in these tests. I3y increasing the number of CPUs, we could see the effect of the 
increasing memory demands on the bus even though the tests did not involve any 
communications. The results for these series of tests are shown on the following six 3- 
dimensional graphs. Overall, the greatest effect of increasing the number of CPUs seems 
to have occurred in going from one to two processors. This is due to the fact that there are 
two CPUs on a hub and they share a bus to their memory units. The slowdown is greatest 
in the part of the test that required access to RAM; computations with short arrays did not 
show any substantial slowdown. 
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DNRM2, Multiple CPUs 
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7. Rank-1 Update with L 

This set of tests examines th 
computation: 

e computer performing the following 

w = w+u[z], 
where u, v and w are all vectors. This requires two dot products @DOT) and a DAXPY. 
In this experiment, all summations were performed on the local memory so there were no 
interprocessor communications needed. The length of the arrays were varied from 22 to 224 
words. The arrays could not be allocated as large as before since there were three 
allocations necessary instead of two. The following chart shows the results from this 
computation. Because of the lack of interprocessor communication, very little degradation 
in the performance occurred due to increasing the number of processors. The effects of the 
arrays running out of L1 and L2 cache are evident in the graph. 
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8. Rank-1 Update with Global Summations 

This experiment is very similar to the last one except for the need for each CPU to get 
summation data off of each of the other CPUs. This was implemented with the MPI 
subroutine rnpi-allreduce which made use of the pre-defined operation MPI-SUM. The 
insertion of the mpi-allreduce subroutine call caused some performance degradation. 
This is because each CPU had to go around to other CPUs and get data. This apparently 
ties up a large amount of bandwidth on the data bus and slows the computations down. 
Unfortunately, this slowdown is extremely severe, even for very long vectors, in which 
case the global sum operation of one scalar value per processor should be small compared 
to the on-processor computation. 

Global Summation 
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9. Face Communications on 2-8 CPUs 

The last tests performed on the Origin ZOO0 were face communications. Each CPU had a 
cube-shaped 3-D array allocated on it and then one face of the array was sent to the adjacent 
CPU. That processor received the data and then performed a DAXPY calculation with 
another 3-D array already resident in its memory. As the program ran, the arrays were 
allocated to be larger and larger. Then the number of CPUs were also increased to see the 
effect of increased communication requirements. This experiment is intended to show 
performance that can be expected from kernels used in large-scale 3-D simulations. The 
results show some amount of drop of performance relative to the communication-free 
DAXPY results given earlier in the paper. 
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Face Communications, 2-8 CPUs 

.-IO. Conclusions 

Several issues need to be taken into account in order to obtain maximum performance from 
the Origin 2000. The first and possibly the easiest way to gain speed is to block all of the 
arrays and loop computations so that they do not exceed L1 cache size, whenever possible. 
Performance in all of t h 1 3  functions was highest in places where the arrays were not large 
enough to overflow Ll cache. While the performance is not very close to the advertised 
peak CPU speed, performance is best for arrays of this length. When arrays that are this 
short are not possible, L2 cache still affords good performance. Arrays that ran off of the 
end of the RAM and had to be stored on other CPUs' memory afforded poor performance 
in some cases and should be minimized when PO 

Array alignment played an one data structure was involved. 
If the code developer nment of the arrays in memory, loses in 
performance can be a oiding powers of two or by padding, 
for example. 

When interprocessor cmnmunication sue, from one standpoint the best 
performance is reached For smaller arrays. In ase, data is kept in cache, improving 
performance. On the other hand, larger arrays eful for reducing the communication- 
to-computation ratio, thus improving ombination of having to do 
interprocessor communication in addition to storing ata on far CPUs will cause 
serious slowdowns on the data bus. Also, in the current version of the system software, 
global sums incur a much larger performance penalty than face communications. 
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