
,
I)

LA-UR
Approved for public release;
distribution is unlimited

Title:

Author(s):

Submitted to:

Los Alamos
National Laboratory

9%
Performance of the BLAS-1 and Other Mathematical
Kernals on the SGI/CRAY ORIGIN 2000 Processor

William Dearholt
Wayne Joubert

For external distribution as requested.

I

Los Alamos National Laboratory, an affirmative actiodequal opportunity employer, is operated by the University of California for the
U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the US.
Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow
others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article
as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports
academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint
of a publication or guarantee its technical correctness.

Form 836 (10/96)

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or senice by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, mom-
mendation. or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

Performance of the BLAS-1 and
Other Mathematical Kernels on the

SGIKray Origin 2000 Processor
William Dearholt
Wayne Joubert

Parallel Architectures Team
CIC- 19, Scientific Computing Group

Los Alamos National Laboratory
Los Alamos, NM 87545

August 1997

1. Introduction

The purpose of this paper is to explore issues related to the computation and
communication performance of the Basic Linear Algebra Subroutines (BLAS- 1) and related
kernels on the SGI/Cray Origin 2000 parallel computer. Experiments are performed both
on vendor-supplied mathematical library routines as well as hand-coded loops and array
syntax. The god of this study is to get a better understanding of performance issues
pertaining to the Origin 2000 architecture.

2. Architecture

The Cray/SGI Origin 2000 supercomputer is based on the RlOOOO RISC processor with a
clock speed of 195Mhz. Each CPU has 32KB of L1 cache, 4MB of L2 cache and 128MB
of main memory. Two CPU chips and their associated hardware form one node that is
connected to the rest of the machine via the databus in a fat-bristled hypercube topology.

Due to the two levels of cache memory, some explanation is in order regarding their usage
and resulting performance. As a general rule-of-thumb, the closer data is to the CPU in the
register/cache/RAM hierarchy, the faster the computations will be. When data is in the
registers on the CPU chip, very little effort is needed to get the data processed. Once the
registers are full or data is needed that is not already in registers, the L1 cache is searched.
The latency period to load data from L1 cache to be processed is 2-3 clock cycles or
roughly 1511s. When the data is in the L2 cache, 8-10 cycles are needed to retrieve it. If
that data is out in the main memory on the local node, approximately 30011s or 60 clock
cycles are needed. If the data is on another node’s memory, up to 1 lOOns are required to
fetch it depending on how many routers are encountered along the way.

It is clearly in the best interest of the code developer to utilize arrays that stay in the memory
closest to the processor using the data. This of course cannot always happen and so the
operating system must clear the cache out in order to move needed data in. This process is
determined on a Least Recently Used (LRU) basis; the data that has not been used for the
longest period of time is flushed out of the cache first. Because the L1 cache is 2-way set-
associative, the data may reside in one of two places determined by the low-order bits of
the data’s address. If two pieces of data have the same low-order bits, both may be in the

1

e

cache at once. If a third piece of data with the same low-order bits is needed, the least-
recently used piece of data at that address is replaced. If much of the data is not in the
cache or keeps getting cleared from the cache at the time it is needed, the program’s
performance can degrade substantially.

3. Description of the BLAS-1 Experiments

All of the experiments were done on the Origin 2000 machine at Los Alamos National
Laboratory. It is currently configured with 128 processors but is expected to be expanded
in the near future. All of \:he experiments were compiled with the command “f 90 -c -64
-mips4 -03 -r10000 -3PT:roundoff=3 -0PT:IEEE_arithmetic=3”.

We tested the following double precision (&bit) BLAS-1 operations (note: n and y are
vectors and a is a scalar):

call DAXPY(n,a,x,l,y,l):
0 call DCOPY(ii,x,l,y,l):

call DSCAL(ri,a,y,l):
a = DDOT(n;r,l ,y,l):

0 a = DNRM2(ri,y,l):

a = DASUM(ii,y,l):

y = y + a x

4. BLAS-1 Kernel Performance as a Function of Vector Length

This section of the paper describes the performance of BLAS-1 kernels as a function of
vector length. The experiments are done for vector lengths from 22 to 225.5 words. The
vectors are stored in a single array with some padding between where the first array ends
and the second array begins to avoid performance problems with power-of-two multiples
of array length. The array alignment in memory was kept constant for these experiments.
Stride-1 arithmetic is used in all cases. In order to get accurate timings, the given operation
was placed in a loop and executed many times in order to get the timing value. The
gettimeofday system call was used to obtain the timings. The runs were performed in a
dedicated batch queue on i.he Origin 2000.

The results of all six BLAS routines are similar: the performance starts out poorly and
increases to a maximum until the array is too large for L1 cache at which time the
performance drops significantly to a near constant level in the L2 cache. When the arrays
become too large for the L 2 cache, performance drops again while the machine has to use
the main memory to store the data. The use of the array padding dramatically smoothed out
the performance levels for the arrays within the L2 cache memory size.

Each method of coding the function, whether it was the system BLAS function, the do-
loop syntax or the array syntax, yielded plots of similar shape. The best performance came
from the arrays with sizes between 500 and 2000 elements, in which case both vectors stay
in L1 cache. In almost all cases, each of the three methods performed about equally well
near the peak. The exceptions were the do-loop syntax on the DASUM code and the
system routine on DNRMZ. In both of those cases, they performed very poorly compared
to the other methods. In addition, the array syntax on the DCOPY code performed at only

2

b .

+

about half the speed of the other two methods. For arrays of length less than about 32
elements, the system routine always suffered the worst performance, due mainly to the
overhead of the subroutine call. Unfortunately, in some cases the BLAS routine
underperformed the do-loop or array syntax versions, even for long vectors, in some cases
significantly.

Some of the graphs denote a downward performance spike at vector length approximately
216'. This behavior was repeatable from run to run. We have no explanation for this
behavior at present.

DAXPY, Variable Array Length

140

120

100

a
0

I" 60

40

P 80 -

+BLAS Routine
-8-Do-Loop Syntax
+Array Syntax

DCOPY, Variable Array Length

100

r u ~ a noutine
+DO-LOO~ Syntax
+Array Syntax

90

80

70

OD 60

2 50

40
30

20

10

0

P

LL

(U - v ? s ? * ? a ! o ? * 7 N ? S ? ? ? Q o ? ~ ~
C j * L n w b * Q) O r - b L n w b * Q) O r

Y T F r r l - r r C U N C U (U

Log 2 of Array Length

3

DDOT, Variable Array Length

200

180

160

140

a 120

2 100
P

LL
80

60

40

20

0

DNRMP, Variable Array Length
_-

400

350

300

250
n
LL 0 200

150

100

Log 2 of Array Length

4

.'

100

90

80

70

cn 6o
P

u. 2 50

E 40

30

20

10

0

DSCAL, Variable Array Length

5. BLAS-1 Kernel Performance as a Function of Vector Alignment

In this series of experiments, the locations of the x and y vectors were vaned within a
larger array to examine how alignment affected performance. The y array was started at the
first location in the larger array and then the x array was moved at 4 word increments.
Thus the relative starting locations of the two vectors was vaned through a range of values
modulo the size of an L1 cache image.

The length of the x and y arrays were kept constant at 1024 elements each. Three methods
of coding each B U S function were run; the B U S system routine, the do-loop syntax and
the array syntax.

The performance of the operations requiring the use of just one array (DSCAL, DASUM
and DNRM2) remained constant. Their performance is shown in the following table.

Performance in MFlops
Function Name BLAS Routine Do-Loor, Svntax Arrav Syntax
DSCAL 181 181 181
DASUM
DNRM2

30
76

85
48

85
377

The performance of the B U S functions requiring two arrays is considerably more
interesting. As the array locations in memory start to overlap in cache, the performance
drops considerably as the cache is thrashed. The following three graphs illustrate these
results.

5

140

120

100

80

60

40

20

0

4

DAXPY, Variable Array Alignment

Array Separation Mod 2048

4

DCOPY, Variable Array Alignment

100

90

80

70

M 60 n
2 50
LL

40

30

20

10

0
0 a w d N O a w d ~ O a w P N O a w d N O a w d C U 0 r ~ m d d m w ~ a a m o r ~ ~ m d m w ~ ~ a m o

r r c r r r r r 7 - r r - N

Array Separation Mod 2048

DDOT, Variable Array Alignment

200

180

160

140

(I) 120

2 100
P

U

80

60

40

20

0

Array Separation Mod 2048

Both the L1 cache and the L2 cache on the Origin ZOO0 processor are two-way set
associative; thus, it should be possible to store two vectors in the cache without any
performance hit. However, the L2 cache behaves in such a way that whenever a switch is
made between lines in a cache set, a stall is incurred. Nonetheless, the above experiments
are for short vectors that fit into L1 cache; thus, we cannot fully explain the performance
dropoff when the vectors line up evenly in the L1 cache.

7

t-

6. BLAS-1 Routines on Multiple CPUs

The next set of experiments was done with the same six BLAS-1 routines but involved 1-8
CPUs. The array length was varied from 22 to 2255 elements. The array alignment was not
a variable in these tests. I3y increasing the number of CPUs, we could see the effect of the
increasing memory demands on the bus even though the tests did not involve any
communications. The results for these series of tests are shown on the following six 3-
dimensional graphs. Overall, the greatest effect of increasing the number of CPUs seems
to have occurred in going from one to two processors. This is due to the fact that there are
two CPUs on a hub and they share a bus to their memory units. The slowdown is greatest
in the part of the test that required access to RAM; computations with short arrays did not
show any substantial slowdown.

8

DASUM, Multiple CPUs

1'100

Log 2 of Array Length

DAXPY, Multiple CPUs

9

DCOPY, Multiple CPUs

100

I
Log 2 of Array Length

DDOT, Multiple CPUs

?OO

10

DNRM2, Multiple CPUs

I'

Log 2 of Array Length

DSCAL, Multiple CPUs

i -100

- 80
~

/ 8 1 j

- 20

- 0

1 1

7. Rank-1 Update with L

This set of tests examines th
computation:

e computer performing the following

w = w+u[z],
where u, v and w are all vectors. This requires two dot products @DOT) and a DAXPY.
In this experiment, all summations were performed on the local memory so there were no
interprocessor communications needed. The length of the arrays were varied from 22 to 224
words. The arrays could not be allocated as large as before since there were three
allocations necessary instead of two. The following chart shows the results from this
computation. Because of the lack of interprocessor communication, very little degradation
in the performance occurred due to increasing the number of processors. The effects of the
arrays running out of L1 and L2 cache are evident in the graph.

Local Summation, Rank-1 Update

160

140

120

100

80 2
B

60

40

20

0

P

LL

Log 2. of Array Length

12

8. Rank-1 Update with Global Summations

This experiment is very similar to the last one except for the need for each CPU to get
summation data off of each of the other CPUs. This was implemented with the MPI
subroutine rnpi-allreduce which made use of the pre-defined operation MPI-SUM. The
insertion of the mpi-allreduce subroutine call caused some performance degradation.
This is because each CPU had to go around to other CPUs and get data. This apparently
ties up a large amount of bandwidth on the data bus and slows the computations down.
Unfortunately, this slowdown is extremely severe, even for very long vectors, in which
case the global sum operation of one scalar value per processor should be small compared
to the on-processor computation.

Global Summation

Log 2 of Array Length

I20

100

80

io

9. Face Communications on 2-8 CPUs

The last tests performed on the Origin ZOO0 were face communications. Each CPU had a
cube-shaped 3-D array allocated on it and then one face of the array was sent to the adjacent
CPU. That processor received the data and then performed a DAXPY calculation with
another 3-D array already resident in its memory. As the program ran, the arrays were
allocated to be larger and larger. Then the number of CPUs were also increased to see the
effect of increased communication requirements. This experiment is intended to show
performance that can be expected from kernels used in large-scale 3-D simulations. The
results show some amount of drop of performance relative to the communication-free
DAXPY results given earlier in the paper.

13

t

Face Communications, 2-8 CPUs

.-IO. Conclusions

Several issues need to be taken into account in order to obtain maximum performance from
the Origin 2000. The first and possibly the easiest way to gain speed is to block all of the
arrays and loop computations so that they do not exceed L1 cache size, whenever possible.
Performance in all of t h 1 3 functions was highest in places where the arrays were not large
enough to overflow Ll cache. While the performance is not very close to the advertised
peak CPU speed, performance is best for arrays of this length. When arrays that are this
short are not possible, L2 cache still affords good performance. Arrays that ran off of the
end of the RAM and had to be stored on other CPUs' memory afforded poor performance
in some cases and should be minimized when PO

Array alignment played an one data structure was involved.
If the code developer nment of the arrays in memory, loses in
performance can be a oiding powers of two or by padding,
for example.

When interprocessor cmnmunication sue, from one standpoint the best
performance is reached For smaller arrays. In ase, data is kept in cache, improving
performance. On the other hand, larger arrays eful for reducing the communication-
to-computation ratio, thus improving ombination of having to do
interprocessor communication in addition to storing ata on far CPUs will cause
serious slowdowns on the data bus. Also, in the current version of the system software,
global sums incur a much larger performance penalty than face communications.

14

Acknowledgements

This work was supported in part by the Department of Energy through grant W-7405-
ENG-36, with Los Alamos National Laboratory. This research was performed in part
using the resources located at the Advanced Computing Laboratory of Los Alamos National
Laboratory, Los Alamos, NM 87545.

15

