ERNEST DRLANDI LAWRENCE BERKELEY NATIロNAL LABDRATロRY

Photodissociation Dynamics and Spectroscopy of Free Radical Combustion Intermediates

David L. Osborn
Chemical Sciences Division
December 1996
Ph.D. Thesis

RECEIVED
 JUL 221997
 OSti

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Goverament. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of Califomia, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Photodissociation Dynamics and Spectroscopy of Free Radical Combustion Intermediates

David Lewis Osborn
Ph.D. Thesis
Department of Chemistry
University of California, Berkeley
and
Chemical Sciences Division
Ernest Orlando Lawrence Berkeley National Laboratory
University of California
Berkeley, CA 94720

December 1996

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Photodissociation Dynamics and Spectroscopy of Free Radical

Combustion Intermediates

by
David Lewis Osborn
Bachelor of Science (University of Chicago) 1991
A dissertation submitted in partial satisfaction of the requirements for the degree of
Doctor of Philosophy
in
Chemistry
in the
GRADUATE DIVISION
of the
UNIVERSITY OF CALIFORNIA, BERKELEY
Committee in charge:
Professor Daniel M. Neumark, Chair Professor Richard J. Saykally
Professor Jeffrey A. Reimer

Fall 1996

Photodissociation Dynamics and Spectroscopy of Free Radical

Combustion Intermediates

Copyright © 1996

by
David Lewis Osborn

The U. S. Department of Energy has the right to use this thesis for any purpose whatsoever including the right to reproduce all or any part thereof.

ABSTRACT
Photodissociation Dynamics and Spectroscopy of Free Radical Combustion Intermediates
by
David Lewis Osborn
Doctor of Philosophy in Chemistry
University of California, Berkeley
Professor Daniel M. Neumark, Chair

The photodissociation spectroscopy and dynamics of free radicals is studied by the technique of fast beam photofragment translational spectroscopy. Photodetachment of internally cold, mass-selected negative ions produces a clean source of radicals, which are subsequently dissociated and detected. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states of the radical. In addition, the photodissociation dynamics, product branching ratios, and bond energies are probed at fixed photon energies by measuring the translational energy, $P\left(E_{\mathrm{T}}\right)$, and angular distribution of the recoiling fragments using a time- and positionsensitive detector. $A b$ initio calculations are combined with dynamical and statistical models to interpret the observed data.

The photodissociation of three prototypical hydrocarbon combustion intermediates forms the core of this work. The methoxy radical $\left(\mathrm{CH}_{3} \mathrm{O}\right)$, the vinoxy radical $\left(\mathrm{CH}_{2} \mathrm{CHO}\right)$
and the ketenyl radical (HCCO), are representative examples of alkanoxy, alkenoxy, and alkynoxy radicals, respectively. The dominant channel in methoxy dissociation following ultraviolet excitation is $\mathrm{CH}_{3} \mathrm{O} \rightarrow \mathrm{CH}_{3}+\mathrm{O}$. Vibrational structure is resolved in the $P\left(E_{\mathrm{T}}\right)$ distribution, and a new heat of formation is obtained for $\mathrm{CH}_{3} \mathrm{O}$. Two primary channels are active in vinoxy photodissociation: $\mathrm{CH}_{2} \mathrm{CHO} \rightarrow \mathrm{CH}_{3}+\mathrm{CO}$, and $\mathrm{CH}_{2} \mathrm{CHO} \rightarrow \mathrm{CH}_{2} \mathrm{CO}+$ H. The dissociation dynamics in vinoxy occur by internal conversion to the ground state followed by dissociation over a barrier to products. The ketenyl radical is observed for the first time in the ultraviolet, dissociating via two distinct channels: $\mathrm{HCCO} \rightarrow \mathrm{CH}$ $X\left({ }^{2} \Pi\right)+\mathrm{CO}$, and $\mathrm{HCCO} \rightarrow \mathrm{CH} a\left({ }^{4} \Sigma\right)+\mathrm{CO}$. The dynamics in this case occur by internal conversion and intersystem crossing, followed by dissociation on potential surfaces with negligible barriers to products. The branching ratio is a function of photon energy, and a heat of formation is determined for ketenyl.

In addition, the photodissociation of a negative ion radical, $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$, is also explored. This ion photodissociates via two channels: $\mathrm{N}_{2} \mathrm{O}_{2}^{-} \rightarrow \mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}$, and $\mathrm{N}_{2} \mathrm{O}_{2}^{-} \rightarrow \mathrm{NO}^{-}+\mathrm{NO}$. Product vibrational structure is observed in the $\mathrm{N}_{2} \mathrm{O}$ bending mode, and a heat of formation is obtained for $\mathrm{N}_{2} \mathrm{O}_{2}^{-}$.

DEDICATION PAGE

To my father
Donald Lewis Osborn
and my mother
Wanda Kay Hodges Osborn

TABLE OF CONTENTS

Acknowledgments xii
Chapter 1: Introduction 1
Principles of Photodissociation Dynamics 4
Photodissociation of open-shell vs. closed-shell molecules 7
Photofragment translational spectroscopy 9
Previous photodissociation experiments on radicals. 12
The Fast Radical Beam Translational Spectrometer. 13
Comparison of fast beam translational spectroscopy with other techniques 18
Interpretation of Results 20
References 21
Chapter 2: Improvements to the experiment and analysis 23
l. The high voltage switch (a.k. a. the death pulser) 23
II. Delermination of detector factors 26
References 31
Chapter 3: Photodissociation spectroscopy and dynamics of the $\tilde{A}\left({ }^{2} A_{1}\right)$ electronicI. Introduction33
II. Experimental 38
III. Results 41
A. Photofragment Yield spectra of $\mathrm{CH}_{3} \mathrm{O}$ and $\mathrm{CD}_{3} \mathrm{O}$ 41
B. Translational energy and angular distributions 44
C. Non-coincidence time-of-flight distributions 49
IV. Analysis 49
A. Photofragment Yield spectra of $\mathrm{CH}_{3} \mathrm{O}$ and $\mathrm{CD}_{3} \mathrm{O}$ 49
B. Translational energy distributions 52

1. $\mathrm{CH}_{3} \mathrm{O}$ 52
2. $\mathrm{CD}_{3} \mathrm{O}$ 56
V. Discussion 56
A. Photofragment Yield spectra of $\mathrm{CH}_{3} \mathrm{O}$ and $\mathrm{CD}_{3} \mathrm{O}$ 56
B. Channel (I) dissociation dynamics 58
3. $\mathrm{CH}_{3}+\mathrm{O}$ products 59
4. $\mathrm{CD}_{3}+\mathrm{O}$ products 64
5. Curve crossing mechanism 66
C. Channel (II) and (III) dissociation mechanism 67
VI. Conclusions 68
Acknowledgments 69
References 69
Chapter 4: Fast beam photodissociation spectroscopy and dynamics of the vinoxy
radical 75
I. Introduction 75
II. Experimental 80
A. The fast radical beam translational spectrometer 80
B. Data collection and modes of operation 82
III. Results 86
A. Photofragment Yield Spectra. 87
B. Coincidence photofragment distributions: $\mathrm{CH}_{3}+\mathrm{CO}$ 91
C. Non-coincidence photofragment distributions 94
D. Ab initio electronic structure calculations 96
IV. Analysis 104
A. Photofragment yield spectrum 104
B. Monte Carlo Forward Convolution for $\mathrm{CD}_{2} \mathrm{CDO}$ TOF distributions. 107
V. Discussion 109
A. Implications of the experimental data 109
B. Dissociation mechanism and product state distributions: $\mathrm{CH}_{3}+\mathrm{CO}$ 111
6. Barrier to dissociation of Channel 1 111
7. Statistical adiabatic impulsive model 113
8. Comparison with $\mathrm{CH}_{3} \mathrm{CO}$ decomposition. 116
C. Dissociation mechanism and product state distributions: $\mathrm{H}+\mathrm{CH}_{2} \mathrm{CO}$ 118
D. Product branching ratio 119
E. Internal Conversion 121
VI. Conclusions 125
Acknowledgments 126
References 127
Chapter 5: Photodissociation spectroscopy and dynamics of the HCCO radical 133
I. Introduction. 133
II. Experimental 137
III. Results 140
A. Photofragment yield spectra 140
B. Translational energy and angular distributions 144
C. Electronic structure calculations 147
IV. Analysis 150
A. Rotational structure 150
B. Vibrational analysis 157
C. Translational energy and angular distributions 159
V. Discussion 162
A. Spectroscopy of the ketenyl radical. 162
9. Nature of the excited electronic state. 162
10. Comparison with previous experimental investigations. 164
11. Prospects for further rotational spectroscopy 165
B. Photodissociation dynamics 166
V1. Conclusions 173
Acknowledgments 175
References 176
Chapter 6: Photodissociation spectroscopy and dynamics of the $\mathbf{N}_{2} \mathrm{O}_{\mathbf{2}}{ }^{-}$anion 181
I. Introduction 181
II. Experimental 184
A. Fast Beam Translational Spectrometer 184
B. Pulsed Discharge Negative Ion Source 186
III. Results 190
A. Experimental Data 190
B. Ab Initio Calculations 196
IV. Analysis 201
A. Product branching ratio 201
B. Dissociation energies and product energy distributions 201
V. Discussion 205
A. Dissociation Mechanism: $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}+\mathrm{hv} \rightarrow \mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}$ 205
12. Prior distributions 209
13. Angular distributions and RRKM lifetimes 212
B. Dissociation Mechanism: $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}+\mathrm{h} \mathrm{\nu} \rightarrow \mathrm{NO}^{-}+\mathrm{NO}$ 214
C. Comparison with Photoelectron Spectroscopy 217
D. Comparison with photodissociation of CO_{3}^{-} 218
VI. Conclusions 220
Acknowledgments 221
References 222
Appendix A: CMLWSA, raw data analysis code 225
I. Introduction 225
II. Routines comprising the CMLWSA program 227
III. Usage 228
A. Input and Output files 228
B. General usage information 229
IV. FORTRAN code of CMLWSA 231
CENTCAL.f 232
CMLWSA.f. 246
discr.f 256
hist.f. 262
phaplt.f. 264
plotcentroid.f. 266
plotcoin.f. 277
plotmass.f. 279
PSDCLCE.f 281
rawplot.f 289
savdfplt.f 291
srvitn.f 293
tactime.f 301
WSZTOXY.f 304
plot.f 310
Appendix B: TDAF and TDAFXDATA, Detector acceptance function correction 317
I. Introduction 317
II. Usage 318
A. Input file 318
B. Output files 319
III. FORTRAN code of TDAF and TDAFXDATA 319
tdaf.f 319
tdafxdata.f 334
Appendix C: MAVBFIT, Energy and angular distribution analysis 345
I. Introduction 345
II. Routines comprising the MAVABFIT program 346
III. Usage 347
A. Input 347
B. Output 347
IV. FORTRAN CODE 348
MAVABFIT.f 348
addsuffix.f. 360
interp.f. 361
covsrt.f: 361
fleg.f: 362
gammln.f: 362
gammq.f: 362
gaussj.f: 363
gcf.f: 364
gser.f: 364
lfit.f: 365
Appendix D: XYZLSQ, creation of detector factors for the time- and position-
sensitive detector. 367
I. Introduction 367
II. Routines comprising the XYZLSQ program 367
III. Usage 368
A. General information and input / output files 368
B. Systematic fitting of the parameters. 372
IV. FORTRAN code of XYZLSQ. 374
xyzlsq.f. 374
xyzin.f 381
genpin.f 389
xyzcal.f. 390
jmdiag.f 391
matinv.f. 392
xyznrg.f. 394
linfit.f 400

Acknowledgments

I would first and foremost like to thank Dan Neumark for inviting me to join his research group and the fast radical beam machine project in the fall of 1991. As my understanding of academic research in general and physical chemistry in particular has increased over the years, I am ever more impressed by Dan's ability to conceive novel experiments and bring them rapidly to fruition. His advice on matters both experimental and theoretical has been indispensable, and I am especially grateful that he allowed me to pursue the projects which I felt had merit rather than dictate the course of our research.

I could not have made it this far without the help and guidance provided by my colleagues on the FRBM team. Working with Bob Continetti, the first post-doc on the FRBM project, was like shifting into the fast lane of the autobahn-the only option is to accelerate quickly. His amazing intensity and passion for science set a high standard in the laboratory. The successful development of the time- and position-sensitive detector is a testament to his experimental expertise, and he laid the framework for the data analysis code presented in Appendix A. Although he characterized me as an "outlaw biker," upon leaving Berkeley for his new position at UC San Diego Bob entrusted to me a big, leafy schefflera, which he had acquired from Gil Nathanson, and which is doubtless endowed with science karma, judging from the success of its two former owners.

Doug Cyr deserves credit for bringing the FRBM project from ideas and drawings to the huge mass of aluminum, lasers, and electronics which is ensconced in D-21 Latimer Hall. Under his patient guidance I learned how to operate and understand the beast of an apparatus he had constructed. Doug made me appreciate attention to detail in design and taught me most of my drafting skills. Always planning for the future, he amassed an
immense stockpile of nuts, bolts, vacuum hoses, saw blades, big red warning lights, and most of all the ubiquitous wall of paper towels at the back of the lab, which I think we have finally depleted. Doug pioneered the pulsed discharge ion source in the group, which made the study of all three alkoxy radicals in this dissertation possible. He also taught me valuable lessons on balancing science with the rest of life, being very dedicated to his (continually growing) family while simultaneously accomplishing first-rate research.

David Leahy succeeded Bob Continetti as the second talented post-doc with whom I have had the opportunity to work. An exceptional scientist, David brought fresh ideas and exactness to the experiment, along with an electron talisman which still hangs over the electron detector. His persistence in developing the factor determination scheme described in Chapter 2 led to a crucial improvement in energy resolution, without which the experiments on $\mathrm{CH}_{3} \mathrm{O}$ would have been much less informative. David taught me discipline in programming and in scientific writing, and demonstrated how to ski straight down a steep hill with only momentary lapses of control. His amiable character, agile hacky-sack moves, and goofy exclamations made the long hours in the lab much more enjoyable.

In 1994, Hyeon Choi joined the FRBM project with a sound theoretical background from his education in Korea. Ever polite, he listened patiently to my tirades about safety and procedure, and soon became an asset in the lab. It was Hyeon who bravely mixed acetylene with oxygen to develop a reliable (and safe) method for the production of HCCO^{-}ions, making the study of the ketenyl radical possible. Hyeon deserves special mention for taking care of my "growling" cats during my trips away from Berkeley.

Another energetic post-doc, David Mordaunt, joined the project in 1995. Already a honed translational spectroscopist, with impressive theoretical credentials to boot, he contributed immediately to the HCCO experiments and developed the statistical adiabatic impulsive model. Always competitive, he outdid previous colleagues by skiing with nearly complete disregard for his own well-being, and has since become a shredding snowboarder.

The most recent addition to the team is Ryan Bise, whose skill at synthesis and dedication in the lab have already brought him success. I am confident he will lead the FRBM through new and exciting experiments in the coming years.

Many other members of the Neumark group, both past and present, have provided an important storehouse of knowledge and ideas for which I am grateful. Although I only overlapped with them for a month, Dan's first students, Theo Kitsopoulos, Ricky Meets, and Alex Weaver have in the past years generously provided me with advice on life after Berkeley and accounts of the early Stonehenge and Acropolis eras of the group. Steve Bradforth introduced me to the wonders of UNIX, cheap burritos, and propagation in imaginary time, and has recently provided much appreciated perspective on the academic track and femtosecond chemistry experiments.

Don Arnold was a great source of experimental knowledge, and introduced me to the fields of electronic structure calculations and photoelectron spectroscopy. His leadership on the group softball team and perpetual optimism contributed greatly to the spirit of the group. ZEKE-queen and fellow doughnut-lover Caroline Chick deserves recognition for instructing me on the Jahn-Teller effect and the subtleties of the thighmaster. Gordon Burton, a truly punny fellow, shared his adventurous culinary
exploits with me, and together with Esther deBeer and Eun Ha Kim, acquired photoelectron spectra on Stonehenge to characterize the discharge source. I am indebted to Cangshan Xu , a true master of personal computers, for helping me with UNIX administration. Together with Travis Taylor, we acquired further photoelectron spectra which were crucial for characterizing the FRBM radical production scheme on each new species. I commend Yuexing Zhao and Ivan Yourshaw of ZEKE fame for loaning me laser dye and laser parts every time I needed them to continue an experiment. Mike Furlanetto, the latest addition to the ZEKE crew, takes the hat of UNIX administrator from me, which I'm sure he will wear well. Finally, Jeff Greenblatt and Marty Zanni, proprietors of the impressive femtosecond photoelectron spectrometer, have been gracious enough to share their laser expertise with me before I, too, jump into femtoland.

Several other members of the chemistry department deserve recognition for the support they have given me. I thank Cheryn Gliebe, the most capable secretary I have ever met, for her advice on matters as mundane as purchasing, and as magnificent as Yosemite. Eric Granlund, Hans Graetsch, and Dave Murai of the machine shop made numerous parts for me, sometimes on very short notice, and often with improvements to my design. Tim Robinson of the graphics lab frequently regaled me with jargon I had no hope of understanding, and together with Dan Gezelter of the Miller group helped me through several ridiculous UNIX fiascoes.

I would like to thank my examination committee chair, Y. T. Lee, for his inspiration and perspective, and the rest of my committee, Rich Saykally, Evan Williams, and John Clarke. Rich Saykally in particular has provided many insights on spectroscopic issues which have arisen during my research. I thank Jeff Reimer of chemical engineering
for his enthusiasm in reading this dissertation. I also acknowledge the National Defense Science and Engineering Graduate Fellowship program for support during my first three years at Berkeley.

Over the last year, Celeste Rohlfing of Sandia National Labs has taught me a great deal about electronic structure, explaining the procedures and terminology of ab initio computation while helping me avoid some of the vagaries of CASSCF calculations. I have truly enjoyed collaborating with her on the $\mathrm{CH}_{2} \mathrm{CHO}$ and HCCO projects.

I am very grateful to Don Levy at the University of Chicago for allowing me to join his research group, introducing me to the world of spectroscopy during my junior and senior years. Joe Alfano, Jeff Elam, and the rest of the Levy group deserve credit for fielding the barrage of questions I asked them. Graham Fleming, Jeremy Burdett, and Laurie Butler were helpful mentors who encouraged me to pursue graduate work in chemistry. Finally, I would like to thank Bruce Holder, my high school chemistry teacher, who first introduced me to chemistry and Monty Python.

Even with a compelling project and the supportive environment of the Neumark group, I could never have finished graduate school without the avocations that kept me sane throughout these years. Ronald Barnes, my carillon teacher and good friend, always provided a place for me in Sather Tower, where I could escape to the world of music and the strange art of campanology. I feel privileged to have studied with him during my time at Berkeley and am honored by the compositions and arrangements he created for me. The rest of the carillon staff, John Agraz, Jeff Davis, David Hunsberger, and Richard Strauss also deserve sincere thanks for accepting me into their ranks and providing much needed breaks from scientific endeavors.

My climbing, skiing, and kayaking partners have helped me explore the great outdoors of California, and I am thankful that I have had the opportunity to enjoy their company. The time I have spent on the walls of Yosemite and in the snow and rivers of the Sierra Nevada has given me perspective and motivation I never could have acquired from the vantage point of the city or the laboratory.

I am grateful for the support of my father and sister, who have encouraged without pressuring and given me the benefit of the doubt even though I am still in school at age twenty-eight. Finally, I thank Julie for a constant supply of granola, for diligent proofreading of this work, and for enriching my life with her presence.

The science of chemistry is first and foremost an attempt to understand the process of formation and cleavage of chemical bonds, the interactions which bind nuclei together in particular arrangements through electron-nuclear attraction. The core of physical chemistry, in turn, is an effort to uncover the fundamental mechanisms of chemical transformations. Toward this end, perhaps the most compelling system to study is a bimolecular reaction

$$
A B+C D \rightarrow[A B C D]^{*} \rightarrow \text { products }
$$

in the gas phase at very low pressure, where $[A B C D]^{*}$ represents a transient excited species. In this case, it is hoped that the essence of the reaction will be revealed due to the absence of external perturbations, such as collisions with solvent molecules or the walls of the reaction vessel. In the last forty years, great strides toward this goal have been made in the field of chemical reaction dynamics. ${ }^{1,2}$

However, even in the relatively well-defined limit of a crossed molecular beam experiment, in which the reactants approach and the products are detected along defined trajectories, the results are inherently averaged over a range of impact parameters describing the difference between head-on and glancing collisions of the reactants. One way to avoid averaging over the impact parameter in the bimolecular "full collision" described above is to simplify the system by studying the unimolecular "half collision" of the dissociation reaction

$$
\begin{equation*}
[A B C D]^{*} \rightarrow A B+C D \tag{1}
\end{equation*}
$$

in which the positions of the $A B$ and $C D$ moieties have a definite relative orientation in the excited $[A B C D]^{*}$ species. The "reactant" $[A B C D]^{*}$ can be prepared in a highly specific manner by excitation of the molecule $A B C D$ with a photon of known energy, in which case the process is termed photodissociation.

Photodissociation dynamics experiments provide a direct means of studying the forces which act on a molecule as a bond is broken, and hence are an important method in studying the fundamental nature of chemical reactions, as indicated by the large body of experimental and theoretical research in this field. ${ }^{3,4}$ In photodissociation experiments, some of the most important questions are:

What are the nascent products?
Is there more than one product channel participating?
What is the bond strength, or ΔH_{rxn} for each channel?
How fast does dissociation take place?
How is the excess energy distributed among the products?
Can we determine the dissociation mechanism from this information?

For the sake of experimental simplicity, the vast majority of photodissociation experiments to date have been performed on stable, closed-shell molecules. Of course, all chemical reactions must involve open-shell, free radical species as intermediates between reactants and products, and it is clearly of interest to subject this class of molecules to the same rigorous photodissociation investigations as employed on closed-shell molecules.

Despite the importance of free radicals in chemistry, little spectroscopic information is available on their dissociative electronic states, and even less is known about their dissociation dynamics.

The principal impediment to photodissociation studies of free radicals has been the generation of a pure sample of these intermediates. To circumvent this problem, a general technique has been developed in our laboratory which prepares well-defined, massselected samples of free radicals by photodetachment of negative ion precursors. Recognizing that free radicals have positive electron affinities, the corresponding negative ion can be produced and separated from contaminant species by mass spectrometry. The free radical of interest can be generated from the anion by laser photodetachment with one

photodetachment photodissociation photon, after which the radical itself can be dissociated with a second photon. The most important aspect of this approach is that the anion precursors, by virtue of their charge, can be separated from the host of other species present, thereby eliminating the ambiguity that plagues most neutral radical experiments, which must in some way identify which species is producing the experimental signal. Using this technique, known as Fast Radical Beam Photofragment Translational Spectroscopy, I address in this dissertation the questions presented above with experiments and calculations on the photodissociation spectroscopy and dynamics of neutral and negative ion free radicals.

Principles of photodissociation dynamics

The goal of photodissociation dynamics experiments is to describe as rigorously as

Figure 1: Four canonical dissociation schemes: (a) direct excitation to a repulsive surface, (b) predissociation via coupling to a repulsive curve, (c) ISC / IC to a barrierless potential, (d) ISC / IC to a potential with an exit barrier.
possible the potential energy surface(s) (PES) on which the dissociation reaction takes place. In the most general picture, the PES is a function of the coordinates of all the electrons and nuclei in the molecule, describing the energy associated with every possible configuration. The description of the potential energy of a molecule can be simplified by invoking the BornOppenheimer approximation, in which it is assumed that electronic motion can be separated from nuclear motion because the light electrons adjust essentially instantaneously to a displacement of the ponderous nuclei. The Born-Oppenheimer approximation in the adiabatic representation is exact in the limit that the nuclei move infinitely slowly, i.e., adiabatically. Adiabatic Born-Oppenheimer surfaces describe the potential energy of
the molecule as a function of nuclear configuration for each distinct electronic state. A schematic diagram of four surface configurations common to photodissociation reactions is given in Fig. 1. The slope of the PES along the nuclear coordinates, $\partial V / \partial Q$, describes the forces which act on the molecule as a bond is broken, and it is these forces which determine the dynamics of the dissociation and the disposal of energy among translational, vibrational, rotational, and electronic degrees of freedom of the products. As long as the electronic potential V (which depends parametrically on the nuclear coordinates Q) changes slowly as a function of Q, the adiabatic representation is accurate.

The present experiments are designed to probe the potential energy surfaces of free radicals by measuring the final state distributions of the two molecular fragments created in a photodissociation event. This inquiry is comprised of two separate experiments with complementary objectives. First, the relative positions of PESs which are dissociative, or lead to dissociation, must be mapped out as a function of the photon energy which initiates the reaction. Second, for those photon energies which cause photodissociation, the products are interrogated to determine the disposal of energy among product degrees of freedom, which, as stated above, is a direct consequence of the PES and the dynamics which take place on it.

I have chosen to present the four potential curves in Fig. 1 because each represents an important class of photodissociation reactions, and each system presented in this work can be classified in one of these categories. In all cases the molecule makes an electronic transition from its ground electronic and vibrational state to an excited electronic state by absorption of a single visible or ultraviolet photon of energy $h v$. According to the FranckCondon approximation, the transition to the excited electronic state occurs
instantaneously, such that the geometry of the molecule does not change during the transition. The nuclear positions then evolve under the influence of the forces $\partial V / \partial Q$, which may lead to dissociation if $h v>D_{0}$, one of the bond strengths. Note that the potentials in Fig. 1 describe motion along one nuclear coordinate Q; for triatomic and larger molecules the PES is multidimensional, and this diagram represents only the reaction coordinate along which the bond is broken.

In Fig. 1a, excitation to a directly repulsive surface results in an absorption spectrum which is lifetime broadened by the prompt dissociation. The shape of the repulsive potential generally deposits a large amount of energy into product translation, giving a non-statistical distribution of energy among the product states. For the remaining three cases in Fig. 1, the Born-Oppenheimer approximation breaks down when the molecule makes a non-radiative transition from the initially excited surface (which is bound with respect to dissociation) to another PES which is unbound along the reaction coordinate Q, an effect known as predissociation. In Fig. 1b, the initially excited state is bound, but couples to a purely repulsive surface on which dissociation proceeds rapidly. The product state distribution is often similar to that observed in direct dissociation (Fig. 1a), because the final surfaces have the same shape in both cases. Figure 1 l describes the dissociation of the $\mathrm{CH}_{3} \mathrm{O}$ radical presented in Chapter 3.

Figures 1 c and d also depict predissociation, but in this case the initially excited molecule couples back to the ground state (or possibly a lower-lying excited state) surface and dissociates either with (Fig. 1d), or without (Fig. 1c), a barrier to products. The former situation describes the dissociation dynamics of the $\mathrm{CH}_{2} \mathrm{CHO}$ radical presented in Chapter 4, while the latter case exemplifies the PES of the HCCO radical in Chapter 5. If
the coupling occurs to a state with identical spin multiplicity as the initially excited state, the coupling process is called internal conversion (IC), while if the spin multiplicity changes, the process is known as intersystem crossing (ISC). The important distinction in either case is that the final surface on which the dissociation takes place has a potential well along the reaction coordinate, in contrast to the situation in Figs. 1a and b. The presence of the well often traps the molecule for some time before dissociation occurs, leading to a more or less statistical redistribution of the available energy among some or all degrees of freedom. Consequently, little energy is deposited in translational motion of the products because tetra-atomic and larger molecules have more vibrational than translational degrees of freedom. Note that the portion of the ground state PES to the right of the barrier in Fig. 1c has the same repulsive nature as seen in Fig. 1b, and for this reason there are some similarities between the two situations. In all cases, the salient feature is that the PES determines the final state distribution of the products, so that measurement of these distributions provides information about the potential energy surfaces of the system.

Photodissociation of open-shell vs. closed-shell molecules

Before discussing the application of photodissociation experiments to free radicals, recall that a free radical is physically stable, but, with rare exceptions, is chemically unstable. Physical stability means that the ground state PES is a potential well, and as such, isolated free radicals are indefinitely stable as long as the well depth is significantly larger than the thermal energy $k_{b} T$. Chemical instability, on the other hand, denotes the fact that free radicals are extremely reactive in the presence of other molecules, often
reacting after a single collision, and must be studied on a timescale shorter than the collision lifetime. The meaning of the word stable is therefore context-sensitive.

While the dynamics occurring on a PES generally do not depend on whether the molecule is closed or open-shell, the potential surfaces themselves are often qualitatively different. This distinction arises for two principal reasons. First, due to their open-shell electronic structure, radicals tend to have low-lying (i.e., $0-5 \mathrm{eV}$) electronic states. Second, closed-shell molecules often dissociate to give two free radicals, for example $\mathrm{CH}_{3} \mathrm{I} \rightarrow \mathrm{CH}_{3}+\mathrm{I}$, or $\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{OH}+\mathrm{OH}$. In this case, the PES for the reverse reaction, radical-radical recombination, typically has no activation barrier. Free radicals, on the other hand, often dissociate to an open-shell and a closed-shell pair of fragments, e.g., $\mathrm{CH}_{2} \mathrm{CHO} \rightarrow \mathrm{CH}_{3}+\mathrm{CO}$, or $\mathrm{CH}_{2} \mathrm{NO}_{2} \rightarrow \mathrm{NO}+\mathrm{CH}_{2} \mathrm{O}$, which implies that the reverse reaction is usually impeded by a barrier representing the energy required to convert a quite content closed-shell molecule into a reactive species. For these reasons, the dissociation energies of free radicals are typically less than for similar closed-shell molecules, and the potential energy surfaces describing closed-shell vs. open-shell dissociation are qualitatively different, leading to different reaction dynamics.

As an example, consider the photodissociation of nitromethane $\left(\mathrm{CH}_{3} \mathrm{NO}_{2}\right)$ vs. the nitromethyl radical $\left(\mathrm{CH}_{2} \mathrm{NO}_{2}\right)$. Upon absorption of a single ultraviolet photon, the only product channel observed in nitromethane dissociation is simple $\mathrm{C}-\mathrm{N}$ bond fission, $\mathrm{CH}_{3} \mathrm{NO}_{2} \rightarrow \mathrm{CH}_{3}+\mathrm{NO}_{2}$. In contrast, the nitromethyl radical shows two different dissociation channels: simple $\mathrm{N}-\mathrm{O}$ bond fission, $\mathrm{CH}_{2} \mathrm{NO}_{2} \rightarrow \mathrm{O}+\mathrm{CH}_{2} \mathrm{NO}$, and a rearrangement channel, $\mathrm{CH}_{2} \mathrm{NO}_{2} \rightarrow \mathrm{NO}+\mathrm{CH}_{2} \mathrm{O}$. This example succinctly demonstrates
how the unpaired electron in a radical may dramatically change the dissociation dynamics compared to a similar closed-shell molecule.

Photofragment translational spectroscopy

The technique employed in these studies is photofragment translational spectroscopy (PTS), originally developed by Wilson and coworkers, ${ }^{5}$ with significant improvements developed over the last 25 years. ${ }^{6.8}$ In this technique, internally cold molecules are dissociated with a photon of known energy $h v$, and the photofragments are detected, almost always by ionization. Although many PTS experiments used fixed frequency lasers, allowing only one or a few choices for the photon energy $h v$, in general it is wise to explore the dependence of the photofragment yield as a function of photon

Figure 2: The PFY spectrum is shown on the right as a function of photon energy.
energy. The photofragment yield (PFY) spectrum obtained such an experiment, depicted schematically in Fig. 2, maps out the position of the electronic states which either predissociate or directly dissociate. In predissociation, the initially excited state is bound, but coupled to another electronic state which is unbound giving rise to narrow
peaks in the PFY spectrum. In contrast, direct dissociation results in a PFY spectrum which has little, if any, structure.

The main thrust of PTS, however, is to measure the translational energy, E_{T}, of the two separating fragments. The energy balance of this process is given by:

$$
\begin{equation*}
E_{\mathrm{T}}=h v-D_{0}-E_{\mathrm{int}}(\mathrm{AB})-E_{\mathrm{int}}(\mathrm{CD}), \tag{2}
\end{equation*}
$$

where D_{0} is the bond dissociation energy, and $E_{\text {int }}$ is the sum of the internal energies (vibrational, rotational, electronic) of each fragment. This process is depicted graphically in Fig. 3, with the resulting translational energy distribution, $P\left(E_{T}\right)$, shown in the upper right. The structure in the distribution is due to the quantized vibrational levels of the products, depicted by the harmonic well orthogonal to the reaction coordinate at the asymptote. If, for some
 energy E_{T}, it can be determined that the internal energies of the products are zero, Eq. (2) gives D_{0} directly. In the present work, the bond strength has been measured for three of the four radicals presented in this dissertation, namely $\mathrm{CH}_{3} \mathrm{O}, \mathrm{HCCO}$, and $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$.

Figure 3: The $P\left(E_{T}\right)$ distribution, shown on the right, with structure due to product vibrational excitation.

In fact, PTS can also measure the angular distribution of fragments with respect to a polarized excitation. To be more precise, the coupled two-dimensional energy and angular distribution of the photofragments, $P\left(E_{\mathrm{T}}, \theta\right)$, can be reduced to two onedimensional distributions by the relation

$$
\begin{equation*}
P\left(E_{\mathrm{T}}, \theta\right) \propto P\left(E_{\mathrm{T}}\right) \bullet\left[1+\beta\left(E_{\mathrm{T}}\right) P_{2}(\cos \theta)\right] \tag{3}
\end{equation*}
$$

where $\beta\left(E_{\mathrm{T}}\right)^{9}$ is the energy dependent anisotropy parameter describing the angular distribution of the fragments. The values of the anisotropy parameter range from $-1 \leq \beta \leq 2$, where the limiting values correspond to a $\sin ^{2} \theta$ or $\cos ^{2} \theta$ distribution of fragments, respectively, and $\beta=0$ is an isotropic distribution.

The anisotropy parameter provides two types of information. First, a positive value of β indicates a parallel transition in which the recoil axis is parallel to the transition dipole moment, while a negative value indicates a perpendicular transition, with the direction of recoil perpendicular to the transition dipole. Second, the anisotropy parameter is reduced if rotational motion of the excited molecule takes place prior to dissociation, and β is therefore related to the dissociative lifetime. For photodissociation of a diatomic molecule, instantaneous fragmentation leads classically to the limiting values of β (i.e., +2 or -1 , depending on whether the transition is parallel or perpendicular), while fragmentation after many rotations of the excited molecule gives the values +0.5 or -0.25 , respectively. Intermediate values of β imply a dissociative lifetime on the order of a rotational period. For polyatomic molecules, the dissociative lifetime also affects β, but there may not be a straightforward relationship between the measured value of β and the lifetime, as discussed in Chapter 5 for the HCCO radical.

Previous photodissociation experiments on radicals

As mentioned above, most photodissociation experiments (and most physical chemistry experiments in general) are performed on closed-shell molecules simply because it is convenient to use a sample which is stable in a gas cylinder or a beaker. Nevertheless, free radicals are ubiquitous in chemistry, especially in high-energy or low-density environments such as combustion and atmospheric chemistry, and it is the purpose of this section to explain how photodissociation of such transient species can be investigated.

There are a few free radicals, such as $\mathrm{O}_{2}, \mathrm{ClO}_{2}, \mathrm{NO}$, and NO_{2}, which are sufficiently chemically stable that traditional photodissociation techniques may be employed to study these systems. However, most free radicals are not amenable to traditional sample handling techniques, and instead must be generated in situ and studied before a collision between the radical and another reactive substance can occur. The latter requirement is generally achieved by conducting the entire study in a vacuum chamber of sufficiently low pressure that the collision probability on the timescale of the experiment is much less than unity. In fact, most modern photodissociation experiments on closed-shell species are conducted in such vacuum chambers, so that the only barrier to extending these studies to radicals is that of generating a sufficiently pure, high density sample of these transient molecules.

Generation of radicals by dissociation of a (closed-shell) precursor molecule requires a rather violent input of energy (e.g., laser photolysis, electric discharge, electron impact), often generating a wide range of species including negative and positive ions and a variety of neutral radicals and chemical reaction products. This single fact is responsible
for the paucity of radical dissociation experiments, because the many species created usually obscure the detection of the one radical of interest. Alternatively, the radical may be formed with so much internal energy that it dissociates spontaneously. Nevertheless, several clever experimentalists have succeeded in studying photodissociation of $\mathrm{CCl}_{3},{ }^{10}$ $\mathrm{CH}_{3},{ }^{11} \mathrm{HCO},{ }^{12,13} \mathrm{CH}_{3} \mathrm{~S},{ }^{14} \mathrm{NCO},{ }^{15}$ and DNF. ${ }^{16}$ In related experiments, fragmentation of other radicals such as $\mathrm{CH}_{3} \mathrm{CO}$ and $\mathrm{C}_{2} \mathrm{H}$ have been studied as secondary processes following the primary photodissociation of a closed-shell molecule. These latter examples are not well-defined because the radicals are born with a broad distribution of internal energies rather than a single energy as achieved by laser excitation. In any case, the methods of radical preparation in these studies were developed on a case-specific basis, and are not generally transferable to other radicals.

The fast radical beam translational spectrometer

As mentioned earlier, the radical production scheme employed in this research is novel because the radicals are produced from negative ions, and may therefore be massselected. The Fast Radical Beam Translational Spectrometer (or FRBM), constructed for these studies by Cyr, Continetti, Metz, and Neumark, ${ }^{17-18}$ is shown in Fig. 4. A complete description of this apparatus is given in the Ph.D. dissertation of Douglas Cyr. ${ }^{19}$ A

Figure 4: The Fast Radical Beam Translational Spectrometer.
conceptual description of the experimental design is presented here, with information specific to particular experiments given in subsequent chapters. Modifications to the apparatus are discussed in Chapter 2.

Ion production begins with a precursor molecule seeded in a carrier gas (e.g., $\mathrm{CH}_{3} \mathrm{OH}$ in 5 atm Ne), and expanded into the source chamber through a pulsed valve operating at $60-100 \mathrm{~Hz}$. Ions are generated in the throat of the ensuing supersonic expansion by one of two methods. In the first method, the free jet is crossed with a 1 keV electron beam, creating low energy secondary electrons which produce negative ions. A newer method, using a pulsed electric discharge to create anions, is described in detail in Chapter 4 and has been used for all the alkoxy radicals in this work. In either method, the ions are cooled by the supersonic expansion to their ground vibrational state and to rotational temperatures of $35-50 \mathrm{~K}$.

The ion bearn passes through a skimmer and is accelerated to high laboratory energy (typically 5-9 keV). The ions are then re-referenced to ground by a potential switch ${ }^{20}$ discussed in Chapter 2. Ions of the desired mass are selected by a Bakker type time-of-flight mass spectrometer and photodetached with a pulsed dye laser to create the corresponding neutral. As shown graphically in Fig. 5, the energy of the detachment laser is just above threshold, so that only radicals in their zero-point vibrational level are produced. Any residual ions are deflected from the beam, leaving a packet of internally cold, contaminant free neutral radicals moving at a high laboratory velocity (typically $10^{7} \mathrm{~cm} / \mathrm{s}$). Note that if there is a significant geometry change from anion to neutral, the Franck-Condon factors governing the photodetachment step may give a low cross section

Figure 5: Potential surfaces of the complete system for radical production and dissociation.
for production of $v=0$ radicals, making the experiments more difficult on a signal-to-noise basis. ${ }^{19}$

A second linearly polarized pulsed dye laser dissociates the radicals, which are detected using one of two microchannel plate (MCP) detectors. The first MCP detector is of traditional design, measuring the PFY spectrum (or time-of-flight distributions). ${ }^{21}$ The second detector, similar to one developed by de Bruijn and Los, ${ }^{22}$ is a time- and position-sensitive (TPS) coincidence wedge- and strip-anode detector ${ }^{18,23}$ used for dissociation dynamics experiments. A schematic side-view of the TPS detector is shown in Fig. 6. Undissociated radicals are prevented from impinging on the detectors by a beam block across the detector center. Neutral fragments are observed directly (i.e., without an ionization step) due to the high kinetic energy of the particles in the laboratory frame. For fragment kinetic energy $>1 \mathrm{keV}$, and fragment mass >12 a.m.u., the detection efficiency is approximately 50% and is independent of mass or chemical composition. ${ }^{24}$

This universal detector is an important aspect of the experimental design allowing many product channels to be simultaneously detected with equal probability. The high detection efficiency is crucial since the density of radicals in the laser interaction region is

Figure 6: Side view of the TPS detector. Arrows indicate the impact position of each photofragment on the first of three microchannel plates (MCP) arranged in a z -stack configuration. The beam block is shown in solid black. Electrons exit the final MCP and spread before impinging on the anode (WSA). The distance between the centroids of the two electron clouds gives the recoil $R_{x y}$.
on the order of $10^{3} / \mathrm{cm}^{3}$. As discussed in Chapter 4, detection of H or D atoms is more difficult than detection of heavier species. An additional advantage of conducting photodissociation experiments in a fast beam is that the laboratory scattering angles of the fragments are very small $\left(\Theta< \pm 1^{\circ}\right)$, giving a high collection efficiency. These favorable kinematics are a direct consequence of the fact that the center-of-mass energy of the beam (typically $8,000 \mathrm{eV}$) is much greater than the relative recoil energy of the two fragments $\left(\approx D_{0} \approx 0-5 \mathrm{eV}\right)$. As a result, collection efficiencies of 100% are routinely achieved, with a detector of radius 20 mm located

1-2 m from the dissociation laser.
Two types of experiments are performed to characterize a given radical dissociation. First, the dissociation laser wavelength is scanned, and the total flux of photofragments arriving at the first MCP detector is monitored. This experiment gives the photofragment yield (PFY) spectrum, mapping out the spectroscopy of the dissociative electronic states. Once the wavelength dependence of process is determined, a second experiment is performed to probe dissociation dynamics using the time- and position-
sensitive MCP detector. In this experiment the position of both photofragments from a single parent radical, and the time difference between their arrival at the detector are measured. The coincidence detection scheme gives significantly better energy resolution (at best $\left.\Delta E_{\mathrm{T}} / E_{\mathrm{T}}=0.7 \%\right)^{25}$ than experiments which detect only one of the fragments. ${ }^{26}$

The spatial and temporal signals from the wedge- and strip-anode are amplified and converted to digital values as described in the dissertation of Douglas Cyr. ${ }^{19}$ The raw data (charge fraction and time-to-amplitude converter output) is converted to the spatial separation of the two fragments (x, y), and time difference between their arrival (Δt, or alternatively, the z coordinate), by means of proportionality factors whose determination is discussed in Chapter 2. The $(x, y, \Delta t)$ values can then be analytically converted to the desired experimental quantities, namely the fragment masses, their relative translational energy, and their scattering angle with respect to the \vec{E} vector of the dissociation laser. The kinematics of the fast beam PTS process shown in Fig. 7 are described by the equations:

$$
\begin{gather*}
m_{\mathrm{AB}}=M \cdot R_{\mathrm{CD}} \frac{\left(1-\frac{v_{0} \Delta t}{L}\right)}{\left\{R_{x y}-\left(\frac{v_{0} \Delta t}{L}\right) R_{\mathrm{CD}}\right\}} \tag{4}\\
E_{\mathrm{T}}=\left(\frac{E_{0}}{L^{2}}\right)\left(\frac{m_{\mathrm{AB}} m_{\mathrm{CD}}}{M^{2}}\right)\left[\left(v_{0} \Delta t\right)^{2}+R_{x y}{ }^{2}\right]\left(1+2 \frac{m_{\mathrm{CD}}-m_{\mathrm{AB}}}{M} \frac{v_{0} \Delta t}{L}\right) \tag{5}\\
\theta=\arctan \left(\frac{R_{x y}}{v_{0} \Delta t}\right) \tag{6}
\end{gather*}
$$

in which $m_{\mathrm{AB}}, m_{\mathrm{CD}}$, and M are the masses of the two fragments and the parent radical, respectively, $R_{x y}=\sqrt{x^{2}+y^{2}}$ is the distance between the two fragment impacts on the

Figure 7: Fast beam kinematics of photodissociation using the time- and position-sensitive detector (TPS). The three dimensional recoil vector is given by $R_{\mathrm{CM}}=\sqrt{R_{x y}^{2}+\left(v_{\mathrm{lab}} \Delta t\right)^{2}}$. detector face, R_{CD} is the distance from the radical beam to fragment CD on the detector face, ν_{0} and E_{0} are the velocity and kinetic energy, respectively, of the parent radical beam, L is the flight length between laser and detector, θ is the scattering angle, and E_{T} is the center-of-mass relative translational energy of the two fragments. The FORTRAN codes that perform this conversion are described in Appendix A.

Comparison of fast beam translational spectroscopy with other techniques

For the sake of perspective, it is worth comparing the fast beam implementation of PTS in this work with other common techniques for studying photodissociation. Stateresolved fragment detection experiments, in which single rovibrational states of one product are detected, can give the rotational distribution, and with more effort the vibrational distribution, of one fragment. ${ }^{4}$ No information on the translational energy distribution or the rovibronic distribution of the other product is obtained, and therefore
these experiments are often conducted close to the photodissociation threshold, where the other product is constrained to have little energy. A closely related technique, photofragment excitation spectroscopy (PHOFEX), ${ }^{2}$ monitors the population dependence of a single rovibrational product state on the energy of the dissociation laser. Highresolution Doppler spectroscopy ${ }^{27}$ goes one step further, using a narrow-bandwidth probe laser to resolve the Doppler profile of one photofragment, thereby obtaining some information on both the translational energy and angular distribution, and consequently a measure of the amount of energy deposited in the undetected fragment. In addition, information on the vector correlation of the recoil velocity with the rotation of the detected fragment can be obtained, lending considerable insight into the dissociation mechanism. Similarly, photofragment imaging ${ }^{28}$ experiments give the spatial image of one state-specifically ionized fragment, yielding a low-resolution measurement of the translational energy and angular distribution for a specific rovibronic state of this product.

All these techniques measure a single rovibronic state of one fragment (via laser induced fluorescence or resonance enhanced multi-photon ionization), enabling one to construct quite detailed information on one or a few of the many possible final product states. One of the drawbacks to these methods is that the detection schemes are specific to each fragment (e.g., NO, CO, I, etc.) and must be revamped each time one wishes to detect a different product. In addition, only a very small fraction (i.e., a single rovibronic level) of the total dissociation products are detected at any one time. In contrast, PTS, as implemented here, is inherently multiplexed, probing all final states, at all scattering angles, of all product channels simultaneously, although resolution of individual product rotational states is not possible. In general, most other techniques take a high-resolution view of a
small part of the dissociation dynamics, while PTS takes a lower-resolution view of the entire picture. Both approaches clearly have their advantages, and together are quite complementary. However, the fast beam PTS approach is certainly a more general technique for radical photodissociation because of its high sensitivity (essential for experiments at densities of $10^{3} / \mathrm{cm}^{-3}$) and universal detection capabilities.

Interpretation of Results

To summarize, all the information from the Fast Radical Beam Translational Spectrometer is given in three types of spectra.

- The spectroscopy of the dissociative excited states is revealed in the photofragment yield (PFY) spectrum.
- The disposal of energy in the products (for each product channel) is contained in the translational energy distribution, $P\left(E_{\mathrm{T}}\right)$.
- The angular distribution for each product channel is given by the anisotropy parameter distribution, $\beta\left(E_{\mathrm{T}}\right)$.

The remaining task is to rationalize these results and develop a dissociation mechanism in a consistent manner by comparison with semi-empirical models, which have the advantage of being easy to implement, or better yet, with classical or quantum mechanical reaction dynamics calculations based on $a b$ initio potential energy surfaces.

Today, the field of photodissociation dynamics has progressed to a point where accurate, full-dimensional $a b$ initio surfaces are available for several triatomic molecules, and the dynamics calculations based on these surfaces can be compared with detailed experimental results. As advances in accurate PES calculations for four, five, and six
atom molecules continue, a similar interplay between experiment and theory promises great insight into these larger systems. At the same time, the experimental approach utilized in the work presented here offers a general technique for the study of free radical dissociation. The availability of these experimental results has already spawned further calculations of the many electronic surfaces responsible for $\mathrm{CH}_{3} \mathrm{O}$ photodissociation, and one hopes that these results will be interesting and useful to other scientists trying to unravel the chemistry of free radicals.

References

${ }^{1}$ R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics and Chemical Reactivity (Oxford, New York, 1987).
${ }^{2}$ C. B. Moore and I. W. M. Smith, J. Phys. Chem. 100, 12848 (1996).
${ }^{3}$ R. Schinke, Photodissociation Dynamics (Cambridge University Press, Cambridge, 1993).
${ }^{4}$ L. J. Butler and D. M. Neumark, J. Phys. Chem. 100, 12801 (1996).
${ }^{5}$ G. E. Busch, J. F. Cornelius, R. T. Mahoney, R. I. Morse, D. W. Schlosser, and K. R. Wilson, Rev. Sci. Instrum. 41, 1066 (1970); G. E. Busch and K. R. Wilson, J. Chem. Phys. 56, 3626 (1972).
${ }^{6}$ A. M. Wodtke and Y. T. Lee, Molecular Photodissociation Dynamics, M. N. R. Ashfold and J. E. Baggot, Eds. (Royal Society of Chemistry, London, 1987), p. 31.
${ }^{7}$ M. N. R. Ashfold, I. R. Lambert, D. H. Mordaunt, G. P. Morley, and C. M. Western, J. Phys. Chem. 96, 2938 (1992).
${ }^{8}$ M. N. R. Ashfold, D. H. Mordaunt, and S. H. S. Wilson, Adv. Photochem. 21, 217 (1995).
${ }^{9}$ R. N. Zare, Mol. Photochem. 4, 1 (1972).
${ }^{10}$ E. J. Hintsa, X. Zhao, W. M. Jackson, W. B. Miller, A. M. Wodtke, and Y. T. Lee, J. Phys. Chem. 95, 2799 (1991).
${ }^{11}$ S. W. North, D. A. Blank, P. M. Chu, and Y. T. Lee, J. Chem. Phys. 102, 792 (1995).
${ }^{12}$ D. W. Neyer, X. Luo, P. H. Houston, and I. Burak, J. Chem. Phys. 98, 5095 (1993), and references therein.
${ }^{13}$ J. D. Tobiason, J. R. Dunlop, and E. A. Rohlfing, J. Chem. Phys. 103, 1448 (1995).
${ }^{14}$ C. W. Hsu, D. L. Liao, Z. X. Ma, P. J. H. Tjossem, and C. Y. Ng, J. Chem. Phys. 97, 6283 (1992).
${ }^{15}$ X. Liu and R. D. Coombe, J. Chem. Phys. 91, 7534 (1989).
${ }^{16}$ J. Chen and P. J. Dagdigian, J. Chem. Phys. 98, 3554 (1993).
${ }^{17}$ R. E. Continetti, D. R. Cyr, R. B. Metz, and D. M. Neumark, Chem. Phys. Lett. 182, 406 (1991).
${ }^{18}$ R. E. Continetti, D. R. Cyr, D. L. Osborn, D. J. Leahy, and D. M. Neumark, J. Chem. Phys. 99, 2616 (1993).
${ }^{19}$ D. R. Cyr, Ph.D. Dissertation, University of California, Berkeley, 1993.
${ }^{20}$ R. E. Continetti, D. R. Cyr, and D. M. Neumark, Rev. Sci. Instrum. 63, 1840 (1992).
${ }^{21}$ D. R. Cyr, R. E. Continetti, R. B. Metz, D. L. Osborn, and D. M. Neumark, J. Chem. Phys. 97, 4937 (1992).
${ }^{22}$ D. P. de Bruijn and J. Los, Rev. Sci. Instrum. 53, 1020 (1982).
${ }^{23}$ C. Martin, P. Jelinsky, M. Lampton, R. F. Malina, and H. O. Anger, Rev. Sci. Instrum. 52, 1067 (1981).
${ }^{24}$ H. Kersten, Microchannel Plate Report, (FOM-Institute for Atomic and Molecular Physics, Amsterdam, 1987)
${ }^{25}$ D. J. Leahy, D. L. Osborn, D. R. Cyr, and D. M. Neumark, J. Chem. Phys. 103, 2495 (1995).
${ }^{26}$ The exception to this statement is the case of H -atom photofragment translational spectroscopy, in which only the H atom is detected, but the energy resolution is exceptional (on the order of $2.3 \mathrm{~cm}^{-1}$) due to favorable kinematics.
${ }^{27}$ J. P. Simons, J. Phys. Chem. 91, 5378 (1987); P. L. Houston, J. Phys. Chem. 91, 5388 (1987).
${ }^{28}$ P. L. Houston, J. Phys. Chem. 100, 12757 (1996).

This chapter discusses improvements to the Fast Radical Beam Photofragment Translational Spectrometer in both experimental design and data analysis. Three major improvements have been accomplished beyond the description of the experiment given in the Ph.D. dissertation of Douglas Cyr. ${ }^{1}$ First, the pulsed discharge source for ion generation has been substantially improved, and is described in detail in Chapter 6. Second, the high-voltage switch used for re-referencing the ions to ground potential has been completely rebuilt and is briefly discussed in this chapter. Finally, the procedure for obtaining the proportionality factors which convert charge-fraction and timing information (from the time- and position-sensitive detector) into x, y, and z spatial information is also presented here.

I. The high voltage switch (a. k. a. the death pulser)

In order to avoid floating either the source region or the detection region of the apparatus at the ion beam voltage (typically $V_{\text {beam }}=5-9 \mathrm{keV}$), a fast MOSFET potential switch is used to re-reference the ion beam to ground potential. The principle of the switch is straightforward. After the ions are accelerated to a potential $V_{\text {beam, }}$, they pass through a 3 mm aperture into a stainless steel cylinder, 25 cm long by 8 cm in diameter, held initially at $V_{\text {cyl }}=V_{\text {beam }}$. While the ions are inside the cylinder, the potential $V_{\text {cyl }}$ is

[^0]dropped rapidly ($\approx 250 \mathrm{~ns}$) to ground. Because there can be no electric field inside a conductor, no force is exerted on the ions inside the cylinder during the switching time.

These ions exit the cylinder through a 3 mm hole with a velocity equal to $\sqrt{\frac{2 V_{\text {beam }}}{m}}$, but referenced to the final potential of V_{cyl}, which is nominally within a few volts of ground.

The design and operation of this home-built switch was presented by Continetti, Cyr, and Neumark. ${ }^{2}$ The original switch consisted of ten 1000 V varistor-bypassed MTP1N100 MOSFET stages in series driven by two Siliconix D469CJ quad MOSFET drivers and was capable of switching up to 8 keV . Although generally stable, certain components failed periodically, necessitating replacement. The layout of the circuit, in which all ten identical stages were individually screwed into the chassis, linked with soldered electrical connections, made troubleshooting and repair a tedious job at best. In addition, the upper limit on $V_{\text {beam }}$ imposed by this switch was around 8 keV . To circumvent both of these limitations, a new switch was constructed based on the same electrical design, but using a modular approach (to facilitate quick identification and repair of faulty components) with sixteen 1000 V MOSFET stages (to allow operation beyond well beyond $V_{\text {beam }}=10 \mathrm{keV}$).

Two improvements were made in the electrical components. First, the MOSFETs were replaced with Harris RFP4N100 N-Channel 1000 V MOSFETs which can switch more current (4.3 A) than the previous transistors. Second, four Teledyne TC4422CPA MOSFET drivers replace the two D469CJ drivers. The TC4422CPAs drive four instead of five stages each, and operate with an "on" voltage of 15 V compared to 12 V , allowing
a more rapid accumulation of the requisite 120 nC of gate charge required to turn on each MOSFET.

Realizing that failure of certain components on the high-voltage stages is inevitable, a modular design was developed in which each stage is constructed on a printed circuit board, as shown in Fig. 1, which is connected via a PC card slot to the rest of the switch. Not only does this design ease the task of troubleshooting, it also allows rapid replacement of a defective state with a spare stage so that data collection may be continued with minimal interruption.

It should be noted that in testing the performance of the switch, the calibration of the high voltage oscilloscope probe used (normally a Tektronix P6015) can affect the appearance of the oscilloscope trace. Under certain conditions the switch may not drop $V_{\mathrm{c}:}$ completely to ground. While this may indicate a defective stage, it may also be an arifact of the probe, and care must be exercised to obtain a reliable diagnostic.

Figure 1: MOSFET card for the high voltage switch. The MOSFET is denoted by (D, G, S), and bypass varistor by MOV. $R_{1}=50 \Omega$, $R_{2}=250 \Omega$.

II. Determination of detector factors

As mentioned in the introduction, several proportionality factors are required to convert the experimentally measured charge-fraction and Δt values from the time- and position-sensitive detector into the three physically useful observables we wish to obtain: the mass ratio of the two photofragments $\frac{m_{1}}{m_{2}}$, the relative translational energy E_{T}, and the angle θ between the center-of-mass recoil vector and \vec{E} of the linearly polarized dissociation laser. The optimization of these proportionality constants, or "factors," by least-squares fitting to data from the dissociation $\mathrm{O}_{2} \rightarrow \mathrm{O}+\mathrm{O}$ was a major advance in our time- and position-sensitive coincidence detection scheme. Prior to this development, we derived factors by covering the microchannel plates with a mask of regularly spaced pinholes, illuminating the mask with ultra-violet radiation to stimulate electron emission, and adjusting the factors by hand until the best correspondence between the observed and true pattern was obtained. Upon joining the experiment, David Leahy recognized that the energy resolution of the experiment at that time (60 meV) was far worse than what one calculates from the $100 \mu \mathrm{~m}$ spatial and 500 ps time resolution of the detector. It is due to his aptitude and perseverance through many months of attacking this problem that we have attained a resolution of 6.8 meV , or $\frac{\Delta E_{\mathrm{T}}}{E_{\mathrm{T}}}=0.6 \%$. I cannot overstate the importance of this increased resolution to the experiments on the $\mathrm{CH}_{3} \mathrm{O}$ radical presented in Chapter 3, and I give David Leahy the credit for this significant advance in our detection scheme.

For each observed coincidence event, the time- and position-sensitive detector records the impact positions of both fragments with an accuracy of about $100 \mu \mathrm{~m}$, while a

time-to-amplitude
converter
(TAC)
simultaneously re-
cords the time interval
between the arrival of the two fragments to
an accuracy of 500 ps .
Together, these measurements yield the center-of-mass translational energy release and the recoil angle of each photodissociation event. For fragments of equal mass
(as in the case of O_{2}), these relationships are given by

$$
\begin{equation*}
E_{\mathrm{T}}=\frac{1}{2} E_{\text {beam }} \frac{R_{x y}^{2}+\left(\mathrm{v}_{\text {beam }} \Delta t\right)^{2}}{L^{2}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta=\arctan \left(\frac{R_{x y}}{\mathrm{v}_{\text {beam }} \Delta t}\right), \tag{2}
\end{equation*}
$$

where $E_{\text {beam }}$ and $v_{\text {beam }}$ are the laboratory energy and velocity of the O_{2} beam, respectively; $R_{x y}$ is the observed recoil distance perpendicular to the beam axis (as measured by the position-sensitive detector); Δt is the time interval between the arrivals of the two photofragments at the detector; and L is length of the drift region.

The fragment impact positions are observed using of a pair of wedge-and-strip anodes that collect the charge from the detector's microchannel plates. ${ }^{3,4}$ A schematic of the wedge- and strip anode pattern is shown in Fig. 1; the actual pattern is considerably denser. This pattern consists of two separate wedge-and-strip anodes (one upper and one lower, which we will label 1 and 2, respectively), comprised of three conductors each ("wedge", "strip" and "zigzag"). These anodes divide the $\sim 10^{7}$ electrons from the microchannel plates between the three conductors in a spatially specific manner. The wedge conductor tapers in the horizontal direction while the strip conductor changes in width along the vertical direction, so that the two electrodes determine the horizontal and vertical position, respectively, of the centroid of the electron cloud. The following equations relate these charge fractions to the impact positions:

$$
\begin{align*}
& x_{1}=a_{1 x} F_{\text {wedge }}+b_{1 x} \tag{3a}\\
& y_{1}=a_{1 y} F_{\text {strip }}+b_{1 y}+c_{1 y} F_{\text {strip }}^{2} \tag{3b}\\
& x_{2}=a_{2 x} F_{\text {wedge }}+b_{2 x} \tag{3c}\\
& y_{2}=a_{2 y} F_{\text {strip }}+b_{2 y}+c_{2 y} F_{\text {strip }}^{2} \tag{3d}
\end{align*}
$$

The Cartesian coordinates x and y are the horizontal and vertical positions, respectively, of the fragment impacts relative to the origin, which we define to lie at the center of the radical beam. The multiplicative constants a_{k} and additive constants b_{k} define
the nearly linear relationship between the anode charge fractions F and the Cartesian coordinates. In addition, we have included a small quadratic term in the y coordinate equations to model an inherent nonlinearity in the detector's charge division. Equations (3a-d) are different and somewhat simpler than those that appear in Ref. 3; for our charge amplification scheme, the cross-talk corrections have proven to be of negligible importance. The crux of the data analysis is the determination of the values of the parameters a_{k}, b_{k} and c_{k}. However, in addition to these ten parameters, four additional parameters are used to obtain maximum energy resolution.

Ideally, the normal to the detector face lies coincident with the main axis of the FRBM, such that the distances from the photodissociation region to all points in a given annulus of the detector face are equal. In practice the detector is aligned by reflecting a He-Ne laser beam off the beam-block of the detector and aligning the back reflection with the main laser beam. To correct for the inevitable slight inaccuracy in this procedure, two additional factors, tilt- x and tilt-y, are used to account for the rotated position of the detector about the two axes orthogonal to the radical beam axis. The final two factors are $T A C-m$ and $T A C-b$, the slope and intercept respectively of the linear relationship between the TAC output and the true Δt value for the dissociation.

While rough guesses for a_{k} and b_{k} can be made based on the anode geometry, in a quantitative analysis the fourteen constants must be determined from the O_{2} dissociation data directly. We accomplish this by treating the constants as parameters in a non-linear least squares fit to the oxygen data, with the merit function

$$
\begin{equation*}
\chi^{2}=\sum_{i} \frac{\left(R_{\mathrm{calc}}-R_{\mathrm{obs}, i}\right)^{2}}{\sigma_{\text {recoil }}^{2}}+\frac{R_{\mathrm{centroid}, i}^{2}}{\sigma_{\text {centroid }}^{2}}, \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{\mathrm{obs}, i}=\left[\left(x_{1}^{i}-x_{2}^{i}\right)^{2}+\left(y_{1}^{i}-y_{2}^{i}\right)^{2}+\left(v_{\mathrm{beam}} \Delta t_{i}\right)^{2}\right]^{1 / 2} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{\text {centroid }, i}=\left\{\left[\left(x_{1}^{i}+x_{2}^{i}\right) / 2\right]^{2}+\left[\left(y_{1}^{i}+y_{2}^{i}\right) / 2\right]^{2}\right\}^{1 / 2} . \tag{6}
\end{equation*}
$$

The index i stands for the independent coincident events. $R_{\text {calc }}$ is the calculated recoil distance given by inverting Eq. 1, using the known oxygen bond strength (5.117 eV , Ref. 5), the photon energy, the parent oxygen beam velocity $\nu_{\text {beam }}$, and the length of the fragment drift region. $R_{\text {calc }}$ is first determined using the kinetic energy release corresponding to the $\left(j_{1}=2, j_{2}=1\right)$ final state; which was the most probable final state from predissociation of the $v^{\prime}=7$ level. ${ }^{6}$ In subsequent iterations, the mean kinetic energy release for each data set is used. $R_{\text {obs }}$ is the length of the observed three dimensional recoil vector between the two fragments, which depends on the adjustable parameters a_{k}, b_{k} and c_{k}. Similarly, $R_{\text {centroid }}$ is the parameter-dependent distance from the center of the radical beam to the parent radical impact (as inferred from the fragment impacts, using conservation of momentum). The constants $\sigma_{\text {recoil }}$ and $\sigma_{\text {centroid }}$ characterize the standard deviations in the recoil measurement $(150 \mu \mathrm{~m})$ and centroid position (1.6 mm , i.e., the radical beam width).

The non-linear least squares fit utilizes a Levenberg-Marquardt algorithm. ${ }^{7}$ The fit is provided with data sets of a few tens of thousands coincident events in the form of the raw charge fractions of Eqs. (3a-d). Following an initial estimate, the adjustable
parameters a_{k}, b_{k}, c_{k}, and the tilt and TAC parameters are optimized by the algorithm to minimize χ^{2}. This results in a set of parameters that yield the high translational energy resolution necessary to resolve the correlated spin-orbit distributions in O_{2} dissociation ${ }^{8}$ and the vibrational product state of the CH_{3} radical in $\mathrm{CH}_{3} \mathrm{O}$ dissociation presented in Chapter 3 and Ref. 9. In general, the oxygen data fits provide an excellent absolute calibration for the position sensitive detector, which is an essential first step for all our photodissociation studies of polyatomic free radicals.

The FORTRAN code XZYLSQ, which accomplishes the fitting procedure described above, is given in Appendix D, along with practical information needed to implement the program.

References

${ }^{1}$ D. R. Cyr, Ph.D. Dissertation, University of California, Berkeley, 1993.
${ }^{2}$ R. E. Continetti, D. R. Cyr, and D. M. Neumark, Rev. Sci. Instrum. 63, 1840 (1992).
${ }^{3}$ R.E. Continetti, D.R. Cyr, D.L. Osborn, D.J. Leahy, and D.M. Neumark, J. Chem. Phys. 99, 2616 (1993).
${ }^{4}$ O.H.W. Siegmund, M. Lampton, J. Bixler, S. Bowyer, and R.F. Malina, IEEE Trans. Nucl. Sci. NS-33, 724 (1986); J.V. Vallerga, G.C. Kaplan, O.H.W. Siegmund, M. Lampton, and R.F. Malina, ibid. NS36, 881 (1989).
${ }^{5}$ P.C. Cosby and D.L. Huestis, J. Chem. Phys. 97, 6109 (1992).
${ }^{6}$ D.J. Leahy, D.R. Cyr, D.L. Osborn, and D.M. Neumark, Chem. Phys. Lett. 216, 503 (1993).
${ }^{7}$ W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vettering, Numerical Recipes (Cambridge University, Cambridge, England, 1986), pp. 523-528.
${ }^{8}$ D. J. Leahy, D. L. Osborn, D. R. Cyr, and D. M. Neumark, J. Chem. Phys. 103, 2495 (1995).
${ }^{9}$ D. L. Osborn, D. J. Leahy, E. M. Ross, and D. M. Neumark, Chem. Phys. Lett. 235, 484 (1995).

Photodissociation spectroscopy and dynamics of the $\tilde{A}\left({ }^{2} A_{1}\right)$ electronic state of $\mathrm{CH}_{3} \mathrm{O}$ and $\mathrm{CD}_{3} \mathrm{O}$.

 3
I. Introduction

The methoxy radical $\left(\mathrm{CH}_{3} \mathrm{O}\right)$ is a remarkable molecule, and has become one of the most widely studied polyatomic free radicals since it was first observed in emission of ethyl nitrate photolysis in $1953 .{ }^{1}$ Methoxy has drawn such intense scrutiny because it serves as a paradigm for a surprisingly large number of fundamental physical and chemical interactions. It is important in the atmosphere due to its participation in smog chemistry ${ }^{2}$ and is an intermediate in the combustion of cool flames of methane, ${ }^{3}$ oxygenated fuels containing $\mathrm{CH}_{3} \mathrm{OH}$, and fuel-lean ignition processes. ${ }^{4}$ Although not yet detected in interstellar gas, it is quite likely that $\mathrm{CH}_{3} \mathrm{O}$ exists in this medium because its close relatives $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{CH}_{2} \mathrm{O}$ are found in abundance. ${ }^{5}$

In the field of photodissociation dynamics, the rich photochemistry of methoxy provides archetypal cases of two distinct dissociation mechanisms. On the ground state surface, dissociation to $\mathrm{H}+\mathrm{CH}_{2} \mathrm{O}$ is impeded by an activation barrier. Stimulated emission pumping (SEP) experiments show narrow resonances both below and above the barrier, with important implications to the long-standing question of mode-specific vs. statistical unimolecular decomposition. ${ }^{6}$ In a preliminary report, ${ }^{7}$ we presented the first unambiguous evidence for predissociation of $\mathrm{CH}_{3} \mathrm{O}$ following excitation of the ultraviolet $\widetilde{A}\left({ }^{2} A_{1}\right) \leftarrow \tilde{X}\left({ }^{2} E\right)$ transition. In contrast with barrier impeded ground state dissociation,
ultraviolet dissociation of methoxy, yielding $\mathrm{CH}_{3}+\mathrm{O}$, provides a textbook example of predissociation via coupling to purely repulsive excited state potential energy surfaces. In this paper we give a full exposition covering our experiments on the photodissociation dynamics of $\mathrm{CH}_{3} \mathrm{O}$ and $\mathrm{CD}_{3} \mathrm{O}$.

Although the literature on $\mathrm{CH}_{3} \mathrm{O}$ is quite extensive, the most germane works, from the viewpoint of photodissociation dynamics, are the spectroscopic ${ }^{6-31}$ and theoretical investigations ${ }^{32-40}$ of the rotational, vibrational, and electronic structure of methoxy. Within the $C_{3 v}$ point group, methoxy's ground state is of E symmetry due to a two-fold electronic degeneracy. Consequently, $\mathrm{CH}_{3} \mathrm{O}$ is subject to vibronic coupling via the JahnTeller effect ${ }^{41,42}$ in which nuclear motion along one (or more) of the e symmetry vibrations splits the electronic degeneracy. In addition, the unpaired electron spin can couple to the magnetic field generated by the electronic orbital motion around the symmetry axis. As a result, methoxy is a prototypical example of the complications that arise when both JahnTeller and spin-orbit effects must be treated together. ${ }^{43}$

The spectroscopy of $\mathrm{CH}_{3} \mathrm{O}$ is far from straightforward, with a substantial amount of controversy surrounding the proper values for the spectroscopic parameters. As noted by Foster et al., ${ }^{23}$ there has been a great deal of confusion in determining the true location of the 0_{0}^{0} band in the $\tilde{A}\left({ }^{2} A_{1}\right) \leftarrow \tilde{X}\left({ }^{2} E\right)$ transition. The confusion stems in part from the fact that all three non-totally symmetric (e) vibrations $\left(v_{4}, v_{5}, v_{6}\right)$ are active in the \tilde{A} state, in addition to the three totally symmetric $\left(a_{1}\right)$ vibrations $\left(v_{1}, v_{2}, v_{3}\right)$. The resulting spectra are rather complex, even at the very low rotational and vibrational temperature achieved in a supersonic jet expansion. Extensive vibrational ${ }^{30}$ and rotational ${ }^{25,30}$ analyses of the $\tilde{A} \leftarrow \tilde{X}$ LIF spectrum give the accepted value of the rovibronic band origin
$v_{0}=31,614.51 \mathrm{~cm}^{-1}$. The vibrational frequencies for several modes have proven even more difficult to evaluate, although two recent investigations appear to have settled all the major discrepancies. ${ }^{30,31}$ In addition, several incongruous determinations of the fluorescence lifetime of the \widetilde{A} state have been reported. Three investigations found $\tau_{\mathrm{FL}}=2.1 \mu \mathrm{~S}$ for $3_{0}^{n}(n=0,1,2),{ }^{17-19}$ a fourth reported $\tau_{\mathrm{FL}}=1.5 \mu \mathrm{~s}$ for $n=0-6,{ }^{12}$ while another investigation found a variation in lifetime as a function of n, with values ranging from $\tau_{\mathrm{FL}}\left(3_{0}^{0}\right)=2.23 \mu \mathrm{~s}$ to $\tau_{\mathrm{FL}}\left(3_{0}^{7}\right)=0.89 \mu \mathrm{~s} .{ }^{22}$ Recent measurements in a supersonic jet give $\tau_{\mathrm{FL}}\left(3_{0}^{6}\right)=0.35-0.38$ and $\tau_{\mathrm{FL}}\left(3_{0}^{7}\right)<0.02 \mu \mathrm{~s} .{ }^{44}$

However, all experimental and theoretical investigations agree that the main progression in the $\tilde{A} \leftarrow \tilde{X}$ transition is v_{3}, the $\mathrm{C}-\mathrm{O}$ stretch. The extended FranckCondon progression in this mode arises from the large change in $\mathrm{C}-\mathrm{O}$ bond length between ground and excited states $\left(r_{\mathrm{CO}}{ }^{\prime}=1.58 \AA \leftarrow r_{\mathrm{CO}}{ }^{\prime \prime}=1.37 \AA\right) .{ }^{25}$ The increase in r_{CO} results from excitation of a $\mathrm{CO} \sigma$-bonding electron to a non-bonding p_{π} orbital localized on the oxygen atom, leaving essentially half a CO bond in the $\widetilde{A}\left({ }^{2} A_{1}\right)$ state.

Among the theoretical studies of methoxy's electronic structure, the pioneering work of Jackels was the first systematic investigation of the many excited electronic states of $\mathrm{CH}_{3} \mathrm{O} .{ }^{33}$ In addition to the bound $\widetilde{X}\left({ }^{2} E\right)$ and $\widetilde{A}\left({ }^{2} A_{1}\right)$ states, he reported three electronic states of ${ }^{2} A_{2},{ }^{4} A_{2}$, and ${ }^{4} E$ symmetry which are purely repulsive along the $\mathrm{C}-\mathrm{O}$ coordinate, shown schematically in Fig. 1. The curve crossings between the lowest of these states and the \widetilde{A} state was predicted to lie at $36,500 \mathrm{~cm}^{-1}$, slightly above the energy of the 3_{0}^{7} transition. More detailed $a b$ initio investigations, including the coupling
strengths between different excited electronic states, have recently been undertaken by Pederson and Yarkony, ${ }^{39}$ and by Cui and Morokuma. ${ }^{40}$

There are at least four photodissociation product channels open to methoxy for the excitation energies used in this study:

Figure 1: Schematic $C_{3 v}$ potential energy surfaces for the methoxy radical as a function of CO bond length.

$$
\begin{align*}
& \mathrm{CH}_{3} \mathrm{O} \tilde{X}\left({ }^{2} E\right) \xrightarrow{h \nu} \mathrm{CH}_{3} \mathrm{O} \tilde{A}\left({ }^{2} A_{1}\right) \rightarrow \\
& \mathrm{CH}_{3} \tilde{\mathrm{X}}\left({ }^{2} A_{2}^{\prime \prime}\right)+\mathrm{O}\left({ }^{3} P\right) \quad \Delta H_{\mathrm{rxn}, 0}=3.807 \pm 0.013 \mathrm{eV} \tag{I}\\
& \mathrm{CH}_{2} \tilde{X}\left({ }^{3} B_{1}\right)+\mathrm{OHX}\left({ }^{2} \Pi\right) \quad \Delta H_{\mathrm{rxn}, 0}=4.10 \pm 0.05 \mathrm{eV} \tag{II}\\
& \mathrm{CH}_{2} \widetilde{a}\left({ }^{1} A_{1}\right)+\mathrm{OHX}\left({ }^{2} \Pi\right) \quad \Delta H_{\mathrm{rxn}, 0}=4.49 \pm 0.05 \mathrm{eV} \tag{III}\\
& \mathrm{CH}_{2} \mathrm{O} \tilde{X}\left({ }^{1} A_{1}\right)+\mathrm{H}\left({ }^{2} S\right) \quad \Delta H_{\mathrm{rxn}, 0}=0.78 \pm 0.07 \mathrm{eV} \tag{IV}
\end{align*}
$$

The energetics are based on the heat of formation of methoxy $\Delta H_{f, 0}^{\circ}\left(\mathrm{CH}_{3} \mathrm{O}\right)=0.29 \pm$ $0.02 \mathrm{eV}(6.8 \pm 0.4 \mathrm{kcal} / \mathrm{mol})$ found in our preliminary investigation, ${ }^{7}$ and the literature values for other species. ${ }^{45}$ Channel (I) is the major product channel for $\mathrm{CH}_{3} \mathrm{O}$ at all photon energies. The formation of $\mathrm{CH}_{2}+\mathrm{OH}$ via channels (II) and/or (III) is observed as a minor product channel in $\mathrm{CH}_{3} \mathrm{O}$ photodissociation. The corresponding channels are also observed with $\mathrm{CD}_{3} \mathrm{O}$. As discussed elsewhere, ${ }^{46}$ detection of H atom loss is difficult though not impossible with our apparatus. For methoxy we have evidence that channel (N) plays a very minor role in methoxy dissociation at high photon energies.

Our experimental results for both isotopes are presented in section III, and analyzed in section IV. In section V we discuss the dissociation dynamics of methoxy in light of the experimental distributions and comment on the possibilities for further investigations.

II. Experimental

The experimental apparatus used in these studies, the fast beam photofragment translational spectrometer (Fig. 2), has been described in detail elsewhere, ${ }^{47,48}$ and only a brief description is given here. In order to produce a well-characterized sample of free radicals, we rely on the fact that open-shell species have positive electron affinities and form stable negative ions. The neutral free radical of interest can then be generated by laser photodetachment of the mass-selected negative ion precursor, and subsequently photodissociated by a second laser:

Consequently, the apparatus in Fig. 2 is divided into two main regions. In the first region

Figure 2: The fast radical beam translational spectrometer. The dotted line separates the radical production section on the left from the photodissociation section on the right. The flight distance L between the dissociation laser and a detector is 0.68 m for the TOF detector, and either 1.00 or 2.00 meters for the TPS detector.
the ions are generated and photodetached, while radical photodissociation occurs in the second region.

Methoxide ions are formed in a 60 Hz pulsed supersonic expansion of $\mathrm{CH}_{3} \mathrm{OH}$ seeded in 5 atm Ne at room temperature. A pulsed electric discharge in the throat of the expansion creates negative ions, ${ }^{49}$ which cool both rotationally and vibrationally during the expansion. The ions are accelerated to $8,000 \mathrm{eV}$ laboratory energy, and mass-selected by the Bakker time-of-flight method. ${ }^{50}$ The output of a pulsed dye laser intersects the ion beam at the appropriate time such that only methoxide ions are photodetached. Furthermore, the detachment energy is just above threshold ${ }^{9}\left(h v=1.71 \mathrm{eV}\right.$ for $\mathrm{CH}_{3} \mathrm{O}, h v$ $=1.66 \mathrm{eV}$ for $\mathrm{CD}_{3} \mathrm{O}$), so that methoxy is created only in its ground vibrational state .

In the second region of the apparatus, a frequency-doubled pulsed dye laser, operating between $35,000-40,500 \mathrm{~cm}^{-1}$ with a bandwidth of $0.3 \mathrm{~cm}^{-1}$, intersects the packet of methoxy radicals. The dissociation laser is calibrated against the absorption spectrum of $\mathrm{I}_{2},{ }^{51}$ with an absolute accuracy of $1 \mathrm{~cm}^{-1}$. Fragments from a photodissociation event are detected directly, without an ionization step, using one of two microchannel plate (MCP) detectors. An aluminum strip across the center of each detector prevents undissociated radicals from striking the MCPs, so that all signal observed is due to nascent photofragments.

Three types of experiments are performed to characterize the photodissociation of methoxy. First, photofragment yield (PFY) spectra are obtained by monitoring the total flux of fragments at the TOF detector, located 0.68 m from the dissociation laser, as a function of laser wavelength, giving spectroscopic information complementary to absorption and fluorescence measurements.

Second, after the PFY spectrum is acquired, the photodissociation laser is fixed at a specific energy, and both fragments arising from a single parent radical are detected in coincidence using a time- and position-sensitive (TPS) wedge- and strip-anode detector, ${ }^{52,53}$ located 2.0 m from the dissociation laser. Due to the favorable kinematics of this fast beam experiment, the data may be directly inverted to produce the 2 -dimensional coupled translational energy and angular distribution, $P\left(E_{\mathrm{T}}, \theta\right)$, where E_{T} is the center-ofmass relative translational energy of the recoiling fragments, and θ is their scattering angle with respect to the electric field of the linearly polarized dissociation laser. This distribution can be separated according to

$$
\begin{equation*}
P\left(E_{\mathrm{T}}, \theta\right)=P\left(E_{\mathrm{T}}\right) \cdot\left\{1+\beta\left(E_{\mathrm{T}}\right) \cdot P_{2}(\cos \theta)\right\} \tag{2}
\end{equation*}
$$

into the angle-independent translational energy distribution, $P\left(E_{\mathrm{T}}\right)$, and the energydependent anisotropy parameter, ${ }^{54} \beta\left(E_{\mathrm{T}}\right)$, which describes the angular distribution of fragments. The high laboratory kinetic energy of the fragments affords an MCP detection efficiency of $\approx 50 \%$, which is independent of the identity of the fragment (except for H or D atoms, as noted below). For the experiments presented here, the translational energy resolution is given by $\Delta E_{\mathrm{T}} / E_{\mathrm{T}}=2.2 \%$. This coincidence detection scheme is only feasible when the mass ratio of the two fragments $m_{1} / m_{2} \leq 5$.

Because of this restriction, detection of channel (IV) requires a different approach. The third mode of operation is a non-coincidence experiment, in which the time-of-flight of the photofragments is recorded by digitizing the signal from the TOF detector in 1 ns time bins. ${ }^{46}$ The observable is a projection of the 3-D velocity distribution onto the radical
beam axis, averaging out much of the detail which is present in the full $P\left(E_{\mathrm{T}}, \theta\right)$ distribution. In return, this sacrifice of detail allows us to detect hydrogen atom loss channels. Given sufficient data, a Monte Carlo forward convolution routine can be implemented to determine translational energy and angular distributions which are consistent with the TOF data. In practice, the experiment is much more sensitive to D atoms than H atoms, and this experiment has only been performed for $\mathrm{CD}_{3} \mathrm{O}$. Even for D atoms, the detection efficiency of $\approx 8 \%$ is significantly reduced from that of "heavy" fragments such as CH_{3}.

III. Results

A. Photofragment Yield spectra of $\mathrm{CH}_{3} \mathrm{O}$ and $\mathrm{CD}_{3} \mathrm{O}$

The PFY spectrum shown in Fig. 3 is the first direct observation of photodissociation in the $\widetilde{A}\left({ }^{2} A_{1}\right) \leftarrow \widetilde{X}\left({ }^{2} E\right)$ transition of methoxy, ${ }^{7}$ and also represents the first spectroscopic transitions observed for $h v>37,300 \mathrm{~cm}^{-1}$. The spectrum is composed of two prominent vibrational progressions superimposed on a small but finite continuum of photofragment signal. No signal was observed below $35,300 \mathrm{~cm}^{-1}$. Rotational resolution was not a priority in this study, and although it has been resolved, such spectra are very congested, in part due to the estimated rotational temperatures of $35-50 \mathrm{~K}^{52,55}$ Therefore a relatively large laser step size of $\approx 6 \mathrm{~cm}^{-1}$ was adopted to allow increased signal averaging at each photon energy. However, because of the underlying rotational structure, each individual scan was offset slightly in energy from the previous data in a given scan range in order to average over rotational features, which might otherwise
provide spurious structure since the laser step size is larger than the laser bandwidth ($0.3 \mathrm{~cm}^{-1}$).

The two progressions in Fig. 3 have a spacing of $\approx 600 \mathrm{~cm}^{-1}$, which can be identified with progressions involving v_{3}, the CO stretch. The CO stretching mode also

Figure 3: Photofragment yield spectrum of $\mathrm{CH}_{3} \mathrm{O}$. The two quantum numbers for each peak in the $3_{0}^{n} e_{0}^{1}$ progression refer to the values of n if the e symmetry mode is v_{5} or v_{6}. The $60 \mathrm{~cm}^{-1}$ spin-orbit spliting between the ${ }^{2} E_{P}, P=3 / 2,1 / 2$ levels of the \tilde{X} state is shown.
dominates the absorption and LIF spectra, where it has a fundamental frequency of $v_{3}=662 \mathrm{~cm}^{-1} .{ }^{30}$ The progressions are assigned as the pure CO stretch, $3_{0}^{n}(n=6-13)$, and a combination band $3_{0}^{n} 6_{0}^{1}(n=5-10)$, which involves one quantum of the non-totally symmetric methyl rock vibration. The assignment differs from that presented in our preliminary investigation, ${ }^{7}$ and is discussed in section IV.A. On a finer scale, each peak shows a splitting of approximately $60 \mathrm{~cm}^{-1}$, corresponding to the spin-orbit splitting between the ${ }^{2} E_{3 / 2}$ and ${ }^{2} E_{1 / 2}$ components of the ground electronic state. Both spin components are present because each represents an allowed transition in the
photodetachment of $\mathrm{CH}_{3} \mathrm{O}^{-}\left({ }^{1} A_{1}\right)$. However, the "hot" spin-orbit distribution does not imply a hot vibrational distribution. In fact, the photoelectron spectrum of $\mathrm{CH}_{3} \mathrm{O}^{-}$ (acquired on a different apparatus but with the identical ion source) shows no hot bands, implying that all the ions are in their vibrational ground state. ${ }^{56}$ To aid in comparison with LIF spectra ${ }^{13,16,23-28,30}$ of jet-cooled methoxy, which probed only transitions from the lower ${ }^{2} E_{3 / 2}$ component of the ground state, the vibrational combs in Fig. 3 are centered on these transitions.

Figure 4: Photofragment yield spectrum of $\mathrm{CD}_{3} \mathrm{O}$.
Figure 4 shows the corresponding PFY spectrum for the $\mathrm{CD}_{3} \mathrm{O}$ radical. The general features of the spectrum are analogous to $\mathrm{CH}_{3} \mathrm{O}$, i.e., 3_{0}^{n} is the main progression and is accompanied by a combination band. However, the continuum signal underneath the vibrational structure is more intense at lower energies for $\mathrm{CD}_{3} \mathrm{O}$ than for $\mathrm{CH}_{3} \mathrm{O}$. In addition, the combination band observed for $\mathrm{CD}_{3} \mathrm{O}$ is assigned to a different progression, $3_{0}^{n} 2_{0}^{1}$, as discussed in Section IV.A.

B. Translational energy and angular distributions

The photofragment translational energy distributions, $P\left(E_{\mathrm{T}}\right)$, arising from $\mathrm{CH}_{3} \mathrm{O}$ and $\mathrm{CD}_{3} \mathrm{O}$, are given in Figs. 5 and 6 for excitation of several vibrational levels shown in the PFY spectra of Fig. 3 and 4, respectively. The translational energy is binned in intervals of 10 meV . For photon energies $h v<37,500 \mathrm{~cm}^{-1}$, all signal arises from simple $\mathrm{C}-\mathrm{O}$ bond fission, i.e., channel (I). It is obvious that most of the available energy is deposited into translation of the recoiling fragments, because the distributions peak near the maximum translational energy available, ${ }^{7}$ as denoted by the dashed vertical line in each distribution of Figs 5 and 6. The most striking feature in the $\mathrm{CH}_{3} \mathrm{O} P\left(E_{\mathrm{T}}\right)$ distributions is the progression with a spacing of $\approx 74 \mathrm{meV}\left(600 \mathrm{~cm}^{-1}\right)$, which is easily seen in the 3_{0}^{n} data sets. As detailed in Section IV.B, these features arise from excitation of the v_{2} umbrella mode of the CH_{3} fragment. Note that the vibrational features are much less distinct in the 3_{0}^{6} and $3_{0}^{n} 6_{0}^{1}$ bands.

In the $\mathrm{CD}_{3} \mathrm{O} P\left(E_{\mathrm{T}}\right)$ distributions (Fig. 6), most of the available energy again goes into product translation, with a product vibrational progression of $\approx 57 \mathrm{meV}\left(460 \mathrm{~cm}^{-1}\right)$ observed, corresponding to excitation of the v_{2} umbrella mode in CD_{3} photofragment. The most surprising results in Fig. 6 are the product state distributions observed when the $3_{0}^{n} 2_{0}^{1}$ combination band is excited. In section IV.B we will show that these $P\left(E_{\mathrm{T}}\right)$ distributions are the result of a bimodal distribution in the v_{2} mode of CD_{3}, with the two most intense peaks corresponding to of $v_{2}=0$ and $v_{2}=2$. Note the stark contrast between the distributions arising from $3{ }_{0}^{n} 2_{0}^{1}$ excitation of $\mathrm{CD}_{3} \mathrm{O}$ and those arising from $3_{0}^{n} 6_{0}^{1}$ excitation of $\mathrm{CH}_{3} \mathrm{O}$.

Figure 5: $P\left(E_{\mathrm{T}}\right)$ distributions for $\mathrm{CH}_{3} \mathrm{O}$. Circles show $\mathrm{CH}_{3}+\mathrm{O}$ data, crosses show $\mathrm{CH}_{2}+\mathrm{OH}$ data, while the line represents the fit to $\mathrm{CH}_{3}+\mathrm{O}$ discussed in the text. Thermodynamic thresholds are given for $\mathrm{CH}_{3}+\mathrm{O}(---), \mathrm{CH}_{2} \widetilde{X}\left({ }^{3} B_{1}\right)+\mathrm{OH}(---)$, and $\mathrm{CH}_{2} \widetilde{a}\left({ }^{1} A_{1}\right)+\mathrm{OH}$ $(----)$. The spin-orbit levels of $\mathrm{O}\left({ }^{3} P_{j}\right)$ are shown in the 3_{0}^{7} panel.

All of the $P\left(E_{\mathrm{T}}\right)$ distributions presented arise from excitation of the ${ }^{2} E_{3 / 2}$ level of the \tilde{X} state. Excitation from the ${ }^{2} E_{1 / 2}$ levels exhibits identical behavior, which is to be expected since the level excited in the $\widetilde{A}\left({ }^{2} A_{1}\right)$ state is identical. In addition, $P\left(E_{\mathrm{T}}\right)$ distributions acquired at three different photon energies within the rotational envelope of the 3_{0}^{8} band of $\mathrm{CH}_{3} \mathrm{O}$ show no significant differences. Therefore, further investigation of

Figure 6: $P\left(E_{\mathrm{T}}\right)$ distributions for $\mathrm{CD}_{3} \mathrm{O}$. The legend is identical to Fig. 5.
the dependence of the photodissociation dynamics on the excited state rotational level was not pursued.

For $h v>37,500 \mathrm{~cm}^{-1}$, the structured features in the $P\left(E_{\mathrm{T}}\right)$ distributions arising from $\mathrm{C}-\mathrm{O}$ bond fission remain, but a new feature is observed in both isotopes for $E_{\mathrm{T}}<0.5$ eV which is due to production of $\mathrm{CH}_{2}+\mathrm{OH}\left(\mathrm{CD}_{2}+\mathrm{OD}\right)$. The evidence for this new

Figure 7: Photofragment mass spectrum exciting 3_{0}^{13} of $\mathrm{CH}_{3} \mathrm{O}(-)$ and 3_{0}^{10} of $\mathrm{CD}_{3} \mathrm{O}(--)$.
Note that for $E_{\mathrm{T}}>0.5 \mathrm{eV}$, the deuterium isotope has the broader FWHM, implying fragmentation to channel (D, while for $E_{\mathrm{T}}<0.5 \mathrm{eV}$ the hydrogen isotope has the broader FWHM, implying fragmentation to channels (II) and/or (III). The peak heights are normalized to unity and do not represent branching ratios.
channel is shown in Figure 7, which gives the product mass spectra of $\mathrm{CH}_{3} \mathrm{O}$ and $\mathrm{CD}_{3} \mathrm{O}$ for 3_{0}^{13} and 3_{0}^{10} excitation respectively, divided into contributions for $E_{\mathrm{T}}>0.5 \mathrm{eV}$ and $E_{\mathrm{T}}<0.5 \mathrm{eV}$. Note that for $\mathrm{CD}_{3} \mathrm{O}$, the two fragments have masses 16 and 18 regardless of whether channel $(I)\left(\mathrm{CD}_{3}+\mathrm{O}\right)$ or channel $(I I) /(I I I)\left(\mathrm{CD}_{2}+\mathrm{OD}\right)$ is produced, resulting in an identical product mass spectrum regardless of the branching ratio of these two channels. In $\mathrm{CH}_{3} \mathrm{O}$, the analogous decay pathways have product masses 15 and 16 , or 14 and 17, respectively, such that formation of channel (I) should give rise to a narrower peak for $\mathrm{CH}_{3} \mathrm{O}$ than for $\mathrm{CD}_{3} \mathrm{O}$, while channel (II)/(III) products will give a broader peak for $\mathrm{CH}_{3} \mathrm{O}$ than for $\mathrm{CD}_{3} \mathrm{O}$. From these observations, the only consistent conclusion is that channel (I) products dominate for $E_{\mathrm{T}}>0.5 \mathrm{eV}$, while channel (II) / (III) products dominate when $E_{\mathrm{T}}<0.5 \mathrm{eV}$, as shown by the legend in Fig. 7.

The branching ratio of $\mathrm{CH}_{3}+\mathrm{O}: \mathrm{CH}_{2}+\mathrm{OH}$ increases with photon energy, and is 3:1 for 3_{0}^{13}. The same trend occurs in $\mathrm{CD}_{3} \mathrm{O}$, where the extreme case of excitation at $h v=40,230 \mathrm{~cm}^{-1}$ results in a branching ration $\mathrm{CD}_{3}+\mathrm{O}: \mathrm{CD}_{2}+\mathrm{OD}$ of $\approx 1: 1$, as shown in Fig. 6.

In all the data sets acquired for methoxy, the anisotropy parameter $\beta\left(E_{\mathrm{T}}\right)$ is independent of E_{T}. For $\mathrm{CH}_{3} \mathrm{O}$, the 3_{0}^{n} transitions show angular distributions which are isotropic to within experimental error, while the $3_{0}^{n} 6_{0}^{1}$ transitions are slightly anisotropic, described by $\beta=0.4 \pm 0.1$ for the transition at $36,268 \mathrm{~cm}^{-1}$, and $\beta=0.3 \pm 0.1$ for the transition at $36,842 \mathrm{~cm}^{-1}$ in Fig. 5. In $\mathrm{CD}_{3} \mathrm{O}$, all the transitions give isotropic angular distributions within experimental error.

C. Non-coincidence time-of-flight distributions

As mentioned in the experimental section, a non-coincidence experiment must be performed in order to assess the importance of the hydrogen atom loss pathway, channel (IV). In our preliminary work on methoxy, we reported a branching ratio for channel (IV) in $\mathrm{CD}_{3} \mathrm{O}$ of $2 \%_{-1}^{+5}$, and $10 \%_{-5}^{+10}$ for the 30 and 30 bands respectively. ${ }^{7}$ The experiments were repeated recently, and the data again shows evidence of D atom loss from $\mathrm{CD}_{3} \mathrm{O}$, but with less intensity than our earlier data. Based on our experience with photodissociation of the vinoxy radical, in which D atom loss is a major channel, ${ }^{46}$ it appears that the branching ratio for $\mathrm{CD}_{2} \mathrm{O}+\mathrm{D}$ is likely smaller than the values reported previously, representing no more than 5% of the branching ratio at 3_{0}^{10}. In any event, this decay channel seems to be of minor importance in methoxy, at least for the photon energy range used in this experiment.

IV. Analysis

A. Photofragment Yield spectra of $\mathrm{CH}_{3} \mathrm{O}$ and $\mathrm{CD}_{3} \mathrm{O}$

The rotational term value of the $\tilde{A}\left({ }^{2} A_{1}\right) \leftarrow \tilde{X}\left({ }^{2} E\right)$ transition in $\mathrm{CH}_{3} \mathrm{O}$ was given by Liu et al. ${ }^{25}$ as $31,614.51 \mathrm{~cm}^{-1}$ from rotational analysis of the combined LIF and microwave ${ }^{14}$ data. The effective 0_{0}^{0} transition, measured from the lowest level of the ${ }^{2} E_{3 / 2}$ component of the ground state, is $31,644.6 \mathrm{~cm}^{-1}$; it is convenient to use this value when comparing the vibronically resolved $\widetilde{A}\left({ }^{2} A_{1}\right) \leftarrow \widetilde{X}\left({ }^{2} E_{32}\right)$ components in our PFY spectra with jet-cooled LIF experiments (in which all transitions originate in the ${ }^{2} E_{3 / 2}$ component).

The significant increase in CO bond length for the $\tilde{A} \leftarrow \tilde{X}$ transition gives rise to an extended Franck-Condon progression in v_{3} for both absorption and LIF measurements, and it is reasonable to assume that the same progression will dominate the PFY spectrum. While fluorescence is observed in $\mathrm{CH}_{3} \mathrm{O}$ up to $\approx 37,000 \mathrm{~cm}^{-1}$, spectroscopic assignments from LIF are complicated in this energy range due to spectral congestion and Fermi resonances. In our previous analysis of the PFY spectrum of $\mathrm{CH}_{3} \mathrm{O},{ }^{7}$ we assigned the two progressions shown in Fig. 3 as 3_{0}^{n} and $3_{0}^{n} 5_{0}^{1}$, where the identity of the latter progression was the only feasible assignment based on the accepted vibrational frequencies of the \widetilde{A} state at that time. ${ }^{23}$ Due to a recent reassignment ${ }^{30}$ of the v_{6} fundamental frequency in the \tilde{A} state, (previously $595 \mathrm{~cm}^{-1}$, currently $929.5 \mathrm{~cm}^{-1}$), it is unclear from the peak positions alone whether the combination band we observe in the PFY spectrum of $\mathrm{CH}_{3} \mathrm{O}$ arises from the $v_{5}\left(1,403 \mathrm{~cm}^{-1}\right)$ or the v_{6} mode. The ambiguity arises because the $3{ }_{0}^{n} 5_{0}^{1}$ and $3_{0}^{n+1} 6_{0}^{1}$ progressions have nearly identical frequencies. However, our dynamics results discussed in section V.B.1, together with recent LIF results, ${ }^{44}$ suggest that the combination band observed in dissociation involves the v_{6} methyl rocking mode rather than ν_{5}.

We assign the lowest energy dissociative transition as 3_{0}^{6}, corresponding to an energy $3,775 \mathrm{~cm}^{-1}$ above the zero-point level of the \tilde{A} state. The assignment of the main progression as purely 3_{0}^{n} is complicated because of the Fermi resonance between v_{2} and $2 v_{3}$ in the \tilde{A} state, discussed further in section V. Based on the most recent rotationally resolved LIF data, ${ }^{30}$ the 3_{0}^{6} and $36_{0}^{5} 6_{0}^{1}$ transitions occur at 35,437 and $35,673 \mathrm{~cm}^{-1}$ respectively, compared with the two lowest transitions in our PFY spectrum at 35,419 and
$35,666 \mathrm{~cm}^{-1}$. The comparison of LIF with PFY transition frequencies agrees to within experimental uncertainty when one considers that our rotational temperature $(35-50 \mathrm{~K})$ is greater than in the LIF spectra (5 K), displacing the band maxima (which we measure) from the true rovibronic origin. In addition, our laser step size of $\approx 6 \mathrm{~cm}^{-1}$ prevents us from determining band maxima more precisely than this value.

The PFY spectrum of $\mathrm{CD}_{3} \mathrm{O}$ (Fig. 4) shows some interesting differences with that of $\mathrm{CH}_{3} \mathrm{O}$. Assignment of the $3{ }_{0}^{n}$ progression is straightforward, due to the small isotope shift in this mode $\left(\nu_{3}=663 \mathrm{~cm}^{-1}\right) .{ }^{23}$ However, the combination band we observe is more difficult to assign. While it is reasonable to assume that the same $3_{0}^{n} 6_{0}^{1}$ progression found in $\mathrm{CH}_{3} \mathrm{O}$ will be active in $\mathrm{CD}_{3} \mathrm{O}$, this assignment gives poor agreement with the data. The v_{5} fundamental in $\mathrm{CD}_{3} \mathrm{O}$ is reported as $1,047 \mathrm{~cm}^{-1}, 23$ and we estimate the v_{6} fundamental as $693 \mathrm{~cm}^{-1}$ (based on the measured isotope shift in v_{5}). From our observation of the 3_{0}^{6} transition at $35,404 \mathrm{~cm}^{-1}$, we expect the $3{ }_{0}^{6} 5_{0}^{1} \operatorname{transition~at~} \approx 36,451 \mathrm{~cm}^{-1}$, which is in fact a minimum between two peaks in Fig. 4, and the $33_{0}^{6} 6_{0}^{1}$ transition at $\approx 36,097 \mathrm{~cm}^{-1}$, which lies on the blue edge of the 3_{0}^{7} transition. By contrast, the v_{2} fundamental $\left(\mathrm{CD}_{3} \mathrm{O}\right.$ umbrella) is $971 \mathrm{~cm}^{-1}$, from which the $3_{0}^{6} 2_{0}^{1}$ transition is predicted at $\approx 36,375 \mathrm{~cm}^{-1}$, in better agreement with the first peak at $36,330 \mathrm{~cm}^{-1}$ in the strong combination band of $\mathrm{CD}_{3} \mathrm{O}$. Therefore we assign the combination band in the PFY spectrum of $\mathrm{CD}_{3} \mathrm{O}$ as $3_{0}^{n} 2_{0}^{1}$, as corroborated by the dissociation dynamics discussed in section V.B. 2.

B. Translational energy distributions

1. $\mathrm{CH}_{3} \mathrm{O}$

Analysis of the $P\left(E_{\mathrm{T}}\right)$ distributions will focus primarily on the $\mathrm{CH}_{3}+\mathrm{O}$ product channel, for which the most detailed information is obtained. The main goals of the analysis are to determine: (i) the best value of the bond dissociation energy $D_{0}\left(\mathrm{CH}_{3}-\mathrm{O}\right)$, (ii) the CH_{3} fragment vibrational distribution, and (iii) a measure of rotational excitation of the CH_{3} fragment. The analysis results are unchanged from those presented previously, and a fuller description of the analysis is given in this section.

The balance of energy for photodissociation of methoxy is given by

$$
\begin{equation*}
h v+E_{\mathrm{int}}\left(\mathrm{CH}_{3} \mathrm{O}\right)=D_{0}\left(\mathrm{CH}_{3}-\mathrm{O}\right)+E_{\mathrm{T}}+E_{\mathrm{V}}\left(\mathrm{CH}_{3}\right)+E_{\mathrm{R}}\left(\mathrm{CH}_{3}\right)+E_{\mathrm{SO}}\left(\mathrm{O}^{3} \mathrm{P}_{j}\right) \tag{3}
\end{equation*}
$$

where E_{rt} is the most probable rotational energy of the parent radical, E_{V} and E_{R} are the product vibrational and rotational energy, and $E_{\text {SO }}$ is the spin-orbit energy of the oxygen atom. Based on a rotational temperature of 50 K , we estimate $E_{\text {int }}\left(\mathrm{CH}_{3} \mathrm{O}\right)=35 \mathrm{~cm}^{-1}$. We can determine D_{0} since we measure E_{T} directly, but only if we can locate an energy in the $P\left(E_{\top}\right)$ distribution for which the last three terms of Eq. (3) are zero. The steep falloff in intensity on the high energy side of each distribution in Fig. 5 is evidence for this thermodynamic limit, in which all the available energy goes into product translation, forming $\mathrm{CH}_{3}(v=0, J=0)+\mathrm{O}\left({ }^{3} P_{2}\right)$. For each data set we obtain an independent estimate of D_{0} by extrapolating to the energy where the $P\left(E_{\mathrm{T}}\right)$ distribution reaches zero
intensity. An average of these thresholds, deconvoluted from the experimental resolution, is used for the parameter D_{0} in the fitting procedure discussed below.

In order to determine the product vibrational distributions, we fit the data to a set of rotational / spin-orbit distribution functions separated by the accurately known term energies of the CH_{3} umbrella mode. ${ }^{57}$ The distribution functions, $f_{n}\left(E_{\mathrm{T}}\right)$, are nearly Gaussian in shape, with an asymmetric tail extending to lower translational energy (i.e., towards higher rotational energy). The shape of this function is identical for every vibrational peak in a given spectrum. The model distribution, $F\left(E_{\mathrm{T}}\right)$ is given by:

$$
\begin{equation*}
F\left(E_{\mathrm{T}}\right)=\sum_{n=0}^{n^{\prime}} \alpha_{n} f_{n}\left\{E_{\mathrm{T}}-\left(h v-D_{0}-n \omega_{2}-\Delta\right) ; \Gamma\right\} \tag{4}
\end{equation*}
$$

Here n labels the number of quanta in the $\mathrm{CH}_{3} \nu_{2}$ umbrella mode, Γ is the FWHM of the combined rotational / spin-orbit envelope and instrumental resolution, and Δ is the energy difference between the maximum possible E_{T} for each $n\left\{E_{\mathrm{T}}{ }^{\max }(n)=h v-D_{0}-n \omega_{2}\right\}$ and the peak of the nth rotational distribution function.

The coefficients α_{n} give the CH_{3} product vibrational distribution, while the instrumental resolution can be deconvoluted from the width Γ to give an indication of the energy balance between the last two terms of Eq. (3). ${ }^{58}$ The solid line in Fig. 5 shows the best non-linear least squares fit to each data set, with the results given in Table I. We note that the fits are sensitive to the strong negative anharmonicity in the ν_{2} mode of CH_{3}, confirming our assignment that the highest energy peak in each spectrum corresponds to $v_{2}=0$.

The third column of Table I shows the FWHM of the rotational envelope in meV for two limiting cases. The larger values fit the data if it is assumed that all the O atoms are produced in their ${ }^{3} P_{2}$ ground state, while the smaller value assumes a statistical 5:3:1 population of the ${ }^{3} P_{2: 1: 0}$ spin-orbit states. The magnitude of the spin-orbit splittings are shown in the 3_{0}^{7} panel of Fig. 5. Both limits reproduce the data well, implying that this data is not sufficiently sensitive to distinguish between the two cases.

Fitting all the data sets for $\mathrm{CH}_{3} \mathrm{O}$ gives the best value of $D_{0}\left(\mathrm{CH}_{3}-\mathrm{O}\right)=3.807 \pm$ 0.013 eV . From the known heats of formation of CH_{3} and $\mathrm{O},{ }^{45}$ we obtain the heat of formation $\Delta H_{f, 0}^{\circ}\left(\mathrm{CH}_{3} \mathrm{O}\right)=0.29 \pm 0.02 \mathrm{eV}(6.8 \pm 0.4 \mathrm{kcal} / \mathrm{mol})$. Additional thermodynamic quantities are derived from this value in Ref. 7.

Transition	$h v\left(\mathrm{~cm}^{-1}\right)$	FWHM^{a} (meV)	$\left\langle E_{\mathrm{V}}\right\rangle^{b}$ (meV)	$v=0$	$v=1$	$v=2$	$v=3$	$v=4$	$v=5$
3_{0}^{6}	35,419	$68 / 63$	12	84	14	1	0	0	0
3_{0}^{7}	36,037	$47 / 39$	14	82	16	1	0	0	0
3_{0}^{8}	36,619	$50 / 41$	26	67	28	3	1	0	0
3_{0}^{9}	37,205	$53 / 43$	44	52	40	7	1	0	0
3_{0}^{10}	37,774	$53 / 43$	73	35	45	16	4	1	0
3_{0}^{13}	39,384	$73 / 70$	179	19	15	20	28	14	4
$3_{0}^{5} 5_{0}^{1}$	36,268	$53 / 45$	10	87	11	1	0	0	0
$3_{0}^{6} 5_{0}^{1}$	36,842	$58 / 50$	14	80	17	1	0	0	0

Table I: Product branching ratio for $\mathrm{CH}_{3} \mathrm{O} \rightarrow \mathrm{CH}_{3}+\mathrm{O}$.

[^1]Finally, we consider product state distributions for channels (II) and (III), producing $\mathrm{CH}_{2}+\mathrm{OH}$, which are observed in the energy range $E_{\Upsilon}<0.5 \mathrm{eV}$ upon excitation of 3_{0}^{10} and 3_{0}^{13}. While there is no reproducible vibrational structure in this data, we can speculate on the relative importance of $\mathrm{CH}_{2} \widetilde{X}\left({ }^{3} B_{1}\right)$ vs. $\widetilde{a}\left({ }^{1} A_{1}\right)$. Referring to Fig. 5, any data with $E_{\mathrm{T}}>E_{\mathrm{T}}^{\max }$ (III) can only be due to fragmentation via channel (II). For $E_{\mathrm{T}}<E_{\mathrm{T}}^{\max }$ (III), both channels can contribute, but the significant rise in the signal concurrent with the opening of the electronically excited methylene channel implies that channel (III) is the major source of $\mathrm{CH}_{2}+\mathrm{OH}$.

Transition	$h v\left(\mathrm{~cm}^{-1}\right)$	FWHM^{c} (meV)	$\left\langle E_{\mathrm{v}}\right\rangle^{d}$ (meV)	$v=0$	$v=1$	$v=2$	$v=3$	$v=4$	$v=5$
3_{0}^{6}	35,404	80	62	37	38	14	7	4	0
3_{0}^{7}	35,996	47	48	39	46	10	4	1	0
3_{0}^{8}	36,590	51	65	28	47	17	5	2	1
3_{0}^{9}	37,119	52	70	25	43	23	7	2	0
3_{0}^{10}	37,679	63	88	18	39	28	10	4	1
$3_{0}^{6} 2_{0}^{1}$	36,330	57	74	43	11	31	11	4	0
$3_{0}^{7} 2_{0}^{1}$	36,934	51	69	47	11	27	12	3	0
$3_{0}^{8} 2_{0}^{1}$	37,516	52	79	41	17	20	17	4	1

Table II: Product branching ratio for $\mathrm{CD}_{3} \mathrm{O} \rightarrow \mathrm{CD}_{3}+\mathrm{O}$.

[^2]
2. $C D_{3} O$

A similar data analysis is undertaken for the $C D_{3}+O$ product channel in the deuterated species, with the results given in Table II. Deuteration lowers the frequency of the methyl radical umbrella mode from 606 to $458 \mathrm{~cm}^{-1},{ }^{59}$ which explains the less resolved vibrational structure observed in the top two panels of Fig. 6. Two important differences are observed in comparison to $\mathrm{CH}_{3} \mathrm{O}$ dissociation. First, for a given level of excitation in the 3_{0}^{n} progression, the CD_{3} vibrational distributions are substantially hotter than those observed for CH_{3}. Second, the vibrational distributions for the $3_{0}^{n} 2{ }_{0}^{1}$ series are bimodal, with the population of $v_{2}=0$ and $v_{2}=2$ always greater than that for $v_{2}=1$. The origin of these effects will be discussed in the next section. Fitting all the data sets for $\mathrm{CD}_{3} \mathrm{O}$ gives the best value of $D_{0}\left(\mathrm{CD}_{3}-\mathrm{O}\right)=3.85 \pm 0.02 \mathrm{eV}$, and therefore $\Delta H_{f, 0}^{\circ}\left(\mathrm{CD}_{3} \mathrm{O}\right)=0.16 \pm$ $0.04 \mathrm{eV}(3.7 \pm 0.9 \mathrm{kcal} / \mathrm{mol}) .{ }^{60}$ Note the significant difference of $0.13 \mathrm{eV}(3.1 \mathrm{kcal} / \mathrm{mol})$ compared to the heat of formation of $\mathrm{CH}_{3} \mathrm{O}$.

V. Discussion

A. Photofragment Yield spectra of $\mathbf{C H}_{3} \mathrm{O}$ and $\mathrm{CD}_{3} \mathrm{O}$

One of the important conclusions from the PFY spectrum is that, within our detection limits, $\mathrm{CH}_{3} \mathrm{O}$ does not dissociate for photon energies below the 3_{0}^{6} transition, implying that the crossing of the \tilde{A} state by the lowest of the three repulsive curves shown in Fig. 1 occurs in the vicinity of $3,775 \mathrm{~cm}^{-1}$ above the \tilde{A} state zero-point level. The threshold for dissociation and the energy of the curve crossing has been the subject of
much debate among both experimentalists and theorists, with our value being the lowest reported. Our threshold is unambiguous because we detect dissociation directly by measuring the presence of primary photofragments. A very recent determination of the dissociation threshold by Powers et al., ${ }^{44}$ via LIF lifetime measurements and fluorescence depletion spectroscopy (FDS), gives $3,793 \mathrm{~cm}^{-1}$, in agreement with our value.

One of the main complexities in the $\widetilde{A}\left({ }^{2} A_{1}\right)$ state of $\mathrm{CH}_{3} \mathrm{O}$ arises because two quanta of v_{3} establish a Fermi resonance with $v_{2}\left(\mathrm{CH}_{3} \mathrm{O}\right.$ umbrella, $\left.1289 \mathrm{~cm}^{-1}\right)$, giving rise to a series of multiplets at each overtone in the 3_{0}^{n} series. ${ }^{16}$ By fitting the observed multiplet spectra to an anharmonic oscillator Hamiltonian for v_{2} and v_{3}, Powers et al. ${ }^{30}$ obtained the dominant character of each member of the Fermi multiplet, although the two modes are strongly mixed. An interesting question is whether the competition between predissociation and fluorescence depends on which member of the multiplet is excited.

The splittings between Fermi multiplet components are significant. For example, the $3_{0}^{5}, 3_{0}^{1} 2_{0}^{2}$, and $3_{0}^{3} 2_{0}^{1}$ bands are separated by 35 and $43 \mathrm{~cm}^{-1}$ respectively, ${ }^{30}$ giving a total width to this feature of $78 \mathrm{~cm}^{-1}$. However, the peak widths in Fig. 3 are also broadened due to the width of the rotational bands (at least $20 \mathrm{~cm}^{-1}$) and the fact that we observe transitions in the PFY spectrum from both ${ }^{2} E_{3 / 2}$ and ${ }^{2} E_{1 / 2}$ components ($\Delta E \approx 60 \mathrm{~cm}^{-1}$) of the ground state. It is therefore difficult to determine whether different multiplet components decay with different rates from the PFY spectrum. In fact, the LIF and FDS experiments of Powers et al. ${ }^{44}$ show no significant differences in lifetimes for different members of a particular multiplet.

In $\mathrm{CD}_{3} \mathrm{O}$, the Fermi resonance between ν_{2} and v_{3} is lifted, and the vibrational frequencies of all modes except v_{3} are substantially lowered. The combination band in $\mathrm{CD}_{3} \mathrm{O}$ is assigned to the $3{ }_{0}^{n} 2_{0}^{1}$ progression, with the first member appearing in the PFY spectrum as $3_{0}^{6} 2_{0}^{1}$. While there is certainly enough energy for dissociation of $30_{0}^{5} 2_{0}^{1}$, this transition is not observed in Fig. 4, implying that for $\mathrm{CD}_{3} \mathrm{O}$, energy deposited in v_{2} is not available to facilitate fragmentation. In contrast, $\mathrm{CH}_{3} \mathrm{O}$ dissociates at $3{ }_{0}^{5} 6_{0}^{1}$, i.e., with five quanta in γ_{3}. The isotopic comparison implies that excitation of an e symmetry mode (observed for $\mathrm{CH}_{3} \mathrm{O}$) promotes dissociation, while energy deposited in the a_{1} symmetry v_{2} mode (observed for $\mathrm{CD}_{3} \mathrm{O}$) is not strongly coupled to the reaction coordinate. We give further evidence for these conclusions in section V.B, based on the translational energy and angular distribution data.

B. Channel (I) dissociation dynamics

Unimolecular photodissociation is a powerful technique because the disposal of energy among translation, vibrational, rotational, and electronic degrees of freedom in the products is a direct consequence of the potential energy surfaces on which this halfcollision occurs. ${ }^{61}$ Consequently, the main information we obtain on the dissociation dynamics of the methoxy radical is derived from the $P\left(E_{\mathrm{T}}\right)$ distributions presented graphically in Figs. 5 and 6, and numerically in Tables I and II. In this section we discuss the dissociation mechanism for channels (I - III) in light of the experimental product state distributions.

1. $\mathrm{CH}_{3}+\mathrm{O}$ products

It is evident from Fig. 5 that most of the available energy in the $\widetilde{A} \leftarrow \widetilde{X}$ photodissociation of $\mathrm{CH}_{3} \mathrm{O}$ goes into product translation for channel (I). Although radicals similar to methoxy, such as $\mathrm{CH}_{2} \mathrm{CHO}$ and HCCO , dissociate in the ultraviolet by internal conversion (IC) to the ground state potential energy surface (PES), the $P\left(E_{\mathrm{T}}\right)$ distributions for methoxy are inconsistent with such a mechanism. Indeed, SEP studies ${ }^{6}$ on $\mathrm{CH}_{3} \mathrm{O}$ prove that if IC were facile, $\mathrm{H}+\mathrm{CH}_{2} \mathrm{O}$ would be the dominant product channel. Instead, the large recoil energies observed in our data are indicative of dynamics on a purely repulsive PES, in which potential energy is converted efficiently into translational kinetic energy. The results of $a b$ initio calculations by Jackels, ${ }^{33}$ represented schematically in Fig. 1, predict three excited electronic states of ${ }^{4} A_{2},{ }^{4} E$, and ${ }^{2} A_{2}$ symmetry, which are repulsive along the $\mathrm{C}-\mathrm{O}$ bond and correlate asymptotically to $\mathrm{CH}_{3} \widetilde{X}\left({ }^{2} A_{2}^{\prime \prime}\right)+\mathrm{O}\left({ }^{3} P\right)$. All our results for this channel are consistent with a mechanism in which non-adiabatic coupling between these surfaces and the optically prepared levels of the $\widetilde{A}\left({ }^{2} A_{1}\right)$ state leads to predissociation of $\mathrm{CH}_{3} \mathrm{O}$. Given this basic description of the dissociation mechanism, we can explore further mechanistic details in the experimental data.

First, we consider the flow of energy into product vibration. Based on the fitting procedure presented in section IV.B, the $P\left(E_{\mathrm{T}}\right)$ distribution is described accurately by excitation in a single CH_{3} mode, the v_{2} umbrella vibration. Focusing on the 3_{0}^{n} progression, and ignoring for the moment $n=6$, a smooth increase in the average CH_{3} vibrational excitation $\left\langle E_{\mathrm{V}}\right\rangle$ is observed with increasing photon energy (Table I). Very little
product excitation arises from the 3_{0}^{7} level, in contrast to the inverted distributions for 3_{0}^{10} and 3_{0}^{13}.

The sudden approximation is often invoked to explain dissociation dynamics on purely repulsive surfaces. In this model the fragments are assumed to dissociate sufficiently rapidly that there is negligible coupling between translational and vibrational degrees of freedom. In the sudden limit, the CH_{3} vibrational distribution is obtained by a Franck-Condon projection of the CH_{3} moiety in the \widetilde{A} state onto the asymptotic v_{2} vibrational levels of the free methyl radical. Specifically, the $\angle \mathrm{HCO}$ in the \tilde{A} state is 106°, while asymptotically the methyl radical is planar, corresponding to $\angle \mathrm{HCO}=90^{\circ}$ within $C_{3 v}$ symmetry. Using $a b$ initio force constants for CH_{3}, the sudden approximation predicts a most probable value of $v_{2}=5$ for the $\mathrm{CH}_{3} v_{2}$ distribution, somewhat hotter than the distribution observed at 3_{0}^{13}, and clearly incorrect for all lower photon energies.

The failure of the sudden approximation implies substantial coupling of translational and vibrational degrees of freedom as the dissociation proceeds on the repulsive surface, allowing $\angle \mathrm{HCO}$ to relax smoothly with increasing CO bond length. In other words, at low photon energies (e.g. 3_{0}^{7} excitation), $\mathrm{CH}_{3} \mathrm{O}$ appears to evolve adiabatically to products. This situation is entirely reasonable when one considers that the light H atoms can respond quickly to motion of the heavy C and O atoms as r_{Co} increases, maintaining an equilibrium value of $\angle \mathrm{HCO}$ at each value of r_{C}. This picture also explains the behavior of the $3_{0}^{n} P\left(E_{\mathrm{T}}\right)$ distributions with increasing photon energy. The recoil velocity between the C and O atoms increases with increasing available energy, such that
the H atoms cannot respond as accurately to the changing potential along the $\angle \mathrm{HCO}$ coordinate, resulting in increased asymptotic CH_{3} vibrational excitation.

The photodissociation dynamics of methyl iodide show a strong similarity to our results on methoxy. For the $\mathrm{CH}_{3} \mathrm{I} \rightarrow \mathrm{CH}_{3}+\mathrm{I}^{*}$ channel, which occurs on a purely repulsive surface, the methyl fragment is produced with little vibrational or rotational excitation. An adiabatic mechanism very similar to that described above for methoxy governs the dynamics of this channel in $\mathrm{CH}_{3} \mathrm{I}$, as elucidated by classical trajectory calculations on $a b$ initio potential energy surfaces for this system. ${ }^{62}$

We now consider partitioning of energy between the CH_{3} rotational energy and the spin-orbit energy of $O\left({ }^{3} P_{j}\right)$ (Eq. 3). As shown in column 3 of Table I, the vibrational peak widths increase monotonically in the 3_{0}^{n} progression for $n \geq 7$, denoting increasing rotational and/or spin-orbit product excitation. The oxygen atom can make a significant contribution to the peak width because the ${ }^{3} P_{0}$ and ${ }^{3} P_{1}$ levels of the oxygen atom lie 28 and 20 meV above the ground state ${ }^{3} P_{2}$ level respectively. ${ }^{63}$ Although we present the rotational envelope widths for the two limiting cases in which no energy or a statistical distribution of energy is deposited in the oxygen atom, there is no reason to believe that either limit reflects reality, nor that the spin-orbit state distribution is independent of photon energy, as our two limiting cases assume. Indeed, by analogy with the spin-orbit distributions measured in O_{2} dissociation ${ }^{64}$ it is likely that the j distributions of the oxygen atoms from $\mathrm{CH}_{3} \mathrm{O}$ are not statistical, but fluctuate in a seemingly random fashion depending the value of n. Subject to this assumption, we conclude that the increasing peak widths in Table I reflect an increase of rotational excitation as a function of photon energy.

However, the amount of the available energy deposited in product rotation is still relatively small. For example, in the $3_{0}^{10} P\left(E_{\mathrm{T}}\right)$ distribution (Fig. 5), the energy difference between $\mathrm{CH}_{3}(v=0, J=0, K=0)$ and the peak of the $\mathrm{CH}_{3}(v=0)$ distribution is 50 meV (6% of the available energy), corresponding to a $\mathrm{CH}_{3}(v=0, J=6, K=0$) fragment. Simply put, the fact that we resolve vibrational structure at all in the $P\left(E_{\mathrm{T}}\right)$ distributions means that product rotational excitation is not extensive. We propose that the small amount of product rotation indicates a dissociation pathway which deviates little from $C_{3 v}$ symmetry for 3_{0}^{n} excitation.

In contrast to the $P\left(E_{\mathrm{T}}\right)$ distributions just discussed, the distributions for 3_{0}^{6} and $3_{0}^{n} 6_{0}^{1}$ lack the well-resolved vibrational features present in the other spectra in Fig. 5. For 3_{0}^{6}, the much broader vibrational peak is likely due to an experimental effect rather than an increase in rotational excitation with respect to $3{ }_{0}^{7}$. The most recent literature value for the fluorescence lifetime of 3_{0}^{6} is $0.37 \mu \mathrm{~s},{ }^{44}$ a substantial fraction of the 9μ s flight time required for a $\mathrm{CH}_{3} \mathrm{O}$ radical with 8 keV center-of-mass energy to travel from the dissociation laser to the TPS detector. Excited state lifetimes in this range degrade the $P\left(E_{\mathrm{T}}\right)$ distributions to lower E_{T} because long-lived radicals remain intact for a portion of the flight time, resulting in a smaller recoil vector measured at the detector, which translates to an artificially small value of E_{T} for that event. Using the fluorescence lifetime given above, this effect causes a $1 / \mathrm{e}$ broadening of $51 \mathrm{meV} .{ }^{65}$ When this width is deconvoluted from the 68 meV width given in Table I, the remaining rotational envelope has a width of 45 meV , slightly narrower than the 47 meV width measured for 3_{0}^{7}.

Therefore, rotational excitation of the $\mathrm{CH}_{3}+\mathrm{O}$ products following 3_{0}^{6} excitation follows the same trend as the other members in the 3_{0}^{n} progression despite the broad peak observed in Fig. 5.

The $P\left(E_{\mathrm{T}}\right)$ distributions following $3{ }_{0}^{6} 6_{0}^{1}$ and $3_{0}^{7} \sigma_{0}^{1}$ excitation show broader peaks than their quasi-isoenergetic counterparts in the 3_{0}^{n} progression. Powers et al. ${ }^{44}$ found that the fluorescence lifetime for $3{ }_{0}^{6} 6_{0}^{1}$ lies between the limits $20 \mathrm{~ns} \geq \tau_{\mathrm{FI}} \geq 20 \mathrm{ps}$. As a result of this short lifetime, the broadening effect described above for 3_{0}^{6} is negligible compared to the experimental resolution, and the increased width of the peaks is likely a result of greater product rotational excitation. It is quite plausible that sampling of nonC_{3} geometries due to e symmetry vibration would result in greater torque in the exit channel, and hence more product rotational excitation. This explanation is reasonable when one considers that the v_{6} methyl rocking motion would naturally develop into rotational excitation of the methyl radical about the b-axis, further dynamical evidence that the combination band in Fig. 3 is principally due to $3_{0}^{n} 6_{0}^{1}$ rather than $3_{0}^{n} 5_{0}^{1}$.

Recall that the product angular distributions for $36_{0}^{6} 6_{0}^{1}$ and $3_{0}^{7} 6_{0}^{1}$ excitation are described by anisotropy parameters of $\beta=0.4$ and $\beta=0.3$ respectively, while the angular distributions of the 3_{0}^{n} progression are isotropic $(\beta=0)$. However, the $\widetilde{A}\left({ }^{2} A_{1}\right) \leftarrow \widetilde{X}\left({ }^{2} E\right)$ transition has a perpendicular transition dipole moment, which should result in an anisotropy parameter $\beta \leq 0$. Although the vibronic symmetry of $3_{0}^{n} 6_{0}^{1}$ is parallel $(e \leftarrow e)$, the electronic part of the transition dipole remains $(a \leftarrow e)$ in the absence of perturbations by other electronic states, ${ }^{30}$ and hence should still give $\beta \leq 0$. Therefore the positive
values of β measured for $3_{0}^{6} 6_{0}^{1}$ and $3_{0}^{7} 6_{0}^{1}$ excitation implies that the \tilde{A} state is perturbed by another electronic state of e symmetry (such as the nearby ${ }^{4} E$ state shown in Fig. 1), which mixes an electronic $e \leftarrow e$ component into the transition dipole. These results are consistent with the observation of both parallel and perpendicular rotational structure resolved in bands containing fundamentals of e vibrations. ${ }^{30}$

As a final point on the angular distributions, we note that the observation of $\beta \neq 0$ for $3_{0}^{n} 6_{0}^{1}$ does not necessarily imply that the excited levels have a shorter lifetime than those in the 3_{0}^{n} progression, for which $\beta=0$. Classically, β reaches the limiting value of 0.4 for a parallel transition of a symmetric top with a dissociative lifetime much longer than a rotational period. ${ }^{66}$ Quantum mechanically, however, the anisotropy can average to zero due to interference between rotational wavefunctions. As a result, we do not speculate on the lifetime of the excited levels based on their angular distributions.

2. $C D_{3}+O$ products

The $\mathrm{C}-\mathrm{O}$ bond fission channel in $\mathrm{CD}_{3} \mathrm{O}$ shows three main differences from that of $\mathrm{CH}_{3} \mathrm{O}$. First, as stated in section V.A, the active combination band is $3{ }_{0}^{n} 2_{0}^{1}$, in which all vibrational motion is totally symmetric. Second, the CD_{3} vibrational distributions resulting from 3_{0}^{n} excitation are substantially more excited than at similar photon energies in $\mathrm{CH}_{3} \mathrm{O}$, as verified by comparison of the average product vibrational energies $\left\langle E_{\mathrm{V}}\right\rangle$ in Tables I and II. Finally, the CD_{3} vibrational distributions resulting from $3{ }_{0}^{n}{ }_{0}^{1}$ excitation are bimodal, as shown in Fig. 6.

Increased vibrational excitation of the CD_{3} umbrella motion resulting from 3_{0}^{n} excitation follows directly from the adiabatic dissociation mechanism proposed for channel (I) dynamics in $\mathrm{CH}_{3} \mathrm{O}$. When H atoms are replaced with D atoms in methoxy, the increased mass inhibits the ability of these atoms to track the motion of the C and O atoms during dissociation. As a result, the $\angle \mathrm{DCO}$ angle will not relax to its equilibrium value as readily as in the lighter isotope, resulting in more excitation of the v_{2} mode in CD_{3}.

A similar isotope effect is observed in $\mathrm{CD}_{3} \mathrm{I}$ dissociation, and the complete description of these effects found in Ref. 62 is most likely applicable to $\mathrm{CD}_{3} \mathrm{O}$. However, for the present purposes, the simple explanation given above is sufficient.

By far the most surprising result from the $\mathrm{CD}_{3} \mathrm{O} P\left(E_{\mathrm{T}}\right)$ distributions is the bimodal CD_{3} product state distribution observed following excitation of the $3{ }_{0}^{n} 2_{0}^{1}$ combination band (cf. Table II). To the best of our knowledge, methoxy photodissociation represents the first observation of such an isotope effect on the product state distributions. A compelling hypothesis for the origin of this dynamical effect lies in the relationship between the umbrella mode frequency in the \tilde{A} state of $\mathrm{CD}_{3} \mathrm{O}\left(971 \mathrm{~cm}^{-1}\right)$, and the corresponding umbrella frequency in the CD_{3} fragment $\left(458 \mathrm{~cm}^{-1}\right)$. Due to the negative anharmonicity in the methyl radical, the first overtone of $v_{2}\left(\mathrm{CD}_{3}\right)$ occurs at $966 \mathrm{~cm}^{-1} .{ }^{59}$ Therefore, if the single quantum of $v_{2}\left(\mathrm{CD}_{3} \mathrm{O}\right)$ excited in the $3_{0}^{n} 2_{0}^{1}$ combination band does not couple well to the reaction coordinate, the $971 \mathrm{~cm}^{-1}$ of energy deposited into this motion will result in a propensity to populate the nearly degenerate first overtone of $v_{2}\left(\mathrm{CD}_{3}\right)$, i.e., the amount of energy in umbrella motion will be conserved throughout the dissociation. This hypothesis is also supported by the fact that $3{ }_{0}^{5} 2_{0}^{1}$ does not dissociate
(cf. Fig. 4), even thought this state has more energy than the 3_{0}^{6} level, which does dissociate. This intriguing hypothesis calls for a comparison with reaction dynamics calculations based on the new potential energy surfaces which are now becoming available for methoxy. ${ }^{39,40}$

3. Curve crossing mechanism

Until now we have discussed the dissociation dynamics without consideration of the mechanism that couples the optically accessed $\widetilde{A}\left({ }^{2} A_{1}\right)$ state with the ${ }^{4} A_{2},{ }^{4} E$, and ${ }^{2} A_{2}$ repulsive states. The calculations of Jackels demonstrated that the ${ }^{4} E$ state is reached via a one-electron transition from the \tilde{A} state, while the two A_{2} configurations require the rearrangement of two electrons. ${ }^{33} \mathrm{He}$ argued that the ${ }^{2} A_{1} \Leftrightarrow{ }^{4} E$ interaction should be the strongest, because these states have a first-order spin-orbit interaction, analogous to the ${ }^{2} \Sigma \Leftrightarrow{ }^{4} \Pi$ coupling in a diatomic radical. The ${ }^{2} A_{1} \Leftrightarrow{ }^{4} A_{2}$ interaction can occur by a second-order spin-orbit interaction, while the ${ }^{2} A_{1} \Leftrightarrow{ }^{2} A_{2}$ interaction is most likely dominated by off-diagonal elements in the nuclear kinetic energy operator.

Recent $a b$ initio calculations by Pederson and Yarkony, ${ }^{39}$ and by Cui and Morokuma ${ }^{40}$ have defined the minimum seam of crossings between the \widetilde{A} state and each repulsive curve. The new calculations place the crossing points at lower energy than those obtained by Jackels, in better agreement with our photodissociation threshold. The coupling constants between the states are also calculated, along with the dependence of the coupling at geometries away from $C_{3 v}$ symmetry. ${ }^{39}$

Until now, the experimental data has been discussed for simplicity under the tacit assumption that one repulsive curve accounts for the entire dynamics of channel (I). One
feature in Fig. 5 may shed some light on whether coupling with multiple curves contributes to the final product state distributions. The CH_{3} vibrational excitation resulting from 3_{0}^{13} excitation is bimodal (cf. Table I), which could plausibly result from the contribution of an additional repulsive curve at this high photon energy leading to vibrationally cold products. Again, detailed assessment of this issue should soon be possible in light of the new potential energy surfaces being developed.

C. Channel (II) and (III) dissociation mechanism

Our experimental information on the $\mathrm{CH}_{2}+\mathrm{OH}$ product channel is limited. We find that this product channel is absent for transitions with $h \nu<37,500 \mathrm{~cm}^{-1}$, and competes with the dominant $\mathrm{CH}_{3}+\mathrm{O}$ channel at higher photon energies. As pointed out in section IV.B, on energetic grounds it appears that channel (III), producing electronically excited methylene fragments, dominates production of ground state methylene, channel (II). Concerning the mechanism for this channel, the recent ab initio study of the methoxy system by Cui and Morokuma ${ }^{40}$ explored the excited state isomerization of $\mathrm{CH}_{3} \mathrm{O} \rightarrow \mathrm{CH}_{2} \mathrm{OH}$, finding a transition state 1.00 eV above the $\tilde{\mathrm{A}}$ state minimum. They point out that the \tilde{A} state of $\mathrm{CH}_{3} \mathrm{O}$ correlates through this transition state to channel (III) products, while the \tilde{X} state correlates to channel (II) products. Our data are consistent with the excited state mechanism, and the observed production of some ground state methylene could easily be explained by a transition to a lower surface along the isomerization or dissociation coordinate. A similar mechanism is probably responsible for $\mathrm{CD}_{2}+\mathrm{OD}$ dissociation in $\mathrm{CD}_{3} \mathrm{O}$.

VI. Conclusions

The ultraviolet $\tilde{A}\left({ }^{2} A_{1}\right) \leftarrow \tilde{X}\left({ }^{2} E\right)$ transition in both $\mathrm{CH}_{3} \mathrm{O}$ and $\mathrm{CD}_{3} \mathrm{O}$ is observed to predissociate due to curve crossings with one or more of the excited ${ }^{2} A_{2},{ }^{4} A_{2}$, and ${ }^{4} E$ repulsive states. Several interesting differences in the photodissociation dynamics have been observed between the two isotopes. The photofragment yield spectrum of $\mathrm{CH}_{3} \mathrm{O}$ shows a main progression in the $\mathrm{C}-\mathrm{O}$ stretch, and a combination band with one quantum of the e symmetry v_{6} methyl rock. The main progression is identical in $\mathrm{CD}_{3} \mathrm{O}$, but the combination band is assigned as $30_{0}^{n} 2_{0}^{1}$, involving the a_{1} symmetry v_{2} umbrella motion. The 3_{0}^{6} transition is the lowest energy transition observed to dissociate in either isotope, placing the threshold for $\mathrm{CH}_{3} \mathrm{O}$ dissociation $3,775 \mathrm{~cm}^{-1}$ above the zero point level of the \tilde{A} state. In $\mathrm{CH}_{3} \mathrm{O}$ the combination band $3_{0}^{n} \sigma_{0}^{1}$ dissociates for $n=5$, while in $\mathrm{CD}_{3} \mathrm{O}$ combination band dissociation is not observed unless $n \geq 6$. This mode-specific effect demonstrates that the way in which energy is distributed in the \tilde{A} state effects the ultimate outcome.

The major product channel is $\mathrm{C}-\mathrm{O}$ bond fission giving a methyl radical and an oxygen atom. The translational energy distributions for both isotopes show that the v_{2} umbrella mode of the $\mathrm{CH}_{3}\left(\mathrm{CD}_{3}\right)$ fragment is excited. For 3_{0}^{n} excitation of both isotopes, the product state distribution is described by an adiabatic picture in which the product excitation slowly increases with increasing photon energy. Excitation of $3{ }_{0}^{n} 6_{0}^{1}$ in $\mathrm{CH}_{3} \mathrm{O}$ may result in more rotational excitation of the products, consistent with sampling of non$C_{3 v}$ geometries in the \tilde{A} state. Excitation of $3{ }_{0}^{n} 2_{0}^{1}$ in $\mathrm{CD}_{3} \mathrm{O}$ shows a surprising dynamical
effect: the product state distribution of the CD_{3} fragment is bimodal, with excitation of $v_{2}=0$ and $v_{2}=2$ always greater than that for $v_{2}=1$.

The results given in this article should enable a rigorous comparison between experiment and theory because the data comprise both translational and vibrational product state distributions, acquired at many different photon energies for two isotopes. New ab initio potential energy surfaces are now becoming available for methoxy, and it appears that the methoxy radical will continue its tradition as a benchmark molecule in the fields of spectroscopy and dynamics.

Acknowledgments

This research is supported by the Director, Office of Energy Research, Office of Basic Energy Science, Chemical Sciences Division of the US Department of Energy on Contract No. DE-AC03-76SF00098.

References

${ }^{1}$ D. W. G. Style and J. C. Ward, Trans. Faraday Soc. 49, 999 (1953).
${ }^{2}$ P. H. Leighton, Photochemistry of Air Pollution (Academic Press, New York, 1961); B. J. FinlaysonPitts and J. N. Pitts, Jr., Atmospheric Chemistry (Wiley, New York, 1986); C. T. Pate, B. J. Finlayson and J. N. Pitts, Jr., J. Am. Chem. Soc. 96, 6554 (1974); H. Levy II, Planet. Spac. Sci. 21, 575 (1973); A. C. Baldwin, J. R. Barker, D. M. Golden, and D. G. Hendry, J. Phys. Chem. 81, 2483 (1977).
${ }^{3}$ C. K. Westbrook and F. L. Dryer, Progr. Energy Combustion Sci. 10, 1 (1984); W. Tsang and R. F. Hampson, J. Phys. Chem. Ref. Data 15, 1087 (1986); B. A. Williams and J. W. Fleming, Chem. Phys. Lett. 221, 27 (1994); S. Zabarnick, Combustion Flame 85, 27 (1991); D. B. Olsen and W. C. Gardiner Jr., J. Phys. Chem. 81, 2514 (1977).
${ }^{4}$ J. Warnatz, Combustion Chemistry, ed. W. C. Gardiner (Springer, Berlin) 258 (1984).
${ }^{5}$ P. Thaddeus, private communication.
${ }^{6}$ A. Geers, J. Kappert, F. Temps, and J. W. Wiebrecht, J. Chem. Phys. 99, 2271 (1993); ibid. 101, 3618 (1994); ibid. 101, 3634 (1994).
${ }^{7}$ D. L. Osborn, D. J. Leahy, E. R. Ross, and D. M. Neumark, Chem. Phys. Lett. 235, 484 (1995).
${ }^{8}$ K. Ohbayashi, H. Akimoto, and I Tanaka, J. Phys. Chem. 81, 798 (1977).
${ }^{9}$ P. C. Engelking, G. B. Ellison, and W. C. Lineberger, J. Chem. Phys. 69, 1826 (1978).
${ }^{10}$ H. R. Wendt and H. E. Hunziker, J. Chem. Phys. 71, 5202 (1979).
${ }^{11}$ D. K. Russell and H. E. Radford, J. Chem. Phys. 72, 2750 (1980).
${ }^{12}$ G. Inoue, H. Akimoto, and M. Okuda, J. Chem. Phys. 72, 1769 (1980).
${ }^{13}$ D. E. Powers, J. B. Hopkins, and R. E. Smalley, J. Phys. Chem. 85, 2711 (1981).
${ }^{14}$ Y. Endo, S. Saito, and E. Hirota, J. Chem. Phys. 81, 122 (1984).
${ }^{15}$ P. G. Carrick, S. D. Brossard, and P. C. Engelking, J. Chem. Phys. 83, 1995 (1985).
${ }^{16}$ K. Fuke, K. Ozawa, and K. Kaya, Chem. Phys. Lett. 126, 119 (1986).
${ }^{17}$ T. Ebata, H. Yanagishita, K. Obi, and I. Tanaka, Chem. Phys. 69, 27 (1982).
${ }^{18}$ B. S. Agrawalla and D. W. Setser, J. Phys. Chem. 90, 2450 (1986).
${ }^{19}$ J. A. McCaulley, S. M. Anderson, J. B. Jeffries, and F. Kaufman, Chem. Phys. Lett. 115, 180 (1985).
${ }^{20}$ S. D. Brossard, P. G. Carrick, E. L. Chappell, S. C. Hulegaard, and P. C. Engelking, J. Chem. Phys. 84, 2459 (1986).
${ }^{21}$ N. L. Garland and D. R. Crosley, J. Phys. Chem. 92, 5322 (1988).
${ }^{22}$ S. R. Lin, Y. P. Lee, and J. B. Nee, J. Chem. Phys. 88, 171 (1988).
${ }^{23}$ S. C. Foster, P. Misra, T. Y. D. Lin, C. P. Damo, C. C. Carter, and T. A. Miller, J. Phys. Chem. 92, 5914 (1988).
${ }^{24}$ S. Y. Chiang, Y. C. Hsu, and Y. P. Lee, J. Chem. Phys. 90, 81 (1989).
${ }^{25}$ X. Liu, C. P. Damo, T. Y. D. Lin, S. C. Foster, P. Misra, L. Yu, and T. A. Miller, J. Phys. Chem. 93, 2266 (1989).
${ }^{26}$ X. Liu, S. C. Foster, J. M. Williamson, L. Yu, and T. A. Miller, Mol. Phys. 69, 357 (1990).
${ }^{27}$ P. Misra, X. Zhu, C. Hsueh, and J. B. Halpern, Chem. Phys. 178, 377 (1993).
${ }^{28}$ Y. Y. Lee, G. H. Wann, and Y. P. Lee, J. Chem. Phys. 99, 9465 (1993).
${ }^{29}$ B. A. Williams and J. W. Fleming, Chem. Phys. Lett. 221, 27 (1994).
${ }^{30}$ D. E. Powers, M. Pushkarsky, and T. A. Miller, (to be submitted).
${ }^{31} \mathrm{~F}$. Temps, (unpublished).
${ }^{32}$ D. R. Yarkony, H. F. Schaefer, and S. Rothenberg, J. Am. Chem. Soc. 96, 656 (1974).
${ }^{33}$ C. F. Jackels, J. Chem. Phys. 76, 505 (1982); ibid. 82, 311 (1985).
${ }^{34}$ G. D. Bent, G. F. Adams, R. H. Bartram, G. D. Purvis, and R. J. Bartiett, J. Chem. Phys. 76, 4144 (1982).
${ }^{35}$ J. T. Carter and D. B. Cook, J. Mol. Structure (Theochem) 251, 111 (1991).
${ }^{36}$ L. A. Curtiss, L. D. Kock, and J. A. Pople, J. Chem. Phys. 95, 4040 (1991).
${ }^{37}$ S. P. Walch, J. Chem. Phys. 98, 3076 (1993).
${ }^{38}$ G. D. Bent, J. Chem. Phys. 100, 8219 (1994).
${ }^{39}$ L. Pederson and D. Yarkony, (private communication).
${ }^{40} \mathrm{Q}$. Cui and K . Morokuma, (private communication).
${ }^{41}$ R. Englman, The Jahn-Teller Effect in Molecules and Crystals (Wiley, New York, 1972).
${ }^{42}$ A. Geers, J. Kappert, and F. Temps, J. Chem. Phys. 98, 4297 (1993).
${ }^{43}$ J. T. Hougen, J. Mol. Spec. 81, 73 (1980); T. K. Watson, J. Mol. Spec. 103, 125 (1984); J. M. Brown, Mol. Phys. 20, 817 (1971); and F. S. Ham, Phys. Rev. 166, 307 (1968).
${ }^{44}$ D. E. Powers, M. Pushkarsky, and T. A. Miller, (to be submitted).
${ }^{45}$ M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, 3rd ed., J. Chem. Phys. Ref. Data 14, (1985), Suppl. No. 1.
${ }^{46}$ D. L. Osborn, H. Choi, D. H. Mordaunt, R. T. Bise, D. M. Neumark, and C. M. Rohlfing, J. Chem. Phys. 106 (1996).
${ }^{47}$ R. E. Continetti, D. R. Cyr, D. L. Osborn, D. J. Leahy, and D. M. Neumark, J. Chem. Phys. 99, 2616 (1993).
${ }^{48}$ R. E. Continetti, D. R. Cyr, R. B. Metz, and D. M. Neumark, Chem. Phys. Lett. 182, 406 (1991).
${ }^{49}$ D. L. Osborn, D. J. Leahy, D. R. Cyr, and D. M. Neumark, J. Chem. Phys. 104, 5026 (1996).
${ }^{50}$ J. M. B. Bakker, J. Phys. E 6, 785 (1973); ibid. 7, 364 (1974).
${ }^{51}$ S. Gerstenkorn and P. Luc, Atlas du Spectre d'Absorption de la Molecule d'Iode (Centre National de la Recherche Scientifique, Paris, 1978).
${ }^{52}$ D. J. Leahy, D. L. Osborn, D. R. Cyr, and D. M. Neumark, J. Chem. Phys. 103, 2495 (1995).
${ }^{53}$ D. P. de Bruijn and J. Los, Rev. Sci. Instrum. 53, 1020 (1982).
${ }^{54}$ R. N. Zare, Mol. Photochem. 4, 1 (1972).
${ }^{55}$ D. L. Osborn, H. Choi, D. H. Mordaunt, R. T. Bise, D. M. Neumark, and C. M. Rohlfing (in preparation).
${ }^{56}$ D. L. Osborn, D. J. Leahy, E. H. Kim, E. deBeer, and D. M. Neumark, (in preparation).
${ }^{57}$ C. Yamada, E. Hirota, and K. Kawaguchi, J. Chem. Phys. 75, 5256 (1981); C. Yamada and E. Hirota, ibid. 78, 669 (1983); H. W. Herman and S. R. Leone, J. Chem. Phys. 76, 4759 (1982).
${ }^{58}$ It should be noted that the value for the parameter Δ scales roughly with the value of Γ, together they control the amount of rotational and spin-orbit energy in the model.
${ }^{59}$ T. J. Sears, J. M Frye, V. Spirko, and W. P. Kraemer, J. Chem. Phys. 90, 2125 (1989).
${ }^{60} \Delta H_{f, 0}^{\circ}\left(\mathrm{CD}_{3}\right)$ is derived as $\Delta H_{f, 0}^{\circ}\left(\mathrm{CD}_{3}\right)=\Delta H_{f, 0}^{\circ}\left(\mathrm{CH}_{3}\right)-\left[\mathrm{ZPE}\left(\mathrm{CH}_{3}\right)-\mathrm{ZPE}\left(\mathrm{CD}_{3}\right)\right]+3 / 2\left[\mathrm{ZPE}\left(\mathrm{H}_{2}\right)-\right.$ $\left.\mathrm{ZPE}\left(\mathrm{D}_{2}\right)\right]$, where the zero-point energies for the methyl radicals are taken from Ref. 59.
${ }^{61}$ R. Schinke, Photodissociation Dynamics (Cambridge University Press, Cambridge, 1993).
${ }^{62}$ Y. Amatatsu, K. Morokuma, and S. Yabushita, J. Chem. Phys. 94, 4858 (1991); ibid., 104, 9783 (1996).
${ }^{63}$ C. E. Moore, Atomic Energy Levels, Vol. 1, NSRDS-NBS Circ. No. 467 (U. S. GPO, Washington, 1949), p. 15.
${ }^{64}$ D. J. Leahy, D. L. Osborn, D. R. Cyr, and D. M. Neumark, J. Chem. Phys. 103, 2495 (1995).
${ }^{65}$ For comparison, a 10 ns fluorescence lifetime gives a $1 / \mathrm{e}$ broadening of 1 meV , a negligible value compared to the instrumental resolution.
${ }^{66}$ S.-C. Yang and R. Bersohn, J. Chem. Phys. 61, 4400 (1974).

Fast beam photodissociation spectroscopy and dynamics of the vinoxy radical

I. Introduction

Molecular photodissociation is an important field of chemical physics as it offers a well-defined way of probing the forces acting between atoms and molecules in chemical reactions. ${ }^{1}$ The dynamics of a dissociating molecule depend intimately on the shape of the potential energy surface of the system. Measurement of product state distributions can provide direct information on important features of this surface, and this prospect has motivated development of an impressive array of experimental techniques aimed at extracting such distributions. ${ }^{2}$ While most experiments of this type have been performed on stable. closed-shell molecules, there is much to gain from the study of free radical systems using photodissociation. There are two qualitative differences between closedshell and open-shell systems that should directly influence their photodissociation dynamics. First, the unpaired electron(s) of free radicals gives rise to more low-lying electronic states ($\leq 5 \mathrm{eV}$) than are typically found in stable molecules. Second, closed shell systems generally dissociate to give two radical fragments. In contrast, open-shell molecules can often dissociate to a radical and a closed-shell fragment, making this bond breaking process only mildly endothermic or even exothermic.

Experimental studies of free radical photodissociation are relatively uncommon, primarily because it is difficult to create sufficiently intense, contaminant-free sources of free radicals. To overcome this limitation, we have devised a general technique for the production of well-characterized radical samples using photodetachment of negative ion precursors. In this paper we report photodissociation spectroscopy and dynamics of the vinoxy radical, $\mathrm{CH}_{2} \mathrm{CHO}$. The vinoxy radical plays a key role combustion chemistry, specifically in the reactions of oxygen atoms with olefins. ${ }^{3} \mathrm{CH}_{2} \mathrm{CHO}$ is a primary product of the reactions $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{C}_{2} \mathrm{H}_{4},{ }^{4} \mathrm{O}\left({ }^{3} P\right)+\mathrm{C}_{2} \mathrm{H}_{3},{ }^{5} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{2},{ }^{6}$ and $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$. ${ }^{7}$ These reactions, and the $\mathrm{CH}_{2} \mathrm{CHO}$ intermediate, are generally important since ethylene and acetylene are commonly present in combustion of larger aliphatic ${ }^{8}$ and aromatic ${ }^{9}$ compounds. It is therefore of considerable interest to understand the spectroscopy and dynamics of this species. This study of $\mathrm{CH}_{2} \mathrm{CHO}$ is part of a systematic effort in our laboratory to determine how the dissociation dynamics of 'simple' alkoxy radicals depend on the nature of the carbon bonding in the radical. The results presented here show that the dissociation dynamics of $\mathrm{CH}_{2} \mathrm{CHO}$, the smallest alkenoxy radical, are quite different from those of the smallest alkanoxy and alkynoxy radicals, $\mathrm{CH}_{3} \mathrm{O}^{10}$ and $\mathrm{HCCO} .{ }^{11}$

The vinoxy radical has been the subject of several spectroscopic ${ }^{12-19}$ and electronic structure ${ }^{20-24}$ investigations. The first spectroscopic detection of $\mathrm{CH}_{2} \mathrm{CHO}$, discrete bands with a probable origin at $28,780 \mathrm{~cm}^{-1}$, was reported by Ramsay ${ }^{12}$ in 1965. In 1981, Hunziker ${ }^{13}$ et. al. reported two absorption bands of $\mathrm{CH}_{2} \mathrm{CHO}$: one band in the infrared originating at $8004 \mathrm{~cm}^{-1}$, and a second in the ultraviolet, with its origin at $28,750 \mathrm{~cm}^{-1}$. Electronic state assignments for these bands were aided by $a b$ initio molecular orbital calculations by Dupuis et. al., ${ }^{21}$ who predicted an IR transition, $\tilde{A}\left({ }^{2} \mathrm{~A}^{\prime}\right) \leftarrow \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$, at
$6,900 \mathrm{~cm}^{-1}$, and a UV transition, $\widetilde{B}\left({ }^{2} A^{\prime \prime}\right) \leftarrow \widetilde{X}\left({ }^{2} A^{\prime \prime}\right)$, at $26,000 \mathrm{~cm}^{-1}$. The calculations predicted a planar geometry and an allylic resonance between the two valence bond structures $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{O} \bullet$ and $\bullet \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{O}$. The latter structure was favored as the ground electronic state, with an unpaired electron primarily on the terminal carbon atom. The \widetilde{A} and \widetilde{B} states were described as primarily $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{O} \bullet$, with the unpaired electron on the oxygen either in-plane or out-of-plane, respectively.

Lineberger and coworkers ${ }^{19}$ established the electron affinity of $\mathrm{CH}_{2} \mathrm{CHO}$ as 1.824 eV from negative ion photoelectron spectroscopy of $\mathrm{CH}_{2} \mathrm{CHO}^{-}$. Inoue and Akimoto ${ }^{14}$ observed laser induced fluorescence (LIF) and dispersed fluorescence spectra of the $\tilde{B} \leftarrow \tilde{X}$ band. They assigned the vibrational modes of the radical using a triatomic model in which the three modes are the CO stretch, the CC stretch and the CCO bend. The first experimental information on the structure of $\mathrm{CH}_{2} \mathrm{CHO}$ was given by DiMauro, Heaven, and Miller ${ }^{15}$ from rotationally resolved LIF spectra of the $\tilde{B}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right) \leftarrow \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ transition in a supersonic jet. Based on the relative intensities of the a-type vs. b-type rotational transitions (10:1) it was found that the transition dipole for the $\widetilde{B} \leftarrow \widetilde{X}$ transition points essentially along the CCO backbone. Their LIF spectrum refined the values of the three vibrational fundamentals in the \tilde{B} state that were seen in Ref. 14 as $v_{1}($ CO stretch $)=917$ $\mathrm{cm}^{-1}, v_{2}(\mathrm{CC}$ stretch $)=1122 \mathrm{~cm}^{-1}$, and $v_{3}(\mathrm{CCO}$ bend $)=450 \mathrm{~cm}^{-1}$. The microwave spectra of $\mathrm{CH}_{2} \mathrm{CHO}$ and $\mathrm{CD}_{2} \mathrm{CDO}$ due to Endo et al. ${ }^{16}$ yielded a more definitive determination of the ground state geometry that was in good agreement with the calculation of Dupuis. ${ }^{21}$ Later $a b$ initio calculations by Yamaguchi et al. ${ }^{23}$ showed that the triatomic vibrational model used by Inoue and DiMauro was insufficient to describe the vibrational structure of
vinoxy. Yamaguchi adopted a new numbering of the modes (which is used in this paper) based on all twelve vibrational degrees of freedom and reassigned the character of the 917 cm^{-1} fundamental as $v_{8}(\mathrm{CC}$ stretch $)$, and the $1122 \mathrm{~cm}^{-1}$ fundamental as $v_{7}\left(\mathrm{CH}_{2}\right.$ rock $)$.

Our interest in the vinoxy system was stimulated by the considerable differences between the laser-induced fluorescence and absorption spectra. The published LIF spectra ${ }^{14,15}$ show no fluorescence above $30,200 \mathrm{~cm}^{-1}$ (i.e., only $1,400 \mathrm{~cm}^{-1}$ above the \tilde{B} state origin), while the absorption spectrum ${ }^{13}$ extends to $35,700 \mathrm{~cm}^{-1}$, peaking at $\approx 32,500$ cm^{-1}. The sharply truncated LIF spectrum implies that the excited state is depleted by a fast non-radiative process. The presence of such a process is confirmed by hole-burning spectroscopy on jet-cooled vinoxy, in which Gejo et al. ${ }^{17}$ measured fluorescence depletion from $30,300-33,900 \mathrm{~cm}^{-1}$, finding sharp vibronic absorptions in this region where fluorescence is quenched.

Three non-radiative processes could be responsible for fluorescence quenching: direct predissociation via a repulsive state, intersystem crossing (ISC) to a quartet state, and internal conversion (IC) to the ground electronic state. The latter two processes can also lead to photodissociation. There is relatively little experimental and theoretical information on the dynamics following excitation of the \tilde{B} state. Yamaguchi recently reported calculations ${ }^{24}$ on $\mathrm{CH}_{2} \mathrm{CHO}$ that explored the energy dependence of the \widetilde{X}, \tilde{A}, \tilde{B}, and $\tilde{C}\left({ }^{2} A^{\prime}\right)$ states on the $\mathrm{C}-\mathrm{C}$ torsional coordinate, finding that torsional motion may couple the \widetilde{B} state with the \tilde{A} and/or \widetilde{C} states. Jacox found evidence for production of $\mathrm{CH}_{3}+\mathrm{CO}$ following UV irradiation of $\mathrm{CH}_{2} \mathrm{CHO}$ in an Ar matrix, ${ }^{25}$ but with a threshold near $34,500 \mathrm{~cm}^{-1}$, much higher than the fluorescence cutoff energy. Previous attempts to
observe photodissociation products in the gas phase using LIF have been unsuccessful. 17,18

Our experiment directly detects the presence of photodissociation, and identifies and characterizes the photodissociation products. We can therefore readily determine if dissociation occurs following excitation of the \tilde{B} state and learn about the detailed mechanism. There are several product channels which are thermodynamically feasible following UV excitation of vinoxy:

$$
\begin{align*}
& \mathrm{CH}_{2} \mathrm{CHO} \xrightarrow{\mathrm{~h} \nu} \mathrm{CH}_{3}+\mathrm{CO} \quad \Delta H_{0}^{0}=0.08 \pm 0.09 \mathrm{eV}^{26,27} \tag{1}\\
& \mathrm{H}+\mathrm{CH}_{2} \mathrm{CO} \quad 1.49 \pm 0.09 \mathrm{eV} \tag{2}\\
& \mathrm{H}_{2}+\mathrm{HCCO} \quad 1.56 \pm 0.09 \mathrm{eV} \tag{3}\\
& \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{OH} \quad 2.56 \pm 0.09 \mathrm{eV} \tag{4}\\
& \mathrm{CH}_{2}+\mathrm{HCO} \quad 4.16 \pm 0.13 \mathrm{eV} \tag{5}
\end{align*}
$$

We observe photodissociation of vinoxy to both Channels 1 and 2 over the range $28,700 \leq$ $\mathrm{h} v \leq 33,330 \mathrm{~cm}^{-1}(3.56 \leq \mathrm{h} v \leq 4.13 \mathrm{eV})$. Channels 3,4 , and 5 are not observed in this study. Our results indicate that excitation of the \widetilde{B} state is followed by internal conversion, eventually populating the \tilde{X} state, which then dissociates via Channels 1 and 2.

The experimental apparatus and data collection methods for the present experiments are summarized in Section II. In Section III we present the photofragment yield spectrum, translational energy, and angular distribution data for $\mathrm{CH}_{2} \mathrm{CHO}$ and
$\mathrm{CD}_{2} \mathrm{CDO}$, in addition to $a b$ initio molecular orbital calculations on this system. Section IV covers the analysis of the experimental data. Progressions in eight of the twelve vibrational modes are assigned with the aid of $a b$ initio frequencies. The data analysis for Channel 2 is also presented, and we obtain the branching ratio between the two observed channels. In Section V, the overall dissociation mechanism is discussed. For $\mathrm{CH}_{3}+\mathrm{CO}$, the translational energy distributions are compared with a hybrid statistical/impulsive dissociation model. RRKM rates for the two observed channels are calculated and compared with the experimental branching ratio. Finally, the mechanism of internal conversion from the \widetilde{B} state is discussed. A preliminary account of these experiments has been published previously. ${ }^{28}$

II. Experimental

A. The fast radical beam translational spectrometer

It is generally difficult to produce a well-characterized source of free radicals using traditional molecular beam sources due to the high reactivity of open-shell species. Our experimental approach takes advantage of this instability by recognizing that most free radicals have positive electron affinities and form stable negative ion analogues. Any contaminant ions present can be separated by mass spectrometry, after which the desired neutral free radicals are generated by laser photodetachment of the corresponding massselected anion. The packet of neutral radicals produced in the detachment step is then dissociated with a second laser, giving the overall scheme:

$$
\begin{equation*}
\mathrm{CH}_{2} \mathrm{CHO}^{-} \xrightarrow{h \nu_{1},-e^{-}} \mathrm{CH}_{2} \mathrm{CHO} \xrightarrow{h v_{2}} \text { fragments } \tag{6}
\end{equation*}
$$

The apparatus constructed in our laboratory, the Fast Radical Beam Photofragment Translational Spectrometer, has been described previously in detail, ${ }^{29,30,31}$ and only a brief description will be given here. The apparatus is divided into two distinct regions, as shown in Fig. 1. In the first section, a clean source of free radicals is generated from a negative ion precursor. The anion precursor, $\mathrm{CH}_{2} \mathrm{CHO}^{-}$, is formed in a 60 100 Hz repetition rate pulsed supersonic expansion of 1 torr of acetaldehyde $\left(-78{ }^{\circ} \mathrm{C}\right)$ seeded in 3 atm of O_{2}. Acetaldehyde- d_{4} is the precursor of $\mathrm{CD}_{2} \mathrm{CDO}^{-}$. A pulsed electric discharge ${ }^{32}$ creates ions in the high pressure region before the expansion, allowing the ions to cool in the jet to rotational temperatures of typically $35-50 \mathrm{~K}$. Molecular oxygen was used as a backing gas because it sustains a steady glow discharge at lower voltages than helium, neon, or argon, thereby keeping vibrational excitation of the anions to a minimum. The ions pass through a 3 mm skimmer, are accelerated to 8000 eV laboratory energy, and are mass selected using the Bakker time-of-flight method, ${ }^{33}$ which imparts negligible energy spread to the ion beam. As the various ions separate according to their m / e ratio, a 25 ns light pulse from an excimer-pumped dye laser is fired at the appropriate time to photodetach only $\mathrm{CH}_{2} \mathrm{CHO}^{-}$. The detachment wavelength (663 nm for $\mathrm{CH}_{2} \mathrm{CHO}^{-}$and 667 nm for $\mathrm{CD}_{2} \mathrm{CDO}^{-}$) is only slightly above threshold, ${ }^{19}$ producing radicals in their ground vibrational state. All remaining ions are deflected from the beam leaving an internally cold, high velocity beam of vinoxy radicals.

Figure 1: The experimental apparatus. The dotted lines separate the radical production region on the left from the dissociation region on the right.

In the second section of the apparatus, after a final 1 mm collimation, the vinoxy radicals are dissociated by a frequency-doubled excimer-pumped pulsed dye laser operating between $300-350 \mathrm{~nm}$, with a bandwidth of $0.3 \mathrm{~cm}^{-1}$. Neutral photofragments recoiling out of the parent radical beam are detected directly, without ionization, using one of two microchannell plate (MCP) detectors. The time-of-flight (TOF) and time- and position-sensitive (TPS) detectors (described below) are located on the radical beam axis 68 and 100 cm downstream from the dissociation laser port, respectively. An aluminum strip is placed across the center of each detector to prevent undissociated parent radicals from striking the MCPs. The fragments are detected with high efficiency (typically 50\%) due to their high laboratory kinetic energy. However, the MCPs are considerably less sensitive to very light fragments, such as H or D atoms, because these fragments are formed with low laboratory kinetic energies.

B. Data collection and modes of operation

Three types of experiments are performed to characterize the photodissociation of $\mathrm{CH}_{2} \mathrm{CHO}$. First, the energy of the photodissociation laser is scanned and the total flux of fragments is detected giving a photofragment yield (PFY) spectrum. It should be emphasized that signal is observed only if the radical dissociates. This experiment uses the

TOF detector which can be lowered into the beam on a manipulator arm. The TOF detector has a 3 mm beam block and a simple metal anode which collects the total charge from the MCPs. The fragment signal is normalized to dissociation laser power, and also to the yield of electrons from the photodetachment of $\mathrm{CH}_{2} \mathrm{CHO}^{-}$, correcting for any variations in the radical production scheme. For vinoxy, a laser step size of 0.009 nm is used, corresponding to a step size in energy of 0.8 to $1.0 \mathrm{~cm}^{-1}$. The data are calibrated at many different frequencies throughout the scanned range against the absorption spectrum of $\mathrm{I}_{2},{ }^{34}$ with an absolute accuracy of $1 \mathrm{~cm}^{-1}$ or better.

In the second type of experiment, the dissociation laser is tuned to a specific photon energy of interest, and the dynamics of the dissociation process are studied. In this case, both fragments from a single parent radical are detected in coincidence using the TPS detector, ${ }^{29,35}$ this is based on the detection scheme developed by de Bruijn and Los. ${ }^{36}$ In this detector an 8 mm wide beam block is placed in front of a stack of three 46 mm diameter optical quality MCPs. The two electron clouds produced from the impact of the two fragments contain both spatial and temporal information describing where and when the fragments collided with the first MCP. The electron clouds are collected using a wedge and strip anode. ${ }^{37,38}$ The spatial resolution (in the plane of the detector) is $100 \mu \mathrm{~m}$ while the relative timing resolution between the two fragment arrivals (perpendicular to the plane of the detector) is 500 ps .

From the timing and position information, we obtain the masses of the fragments, their relative translational energy E_{T}, and the polar angle θ between their relative velocity vector and the electric vector of the polarized dissociation laser (parallel to the ion beam axis) :

$$
\begin{gather*}
\frac{m_{1}}{m_{2}}=\frac{r_{2}}{r_{1}}\left(1-\frac{v_{0} \tau}{L}\right) \tag{7}\\
E_{\mathrm{T}}=E_{0} \cdot \frac{m_{1} m_{2}}{M} \cdot \frac{\left\{\left(v_{0} \tau\right)^{2}+R^{2}\right\}}{L^{2}} \cdot\left(1+2 \frac{m_{1}-m_{2}}{M} \frac{v_{0} \tau}{L}\right) \tag{8}\\
\theta=\arctan \left(\frac{R}{v_{0} \tau}\right) \tag{9}
\end{gather*}
$$

Here r_{1} and r_{2} are the distances from the center of the radical beam to each fragment on the detector face, $R=r_{1}+r_{2}$ is the distance between the photofragments, and $\tau\left(=t_{1}-t_{2}\right)$ is the difference in the arrival times of the fragments. M, m_{1}, and m_{2}, are the masses of the parent and fragments respectively, v_{0} and E_{0} are the laboratory velocity and energy of the parent radical, and L is the distance between the dissociation laser and the detector face. Although the relative recoil $R=r_{1}+r_{2}$ of the fragments is determined with high precision $(R / \Delta R \approx 100)$ in the coincidence measurement, the individual recoils r_{1} and r_{2} are less precisely known, resulting in a fragment mass resolution $m / \Delta m \approx 15$.

Translational energy resolution of $\Delta E_{\mathrm{T}} / E_{\mathrm{T}}=0.6 \%$ has been demonstrated under ideal conditions, ${ }^{35}$ although in these experiments the resolution is somewhat coarser, typically $\Delta E_{\mathrm{T}} / E_{\mathrm{T}}=2.2 \%$. The finite geometric acceptance of the detector is corrected by dividing the raw data by a detector acceptance function, ${ }^{29}$ which gives the probability of observing a coincidence event at each combination of E_{T} and θ.

Due to the geometry of the detector, the coincidence detection scheme is only practical when the mass ratio of the fragments $m_{1} / m_{2} \leq 5$. For mass ratios larger than 5 ,
there is very little probability of detecting both particles in coincidence; if the heavy fragment has enough energy to clear the beam block in front of the MCPs, the light fragment recoils past the edge of the detector. Channels 2 and 3 fall into this category where the mass disparity is too large for the coincidence experiment.

In order to detect Channels 2 and 3, a third type of experiment is performed that is sensitive to product channels even if $m_{1} / m_{2}>5$. This is a less detailed, non-coincidence experiment ${ }^{31}$ in which the flight time of the fragments from the dissociation laser to the TOF detector is recorded using a transient digitizer with 1 ns bin width. The narrow beam block, (3 mm) on this detector allows improved collection of heavy fragments compared to the TPS detector described above. The resulting TOF distributions are a one-dimensional projection of the photofragment velocity distribution in the laboratory frame along the beam axis. These results are more averaged than the $P\left(E_{\mathrm{T}}, \theta\right)$ distributions obtained with the TPS detector, but in return are sensitive to all product channels because two-particle coincidence detection is not required. This method is particularly useful for detecting light atom fragments such as H or D atoms, because these will have a much larger spread in arrival times at the detector and should thus be readily distinguishable from the heavier fragments. Pairs of TOF distributions are acquired at each photon energy with the dissociation laser polarized either parallel or perpendicular to the radical beam axis. The analysis of these data is discussed in Section IV.

III. Results

Our results from the three types of experiments are given in this section, followed by a description of the electronic structure calculations on the vinoxy system. Before presenting spectra of the vinoxy radical, we point out that the anion we photodetach at m/e 43 is in fact $\mathrm{CH}_{2} \mathrm{CHO}^{-}$, and not the isomer $\mathrm{CH}_{3} \mathrm{CO}^{-}$. While the two species are indistinguishable in the parent ion mass spectrum, they have very different photodetachment spectra. $\mathrm{CH}_{2} \mathrm{CHO}^{-}$, the more stable ion of the two, has an electron affinity (EA) of $1.824 \mathrm{eV},{ }^{19}$ while $\mathrm{CH}_{3} \mathrm{CO}^{-}$has an EA of $0.423 \mathrm{eV}^{39}$ The photoelectron spectrum of $m / e 43$ ions measured on a different apparatus in our laboratory (using the identical ion source as in the photodissociation study) is in quantitative agreement with the literature spectrum of $\mathrm{CH}_{2} \mathrm{CHO}^{-19}$. Therefore we are confident that all photodissociation spectra reported here arise unambiguously from the $\mathrm{CH}_{2} \mathrm{CHO}$ radical. Our photoelectron spectrum shows a small amount of vibrationally excited radicals produced from photodetachment of vibrationally excited anions, but their concentration is too low to substantially affect the results presented here.

A. Photofragment Yield Spectra

The PFY spectra obtained from excitation of the $\widetilde{B}\left({ }^{2} A^{\prime \prime}\right) \leftarrow \widetilde{X}\left({ }^{2} A^{\prime \prime}\right)$ transition are shown in Figs. 2 b and 2 c for $\mathrm{CH}_{2} \mathrm{CHO}$ and $\mathrm{CD}_{2} \mathrm{CDO}$, respectively. The spectra show extended vibrational progressions in the excited electronic state with narrow linewidths, indicative of fragmentation by predissociation rather than by direct excitation to a repulsive potential energy surface. Peak positions and intensities for $\mathrm{CH}_{2} \mathrm{CHO}$ and

Figure 2: Photofragment yield spectra of the vinoxy radical. Energy in excess of the $\widetilde{B} \leftarrow \widetilde{X} 0_{0}^{0}$ transition is given along the top abscissa. (a) simulation of $\mathrm{CH}_{2} \mathrm{CHO}$, (b) $\mathrm{CH}_{2} \mathrm{CHO}$ experimental data, (c) $\mathrm{CD}_{2} \mathrm{CDO}$ experimental data. Translational energy and angular distributions in Figs. 4 and 5 were acquired at the vibronic transitions marked with *.
$\mathrm{CD}_{2} \mathrm{CDO}$ are given in Tables I and II. Our transition energies agree quantitatively with those of DiMauro et. al. ${ }^{15}$, but disagree with the measurements of Inoue and Akimoto ${ }^{14}$ by as much as $45 \mathrm{~cm}^{-1}$.

The published LIF spectra ${ }^{14,15}$ of $\mathrm{CH}_{2} \mathrm{CHO}$ show features up to $1,400 \mathrm{~cm}^{-1}$ above the 0_{0}^{0} transition. All these fluorescent levels are observed in our PFY spectra, indicating a competition between fluorescence and predissociation. The origin transition is the strongest line in the LIF spectrum, ${ }^{15}$ but very weak in the PFY spectrum, indicating that the quantum yield for dissociation ($\Phi_{\text {diss }}$) of 0_{0}^{0} is small. Nonetheless, measurable dissociation occurs across the entire band, including the origin. The intensities in the PFY spectrum increase rapidly as the photon energy is raised, even though the Franck-Condon factors for absorption increase only slightly, indicating a steep rise in $\Phi_{\text {diss. }}$ Above 1,400 cm^{-1} of excess energy, where the LIF signal is strongly quenched, we expect that $\Phi_{\text {diss }} \cong 1$, and our overall intensities are in accord with low-resolution absorption ${ }^{13}$ and high resolution hole-burning ${ }^{17}$ data. Each vibrational transition in Fig. 2 is in fact composed of many rovibronic transitions. The sharp spike that dominates each vibrational transition represents a band head in the R -branch of the rotational contour, as first analyzed by DiMauro et al. ${ }^{15}$ However, due to the higher rotational temperature in our supersonic expansion ($\approx 30-50 \mathrm{~K}$) and limited laser resolution, it is not possible to discern whether lifetime broadening occurs in the PFY spectra above $1,400 \mathrm{~cm}^{-1}$.

v	$v-v_{0}$	I	assignment	v	$v-v_{0}$	I	assignment	v	$v-v_{0}$	I	assignment
28785.6	0.0	55	0_{0}^{0}	30822.3	2036.7	1000	$7_{0}^{1} 8_{0}^{1}$	31931.0	3145.4	523	$7_{0}^{2} 8_{0}^{1}$
29234.6	449.0	34	9_{0}^{1}	30850.2	2064.6	112	$4_{0}^{1} 9_{0}^{1}$	31957.3	3171.7	131	
29333.3	547.7	66	11_{0}^{2}	30893.4	2107.8	156		31995.1	3209.5	235	
29659.1	873.5	195	10_{0}^{2}	30926.9	2141.3	140	$6_{0}^{1} 10_{0}^{2}$	32002.8	3217.2	184	
29684.1	898.5	99	9_{0}^{2}	30976.7	2191.1	250	$6_{0}^{1} 8_{0}^{1}$	32011.6	3226.0	302	
29703.2	917.6	166	8_{0}^{1}	31024.3	2238.7	496	7_{0}^{2}	32032.0	3246.4	213	
29781.0	995.4	65	$9_{0}^{1} 11_{0}^{2}$	31058.9	2273.3	187	$8_{0}^{2} 9_{0}^{1}$	32091.4	3305.8	227	
29908.2	1122.6	251	7_{0}^{1}	31084.5	2298.9	242		32127.6	3342.0	150	
29976.0	1190.4	265	$8_{0}^{1} 11_{0}^{1} ?$	31104.6	2319.0	311		32167.6	3382.0	130	
30030.7	1245.1	62		31111.0	2325.4	331		32200.1	3414.5	240	428
30059.8	1274.2	107	6_{0}^{1}	31144.8	2359.2	117		32217.8	3432.2	428	
30085.4	1299.8	52		31181.5	2395.9	170		32413.2	3627.6	461	
30150.3	1364.7	97	$8_{0}^{1} 9_{0}^{1}$	31205.3	2419.7	186		32426.2	3640.6	301	
30192.5	1406.9	158	5_{0}^{1}	31266.1	2480.5	296		32435.2	3649.6	323	
30221.8	1436.2	90		31307.7	2522.1	665	$4_{0}^{1} 8_{0}^{1}$	32557.3	3771.7	157	
30355.1	1569.5	233	$7_{0}^{1} 9_{0}^{1}$	31331.8	2546.2	248		32622.0	3836.4	338	
30407.4	1621.8	491	4_{0}^{1}	31519.4	2733.8	620	$4_{0}^{1} 7_{0}^{1}$	32832.1	4046.5	173	
30448.4	1662.8	298	$7_{0}^{1} 11_{0}^{2}$	31527.9	2742.3	295		32907.9	4122.3	169	
30546.0	1760.4	135		31553.2	2767.6	202		33111.1	4325.5	315	
30553.0	1767.4	201		31653.2	2867.6	165		33318.0	4532.4	228	
30612.3	1826.7	885	8_{0}^{2}	31725.2	2939.6	772	$7_{0}^{1} 8_{0}^{2}$				
30633.6	1848.0	118	$5_{0}^{1} 9_{0}^{1}$	31840.8	3055.2	205					
30773.9	1988.3	224	$7_{0}^{1} 10_{0}^{2}$	31883.0	3097.4	166					

Table I: Peak positions $\left(\mathrm{cm}^{-1}\right)$, intensities, and vibrational assignments for the PFY spectrum of $\mathrm{CH}_{2} \mathrm{CHO}$, Fig. 2 b .

For $\mathrm{CD}_{2} \mathrm{CDO}$ no LIF spectrum has been published, although a spectrum was acquired by Inoue and Akimoto, ${ }^{14}$ who reported only the positions of three peaks at $28,840,29,608$, and $29,820 \mathrm{~cm}^{-1}$. The values for excess energy in the \widetilde{B} state given in Table II are calculated under the assumption that the first peak observed by Inoue is the 0_{0}^{0} transition of $\mathrm{CD}_{2} \mathrm{CDO}$. In the PFY spectrum of $\mathrm{CD}_{2} \mathrm{CDO}$ in Fig. 2 c , the lowest transitions show no detectable signs of predissociation, and the shape of the overall spectrum, punctuated by the strong feature near $30,000 \mathrm{~cm}^{-1}$, is quite different from the $\mathrm{CH}_{2} \mathrm{CHO}$ data,. A gradual increase in the intensity of unstructured signal with photon energy is present in the spectra of both isotopes, but is much more pronounced for $\mathrm{CD}_{2} \mathrm{CDO}$. The unstructured component is not present in background scans taken with the photodissociation laser blocked, demonstrating that this broad signal is due to photofragments of the parent radical.

v	$v \cdots v_{0}{ }^{a}$	I	v	$v-v_{0}$	I	v	$v-v_{0}$	I
29828.4	988.4	320	30583.1	1743.1	310	32092.4	3252.4	264
29858.0	1018.0	230	30726.6	1886.6	523	32144.2	3304.2	228
29945.1	1105.1	293	30767.7	1927.7	343	32185.4	3345.4	244
29957.8	1117.8	575	30949.6	2109.6	344	32294.2	3454.2	315
29970.6	1130.6	987	30975.0	2135.0	264	32323.9	3483.9	361
29977.4	1137.4	216	31056.2	2216.2	344	32337.8	3497.8	234
29997.4	1157.4	1000	31122.0	2282.0	496	32371.5	3531.5	224
30006.8	1166.8	416	31397.0	2557.0	305	32504.1	3664.1	245
30173.5	1333.5	116	31546.8	2706.8	578	32573.0	3733.0	209
30200.2	1360.2	130	31559.0	2719.0	284	32635.2	3795.2	190
30207.1	1367.1	148	31568.4	2728.4	363	32689.8	3849.8	422
30247.7	1407.7	118	31882.5	3042.5	326	32719.2	3879.2	212
30369.7	1529.7	569	31927.6	3087.6	250	33096.3	4256.3	260
30423.0	1583.0	679	31979.6	3139.6	588	33111.9	4271.9	239

Table: II Peak positions $\left(\mathrm{cm}^{-1}\right)$ and intensities for the PFY spectrum of $\mathrm{CD}_{2} \mathrm{CDO}$, Fig. 2c.
${ }^{a}$ Energy in excess of the 0_{0}^{0} transition measured by Inoue and Akimoto at $28,840 \mathrm{~cm}^{-1}$.

B. Coincidence photofragment distributions: $\mathrm{CH}_{3}+\mathrm{CO}$

Using the TPS detector, we perform coincidence measurements to probe for dissociation via Channels 1, 4, and 5. For this set of experiments, the photodissociation laser is fixed on one of the peaks marked in Fig. 2 and both fragments are detected in coincidence. The photofragment mass spectrum is easily found by conservation of linear momentum in the center of mass frame according to Eq. 7, and is presented in Fig. 3 for both $\mathrm{CH}_{2} \mathrm{CHO}$ and $\mathrm{CD}_{2} \mathrm{CDO}$. Despite the limited fragment mass resolution of

Figure 3: Photofragment mass spectrum of $\mathrm{CH}_{2} \mathrm{CHO}$ and $\mathrm{CD}_{2} \mathrm{CDO}$. Note that the higher mass peak ($m=28$) does not shift upon deuteration and must be assigned to CO. The cofragments are CH_{3} and CD_{3}, respectively. $m / \Delta m \approx 15$, the use of both isotopes of vinoxy demonstrates that the heavy fragment contains no hydrogen atoms. Therefore the only product channel observed in coincidence is Channel $1, \mathrm{CH}_{3}+\mathrm{CO}$. We see no evidence for production of $\mathrm{C}_{2} \mathrm{H}_{2}+$ OH or $\mathrm{CH}_{2}+\mathrm{HCO}$. The results for Channel $2, \mathrm{H}+\mathrm{CH}_{2} \mathrm{CO}$, will be discussed in Section III.C.

Once the identity of the fragments are known, the coupled translational energy and angular distribution, $P\left(E_{\mathrm{T}}, \theta\right)$, is determined by direct inversion of the data using Eqs. 8 and 9 along with the calculated detector acceptance function. ${ }^{29}$ The two dimensional $P\left(E_{\mathrm{T}}, \theta\right)$ distribution can be separated into an angle-independent translational energy distribution $P\left(E_{T}\right)$, and an energy-dependent anisotropy parameter, ${ }^{40}$ that describes the angular distribution of the fragments:

$$
\begin{equation*}
P\left(E_{\mathrm{T}}, \theta\right)=P\left(E_{\mathrm{T}}\right) \cdot\left\{1+\beta\left(E_{\mathrm{T}}\right) \cdot P_{2}(\cos \theta)\right\} \tag{10}
\end{equation*}
$$

The limiting cases of $\sin ^{2} \theta$ and $\cos ^{2} \theta$ angular distributions are given by $\beta=-1$ and +2 , respectively. Together, the $P\left(E_{\mathrm{T}}\right)$ and $\beta\left(E_{\mathrm{T}}\right)$ distributions can yield detailed information on the dynamics of the dissociation process.

In analyzing the current experiment, E_{T} is binned in 30 meV increments, while θ is binned in 1° increments. The general data analysis scheme remains the same as in previous papers, with the exception of one refinement in the analysis of the angular distributions that yields more smoothly varying functions of the anisotropy parameter β with E_{T}. The data are divided into translational energy windows of width 0.4 eV , where E^{\prime} is a running parameter such that $E^{\prime} \leq E_{\mathrm{T}} \leq\left(E^{\prime}+0.4 \mathrm{eV}\right) . \beta$ is assumed to be constant over this 0.4 eV window and is determined from a linear least squares fit of the distribution $P\left(E_{\mathrm{T}}, \theta\right)$ to Eq. 10 with $P\left(E_{\mathrm{T}}\right)$ and β as the fitting parameters. The quantity E^{\prime} is then incremented in 30 meV steps beginning with $E^{\prime}=0$ and the fitting procedure is repeated until the entire energy range of the data is covered. In other words, $\beta\left(E_{\mathrm{T}}\right)$ is constructed as a moving average over 0.4 eV windows in E_{T}. Using these values of $\beta\left(E_{\mathrm{T}}\right)$, a second linear least squares fit in the single parameter $P\left(E_{\mathrm{T}}\right)$ is determined for each individual 30 meV wide energy bin, completing the separation of $P\left(E_{\mathrm{T}}, \theta\right)$ into two one dimensional distributions, i.e., $P\left(E_{\mathrm{T}}\right)$ and $\beta\left(E_{\mathrm{T}}\right)$.

Figure 4: Photofragment translational energy distributions $\mathrm{P}\left(E_{\mathrm{T}}\right)$ and angular distributions $\beta\left(E_{\mathrm{T}}\right)$ for CH_{3} + CO. Statistical error bars on $\beta\left(E_{\mathrm{T}}\right)$ represent $\pm 1 \sigma$. Vibronic assignments are given in addition to the excess energy for each transition when possible.

The resulting $P\left(E_{\mathrm{T}}\right)$ and $\beta\left(E_{\mathrm{T}}\right)$ distributions for photodissociation of vinoxy yielding $\mathrm{CH}_{3}+\mathrm{CO}$ and $\mathrm{CD}_{3}+\mathrm{CO}$ are shown in Figs. 4 and 5, respectively, for the vibrational levels noted in Fig. 2. Each data set consists of 10,000 to 40,000 coincident events. The translational energy distributions are similar at all photon energies for both isomers, peaking at $=0.9 \mathrm{eV}$. Both the width of the distributions and the most probable translational energy increase slightly as the photon energy is increased, but the changes are minor. The angular distributions are isotropic $(\beta \cong 0)$ at the lowest three photon energies. However, anisotropic distributions with $\beta\left(E_{\mathrm{T}}\right)>0$ are observed at all energies $1,408 \mathrm{~cm}^{-1}$ and higher above the \widetilde{B} state origin. This apparently abrupt change coincides with the large drop in fluorescence quantum yield, and indicates that the dissociation rate increases markedly between 917 and $1,408 \mathrm{~cm}^{-1}$ excess energy.

C. Non-coincidence photofragment distributions

To determine whether the \tilde{B} state of vinoxy also decays through Channels (2) and (3), non-coincident TOF distributions for $\mathrm{CD}_{2} \mathrm{CDO}$ dissociation are obtained using the third type of experimental configuration described in Section II.B. The data are shown as circles in Fig. 6, and Fig. 7 shows one of these spectra in greater detail. The four photon energies chosen correspond to the four coincidence spectra in Fig. 5. TOF distributions are presented only for $\mathrm{CD}_{2} \mathrm{CDO}$, because the detection efficiency of the MCPs for D atoms is substantially greater than for H atoms due to the higher laboratory kinetic energy of the heavier isotope. Even for D atoms, the detection efficiency appears to be $\approx 8 \%$ (see Section IV.B) of that for heavy fragments such as CD_{3} or CO .

Figure 5: Photofragment translational energy distributions $\mathrm{P}\left(E_{\mathrm{T}}\right)$ and angular distributions $\beta\left(E_{\mathrm{T}}\right)$ for $\mathrm{CD}_{3}+$ CO. Statistical error bars on $\beta\left(E_{\mathrm{T}}\right)$ represent $\pm 1 \sigma$. Excess energy above the origin is referenced to Inoue and Akimoto's value ${ }^{14}$ for $0_{0}^{0}=28,840 \mathrm{~cm}^{-1}$.

The appearance of all the TOF spectra is roughly the same. Each consists of a sharp spike superimposed on a broader peak that is about 100 ns wide. There is also a very broad, weak feature from 3.5 to $3.9 \mu \mathrm{~s}$, better seen at 20 x magnification, which has a FWHM of ≈ 10 times that of the sharp spike. The sharp spike is only slightly broader than the TOF distribution of the undissociated parent radicals (measured by moving the TOF detector off-center by several mm; see Fig. 6f, implying that these fragments have very little velocity imparted to them by the dissociation process. The broad, weak feature arises from fragments which are significantly forward/backward scattered by the
dissociation event. It is therefore a reasonable conclusion that these two features represent the heavy and light fragments, respectively, of a dissociation channel whose mass ratio is at least $10: 1$. The analysis in Section IV.B shows that these two features are from the $\mathrm{D}+\mathrm{CD}_{2} \mathrm{CO}$ channel, and that the 100 ns wide peak under the spike is from the $\mathrm{CD}_{3}+\mathrm{CO}$ channel.

D. $A b$ initio electronic structure calculations

To supplement the experimental data and aid in interpreting our results, we have performed $a b$ initio molecular orbital calculations using the Gaussian 92^{41} and Gaussian 94^{42} suite of programs. Our main goal is to characterize stationary points on both ground and excited state potential energy surfaces. The calculated energies, structures, and vibrational frequencies at various minima and transition states are very useful in assigning the PFY spectra in Fig. 2 and understanding the photodissociation dynamics of the system. The absolute and relative energetics of the various minima, transition states, and asymptotic states relevant to the vinoxy system are shown in Fig. 8 and tabulated in Table III, while geometries and vibrational frequencies are listed in Tables IV and V. Fig. 8 is a schematic representation of the surfaces involved in this system, sections of which have been previously investigated by Donaldson et al. ${ }^{5}$ and Deshmukh et al. ${ }^{43}$ The zero of energy is chosen to be the zero-point level of the $\mathrm{CH}_{2} \mathrm{CHO} \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ potential well. The only experimentally determined barrier height is that for dissociation of acetyl $\left(\mathrm{CH}_{3} \mathrm{CO}\right)$ to $\mathrm{CH}_{3}+\mathrm{CO}$, (TS3), found to be $0.75 \pm 0.02 \mathrm{eV}^{44,45}$. This agrees well with our calculated barrier height $0.44+0.31=0.75 \mathrm{eV}$, with respect to the $\mathrm{CH}_{3} \mathrm{CO}$ well.

Figure 6: Photofragment time-of-flight distributions for all photon energies used in Fig. 5. Laser polarization is either parallel (II) or perpendicular (\perp) to the radical beam axis. Circles are the experimental data. For all panels except (f), the solid lines give total simulation. In panel (f), the solid line is the experimental TOF distribution of parent radicals ($\mathrm{CD}_{2} \mathrm{CDO}$) taken with the detector displaced 10 mm vertically.

Figure 7: $\mathrm{CD}_{2} \mathrm{CDO}$ TOF distribution for $3,140 \mathrm{~cm}^{-1}$ excess energy, showing individual fragment contributions. Experimental data (${ }^{\circ}$), $\mathrm{CD}_{2} \mathrm{CO}(-\rightarrow), \mathrm{CO}(-\cdots), \mathrm{CD}_{3}(--)$. (a) sum of all contributions (\longrightarrow); (b) Magnification to show D atom contribution $(-)$; (c) $\mathrm{P}\left(E_{\mathrm{T}}\right)$ distribution $(-)$ for this fit, with prior distribution also shown for comparison (--).

We have used the $\mathrm{G} 2^{46}$ and $\mathrm{G} 2 \mathrm{Q}^{47}$ methodologies for the ground state surface. These methods have been compared extensively with experimental thermodynamic values and give accurate ($\pm 0.1 \mathrm{eV}$) estimations of dissociation energies. Because the single determinant wavefunctions in the G2 treatment do not work well for excited states, we have also performed multi-configurational complete active space self consistent field (CASSCF) calculations ${ }^{48}$ for the \tilde{X}, \tilde{A}, and \tilde{B} electronic states of vinoxy with the
$6-31 \mathrm{G}^{* *}$ basis set. Building on earlier work ${ }^{21,23,24}$, we choose an active space which consists of three electrons in the three $a^{\prime \prime}$ orbitals [CAS $\left.(3,3)\right]$ for the \tilde{X} and \tilde{B} states, while for the \tilde{A} state the $a^{\prime \prime}$ lone pair on oxygen is excluded and the singly occupied a^{\prime} orbital on oxygen is included in the active space. The agreement with earlier calculations ${ }^{21,23,24}$ is very good with respect to energies, geometries, and frequencies. We refine the CASSCF energetics using single point CASSCF-MP2 ${ }^{49}$ to include dynamic electron correlation.

Method	Species	Relative Energy ${ }^{a}$
G2 / G2Q	$\begin{aligned} & \hline \mathrm{CH}_{2} \mathrm{CHO} \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right) \\ & \mathrm{CH}_{3} \mathrm{CO} \tilde{x}\left({ }^{2} \mathrm{~A}^{\prime}\right) \\ & \mathrm{TS} 1 \\ & \mathrm{TS} 2 \\ & \mathrm{TS} 3 \\ & \mathrm{CH}_{3}+\mathrm{CO} \\ & \mathrm{H}+\mathrm{CH}_{2} \mathrm{CO} \tilde{X}\left({ }^{1} \mathrm{~A}_{1}\right) \\ & \mathrm{H}+\mathrm{CH}_{2} \mathrm{CO} \tilde{a}\left({ }^{3} \mathrm{~A}^{\prime \prime}\right) \\ & \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{OH} \\ & \mathrm{CH}_{2}+\mathrm{HCO} \\ & \hline \end{aligned}$	0.0 -0.31 1.78 1.74 0.44 0.04 1.50 3.90 2.57 4.26
CASSCF(3,3)-MP2 /6-31G**	$\begin{aligned} & \mathrm{CH}_{2} \mathrm{CHO} \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime}\right) \\ & \mathrm{CH}_{2} \mathrm{CHO} \tilde{A}\left({ }^{2} \mathrm{~A}^{\prime}\right) \\ & \mathrm{CH}_{2} \mathrm{CHO} \tilde{B}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 0.73 \\ & 3.52 \end{aligned}$
CASSCF(5.5)-MP2 /6-31G**	$\begin{aligned} & \mathrm{CH}_{2} \mathrm{CHO} \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right) \\ & \mathrm{CH}_{2} \mathrm{CHO} \tilde{A}\left({ }^{2} \mathrm{~A}^{\prime}\right) \\ & \mathrm{TS} 4 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 0.79 \\ 2.09 \\ \hline \end{array}$
Experiment	$\begin{aligned} & \mathrm{CH}_{2} \mathrm{CHO} \tilde{A}\left({ }^{2} \mathrm{~A}^{\prime}\right) \\ & \mathrm{CH}_{2} \mathrm{CHO} \tilde{B}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.99^{b} \\ & 3.569^{c} \end{aligned}$

Table III: Ab Initio energies of stationary points in Fig. 8.

[^3]| $\mathrm{CH}_{2} \mathrm{CHO} \tilde{X}^{\text {a,b }}$ | $\mathrm{CH}_{2} \mathrm{CHO} \widetilde{A}^{\text {c }}$ | $\mathrm{CH}_{3} \mathrm{CO}^{\text {a,b }}$ | TS1 ${ }^{\text {d }}$ | TS ${ }^{\text {d }}$ | TS3 ${ }^{\text {d }}$ | TS4 ${ }^{\text {c }}$ | TS5 ${ }^{\text {c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | GEOMETRIES | | | | |
| $r\left(\mathrm{C}_{2} \mathrm{C}_{6}\right)=1.456$ | $r\left(\mathrm{C}_{\mathrm{a}} \mathrm{C}_{\mathrm{b}}\right)=1.333$ | $r\left(\mathrm{C}_{\mathrm{a}} \mathrm{C}_{\mathrm{b}}\right)=1.513$ | $r\left(\mathrm{C}_{\mathrm{a}} \mathrm{C}_{\mathrm{b}}\right)=1.410$ | $r\left(\mathrm{C}_{\mathrm{a}} \mathrm{C}_{\mathrm{b}}\right)=1.340$ | $r\left(\mathrm{C}_{\mathrm{a}} \mathrm{C}_{\mathrm{b}}\right)=2.113$ | $r\left(\mathrm{C}_{\mathrm{a}} \mathrm{C}_{\mathrm{b}}\right)=1.324$ | |
| $r\left(\mathrm{C}_{3} \mathrm{O}\right)=1.200$ | $r\left(\mathrm{C}_{2} \mathrm{O}\right)=1.348$ | $r\left(\mathrm{C}_{\mathrm{s}} \mathrm{O}\right)=1.196$ | $r\left(\mathrm{C}_{2} \mathrm{O}\right)=1.204$ | $r\left(\mathrm{C}_{\mathrm{a}} \mathrm{O}\right)=1.163$ | $r\left(\mathrm{C}_{\mathrm{a}} \mathrm{O}\right)=1.147$ | $r\left(\mathrm{C}_{\mathrm{k}} \mathrm{O}\right)=1.195$ | |
| $r\left(\mathrm{C}_{\mathrm{b}} \mathrm{H}_{\mathrm{c}}\right)=1.082$ | $r\left(\mathrm{C}_{\mathrm{b}} \mathrm{H}_{\mathrm{c}}\right)=1.074$ | $r\left(\mathrm{C}_{\mathrm{b}} \mathrm{H}_{\mathrm{c}}\right)=1.092$ | $r\left(\mathrm{C}_{\mathrm{b}} \mathrm{H}_{\mathrm{c}}\right)=1.094$ | $r\left(\mathrm{C}_{\mathrm{b}} \mathrm{H}_{\mathrm{c}}\right)=1.083$ | $r\left(\mathrm{C}_{\mathrm{b}} \mathrm{H}_{\mathrm{c}}\right)=1.087$ | $r\left(\mathrm{C}_{\mathrm{b}} \mathrm{H}_{\mathrm{c}}\right)=1.068$ | |
| $r\left(\mathrm{C}_{\mathrm{b}} \mathrm{H}_{\mathrm{b}}\right)=1.082$ | $r\left(\mathrm{C}_{\mathrm{b}} \mathrm{H}_{\mathrm{b}}\right)=1.072$ | $r\left(\mathrm{C}_{\mathrm{b}} \mathrm{H}_{\mathrm{b}}\right)=1.092$ | $r\left(\mathrm{C}_{b} \mathrm{H}_{\mathrm{b}}\right)=1.083$ | $r\left(\mathrm{C}_{6} \mathrm{H}_{b}\right)=1.083$ | $r\left(\mathrm{C}_{b} \mathrm{H}_{\mathrm{b}}\right)=1.087$ | $r\left(\mathrm{C}_{5} \mathrm{H}_{\mathrm{b}}\right)=1.073$ | |
| $r\left(\mathrm{C}_{2} \mathrm{H}_{\mathrm{a}}\right)=1.110$ | $r\left(\mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{a}}\right)=1.098$ | $r\left(\mathrm{C}_{\mathrm{b}} \mathrm{H}_{\mathrm{a}}\right)=1.093$ | $r\left(\mathrm{C}_{b} \mathrm{H}_{\mathrm{a}}\right)=1.481$ | $r\left(\mathrm{C}_{6} \mathrm{H}_{\mathrm{s}}\right)=1.888$ | $r\left(\mathrm{C}_{b} \mathrm{H}_{4}\right)=1.085$ | $r\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)=1.66$ | |
| $\angle\left(\mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{a}} \mathrm{O}\right)=123.6$ | $\angle\left(\mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{a}} \mathrm{O}\right)=124.7$ | $\angle\left(\mathrm{C}_{6} \mathrm{C}_{4} \mathrm{O}\right)=127.5$ | $\angle\left(\mathrm{C}_{5} \mathrm{C}_{4} \mathrm{O}\right)=139.3$ | $\angle\left(\mathrm{C}_{6} \mathrm{C}_{4} \mathrm{O}\right)=172.1$ | $\angle\left(\mathrm{C}_{5} \mathrm{C}_{2} \mathrm{O}\right)=115.1$ | $\angle\left(\mathrm{Cb}_{5} \mathrm{C}_{\mathrm{a}} \mathrm{O}\right)=157.5$ | |
| $\angle\left(\mathrm{H}_{c} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{a}}\right)=118.7$ | $\angle\left(\mathrm{H}_{\mathrm{c}} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{2}\right)=121.8$ | $\angle\left(\mathrm{H}_{\mathrm{c}} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{2}\right)=108.6$ | $\angle\left(\mathrm{H}_{\mathrm{c}} \mathrm{C}_{\mathrm{C}} \mathrm{C}_{\mathrm{a}}\right)=122.0$ | $\angle\left(\mathrm{H}_{\mathrm{c}} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{a}}\right)=116.7$ | $\angle\left(\mathrm{H}_{\mathrm{c}} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{a}}\right)=99.6$ | $\angle\left(\mathrm{H}_{\mathrm{c}} \mathrm{C}_{5} \mathrm{C}_{\mathrm{a}}\right)=121.2$ | |
| $\angle\left(\mathrm{H}_{\mathrm{b}} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{a}}\right)=121.3$ | $\angle\left(\mathrm{H}_{\mathrm{b}} \mathrm{C}_{6} \mathrm{C}_{\mathrm{a}}\right)=119.6$ | $\angle\left(\mathrm{H}_{6} \mathrm{C}_{6} \mathrm{C}_{\mathrm{a}}\right)=108.6$ | $\angle\left(\mathrm{H}_{\mathrm{b}} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{a}}\right)=117.8$ | $\angle\left(\mathrm{H}_{6} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{a}}\right)=116.7$ | $\angle\left(\mathrm{H}_{\mathrm{b}} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{s}}\right)=99.6$ | $\angle\left(\mathrm{H}_{b} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{a}}\right)=118.3$ | |
| $\angle\left(\mathrm{H}_{\mathrm{a}} \mathrm{C}_{\mathrm{a}} \mathrm{O}\right)=121.5$ | $\angle\left(\mathrm{H}_{\mathrm{a}} \mathrm{C}_{\mathrm{a}} \mathrm{O}\right)=111.4$ | $\angle\left(\mathrm{H}_{4} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{a}}\right)=111.1$ | $\angle\left(\mathrm{H}_{2} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{a}}\right)=52.6$ | $\angle\left(\mathrm{H}_{2} \mathrm{C}_{5} \mathrm{C}_{\mathrm{s}}\right)=111.3$ | $\angle\left(\mathrm{H}_{\mathrm{a}} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{2}\right)=103.1$ | $\angle\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}\right)=98.5$ | |
| | | $\angle\left(\mathrm{H}_{\mathrm{c}} \mathrm{C}_{b} \mathrm{C}_{\mathrm{a}} \mathrm{O}\right)=121.6$ | $\angle\left(\mathrm{H}_{\mathrm{c}} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{2} \mathrm{O}\right)=117.0$ | $\angle\left(\mathrm{H}_{\mathrm{c}} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{a}} \mathrm{O}\right)=105.0$ | $\angle\left(\mathrm{H}_{\mathrm{c}} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{2} \mathrm{O}\right)=59.5$ | | |
| | | $\angle\left(\mathrm{H}_{\mathrm{b}} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{a}} \mathrm{O}\right)=-121.6$ | $\angle\left(\mathrm{H}_{6} \mathrm{C}_{6} \mathrm{C}_{2} \mathrm{O}\right)=-68.5$ | $\angle\left(\mathrm{H}_{5} \mathrm{C}_{5} \mathrm{C}_{2} \mathrm{O}\right)=-105.0$ | $\angle\left(\mathrm{H}_{\mathrm{b}} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{a}} \mathrm{O}\right)=-59.5$ | | |
| | | $\angle\left(\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{C}_{2} \mathrm{O}\right)=0.0 \mathrm{f}$ | $\angle\left(\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{C}_{2} \mathrm{O}\right)=0.0$ | $\angle\left(\mathrm{H}_{2} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{2} \mathrm{O}\right)=0.0^{\circ}$ | $\angle\left(\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{C}_{2} \mathrm{O}\right)=180.0^{\prime}$ | | |
| | | | FREQUENCIES | | | | |
| 3081 | 3431 | 2950 | 3276 (V) ${ }^{8}$ | 3304 | 3276 | 3465 | 3100 |
| 2985 | 3336 | 2946 | 3098 (V) | 3202 | 3260 | 3349 | 3100 |
| 2901 | 3107 | 2871 | 1966 (V) | 2194 | 3105 | 2026 | 1700 |
| 1441 | 1773 | 1913 | 1846 (V) | 1425 | 2044 | 1584 | 1450 |
| 1392 | 1550 | 1433 | 1465 (V) | 1118 | 1453 | 1190 | 1300 |
| 1267 | 1352 | 1432 | 1229 (T) | 1033 | 1446 | 1100 | 1200 |
| 1089 | 1183 | 1356 | 1126 (T) | 799 | 939 | 714 | 1150 |
| 947 | 1025 | 1037 | 1036 (V) | 571 | 611 | 592 | 700 |
| 910 | 956 | 938 | 836 (R) | 567 | 547 | 542 | 700 |
| 704 | 864 | 827 | 633 (V) | 426 | 277 | 432 | 700 |
| 482 | 714 | 454 | 438 (R) | 309 | 43 | 169 | 400 |
| 474 | 484 | 85 | $1675 i(\mathrm{~T})$ | 801 i | $466 i$ | $1504 i$ | |

${ }^{a}$ Geometry from G2 method: MP2/6-31G*.
${ }^{\text {b }}$ Frequencies from G2 method: UHF/6-31G* scaled by 0.8929.
${ }^{c}$ Geometry and frequencies are $\operatorname{CASSCF}(5,5) / 6-31 \mathrm{G}^{* *}$.
${ }^{d}$ Geometry and frequencies from G2Q method: QCISD/6-311G**.
${ }^{e}$ Frequencies estimated from Ref. 65.
${ }^{\prime}$ fixed
${ }^{8}$ Motion into which vibrations develop asymptotically. See Section V.B.2.

The direct bond cleavage $\mathrm{CH}_{2} \mathrm{CHO} \rightarrow \mathrm{H}\left({ }^{2} \mathrm{~S}\right)+\mathrm{CH}_{2} \mathrm{CO}$ requires a CASSCF wavefunction to properly describe the spin coupling, since the ground state of vinoxy in C_{5} symmetry correlates with $\mathrm{CH}_{2} \mathrm{CO} \tilde{a}\left({ }^{3} \mathrm{~A}^{\prime \prime}\right)$, while the \tilde{A} state of vinoxy correlates with $\mathrm{CH}_{2} \mathrm{CO} \tilde{X}\left({ }^{1} \mathrm{~A}_{1}\right)$. For dissociation along the reaction coordinate leading to triplet ketene, five electrons are distributed among five orbitals [CAS $(5,5)$], which are chosen to be the $\mathrm{C}-\mathrm{H}_{\mathrm{a}} \sigma$-bond $\left(10 a^{\prime}\right)$, the $\mathrm{C}-\mathrm{O} \pi$-bond $\left(1 a^{\prime \prime}\right)$, the unpaired electron on the methylene $\mathrm{C}\left(2 a^{\prime \prime}\right)$, the $\mathrm{C}-\mathrm{O} \pi^{*}$ orbital ($3 a^{\prime \prime}$), and the $\mathrm{C}-\mathrm{H}_{\mathrm{a}} \sigma^{*}$ orbital (11 a^{\prime}). This active space contains the most important configurations needed to describe the breaking of the $\mathrm{C}-\mathrm{H}_{\mathrm{a}}$ bond along with the resonance character of the CCO backbone as described by Dupuis et al. ${ }^{21}$ The $\mathrm{C}-\mathrm{H}_{\mathrm{a}}$ cleavage of $\mathrm{CH}_{2} \mathrm{CHO} \widetilde{A}\left({ }^{2} \mathrm{~A}^{\prime}\right)$ to singlet ketene is investigated by a similar extension of the active space. Again, the energetics are refined using CASSCF-MP2.

A comparison of calculated and experimental excited state energies in Table III shows that the CASSCF-MP2 treatment gives a fairly good description of the vinoxy energetics. However, Table V shows that the CASSCF vibrational frequencies are systematically too high compared to experiment, and that the calculated $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bond lengths for the $\tilde{X}\left({ }^{2} A^{\prime \prime}\right)$ state differ considerably from the experimental values. A CASSCF calculation of the geometry by Yamaguchi ${ }^{24}$ using a larger (DZP) basis set yields results similar to ours, indicating that the good agreement found by Dupuis ${ }^{21}$ between the experimental and $a b$ initio geometry of the $\widetilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ state (using a smaller $3-21 \mathrm{G}$ basis) was probably fortuitous. The disagreement arises mainly because CASSCF neglects dynamic electron correlation. To obtain a benchmark for the CASSCF error in the excited state geometries and frequencies, we have performed a $\mathrm{QCISD}^{50} / 6-31 \mathrm{G}^{* *}$ geometry

Figure 8: Schematic of potential energy surfaces of the vinoxy radical system. All energies are in eV , include zero-point energy, and are relative to $\mathrm{CH}_{2} \mathrm{CHO}{ }^{\prime}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$. Calculated energies are compared, when possible, with experimentally determined values in parentheses. Transition states 1-5 are labeled, along with the rate constant definitions from RRKM calculations. The solid potential curves to the left of vinoxy retain C_{s} symmetry. The avoided crossing (dotted lines) which forms TS5 arises when C_{s} symmetry is broken by out-of-plane motion.
optimization and frequency calculation on $\mathrm{CH}_{2} \mathrm{CHO} \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$. From this comparison we have an estimate of the error in the calculated CASSCF vibrational frequencies for the \widetilde{B} state, which cannot be calculated using QCISD.

Method	$\begin{gathered} \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right) \\ \operatorname{CAS}(3,3) \\ \hline \end{gathered}$	$\begin{aligned} & \tilde{X}\left(^{2} \mathrm{~A}^{\prime \prime}\right) \\ & \text { QCISD } \end{aligned}$	experiment	$\begin{aligned} & \tilde{B}\left({ }^{2} A^{\prime \prime}\right) \\ & \operatorname{CAS}(3,3) \end{aligned}$	experiment
$r\left(\mathrm{C}_{\mathrm{a}} \mathrm{C}_{\mathrm{b}}\right)^{a}$	1.436	1.434	1.408^{6}	1.450	$1.466^{\text {c,d }}$
$r\left(\mathrm{C}_{2} \mathrm{O}\right)$	1.224	1.241	$1.261{ }^{\text {b }}$	1.360	1.337
$r\left(\mathrm{C}_{6} \mathrm{H}_{c}\right)$	1.073	1.080	$1.081^{\text {d }}$	1.072	$1.069^{\text {d }}$
$r\left(\mathrm{C}_{\mathrm{b}} \mathrm{H}_{\mathrm{b}}\right)$	1.073	1.081	$1.080^{\text {d }}$	1.071	$1.069^{\text {d }}$
$r\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$	1.089	1.100	$1.088^{\text {d }}$	1.075	$1.069^{\text {d }}$
$\angle\left(\mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{a}} \mathrm{O}\right)$	122.6	122.6	$122.4{ }^{\text {b }}$	121.5	129.5
$\angle\left(\mathrm{H}_{\mathrm{c}} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{a}}\right)$	119.4	119.2		120.1	
$\angle\left(\mathrm{H}_{\mathrm{b}} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{a}}\right)$	121.0	121.2		119.9	
$\angle\left(\mathrm{H}_{2} \mathrm{C}_{\mathrm{a}} \mathrm{O}\right)$	119.7	120.4		116.8	
$\mathrm{v}_{1}\left(\mathrm{C}_{\mathrm{b}} \mathrm{H}_{\mathrm{c}} \mathrm{H}_{\mathrm{b}}\right.$ asym. str.) a^{\prime}	3447	3353		3460	
$\mathrm{v}_{2}\left(\mathrm{C}_{\mathrm{b}} \mathrm{H}_{c} \mathrm{H}_{\mathrm{b}}\right.$ sym. str.) a^{\prime}	3333	3233		3348	
$\mathrm{v}_{3}\left(\mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{a}}\right.$ stretch) a^{\prime}	3207	3057		3362	
$\mathrm{v}_{4}\left(\mathrm{C}_{2} \mathrm{O}\right.$ stretch $) \quad a^{\prime}$	1666	1593	1540^{e}	1881	1623^{f}
$v_{5}\left(\mathrm{C}_{\mathrm{b}} \mathrm{H}_{0} \mathrm{H}_{\mathrm{b}}\right.$ scissors) a^{\prime}	1598	1522	1454	1561	1407
$\mathrm{v}_{6}\left(\mathrm{OC}_{3} \mathrm{H}_{2}\right.$ bend) a^{\prime}	1519	1439	1361	1438	1274
$v_{7}\left(\mathrm{C}_{\mathrm{b}} \mathrm{H}_{c} \mathrm{H}_{\mathrm{b}}\right.$ rock) a^{\prime}	1216	1179	1141	1212	1123
$\mathrm{v}_{8}\left(\mathrm{C}_{\mathrm{C}} \mathrm{C}_{\mathrm{b}}\right.$ stretch $) \quad a^{\prime}$	1036	993	949	998	918
$v_{9}\left(\mathrm{C}_{\mathrm{b}} \mathrm{C}_{3} \mathrm{O}\right.$ bend) a^{\prime}	537	507	498	480	449
$\nu_{10}\left(\mathrm{C}_{3} \mathrm{H}_{\mathrm{a}}\right.$ wag) $a^{\prime \prime}$	981	977		453	437
$v_{11}\left(\mathrm{C}_{2} \mathrm{C}_{\mathrm{b}}\right.$ torsion) $a^{\prime \prime}$	467	446		245	274
$\nu_{12}\left(\mathrm{C}_{b} \mathrm{H}_{\mathrm{c}} \mathrm{H}_{\mathrm{b}}\right.$ wag) $a^{\prime \prime}$	666	713		267	

Table V: Comparison of CASSCF/6-31G**, QCISD/6-31G**, and experimental geometries and frequencies. ${ }^{g}$

The results given in Table V demonstrate that the bond lengths are in better agreement with the microwave values than previous multi-configurational studies. The agreement is not yet quantitative, as the QCISD C-C bond length is $0.026 \AA$ longer and
${ }^{a}$ See Fig. 8 for atom label definitions.
${ }^{b}$ Ref. 16.
${ }^{\circ}$ Ref. 15.
${ }^{\text {d }}$ Fixed.
${ }^{\text {RRef. }}$ 15, AIP-document No. PAPS JCPSA 81-2339-8 (all frequencies in column).
${ }^{f}$ Current work (all frequencies in column).
${ }^{8}$ Polarization functions on H with $\operatorname{CAS}(3,3)$ accomplish a similar lowering of the $\mathrm{a}^{\prime \prime}$ vibrational frequenices found from a larger CAS in Ref. 24.
the $\mathrm{C}-\mathrm{O}$ bond length $0.020 \AA$ shorter than experiment, respectively. Compared to the CASSCF frequencies, the QCISD frequencies are consistently lower for the $9 a^{\prime}$ modes and roughly equal for the $3 a^{\prime \prime}$ modes, and are therefore in improved agreement with experimental values from dispersed fluorescence. ${ }^{15}$ The systematic lowering of frequencies and improved geometry is evidence that QCISD more accurately describes the electronic structure of $\mathrm{CH}_{2} \mathrm{CHO} \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime}\right)$. Presumably, basis set extension for QCISD would further improve the comparison of theory to experiment. The comparison between QCISD and CASSCF for the ground state suggests that the CASSCF frequencies for the \widetilde{B} state are also too high. This will be useful in interpreting the photofragment yield spectrum in Section IV.A.

IV. Analysis

In this section we analyze the vibrational structure in the $\mathrm{CH}_{2} \mathrm{CHO}$ photofragment yield spectrum and present Monte Carlo simulations of non-coincident photofragment TOF distributions.

A. Photofragment yield spectrum

The vinoxy radical has 12 vibrational modes which have been assigned principal characters by Yamaguchi ${ }^{23}$ as given in Table V: 3 out-of-plane $a^{\prime \prime}$ modes, 6 in-plane a^{\prime} modes involving the heavy atoms, and 3 high frequency a^{\prime} modes which are primarily hydrogen stretches. The large number of totally symmetric modes makes the assignment of the vibrational structure in the PFY spectrum nontrivial. We follow a systematic procedure, simulating the spectrum with the aid of $a b$ initio frequencies. Starting with the
lowest peaks in the spectrum of Fig. 2b, the fundamental vibrations are assigned to a mode, the spectrum is simulated using approximate Franck-Condon factors (FCF) from Yamaguchi, ${ }^{23}$ the vibrational constants are refined, and certain peaks at higher energy in the experimental spectrum are assigned as combination bands. Higher frequency vibrational modes are then added, one by one, and the process is repeated until the majority of the peaks in the spectrum are predicted by the simulation.

The simulated $\mathrm{CH}_{2} \mathrm{CHO}$ spectrum is shown in Fig. 2a, the peak assignments are listed in Table I, and the frequencies for the \widetilde{B} state obtained from our analysis are listed in Table V. Since the intensities in the simulation mimic the FCFs for absorption, the predicted intensity for several of the lowest energy transitions is too great. The photodissociation yield $\Phi_{\text {diss }}$ for these transitions is small, so they are not as intense in the PFY spectrum as in the absorption and LIF spectra. In the region where no fluorescence is observed, the absorption and photofragment yield intensities should be identical, since essentially all the excited molecules dissociate rather than fluoresce.

Using this iterative method we assign progressions in all 6 of the heavy atom a^{\prime} modes, $v_{4}-v_{9}$, and 2 of the $a^{\prime \prime}$ modes, v_{10} and v_{11}. The vinoxy radical is planar in both the \widetilde{X} and \widetilde{B} states, ${ }^{15}$ so that (in the absence of vibronic coupling), excitations in non-totally symmetric $a^{\prime \prime}$ vibrations are allowed only for $\Delta v=0, \pm 2, \pm 4 \ldots$ Due to the large change in $a b$ initio frequencies of the $a^{\prime \prime}$ modes between the \tilde{X} and \tilde{B} states, it is not surprising that these modes are active. Our vibrational assignments agree with those of Gejo et al. ${ }^{17}$ except for their assignment of $v_{6}=1,406 \mathrm{~cm}^{-1}$ and $v_{5}=1,433 \mathrm{~cm}^{-1}$, which contrast with our assignments of $v_{6}=1,274 \mathrm{~cm}^{-1}$ and $v_{5}=1,406 \mathrm{~cm}^{-1}$. Our assignment of the v_{6}
frequency seems to be more in line with the CASSCF $a b$ initio frequencies (Table V) which are consistently $7-11 \%$ higher than experiment for the \tilde{X} state. Overall we find a more consistent match of the simulated and experimental PFY spectrum with our assignments. Note that not all of the experimental peaks listed in Table I are assigned, and that the assignment of the peak at $29,976 \mathrm{~cm}^{-1}$ to the $8{ }_{0}^{1} 11_{0}^{1}$ transition requires vibronic coupling that presumably involves the $\tilde{A}\left({ }^{2} \mathrm{~A}\right)$ state.

A comparison of the photofragment yield spectrum of $\mathrm{CH}_{2} \mathrm{CHO}$ in Fig. 2 b with the simulation in Fig. 2a and the LIF spectrum ${ }^{15}$ shows mode specific competition between fluorescence and dissociation for the lower vibrational levels of the \widetilde{B} state, with excitation of $a^{\prime \prime}$ vibrational modes resulting in higher $\Phi_{\text {diss }}$ than nearby levels in which only a^{\prime} modes are excited. For example, excitation of the 11_{0}^{2} and 10_{0}^{2} transitions ($a^{\prime \prime}$) at excess energies of 547.7 and $873.5 \mathrm{~cm}^{-1}$, respectively, results in a significantly higher $\Phi_{\text {diss }}$ than the nearly isoenergetic 9_{0}^{1} and 8_{0}^{1} transitions (a^{\prime}) at 449.0 and $917.6 \mathrm{~cm}^{-1}$. The implications of this effect will be discussed further in Section V.E.

The photofragment yield spectrum of $\mathrm{CD}_{2} \mathrm{CDO}$ in Fig. 2 c appears substantially different than that of $\mathrm{CH}_{2} \mathrm{CHO}$. The differences between these spectra arise for two reasons. First, the vibrational levels in the \tilde{B} state are shifted to lower frequency upon deuteration; their $a b$ initio values have been calculated by Yamaguchi. ${ }^{23}$ Therefore deuteration will change both the positions and the FCFs of the $\widetilde{B}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right) \leftarrow \widetilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ absorption spectrum in $\mathrm{CD}_{2} \mathrm{CDO}$. Secondly, the quantum yield for dissociation as a function of photon energy is different than that of $\mathrm{CH}_{2} \mathrm{CHO}$. In particular, we cannot detect any resolved dissociation signal for photon energies less than $29,828 \mathrm{~cm}^{-1}$, implying
that the dissociation rate at low excess energies is slower than that for $\mathrm{CH}_{2} \mathrm{CHO}$. However, the intense cluster of six peaks around $29,975 \mathrm{~cm}^{-1}$ implies a substantial increase in the dissociation rate $\approx 1,100 \mathrm{~cm}^{-1}$ above the origin level. This energy is similar in magnitude to the energy at which fluorescence is quenched and the photofragment angular distributions become anisotropic in $\mathrm{CH}_{2} \mathrm{CHO}$. Due to the lack of structure in the first $1,000 \mathrm{~cm}-1$ of the PFY spectrum of $\mathrm{CD}_{2} \mathrm{CDO}$, we have not attempted to assign the vibrational modes in this spectrum. The data from a full LIF spectrum of the deuterated species would make assignments more tractable.

B. Monte Carlo Forward Convolution for $\mathrm{CD}_{2} \mathbf{C D O}$ TOF distributions

The non-coincidence TOF distributions in Fig. 6 are due to all the fragments produced in the dissociation of the vinoxy radical. A direct inversion of this data to give the translational energy and angular distributions for all product channels is clearly not feasible. However, because the energy and angular distributions of Channel $1\left(\mathrm{CD}_{3}+\mathrm{CO}\right)$ have already been determined, any new features in the observed non-coincidence TOF distributions must be due to a second product channel. We can extract information on the dynamics of this channel by employing a forward convolution technique to simulate the experimental TOF data. In this analysis, a set of product channels, each with its own $P\left(E_{\mathrm{T}}\right)$ distribution and anisotropy parameter β, serves as inputs to a Monte Carlo forward convolution program ${ }^{29}$ which generates the 1-D TOF distributions that would be observed in our experiment based on the apparatus geometry and finite spatial acceptance of the detector. By comparing the predicted TOF distributions with the experimental
distributions, the initial estimate for channels other than $\mathrm{CD}_{3}+\mathrm{CO}$ can be refined as needed until the simulated and observed TOF distributions agree.

For Channel 1, the $P\left(E_{\mathrm{r}}\right)$ distributions in Fig. 5 are used, and $\beta=0.4$ is taken as the energy-independent value of the anisotropy parameter; this is the average value of β at the excitation energies where TOF measurements were taken. The contribution of CD_{3} and CO to the total TOF is shown in Fig. 7a. The remaining features in the TOF data are the narrow spike in the middle of the distribution and the broad wings at the edges of the spectrum. Only Channels 2 and $3, \mathrm{CD}_{2} \mathrm{CO}+\mathrm{D}$ and $\mathrm{DCCO}+\mathrm{D}_{2}$, are consistent with these features. The thermodynamics for the two channels differ by only $0.06 \mathrm{eV},{ }^{11,26,27}$ making them both energetically feasible. However, the kinematics are quite different; if $\mathrm{D}_{2}+$ DCCO is assumed to be the sole heavy-light channel, the $P\left(E_{\mathrm{T}}\right)$ distributions required to simulate the broad wings extend beyond the maximum E_{T} allowed by thermodynamics. Moreover, the $\mathrm{D}+\mathrm{CD}_{2} \mathrm{CO}$ channel results from simple bond fission and should have at most a small exit barrier ($<0.3 \mathrm{eV}$), while elimination of D_{2} would pass through a more strained four-center transition state, causing a substantial barrier on the potential energy surface. Therefore elimination of D_{2} should be kinetically disfavored compared to simple bond fission, and we propose that Channel 2 is the only channel other than Channel 1 contributing to the TOF distributions.

Because we expect a rather small exit barrier for Channel 2, a plausible initial estimate for the $P\left(E_{\mathrm{T}}\right)$ distribution is a prior distribution, ${ }^{51}$ i.e., the approximate distribution expected for statistical dissociation with no barrier, shown in Fig. 7c (dashed line). However, the experiment is most sensitive to translational energies $E_{\mathrm{T}}>0.5 \mathrm{eV}$, and agreement with the data is much better with a slower fall-off at higher E_{T} shown by the
solid line in this figure. We find that $\beta=0.25$ gives the best overall fit using this $P\left(E_{\mathrm{T}}\right)$ distribution; larger values of β cannot fit data from both polarizations simultaneously. An additional parameter in the simulations is the detection efficiency of D atoms. This should be independent of the photon energy or polarization, and only values in the range of $\approx 8 \%$ efficiency can simultaneously reproduce the data at all four photon energies and both laser polarizations.

The resulting overall fits including the contributions for Channels 1 and 2 are shown as solid lines in Figs. 6 and 7 a and are in good agreement with the data. The $P\left(E_{\mathrm{T}}\right)$ distributions for Channel 2 at all measured photon energies are similar to the distribution in Fig. 7 c , peaking close to zero and with a maximum E_{T} of around 1.3 eV . This approximate independence from the photon energy was also seen in Channel 1.

The branching ratio of Channels 2 to 1 derived from the simulation of the TOF distributions is $4: 1$, with negligible dependence on the photon energy. However, because of the insensitivity of the simulation to low translational energies for Channel 2, we estimate that the true branching ratio could range from $2: 1$ to $6: 1$. In any event, we believe that $\mathrm{CD}_{2} \mathrm{CO}+\mathrm{D}$ is the major product channel at all photon energies studied.

V. Discussion

A. Implications of the experimental data

The most important experimental results are as follows. (1) The photofragment yield spectrum shows that $\mathrm{CH}_{2} \mathrm{CHO}$ predissociates across the entire $\tilde{B}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right) \leftarrow \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ band. Predissociation and fluorescence are competing processes, with predissociation
dominating at energies $>1,400 \mathrm{~cm}^{-1}$ above the \tilde{B} state origin. (2) Below $1,400 \mathrm{~cm}^{-1}$, there is some mode-specificity in the competition between fluorescence and dissociation, with vibrational levels in which $a^{\prime \prime}$ modes are excited dissociating more rapidly than nearby a^{\prime} levels. (3) The $\mathrm{CH}_{3}+\mathrm{CO}$ photofragment angular distribution is isotropic at low energies but becomes anisotropic with $\beta\left(E_{\mathrm{T}}\right)>0$ above $1,400 \mathrm{~cm}^{-1}$. (4) The photofragment translational energy distributions $P\left(E_{\mathrm{T}}\right)$ are relatively independent of excitation energy for Channels 1 and 2, and peak at energies well below the maximum allowed by energy conservation.

The last observation is the most important as it implies that dissociation does not occur by coupling of the \widetilde{B} state to a repulsive surface correlating directly to products. Dynamics occurring on a repulsive excited state typically deposit a large fraction of the available energy into relative translation of the fragments, and one expects the $P\left(E_{\mathrm{T}}\right)$ distributions to shift towards higher E_{T} as the excitation energy is increased; both of these effects were observed in photodissociation of $\mathrm{CH}_{3} \mathrm{O},{ }^{10}$ for example. The $P\left(E_{\mathrm{T}}\right)$ distributions for $\mathrm{CH}_{2} \mathrm{CHO}$ imply a different mechanism, in which Channel $1\left(\mathrm{CH}_{3}+\mathrm{CO}\right)$ results from the dissociation of a strongly bound state over a substantial barrier, whereas Channel $2\left(\mathrm{H}+\mathrm{CH}_{2} \mathrm{CO}\right)$, for which the $P\left(E_{\mathrm{T}}\right)$ distributions peak near $E_{\mathrm{T}}=0$, results from dissociation of such a state over a much smaller barrier.

In the following discussion, this mechanism is considered in more detail. We will show that the set of results obtained here is consistent with the initial electronic excitation being followed by internal conversion (IC). This process eventually populates the ground electronic state where energy randomization occurs, followed by decomposition to the two observed product channels. We first consider the asymptotic final state distributions
for the two channels and the branching ratios that would be expected from such a mechanism; most of this discussion focuses on Channel 1 , since considerably more detailed data are available than for Channel 2 . We then consider how IC might connect the initially excited electronic state to the ground state on which dissociation occurs.

B. Dissociation mechanism and product state distributions: $\mathrm{CH}_{3}+\mathrm{CO}$

1. Barrier to dissociation of Channel 1

The $P\left(E_{\mathrm{T}}\right)$ distributions for Channel 1 all peak in the range of $E_{\mathrm{T}}=0.9-1.0 \mathrm{eV}$. If this channel resulted from statistical dissociation on a surface with no exit barrier (i.e., no barrier with respect to products), one would expect a translational energy distribution described by phase space theory or a prior distribution, peaking very near $E_{\mathrm{T}}=0$. This clearly disagrees with our experimental evidence. On the other hand, the distributions for Channel 1 are consistent with statistical dissociation over an exit channel barrier. Such a process is statistical in the sense that energy randomization occurs prior to dissociation, but passage over the barrier results in rapid release of energy which is not statistically distributed among the product degrees of freedom. Instead, a substantial fraction of the barrier height is converted to fragment translation, resulting in a $P\left(E_{\mathrm{T}}\right)$ distribution peaking at $40-80 \%$ of the barrier height. ${ }^{52}$ Therefore, our experimental $P\left(E_{\mathrm{T}}\right)$ distributions for Channel 1 imply a barrier with respect to products of between 1.1 and 2.2 eV in the $\mathrm{CH}_{3}+$ CO exit channel.

The nature of this barrier can be inferred from our $a b$ initio calculations. Fig. 8 shows that the reaction coordinate to Channel 1 on the ground state surface involves passage over two barriers: TS1, the barrier to isomerization (via a 1,2 hydrogen shift)
between $\mathrm{CH}_{2} \mathrm{CHO}$ and the acetyl radical, $\mathrm{CH}_{3} \mathrm{CO}$, and TS 3 , the barrier to elimination of CO from $\mathrm{CH}_{3} \mathrm{CO}$. TS1 is the higher energy transition state and is found to be a nearly planar $\mathrm{CH}_{2} \mathrm{CO}$ moiety with the out-of-plane migrating H atom shared between the two carbon atoms. This isomerization is reasonably facile because the $a^{\prime \prime}$ unpaired electron on the methylene carbon in the \tilde{X} state is available for bonding with the migrating H atom.

The calculated energies of TS1 and TS3 are 1.74 eV and 0.40 eV , respectively, above the $\mathrm{CH}_{3}+\mathrm{CO}$ products. The latter value agrees with the experimentally determined exit barrier to $\mathrm{CH}_{3} \mathrm{CO}$ dissociation, $0.36 \mathrm{eV},{ }^{44,45}$ but is too low to account for our $P\left(E_{\mathrm{T}}\right)$ distributions for $\mathrm{CH}_{2} \mathrm{CHO}$ dissociation. On the other hand, the calculated barrier height for TS1 is in the range expected based on the $P\left(E_{\mathrm{T}}\right)$ distributions. The simplest mechanism consistent with our data and the PES is that after traversing TS1, dissociation occurs so rapidly that the small barrier TS3 does not trap the radicals in the $\mathrm{CH}_{3} \mathrm{CO}$ well, nor does TS3 control the final product states. Therefore we can envision, for the purpose of understanding the product state distributions, a simplified PES with only a single barrier (TS1) between $\mathrm{CH}_{2} \mathrm{CHO} \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ and $\mathrm{CH}_{3}+\mathrm{CO}$. This hypothesis can be tested by comparing the $P\left(E_{\mathrm{T}}\right)$ distributions we observe (Fig. 4) against the predictions of photodissociation dynamics models (see Section V.B.2).

As an aside, we note that if $\mathrm{CH}_{2} \mathrm{CHO} \tilde{A}\left({ }^{2} \mathrm{~A}\right)$ were formed by IC, the 1,2 hydrogen shift would be much less favorable because the there is a $\mathrm{C}=\mathrm{C}$ double bond in this state. ${ }^{21,24}$ Forming the transition state analogous to TS1 therefore requires significant torsional distortion of the $\mathrm{C}=\mathrm{C}$ double bond to a non-planar geometry, in addition to the
strain energy associated with the tight transition state, resulting in a high energy transition state. It therefore unlikely that $\mathrm{CH}_{3}+\mathrm{CO}$ production is feasible on the \tilde{A} surface.

2. Statistical adiabatic impulsive model

In this section, we present a simple model to describe the dissociation dynamics of a molecule undergoing statistical decomposition over a barrier. Simple models predicting the $P\left(E_{\mathrm{T}}\right)$ distribution for molecular photodissociation can be divided into two categories. Statistical models predict the $P\left(E_{\mathrm{T}}\right)$ distribution for unimolecular dissociations through a loose transition state (TS). Examples include prior distributions, ${ }^{51}$ phase space theory, ${ }^{53}$ separate statistical ensembles method, ${ }^{54}$ and the statistical adiabatic channel model. ${ }^{55}$ Sudden approximation models, such as Franck-Condon (FC) mapping ${ }^{56}$ and the impulsive model, ${ }^{57}$ are more suitable for predicting the $P\left(E_{\mathrm{T}}\right)$ distribution for direct dissociation on a repulsive potential or over a barrier associated with a tight TS.

For excitation energies in proximity to the barrier height, the repulsive nature of the potential dominates the dissociation process, and the sudden approximation can often predict the product state distributions. However, for excitation energy in significant excess of the barrier height, which we believe is the case for Channel 1, a more general approach is required combining both statistical and sudden models. As an example of such an approach, North et al. ${ }^{58}$ have developed the barrier impulsive model which predicts the average energy in product translation, rotation, and vibration for dissociation over a potential barrier. We have developed a qualitatively similar approach, the statistical adiabatic impulsive (SAI) model, in order to predict the $P\left(E_{\mathrm{T}}\right)$ distributions for Channel 1. The SAI model is described briefly here and will be presented in more detail elsewhere. ${ }^{59}$

Figure 9: (a) Definition of terms in the Statistical Adiabatic Impulsive (SAI) model. (b) Comparison of SAI (- - -) and experimental $\left(\longrightarrow \mathrm{P}\left(E_{\mathrm{T}}\right)\right.$ distributions for $\mathrm{CH}_{3}+\mathrm{CO}$ at three selected energies.

As shown in Fig. 9a, the total energy available to the products $\left(E_{\text {avail }}=\right.$ hv - D_{0}) is divided into two separate energy reservoirs: a statistical reservoir (the energy from the TS up to the total available energy, i.e., $E_{\text {stat }}=E_{\text {avail }}-E_{\mathrm{Ts}}$) and an impulsive reservoir (the energy of the TS relative to the ground state energy of the products, i.e., $E_{\text {imp }}=E_{\mathrm{TS}}$). The energy of the $\mathrm{TS}, E_{\mathrm{TS}}$, corresponds to the zeropoint level of TS1 with respect to the CH_{3} + CO products. The SAI model requires knowledge of the TS geometry, frequencies, and normal modes, which in the present case are taken from our $a b$ initio calculations.

We assume that energy is randomized among all vibrational modes at the transition state (i.e., the top of the barrier). For the statistical reservoir, each vibrational mode at the transition state is correlated ${ }^{58}$ with a particular product
vibrational (V), rotational (R), or translational (T) degree of freedom. For example, in the $\mathrm{CH}_{2} \mathrm{CHO}$ system at TS1, two skeletal bending modes correlate with product R, and two stretching modes and the reaction coordinate correlate with product T. The remaining seven vibrational modes at the TS are the only modes that asymptotically correlate with product V. These designations are given next to vibrational frequencies for TS1 in Table IV. Next we make the assumption that beyond the TS the internal motions evolve adiabatically to products. This assumption seems justified because the fragments will separate rapidly after traversing the transition state region. Hence, for each possible vibrational state at the TS, the quantum numbers in each mode are preserved throughout the dissociation. The vibrational energy deficit or surplus for each state is assumed to flow freely between V and T degrees of freedom, while energy at the $T S$ in the two skeletal bends goes entirely into product R. This yields the internal energy $P_{\text {sat }}\left(E_{\text {int }}^{\prime}\right)$ distribution for the statistical reservoir. The product state distribution of the fragments from this reservoir is not strictly statistical in the sense of a prior or PST distribution, in which the energy is randomized among fragment states. Rather, energy is statistically distributed at the tight TS and evolves adiabatically to the products.

The impulsive reservoir's contribution to the product energy distributions is determined by the TS geometry. For this reservoir, the vibrational energy distribution of the products is determined by Franck-Condon projection of the zero-point TS wavefunction on to the asymptotic product wavefunctions. For each final vibrational state, the remaining energy in the impulsive reservoir is partitioned between translation and rotation using a rigid impulsive model based on the TS geometry. The $P_{\text {imp }}\left(E_{\text {int }}^{\prime \prime}\right)$ distribution for the impulsive reservoir is the sum of the impulsive model result for each
combination of vibrational product states, weighted by their FC projection factors. For vinoxy dissociation through TS1, approximately 55% of the exit barrier height evolves into E_{T}. The $P_{\mathrm{imp}}\left(E_{\text {int }}^{\prime \prime \prime}\right)$ distribution is independent of excitation energy, as the energy of this reservoir remains constant. This provides an explanation for the maximum intensity at $\approx 0.9 \mathrm{eV}$ in the experimental $P\left(E_{\mathrm{T}}\right)$ distributions and its relative independence on excitation energy.

Finally, the overall $P\left(E_{\text {int }}\right)$ distribution is created by a convoluting the statistical and impulsive distributions:

$$
\begin{equation*}
P\left(E_{\text {int }}\right)=\int_{0}^{E_{\text {sat }}} P_{\text {stat }}\left(E_{\text {int }}^{\prime}\right) \cdot P_{\text {imp }}\left(E_{\text {int }}-E_{\text {int }}^{\prime}\right) d E_{\text {int }}^{\prime} \tag{11}
\end{equation*}
$$

The translational energy distribution $P\left(E_{\mathrm{T}}\right)$ is then obtained by plotting $P\left(E_{\text {int }}\right)$ vs. $E_{\mathrm{T}}=$ $E_{\text {avail }}-E_{\text {int }}$. We emphasize that the SAI model contains no adjustable parameters and conserves energy in each separate reservoir and therefore for the overall process.

The predictions of the SAI model and experimental $P\left(E_{\mathrm{T}}\right)$ distributions are shown in Fig. 9 b for three excitation energies. The reasonable agreement between the model and the data lends credence to the idea that the $P\left(E_{\mathrm{T}}\right)$ distributions for Channel 1 are determined largely by the height and geometry of the vinoxy/acetyl isomerization barrier.

3. Comparison with $\mathrm{CH}_{3} \mathrm{CO}$ decomposition

In experiments related to the vinoxy system, several groups have examined the fragmentation of the acetyl radical, $\mathrm{CH}_{3} \mathrm{CO} \rightarrow \mathrm{CH}_{3}+\mathrm{CO}$. In these experiments, $\mathrm{CH}_{3} \mathrm{CO}$ is not laser-excited to a state of specific energy, as in the present work on $\mathrm{CH}_{2} \mathrm{CHO}$, but is instead prepared with a distribution of internal energies by either (i) photodissociation of
acetyl halides $\mathrm{CH}_{3} \mathrm{COX}\left(\mathrm{X}=\mathrm{Cl}^{45,60}, \mathrm{Br}^{60}, \mathrm{I}^{61}\right)$ and acetone, ${ }^{58}$ or (ii) charge neutralization of the acetyl cation, $\mathrm{CH}_{3} \mathrm{CO}^{+} .{ }^{6263}$ In the photodissociation experiments, $\mathrm{CH}_{3} \mathrm{CO}$ is formed with average internal energy $\left\langle E_{\text {int }}\right\rangle=0.8,1.3,1.5$, or 1.7 eV , depending on the photon energy and the identity of the primary photofragment $\left(\mathrm{Cl}, \mathrm{Br}, \mathrm{I}\right.$, or $\left.\mathrm{CH}_{3}\right)$. In all cases the $\mathrm{P}\left(E_{\mathrm{T}}\right)$ distributions for $\mathrm{CH}_{3}+\mathrm{CO}$ peak at $0.22-0.3 \mathrm{eV}$. These experiments offer convincing evidence that the translational energy distributions are determined by the 0.36 eV exit barrier (TS3) and depend only weakly on $\left\langle E_{\text {int }}\right\rangle$. In addition, the significant differences in the $\mathrm{P}\left(E_{\mathrm{T}}\right)$ distributions in these experiments compared to ours supports our hypothesis that the dissociation dynamics of $\mathrm{CH}_{2} \mathrm{CHO} \rightarrow \mathrm{CH}_{3}+\mathrm{CO}$ are not determined by TS3, but rather by TS1.

In the second set of experiments, Körnig et al. ${ }^{62}$ and Hop and Holmes ${ }^{63}$ have studied the dissociation of $\mathrm{CH}_{3} \mathrm{CO}$ produced by charge neutralization of $\mathrm{CH}_{3} \mathrm{CO}^{+}$with Na , K , or Cs atoms. The work by Körnig et al. is particularly relevant to our results, as they measured the translational energy release of the dissociation to $\mathrm{CH}_{3}+\mathrm{CO}$ in a fast beam dissociation experiment similar to ours. They estimate that excited acetyl is created with $\left\langle E_{\text {int }}\right\rangle=1.9,2.7$, or 3.1 eV of internal energy, when formed by the three alkali atoms, respectively. Their $\mathrm{P}\left(E_{\mathrm{T}}\right)$ distributions depend little on the alkali atom used, and are remarkably similar to our distributions in Fig. 4, peaking at 0.8 eV . However, since $\mathrm{CH}_{3} \mathrm{CO}^{+}$has a linear ${ }^{64} \mathrm{CCO}$ backbone, whereas neutral $\mathrm{CH}_{3} \mathrm{CO} \tilde{X}\left({ }^{2} \mathrm{~A}^{9}\right)$ has $\angle(\mathrm{CCO})=$ 127°, the Franck-Condon overlap of the ion with the acetyl ground state is expected to be poor. Nimlos et al. ${ }^{39}$ predict that an excited state of acetyl, the linear $\mathrm{CH}_{3} \mathrm{CO} \widetilde{A}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ state, lies $\approx 1.3 \mathrm{eV}$ above the ground state. We therefore surmise that in charge
neutralization experiments, $\mathrm{CH}_{3} \mathrm{CO}$ is formed in the excited \tilde{A} state, due to better FC overlap with the linear cation. Furthermore, the $P\left(E_{\uparrow}\right)$ distributions of Körnig are not consistent with the work described above by North ${ }^{45,58,60}$ and Kroger, ${ }^{61}$ in which dissociation definitely occurs on the ground state PES. Therefore we can only conclude that the dissociation to $\mathrm{CH}_{3}+\mathrm{CO}$ studied by Körnig either occurs on an excited state surface, or that they grossly underestimate the value of $\left\langle E_{\text {int }}\right\rangle$ of the acetyl radicals. In either case, the resemblance of their $P\left(E_{\mathrm{T}}\right)$ distributions to ours seems to be purely coincidental.

C. Dissociation mechanism and product state distributions: $\mathbf{H}+\mathbf{C H}_{\mathbf{2}} \mathbf{C O}$

The $P\left(E_{\mathrm{T}}\right)$ distributions for Channel 2 peak near $E_{\mathrm{T}}=0$. Using the same arguments as in Section V.B.1, this channel likely results from statistical dissociation over at most a small exit barrier along the reaction coordinate. From Fig. 8, we can determine if such a mechanism is plausible. There are three possible routes to $\mathrm{H}+\mathrm{CH}_{2} \mathrm{CO}$. The first two possibilities are direct $\mathrm{C}-\mathrm{H}$ bond fission from $\mathrm{CH}_{2} \mathrm{CHO} \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ or $\mathrm{CH}_{2} \mathrm{CHO} \tilde{A}\left({ }^{2} \mathrm{~A}\right)$ as shown on the left side of Fig. 8. The third route is direct $\mathrm{C}-\mathrm{H}$ bond fission from the isomerization product $\mathrm{CH}_{3} \mathrm{CO}$, shown on the right side of Fig. 8 .

All three routes have barriers with respect to products, because the reverse reaction of $\mathrm{H}\left({ }^{2} \mathrm{~S}\right)+\mathrm{CH}_{2} \mathrm{CO} \tilde{X}\left({ }^{1} \mathrm{~A}_{1}\right)$ involves a radical reacting with a closed-shell molecule. TS2, the barrier to $\mathrm{C}-\mathrm{H}$ bond fission from $\mathrm{CH}_{3} \mathrm{CO}$, lies only 0.24 eV above the product asymptote. However, TS2 lies 2.05 eV above the $\mathrm{CH}_{3} \mathrm{CO}$ minimum, whereas the barrier to $\mathrm{C}-\mathrm{C}$ bond fission, TS3, lies only 0.75 eV above $\mathrm{CH}_{3} \mathrm{CO}$. Once isomerization to $\mathrm{CH}_{3} \mathrm{CO}$ occurs, Channel 1 should therefore be strongly favored over Channel 2 .

However, we observe that the Channel 2:Channel 1 branching ratio is approximately 4:1. It is therefore unlikely that passage over TS2 contributes significantly to Channel 2. $\mathrm{CH}_{2} \mathrm{CHO} \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ correlates adiabatically (in C_{s} symmetry) with the $\tilde{a}\left({ }^{3} \mathrm{~A}^{\prime \prime}\right)$ excited state of ketene, while the first excited vinoxy state, $\mathrm{CH}_{2} \mathrm{CHO} \tilde{A}\left({ }^{2} \mathrm{~A}^{\prime}\right)$, correlates adiabatically (over barrier TS4) with ground state ketene $\tilde{X}\left({ }^{1} \mathrm{~A}_{1}\right)$. At non-planar geometries the two surfaces may couple through an avoided crossing, allowing the dissociation pathway $\mathrm{CH}_{2} \mathrm{CHO} \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right) \rightarrow \mathrm{CH}_{2} \mathrm{CO} \tilde{X}\left({ }^{1} \mathrm{~A}_{1}\right)+\mathrm{H}$. The exit barrier TS5 along this path is suggested in Fig. 8, although we have not definitively located a nonplanar transition state in our calculations. We adopt an exit barrier height of $0.13 \mathrm{eV}^{65}$ advocated by Benson for the addition reaction $\mathrm{H}+\mathrm{CH}_{2} \mathrm{CO}$ on the ground state surface. The transition state frequencies for TS5 (Table IV) are also estimated using values given by Benson. ${ }^{66}$ TS5 lies considerably lower in energy than TS4 with respect to the $\mathrm{H}+$ $\mathrm{CH}_{2} \mathrm{CO}$ products, and the $P\left(E_{\mathrm{T}}\right)$ distributions for Channel 2 are more consistent with dissociation on the ground state surface over TS5.

D. Product branching ratio

In this section we consider the relationship between the product branching ratio and the proposed mechanism for Channels 1 and 2. TS5, the barrier along the most likely reaction path for Channel 2, lies slightly lower in energy (1.63 eV) with respect to the $\mathrm{CH}_{2} \mathrm{CHO} \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ minimum than TS 1 , the isomerization barrier $(1.78 \mathrm{eV})$. In addition, TS5 is a "looser" transition state than TS1, since it involves bond fission rather than rearrangement. One would therefore expect statistical dissociation on the ground state to
favor Channel 2, in agreement with the experimental results that show this channel to be favored by about 4:1.

To put this argument on a more quantitative footing, we can compute the RRKM rate constants $k=\frac{W\left(E^{+}\right)}{h \rho(E)}$ for the two elementary reaction steps:

$$
\begin{equation*}
\mathrm{CH}_{2} \mathrm{CHO} \xrightarrow{k_{1}} \mathrm{CH}_{3} \mathrm{CO} \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{CH}_{2} \mathrm{CHO} \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime}\right) \xrightarrow{k_{2}} \mathrm{H}+\mathrm{CH}_{2} \mathrm{CO} \tilde{X}\left({ }^{1} \mathrm{~A}_{1}\right) \tag{13}
\end{equation*}
$$

where $W\left(E^{+}\right)$is the total number of available vibrational states at the transition state, h is Planck's constant, and $\rho(E)$ is the density of reactant vibrational states. Both $\rho(E)$ and $W\left(E^{+}\right)$are calculated using the Beyer-Swinehart algorithm and the vibrational frequencies for the reactant and transition states from Table IV. The resulting rate constants at a few representative photon energies are given in Table VI. The dissociative lifetimes on the ground electronic surface are in

Photon Energy	$k_{1}(E)\left(\mathrm{s}^{-1} / 10^{11}\right)$	$k_{2}(E)\left(\mathrm{s}^{-1} / 10^{11}\right)$
$\mathrm{h} v=28785$	1.0	4.2
$\mathrm{~h} v=31000$	1.6	6.5
$\mathrm{~h} v=33300$	2.4	9.3

Based on the discussion in Section V.B, isomerization Table VI: RRKM dissociation rate constants. should be the rate-limiting step for Channel 1, so the branching ratio can be computed from these two elementary reactions alone. The ratio $k_{2}: k_{1}$ is $\approx 4: 1$, a value which matches the experimental branching ratio. Although this excellent agreement may be fortuitous, it further supports our
proposed mechanism in which Channels 1 and 2 result from dissociation of $\mathrm{CH}_{2} \mathrm{CHO}$ on its ground state potential energy surface, with the dynamics and branching ratio largely determined by the transition states TS1 and TS5, for isomerization and C-H bond fission, respectively.

E. Internal Conversion

The preceding discussion strongly indicates that Channels 1 and 2 result from dissociation on the ground state potential energy surface, but has not considered how electronic excitation of the \widetilde{B} state is converted to vibrational excitation of the \tilde{X} state. There are two likely pathways for this internal conversion process. The simplest is direct internal conversion from the $\tilde{B}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ to $\tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ states, with the radiationless transition rate determined by Fermi's Golden Rule. On the other hand, the vinoxy radical has two low-lying excited states in addition to the $\widetilde{B}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ state, namely the $\widetilde{A}\left({ }^{2} \mathrm{~A}^{\prime}\right)$ and $\widetilde{C}\left({ }^{2} \mathrm{~A}\right)$ states, with term values of 0.99 eV (experimental ${ }^{13}$) and 4.60 eV (predicted ${ }^{24}$), respectively, at planar geometries. One must therefore consider whether energy flows to the $\tilde{X}\left({ }^{2} A^{\prime \prime}\right)$ state via one or both of these states.

Experimental data on the fluorescence and dissociation rates are relevant to the nonradiative relaxation mechanism. Barnhard et al. ${ }^{18}$ and Rohlfing ${ }^{67}$ have measured fluorescence lifetimes on the order of 100 ns for several vibrational levels of the \tilde{B} state with less than $1400 \mathrm{~cm}^{-1}$ excess energy. These values are entirely consistent with the photofragment angular distributions for Channel 1 in this energy range, all of which are isotropic, indicating that the excited radical lives for many rotational periods before dissociation occurs. The non-radiative rates in this energy range must be comparable to
the fluorescence rates since fluorescence and dissociation are competitive. Given that the RRKM rate constants (Table VI) are at least $10^{11} \mathrm{~s}^{-1}$, it is clear that non-radiative relaxation is the rate-limiting step for dissociation below $1,400 \mathrm{~cm}^{-1}$.

However, above $1,400 \mathrm{~cm}^{-1}$, the fluorescence yield drops abruptly ${ }^{14,15}$ and the photofragment angular distributions become anisotropic. This indicates a rapid increase in the non-radiative rate. We can quantify this increase by recognizing that the anisotropic angular distributions above $1,400 \mathrm{~cm}^{-1}$ imply a lifetime of the excited radical with respect to dissociation of less than a rotational period. The appropriate rotational constant for calculating the rotational period of this nearly prolate symmetric top is $(B+C) / 2=$ $0.35 \mathrm{~cm}^{-1}$; using $J=10(K=0)$ as an average value, the rotational period about the b and c axes is approximately 5 ps. In order for dissociation to occur on this time scale, the overall internal conversion process populating the ground state must be at least this fast, so its rate must increase by about four orders of magnitude in a relatively narrow interval around $1400 \mathrm{~cm}^{-1}$ excess energy.

Based on Fermi's Golden Rule, one would expect the internal conversion rate from the initially excited levels of the $\widetilde{B}\left({ }^{2} A^{\prime \prime}\right)$ state to highly excited levels of the $\tilde{X}\left({ }^{2} A^{\prime \prime}\right)$ state to increase with excess energy in the \tilde{B} state. ${ }^{68}$ However, it is unlikely that this effect alone could produce the abrupt increase in the internal conversion rate implied by the experiments. The abrupt drop in fluorescence quantum yield is similar to benzene, where the fluorescence quantum yield of the $\mathrm{S}_{1}\left({ }^{1} \mathrm{~B}_{2 \mathrm{u}}\right)$ state drops considerably at excess energies above $3000 \mathrm{~cm}^{-1} .{ }^{69}$ The mechanism of the nonradiative process responsible for this effect, known as "channel three," is still under discussion, but there appears to be a consensus that it is due to a combination of intramolecular vibrational redistribution (IVR) to dark
levels of the S_{1} state followed by $S_{1} \rightarrow S_{0}$ internal conversion, with the onset of fast IVR coinciding with the drop in fluorescence quantum yield. ${ }^{70,71,72}$ While such a mechanism might explain the fluorescence cutoff in vinoxy, it does not explain the enhanced dissociation rate, because there is no reason to believe that the relaxed levels of the \widetilde{B} state populated by IVR should be so much more strongly coupled to the \tilde{X} state than the originally populated state.

An alternative explanation for the abrupt fluorescence cutoff and increased dissociation rate is the possibility of a curve-crossing between the \tilde{B} state and another low-lying state at an excess energy in the range of $1,400 \mathrm{~cm}^{-1}$. The calculations by Yamaguchi ${ }^{24}$ predict that the energy of the \tilde{A} state rises by about 2.2 eV if the vinoxy radical is twisted by 90° about the $\mathrm{C}-\mathrm{C}$ bond due to the double-bonded character of the C-C bond in the \tilde{A} state, whereas the energies of the \tilde{B} and \tilde{X} states are relatively insensitive to torsional distortion. The net result is that the \widetilde{B} and \widetilde{A} states become nearly degenerate at a dihedral angle of 90°, suggesting that a low energy crossing may occur. This calculation also predicts that the $\widetilde{C}\left({ }^{2} \mathrm{~A}^{\prime}\right)$ state, which lies 1.1 eV above the \widetilde{B} state in the planar geometry, drops in energy as the radical as twisted and becomes nearly degenerate with the \tilde{B} state. Thus, low energy curve crossings with either the \tilde{A} or \tilde{C} states appear to be feasible.

The possible role of the \tilde{A} or \tilde{C} states is indirectly supported by the mode-specific effects seen below $1400 \mathrm{~cm}^{-1}$ where fluorescence and dissociation compete. As pointed out in Section IV.A, excitation of $a^{\prime \prime}$ vibrational modes in the \tilde{B} state enhances the dissociation yield compared to nearby levels in which only a^{\prime} modes are excited. This
observation is consistent with a radiationless transition through vibronic coupling between the $\widetilde{B}\left({ }^{2} A^{\prime \prime}\right)$ state and an electronic state of A^{\prime} symmetry, ${ }^{68,73}$ with the $\tilde{A}\left({ }^{2} A\right)$ or $\widetilde{C}\left({ }^{2} A\right)$ states as the most likely candidates.

The above arguments support the idea that non-radiative relaxation process above $1,400 \mathrm{~cm}^{-1}$ involves coupling between the \tilde{B} state and either the \tilde{A} or \tilde{C} states, rather than direct coupling with the \tilde{X} state. However, dissociation does appear to occur on the ground state surface, so energy flow from the \tilde{A} or \tilde{C} state to the \tilde{X} state must quite rapid for this mechanism to be valid. The $\widetilde{B} \rightarrow \tilde{A}$ radiationless transition will result in highly excited species with substantial energy in the torsional vibration, whereas the transition to the \tilde{C} state will produce radicals with relatively little vibrational energy. The $\widetilde{B} \rightarrow \widetilde{A}$ state is therefore more favorable based on the higher density of vibrational levels in the \widetilde{A} state compared to the \widetilde{C} state. In addition, since internal conversion rates generally increase with vibrational excitation in the initial state, ${ }^{73}$ it seems a transition to the \tilde{A} state is more likely to result in subsequent rapid internal conversion to the \tilde{X} state than a transition to the \tilde{C} state. Thus, the overall internal conversion scheme most consistent with the experimental results and $a b$ initio calculations is a two-step mechanism, $\tilde{B}\left({ }^{2} A^{\prime \prime}\right) \rightarrow \tilde{A}\left({ }^{2} A^{\prime}\right) \rightarrow \tilde{X}\left({ }^{2} A^{\prime \prime}\right)$, with the first step being rate-limiting below $1400 \mathrm{~cm}^{-1}$ excess energy.

VI. Conclusions

The spectroscopy and dissociation dynamics of the vinoxy radical presented in this paper have been obtained under well-defined experimental conditions. Internally cold radicals are laser-excited to exact total energies and the nascent photofragments are probed as a function of photon energy, product channel, translational energy, and angular distribution. In concert with $a b$ initio electronic structure calculations presented in this paper, we have explored the critical configurations on the potential energy surfaces, and presented a simple dissociation mechanism which is consistent with all the experimental and theoretical results. After initial excitation via the $\widetilde{B}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right) \leftarrow \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ transition, all observed vibrational levels of $\mathrm{CH}_{2} \mathrm{CHO}$ predissociate. We assign transitions in the photofragment yield spectrum to eight vibrational progressions, two involving non-totally symmetric vibrational modes. At lower photon energies, the rate of non-radiative decay is mode-specific, depending strongly on the symmetry of the vibrational mode excited in the \tilde{B} state. The photofragment energy and angular distributions indicate that dissociation occurs by internal conversions to the ground state potential energy surface upon which dissociation proceeds to $\mathrm{H}+\mathrm{CH}_{2} \mathrm{CO}$ and $\mathrm{CH}_{3}+\mathrm{CO}$ with a branching ratio of roughly 4:1. The dramatic increase in the dissociation rate above $1400 \mathrm{~cm}^{-1}$ suggests a curve crossing of the \bar{B} state with the \tilde{A} or \widetilde{C} states, followed by rapid internal conversion to the ground potential energy surface,

For the $\mathrm{CH}_{3}+\mathrm{CO}$ channel, we show that the translational energy distribution of the fragments is determined by the $\mathrm{CH}_{2} \mathrm{CHO} \rightarrow \mathrm{CH}_{3} \mathrm{CO}$ isomerization barrier on the ground state potential energy surface. For this system, both the exit barrier height and the
excess energy at the transition state are substantial. We have therefore developed the statistical adiabatic impulsive model, ${ }^{59}$ which successfully predicts the observed $\mathrm{P}\left(E_{\mathrm{T}}\right)$ distributions with no adjustable parameters. Our results for this channel are discussed in light of previous investigations of unimolecular decomposition of the acetyl radical.

The hydrogen atom loss channel is probed by the time-of-flight distributions arising from $\mathrm{CD}_{2} \mathrm{CDO}$ photodissociation. Although our information on this product channel is more limited, we find the simplest explanation consistent with our results is direct dissociation from vinoxy over a small barrier. This barrier is formed by an avoided crossing between the $\mathrm{CH}_{2} \mathrm{CHO} \widetilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ state, which correlates for planar geometries with $\mathrm{H}+\mathrm{CH}_{2} \mathrm{CO} \tilde{a}\left({ }^{3} \mathrm{~A}^{\prime \prime}\right)$, and the $\mathrm{CH}_{2} \mathrm{CHO} \tilde{A}\left({ }^{2} \mathrm{~A}\right)$ state, which correlates with $\mathrm{H}+\mathrm{CH}_{2} \mathrm{CO}$ $\tilde{X}\left({ }^{1} \mathrm{~A}_{1}\right)$.

Together with detailed previous results of traditional optical spectroscopy, the present work on photodissociation of vinoxy sheds new light on the electronic states and dynamics of this prototypical alkenoxy free radical.

Acknowledgments

This research is supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098. I thank Professor Robert Continetti for advice on forward convolution simulations, Professor Bradley Moore for discussions of internal conversion mechanisms, and Dr. Eric Rohlfing for sharing his results prior to publication.

References

${ }^{1}$ R. Schinke, Photodissociation Dynamics (Cambridge University Press, Cambridge, 1993).
${ }^{2}$ L. J. Butler and D. M. Neumark, J. Phys. Chem. 100, 12801 (1996).
${ }^{3}$ R. J. Cvetanovic and D. L. Singleton, Rev. Chem. Int. 5, 183 (1984).
${ }^{4}$ A. M. Schmoltner, P. M. Chu, R. J. Brudzynski, and Y. T. Lee, J. Chem. Phys. 91, 6926 (1989).
${ }^{5}$ D. J. Donaldson, I. V. Okuda, and J. J. Sloan, Chem. Phys. 193, 37 (1995).
${ }^{6}$ V. Schmidt, G. Y. Zhu, K. H. Becker, and E. H. Fink, Ber. Bunsen-Ges. Phys. Chem. 89, 321 (1985).
${ }^{7}$ K. Lorenz and R. Zellner, Ber. Bunsen-Ges. Phys. Chem. 88, 1228 (1984); T. J. Wallington, R. Liu, P. Dagaut, and M. J. Kurylo, Int. J. Chem. Kinet. 20, 41 (1988).
${ }^{8}$ C. K. Westbrook and F. L. Dryer, Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, 1981), p. 749.
${ }^{9}$ K. Brezinsky, Prog. Energy Combust. Sci. 12, 1 (1986).
${ }^{10}$ D. L. Osborn, D. J. Leahy, E. M. Ross, and D. M. Neumark, Chem. Phys. Lett. 235, 484 (1995).
${ }^{11}$ D. H. Mordaunt, D. L. Osborn, H. Choi, R. T. Bise, and D. M. Neumark, J. Chem. Phys. 105 (in press).
${ }^{12}$ D. A. Ramsay, J. Chem. Phys, 43, S18 (1965).
${ }^{13}$ H. E. Hunziker, H. Kneppe, and H. R. Wendt, J. Photochem. 12, 377 (1981).
${ }^{14}$ G. Inoue and H. Akimoto, J. Chem. Phys. 74, 425 (1981).
${ }^{15}$ L. F. DiMauro, M. Heaven, and T. A. Miller, J. Chem. Phys., 81, 2339 (1984).
${ }^{16}$ Y. Endo, S. Saito, and E. Hirota, J. Chem. Phys. 83, 2026 (1985); Y. Endo and E. Hirota, J. Mol. Spec. 127, 535 (1988).
${ }^{17}$ T. Gejo, M. Takayanagi, T. Kono, and I. Hanazaki, Chem. Letters 2065 (1993).
${ }^{18}$ K. I. Barnhard, M. He, and B. R. Weiner, J. Phys. Chem. 100, 2784 (1996).
${ }^{19}$ G. B. Ellison, P. C. Engelking, and W. C. Lineberger, J. Phys. Chem. 86, 4873 (1982); R. D. Mead, K. R. Lykke, W. C. Lineberger, J. Marks, and J. I. Brauman, J. Chem. Phys. 81, 4883 (1984).
${ }^{20}$ N. C. Baird, R. R. Gupta, and K. F. Taylor, J. Am. Chem. Soc. 101, 4531 (1979).
${ }^{21}$ M. Dupuis, J. J. Wencloloski, and W. A. Lester, Jr., J. Chem. Phys., 76, 488 (1982).
${ }^{22}$ E. S. Huyser, D. Feller, W. T. Borden, and E. R. Davidson, J. Am. Chem. Soc. 104, 2956 (1982).
${ }^{23}$ M. Yamaguchi, T. Momose, and T. Shida, J. Chem. Phys. 93, 4211 (1990).
${ }^{24}$ M. Yamaguchi, Chem. Phys. Lett., 221, 531 (1994).
${ }^{25}$ M. E. Jacox, Chem. Phys., 69, 407 (1982).
${ }^{26}$ M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, 3rd ed., J. Chem. Phys. Ref. Data 14, (1985), Suppl. No. 1.; S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, and W. G. Mallard, Gas-Phase Ion and Neutral Thermochemistry, J. Chem. Phys. Ref. Data 17, (1988), Suppl. No. 1.
${ }^{27}$ J. T. Niiranen, D. Gutman, and L. N. Krasnoperov, J. Phys. Chem. 96, 5881 (1992); C. W. Bauschlicher, Jr., J. Phys. Chem., 98, 2564 (1994).
${ }^{28}$ D. L. Osborn, H. Choi, and D. M. Neumark, Adv. Chem. Phys., (in press).
${ }^{29}$ R. E. Continetti, D. R. Cyr, D. L. Osborn, D. J. Leahy, and D. M. Neumark, J. Chem. Phys. 99, 2616 (1993).
${ }^{30}$ R. E. Continetti, D. R. Cyr, R. B. Metz, and D. M. Neumark, Chem. Phys. Lett. 182, 406, 1991.
${ }^{31}$ D. R. Cyr. R. E. Continetti, R. B. Metz, D. L. Osborn, and D. M. Neumark, J. Chem. Phys. 97, 4937 (1992).
${ }^{32}$ D. L. Osborn, D. J. Leahy, D. R. Cyr, and D. M. Neumark, J. Chem. Phys. 104, 5026 (1996).
${ }^{33}$ J. M. B. Bakker, J. Phys. E 6, 785 (1973); 7, 364 (1974).
${ }^{34}$ S. Gerstenkorn and P. Luc, Atlas du Spectre d'Absorption de la Molecule d'Iode (Centre National de la Recherche Scientifique, Paris, 1978).
${ }^{35}$ D. J. Leahy, D. L. Osborn, D. R. Cyr, and D. M. Neumark, J. Chem. Phys. 103, 2495 (1995).
${ }^{36}$ D. P. de Braijn and J. Los, Rev. Sci. Instrum. 53, 1020 (1982).
${ }^{37}$ C. Martin, P. Jelinsky, M. Lampton, R. F. Malina, and H. O. Anger, Rev. Sci. Instrum. 52, 1067 (1981).
${ }^{38}$ D. F. Ogletree, G. S. Blackman, R. Q. Hwang, U. Stark, G. A. Somorjai, and J. E. Katz, Rev. Sci. Instrum. 63, 104 (1992).
${ }^{39}$ M. R. Nimlos, J. A. Soderquist, and G. B. Ellison, J. Am. Chem. Soc. 111, 7675 (1989).
${ }^{40}$ R. N. Zare, Mol. Photochem. 4, 1 (1972).
${ }^{41}$ GAUSSIAN 92, Revision C, M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gompets, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople, Gaussian, Inc., Pittsburgh, Pennsylvania, 1992.
${ }^{42}$ GAUSSIAN 94, Revision C.3, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1995.
${ }^{43}$ S. Deshmukh, J. D. Myers, S. S. Xantheas, and W. P. Hess, J. Phys. Chem. 98, 12535 (1994).
${ }^{44}$ K. W. Watkins and W. W. Word, Intern. J. Chem. Kinetics 7, 855 (1974).
${ }^{45}$ S. W. North, D. A. Blank, and Y. T. Lee, Chem. Phys. Lett. 224, 38 (1994).
${ }^{46}$ L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys. 94, 7221 (1991).
${ }^{47}$ J. L. Durant and C. M. Rohlfing, J. Chem. Phys. 98, 8031 (1993).
${ }^{48}$ D. Hegarty and M. A. Robb, Mol. Phys. 381795 (1979); R. H. E. Eade and M. A. Robb, Chem. Phys. Lett. 83362 (1981).
${ }^{49}$ J. J. McDouall, K. Peasley, and M. A. Robb, Chem. Phys. Lett. 148, 183 (1988).
${ }^{50}$ J. A. Pople, M. Head-Gordon, and K. Raghavachari, J. Chem. Phys. 87, 5968 (1987).
${ }^{51}$ R. D. Levine and J. L. Kinsey, in Atom-Molecule Collision Theory-A Guide for the Experimentalist, edited by R. B. Bernstein (Plenum, New York, 1979).
${ }^{52}$ A. M. Wodtke, E. J. Hlintsa, and Y. T. Lee, J. Phys. Chem. 90, 3549 (1986) ; X. Zhao, R. E. Continetti, A. Yokoyama, E. J. Hintsa, and Y. T. Lee, J. Chem. Phys. 91, 4118 (1989).
${ }^{53}$ P. Pechukas and J. C. Light, J. Chem. Phys. 42, 3281 (1965).
${ }^{54}$ C. Wittig, I. Nadier, H. Reisler, J. Catanzarite, and G. Radhakrishnan, J. Chem. Phys. 83, 5581 (1985).
${ }^{55}$ M. Quack and J. Troe, Ber. Bunsenges. Phys. Chem. 79, 469 (1975).
${ }^{56}$ M. D. Morse, K. F. Freed, and Y. B. Band, J. Chem. Phys. 70, 3604 (1979).
${ }^{57}$ G. E. Busch and K.R. Wilson, J. Chem. Phys. 56, 3626 (1972); A. F. Tuck, J. Chem. Soc., Faraday Trans. 73, 689 (1977).
${ }^{58}$ S. W. North, D. A. Blank, J. D. Gezelter, C. A. Longfellow, and Y. T. Lee, J. Chem. Phys. 102, 4447 (1995).
${ }^{59}$ D. H. Mordaunt, D. L. Osborn, and D. M. Neumark, in preparation.
${ }^{60}$ S. W. North, Ph.D. thesis, University of California, Berkeley, 1995.
${ }^{61}$ P. M. Kroger and S. J. Riley, J. Chem. Phys. 67, 4483 (1977).
${ }^{62}$ S. Körnig, J. H. M. Beijersbergen, and J. Los, J. Phys. Chem. 94, 611 (1990).
${ }^{63}$ C. E. C. A. Hop and J. L. Holmes, Int. J. of Mass Spectrom. Ion Proc. 104, 213 (1991).
${ }^{64}$ R. H. Nobes, W. J. Bouma, and L. Radom, J. Am. Chem. Soc. 105, 311 (1983).
${ }^{65}$ S. W. Benson, Thermochemical Kinetics (John Wiley \& Sons, New York, 1968), p. 140.
${ }^{66}{ }_{i b i d}$, pp. 205-207.
${ }^{67}$ E. A. Rohlfing, private communication.
${ }^{68}$ P. Avouris, W. M. Gelbart, and M. A. El-Sayed, Chem. Rev. 77, 793 (1977).
${ }^{69}$ J. H. Callomon, J. E. Parkin, and R. Lopex-Delgado, Chem. Phys. Lett. 13, 125 (1972).
${ }^{70}$ L. Wunsch, H. J. Neusser, and E. W. Schlag, Z. Naturforsch. 36a, 1340 (1981); U. Schubert, E. Riedle, H. J. Neusser, and E. W. Schlag, J. Chem. Phys. 84, 6182 (1986).
${ }^{71}$ T. Suzuki and M. Ito, J. Chem. Phys. 91, 4564 (1989).
${ }^{72}$ A. Helman and R. A. Marcus, J. Chem. Phys. 99, 5011 (1993).
${ }^{73}$ E. S. Yeung and C. B. Moore, J. Chem. Phys. 60, 2139 (1974).

Photodissociation spectroscopy and dynamics of the HCCO radical

I. Introduction

The ketenyl radical (HCCO) has long been recognized as an important hydrocarbon combustion intermediate. ${ }^{1}$ Ketenyl is the major product in the oxidation of acetylene by oxygen atoms: ${ }^{2-4}$

$$
\begin{array}{rlr}
\mathrm{HCCH}+\mathrm{O} & \rightarrow \mathrm{HCCO}+\mathrm{H} & 80 \pm 15 \% \\
& \rightarrow \mathrm{CH}_{2}\left(\tilde{X}^{3} B_{1}\right)+\mathrm{CO} & \tag{2}
\end{array}
$$

Reaction (1) is a critical step in combustion chemistry because acetylene is a common intermediate in combustion of both aliphatic ${ }^{5}$ and aromatic ${ }^{6}$ hydrocarbons, and is removed primarily by reaction with oxygen atoms. ${ }^{7}$ It is therefore of considerable interest to characterize the spectroscopy and thermochemistry of HCCO , so that its concentration can be monitored in combustion environments, and its reactions can be predicted with greater confidence in combustion kinetics models. Recently, we reported the first unambiguous observation of an ultraviolet spectrum of the ketenyl radical in a fast radical beam photodissociation experiment; ${ }^{8}$ prior to this work, spectroscopic information on HCCO had been limited to the microwave region ${ }^{9,10}$ and a single vibrational band in the infrared. ${ }^{11}$ In this article we present a full discussion of the electronic spectroscopy and photodissociation dynamics of the HCCO radical and compare this system with the closely related $\mathrm{CH}_{2} \mathrm{CHO}^{12}$ and $\mathrm{CH}_{3} \mathrm{O}^{13}$ intermediates.

The importance of the HCCO radical in combustion has motivated several kinetics ${ }^{1-4,14-24}$ and spectroscopy experiments, ${ }^{8-11,25-29}$ as well as theoretical investigations ${ }^{30-40}$ over the years. Fenimore and Jones ${ }^{41}$ first proposed that HCCO is formed in the reaction of oxygen atoms with $\mathrm{C}_{2} \mathrm{H}_{2}$, a prediction verified by Jones and Bayes using photoionization mass spectrometry. ${ }^{14}$ A crossed molecular beam study of the $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{O}$ reaction by Schmoltner et al. ${ }^{19}$ showed unambiguously that combustion of $\mathrm{C}_{2} \mathrm{H}_{2}$ proceeds via reactions (1) and (2) under collisionless conditions, although the branching ratio derived does not agree with the currently accepted value. ${ }^{4}$ The many kinetic studies involving both the production of HCCO from $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{O}$, and the destruction of HCCO through various reactions have been summarized by Peeters et al. ${ }^{4}$ Rate constants have been measured for the destruction of HCCO by reaction with $\mathrm{O},{ }^{22} \mathrm{O}_{2},{ }^{20,21} \mathrm{H},{ }^{3,22} \mathrm{C}_{2} \mathrm{H}_{2},{ }^{20,21}$ NO, ${ }^{11,15,20}$ and $\mathrm{NO}_{2} .{ }^{20}$ An extensive table of reaction rate constants involved in this system is given in Ref. 16. Taatjes has recently conducted ${ }^{13}$ C-labeled kinetic studies of the reaction $\mathrm{CH}(\mathrm{CD})+\mathrm{CO}$, finding evidence for isomerization of the HCCO adduct via an oxiryl intermediate. ${ }^{23}$ Of particular interest to our work, Herbert et al. ${ }^{24}$ have conducted kinetics measurements from $23-584 \mathrm{~K}$ on vibrational relaxation of $\mathrm{CH}\left(X\left({ }^{2} \Pi\right) ; v=1\right)$ by CO ; the fast rates observed are indicative of formation of an HCCO complex.

The ground electronic state of the HCCO radical has been characterized by several spectroscopic methods. Oakes et al. obtained the electron affinity of HCCO and determined the heat of formation of the radical by photoelectron spectroscopy of HCCO^{-25} The microwave spectra of HCCO and DCCO due to Endo et al. ${ }^{9}$ showed that HCCO is bent, although it is effectively described as quasilinear. From this work the ground electronic state was determined to be of ${ }^{2} \mathrm{~A}^{\prime \prime}$ symmetry. The large a-axis spin-rotation
constant and its anomalous dependence on K_{a} were attributed to perturbation of the ground state by a low-lying ${ }^{2} \mathrm{~A}^{\prime}$ state. In the infrared region, Jacox and Olsen ${ }^{29}$ assigned a matrix absorption at $2,020 \mathrm{~cm}^{-1}$ to HCCO . This band was later identified at $2,023 \mathrm{~cm}^{-1}$ in the gas phase and the rotational structure analyzed in detail by Unfried et al. ${ }^{11}$

The characterization of the excited electronic states of HCCO has been more problematic. Two electronic absorption bands of HCCO were reported by Krishnamachari and Venkatasubramanian, ${ }^{26}$ with band origins at 27,262 and $29,989 \mathrm{~cm}^{-1}$. The carrier of these bands was produced by flash photolysis of oxazole and isoxazole, and their assignment to the HCCO radical has been questioned. ${ }^{38}$ A laser induced fluorescence (LIF) spectrum of HCCO , produced by reaction of O atoms with $\mathrm{C}_{2} \mathrm{H}_{2}$, was also reported, ${ }^{27}$ although the fluorescence was later shown to have arisen entirely from $\mathrm{CH}_{2} \mathrm{O}^{28}$

The experimental results on the ground state of HCCO radical are consistent with $a b$ initio electronic structure calculations by Goddard, ${ }^{32}$ Kim and Shavitt, ${ }^{34}$ and Szalay et al., ${ }^{35,38,39}$ providing considerable insight into the excited state structure. According to these calculations, the bent ground state, $\tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$, and the linear $\tilde{A}\left({ }^{2} \mathrm{~A}^{\prime}\right)\left[{ }^{2} \Pi\right]$ state are a Renner-Teller (RT) pair derived from a linear ${ }^{2} \Pi$ configuration. The ab initio splitting between these two states is $981 \mathrm{~cm}^{-1},{ }^{34}$ in reasonable agreement with that estimated from the microwave analysis. Kim and Shavitt ${ }^{34}$ predicted a higher-lying RT pair, the bent $\widetilde{B}\left({ }^{2} \mathrm{~A}^{\prime}\right)$ state at $33,000 \mathrm{~cm}^{-1}$ and the linear $\widetilde{C}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)\left[{ }^{2} \Pi\right]$ state at $33,300 \mathrm{~cm}^{-1}$ above the ground state. Szalay et al. ${ }^{38,39}$ have recently completed a study of the same electronic states and found both members of the upper RT pair to be linear $\left({ }^{2} \Pi\right)$ at their highest level of theory, with a spin-orbit splitting $A_{\mathrm{sO}}=-78 \mathrm{~cm}^{-1}$, and an excitation energy relative to
the \tilde{X} state of $36,000 \mathrm{~cm}^{-1}$. Furthermore, Nguyen et al. ${ }^{37}$ predicted a linear ${ }^{2} \Sigma^{+}$state at $\approx 53,000 \mathrm{~cm}^{-1} . \mathrm{Hu}$ et al. ${ }^{36}$ have characterized the lowest quartet state of HCCO , a cisbent $\tilde{a}\left({ }^{4} \mathrm{~A}^{\prime \prime}\right)$ state, which is predicted to lie $19,000 \mathrm{~cm}^{-1}$ above the $\tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ state. A recent article by Yarkony explores the intersection of the \tilde{a} state with the two low-lying doublet states. ${ }^{40}$ Figure 1 shows a qualitative picture of the relevant potential energy surfaces of HCCO based on the calculations in Refs. 36 and 38.

In our experiment, a mass-selected source of neutral HCCO radicals is prepared by laser photodetachment of the HCCO^{-}ion. A second laser then probes the dissociative electronically excited states of the radical, giving us confidence that all our data arises solely from the ketenyl radical. Our experiment directly assesses whether photodissociation occurs; it also identifies and characterizes the nascent photofragments.

For the ketenyl radical, three dissociation channels are energetically allowed for photon energies in this study:

$$
\begin{align*}
& \mathrm{HCCO} \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right) \xrightarrow{h \nu} \mathrm{CH} X\left({ }^{2} \Pi\right)+\mathrm{COX}\left({ }^{1} \Sigma^{+}\right) \quad \Delta H_{0}=3.14 \pm 0.03 \mathrm{eV}^{8} \tag{I}\\
& \mathrm{CH} a\left({ }^{4} \Sigma^{-}\right)+\mathrm{COX}\left({ }^{1} \Sigma^{+}\right) \quad \Delta H_{0}=3.88 \pm 0.03 \mathrm{eV}^{8} \tag{II}\\
& \mathrm{H}\left({ }^{2} S\right)+\operatorname{CCO} \tilde{X}\left({ }^{3} \Sigma^{-}\right) \quad \Delta H_{0}=4.36 \pm 0.05 \mathrm{eV}^{42,43} \tag{III}
\end{align*}
$$

Channels I and $I I$ are observed in our experiment. We observe structure in the photofragment yield spectrum of HCCO , and present a rotational analysis of the $\widetilde{B}\left({ }^{2} \Pi\right) \leftarrow \widetilde{X}\left({ }^{2} A^{\prime \prime}\right)$ transition. From translational energy and angular distributions of the fragments, we obtain information on the rotational and vibrational product state distributions of the fragments. The experimental results and data analysis are presented in sections III and IV. Based on this data, we develop a dissociation mechanism in section

V , and discuss the dependence of intersystem crossing and internal conversion on photon energy. We also comment on the possibility of utilizing electronic spectroscopy as an in situ probe of HCCO in combustion environments.
II. Experimental

The experimental apparatus shown in Fig. 2 has been described in detail

Figure 1: Schematic of potential energy surfaces for the HCCO radical.
elsewhere, ${ }^{44,45}$ and only a brief description of the technique is given here. In the first section of the apparatus, a pulsed free jet expansion of the gas mixture $\mathrm{C}_{2} \mathrm{H}_{2}: \mathrm{N}_{2} \mathrm{O}: \mathrm{O}_{2}: \mathrm{Ne}$ (mole fraction 1:3:6:90) is formed in the source region. HCCO is generated by a pulsed electric discharge ${ }^{46}$ in the throat of this expansion. The core of the free jet passes through a 3 mm diameter skimmer and the anions are accelerated to 8 keV . Mass-separation of the ions is accomplished using a collinear Bakker ${ }^{47}$ type time-of-flight mass spectrometer. After collimation of the ion beam by a 1 mm pinhole, the output of a pulsed dye laser is timed such that it photodetaches only $m / e=41$, producing a packet of mass-selected neutral free radicals. Any remaining ions are deflected from the beam. The photodetachment energy ($h v=19,230 \mathrm{~cm}^{-1}$) is just above threshold, ${ }^{25}$ producing radicals in their zero-point vibrational level.

Figure 2: Fast radical beam translational spectrometer. The dotted line separates the radical production section on the left from the actual photodissociation experiment on the right.

In the second section of the apparatus, the radicals are collimated by a final 1 mm pinhole and intersect a second pulsed dye laser operating in the ultraviolet. If photodissociation occurs, fragments recoiling out of the parent radical beam are detected with high sensitivity, without an ionization step, using microchannel plate detectors. Photodissociation occurs under collisionless conditions (10^{-9} torr), and two types of
experiments are performed. First, the photofragment yield (PFY) spectrum is obtained by integrating the total fragment signal as a function of photodissociation laser wavelength. Second, at various fixed photon energies, the dissociation dynamics are investigated by detecting both fragments in coincidence from a single parent radical dissociation event. We measure the photofragment translational energy and angular distributions using a timeand position-sensitive (TPS) wedge and strip anode detector. ${ }^{48.49}$ The identity of the photofragments is determined by measuring the individual recoils of each fragment from the radical beam axis to give the fragment mass ratio, m_{1} / m_{2}, by conservation of linear momentum. Angular distributions of the photofragments are defined with respect to the \boldsymbol{E} vector of the linearly polarized dissociation laser. In the present experiments the translational energy resolution is given by $\Delta E_{\mathrm{T}} / E_{\mathrm{T}}=2.2 \%$.

The doubled output of the photodissociation laser has a bandwidth of $\approx 0.3 \mathrm{~cm}^{-1}$ when operated with a grating as its only tuning element. In this mode the PFY spectra are calibrated at many different frequencies throughout the scanned range against the absorption spectrum of $\mathrm{I}_{2},{ }^{50}$ with an absolute accuracy of $1 \mathrm{~cm}^{-1}$ or better. The bandwidth of the laser is reduced to $\approx 0.08 \mathrm{~cm}^{-1}$ with the incorporation of an intracavity etalon. PFY spectra acquired in this configuration are calibrated against simultaneously collected I_{2} absorption spectra yielding an absolute accuracy of $0.05 \mathrm{~cm}^{-1}$.

As discussed previously, ${ }^{12}$ the coincidence detection scheme is useful only when $m_{1} / m_{2} \leq \sim 5$. In order to probe for channel III products, we utilize a non-coincidence time-of-flight detection scheme when dissociating the isotope DCCO of the ketenyl radical. Unlike the coincidence detection method described above, this experiment would be sensitive to the product channel $\mathrm{D}+\mathrm{CCO}$, and has been used to identify a D atom loss
channel in the photodissociation of the vinoxy radical. No evidence for channel $I I I$ is observed. For experimental reasons it is difficult to place an upper bound on the importance of this channel, but it is almost certainly not a major pathway in the ultraviolet dissociation of HCCO.

III. Results

A. Photofragment yield spectra

The PFY spectrum of HCCO from 33,000 to $48,000 \mathrm{~cm}^{-1}$, shown in Fig. 3, indicates the energies at which HCCO absorbs a photon and dissociates. In the limit that the quantum yield for dissociation $\Phi_{\text {Diss }}=1$, the PFY spectrum is identical to the absorption spectrum. This spectrum shows unambiguously that dissociation occurs after UV excitation of HCCO. The lowest energy at which we observe dissociation is $h v=33.400 \mathrm{~cm}^{-1}$, which is assigned below as the origin of this electronic band.

The PFY spectrum shows clear vibrational structure towards the red, as seen more clearly in Fig. 4, which displays the first $4,000 \mathrm{~cm}^{-1}$ of the spectrum. In addition, rotational structure is resolved at the origin and in a few vibrational bands; two such spectra are shown in Fig. 5. As seen in Fig. 3, the photofragment yield increases significantly in intensity with increasing photon energy, concurrent with broadening of the vibrational structure. The rise in the spectrum's baseline seen in Fig. 3 is not an artifact of the experiment; this signal, in addition to the structured peaks, arises from primary photofragments of HCCO. Above $41,000 \mathrm{~cm}^{-1}$, no sharp vibrational transitions are

Figure 3: Overall photofragment yield (PFY) spectrum of HCCO. Photodissociation dynamics data are acquired at the peaks marked with an asterisk. The lowest energy asterisk marks the origin transition.
apparent, although broad undulations in the spectrum continue to the highest energies studied.

The spectroscopic information we obtain from HCCO is derived from the structured region in the first $4,000 \mathrm{~cm}^{-1}$ of the PFY spectrum, shown in Fig. 4. The structure represents extended vibrational progressions in the excited electronic state. In this spectrum, the first $1,900 \mathrm{~cm}^{-1}$ were acquired with a laser step size of $0.3 \mathrm{~cm}^{-1}$, equal to the laser bandwidth. Beyond this region the step size is increased to $3 \mathrm{~cm}^{-1}$. The coarser step size expedites data acquisition with little loss of vibrational structure information. The two lowest energy peaks (marked by $*$ in Fig. 4) are split by $\approx 40 \mathrm{~cm}^{-1}$, and can be tentatively identified at this resolution as two R-branch band heads. The large number of transitions in the first $2,000 \mathrm{~cm}^{-1}$ indicates that several vibrational modes are active in the excited electronic state.

Excess Energy (cm^{-1})

Figure 4: Vibrational structure in the first $4,000 \mathrm{~cm}^{-1}$ of the PFY spectrum. Excess energy is given relative to the rovibronic origin at $33,423.92 \mathrm{~cm}^{-1}$. The vibrational progression in the $v_{3} \mathrm{CCO}$ symmetric stretch and the two bending modes v_{4} and v_{5} are indicated by the combs, with the Renner-Teller splitting shown for v_{4}.

A few of the transitions in Fig. 4 were examined at higher resolution $\left(0.08 \mathrm{~cm}^{-1}\right.$ laser bandwidth). Two such rotationally resolved spectra are shown in Fig. 5. The spectrum in Fig. 5 a is assigned in section IV-A as the electronic origin 0_{0}^{0} transition, and is the source of the most detailed spectroscopic information we obtain on the HCCO radical. Upon inspection of the lower frequency band centered at $33,403 \mathrm{~cm}^{-1}$, one can easily recognize P, Q, and R branches with a prominent band head occurring in the R branch. A splitting of the lines in the P branch is also visible below $33,397 \mathrm{~cm}^{-1}$. The nature of the higher frequency branch with a band head at $33,447 \mathrm{~cm}^{-1}$ is perhaps not as easily recognized at first glance and will be discussed later. The experimental linewidths are instrumentally narrow (i.e., $0.08 \mathrm{~cm}^{-1}$) in Fig. 5 a .

Figure 5: Rotationally resolved PFY spectra of HCCO. (a) The origin transition shows splitting into both F_{1} and F_{2} branches, with asymmetry doubling resolved in the F_{1} branch. The experimental linewidth is instrument limited at $0.08 \mathrm{~cm}^{-1}$. (b) The F_{1} branch of an unassigned vibrational transition $\approx 1,900 \mathrm{~cm}^{-1}$ above the origin. The experimental linewidth is broadened to $0.16 \mathrm{~cm}^{-1}$.

While many of the vibrational bands do not reveal rotational structure at our resolution, a few vibrationally excited bands were resolved, one of which is shown in Fig. $5 \mathrm{~b}, \approx 1,900 \mathrm{~cm}^{-1}$ above the origin transition. Again a simple P, Q, R, structure is apparent,
although in this band the FWHM of the narrowest line is $0.16 \mathrm{~cm}^{-1}$, twice the width of the photodissociation laser.

B. Translational energy and angular distributions

Once the dependence of photodissociation on photon energy has been mapped out for the ketenyl radical, its photodissociation dynamics can be explored at selected photon energies using the TPS detector. First, the identity of the photoproducts is ascertained by conservation of linear momentum. At all photon energies, the only fragments observed are $\mathrm{CH}+\mathrm{CO}$, as expected for the coincidence detector configuration. With knowledge of the fragment masses, we obtain the coupled translational energy and angular distribution, $P\left(E_{\mathrm{T}}, \theta\right)$, by direct inversion of the data. ${ }^{44}$ The two dimensional $P\left(E_{\mathrm{T}}, \theta\right)$ distribution can then be separated into an angle-independent translational energy distribution $P\left(E_{\mathrm{T}}\right)$, and an energy-dependent anisotropy parameter $\beta\left(E_{T}\right),{ }^{51}$ that describes the angular distribution of the fragments:

$$
\begin{equation*}
P\left(E_{\mathrm{T}}, \theta\right)=P\left(E_{\mathrm{T}}\right) \cdot\left\{1+\beta\left(E_{\mathrm{T}}\right) \cdot P_{2}(\cos \theta)\right\} \tag{3}
\end{equation*}
$$

where $P_{2}(\cos \theta)$ is the second Legendre polynomial. The limiting cases of $\sin ^{2} \theta$ and $\cos ^{2} \theta$ angular distributions are given by $\beta=-1$ and +2 , respectively. Together, the $P\left(E_{\mathrm{T}}\right)$ and $\beta\left(E_{\mathrm{T}}\right)$ distributions can yield detailed information on the dynamics of the dissociation process. The procedure for extracting the $P\left(E_{\mathrm{T}}\right)$ and $\beta\left(E_{\mathrm{T}}\right)$ distributions from the data have been described in detail elsewhere ${ }^{44}$ Photodissociation dynamics experiments were performed at each photon energy marked with (*) in Fig. 3. The resulting $P\left(E_{\mathrm{T}}\right)$ and $\beta\left(E_{\mathrm{T}}\right)$ distributions are shown in Fig. 6.

HCCO Translational Energy Distributions

Figure 6: Translational energy distributions, $P\left(E_{\mathrm{T}}\right)$, and anisotropy parameter distributions, $\beta\left(E_{T}\right)$, for the marked transitions in Fig. 3. In each case the photon energy is given. The $\beta\left(E_{\mathrm{T}}\right)$ distributions are not determined for the spin-forbidden products (see text). For greater clarity, $\beta\left(E_{\mathbb{T}}\right)$ is not plotted on its full range of -1 to 2 . Average anisotropies $\langle\beta\rangle$ are indicated at each photon energy.

The $P\left(E_{\mathrm{T}}\right)$ distributions show several trends with increasing photon energy. Two features are visible at the lowest excitation energies in Figs. 6a-c: a dominant peak centered at $E_{\mathrm{T}}=0.20-0.25 \mathrm{eV}$, and a weak, broad feature centered at $E_{\mathrm{T}}=0.75 \mathrm{eV}$ that
gains intensity with photon energy. As discussed in our previous paper, and in more detail in Section IV-C below, these features correspond to channels $I I$ and I, respectively. However, by $h v=35,464 \mathrm{~cm}^{-1}$, the two features appear to have approximately the same intensity and are difficult to separate. As the photon energy increases further, the appearance of the spectra change, and they are dominated by a single peak at $E_{\mathrm{T}} \approx 0.8$ 0.9 eV superimposed on a broad background. This peak position is essentially independent of excitation energy over a $10,000 \mathrm{~cm}^{-1}$ range. At the highest energy studied, $47,831 \mathrm{~cm}^{-1}$, the width of the $P\left(E_{\mathrm{T}}\right)$ distribution broadens considerably. Another important trend in the $P\left(E_{\mathrm{T}}\right)$ distributions is that each increase in $h v$ is accompanied by an equivalent increase of the highest translational energy observed, $E_{\mathrm{T}}^{\max }$. This result is a direct consequence of energy conservation, governed by the relation $E_{\tau}^{\max }=h v-D_{0}(\mathrm{HC}-\mathrm{CO})$.

The energy dependent anisotropy parameter, $\beta\left(E_{\mathrm{T}}\right)$, also shows interesting trends as a function of both E_{T} and $h v$. First, it should be noted that in all cases $\beta\left(E_{\mathrm{T}}\right) \geq 0$, implying a parallel electric dipole transition. ${ }^{51}$ Unfortunately, for the spin-forbidden process of channel $I I$, the limited range of laboratory scattering angles which can be detected for these small recoils prevents a confident determination of the anisotropy, so $\beta\left(E_{\mathrm{T}}\right)$ is not reported for this feature. At low photon energy, $\beta\left(E_{\mathrm{T}}\right)$ increases with E_{T}, whereas at higher photon energy (Figs. $6 \mathrm{~g}-\mathrm{j}$), there is a broad maximum in $\beta\left(E_{\mathrm{T}}\right)$ whose center approximately coincides with the peak at 0.9 eV in the $P\left(E_{\mathrm{T}}\right)$ distribution. For $h \nu \geq 35,464 \mathrm{~cm}^{-1}$, the energy-averaged anisotropy $\langle\beta\rangle$ (Fig. 6) tends to be an increasing function of photon energy, with individual values of β as high as $\beta\left(E_{\mathrm{T}}=0.9 \mathrm{eV}\right)=1.0$ for

Figure 6, continued.
$h \nu=40,488 \mathrm{~cm}^{-1}$. At still higher photon energies $\langle\beta\rangle$ decreases in magnitude again. These trends are discussed further in Section V.

C. Electronic structure calculations

One issue which has not been addressed in previous $a b$ initio calculations on the HCCO radical is the nature of the $\tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ state as the $\mathrm{C}-\mathrm{C}$ bond is elongated and finally
dissociated. We have performed $a b$ initio calculations to determine whether a barrier exists on the way to product formation. For reference, the molecular orbital configurations of the relevant valence states of HCCO are given in Table I. In order to properly describe the dissociation into $\mathrm{CH}+\mathrm{CO}$, we have used the multi-configurational complete active space self consistent field ${ }^{52}$ (CASSCF) method from the Gaussian 94 package ${ }^{53}$ of programs. An active space of nine electrons in eight orbitals [CAS(9,8)] was chosen as the three $a^{\prime \prime} p_{\pi}$ orbitals, the three $a^{\prime} p_{\pi}$ orbitals, and the $\mathrm{C}-\mathrm{C} \sigma$ and σ^{*} orbitals. The 6-31G* basis set was used for this work.

The r_{CC} bond length was increased incrementally, optimizing at each increment the remaining degrees of freedom, in order to determine the minimum energy pathway to products. Referring to Fig. 1, we find no evidence for a barrier on the $\tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ surface

Orbital Character	$\tilde{X}\left({ }^{2} A^{\prime \prime}\right)$	$\tilde{A}\left({ }^{2} A^{\prime}\right)\left[^{2} \Pi\right]$	$\tilde{a}\left({ }^{4} A^{\prime \prime}\right)$	$\tilde{B}\left({ }^{2} \Pi\right)^{a}$
O (1s)	($\left.1 a^{\prime}\right)^{2}$	$(1 \sigma)^{2}$	$\left(1 a^{\prime}\right)^{2}$	$(1 \sigma)^{2}$
C (1s)	$\left(2 a^{\prime}\right)^{2}$	$(2 \sigma)^{2}$	$\left(2 a^{\prime}\right)^{2}$	$(2 \sigma)^{2}$
C (1s)	$\left(3 a^{\prime}\right)^{2}$	$(3 \sigma)^{2}$	$\left(3 a^{\prime}\right)^{2}$	$(3 \sigma)^{2}$
O (2s)	$\left(4 a^{\prime}\right)^{2}$	$(4 \sigma)^{2}$	$\left(4 a^{\prime}\right)^{2}$	$(4 \sigma)^{2}$
$\mathrm{CH}(\sigma)$	$\left(5 a^{\prime}\right)^{2}$	$(5 \sigma)^{2}$	$\left(5 a^{\prime}\right)^{2}$	$(5 \sigma)^{2}$
$\mathrm{CO}(\sigma)$	$\left(6 a^{\prime}\right)^{2}$	$(6 \sigma)^{2}$	$\left(6 a^{\prime}\right)^{2}$	$(6 \sigma)^{2}$
CC (σ)	$\left(7 a^{\prime}\right)^{2}$	(7б) ${ }^{2}$	$\left(7 a^{\prime}\right)^{2}$	$(7 \sigma)^{2}$
$\mathrm{CO}\left(\pi_{x}\right)^{\text {b }}$	$\left(8 a^{\prime}\right)^{2}$	$\left(1 \pi_{s}\right)^{2}$	$\left(8 a^{\prime}\right)^{2}$	$\left(1 \pi_{x}\right)^{1} \quad\left(1 \pi_{x}\right)^{2}$
$\mathrm{CO}\left(\pi_{y}\right)$	$\left(1 a^{\prime \prime}\right)^{2}$	$(1 \pi,)^{2}$	$\left(1 a^{\prime \prime}\right)^{2}$	$\left(1 \pi_{y}\right)^{2} \quad\left(1 \pi_{y}\right)^{1}$
$\operatorname{CCO}\left(\pi_{x}\right)$	$\left(9 a^{\prime}\right)^{2}$	$\left(2 \pi_{x}\right)^{1}$	$\left(9 a^{\prime}\right)^{1}$	$\left(2 \pi_{x}\right)^{2}$
$\mathrm{CCO}\left(\pi_{y}\right)$	$\left(2 a^{\prime \prime}\right)^{1}$	$(2 \pi)^{2}$	$\left(2 a^{\prime \prime}\right)^{1}$	$\left(2 \pi_{y}\right)^{2}$
$\operatorname{CCO}\left(\pi_{x}^{*}\right)$	$(10 a)^{0}$	$\left(3 \pi_{x}\right)^{0}$	$\left(10 a^{\prime}\right)^{1}$	$\left(3 \pi_{x}\right)^{0}$
$\mathrm{CCO}\left(\pi^{*}{ }^{*}\right)$	$\left(3 a^{\prime \prime}\right)^{0}$	$(3 \pi)^{0}$	$\left(3 a^{\prime \prime}\right)^{0}$	$\left(3 \pi_{\nu}\right)^{0}$

Table I: Molecular orbital configurations of HCCO electronic states.
${ }^{a}$ At linearity the π_{x} and π_{y} orbitals of the \tilde{B} state are degenerate. In the case of strong Renner-Teller coupling such that the lower RT state is nonlinear, as found in Ref. 34, the two resulting electronic states are described by the left and right configurations, respectively, of the $\mathrm{CO}(\pi)$ orbitals in this column.
${ }^{b}$ The π orbitals of the CCO backbone are analogous to the three π orbitals of linear C_{3}, which have zero, one, and two nodes in the $x y$ plane, respectively, as a function of increasing energy.
along the minimum energy path out to the longest $\mathrm{C}-\mathrm{C}$ bond length calculated, $r_{\mathrm{CC}}=2.7$
\AA. If a barrier of significant magnitude existed, it would almost certainly occur for $r_{\mathrm{CC}}<$
$2.7 \AA$. The absence of an exit barrier on the ground state is supported experimentally by rate constant measurements over a wide range of temperatures for the relaxation of $\mathrm{CH}\left(X\left({ }^{2} \Pi\right) ; v=1\right)$ by CO and $\mathrm{N}_{2} .{ }^{54}$ Because the $\tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ and the $\tilde{A}\left({ }^{2} \mathrm{~A}^{\prime}\right)$ states are a Renner-Teller pair, they correlate to the same doubly degenerate asymptote $\mathrm{CH} X\left({ }^{2} \Pi\right)+$ $\operatorname{CO} X\left(\Sigma^{+}\right)$, and we do not expect a barrier on the \tilde{A} state surface because the RT splitting should decrease as r_{cc} increases.

A second issue addressed through $a b$ initio calculations is the possibility of an intersection of the HCCO $\widetilde{a}\left({ }^{4} \mathrm{~A}^{\prime \prime}\right)$ PES with the $\widetilde{B}\left({ }^{2} \Pi\right)$ PES. These calculations probe regions of the $\tilde{a}\left({ }^{4} \mathrm{~A}^{\prime \prime}\right)$ surface far from equilibrium, where excitations other than doubles are known to be more important for an accurate description of the wavefunction. Therefore we have chosen the quadratic configuration interaction method with perturbative treatment of triple excitations ${ }^{55} \mathrm{QCISD}(\mathrm{T}) / 6-31 \mathrm{G}^{* *}$. In agreement with Hu et al.. We find the lowest state of HCCO $\tilde{a}\left({ }^{4} \mathrm{~A}^{\prime \prime}\right)$ is a cis-bent structure with equilibrium geometry $\angle \mathrm{HCC}=131.37^{\circ}, \angle \mathrm{CCO}=125.14^{\circ}, r_{\mathrm{CC}}=1.450 \AA, r_{\mathrm{CO}}=1.206 \AA, r_{\mathrm{CH}}=$ $1.085 \AA$. At the (linear) equilibrium geometry of the \widetilde{B} state, the intersection with the $\tilde{a}\left({ }^{4} \mathrm{~A}\right.$ ") surface occurs 2.4 eV above the minimum energy of the \tilde{B} state, although this energy gap decreases dramatically with bending motion away from linearity.

IV. Analysis

A. Rotational structure

Analysis of the rotationally resolved PFY spectra in Fig. 5 is the first step in characterizing the electronic transition we observe in HCCO. Fortunately, the $\tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ ground state of ketenyl is characterized from the microwave spectroscopy of Endo et al. ${ }^{9}$ According to this work, the ground state has a linear or nearly linear CCO backbone, but $\angle \mathrm{HCC}=138.7^{\circ}$, placing the H atom well away from the a-axis. Due to the low mass of the H atom, $\mathrm{HCCO} \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ is very nearly a prolate symmetric top, with asymmetry parameter $\kappa_{\text {asym }}=-0.9998$. The microwave rotational spectra were analyzed using a Hund's case (b) Hamiltonian, although Unfried et al. point out that for $K_{a} \neq 0$ the coupling is closer to case (a). ${ }^{11}$ However, it is less convenient to use a case (a) Hamiltonian since the ground state is non-linear, and we therefore follow the precedent of Endo et al., ${ }^{9}$ utilizing a case (b) Hamiltonian to analyze the rotational structure of ketenyl.

With this background, we can examine in more detail the PFY spectrum of the band centered at $33,403 \mathrm{~cm}^{-1}$ in Fig. 5a, whose line positions are given in Table II. Based on the Hönl-London factors for a symmetric top, ${ }^{56}$ the fact that a Q branch is observed but does not dominate the spectrum implies a parallel, a-type rotational transition for which $\Delta K_{a}=0$. Furthermore, the electronic transition cannot be $K_{a}^{\prime}=0 \leftarrow K_{a}^{\prime \prime}=0$ because: (i) in this case the Q branch would be vanishingly small, (forbidden in the symmetric top limit), and (ii) asymmetry doubling, which we resolve in the P branch, is not allowed for $K_{a}=0$ levels.

$N_{K_{a}^{\prime}}^{\prime} K_{c}^{\prime}$	$N^{\prime \prime} K_{a}^{\prime \prime} K_{c}^{\prime \prime}$	branch	observed $^{\text {a }}$	obs. - calc.
111	212	F_{1}	33401.39	-0.01
110	211	F_{1}	33401.39	-0.00
212	313	F_{1}	33400.63	0.01
211	312	F_{1}	33400.63	0.02
313	414	F_{1}	33399.80	0.00
312	413	F_{1}	33399.80	0.03
4_{14}	515	F_{1}	33398.94	0.02
413	514	F_{1}	33398.94	0.06
515	616	F_{1}	33398.00	-0.01
514	615	F_{1}	33398.00	0.06
6_{16}	717	F_{1}	33396.96	-0.07
615	716	F_{1}	33396.96	0.03
717	818	F_{1}	33395.99	0.01
716	817	F_{1}	33395.86	-0.00
818	919	F_{1}	33394.87	-0.01
817	918	F_{1}	33394.71	-0.00
919	$10_{1,10}$	F_{1}	33393.71	0.01
918	10_{19}	F_{1}	33393.51	0.01
$10_{1,10}$	$11_{1,11}$	F_{1}	33392.46	-0.00
10_{19}	$11_{1,10}$	F_{1}	33392.22	0.00
110	111	F_{1}	33403.08	-0.01
111	110	F_{1}	33403.08	-0.01
312	313	F_{1}	33402.87	-0.00
313	312	F_{1}	33402.87	0.01
413	414	F_{1}	33402.67	-0.03
414	413	F_{1}	33402.67	0.00
514	515	F_{1}	33402.45	-0.02
515	514	F_{1}	33402.45	0.03
212	111	F_{1}	33404.69	-0.01
211	1_{10}	F_{1}	33404.69	-0.01
313	212	F_{1}	33405.23	-0.02
312	211	F_{1}	33405.23	-0.01
414	313	F_{1}	33405.75	-0.01
413	312	F_{1}	33405.75	0.00
515	414	F_{1}	33406.22	-0.00
514	413	F_{1}	33406.22	0.02
6_{16}	515	F_{1}	33406.62	-0.02
615	514	F_{1}	33406.62	0.02
717	616	F_{1}	33406.98	-0.03
716	615	F_{1}	33406.98	0.04
111	212	F_{2}	33443.5	-0.04
110	211	F_{2}	33443.5	-0.03
212	313	F_{2}	33442.63	0.02
211	312	F_{2}	33442.63	0.04
313	414	F_{2}	33441.56	-0.01
312	413	F_{2}	33441.56	0.01
515	616	F_{2}	33439.22	0.00
514	615	F_{2}	33439.22	0.06
717	818	F_{2}	33436.47	-0.04
716	817	F_{2}	33436.47	0.08
818	919	F_{2}	33435.03	0.01
817	918	F_{2}	33434.81	-0.05

Table II: Rotational assignments and frequencies for 0_{0}^{0}.
${ }^{a}$ For transitions where the asymmetry doubling is not resolved, both $K_{\mathrm{c}}=N$ and $K_{\mathrm{c}}=N-1$ components are assigned to the single observed line, so that these transitions have the proper statistical weight.

It is not possible to obtain a self-consistent set of combination differences using the integral quantum number $N(=J-S)$ to describe the rotational term values. In contrast, self-consistency is obtained using half-integral J values in the combination differences, identifying the first lines in the P and R branches as $P_{2.5}(2)$ and $R_{1.5}(1)$, where the notation is $\Delta J_{J^{\prime}}\left(N^{\prime \prime}\right)$. All the transitions in the $33,403 \mathrm{~cm}^{-1}$ branch have $J=N+1 / 2$ in both ground and excited states, i.e., they represent $F_{1} \leftarrow F_{1}$ components. Although it is perhaps not clear on inspection, the feature in Fig. 5a with a band head at $33,447 \mathrm{~cm}^{-1}$ corresponds to the $F_{2} \leftarrow \mathrm{~F}_{2}$ components of this same transition.

The combination difference analysis implies that the spin is coupled to the internuclear axis, following Hund's case (a) coupling. Nevertheless, the (bad) quantum number $N^{\prime \prime}$ is a useful label, since it takes on all integer values $N^{\prime \prime} \geq K_{a}^{\prime \prime}$. It follows, based on the identity of the first rotational transitions, that the band in Fig. 5a must be assigned as $K_{o}^{\prime}=1 \leftarrow K_{a}^{\prime \prime}=1$. The fact that we can observe any asymmetry doubling at all (given our limited laser resolution) for such a nearly prolate asymmetric top supports this assignment. since asymmetry doubling is strongest for $K_{a}=1$.

At this point we need to determine if the upper electronic state is linear or whether it, too, is a nearly prolate top analogous to the $\tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ state. As discussed by Herzberg, ${ }^{56}$ there are several characteristics which differentiate the rotational spectrum of a bent \leftarrow bent vs. a linear \leftarrow bent electronic transition. The two most important features in the HCCO spectrum are (a) the absence of a $K_{a}^{\prime}=0 \leftarrow K_{a}^{\prime \prime}=0$ sub-band at the vibrational band origin, and (b) the very large apparent spin-rotation splitting in the upper state, as evidenced by the $47 \mathrm{~cm}^{-1}$ separation between the $\mathrm{F}_{1} \leftarrow \mathrm{~F}_{1}$ and $\mathrm{F}_{2} \leftarrow \mathrm{~F}_{2}$
components in Fig. 5a. If the upper state were an asymmetric rotor, with an A rotational constant similar to the ground state, one would expect to see a strong $K_{a}^{\prime}=0 \leftarrow K_{a}^{\prime \prime}=0$ sub-band lying very close to the observed $K_{a}^{\prime}=1 \leftarrow K_{a}^{\prime \prime}=1$ sub-band in Figure 5. If, however, the upper state were a linear ${ }^{2} \Pi$ state, then $K_{a}{ }^{\prime} \equiv K^{\prime}=1$ for all rotational levels associated with the vibrational ground state, where $K^{\prime}=|\Lambda \pm l|$ is the projection of the electronic orbital and vibrational angular momenta on the symmetry axis, with $\Lambda=1$ and $l=0$ for the vibrational ground state. In other words, the $K_{a}^{\prime}=0 \leftarrow K_{a}^{\prime \prime}=0$ sub-band does not exist at the vibrational origin if the upper state is ${ }^{2} \Pi$.

Moreover, the large upper state "spin-rotation" splitting ($\approx 47 \mathrm{~cm}^{-1}$) observed in HCCO would be difficult to rationalize if the excited state were bent. As a point of reference, we note that in the vinoxy radical $\left(\mathrm{CH}_{2} \mathrm{CHO}\right) \widetilde{B}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right) \leftarrow \widetilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ transition, where both states are nearly prolate asymmetric tops, the spin-rotation splittings are 0.057 and $0.029 \mathrm{~cm}^{-1}$ for the upper and lower states, respectively, much smaller than in HCCO. ${ }^{57,58}$ In fact, for vinoxy the $\mathrm{F}_{1} / \mathrm{F}_{2}$ splittings are not even resolved in the $K_{a}^{\prime}=1 \leftarrow$ $K_{a}^{\prime \prime}=1$ transition using a laser bandwidth similar to ours $\left(0.06 \mathrm{~cm}^{-1}\right){ }^{57}$ However, if the excited state in HCCO were a linear ${ }^{2} \Pi$ state, the first-order orbital angular momentum would not be quenched, and the very large splitting between the F_{1} and F_{2} components is naturally explained as a spin-orbit splitting, $A_{s o}$, between the ${ }^{2} \Pi_{12}$ and ${ }^{2} \Pi_{32}$ levels in the upper state.

Based on this evidence, we analyze the spectra in Fig. 5 as transitions from $K_{a}{ }^{\prime \prime}=1$ levels of a slightly asymmetric rotor to the $K^{\prime}=1$ levels of a linear ${ }^{2} \Pi$ state. For the extraction of spectroscopic constants, we choose the same Hamiltonian as Unfried et al.: ${ }^{11}$

$$
\begin{equation*}
\mathbf{H}=\mathbf{H}_{\mathrm{rot}}+\mathbf{H}_{\mathrm{sr}} \tag{4}
\end{equation*}
$$

where $\mathbf{H}_{\mathrm{rot}}$ is a Watson S-reduced asymmetric rotor Hamiltonian, ${ }^{59}$ and $\mathbf{H}_{\mathbf{s r}}$ accounts for the spin-rotation interaction. ${ }^{60,61}$ The matrix elements for this Hamiltonian using a case(b) symmetric top basis are given in Table III. Due to the lower resolution of the present work compared to microwave spectroscopy, several of the higher order terms for the ground state are not required.

Once it is recognized that the band at $33,403 \mathrm{~cm}^{-1}$ corresponds to the $F_{1} \leftarrow F_{1}$ transitions, while the band at $33,445 \mathrm{~cm}^{-1}$ corresponds to the $F_{2} \leftarrow F_{2}$ transitions, quantum numbers can be assigned to all the unblended lines and the spectroscopic parameters extracted. The molecular constants are fit to the data using a non-linear least-squares method, with the results given in Tables II and IV. In all cases we fix the values of the ground state parameters to their microwave values, ${ }^{9}$ because a simultaneous fit of both electronic states gives ground state constants which agree with microwave values to within our statistical uncertainty. The least-squares fit provides our best values for the rotational constant B^{\prime}, the spin-rotation constants $\kappa^{\prime}\left(\equiv \varepsilon_{\mathrm{aa}}^{\prime}-\varepsilon_{\mathrm{bb}}^{\prime}\right)$ and $\mu^{\prime}\left(\equiv \varepsilon_{\mathrm{bb}}^{\prime}\right)$, and the band origin v_{0}, of the linear excited state. It should be noted that the line doubling in the P branch of the F_{1} component is entirely accounted for by the asymmetry doubling term $\left(B^{\prime \prime}-C^{\prime \prime}\right) / 4$ of the $\tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ state. We cannot discern any evidence for Λ-doubling in the excited state at our resolution.

matrix element	$\mathbf{H}_{\mathrm{rot}}=\left(\frac{B+C}{2}\right) \mathbf{N}^{2}-D_{N} \mathbf{N}^{4}+$	$\mathbf{H}_{\mathrm{sr}}=\frac{1}{2} \sum_{\alpha, \beta} \varepsilon_{\alpha \beta}\left(N_{\alpha} S_{\beta}+S_{\beta} N_{\alpha}\right)$
$\left(\frac{B-C}{4}+d_{1} \mathbf{N}^{2}\right)\left[\left(N_{+}\right)^{2}+\left(N_{-}\right)^{2}\right]$	$\frac{-\Gamma}{2 N(N+1)} \alpha_{s} K^{2}-\frac{\Gamma}{2} \beta_{s}$	
$\langle\mathrm{~N}, \mathrm{~K} \mid \mathrm{H} \pm \mathbf{N}, \mathrm{K}\rangle^{a}$	$\left(\frac{B+C}{2}\right) N(N+1)-D_{N}[N(N+1)]^{2}$	$-\frac{\Gamma \gamma_{s}}{2 N(N+1)} \delta$
$\langle\mathrm{N}-1, \mathrm{~K}\| \mathrm{H}\|\mathrm{N}, \mathrm{K}\rangle$	$\left\{\left(\frac{B-C}{4}\right)+d_{1} N(N+1)\right\} \delta$	$-\frac{K}{2 N} \sqrt{N^{2}-K^{2}} \alpha_{\mathrm{s}}$
$\langle\mathrm{N}-1, \mathrm{~K} \pm 2\| \mathrm{H}\|\mathrm{N}, \mathrm{K}\rangle$	--	$\mp \frac{\gamma_{\mathrm{s}}}{2 N} \sqrt{(N \mp K-1)(N \pm K+1)(N \mp K-2)(N \mp K)}$

Table III: Rotation and spin-rotation matrix elements
$\alpha_{\mathrm{s}}=\kappa=\left\{\varepsilon_{\mathrm{aa}}-\left(\varepsilon_{\mathrm{bb}}+\varepsilon_{\mathrm{cc}}\right) / 2\right\}$
$\beta_{\mathrm{s}}=\mu=\left(\varepsilon_{\mathrm{bb}}+\varepsilon_{\mathrm{cc}}\right) / 2$
$\gamma_{s}=\left(\varepsilon_{b b}-\varepsilon_{c c}\right) / 4$
$\delta=\sqrt{[N(N+1)-K(K \pm 1)][N(N+1)-(K \pm 1)(K \pm 2)]}$
${ }^{a}$ The rotational term $\{A-(B+C) / 2\} K^{2}$ has been subsumed into the band origin since we only detect $\Delta K=0$ transitions. In this case the linear molecule Hamiltonian is obtained from the asymmetric rotor Hamiltonian by setting $B=C$ and $\varepsilon_{\mathrm{bb}}=\varepsilon_{\mathrm{cc}}$.

A simulation based on the constants in Table IV is shown in the upper panel of Fig.
5a. The intensities of the simulated lines were obtained from the Hönl-London factors for a symmetric top. The best match with the data is found for a rotational temperature $T=$ 35 K . Taking into account the large rotational constant $A^{\prime \prime}=41.46 \mathrm{~cm}^{-1}$, only those ground state levels with $K_{a}^{\prime \prime}=0$ or 1 should be significantly populated in the radical beam, since $k_{\mathrm{b}} T=24 \mathrm{~cm}^{-1}$. The simulated stick spectrum is convoluted with a $0.08 \mathrm{~cm}^{-1}$ FWHM Gaussian lineshape representing the laser bandwidth with the etalon installed, and the agreement with the measured linewidths is quantitative.

By the same procedure, the band in Fig. $5 b$ with $\approx 1,900 \mathrm{~cm}^{-1}$ of vibrational energy can be assigned, the spectroscopic constants extracted, and the spectrum simulated, with the results given in Table IV. In this case only the spectrum of the F_{1} branch was obtained. The most striking feature of this band is the increase in linewidth to $\Delta v=0.16$ cm^{-1}, which is twice the instrumental resolution.

constant	$\tilde{X}\left({ }^{2} A^{\prime \prime}\right)^{a}$	$\tilde{B}\left({ }^{2} \Pi\right) 0_{0}^{0}$	$\widetilde{B}\left({ }^{2} \Pi\right) 1,900 \mathrm{~cm}^{-1}$ band
A	41.46	-	--
B	0.3634777	0.3242 ± 0.0002	0.3201 ± 0.0003
C	0.3591306	--	--
κ^{b}	-8.266	-46.76 ± 0.04	--
μ^{c}	-0.000489	-0.06 ± 0.03	--
ν_{0}	--	33423.92 ± 0.02	35332.82 ± 0.02^{d}

Table IV: Spectroscopic constants

[^4]In summary, the rotationally resolved PFY spectra of HCCO indicate that the excited electronic state is a linear ${ }^{2} \Pi$ state. Our results are entirely consistent with the molecular constants derived from microwave spectroscopy for the $\tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ state. A large a-axis spin-rotation constant, $\varepsilon_{\mathrm{aa}}^{\prime}=-46.82 \pm 0.05 \mathrm{~cm}^{-1}$, is observed; this is more naturally interpreted as the upper state spin-orbit splitting, $A_{\text {so }}=-46.82 \mathrm{~cm}^{-1}$. For the vibrationally excited rotational band in Fig. 5b, the linewidths are twice those of the origin transition.

The molecular structure of the excited ${ }^{2} \Pi$ state is determined by three parameters, the $\mathrm{H}-\mathrm{C}, \mathrm{C}-\mathrm{C}$, and $\mathrm{C}-\mathrm{O}$ bond lengths. However, only one structural parameter, the rotational constant B^{\prime}, has been measured. Therefore the determination of the experimental molecular structure requires measurements of two additional isotopomers. Unfortunately, preliminary PFY spectra of DCCO do not show dissociation below $33,900 \mathrm{~cm}^{-1}$, i.e., $500 \mathrm{~cm}^{-1}$ above the origin transition of HCCO. It appears that either DCCO does not dissociate at the origin, or that the rate of dissociation is so small as to preclude its observation in our experiment. The determination of an upper state geometry therefore must await further characterization of this electronic transition, possibly by laserinduced fluorescence (see below).

B. Vibrational analysis

The next step in characterizing the excited electronic state is an analysis of the vibrational structure in the PFY spectrum shown in Fig. 4. A four-atom linear molecule has seven vibrational degrees of freedom: three stretching modes of Σ symmetry and two doubly degenerate bending modes of Π symmetry. The extended nature of the PFY spectrum in Fig. 3 implies a large geometry change between ground and excited states,
with excitations in several modes. In particular one expects bending excitation since the ground state is non-linear while the excited state is linear.

Assuming that the band at $33,403 \mathrm{~cm}^{-1}$ belongs to the 0_{0}^{0} transition, the most important pattern to recognize in the spectrum of Fig. 4 is a $1,035 \mathrm{~cm}^{-1}$ progression of which the first member appears at $34,443 \mathrm{~cm}^{-1}$. If the entire PFY spectrum is displaced $1,035 \mathrm{~cm}^{-1}$ to the blue, a one-to-one correlation is found with the unshifted spectrum for almost all the peaks, which are combination bands between modes of lower frequency and this main progression. Of the three Σ vibrational modes, the highest frequency mode, v_{1}, is the CH stretch. The remaining two Σ modes can in a rough approximation be labeled as a higher frequency asymmetric CCO stretch $\left(v_{2}\right)$ and a lower frequency symmetric CCO stretch $\left(v_{3}\right)$. Since the asymmetric CCO stretch in the ground state has a frequency ${ }^{11}$ of $2,023 \mathrm{~cm}^{-1}$, the $1,035 \mathrm{~cm}^{-1}$ progression is assigned to v_{3}, the symmetric CCO stretch, in reasonable agreement with the harmonic value, $1097 \mathrm{~cm}^{-1}$, calculated by Szalay et al. ${ }^{38}$ The full 3_{0}^{n} progression is indicated in Fig. 4.

Given that v_{3} is the lowest frequency Σ mode, it follows that all the transitions below $34,400 \mathrm{~cm}^{-1}$ should arise from bending modes. Note that in a linear \leftarrow bent transition, odd as well as even quanta may be excited in the bending modes v_{4} and v_{5}. However, these transitions do not follow a simple harmonic pattern because the vibrational term values are perturbed through the Renner-Teller effect. ${ }^{62}$

As a consequence of this interaction, the degeneracy of the electronic potential can be lifted along either or both of the bending coordinates. The $a b$ initio work of Szalay ${ }^{38}$ predicts a large Renner splitting for only one of the two bending modes (v_{4}, the trans
bend) in the excited state of ketenyl. Therefore we have attempted a simulation of the PFY spectrum (Fig. 4), incorporating progressions in v_{3}, v_{4} and v_{5}, in which both the spinorbit and RT effects are incorporated ${ }^{63}$ with $\omega_{4}=416 \mathrm{~cm}^{-1}, \varepsilon_{\mathrm{RT}}=-0.36$ and $\omega_{5}=$ $365 \mathrm{~cm}^{-1}, \varepsilon_{\mathrm{RT}}=0$. The corresponding ab initio values are $\omega_{4}=328 \mathrm{~cm}^{-1}, \varepsilon_{\mathrm{RT}}=-0.573$ and $\omega_{5}=525 \mathrm{~cm}^{-1}, \varepsilon_{\mathrm{RT}}=-0.017$. Although some transitions are not predicted (most notably the peaks with $800-900 \mathrm{~cm}^{-1}$ excess energy), there is reasonable agreement between the data and this preliminary vibronic simulation.

C. Translational energy and angular distributions

In this section we discuss the assignment of the various features in the $P\left(E_{\mathrm{T}}\right)$ distributions. In our previous communication, we pointed out that using the heat of formation of HCCO determined in Ref. 25, the maximum translational energies associated with the low and high energy features in the $P\left(E_{\mathrm{T}}\right)$ distributions in Figs. 6a-c correspond to the maximum allowed values for channels $I I$ and I, respectively. On this basis, the feature at higher translational energy was assigned to the $\mathrm{CH}\left(X^{2} \Pi\right)+\mathrm{CO}$ channel, and the lower energy feature to the $\mathrm{CH}\left(a^{4} \Sigma^{-}\right)+\mathrm{CO}$ channel. Having made this assignment, we can determine the $\mathrm{C}-\mathrm{C}$ bond strength directly from the $P\left(E_{\mathrm{T}}\right)$ distributions, with the goal of obtaining an improved value of the bond strength and heat of formation of the radical.

The values of $E_{\mathrm{T}}^{\max }$, the highest observed E_{T} for each channel at each photon energy, are tabulated in Table V, along with $h v-E_{\mathrm{T}}^{\max }$. The relatively small variation of the latter quantity implies that the values for $E_{\mathrm{T}}^{\max }$ represent the translational energy when
both diatomics are produced in their ground vibration/rotation levels. The values of ΔH_{0} (at 0 K) for the $\mathrm{C}-\mathrm{C}$ bond cleavage are obtained by conservation of energy,

$$
\begin{equation*}
\Delta H_{0}=h v-E_{\mathrm{T}}^{\max } \tag{5}
\end{equation*}
$$

$h v \mathrm{~cm}^{-1}(\mathrm{eV})$	$E_{\mathrm{T}}^{\max }(I I)$	$h v-E_{\mathrm{T}}^{\max }(I I)(\mathrm{eV})$	$E_{\mathrm{T}}^{\max }(I)$	$h v-E_{\mathrm{T}}^{\max }(I)(\mathrm{eV})$			
$33,403(4.142)$	0.28 ± 0.03	3.86	1.08 ± 0.1	3.06			
$34,238(4.245)$	0.39 ± 0.03	3.85	1.16 ± 0.1	3.08			
$34,443(4.270)$	0.40 ± 0.03	3.87	1.21 ± 0.1	3.06			
$35,464(4.397)$	--	-	1.30 ± 0.1	3.10			
$37,400(4.637)$	-	-	1.54 ± 0.1	3.10			
$38,634(4.790)$	-	-	1.69 ± 0.1	3.10			
$39,438(4.890)$	-	-	1.93 ± 0.1	2.96			
$40,488(5.020)$	-	-	1.96 ± 0.1	3.06			
$42,547(5.275)$	-	-	2.17 ± 0.1	3.10			
$44,443(5.510)$	-	-	2.44 ± 0.1	3.07			
$47,831(5.930)$	--	-	2.74 ± 0.15	3.19			
mean values	--	$\left\langle h v-E_{\mathrm{T}}^{\max }(I I)\right\rangle$	--	$\left\langle h v-E_{\mathrm{T}}^{\max }(I)\right\rangle$			
	3.0 .03						3.1 ± 0.2

Table V: Maximum observed translational energy for each product channel
and are listed in Table V. In practice the value of ΔH_{0} for channel $I I$ is determined with greater precision than that for channel I because of the sharper cutoff at $E_{\mathrm{T}}^{\max }$ for channel II. One then obtains the heat of reaction for the spin-allowed process from $\Delta H_{0}(I)=$ $\Delta H_{0}(I I)-T_{0}\left[\mathrm{CH} \mathrm{a}\left({ }^{4} \Sigma^{\Sigma}\right)\right]$, where the last term is the doublet-quartet splitting in the CH radical of $0.742 \pm 0.008 \mathrm{eV} .^{64,65}$ Finally, we deconvolute the experimental resolution from the thermodynamic limit to obtain the final values given in the introduction for $\Delta H_{0}(I)$ and
$\Delta H_{0}(I I)$. The thresholds ($h v-\Delta H_{0}$) for both channels are indicated by the dashed lines at each photon energy in Fig. 6.

Together with $\Delta H_{f, 0}^{\circ}(\mathrm{CH})=6.149 \pm 0.013 \mathrm{eV}^{66,67}$ and $\Delta H_{f, 0}^{\circ}(\mathrm{CO})=-1.180 \pm$ $0.002 \mathrm{eV}^{67}$ we obtain $\Delta H_{f, 0}^{\circ}(\mathrm{HCCO})=1.83 \pm 0.03 \mathrm{eV}$. This value differs slightly from the heat of formation reported in our previous paper ${ }^{8}(1.82 \pm 0.03)$ due to the use of a more accurate value for $\Delta H_{f, 0}^{\circ}(\mathrm{CH})$ in the thermochemical cycle. From calculated vibrational frequencies of HCCO we obtain the $H_{298}^{\circ}-H_{0}^{\circ}$ value for ketenyl, which, together with tabulated values for CH and $\mathrm{CO},{ }^{67}$ gives $\Delta H_{f, 298}^{\circ}(\mathrm{HCCO})=1.83 \pm 0.03 \mathrm{eV}$. Note that the numerical value is the same as at absolute zero purely by coincidence. Our heat of formation is similar to the previous determination by photoelectron spectroscopy of $\Delta H_{f .298}^{\circ}(\mathrm{HCCO})=1.84 \pm 0.09 \mathrm{eV},{ }^{25}$ but disagrees with the value of $\Delta H_{f, 298}^{\circ}(\mathrm{HCCO})=$ $1.25 \pm 0.09 \mathrm{eV}$ obtained from mass spectrometric appearance potentials. ${ }^{68}$ The direct nature of the measurement of the $\mathrm{C}-\mathrm{C}$ bond strength in our experiment gives us confidence that the value reported in this paper represents the most accurate heat of formation for the ketenyl radical to date.

We next consider the broad peak at $E_{\mathrm{T}}=0.9 \mathrm{eV}$. At the lowest photon energies where this peak is seen (Figs. 6d,e), it must be due to spin-allowed products, as the spinforbidden channel is not accessible at this translational energy. At still higher excitation energy shown in Figs. 6f - k, one cannot make an unambiguous assignment, but because the peak remains at $E_{\mathrm{T}}=0.9 \mathrm{eV}$ it is likely that this feature still represents primarily spinallowed dissociation, which we assume in the following discussion.

Finally, we consider the detailed partitioning of available energy among the fragment modes. The vibrational term values for $\mathrm{CH} X\left({ }^{2} \Pi\right)(0.35 \mathrm{eV}), \mathrm{CH} a\left({ }^{4} \Sigma^{-}\right)(0.39$ $\mathrm{eV})$, and $\mathrm{CO}(0.27 \mathrm{eV})$ are significantly larger than our experimental translational energy resolution of 0.022 eV (for a 1 eV recoil), but no vibrational resolution in observed in the $P\left(E_{\mathrm{T}}\right)$ distributions. For the spin-allowed channel, many vibrational states of both CH and CO are allowed at all photon energies, but we cannot discern any pattern in the data which reflects the known vibrational spacings. This observation implies that the CH and/or CO fragments contain substantial amounts of rotational energy, so that the rotational envelope built on each vibrational threshold smoothes any vibrational information in the $P\left(E_{\mathrm{T}}\right)$ distributions. For the spin-forbidden channel, conservation of energy shows that both CH and CO are produced in their $v=0$ state in Fig. 6a, with the available energy partitioned between product translation and rotation. With increasing photon energy (Figs. 6b-c), $\mathrm{CO}(v=1)$ and even $\mathrm{CH} a\left({ }^{4} \Sigma^{-}\right)(v=1)$ become allowed, although our low energy cutoff of $E_{\mathrm{T}}=0.12 \mathrm{eV}$ prevents us from detecting these products.

V. Discussion

A. Spectroscopy of the ketenyl radical.

1. Nature of the excited electronic state.

In Section IV-A, the HCCO excited state probed in these experiments was assigned as a ${ }^{2} \Pi$ state. From the molecular orbital configurations given in Table I, the ultraviolet transition in HCCO corresponds to promotion of an electron from the lowest π_{x}
or π_{y} orbital (with zero nodes in the $x y$ plane) to the next pair of π_{x} / π_{y} orbitals (one node in the $x y$ plane). Because the zero-node π orbitals are strongly CO bonding, while the one-node π orbitals are somewhat CC bonding, but CO antibonding, the ultraviolet transition should result in the decrease in r_{CC} and increase in r_{CO} depicted in Fig. 1.

Our spectroscopic results can be compared to two $a b$ initio calculations that reached somewhat different conclusions about the geometrical nature of the electronically excited doublet states of HCCO. Using a multi-reference configuration interaction (MRCI) method, Kim and Shavitt ${ }^{34}$ predicted that the excited ${ }^{2} \Pi$ state is split by Renner-Teller coupling, resulting in a bent $\tilde{B}\left({ }^{2} \mathrm{~A}^{\prime}\right)$ state and a linear $\tilde{C}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)\left[{ }^{2} \Pi\right]$ state. The adiabatic energies for the $\tilde{B}\left({ }^{2} \mathrm{~A}^{\prime}\right) \leftarrow \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ and $\tilde{C}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)\left[{ }^{2} \Pi\right] \leftarrow \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ were predicted to occur at $33,000 \mathrm{~cm}^{-1}$ and $33,300 \mathrm{~cm}^{-1}$, respectively. More recently, Szalay et al. ${ }^{38}$ have performed calculations on the excited states of HCCO using the equation-of-motion ionization-potential coupled cluster singles and doubles (EOMIP-CCSD) method. They show for the ultraviolet states that the prediction of bent vs. linear equilibrium geometry for the lower of the two RT components is dependent on the choice of basis set. Even when a bent geometry was obtained it was found that the RT splitting between the bent and linear geometries was only a few cm^{-1}, implying a very flat potential near linearity. They conclude that the states labeled \widetilde{B} and \tilde{C} by Kim and Shavitt are not separate states, but share an identical linear equilibrium geometry and therefore propose the label $2\left(^{2} \Pi\right)$ for this electronic configuration.

Our experiment does not show evidence for a transition to a bent $\widetilde{B}\left({ }^{2} A^{\prime}\right)$ state. The $\widetilde{B}\left({ }^{2} \mathrm{~A}^{\prime}\right) \leftarrow \widetilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ transition would be identified by: (i) rotational structure
characteristic of a perpendicular band, ${ }^{56}$ i.e., c-type $\Delta K= \pm 1$ transitions, and (ii) a negative value of the anisotropy parameter, $\beta \leq 0 .^{51}$ Therefore, in our previous communication, ${ }^{8}$ we assigned the band in Figure 3 to the $\tilde{C}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)\left[{ }^{2} \Pi\right] \leftarrow \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ transition based on the work of Kim and Shavitt.

However, from the analysis in section IV-B, we are able to fit many of the vibronic bands assuming that the upper state is a ${ }^{2} \Pi$ state with spin-orbit coupling and a Renner parameter $\varepsilon_{\mathrm{RT}}=0.36$. A Renner parameter less than unity denotes that both components of the ${ }^{2} \Pi$ state are linear, in agreement with the calculation by Szalay et al. Therefore we have elected to change the spectroscopic label of the excited state we access, and propose the designation $\widetilde{B}\left({ }^{2} \Pi\right)$ which describes the potential in Fig. 1 as the second distinct electronically excited state of HCCO . The definitive experiment to determine the shape of the excited potential energy surfaces would be a fully rotationally resolved study of the low-lying vibronic levels in the UV spectrum. The experimental values of the Renner parameter then allows one to map out the electronic potential along the bending coordinates. We comment below on the possibilities for such an investigation.

2. Comparison with previous experimental investigations.

None of the results presented here on the ultraviolet spectroscopy of the HCCO radical are consistent with the absorption spectrum attributed to HCCO by Krishnamachari and Venkatasubramanian. ${ }^{26}$ They assigned two band origins at 27,262 cm^{-1} and $29,989 \mathrm{~cm}^{-1}$ respectively. Based on gross rotational structure, they proposed for the lower energy band that at least one of the two combining states has a linear geometry,
while the second band is assigned to a combination of two non-linear states. The energetics of these absorption bands are clearly not in agreement with our data.

Another explanation of the absorption results can be attempted by analogy with the isoelectronic NCO radical. The first two band systems for NCO are the $\tilde{A}\left({ }^{2} \Sigma^{+}\right) \leftarrow \widetilde{X}\left({ }^{2} \Pi\right)^{69}$ and the $\widetilde{B}\left({ }^{2} \Pi\right) \leftarrow \widetilde{X}\left({ }^{2} \Pi\right)^{70}$ bands at 22,754 and $31,753 \mathrm{~cm}^{-1}$, respectively. The band we assign in the PFY spectrum of HCCO corresponds to the $\widetilde{B}\left({ }^{2} \Pi\right) \leftarrow \tilde{X}\left({ }^{2} \Pi\right)$ transition in NCO, leading one to question whether the spectra observed by Krishnamachari and Venkatasubramanian to the red of our spectrum might be due to a band analogous to the $\tilde{A}\left({ }^{2} \Sigma^{+}\right) \leftarrow \tilde{X}\left({ }^{2} \Pi\right)$ transition of NCO. However, ab initio calculations ${ }^{37}$ predict the lowest ${ }^{2} \Sigma^{+}$state of HCCO at $53,000 \pm 4,000 \mathrm{~cm}^{-1}$ above the ground state, much too high to account for the bands observed in absorption. Therefore, we can offer no explanation for the bands observed by Krishnamachari and Venkatasubramanian. It is likely that the carrier of these bands is not the HCCO radical. We emphasize again that our experiments are performed on a mass-selected beam of radicals, ensuring that the species we probe is indeed HCCO .

3. Prospects for further rovibronic spectroscopy

The rotationally-resolved bands shown in Fig. 5 suggest that it may be possible to study HCCO with laser-induced fluorescence (LIF) now that an HCCO electronic transition has been identified. This requires that predissociation is sufficiently slow so that fluorescence is competitive. We can gain some insight to the excited state lifetimes from the observed linewidths in Fig. 5. The two significant contributions to our lineshapes are a Gaussian component due to the laser bandwidth and a Lorentzian component due to
predissociation induced lifetime broadening. The Lorentzian width can be deconvoluted from the instrumental width to give a rough lower limit on the lifetime of the 0_{0}^{0} transition (characterized by instrumentally narrow lines) of $\tau \geq 300 \mathrm{ps}$. The other rotational band (Fig. 5b) shows a decrease in the excited state lifetime to $\tau \approx 90 \mathrm{ps}$ at an energy $1,900 \mathrm{~cm}^{-1}$ above the origin.

It is certainly possible that $\Phi_{\text {Diss }} \ll 1$ at the origin, as it is for the vinoxy radical. ${ }^{12}$ If so, the lifetime might be significantly longer than 300 ps , increasing the likelihood of detecting HCCO by laser induced fluorescence. If the 0_{0}^{0} transition does fluoresce, the rotational structure of higher vibrational levels can be probed by fluorescence depletion spectroscopy, as recently applied to the vinoxy ${ }^{71}$ and methoxy ${ }^{72}\left(\mathrm{CH}_{3} \mathrm{O}\right)$ radicals. If the fluorescence is simply too weak for LIF-based experiments, cavity ringdown absoption spectroscopy or non-linear techniques such as four-wave mixing spectroscopy ${ }^{73}$ would still be possible. In any case, the PFY spectra presented here give an accurate survey for the pursuit of further spectroscopic studies of ketenyl, and advance the possibility of developing an ultraviolet diagnostic for HCCO detection in combustion research.

B. Photodissociation dynamics

From the potential energy surfaces of the ketenyl radical as shown in Fig. 1, there are at least two paths by which the electronically excited radicals might decay to products. After excitation to the $\widetilde{B}\left({ }^{2} \Pi\right.$) state, intersystem crossing (ISC) may occur to the HCCO $\tilde{a}\left({ }^{4} \mathrm{~A}^{\prime \prime}\right)$ surface, followed by spin-forbidden dissociation. Calculations by Hu et al. ${ }^{36}$ predict that the quartet surface correlates to channel $I I$ products with either no exit barrier
or at most a small barrier no larger than 0.1 eV , although a recent calculation by Yarkony finds a 0.16 eV barrier. ${ }^{40}$

A second decay pathway for the initially excited radicals is by internal conversion (IC) to the ground electronic state followed by dissociation to spin-allowed channel I products. The translational energy distributions show that ISC dominates at the three lowest photon energies, but that IC to channel I dominates at higher photon energies. Dissociation proceeding via IC appears to have two components, one leading to the peak at $E_{\mathrm{T}}=0.9 \mathrm{eV}$ corresponding to spin-allowed dissociation, which does not shift in translational energy for a wide range of excitation energies, and the broad feature underneath this peak which appears to extend across the entire $P\left(E_{\mathrm{T}}\right)$ distribution, up to the value of $E_{\mathrm{T}}^{\max }$ for the spin-allowed channel. An overall mechanism should be able to explain the competition between spin-allowed and spin-forbidden dissociation as well as the two components of the spin-allowed process.

The competition between ISC and IC has been considered at length in the context of radiationless transitions from the first excited singlet state (the S_{1} state) in aromatic molecules. ${ }^{74}$ Each rate is determined primarily by the product of an electronic matrix element between the initial and final electronic state and a series of Franck-Condon factors between the initial and final vibrational levels. The electronic matrix element for IC is generally substantially larger than for ISC because the spin multiplicity is unchanged. However, in aromatic molecules, the geometries of S_{1} and T_{1} states are quite similar, resulting in considerably higher Franck-Condon factors for ISC than for IC. For naphthalene, the resulting competition between these two compensating effects is that ISC and IC are equally important near the origin of the $S_{1} \leftarrow S_{0}$ transition, but IC becomes
progressively more important with increasing vibrational excitation in the S_{1} states as the Franck-Condon factors for IC increase more rapidly than for ISC. ${ }^{75}$

In HCCO, the energetic ordering of electronic states is analogous to that in aromatic molecules, with $\widetilde{B}\left({ }^{2} \Pi\right)>\widetilde{a}\left({ }^{4} A^{\prime \prime}\right)>\tilde{X}\left({ }^{2} A^{\prime \prime}\right)$. However, the Franck-Condon overlap between the vibrational levels of the three states is more difficult to asses due to large geometry differences between these states. The competition between ISC and IC appears to be similar to that in aromatics but more extreme; in HCCO there is very little IC near the $\widetilde{B} \leftarrow \widetilde{X}$ origin, and IC rapidly becomes dominant with increasing excitation in the $\widetilde{B}\left({ }^{2} \Pi\right)$ state. It is possible that the relatively low energy intersection between the $\widetilde{a}\left({ }^{4} \mathrm{~A}^{\prime \prime}\right)$ and $\widetilde{B}\left({ }^{2} \Pi\right)$ surfaces, calculated to lie 2.4 eV above the \widetilde{B} state minimum (Section III-C), results in a particularly large ISC electronic matrix element. In any case, it is likely that the same general principles govern the relative rates of ISC and IC in HCCO as in larger aromatic molecules. It remains to be seen whether a reasonable set of electronic matrix elements and Franck-Condon factors can reproduce the experimental trends, and further characterization of the relevant potential energy surfaces is required.

We next consider the dynamics of the spin-allowed channel. Based on the potential energy surfaces in Figure 1, one might expect internal conversion to the ground state to be followed by statistical dissociation to products. Our ab initio calculations and the $\mathrm{CH}(v=1)+\mathrm{CO}$ vibrational relaxation results of Herbert et al. ${ }^{24}$ indicate that there is no barrier to dissociation on the ground state surface, so that the translational energy distribution may be predicted using phase space theory ${ }^{76}$ or, at a simpler level, a prior distribution. ${ }^{77}$ In fact, the broad feature in the higher photon energy $P\left(E_{\mathrm{T}}\right)$ distributions
(Figs. 6f-k) can be satisfactorily reproduced by a prior distribution, as shown explicitly in Fig. 6 j, where the prior distribution

$$
\begin{equation*}
P^{0}\left(E_{\mathrm{T}}\right) \propto \sum_{v_{\mathrm{co}}, v_{\mathrm{CH}}=0}^{v_{\mathrm{max}} ; E_{\mathrm{v}}<E_{\mathrm{vam}}-E_{\mathrm{T}}} \sqrt{E_{\mathrm{T}}\left(v_{\mathrm{CO}}, v_{\mathrm{CH}}\right)} \tag{6}
\end{equation*}
$$

is shown superimposed on the experimental $P\left(E_{\mathrm{T}}\right)$ distribution at $h v=44,443 \mathrm{~cm}^{-1}$. The prior distribution takes this simple form because both fragments are diatomic molecules, whose classical rotational density of states, $\rho\left(E_{\mathrm{ROT}}\right)$, is independent of energy.

The second feature associated with the spin-allowed channel, the peak at $E_{\mathrm{T}}=$ 0.9 eV , is more problematic. This peak does not shift much with excitation energy, and therefore resembles what would be expected for statistical dissociation over a barrier. In such cases, the most probable energy in the $P\left(E_{\mathrm{T}}\right)$ distribution tends to occur at some fraction of the exit barrier height and depends little on the excitation energy. ${ }^{78}$ This peak therefore does not appear to result from statistical dissociation on the barrierless ground state surface. For reasons presented in section III-C, we also expect no barrier to dissociation on the low-lying $\widetilde{A}^{2} A^{\prime}\left({ }^{2} \Pi\right)$ state.

Although it is true that in a diabatic picture HCCO cannot correlate to $\mathrm{CH} X\left({ }^{2} \Pi\right)+$ CO $X\left({ }^{1} \Sigma^{+}\right)$because ketenyl has seven π electrons, while the products have only five π electrons, the experiments of Herbert et al. ${ }^{24}$ and the $a b$ initio results presented here argue strongly in favor of the adiabatic picture of the doublet states shown in Fig. 1. Because only two molecular states of HCCO can correlate to ground state products, both of which are barrierless potential wells in the adiabatic picture, it is difficult to rationalize any potential energy surface with a barrier which leads to these products.

One explanation for the peak at 0.9 eV is that it results from non-statistical dissociation dynamics on the ground state potential energy surface. From a classical point of view, this could happen if some of the ground state molecules formed by internal conversion from the $\tilde{B}^{2} \Pi$ state follow trajectories that are not trapped in the potential energy well on the $\widetilde{X}^{2} A^{\prime \prime}$ state long enough for energy randomization to occur. ${ }^{79}$ Given that the well depth is 3.14 eV , the total energy is $4.5-5.5 \mathrm{eV}$ in the range where this peak is most prominent, and the fact that HCCO is a relatively small molecule, it is possible that some non-statistical dynamics occur on the ground state potential energy surface.

There is some support for such a non-statistical process from the $\beta\left(E_{\mathrm{T}}\right)$ distributions in Figure 6. The distributions at several excitation energies show a local maximum in the anisotropy near $E_{\mathrm{T}}=0.9 \mathrm{eV}$, the same energy where the peak in the $P\left(E_{\mathrm{T}}\right)$ distribution occurs. The greater anisotropy associated with this peak suggests that it arises from a more rapid dissociation process, consistent with the hypothesis that it results from trajectories not trapped in the potential energy well. We also note that the presence of a well on the PES does not always result in energy randomization. For example, in our recent study of the photodissociation of the vinoxy radical $\left(\mathrm{CH}_{2} \mathrm{CHO}\right)$, the $P\left(E_{\mathrm{T}}\right)$ distributions for the $\mathrm{CH}_{3}+\mathrm{CO}$ channel show that randomization in the potential well corresponding to the $\mathrm{CH}_{3} \mathrm{CO}$ configuration does not occur. Although this well is considerably shallower (0.75 eV) than the HCCO ground state well, the vinoxy results provide more indirect support for our hypothesis.

An alternative explanation of the peak in question is that there could be more than one excited electronic state of HCCO contributing to the PFY spectrum in Fig. 3. This spectrum shows two intense, broad features centered around 41,000 and $42,000 \mathrm{~cm}^{-1}$; this
is the range of excitation energy where the peak at 0.9 eV is most intense. However, the next excited state above the \widetilde{B} state which could contribute to the PFY spectrum is the ${ }^{2} \Sigma^{+}$state, calculated to occur ${ }^{37}$ at $53,000 \mathrm{~cm}^{-1}$. We would then observe a perpendicular transition to this state from the ground state, resulting in a negative anisotropy parameter, which disagrees with the observed $\beta\left(E_{\mathrm{T}}\right)$ distributions in which $\beta\left(E_{\mathrm{T}}\right)$ increases near 0.9 eV .

Although much of the above discussion has focused on the $P\left(E_{\mathrm{T}}\right)$ distributions, the trends in the average anisotropies $\langle\beta\rangle$ as a function of photon energy provide additional insight into the photodissociation dynamics. As discussed above, the positive values of $\langle\beta\rangle$ at all photon energies are consistent with our assignment of the PFY spectrum to a parallel transition. For a linear molecule such as the \widetilde{B} state of HCCO , the classical treatment of dissociation predicts that for a parallel transition, $0.5 \leq \beta \leq 2$, with the lower and upper limits corresponding to complete rotational averaging and instantaneous dissociation, respectively. ${ }^{80}$ Fig. 6 shows that $\langle\beta\rangle$ increases with photon energy up to a value of 0.79 at $40,488 \mathrm{~cm}^{-1}$, but decreases as the photon energy is raised further. The rising value of $\langle\beta\rangle$ implies that the excited state lifetime decreases between the band origin and $40,488 \mathrm{~cm}^{-1}$, a trend consistent with the disappearance of resolved structure in the PFY spectrum.

The maximum values of β observed are considerably less than 2 , which at first glance might suggest rotational averaging at all photon energies. However, the extraction of quantitative lifetimes from the measured anisotropies is not straightforward. ${ }^{80} \mathrm{HCCO}$ in its excited electronic state is not a rigid linear molecule because the bending frequencies
are low, and the electronic transition results in considerable bending excitation, as demonstrated by Fig. 4. Furthermore, the $P\left(E_{T}\right)$ distributions discussed in section IV-C imply considerable product rotational excitation, a signature of non-linear HCCO geometries prior to dissociation. Even if dissociation occurs on the timescale of a vibrational period (i.e. without rotational averaging), such large amplitude bending motions will introduce a distribution of angles between the transition dipole and asymptotic recoil vectors, resulting in a reduced value of the anisotropy parameter.

Therefore, two effects will have a counteracting influence on the anisotropy: $\langle\beta\rangle$ rises as the dissociation lifetime decreases, but falls due to increasing bending amplitude. The rise and subsequent fall in $\langle\beta\rangle$ mentioned earlier may indicate that the increase in dissociation rate with photon energy reaches a plateau around $40,000 \mathrm{~cm}^{-1}$, while increasing bending amplitude (and the concomitant reduction in $\langle\beta\rangle$) continues unabated to $48,000 \mathrm{~cm}^{-1}$. Overall, the trends in β imply that there is rotational averaging at low photon energies, consistent with the rotational resolution seen in some bands in the PFY spectrum, but the relationship between dissociative lifetime and anisotropy are more complicated at those photon energies where β is largest (Figs. 6e-i).

Finally, we compare the photodissociation dynamics of HCCO with two close relatives, the vinoxy radical, $\mathrm{CH}_{2} \mathrm{CHO}$, and the methoxy radical, $\mathrm{CH}_{3} \mathrm{O}$. All three radicals undergo predissociation, but the dissociation dynamics subsequent to electronic excitation are quite different. The $P\left(E_{\mathrm{T}}\right)$ distributions for $\mathrm{CH}_{3} \mathrm{O} \rightarrow \mathrm{CH}_{3}+\mathrm{O}$ show that the $\tilde{A}\left({ }^{2} A_{1}\right)$ excited state of $\mathrm{CH}_{3} \mathrm{O}$ is predissociated to these products by one or more repulsive states, and that no internal conversion to the ground state occurs. ${ }^{13}$ In contrast, the $\mathrm{CH}_{2} \mathrm{CHO}$
radical appears to dissociate entirely by internal conversion to the ground state, followed by statistical dissociation to $\mathrm{CH}_{3}+\mathrm{CO}$ and $\mathrm{H}+\mathrm{CH}_{2} \mathrm{CO}$ products. ${ }^{12}$ The HCCO radical falls between these extremes, with some dissociation occurring on the $\widetilde{a}\left({ }^{4} \mathrm{~A}^{\prime \prime}\right)$ excited state, yielding $\mathrm{CH}\left(a^{4} \Sigma^{-}\right)+\mathrm{CO}$ products, some occurring statistically on the ground state, yielding a feature in the $P\left(E_{\mathrm{T}}\right)$ distribution that can be fit by a prior distribution, and some possibly occurring by a non-statistical process on the ground state surface. A detailed understanding of these trends will require a more thorough investigation of the ground and excited states of these radicals. This is likely to occur through a combination of high resolution spectroscopy of the predissociating transitions and $a b$ initio calculations of the surfaces involved in the dissociation dynamics.

VI. Conclusions

We have investigated the spectroscopy and photodissociation dynamics of the $\widetilde{B}\left({ }^{2} I\right) \leftarrow \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ transition of HCCO , utilizing the method of fast beam photofragment translational spectroscopy on a mass-selected, internally cold sample of ketenyl radicals. Rotational analysis of the photofragment yield spectrum shows that the excited state is linear, with ${ }^{2} \Pi$ symmetry. Linewidth measurements give a lower bound on the lifetime of the 0_{0}^{0} transition of $\tau \geq 300 \mathrm{ps}$. A limited vibrational analysis allows us to assign the symmetric CCO stretch, $\omega_{3}=1,035 \mathrm{~cm}^{-1}$. It is also clear from the complications in the PFY spectrum that at least one of the bending modes in the excited state is split by the Renner-Teller interaction.

We also probe the photodissociation dynamics of the HCCO radical by measuring the translational energy and angular distributions of the $\mathrm{CH}+\mathrm{CO}$ fragments. The spinforbidden product channel, producing $\mathrm{CH} a\left(\Sigma^{4}\right)+\mathrm{CO}$, dominates for excitation energies within the first $1,000 \mathrm{~cm}^{-1}$ above the origin. These products are produced primarily in their ground vibrational states. The spin-allowed channel, $\mathrm{CH} X\left({ }^{2} \Pi\right)+\mathrm{CO}$, appears to dominate at all higher excitation energies, and it is clear that these products emerge with substantial vibrational and rotational excitation.

We propose a three part mechanism for the decay of $\widetilde{B}\left({ }^{2} \Pi\right) \mathrm{HCCO}$. Intersystem crossing to the $\tilde{a}\left({ }^{4} \mathrm{~A}^{\prime \prime}\right)$ surface via spin-orbit coupling gives rise to spin-forbidden products at low photon energies. Dissociation proceeds on this excited state surface to yield $\mathrm{CH} a\left({ }^{4} \Sigma^{-}\right)+\mathrm{CO}$. Internal conversion to the $\tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ state, which correlates without a barrier to $\mathrm{CH} X\left({ }^{2} \mathrm{II}\right)+\mathrm{CO}$, is followed by two distinct decay mechanisms. We propose that the first component is statistical in nature, as implied by reasonable agreement between the broad feature extending across the entire $P\left(E_{\mathrm{T}}\right)$ distribution and a prior distribution. A second, non-statistical component of ground state dissociation is required to described the feature at $E_{\mathrm{T}}=0.9 \mathrm{eV}$ in the higher energy $P\left(E_{\mathrm{T}}\right)$ distribution. The dominance of the internal conversion process for excess energies $2,000 \mathrm{~cm}^{-1}$ and higher is an indication that the Franck-Condon overlap between the \widetilde{B} and \widetilde{X} states increases faster with photon energy than the overlap between the \tilde{B} and \tilde{a} states. The development of an accurate potential energy surface for HCCO and subsequent reaction dynamics calculations will be required to test this proposed mechanism.

In relation to past experiments on the ketenyl radical, we find no agreement between our spectroscopic work and the absorption spectrum attributed to HCCO by Krishnamachari and Venkatasubramanian. ${ }^{26}$ There have been many unsuccessful attempts at detection of an ultraviolet transition in HCCO by laser induced fluorescence. The difficulty in attaining an LIF spectrum of ketenyl likely arises from three main factors: (i) contamination species present which obscure signal from HCCO , (ii) the origin transition of ketenyl's closest relative, $\mathrm{CH}_{2} \mathrm{CHO}\left(v_{0}=28,784.09 \mathrm{~cm}^{-1}\right),{ }^{57}$ along with all previous experimental data, significantly underestimate the frequency of the origin transition in $\mathrm{HCCO}\left(v_{0}=33,423.92 \mathrm{~cm}^{-1}\right)$, and (iii) the quantum yield for fluorescence is likely very small over most of the $\tilde{B}\left({ }^{2} \Pi\right) \leftarrow \tilde{X}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ band. With the aid of the results presented in this paper, only the last factor remains an issue. However, our bound on the 0_{0}^{0} fluorescence lifetime indicates that LIF detection of this transition may be possible, which would represent an important advance in our ability to directly probe HCCO in combustion environments.

Acknowledgments

This research is supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098. I acknowledge helpful conversations with Professors Robert Curl, Richard Dixon, Yasuki Endo, and Donald Levy, and thank Professors Isaiah Shavitt and Peter Szalay for sharing their results prior to publication.

References

${ }^{1}$ J. Warnatz, Combustion Chemistry, ed. W. C. Gardiner (Springer, Berlin, 1984), p. 288.
${ }^{2}$ J. V. Michael and A. F. Wagner, J. Phys. Chem. 94, 2453 (1990).
${ }^{3}$ W. Boullart and J. Peeters, J. Phys. Chem. 96, 9810 (1992).
${ }^{4}$ J. Peeters, I. Langhans, and W. Boullart, Int. J. Chem. Kinet. 26, 869 (1994).
${ }^{5}$ C. K. Westbrook and F. L. Dryer, Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, 1981), p. 749.
${ }^{6}$ K. Brezinsky, Prog. Energy Combust. Sci. 12, 1 (1986).
${ }^{7}$ J. A. Miller, R. J. Kee, and C. K. Brook, Ann. Rev. Phys. Chem. 41, 245 (1990).
${ }^{8}$ D. H. Mordaunt, D. L. Osborn, H. Choi, R. T. Bise, and D. M. Neumark, J. Chem. Phys. 105, 6078 (1996).
${ }^{9}$ Y. Endo and E. Hirota, J. Chem. Phys. 86, 4319 (1987); Y. Ohshima and Y. Endo, J. Mol. Spec. 159, 458 (1993).
${ }^{10}$ H. E. Radford, $21^{\text {st }}$ International Symposium on Free Radicals, Williamsburg, MA, USA (1991).
${ }^{11}$ K. G. Unfried, G. P. Glass, and R. F. Curl, Chem. Phys. Lett. 177, 33 (1991); K. G. Unfried and R. F. Curl, J. Mol. Spec. 150, 86 (1991).
${ }^{12}$ D. L. Osborn, H. Choi, D. H. Mordaunt, R. T. Bise, D. M. Neumark, and C. M. Rohlfing, J. Chem. Phys. 106, (1996); D. L. Osborn, H. Choi, and D. M. Neumark, Adv. Chem. Phys. (in press).
${ }^{13}$ D. L. Osborn, D. J. Leahy, E. M. Ross, and D. M. Neumark, Chem. Phys. Lett. 235, 484 (1995); D. L. Osborn, D. J. Leahy, and D. M. Neumark (in preparation).
${ }^{14}$ I. T. N. Jones and K. D. Bayes, J. Am. Chem. Soc. 94, 6869 (1972).
${ }^{15}$ W. Boullart, M. T. Nguyen, and J. Peeters, J. Phys. Chem. 98, 8036 (1994).
${ }^{16}$ J. Peeters, I. Langhans, W. Boullart, M. T. Nguyen, and Katia Devriendt, J. Phys. Chem. 98, 11988 (1994).
${ }^{17}$ J. Peeters, W. Boullart, and Katia Devriendt, J. Phys. Chem. 99, 3583 (1995).
${ }^{18}$ D. G. Williamson and K. D. Bayes, J. Phys. Chem. 73, 1232 (1969).
${ }^{19}$ A. M. Schmolmer, P. M. Chu, and Y. T. Lee, J. Chem. Phys. 91, 5365 (1989).
${ }^{20}$ F. Temps, H. Gg. Wagner, and M. Wolf, Z. Phys. Chem. 176, 27 (1992).
${ }^{21}$ K. K. Murray, K. G. Unfried, G. P. Glass, and R. F. Curl, Chem. Phys. Lett. 192, 512 (1992).
${ }^{22}$ C. Vinckier, M. Schaekers, and J. Peeters, J. Phys. Chem. 89, 508 (1985).
${ }^{23}$ C. A. Taatjes, private communication.
${ }^{24}$ L. B. Herbert, I. R. Sims, I. W. M. Smith, D. W. A. Stewart, A. C. Symonds, A. Canosa, and B. R. Rowe, J. Phys. Chem. 100, 14928 (1996).
${ }^{25}$ J. M. Oakes, M. E. Jones, V. M. Bierbaum, and G. B. Ellison, J. Phys. Chem. 87, 4810 (1983).
${ }^{26}$ S. L. N. G. Krishnamachari and R. Venkatasubramanian, Pramana 23, 321 (1984).
${ }^{27}$ G. Inoue and M. Suzuki, J. Chem. Phys. 84, 3709 (1986).
${ }^{28}$ M. A. Hanratty and H. H. Nelson, J. Chem. Phys. 92, 814 (1990); G. Inoue and M. Suzuki, J. Chem. Phys. 92, 815 (1990).
${ }^{29}$ M. E. Jacox and W. B. Olson, J. Chem. Phys. 86, 3134 (1987).
${ }^{30}$ L. B. Harding, J. Phys. Chem. 85, 10 (1981).
${ }^{31}$ D. L. Cooper, Astrophys. J. 265, 808 (1983).
${ }^{32}$ L. B. Harding and A. F. Wagner, J. Phys. Chem. 90, 2974 (1986).
${ }^{33}$ J. D. Goddard, Chem. Phys. Lett. 154, 387 (1989).
${ }^{34}$ K. Kim and I. Shavitt, private communication.
${ }^{35}$ P. G. Szalay, J. F. Stanton, and R. J. Bartlett, Chem. Phys. Lett. 193, 573 (1992).
${ }^{36}$ C. H. Hu, H. F. Schaefer, Z. Hou, and K. D. Bayes, J. Am. Chem. Soc. 115, 6904 (1993).
${ }^{37}$ M. T. Nguyen, W. Boullart, and J. Peeters, J. Phys. Chem. 98, 8030 (1994).
${ }^{38}$ P. G. Szalay, G. Fogarasi, and L. Nemes, (in press).
${ }^{39}$ P. G. Szalay and J. P. Blaudeau, (in press).
${ }^{40}$ D. Yarkony, J. Phys. Chem. 100, 17439 (1996).
${ }^{41}$ C. P. Fenimore and G. W. Jones, J. Chem. Phys. 39, 1514 (1963).
${ }^{42}$ V. Zengin, B. J. Persson, K. M. Strong, and R. E. Continetti, J. Chem. Phys. 105, 1996.
${ }^{43}$ H. Choi, D. H. Mordaunt, R. T. Bise, and D. M. Neumark, (in preparation).
${ }^{44}$ R. E. Continetti, D. R. Cyr, D. L. Osborn, D. J. Leahy, and D. M. Neumark, J. Chem. Phys. 99, 2616 (1993).
${ }^{45}$ R. E. Continetti, D. R. Cyr, R. B. Metz, and D. M. Neumark, Chem. Phys. Lett. 182, 406, 1991.
${ }^{46}$ D. L. Osborn, D. J. Leahy, D. R. Cyr, and D. M. Neumark, J. Chem. Phys. 104, 5026 (1996).
${ }^{47}$ J. M. B. Bakker, J. Phys. E 6, 785 (1973); 7, 364 (1974).
${ }^{48}$ D. J. Leahy, D. L. Osborn, D. R. Cyr, and D. M. Neumark, J. Chem. Phys. 103, 2495 (1995).
${ }^{49}$ D. P. de Bruijn and J. Los, Rev. Sci. Instrum. 53, 1020 (1982).
${ }^{50}$ S. Gerstenkorn and P. Luc, Atlas du Spectre d'Absorption de la Molecule d'Iode (Centre National de la Recherche Scientifique, Paris, 1978).
${ }^{51}$ R. N. Zare, Mol. Photochem. 4, 1 (1972).
${ }^{52}$ D. Hegarty and M. A. Robb, Mol. Phys. 381795 (1979); R. H. E. Eade and M. A. Robb, Chem. Phys. Lett. 83362 (1981).
${ }^{53}$ GAUSSIAN 94, Revision C.3, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakzzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1995.
${ }^{54}$ L. B. Herbert, I. R. Sims, I. W. M. Smith, D. W. A. Stewart, A. C. Symonds, A. Canosa, and B. R. Rowe, J. Phys. Chem. 100, 14928 (1996).
${ }^{55}$ J. A. Pople, M. Head-Gordon, and K. Raghavachari, J. Chem. Phys. 87, 5968 (1987).
${ }^{56}$ G. Herzberg, Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand, Princeton, 1966).
${ }^{57}$ L. F. DiMauro, M. Heaven, and T. A. Miller, J. Chem. Phys., 81, 2339 (1984).
${ }^{58}$ Y. Endo, S. Saito, and E. Hirota, J. Chem. Phys. 83, 2026 (1985); Y. Endo and E. Hirota, J. Mol. Spec. 127, 535 (1988).
${ }^{59}$ J. K. G. Watson, Vibrational Spectra and Structure, edited by J. R. Durig (Elsevier, Amsterdam, 1977), Vol. 6, pp. 2-89.
${ }^{60}$ W. T. Raynes, J. Chem. Phys. 41, 3020 (1964).
${ }^{61}$ E. Hirota, High Resolution Spectroscopy of Transient Molecules (Springer, Heidelberg, 1985).
${ }^{62}$ R. Renner, Z. Physik 92, 172 (1934).
${ }^{63}$ J. A. Pople, Mol. Phys. 3, 16 (1960); J. T. Hougen, J. Chem. Phys. 36, 519 (1962).
${ }^{64}$ S. G. Lias et. al., J. Chem. Phys. Ref. Data 17, Suppl. No. 1 (1988)
${ }^{65}$ A. Kasdan, E. Herbst, and W. C. Lineberger, Chem. Phys. Lett. 31, 78 (1975).
${ }^{66}$ M. Danielsson, P. Erman, A. Hishikawa, M. Larsson, E. Rachlew-Källne, and G. Sundström, J. Chem. Phys. 98, 9405 (1993).
${ }^{67}$ M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, 3rd ed., J. Chem. Phys. Ref. Data 14, (1985), Suppl. No. 1.
${ }^{68}$ J. L. Holmes and F. P. Lossing, Int. J. Mass. Spectrom. Ion Process. 58, 113 (1984).
${ }^{69}$ P. S. H. Bolman, J. M. Brown, A. Carrington, I. Kopp, and D. A. Ramsay, Proc. R. Soc. Lond. A. 343, 17 (1975).
${ }^{70}$ R. N. Dixon, M. J. Trenouth, and C. M. Western, Mol. Phys. 60, 779 (1987).
${ }^{71}$ T. Gejo, M. Takayanagi, T. Kono, and I. Hanazaki, Chem. Letters 2065 (1993).
${ }^{72}$ D. E. Powers and T. A. Miller, (in preparation)
${ }^{73}$ S. Williams, J. D. Tobiason, J. R. Dunlop, and E. A. Rohlfing, J. Chem. Phys. 102, 8342 (1995), and references therein.
${ }^{74}$ P. Avouris, W. M. Gelbart, and M. A. El-Sayed, Chem. Rev. 77, 793 (1977); Radiationless Transitions, S. H. Lin, ed. (Academic Press, New York, 1980).
${ }^{75}$ G. S. Beddard, G. R. Fleming, O. L. J. Gijzeman, and G. Porter, Chem. Phys. Lett. 18, 481 (1973).
${ }^{76}$ J. C. Light, Discuss. Faraday Soc. 44, 14 (1977).
${ }^{77}$ R. D. Levine and J. L. Kinsey, in Atom-Molecule Collision Theory-A Guide for the Experimentalist, edited by R. B. Bernstein (Plenum, New York, 1979).
${ }^{78}$ A. M. Wodtke, E. J. Hintsa, and Y. T. Lee, J. Phys. Chem. 90, 3549 (1986) ; X. Zhao, R. E. Continetti, A. Yokoyama, E. J. Hintsa, and Y. T. Lee, J. Chem. Phys. 91, 4118 (1989).
${ }^{79}$ M. Stumpf, A. J. Dobbyn, D. H. Mordaunt, H. M. Keller, R. Scbinke, H. J. Werner, and K. Yamashita, Faraday Disc. 102, (in press).
${ }^{80}$ C. Jonah, J. Chem. Phys. 55, 1915 (1971); S.-C. Yang and R. Bersohn, J. Chem. Phys. 61, 4400 (1974).

6

 Photodissociation spectroscopy and dynamics

 Photodissociation spectroscopy and dynamics of the $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$anion

I. Introduction

In recent years, photodissociation experiments have been performed on a considerable number of neutral molecules and positive ions. These experiments have proved invaluable in understanding the electronic spectroscopy and dissociation dynamics of these species. In contrast, there have been relatively few photodissociation studies on negative ions. Anion photodissociation is problematic because, in most negative ions, bond dissociation energies are higher than the threshold for electron detachment, so that the dissociative anion state one might hope to access is generally embedded in the neutral $+e^{-}$continuum. Nonetheless, photodissociation studies have been carried out on open shell anions such as Cl_{2}^{-1} or $\mathrm{CO}_{3}^{-2,3}$ for which the smallest bond dissociation energy is less than the electron binding energy, and on species such as $\mathrm{O}_{3}{ }^{-4}$ and $\mathrm{O}_{4}{ }^{-5,6}$ in which photodissociation occurs at energies well above the threshold for electron detachment. In this paper, we use a fast ion beam experiment to investigate the photodissociation spectroscopy and dynamics of the $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$anion, an open-shell species with a high electron binding energy.

The work presented here is motivated by recent results on the gas phase spectroscopy and dynamics of the $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$anion. In a photoelectron spectroscopy study, Posey and Johnson ${ }^{7}$ demonstrated the existence of three distinct isomers of $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$which
can each be prepared selectively in the gas phase by electron impact on a supersonic expansion of different gases. They characterized these isomers as: (I) $\mathrm{O}_{2} \cdot \mathrm{~N}_{2}$, from O_{2} seeded in N_{2}; (II) $\mathrm{NNO}_{2}{ }^{-}$, from neat $\mathrm{N}_{2} \mathrm{O}$; and (III) $\mathrm{NO} \cdot \mathrm{NO}$, from NO seeded in argon. Their results indicated that isomer (I) is a weakly bound cluster, while the other two isomers are more strongly bound species. Their proposed $C_{2 v}$ structure for isomer (II) is supported by subsequent $a b$ initio calculations, ${ }^{8}$ which also suggest that isomer (III) has a trans-ONNO ${ }^{-}$structure. Furthermore, several matrix isolation studies ${ }^{9,10,11,12}$ have identified a $\mathrm{C}_{2 v}$ structure consistent with isomer (II), and a species of the form ONNO^{-} which most likely represents isomer (III).

The existence of multiple isomers is particularly interesting in light of isotopic labeling experiments on the ion-molecule reaction ${ }^{13,14}$

$$
\begin{equation*}
\mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O} \rightarrow \mathrm{NO}^{-}+\mathrm{NO} \quad \Delta H_{0}=-0.15 \pm 0.01 \mathrm{eV}^{15} \tag{1}
\end{equation*}
$$

These studies show that reaction occurs through O^{-}attack at both the terminal and central N atoms on $\mathrm{N}_{2} \mathrm{O}$. These results, when combined with the photoelectron spectra, imply that the reaction mechanism involves passing through two complexes corresponding to isomers (II) and (III), $\mathrm{NNO}_{2}{ }^{-}$and ONNO^{-}.

Posey and Johnson found that at 532 nm and 355 nm , the only peak in the photoelectron spectrum of the $\mathrm{NNO}_{2}{ }^{-}$isomer is from the photodetachment of O^{-}atoms. Thus, at these wavelengths, photodissociation to $\mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}$ occurs rather than photodetachment of the parent $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$anion. More recently, Arnold and Neumark ${ }^{16}$ have measured the photoelectron spectrum of this isomer at 266 nm and 213 nm . They found
that at these higher photon energies, photodetachment of $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$does occur, populating several previously unknown electronic states of neutral $\mathrm{N}_{2} \mathrm{O}_{2}$. From this work alone, however, one cannot determine at what energy the observed $\mathrm{N}_{2} \mathrm{O}_{2}$ states lie relative to the various asymptotic channels $\left(\mathrm{O}+\mathrm{N}_{2} \mathrm{O}, \mathrm{N}+\mathrm{NO}_{2}, \mathrm{NO}+\mathrm{NO}\right.$, etc.). One of the goals of this study is to answer this question by determining the dissociation energy of the $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$ anion.

In this paper, we present recent work on the excited state spectroscopy and photodissociation dynamics of the $C_{2 v}$ isomer (II), which will henceforth be referred to simply as $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$. Using the technique of fast beam translational spectroscopy, we have measured the relative photodissociation cross section of $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$as a function of wavelength, and have performed more detailed dynamical measurements at selected wavelengths. We observe fragmentation to two channels, $\mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}$ and $\mathrm{NO}^{-}+\mathrm{NO}$, and have measured kinetic energy and angular distributions for both channels. These measurements yield bond dissociation energies and a wealth of information concerning the detailed photodissociation mechanism. The interpretation of our results is aided by $a b$ initio calculations on the ground and excited states of $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$which are also reported here.

Section II of this paper describes the experimental apparatus used in this work, including a newly developed pulsed discharge negative ion source used in these and other experiments in our laboratory. Section III details the experimental data and the results of $a b$ initio molecular orbital calculations. Section IV contains analysis of the results while Section V discusses the mechanism for dissociation and the potential energy surfaces that mediate this process.

II. Experimental

A. Fast Beam Translational Spectrometer

The fast beam translational spectrometer used in these experiments was designed to study the photodissociation of neutral free radicals generated by photodetachment of a mass-selected anion beam, and has been described in detail elsewhere. ${ }^{17,18}$ The anion photodissociation experiment described in this paper is somewhat simpler, as only one laser is required. The photodissociation of $\mathrm{O}_{4}{ }^{-}$using a similar instrument has recently been

Figure 1: The fast ion beam translational spectrometer: 1) ion source region, 2) mass selection and ion optics, 3) dissociation laser port, 4) time- and position-sensitive MCP detector. A more complete explanation of the apparatus, which was designed for photodissociation of neutral free radicals, can be found in Refs. 17 \& 18.
reported by Continetti et. al. ${ }^{6}$ The experimental apparatus is shown in Figure 1 and is briefly described as follows.

A pulsed supersonic expansion of $10 \% \mathrm{~N}_{2} \mathrm{O}$ in argon is either crossed with a 1 keV electron beam or subjected to a pulsed electric discharge to form an internally cold beam of $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$. The pulsed discharge negative ion source developed in our laboratory was mentioned in a previous investigation, ${ }^{19}$ and a full description will be given in Section IIB.

Anions formed in the source are accelerated to a laboratory energy of 8 keV , separated according to mass by a collinear beam modulation time-of-flight mass spectrometer, ${ }^{20}$ axially compressed with a pulsed electric field, and slightly focused with an einzel lens. The dissociation laser, an excimer-pumped dye laser polarized perpendicular to the ion beam direction, is fired at the appropriate time to intersect only ions of mass 60 . Photofragments which recoil out of the parent ion beam are detected with high efficiency using microchannel plate detectors located either 1 or 2 meters from the photodissociation laser.

Two types of experiments are performed to characterize the photodissociation of $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$. First, the total flux of photofragments is detected as a function of laser wavelength, mapping out the total dissociation cross section. In the second type of experiment the laser is operated at a fixed wavelength and the dissociation dynamics are investigated. For each dissociation event, the two photofragments are detected in coincidence. The position of both photofragments on the detector face and the time difference between their arrival are simultaneously recorded. From this experiment we obtain three important quantities that describe the photodissociation: product mass ratios, translational energy distributions, and angular distributions. The masses of the product fragments for each dissociation event can be determined by conservation of momentum in the center-of-mass frame. After correcting for the finite geometric acceptance of the detector, the center-of-mass recoil energy and recoil angle (with respect to the electric vector of the polarized laser) are analytically determined for each event. ${ }^{18}$ The calibration of the detector by photodissociation of the Schumann-Runge bands in O_{2} is discussed in detail elsewhere. ${ }^{21}$ We record approximately one pair of fragments every 30 laser shots. A
complete data set consisting of approximately 30,000 coincident events can be collected in 3 to 5 hours. The energy resolution under the conditions in these studies is 25 meV .

The dynamics experiment requires that both fragments be detected. However, the front of the detector is biased at a high negative potential, such that only neutral fragments can be detected. Although the dissociation of $\mathrm{N}_{2} \mathrm{O}_{2}^{-}$yields an ion and a neutral, the experimental conditions are such that the anion fragment is typically neutralized prior to reaching the detector. This fragment can be either photodetached by an additional photon from the dissociation laser, e.g.

$$
\begin{equation*}
\mathrm{O}^{-}+h v \rightarrow \mathrm{O}+e^{-} \quad ; \quad \mathrm{NO}^{-}(v=0)+h v \rightarrow \mathrm{NO}+e^{-} \tag{2}
\end{equation*}
$$

or it can autodetach, since vibrationally excited NO will lose an electron via ${ }^{22}$

$$
\begin{equation*}
\mathrm{NO}^{-}(v>0) \rightarrow \mathrm{NO}+e^{-} . \tag{3}
\end{equation*}
$$

(The electron affinity of NO is only 0.024 eV). Hence, photodissociation of $\mathrm{N}_{2} \mathrm{O}_{2}^{-}$ followed by (2) or (3) results in two neutral fragments, enabling us to perform the coincidence experiment. We emphasize that even though only neutral particles are detected, this experiment nevertheless probes the dynamics of ion dissociation, because the velocity vector of the nascent ionic fragment is not affected to any appreciable degree by the loss of an electron.

B. Pulsed Discharge Negative Ion Source

One of the more successful pulsed negative ion sources developed in recent years is the design of Johnson et al., ${ }^{23}$ in which a pulsed molecular beam is crossed by a continuous beam of high energy ($\approx 1,000 \mathrm{eV}$) electrons. In this source, slow secondary electrons generated by ionization initiate ion-molecule chemistry which can be used to
produce a wide variety of negative ions and negative ion clusters. A disadvantage of this source is that the secondary electrons are thermalized rapidly in the high number density of the pulsed free jet, so that only those processes which can be initiated by very low energy (1 eV) electrons can occur. Thus, the production of F^{-}from NF_{3} is very efficient, because this dissociative attachment process occurs for near zero energy electrons. ${ }^{24}$ On the other hand, the production of OH^{-}from $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{CH}_{3} \mathrm{O}^{-}$from $\mathrm{CH}_{3} \mathrm{OH}$ does not work well in this source because dissociative attachment requires higher electron energies ($>5 \mathrm{eV}$). An ion source in which higher energy processes can be efficiently driven is clearly desirable. To this end, we have developed a pulsed electric discharge negative ion source that is straightforward to build and use.

One can find examples of many pulsed supersonic expansion discharge sources in the literature for the production of neutral free radicals and cations. To our knowledge, the only published examples of negative ion production by these methods are given by Bondytey et. al., ${ }^{25}$ and Meiwes-Broer et. al. ${ }^{26}$ Our pulsed discharge negative ion source is similar in design to that used by Ohshima and Endo ${ }^{27}$ for production of internally cold transient neutral species.

Figure 2 shows the details of the design. The faceplate (2) of the pulsed valve (1) is separated from the cathode (4) by a Teflon insulator (3). Discharge occurs through the channel of a second insulator (5), to the anode (7). For flexibility, nozzles (6) of various inner diameter, shape, and composition can be inserted into the anode to enhance or suppress clustering and/or cooling of the negative ions. Teflon screws secure the entire assembly to the pulsed valve faceplate. We have used the discharge source with either a
piezoelectric pulsed valve of the type developed by Trickl ${ }^{28}$ or a General Valve solenoid valve.

The increasing channel diameter along the gas flow direction proved to be the crucial element in attaining intense, internally cold negative ion beams. An advantage of this design is that ion formation occurs within the flow channel,
before the expansion, maximizing the number of ion-neutral collisions that occur during the free jet expansion into the source chamber.

A pulse of ≈-500 to -700 V is generated by a MOSFET switch ${ }^{29}$ and applied to the cathode (3). The pulse is typically $15 \mu \mathrm{~s}$ in width, a fraction of the $150 \mu \mathrm{~s}$ gas pulse. The stability of the ion beam is increased if a very weak $(<1 \mu \mathrm{~A})$ electron beam intersects the gas flow as it emerges from the nozzle. This effect is most likely due to creation of positive ions which move against the gas flow towards the negatively charged cathode, acting as seeds to begin breakdown of the gas pulse. Ion stability and intensity is also increased when the discharge pulse comes very near the beginning of the gas pulse.

The duration of the discharge is 1 to $8 \mu \mathrm{~s}$. The current through the discharge is followed by monitoring the voltage at the cathode both before and during breakdown of the gas. Typical discharge currents range from 5 to 30 mA depending on the composition of the gas mixture and the value of a ballast resistor (typically $7 \mathrm{k} \Omega$) in series with the cathode. As the current through the discharge is increased, the voltage across the discharge increases only slightly, indicating that the discharge is essentially of the "normal glow" variety. ${ }^{30}$

Most gaseous precursor molecules are diluted to 1% to 10% concentration with a carrier gas (e.g. Ar, Ne , or O_{2}) and expanded with a backing pressure of $2-8 \mathrm{~atm}$. For liquid precursors the carrier gas is bubbled through the liquid. Substantial rearrangement of the precursor molecules is often observed. For example, a discharge of neon bubbled through methanol produces not only $\mathrm{CH}_{3} \mathrm{O}^{-}$, but also $\mathrm{C}_{2}^{-}, \mathrm{C}_{2} \mathrm{H}^{-}$, and $\mathrm{C}_{2} \mathrm{H}_{2}{ }^{-}$. Despite the high energy environment in which ions are formed, their internal degrees of freedom can still be effectively cooled in the supersonic expansion. Photofragment translational spectroscopy of predissociation from the O_{2} Schumann-Runge band shows that an $\mathrm{O}_{2}{ }^{-}$ rotational temperature of $\approx 50 \mathrm{~K}$ can be attained. ${ }^{31}$ For the case of $\mathrm{CH}_{3} \mathrm{O}^{-}$produced in a discharge, photoelectron spectroscopy shows that 99% of these ions are in their vibrational ground state. These temperatures are as cold or colder than ions produced with the electron-gun source in our laboratory. In summary, we have found that the pulsed discharge negative ion source combines many of the strengths of other available sources with some significant new advantages. The source requires very little maintenance and is easily built at modest expense.

III. Results

A. Experimental Data

Figure 3 shows the total dissociation cross section spectrum of $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$from 525 580 nm , normalized to dissociation laser power. The broad, partially resolved features in this spectrum are reproducible, although the finer structure ($<1 \mathrm{~nm}$) is not. The peak

Figure 3: Total photodissociation cross section spectrum of $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$. Intensity is normalized to dissociation laser power. Laser step size is 0.25 nm .
spacings range from ≈ 150 to $500 \mathrm{~cm}^{-1}$, and are presumably due to excitation of multiple vibrational modes in the upper electronic state.

The main information we obtain about $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$photodissociation is derived from dissociation dynamics data acquired at three wavelengths; 570,532 , and 500 nm . Although wavelength resolved cross section data were not obtained below 525 nm , the cross section appears to be higher at 500 nm than at 532 nm . The first result from this
dynamics data is the photofragment mass spectrum, shown in Figure 4 for 532 nm dissociation. It is immediately seen that there are two product channels occurring at this wavelength:

$$
\begin{align*}
\mathrm{N}_{2} \mathrm{O}_{2}^{-}+h \nu & \rightarrow \mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O} \text { (channel 1) } \tag{4}\\
& \rightarrow \mathrm{NO}^{-}+\mathrm{NO}(\text { channel } 2) \tag{5}
\end{align*}
$$

with similar product mass spectra obtained at 500 and 570 nm .
For each channel, the joint translational energy and angular distribution is given by ${ }^{18,32}$

$$
\begin{equation*}
P\left(E_{\mathrm{T}}, \theta\right) \propto P\left(E_{\mathrm{T}}\right) \cdot\left(1+\beta\left(E_{\mathrm{T}}\right) P_{2}(\cos \theta)\right. \tag{6}
\end{equation*}
$$

Here, E_{T} is the transla-

Figure 4: Product mass spectrum at 532 nm as a function of laser fluence. The central peak corresponds to the channel (2) fragments, $\mathrm{NO}^{-}+\mathrm{NO}$. The other two peaks correspond to the channel (1) fragments, $\mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}$. Laser fluences are $(-) 3.2 \mathrm{~J} / \mathrm{cm}^{2},(--) 1.6 \mathrm{~J} / \mathrm{cm}^{2}$.
tional energy release, θ is the angle between the photofragment recoil velocity vector and the laser polarization, and β is the anisotropy parameter. Although β can depend on the translational energy, no such dependence was observed here.

Figure 5: Translational energy distributions $P\left(E_{\mathrm{T}}\right)$ at three excitation energies: (a) - (c): $\mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}$. (d) - (e): NO + NO. The solid lines connect the data points, which have error bars $(\pm 1 \sigma)$ on every fourth point. The dashed line is the prior distribution discussed in the text. The arrows denote the maximum energy available to translation for each photon energy/product channel combination.

Figure 5 shows the translational energy release distribution $P\left(E_{\mathrm{T}}\right)$ for both channels at each wavelength. Statistical error bars $(\pm 1 \sigma)$ are drawn for every fourth data point. All three translational energy distributions for channel 1 (Figures 5a-c) are maximal at the lowest translational energies we can detect, decreasing steadily towards
higher E_{T}. For the data at 570 nm in Figure 5 c , which is replotted as Figure 6, vibrational structure is apparent in the $\mathrm{P}\left(E_{\mathrm{T}}\right)$ distribution. The observed spacing corresponds to excitation of the bending mode $\left(\omega_{2}=588 \mathrm{~cm}^{-1}\right)$ in the $\mathrm{N}_{2} \mathrm{O}$ fragment. ${ }^{37}$ This structure is less evident as the photon energy is increased in figures 5 b and 5 a . For the $\mathrm{NO}^{-}+\mathrm{NO}$

Figure 6: Translational energy distribution for $\mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}$ at 570 nm . Triangles denote the experimental data, the solid line is the empirical fit [peak heights given by α_{n} of eqn. (10)] assuming bending excitation accounts for all $\mathrm{N}_{2} \mathrm{O}$ vibrational excitation. A vibrational comb is shown for the v_{2} bending mode progression in the $\mathrm{N}_{2} \mathrm{O}$ fragment. The dashed line is the prior distribution given by eqn. (11).
channel in figures $5 \mathrm{~d}-5 \mathrm{f}$, no vibrational structure is evident. Unlike channel (1), the most probable translational energy becomes larger as the photon energy is increased.

For the $\mathrm{NO}^{-}+\mathrm{NO}$ channel, the angular distributions are isotropic $(\beta=0)$ at all three wavelengths. For $\mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}$, the angular distributions are slightly anisotropic: $\beta(570 \mathrm{~nm})=-0.15 \pm 0.2, \beta(532 \mathrm{~nm})=-0.3 \pm 0.2$, and $\beta(500 \mathrm{~nm})=-0.6 \pm 0.3$. The anisotropy becomes more negative with increasing excitation energy. The uncertainty in the anisotropy parameter is a combination of a well-defined statistical error and an estimated systematic error which reflects the aberrations in our detector response for low translational energies. The values of the anisotropy parameter are related to both the symmetry and the lifetime of the excited anion states.

Because the data in this paper use the newly developed pulsed discharge source to produce $\mathrm{N}_{2} \mathrm{O}_{2}^{-}$, it is important to characterize the ions in this beam by comparing their photoelectron spectra, shown in Figure 7, to that obtained by Arnold ${ }^{16}$ using an electron gun source. We present this data (from a separate apparatus in our laboratory) because photoelectron spectroscopy is a sensitive probe of ion source conditions, as is evident from the work of Posey and Johnson ${ }^{7}$ described earlier. The well-resolved vibrational structure seen in Figure 7 at low electron kinetic energy ($<1.2 \mathrm{eV}$) arises from bound neutral states of $\mathrm{N}_{2} \mathrm{O}_{2}\left(C_{2 v}\right)$. The weak electron signal from 1.3 to 2.2 eV is from photodetachment of isomer (III), ONNO^{-}, based on comparison with the spectra obtained when ions are produced from NO seeded in argon. ${ }^{33}$ This isomer is not present under the gentler conditions of an electron gun ion source as used in references 7 and 16

The photon energies used to dissociate $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$are indicated by arrows in Figure 7, demonstrating that direct photodetachment of the $C_{2 v}$ isomer is not possible at these energies. However, the photoelectron spectrum in Figure 7 does raise the possibility that the $\mathrm{NO}^{-}+\mathrm{NO}$ product channel comes from photodissociation of the small amount of the

Figure 7: 266 nm photoelectron spectrum of $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$using the pulsed discharge source. The sharp features at 1.13 eV and below are due to the $\left(\mathrm{C}_{2 \mathrm{v}}\right) \mathrm{N}_{2} \mathrm{O}_{2}$ neutral. The signal from $1.3-2.2 \mathrm{eV}$ arises from an impurity of the ONNO° isomer (see text). The energies corresponding to the three dissociation wavelengths used in the present study are also shown.
ONNO^{-}isomer produced in the pulsed discharge source. To examine this possibility we have performed the same photodissociation dynamics experiments described in this section using an electron gun ion source. The $\mathrm{NO}^{-}+$NO photofragments are still observed in similar amounts as when $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$is produced in the pulsed discharge source, confirming that this is a primary product channel of $\left(C_{2 v}\right) \mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$photodissociation. However, the $P\left(E_{\mathrm{T}}\right)$ distributions also show that $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$produced by the electron gun ion source is not as efficiently cooled in the supersonic expansion; for example, no vibrational structure is apparent in the $\mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O} P\left(E_{\mathrm{T}}\right)$ at 570 nm . For this reason we present data exclusively from the pulsed discharge source in this paper.

B. Ab Initio Calculations

The product state information presented above is a direct result of the potential energy surfaces involved in the dissociation of $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$. In order to gain more insight into the complicated electronic structure of the $\mathrm{N}_{2} \mathrm{O}_{2}^{-}$system, we have performed ab initio molecular orbital calculations using the GAUSSIAN 92 package of programs. ${ }^{34}$ In the recent work of Arnold and Neumark, ${ }^{16}$ the ground state of $\mathrm{N}_{2} \mathrm{O}_{2}$ was assigned as ${ }^{2} \mathrm{~B}_{2}$ with the orbital occupation ($\ldots 4 \mathrm{~b}_{2}{ }^{2} 2 \mathrm{~b}_{1}{ }^{2} 8 \mathrm{a}_{1}{ }^{2} 1 \mathrm{a}_{2}{ }^{2} 5 \mathrm{~b}_{2}{ }^{1}$), based on ab initio calculations (UHF and MP2/6-31+G*) and comparison with the isoelectronic species NO_{3} and FCO_{2}. We have extended these calculations to include the lowest excited states of each spatial symmetry within the $C_{2 v}$ and C_{s} point groups. The results of the $C_{2 v}$ calculations are summarized in Table I.

Optimized geometries and vibrational frequencies were obtained at the UHF/ $6-31+G^{*}$ level of theory. Five unique electronic states are found, ${ }^{35}$ which, in order of increasing energy, are ${ }^{2} \mathrm{~B}_{2},{ }^{2} \mathrm{~A}^{\prime \prime},{ }^{2} \mathrm{~B}_{1},{ }^{2} \mathrm{~A}_{2}$, and ${ }^{2} \mathrm{~A}_{1}$ states. All of these configurations, with the exception of ${ }^{2} \mathrm{~A}_{2}$, are bound along all vibrational coordinates. At the UHF level, the ${ }^{2} \mathrm{~A}_{2}$ state is unbound along the $\mathrm{v}_{4}\left(\mathrm{NO}_{2}\right.$ asymmetric stretch $)$ normal coordinate.

When electron correlation is taken into account at the MP2/6-31+G* level of theory, geometry optimizations reveal that the highest energy ${ }^{2} \mathrm{~A}_{1}$ state has no stationary point within $C_{2 v}$. In addition, the SCF wavefunction for the ${ }^{2} \mathrm{~A}^{\prime \prime}\left(C_{s}\right)$ state is no longer convergent after a few steps in the (MP2 energy gradient) geometry optimization. For this reason we discuss no other calculations at C_{s} geometries. At the MP2 level, therefore, the only electronic states which have stationary points along all coordinates are the ground state, ${ }^{2} \mathrm{~B}_{2}$, and the first two excited states ${ }^{2} \mathrm{~B}_{1}$, and ${ }^{2} \mathrm{~A}_{2}$. Frequency calculations at these

$\tilde{X}\left({ }^{2} \mathrm{~B}_{2}\right)$	$\begin{aligned} & \hline \begin{array}{l} \text { Energy }^{b} \\ \text { (Hartrees) } \end{array} \end{aligned}$	$\left\langle S^{2}\right\rangle$	T_{e} (eV)	R_{NN} (Å)	R_{NO} (\AA)	$\begin{array}{r} \hline \text { LNN } \\ 0 \end{array}$	$\begin{aligned} & \omega_{1}\left(a_{1}\right) \\ & \text { (NN str.) } \end{aligned}$	$\begin{aligned} & \hline \omega_{2}\left(a_{1}\right) \\ & (\mathrm{NO} \text { str. }) \end{aligned}$	$\begin{aligned} & \omega_{3}\left(\mathrm{a}_{1}\right) \\ & \left(\mathrm{NO}_{2}\right. \\ & \text { bend }) \\ & \hline \end{aligned}$	$\begin{aligned} & \omega_{4}\left(\mathrm{~b}_{2}\right) \\ & \left(\mathrm{NO}_{2}\right. \\ & \text { a. s. }) \\ & \hline \end{aligned}$	$\begin{aligned} & \omega_{5}\left(\mathrm{~b}_{2}\right) \\ & \left(\mathrm{N}_{2} \mathrm{O}\right. \\ & \text { a. b. }) \\ & \hline \end{aligned}$	$\begin{aligned} & \omega_{6}\left(b_{1}\right) \\ & \text { (um- } \\ & \text { brella) } \end{aligned}$
UHF	-258.494495	0.920	0.0	1.253	1.253	119.2	1582	1086	692	1434	654	836
MP2	-259.165 961	0.926	0.0	1.270	1.253	120.3	1411	1241	679	1538	609	998
QCISD	-259.190 341	1.022	0.0	1.267	1.296	120.0
QCISD(T) ${ }^{\text {a }}$	-259.215 226	1.022	0.0	...			\ldots	\ldots	...
$\widetilde{A}\left({ }^{2} \mathrm{~B}_{1}\right)$												
UHF	-258.438 789	0.778	1.52	1.352	1.220	120.1	1029	1404	735	1659	783	837
MP2	-259.124 816	0.797	1.12	1.354	1.274	120.6	990	1219	687	1389	800	713
QCISD	-259.132 971	0.798	1.56	1.345	1.274	120.7
$\underline{\mathrm{QCISD}}(\mathrm{T})^{\text {a }}$	-259.161 024	0.798	1.47					.	\ldots	\ldots		
$\widetilde{B}\left({ }^{2} \mathrm{~A}_{2}\right)$												
UHF	-258.407 553	1.404	2.36	1.255	1.320	126.6	1364	1018	707	1668i	685	470
MP2	-259.066 859	1.161	2.70	1.131	1.479	130.3	2177	613	472	1559i	666	716
QCISD	-259.101678	1.306	2.41	1.194	1.417	128.7
$\mathrm{QCISD}(\mathrm{T})^{a}$	-259.133 796	1.306	2.24	
$\tilde{C}\left({ }^{2} \mathrm{~A}_{2}\right)$												
UHF	-258.325 524	0.882	4.60	1.205	1.347	122.3	1113	884	659	2264	655	689

Table I: Ab initio results: Optimized geometries, energies, and vibrational frequencies (frequencies in cm^{-1}).
${ }_{b}^{a} \mathrm{QCISD}(\mathrm{T})$ energies evaluated at the $\mathrm{QCISD} / 6-31+\mathrm{G}^{*}$ geometry
${ }^{b}$ All calculations use the standard $6-31+\mathrm{G}^{*}$ basis set
stationary points reveal that, just as at the UHF level, the first two states are bound along all coordinates, while the ${ }^{2} \mathrm{~A}_{2}$ state has one imaginary frequency. In order to treat electron correlation more rigorously, geometries for the lowest three states were further optimized at the QCISD/6-31+G* level of theory, with a single point QCISD(T) calculation at this geometry. No vibrational frequencies were calculated at this level of theory. Finally, vertical excitation energies from the ground state are also shown at each level of theory in

Table II.

State	UHF	MP2	MP4SDTQ	QCISD	QCISD(T)
$\tilde{C}\left({ }^{2} \mathrm{~A}_{2}\right)$	4.90	3.90	4.11	3.78	3.52
$\tilde{B}\left({ }^{2} \mathrm{~A}_{2}\right)$	3.07	3.86	4.08	3.30	3.24
$\tilde{A}\left({ }^{2} \mathrm{~B}_{1}\right)$	1.72	1.46	1.40	1.67	1.59
$\tilde{X}\left({ }^{2} \mathrm{~B}_{2}\right)$	0	0.	0.	0.	0.

Table II: Vertical excitation energies in eV

The results in Table I show marked differences in the structures of the \tilde{X}, \tilde{A}, and \widetilde{B} states. The ground
state structure $\left(R_{\mathrm{NN}}=1.27 \AA, R_{\mathrm{NO}}=1.30 \AA\right.$) is best described as an $\mathrm{N}-\mathrm{N}$ double bond $\left(R_{\mathrm{NN}}=1.254 \AA\right.$ in $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}_{2}{ }^{36}\right)$ and an $\mathrm{N}-\mathrm{O}$ distance intermediate between single $\left(R_{\mathrm{NO}}=\right.$ $1.398 \AA$ in $\mathrm{CH}_{3} \mathrm{O}-\mathrm{NO}$) and double ($R_{\mathrm{NO}}=1.212 \AA$ in HNO) bond character. In the $\tilde{A}\left({ }^{2} \mathrm{~B}_{1}\right)$ state, the $\mathrm{N}-\mathrm{N}$ bond length increases to $R_{\mathrm{NN}}=1.35 \AA$, indicating that it too is now intermediate between single ($R_{\mathrm{NN}}=1.447 \AA$ in $\mathrm{N}_{2} \mathrm{H}_{4}$) and double bond character. The N-O bond length is very similar to that of the ground state, differing by only $0.02 \AA$. In both the \tilde{X} and \tilde{A} states the geometries are not strongly dependent on the level of theory. In the $\widetilde{B}\left({ }^{2} \mathrm{~A}_{2}\right)$ state, the bond lengths and bond angles change quite drastically when electron correlation is included with the MP2 or QCISD methods. The QCISD optimized geometry ($R_{\mathrm{NN}}=1.19 \AA, R_{\mathrm{NO}}=1.42 \AA$) is characterized by an $\mathrm{N}-\mathrm{N}$ bond
intermediate between double and triple ($R_{\mathrm{NN}}=1.094 \AA$ in N_{2}), and an $\mathrm{N}-\mathrm{O}$ bond significantly longer than a typical single bond. It is also useful to compare these bond lengths with that of the photofragments observed in this study. In $\mathrm{N}_{2} \mathrm{O}, R_{\mathrm{NN}}=1.128 \AA$, $R_{\text {NO }}=1.184 \AA \AA^{37}$ while for NO and NO the respective bond lengths are $R_{\text {NO }}=1.151 \AA$, and $1.25 \AA \AA^{22}$

To determine the degree of confidence that one can place in the $a b$ initio results, one can examine both spin contamination and the sensitivity of the calculated geometries and frequencies to the level of calculation. The unrestricted Hartree-Fock wavefunctions of all states suffer from some degree of spin contamination by states of higher multiplicity. As shown in Table I, spin contamination $\left(\left\langle S^{2}\right\rangle=0.75\right.$ for a pure doublet state) is quite large for the $\widetilde{B}\left({ }^{2} \mathrm{~A}_{2}\right)$ state, small for the $\widetilde{A}\left({ }^{2} \mathrm{~B}_{1}\right)$ state, and somewhere in between for the ground state. In terms of structural parameters, for the ground state the largest change in bond length $(0.04 \AA)$ and bond angle $\left(1^{\circ}\right)$ is relatively modest for the different treatments. In the $\bar{A}\left({ }^{2} \mathrm{~B}_{1}\right)$ state the only significant change is in R_{NO}, which increases by $0.05 \AA$ between UHF and the two correlated methods, the latter two calculations yielding essentially identical geometries. For the $\widetilde{B}\left({ }^{2} \mathrm{~A}_{2}\right)$ state the results are less satisfying: the bond lengths and angles change by significant amounts ($0.06-0.12 \AA ; 2-4^{\circ}$) at the three levels of theory. The percent change in each vibrational frequency ($\omega_{U_{H F}} / \omega_{\text {MP2 }}$) for the \tilde{X} and \bar{A} states is at most 19%, while in the \widetilde{B} state four of the six frequencies change by $50-60 \%$. Therefore one must treat the $a b$ initio results with some caution, particularly for the \widetilde{B} state, in which all three criteria show signs that the single-configuration picture may not be sufficient for a quantitative description.

Table III: G-1 and G-2 ab initio energies and heats of reaction
${ }^{a}$ The cis $\left(\mathrm{C}_{2 \mathrm{v}}\right)$ isomer lies 0.1 eV higher at the MP2/6-31+G* level of theory.
${ }^{b}$ Energies taken from Ref. 39.

For comparison with the thermodynamic information obtained from the data in Section IV, we have also performed Gaussian-1and Gaussian-2 calculations ${ }^{38,39}$ giving the total electronic energies (including zero-point energies) of $\tilde{X}\left({ }^{2} \mathrm{~B}_{2}\right) \mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}, \tilde{X}\left({ }^{2} \mathrm{~A}_{\mathrm{g}}\right)$ trans-ONNO, and $\tilde{X}\left({ }^{1} \Sigma_{\mathrm{g}}{ }^{+}\right) \mathrm{N}_{2} \mathrm{O}$. These calculations are summarized in Table III. The ONNO configuration is included because it is also strongly bound and has been implicated as a reaction intermediate in reaction (1). The G-1 and G-2 procedures, due to Pople and coworkers, are quite successful in predicting dissociation energies to within a target accuracy of $\pm 0.1 \mathrm{eV}(2 \mathrm{kcal} / \mathrm{mol})$ for a wide range of neutral and ionic species. Within the accuracy of these calculations, $\mathrm{N}_{2} \mathrm{O}_{2}^{-}\left(\mathrm{C}_{2 \mathrm{v}}\right)$ and $\mathrm{ONNO}^{-}\left(\mathrm{C}_{2 \mathrm{~h}}\right)$ are essentially thermoneutral. This differs from the lower-level calculation in Ref. 8, which predicts the $\mathrm{C}_{2 \mathrm{v}}$ isomer to be more stable by $4.4 \mathrm{kcal} / \mathrm{mol}$.

IV. Analysis

A. Product branching ratio

In Figure 4, the ratio between the peak areas for channel $1:$ channel 2 at the higher laser fluence is about $1: 1$. However, the extraction of quantitative branching ratios from this data is more complicated in the case of $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$photodissociation than in our previous studies of free radical photodissociation. As mentioned in the experimental section, only neutral fragments can be detected with our time- and position-sensitive detector. Although both product channels result from single photon dissociation, detection of $\mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}$ requires a second photon (to detach the O^{-}fragment), while $\mathrm{NO}^{-}(v>0)+$ NO detection does not require another photon due to autodetachment of the NO^{-} fragment. The channel 1 : channel 2 peak area ratio increases with laser fluence over the entire range available to us, indicating that the two photon process producing $\mathrm{O}+\mathrm{N}_{2} \mathrm{O}$ is not yet saturated. Therefore the branching ratio stated above should be taken as a lower bound to the true channel 1 : channel 2 branching ratio at 532 nm , because not all of the O^{-}is photodetached even at the highest laser fluence. Thus, while quantitative branching ratios cannot be obtained, it is clear that $\mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}$ is the major product channel.

B. Dissociation energies and product energy distributions

From the translational energy distributions $P\left(E_{\mathrm{T}}\right)$ in Figure 5, we can extract both thermodynamic data and information on product state energy disposal resulting from $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$photodissociation. By conservation of energy we may write:

$$
\begin{align*}
& h v=D_{0}\left(\mathrm{~N}_{2} \mathrm{O}_{2}^{-} \rightarrow \mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}\right)+E_{\mathrm{T}}+E_{\mathrm{int}}\left(\mathrm{~N}_{2} \mathrm{O}\right) \tag{7}\\
& h v=D_{0}\left(\mathrm{~N}_{2} \mathrm{O}_{2}^{-} \rightarrow \mathrm{NO}^{-}+\mathrm{NO}\right)+E_{\mathrm{T}}+E_{\mathrm{int}}(\mathrm{NO})+E_{\mathrm{int}}\left(\mathrm{NO}^{-}\right) \tag{8}
\end{align*}
$$

where $h v$ is the photon energy, D_{0} is the dissociation energy for the specified channel, E_{T} is the energy in product translation, and E_{int} is the rotational, vibrational, and electronic energy of the molecular fragments. We assume in Eqns. 7 and 8 that the supersonically cooled $\mathrm{N}_{2} \mathrm{O}_{2}^{-}$parent ion contains negligible internal energy. If for some translational energy E_{T} it can be ascertained that $E_{\mathrm{int}}=0$, the dissociation energy in the above equations can be deduced. Given these thermodynamic quantities, the total internal energy of the fragments corresponding to each energy E_{T} is determined, and in some cases this energy can be further delineated among rotational, vibrational, and electronic degrees of freedom.

The most detailed information can be obtained from Figure 6, showing an expanded picture of the $\mathrm{P}\left(E_{\mathrm{T}}\right)$ at 570 nm for $\mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}$. This distribution shows a series of peaks with spacings close to that of the v_{2} bending mode of the $\mathrm{N}_{2} \mathrm{O}$ product. The resolved vibrational structure is significant, as this spectrum offers substantially more information than the qualitatively similar spectrum shown in Fig. 5a. At 570 nm , no signal is observed for $E_{\mathrm{T}}>0.78 \pm 0.03 \mathrm{eV} \equiv E_{\mathrm{T}}{ }^{\max }$. Because the disappearance of signal at $E_{\mathrm{T}}{ }^{\text {max }}$ is quitc abrupt, we assign it to the translational energy corresponding to ground state fragments, i.e. $\mathrm{O}^{-}\left({ }^{2} P_{3 / 2}\right)+\mathrm{N}_{2} \mathrm{O}(v=0, J=0)$. We therefore obtain

$$
\begin{equation*}
D_{0}\left(\mathrm{~N}_{2} \mathrm{O}_{2}^{-} \rightarrow \mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}\right)=h v-E_{\mathrm{T}}^{\max }=1.40 \pm 0.03 \mathrm{eV} \tag{9}
\end{equation*}
$$

where $h v=2.175 \mathrm{eV}$. This value agrees to within 0.1 eV of the calculated Gaussian -2 value given in Table III (1.51 eV). From the 0 K heats of formation of $\mathrm{O}^{-}(1.10 \mathrm{eV})$ and $\mathrm{N}_{2} \mathrm{O}(0.88 \mathrm{eV}),{ }^{40}$ we obtain the heat of formation of $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}: \Delta H_{f, 0}^{\circ}=0.58 \pm 0.04 \mathrm{eV}$. From ΔH_{0} for reaction (1) we find that $D_{0}\left(\mathrm{~N}_{2} \mathrm{O}_{2}{ }^{-} \rightarrow \mathrm{NO}^{-}+\mathrm{NO}\right)=1.25 \pm 0.04 \mathrm{eV}$. These
values of D_{0} yield the maximum allowed values for E_{T} at each dissociation wavelength, which are shown by the arrows in Figure 5.

Based on the bond dissociation energy in Eqn. 9, the thresholds for $\mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}$ $\left(v_{2}=n\right)$ are indicated by the comb in Figure 6. The correspondence with the experimental peak spacings is quite good for $n<6$. All the experimental peaks are offset towards lower translational energy than the thresholds for each vibrational state. This offset is presumably due to rotational excitation of each $\mathrm{N}_{2} \mathrm{O}$ vibrational level. Hence, from this vibrationally resolved $P\left(E_{\mathrm{T}}\right)$ distribution we would like to determine the vibrational and rotational energy distribution of the $\mathrm{N}_{2} \mathrm{O}$ fragment.

The simplest way to extract such information is to assume that all of the $\mathrm{N}_{2} \mathrm{O}$ excitation is in the v_{2} mode. We then construct an empirical model of the $P\left(E_{\mathrm{T}}\right)$ distribution using a set of Gaussian peaks separated by the known vibrational spacings ($588 \mathrm{~cm}^{-1}$) of the v_{2} mode. A Gaussian functional form is chosen to model the rotational distribution purely on the basis of mathematical convenience. The model distribution $F\left(E_{\mathrm{T}}\right)$ is given by $n^{\prime}+1$ Gaussians such that

$$
\begin{equation*}
F\left(E_{\mathrm{T}}\right)=\sum_{n=0}^{n^{\prime}} \alpha_{n} f_{n}\left(E_{\mathrm{T}}\right) ; f_{n}\left(E_{\mathrm{T}}\right)=\exp \left\{-\frac{1}{2}\left(\frac{E_{\mathrm{T}}-\left(h v-D_{0}-n \omega_{2}-\Delta\right)}{\Gamma / 2.345}\right)^{2}\right\} \tag{10}
\end{equation*}
$$

Here n labels the number of $\mathrm{N}_{2} \mathrm{O}$ bending quanta, Γ is the FWHM of the combined rotational envelope and instrumental resolution, and Δ is the energy difference between the maximum possible E_{T} for each $n\left\{E_{\mathrm{T}}{ }^{\max }(n)=h v-D_{0}-n \omega_{2}\right\}$ and the center of the nth Gaussian. Each $f_{n}\left(E_{\mathrm{T}}\right)$ is truncated for $E_{\mathrm{T}}>E_{\mathrm{T}}{ }^{\max }(n)$, the limit corresponding to $\mathrm{N}_{2} \mathrm{O}$ $(J=0)$. The coefficients α_{n} give the v_{2} product state vibrational distribution. The solid line in Figure 6 shows the best fit to the $570 \mathrm{~nm} P\left(E_{\mathrm{T}}\right)$ from a nonlinear least squares fitting
procedure, with parameters $\Delta=0.045 \mathrm{eV}, \Gamma=0.058 \mathrm{eV}$. Note that the same values of Δ and Γ were used for all vibrational states.

The fit is excellent for $E_{\mathrm{T}}>0.35 \mathrm{eV}$. The less than satisfactory agreement below this energy may reflect excitation of other $\mathrm{N}_{2} \mathrm{O}$ vibrational modes. In fact, it is difficult to tell from the $570 \mathrm{~nm} P\left(E_{\mathrm{T}}\right)$ if excitation in the stretching modes is occurring at low E_{T}, because the frequencies of the $\mathrm{N}_{2} \mathrm{O} v_{1}$ and v_{3} modes are nearly integer multiples of the v_{2} frequency: $\omega_{1}=3.8 \omega_{2}$ and $\omega_{3}=2.2 \omega_{2}$. The possibility that there is excitation in all the $\mathrm{N}_{2} \mathrm{O}$ modes has important implications for the dissociation mechanism and is discussed in more detail in Section V.

The vibrational structure in the experimental distributions is not as well-resolved at 532 nm as at 570 nm , and at 500 nm it is difficult to pick out any vibrational structure. This blurring can again be attributed to either increasing product rotational energy, or a breakdown in the assumption that all vibrational excitation of $\mathrm{N}_{2} \mathrm{O}$ occurs as bending motion. In the absence of resolved structure, we do not attempt to fit the $P\left(E_{\mathrm{t}}\right)$ distributions at the higher excitation energies with Eq. 10.

We next consider the translational energy release distributions for channel (2). In contrast to channel (1), for which all the $P\left(E_{\mathrm{T}}\right)$ curves peak at the low energy cutoff of our instrument, in channel (2) it is clear that with increasing photon energy the peak in the translational energy distribution shifts to higher energy. Furthermore, each increase of photon energy, which corresponds to a 150 meV increment, shifts the peak of the $P\left(E_{\mathrm{T}}\right)$ distributions to higher energy by approximately 150 meV . In other words, even though the $570 \mathrm{~nm} P\left(E_{\mathrm{T}}\right)$ distribution peaks at or below our low-energy cutoff, with little of the
available energy going into fragment translation, the extra energy available at 532 and 500 nm is, on average, channeled into translational energy.

The $P\left(E_{T}\right)$ distributions for channel (2) (figs. $5 \mathrm{~d}-\mathrm{f}$) can be fit in the same manner as those for channel (1). These fits are underdetermined due to the lack of vibrational structure and the fact that there are two molecular fragments, NO and NO^{-}, which may both be rovibrationally excited. Even so, the density of vibrational product states is smaller for this case of two diatomics than for the products $\mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}$. The absence of resolved vibrational structure and the observation that the $P\left(E_{\mathrm{T}}\right)$ distributions fall to zero well below $E_{\mathrm{T}}{ }^{\text {max }}$ implies that both fragments have considerable vibrational and rotational excitation. At all three wavelengths there is very little probability of finding both diatomic fragments in their $v=0$ vibrational states. We will show in Section V that a high degree of NO^{-}vibrational excitation is consistent with the photoelectron spectroscopy results of Posey and Johnson, ${ }^{7}$ in which no evidence for the $\mathrm{NO}^{-}+\mathrm{NO}$ channel was evident.

V. Discussion

A. Dissociation Mechanism: $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}+\mathrm{h} \nu \rightarrow \mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}$

We first consider the nature of the excited electronic state of $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$accessed in these experiments followed by a discussion of how this state dissociates to $\mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}$ products. To assign the initial electronic excitation we compare our experimental results with the $a b$ initio calculations summarized in Tables I and II. The transition to the first excited state, $\tilde{A}\left({ }^{2} \mathrm{~B}_{1}\right) \leftarrow \tilde{X}\left({ }^{2} \mathrm{~B}_{2}\right)$, with a calculated $T_{\mathrm{e}}=1.47 \mathrm{eV}$, is not electric dipole allowed. The lowest allowed transition, $\widetilde{B}\left({ }^{2} \mathrm{~A}_{2}\right) \leftarrow \tilde{X}\left({ }^{2} \mathrm{~B}_{2}\right)$, has a calculated energy of
$T_{\mathrm{e}}=2.24 \mathrm{eV}(\lambda=553 \mathrm{~nm})$, and a vertical excitation energy of $3.24 \mathrm{eV}(\lambda=382 \mathrm{~nm})$. The photodissociation cross section in Fig. 3 starts near the predicted T_{c} for this transition, and rises steadily towards the blue as would be expected when the vertical excitation energy is considerably larger than T_{c}. Furthermore, we measure a negative photofragment anisotropy parameter, β, indicating that the initial electronic excitation is a perpendicular transition. The $\tilde{B}\left({ }^{2} \mathrm{~A}_{2}\right) \leftarrow \tilde{X}\left({ }^{2} \mathrm{~B}_{2}\right)$ transition has the required perpendicular character, involving the promotion of an electron from the doubly occupied out-of-plane $1 \mathrm{a}_{2}$ orbital to the singly occupied in-plane $5 b_{2}$ orbital. Based on these considerations, we assign the electronic excitation of the $\mathrm{N}_{2} \mathrm{O}_{2}^{-}$ion in our experiment to the first optically allowed transition $\widetilde{B}\left({ }^{2} \mathrm{~A}_{2}\right) \leftarrow \widetilde{X}\left({ }^{2} \mathrm{~B}_{2}\right)$.

In order to consider the dissociation dynamics subsequent to electronic excitation, it is important to understand how the electronic states of $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$correlate to product channels. Figure 8 represents the adiabatic picture of the relevant surfaces, where the lowest states of each symmetry are correlated to asymptotic states to determine the evolution of the electronic wavefunctions. As dissociation begins towards the $\mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}$ asymptote, the extension of the $\mathrm{N}-\mathrm{O}$ bond lowers the ion's symmetry from $C_{2 v}$ to C_{s}, such that the in-plane orbitals (a_{1} and b_{2}) become a^{\prime} while the out-of-plane orbitals (a_{2} and b_{1}) correlate to $\mathrm{a}^{\prime \prime}$. On the other hand if one approaches from the asymptotic region, $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$is formed by combining $\mathrm{O}^{-}\left({ }^{2} \mathrm{P}_{\mathrm{u}}\right)$ with $\mathrm{N}_{2} \mathrm{O}\left({ }^{1} \Sigma_{\mathrm{g}}{ }^{+}\right)$, resulting in three electronic states of C_{s} symmetry: $\mathrm{A}^{\prime}, \mathrm{A}^{\prime}$, and $\mathrm{A}^{\prime \prime}$. By adiabatically correlating the lowest states of each symmetry, the $\tilde{X}\left({ }^{2} \mathrm{~B}_{2}\right)$ ground state becomes ${ }^{2} \mathrm{~A}^{\prime}$, while the $\tilde{A}\left({ }^{2} \mathrm{~B}_{1}\right)$ excited state matches with $\mathrm{A}^{\prime \prime}$. The third state, $\widetilde{B}\left({ }^{2} \mathrm{~A}_{2}\right)$, cannot correlate with the remaining A^{\prime} state,
and must instead be matched with an $\mathrm{A}^{\prime \prime}$ state that adiabatically leads to $\mathrm{O}\left({ }^{3} P_{\mathrm{g}}\right)+\mathrm{N}_{2} \mathrm{O}^{-}$ $\left({ }^{2} A^{\prime}\right)$. These products are not energetically accessible at the photon energies used in the present study. The remaining A^{\prime} state arising from $\mathrm{O}^{-}\left({ }^{2} P_{\mathrm{u}}\right)$ with $\mathrm{N}_{2} \mathrm{O}\left({ }^{1} \Sigma_{\mathrm{g}}{ }^{+}\right)$most likely correlates with the unbound $\tilde{C}\left({ }^{2} \mathrm{~A}_{1}\right)$ state, although it is possible that a lower-lying ${ }^{2} \mathrm{~B}_{2}$ state exists.

The key feature of Figure 8 is that the $\widetilde{B}\left({ }^{2} \mathrm{~A}_{2}\right)$ state, which we assign as the initial excited state in our experiment, does not correlate to ground state $\mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}$ products. A nonadiabatic transition to another electronic surface is required in the dissociation mechanism. The question remains as to whether dissociation occurs on an excited state surface, such as the repulsive $\tilde{C}\left({ }^{2} \mathrm{~A}_{1}\right)$ state, or if internal conversion to the ground state occurs prior to dissociation. The translational energy distributions $P\left(E_{\mathrm{T}}\right)$ in Figure 5 can, in principle, help distinguish between these possible mechanisms.

The excited state mechanism appears reasonable at first glance. Given that $\mathrm{N}_{2} \mathrm{O}$ is linear whereas the N-N-O moiety in $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$is strongly bent, one would expect significant excitation in the $\mathrm{N}_{2} \mathrm{O}$ bend from excited state dissociation on a repulsive surface, which is consistent with the vibrational structure seen in the translational energy distribution at 570 nm . This mechanism would also result in relatively little $\mathrm{N}_{2} \mathrm{O}$ rotational excitation, since the departing O^{-}ion cannot apply much torque to the $\mathrm{N}_{2} \mathrm{O}$ fragment; this is again consistent with the observation of resolved vibrational structure in the $P\left(E_{\mathrm{T}}\right)$ distribution, at least at 570 nm .

However, photodissociation studies of many small molecules have shown that when dissociation occurs on a repulsive potential energy surface, the translational energy (
Figure 8: One dimensional projections of potential energy surfaces of the $\mathrm{N}_{2} \mathrm{O}_{2}^{-}$system. The nuclear coordinate is approximately represented by the structures shown along the bottom of the diagram. Below the label for each symmetry group ($C_{s}, C_{2 v}, C_{2 h}$) are listed the electronic states of that symmetry, showing the correlation of electronic states. Energy differences between the $\widetilde{X}\left({ }^{2} B_{2}\right)$ minimum and the two asymptotes are those derived from this experiment (thick lines). Thin lines are based on the ab initio results and molecular orbital correlations. Surfaces depicted by dashed lines are plausible guesses for which no calculations have been successful. According to our calculations (Table I), the $\widetilde{B}\left({ }^{2} \mathrm{~A}_{2}\right)$ state does not have a local minimum in $C_{2 v}$ symmetry, but this may be a symmetrybreaking artifact (see text).
distribution peaks well away from $E_{\mathrm{T}}=0$. In contrast, all three experimental distributions for this channel peak near zero translational energy, and their overall shape is relatively independent of photon energy (compared to channel (2), for example). This trend is what one might expect if the dissociation mechanism were internal conversion to the ground state, followed by statistical decompostion without an exit barrier. The absence of a barrier is certainly reasonable for bond fission yielding an ion/neutral fragment pair, which will be governed by an attractive potential proportional to $-1 / r^{4}$. It is useful for the moment to bypass the first step in this mechanism, internal conversion to the ground state, to determine if the observed translational energy distributions are consistent with statistical theory.

1. Prior distributions

The most straightforward comparison one can draw is with the prior translational energy distribution ${ }^{41}$ for the photofragments. This model is expected to be most appropriate for a potential without an exit barrier, in which the transition state lies far enough in the exit channel that the nuclear configuration is essentially that of the products. One can then use the rotational constants and vibrational frequencies of $\mathrm{N}_{2} \mathrm{O}$ in computing the prior distribution.

In order to compute the prior translational energy distribution, the vibrations are treated as discrete quantum states, while to good approximation the translational and product rotational degrees of freedom can be treated as continuous distributions. Based on the treatment by Levine, ${ }^{41}$ one can show that the prior translational energy distribution $P^{\circ}\left(E_{\mathrm{T}}\right)$ for the $\mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}$ channel is given by:

$$
\begin{equation*}
P^{\circ}\left(E_{\mathrm{T}}\right)=C^{\circ} \sum_{v_{1}, v_{2}, v_{3}=0}^{E_{v}<E_{\operatorname{vin}}-E_{\mathrm{T}}} g\left(v_{1}, v_{2}, v_{3}\right) \cdot \sqrt{E_{\mathrm{T}}} \tag{11}
\end{equation*}
$$

Here $E_{\mathrm{av}}=\mathrm{h} v-\mathrm{D}_{0}$ is the total energy available to the products and $g\left(v_{1}, v_{2}, v_{3}\right)$ is the degeneracy of the specified $\mathrm{N}_{2} \mathrm{O}$ vibrational level; at each E_{T}, the sum is over all energetically allowed $\mathrm{N}_{2} \mathrm{O}$ vibrational levels.

The prior distributions resulting from Eqn. 11, convoluted with a 0.025 eV FWHM Gaussian instrument resolution function, are superimposed on the experimental distributions in Figure 5a-5c and Figure 6. The prior distributions peak near $E_{\mathrm{T}}=0.1 \mathrm{eV}$ (our experimental cutoff), decreasing towards higher E_{T}. Overall, the agreement between the prior and experirnental distributions is quite good, except at the very lowest values of E_{T} where the error bars on the experimental $P\left(E_{\mathrm{T}}\right)$ are large. The prior distributions match the general shape of the experimental distributions, and at each wavelength both distributions drop to zero at approximately the same value of E_{T}. Moreover, there is observable vibrational structure in the 570 nm prior distribution which becomes less prominent at lower wavelengths, in agreement with the experimentally observed trend.

In Figure 6 one can make a more detailed comparison between the prior and experimental distributions at 570 nm . Like the experimental data, the prior distribution contains periodic structure on an interval that matches the v_{2} bending mode of $\mathrm{N}_{2} \mathrm{O}$. Even though all three vibrational modes are excited, the v_{2} mode dominates the statistical distribution because it is $(n+1)$-fold degenerate when n bending quanta are populated. Because of this effect, combined with the difficulty (see Section IV) in distinguishing v_{2} excitation from excitation in the v_{1} and v_{3} modes of $\mathrm{N}_{2} \mathrm{O}$, it is possible for even a
statistical distribution of product states to support a $588 \mathrm{~cm}^{-1}$ (i.e. ω_{2}) vibrational spacing in the translational energy distribution. We make this point because the experimental data at 570 nm may also be modeled quite convincingly by Eq. 10 (solid line in Figure 6) to represent excitation of pure $\mathrm{N}_{2} \mathrm{O}$ bending motion, an interpretation that is irreconcilable with a statistical dissociation mechanism.

However, a closer comparison shows that structure in the prior distribution is broader than the experimental rotational envelope at 570 nm , particularly at high E_{T}. This broadening arises because for each $\mathrm{N}_{2} \mathrm{O}$ vibrational level $\left(v_{1}, v_{2}, v_{3}\right)$, the corresponding term in the summation of Eq. 11 begins abruptly at $E_{\mathrm{T}}=E_{\mathrm{av}}-E_{v}$. For this reason the thresholds in the prior distribution line up well with the vibrational comb in Figure 6. In addition. for each vibrational state the prior distribution extends all the way to $E_{\mathrm{T}}=0$, i.e. the maximum E_{j} allowed by energy conservation. This yields very broad rotational energy distributions for low vibrational states of $\mathrm{N}_{2} \mathrm{O}$, with narrower distributions only for the highest vibrational states. In contrast, the fitting of the experimental data to Eq. 10 indicates that the rotational envelope for each state is about the same, and is considerably narrower than that resulting from the prior distribution.

This discrepancy may simply indicate that the rotational distribution reflects the dissociation dynamics on the ground state surface, and that the constraints on $\mathrm{N}_{2} \mathrm{O}$ rotation imposed by energy and angular momentum conservation alone are physically unreasonable. While there is some rotational excitation of the $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$in the ion beam, if we assume that that total angular momentum $J \cong 0$, then the $\mathrm{N}_{2} \mathrm{O}$ rotational angular momentum j is approximately equal in magnitude to l, the orbital angular momentum of the separating fragments. Consider, for example, the $\mathrm{N}_{2} \mathrm{O}\left(v_{2}=4\right)$ level, for which the
maximum E_{T} is 0.48 eV at 570 nm . The value of $j_{\max }=l_{\max }$ determined by energy conservation alone is $96 \hbar$, while $l_{\text {max }}$ determined by considering the maximum l at which the translational energy is greater than the centrifugal exit barrier (assuming the appropriate $-1 / r^{4}$ long range potential) is only slightly smaller, $93 \hbar$. The corresponding impact parameters, given by $\mu \mathrm{v} b_{\max }=l_{\max }$, are $1.84 \AA$ and $1.79 \AA$, respectively, both of which are considerably greater than the radius of the $\mathrm{N}_{2} \mathrm{O}$ molecule, $1.156 \AA$. Given that the O^{-}is originally bound to the central N atom of the $\mathrm{N}_{2} \mathrm{O}$ fragment, these values appear to be unreasonably large even if there is substantial large amplitude vibrational motion on the ground state surface prior to dissociation. In this context it is not altogether surprising that the experimental rotational distributions are narrower than those predicted by statistical models.

Based on the reasonable overall agreement between the experimental results and prior distributions, we believe that the $\mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}$ channel results from decay on the ground state surface rather than dissociation on a repulsive excited state. While the latter mechanism certainly cannot be ruled out, it would be unusual for the translational energy distribution from such a process to be so similar to that predicted by a simple statistical model.

2. Angular distributions and RRKM lifetimes

The angular distributions and their dependence on excitation energy provide further insight into the dissociation dynamics. Recall that the angular distribution is essentially isotropic at 570 nm and that the anisotropy increases with energy. This indicates that the lifetime of the $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$complex is several rotational periods at 570 nm ,
whereas at 500 nm the lifetime is shorter, presumably more on the order of the characteristic rotational period of the complex. If we assume a rotational temperature of 60 K and treat the complex as an oblate symmetric top with rotational constants determined from the ground state geometry, the average value of rotational quantum number J is 11 . The corresponding classical rotational period about the c-axis of the complex (i.e. perpendicular to the plane) is 6.3 ps .

It is of interest to compare the rotational period to the RRKM lifetime of $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$in its ground electronic state. The RRKM dissociation rate $\mathrm{k}(E)$ is given by

$$
\begin{equation*}
k(E)=N^{\ddagger}\left(E^{\ddagger}\right) / h \rho(E) \tag{12}
\end{equation*}
$$

Here $N^{\ddagger}\left(E^{\ddagger}\right)$ is the number of accessible states at the transition state and $\rho(E)$ is the density of $\mathrm{N}_{2} \mathrm{O}_{2}^{-}$states at total energy E, both of which can be calculated from the WhittenRabinovitch expressions ${ }^{42}$ if the vibrational frequencies of the transition state and reactant are known. Because no barrier to dissociation is expected, we choose a loose transition state with four vibrational frequencies set equal to the $\mathrm{N}_{2} \mathrm{O}$ frequencies and one low frequency vibration corresponding to the in-plane $\mathrm{O}^{-}-\mathrm{N}_{2} \mathrm{O}$ bend (the $\mathrm{O}^{-}-\mathrm{N}_{2} \mathrm{O}$ asymmetric stretch is taken to be the reaction coordinate). The calculated vibrational frequencies at the MP2 level are used to calculate $\rho(E)$ for $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$. If the $\mathrm{O}^{-}-\mathrm{N}_{2} \mathrm{O}$ bend frequency in the transition state is assumed to be $50 \mathrm{~cm}^{-1}$, the resulting lifetime of the complex at 570 nm is 0.13 ps , considerably shorter than the rotational period. We note that the pre-exponential A-factor calculated with these transition state and reactant frequencies is only $2 \times 10^{14} \mathrm{sec}^{-1}$ (at $T=300 \mathrm{~K}$). This value is somewhat low for dissociation without a barrier; more typical values are $10^{16} \sec ^{-1} .{ }^{43}$ Thus our assumed transition state is, if anything, too "tight." It might be more realistic to use a lower bend frequency or an internal rotor to
model the relative motion of the O^{-}and $\mathrm{N}_{2} \mathrm{O}$ fragments at the transition state, in which case the dissociation lifetime would be even shorter.

The large discrepancy between the apparent dissociation lifetime implied by the angular distributions and the RRKM lifetime suggests that dissociation on the ground state potential energy surface is not the rate-limiting step. A possible explanation is that internal conversion from the initially excited $\widetilde{B}\left({ }^{2} \mathrm{~A}_{2}\right)$ state to the ground state occurs on a time scale of several picoseconds and is therefore rate-limiting. We would then attribute the decrease in lifetime with increasing excitation energy to an increased internal conversion rate arising from more highly excited vibrational levels of the $\widetilde{B}\left({ }^{2} \mathrm{~A}_{2}\right)$ state.

B. Dissociation Mechanism: $\mathrm{N}_{2} \mathrm{O}_{\mathbf{2}}{ }^{-}+\mathrm{h} v \rightarrow \mathrm{NO}^{-}+\mathrm{NO}$

The description of product channel (2), which yields $\mathrm{NO}^{-}+\mathrm{NO}$, requires a discussion of several of the same issues raised in considering channel (1). However, channel (2) is clearly more complex, as it involves rearrangement and elimination, rather than the simple bond fission process of channel (1). A key issue in the mechanism of channel (2) is the role of the ONNO $^{-}$isomer. Posey and Johnson ${ }^{7}$ showed that this isomer (which they denote $\mathrm{NO}^{-} \cdot \mathrm{NO}$) is a stable species on the global potential energy surface of the negative ion. There is no experimental evidence for the exact energy of this isomer relative to the $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}\left(C_{2 v}\right)$ well. The only previously published calculation, by Hiraoka et al. at the ROHF/6-31+G level, finds the $C_{2 v}$ structure more stable than trans-ONNO ${ }^{-}\left(C_{2 h}\right)$ by $4.4 \mathrm{kcal} / \mathrm{mol}^{8}$ Our G-1 and G-2 calculations described in Section IIIB show that at this more accurate level of theory the two isomers are essentially isoenergetic, with the trans-ONNO^{-}isomer more stable by only 0.05 eV . The depth of this well on the potential
energy surface depicted in Fig. 8 is based on the G-2 calculations. Although the photoelectron spectrum offers no clues as to the relative thermodynamics of these two isomers, we can be certain that the anion potential energy surface has a well in an ONNO^{-} configuration.

Based on the discussion of channel (1), the first mechanism which must be considered, aside from the initial electronic excitation, is that the dynamics for channel (2) occur entirely on the global ground state potential energy surface for the $\mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O} \rightarrow \mathrm{NO}^{-}$ + NO reaction. Specifically, electronic excitation would be followed by internal conversion to the $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$ground electronic state, after which isomerization to ONNO^{-}and bond fission to $\mathrm{NO}^{-}+\mathrm{NO}$ occur. The result of this mechanism would be experimental $P\left(E_{T}\right)$ distributions which, like those for channel (1), should reflect a largely statistical decomposition mechanism for a process with no exit channel barrier.

As one test of this mechanism, the experimental $P\left(E_{\mathrm{T}}\right)$ distributions can be compared to prior distributions for channel (2), using a version of Eqn. 11 appropriate for two diatomic fragments. ${ }^{41}$ The comparison in Figure 5d-f shows that, in contrast to channel (1), the prior and experimental distributions are very different. The experimental distributions show that the fragments have considerably less translational energy, on the average, than predicted by the prior distribution. Moreover, although the 570 nm distribution peaks near $E_{\mathrm{T}}=0$, the maxima in the other two distributions clearly move towards higher E_{T} as the excitation energy is raised. More specifically, as was pointed out in section IV-A, the magnitude of this shift is very nearly equal to the additional excitation energy, indicating that this additional energy is efficiently channeled into product translational energy.

Taken together, these observations cast serious doubt on a statistical decomposition mechanism for channel (2). Statistical decay should lead to translational energy distributions that are, at most, weakly dependent on the excitation energy. Moreover, the high level of product vibrational excitation suggests a rather sudden dissociation beginning from a nuclear configuration in which the $\mathrm{N}-\mathrm{O}$ bond lengths are very different from those in the separated products. Extensive product rotational excitation should also be expected if the nuclear configuration changes rapidly from a $C_{2 v}$ structure to the trans-ONNO intermediate on the way to products, due to the significant torque such motion exerts around the non-central N atom of $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{\circ}$. A possible mechanism consistent with these results is one in which the initially prepared $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$excited electronic state interacts with another excited state that correlates asymptotically to $\mathrm{NO}^{-}+$ NO products, and that dissociation to channel (2) takes place on this second excited state surface. Even though we postulate a second excited surface that is repulsive, it has been demonstrated ${ }^{44}$ that extensive vibrational and rotational exit channel interactions, such as those qualitatively described above, can effectively channel the majority of available energy into internal states of the products.

Unfortunately, we have little information regarding what excited states may play a role in $\mathrm{NO}^{-}+\mathrm{NO}$ production. To further explore this product channel it would be useful to form ground state ONNO^{-}in the ion source, dissociating it at the same three wavelengths used in the current study. However, repeated attempts to create this species from the same NO / Ar mixture used in the photoelectron spectroscopy studies have not yet been successful on the fast beam translational spectrometer.

One issue raised by the mechanism proposed above is why statistical decomposition to channel (2) does not seem to be occurring, given that we believe channel (1) to proceed by dissociation from a ground state $\mathrm{N}_{2} \mathrm{O}_{2}^{-}\left(C_{2 v}\right)$ complex. The statistical (i.e., ground state) mechanism for channel (2) requires passage over an isomerization barrier to form the ONNO^{-}complex, representing a much tighter transition state than that for bond fission to $\mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}$. Thus, unless the isomerization barrier is considerably lower than $D_{0}\left(\mathrm{O}^{-}-\mathrm{N}_{2} \mathrm{O}\right)$, bond fission will dominate over isomerization once the ground state complex is formed. Unfortunately, we were unable to locate the isomerization barrier between the two potential minima in our calculations, which precludes a more quantitative analysis of the possible ground state reaction path.

C. Comparison with Photoelectron Spectroscopy

The observation of both product channels shown in Figs. 4 and 5 warrants a comparison of our results to the photoelectron spectroscopy of Posey and Johnson. ${ }^{7}$ They observe in the 532 nm photoelectron spectrum of $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$a single peak due to the detachment of O^{-}ions. They conclude that this isomer photofragments exclusively to O^{-} $+\mathrm{N}_{2} \mathrm{O}$. At first glance, our observation of $\mathrm{NO}^{-}+\mathrm{NO}$ products at 532 nm seems to contradict their interpretation. One must question why signal from NO^{-}photodetachment is not observed in the photoelectron spectrum if this fragment ion is in fact produced. The explanation can be found in the translational energy release distributions for channel (2) shown in the right column of Figure 5. The small fraction of available energy in translation for this channel requires that the fragments have a high degree of vibrational excitation. Because the detachment threshold of $\mathrm{NO}^{-}\left(194 \mathrm{~cm}^{-1}\right)^{22}$ is small compared to its
vibrational frequency ${ }^{45}$ of $1363 \mathrm{~cm}^{-1}, \mathrm{NO}^{-}(v>0)$ spontaneously autodetaches an electron to give primarily NO $\left(v^{\prime}=v-1\right)+e^{\cdot}$. The slow electrons produced from autodetachment are below the low-energy cutoff of the time-of-flight photoelectron spectrometer used by Posey and Johnson, and would not have been observed in those experiments. Taking both the photoelectron data and our translational spectroscopy experiments into account, the only mutually consistent explanation is that photodissociation of $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$at 532 nm does produce NO^{-}, but none of this product is in its ground vibrational state, and is therefore not detectable in the photoelectron spectrometer.

To further support our argument, we note that Posey \& Johnson did observe the unmistakable photoelectron spectrum of NO^{-}at 532 nm from photodestruction of the ONNO isomer. As explained above, $\mathrm{NO}^{-}(v=0)$ is the only product vibrational state which could produce this signal in their experiments. Therefore, if the ONNO^{-}isomer were present in our electric discharge ion beam at any appreciable concentration, the $P\left(E_{\mathrm{T}}\right)$ distributions of Fig. 5 would show some intensity at the highest possible translational energy (which corresponds to $\mathrm{NO}^{-}(v=0)$ products). The complete lack of intensity at these translational energies further supports our conclusion that $\mathrm{NO}^{-}+\mathrm{NO}$ arises unambiguously from $\left(C_{2 v}\right) \mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$photofragmentation.

D. Comparison with photodissociation of $\mathrm{CO}_{3}{ }^{-}$

The $\mathrm{CO}_{3}{ }^{-}$ion, which is isoelectronic with $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}$, also dissociates in the visible region, yielding $\mathrm{O}^{-}+\mathrm{CO}_{2}$. The photodissociation dynamics of $\mathrm{CO}_{3}{ }^{-}$have been extensively examined for twenty years. ${ }^{2}$ One might therefore expect to gain further insight into the $\mathrm{N}_{2} \mathrm{O}_{2}^{-}$photodissociation dynamics through a comparison with the $\mathrm{CO}_{3}{ }^{-}$work. The
study by Snodgrass et. al. ${ }^{3}$ is particularly relevant for comparison to our data. They measured the $\mathrm{O}^{-}+\mathrm{CO}_{2}$ translational energy distribution and calculated the $\mathrm{CO}_{3}{ }^{-}$geometry at the unrestricted Hartree-Fock (UHF) level, finding a ${ }^{2} \mathrm{~A}_{2}^{\prime}$ ground state with $D_{3 h}$ symmetry. Their translational energy distributions, like ours, peak near $E_{\mathrm{T}}=0$ and decrease steadily towards higher E_{T}, indicating a high level of CO_{2} internal excitation. However, they find that the average translational energy release decreases as the photon energy is increased from 514 to 476 nm , finally increasing again at 458 nm , which differs from our results and the predictions of statistical models. Based on these results, they concluded that this dissociation occurs on an excited state surface, rather than by statistical decomposition of the ground state as we have proposed for $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-} \rightarrow \mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}$.

A closer look at both ions indicates that there are important differences in the electronic states involved in the two transitions. The visible excitation in CO_{3}^{-}is assigned by Snodgrass et al. to the ${ }^{2} \mathrm{E}^{\prime} \leftarrow{ }^{2} \mathrm{~A}_{2}^{\prime}$ transition. In $\mathrm{C}_{2 v}$ symmetry, the ${ }^{2} \mathrm{~A}_{2}$ ' state correlates to ${ }^{2} \mathrm{~B}_{2}$, implying that the ground states for CO_{3}^{-}and $\mathrm{N}_{2} \mathrm{O}_{2}$ - have similar electronic structure. However, the ${ }^{2} \mathrm{E}^{\prime}$ excited state of $\mathrm{CO}_{3}{ }^{-}$correlates to $\mathrm{a}^{2} \mathrm{~A}_{1}$ and ${ }^{2} \mathrm{~B}_{2}$ state, neither of which corresponds to the ${ }^{2} \mathrm{~A}_{2}$ excited state that we believe provides the oscillator strength in $\mathrm{N}_{2} \mathrm{O}_{2}^{-}$dissociation. Instead, $\mathrm{a}^{2} \mathrm{~A}_{2}$ state correlates to ${ }^{2} \mathrm{E}^{\prime \prime}$ in $D_{3 h}$ symmetry, although the ${ }^{2} E^{\prime \prime} \leftarrow{ }^{2} \mathrm{~A}_{2}{ }^{\prime}$ transition is not optically allowed. The excited states formed by electronic excitation in the two experiments are therefore quite different, which could certainly account for the different dissociation mechanisms proposed for the two anions. This comparison shows that while rough predictions about a molecule can be made based on properties of isoelectronic species, the detailed dynamics of each system can be completely dissimilar.

VI. Conclusions

The photodissociation of $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}\left(C_{2 v}\right)$ has been investigated using fast beam translational spectroscopy. Two product channels are observed: $\mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}$ and $\mathrm{NO}^{-}+$ NO. Ab initio calculations have been carried out for the lowest state of each symmetry in this ion. Based on the agreement between experiment and theory, the transition in the total dissociation cross section spectrum is assigned to $\tilde{B}\left({ }^{2} \mathrm{~A}_{2}\right) \leftarrow \tilde{X}\left({ }^{2} \mathrm{~B}_{2}\right)$.

Product state distributions for both channels show that the majority of available energy goes into internal energy of the fragments. The $P\left(E_{\mathrm{T}}\right)$ distributions for channel (1) demonstrate resolved vibrational structure of the $\mathrm{N}_{2} \mathrm{O}$ fragment. From these distributions the following thermodynamic data has been derived: $D_{0}\left(\mathrm{O}^{-}-\mathrm{N}_{2} \mathrm{O}\right)=1.40 \pm 0.03 \mathrm{eV}$, $D_{0}\left(\mathrm{~N}_{2} \mathrm{O}_{2}{ }^{-} \rightarrow \mathrm{NO}^{-}+\mathrm{NO}\right)=1.25 \pm 0.04 \mathrm{eV}$, and $\Delta H_{f, 0}^{\circ}\left(\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-}\right)=0.58 \pm 0.04 \mathrm{eV}$. The calculated values from G-1 and G-2 theory are in good agreement with the experimental values, which lends credibility to the value calculated by the same methods (but not experimentally known) for the isomerization reaction $\Delta H_{0}\left\{\mathrm{~N}_{2} \mathrm{O}_{2}{ }^{-}\left(C_{2 v}\right) \rightarrow\right.$ trans-ONNO ${ }^{-}$ $\left.\left(C_{2 h}\right)\right\}=-0.05 \mathrm{eV}$. Within the accuracy of the calculations, these two isomers are thermoneutral.

The formation of $\mathrm{O}^{-}+\mathrm{N}_{2} \mathrm{O}$ is most consistent with a sequential mechanism of ratelimiting internal conversion to the ground state followed by fast dissociation without a barrier. At all three excitation energies used in this study, the product translational energy distributions are in overall agreement with the calculated prior distributions. However, at the lowest excitation energy, 570 nm , vibrational structure in the experimental distribution
is resolved to the point where it is clear that the $\mathrm{N}_{2} \mathrm{O}$ rotational distributions are colder than predicted by the prior distribution. The $\mathrm{N}_{2} \mathrm{O}$ rotational distribution is apparently constrained by the dissociation dynamics on the ground state surface rather than by energy and angular momentum conservation. Nonetheless, because the product translational energy distributions are reasonably well predicted by a simple statistical model, we believe this channel is due to dissociation on the ground state rather than on an excited state surface.

In contrast, the translational energy distributions for the $\mathrm{NO}^{-}+\mathrm{NO}$ channel are very different from the corresponding prior distributions. Their dependence on excitation energy suggests that this channel results from dissociation on an excited state potential energy surface that interacts with the initially excited $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{-} \widetilde{B}\left({ }^{2} \mathrm{~A}_{2}\right)$ state. The translational energy distributions indicate that their is significant internal excitation of the fragments. The apparent absence of this channel in the earlier study by Posey and Johnson indicates that all of the NO^{-}is vibrationally excited.

Acknowledgments

This research is supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy under Contract No. DE-AC03-76SF00098. The authors wish to acknowledge several helpful discussions with Dr. Don Arnold. In addition we thank Cangshan Xu and Dr. Gordon Burton for their assistance in acquiring the photoelectron spectra in this study.

References

${ }^{1}$ L. C. Lee, G. P. Smith, J. T. Moseley, P. C. Cosby, and J. A. Guest, J. Chem. Phys. 70, 3237 (1979).
${ }^{2}$ J. T. Moseley, P. C. Cosby, R. A. Bennett, and J. R. Peterson, J. Chem. Phys. 62, 4826 (1975); J. F. Hiller and M. L. Vestal, J. Chem. Phys. 72, 4713 (1980); D. E. Hunton, M. Hofmann, T. G. Lindeman, and A. W. Castleman, Jr., J. Chem. Phys. 82, 134 (1985).
${ }^{3}$ J. T. Snodgrass, C. M. Roehl, P. A. M. van Koppen, W. A. Palke, and M. T. Bowers, J. Chem. Phys. 92, 5935 (1990).
${ }^{4}$ P. C. Cosby, R. A. Bennett, J. R. Peterson, and J. T. Moseley, J. Chem. Phys. 63, 1612 (1975); S. E. Novick, P. C. Engelking, P. L. Jones, J. H. Futrell, and W. C. Lineberger, J. Chem. Phys. 70, 2652 (1979); J. F. Hiller and M. L. Vestal, J. Chem. Phys. 74, 6096 (1981).
${ }^{5}$ C.-C. Han and M. A. Johnson, Chem. Phys. Lett. 189, 460 (1992).
${ }^{6}$ C. R. Sherwood, M. C. Garner, K. A. Hanold, K. M. Strong, and R. E. Continetti, J. Chem. Phys. 102, 6949 (1995).
${ }^{7}$ L. A. Posey and M. A. Johnson, J. Chem. Phys. 88, 5383 (1988).
${ }^{8}$ K. Hiraoka, S. Fujimaki, K. Aruga, and S. Yamabe, J. Phys. Chem. 98, 8295 (1994).
${ }^{9}$ D. E. Milligan and M. E. Jacox, J. Chem. Phys. 55, 3404 (1971).
${ }^{10}$ M. E. Jacox, J. Chem. Phys. 93, 7622 (1990).
${ }^{11}$ J. Hacaloglu, S. Suzer, and L. Andrews, J. Phys. Chem. 94, 1759 (1990).
${ }^{12}$ M. E. Jacox, J. Chem. Phys. 93, 7609 (1990).
${ }^{13}$ R. A. Moris, A. A. Viggiano, and J. F. Paulson, J. Chem. Phys. 92, 3448 (1990).
${ }^{14}$ S. E. Barlow and V. M. Bierbaum, J. Chem. Phys. 92, 3442 (1990).
${ }^{15}$ M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, 3rd ed., J. Chem. Phys. Ref. Data 14, (1985), Suppl. No. 1.
${ }^{16}$ D. W. Arnold and D. M. Neumark, J. Chem. Phys.102, 7035 (1995).
${ }^{17}$ R. E. Continetti, D. R. Cyr, R. B. Metz, and D. M. Neumark, Chem. Phys. Lett. 182, 406 (1991).
${ }^{18}$ R. E. Continetti, D. R. Cyr, D. L. Osborn, D. J. Leahy, and D. M. Neumark, J. Chem. Phys. 99, 2616 (1993).
${ }^{19}$ D. L. Osborn, D. J. Leahy, E. M. Ross, and D. M. Neumark, Chem. Phys. Lett. 235, 484 (1995).
${ }^{20}$ J. M. B. Bakker, J. Phys. E 6, 785 (1973); J. Phys. E 7, 364 (1974).
${ }^{21}$ D. J. Leahy, D. L. Osborn, D. R. Cyr, and D. M. Neumark, J. Chem. Phys. 103, 2495 (1995).
${ }^{22}$ M. W. Siegel, R. J. Celotta, J. L. Hall, J. Levine, and R. A. Bennett, Phys. Rev. A 6, 607 (1972).
${ }^{23}$ M. A. Johnson, M. L. Alexander, and W. C. Lineberger, Chem. Phys. Lett. 112, 285 (1984).
${ }^{24}$ L. G. Christophorou, D. L. McCorkle, and A. A. Christodoulides, in Electron-Molecule Interactions and Their Applications, Vol. I, edited by L. G. Chrisotophorou (Academic Press, Orlando, 1984) pp. 477-617, and references therein.
${ }^{25}$ A. Thoma, B. E. Wurfel, R. Schlachta, G. M. Lask, and V. E. Bondybey, J. Phys. Chem. 96, 7231 (1992).
${ }^{26}$ G. Gantefoer, H. R. Siekmann, H. O. Lutz, and K. H. Meiwes-Broer, Chem. Phys. Lett. 165, 293 (1990).
${ }^{27}$ Y. Ohshima and Y. Endo, J. Mol. Spec. 153, 627 (1992).
${ }^{28}$ R. Prosch and T. Trickl, Rev. Sci. Instrum. 60, 713 (1989).
${ }^{29}$ R. E. Continetti, D. R. Cyr, and D. M. Neumark, Rev. Sci. Instrum. 63, 1840 (1992). Note that only one MOSFET stage is needed for this application.
${ }^{30}$ S. C. Brown, Introduction to Electrical Discharges in Gases, (Wiley, New York 1966).
${ }^{31}$ D. J. Leahy, D. L. Osborn, D. R. Cyr, and D. M. Neumark, J. Chem. Phys. 103, 2495 (1995).
${ }^{32}$ R. N. Zare, Mol. Photochem. 4, 1 (1972).
${ }^{33}$ D. L. Osborn, D. J. Leahy, and D. M. Neumark, unpublished work.
${ }^{34}$ GAUSSIAN 92, Revision C, M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gompets, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople, Gaussian, Inc., Pittsburgh, Pennsylvania, 1992.
${ }^{35}$ The lowest state of C_{s} symmetry $\left({ }^{2} A\right.$) converges to the same equilibrium geometry as the ground state $\left({ }^{2} \mathrm{~B}_{2}\right)$, and is therefore not listed as a distinct species.
${ }^{36}$ All experimental bond lengths for comparison with calculation are taken from: J. H. Callomon. E. Hirota, T. Iijima, K. Kuchitsu, and W. J. Lafferty, Landolt Bornstein New Series, Vol. IL/15, Structure Data of Free Polyatomic Molecules, edited by K.-H. Hellwege and A. M. Hellwege (Springer-Verlag, Berlin, 1987).
${ }^{37}$ G. Herzberg, Molecular Spectra and Molecular Structure, Vol. III. Electronic Spectra and Electronic Structure of Polyatomic Molecules (van Nostrand, New York, 1966), p. 596.
${ }^{38}$ J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari, and L. A. Curtiss, J. Chem. Phys. 90, 5622 (1989).
${ }^{39}$ L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys. 94, 7221 (1991).
${ }^{40}$ S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, and W. G. Mallard, J. Phys. Chem. Ref. Data 17, Supplement No. 1 (1988).
${ }^{41}$ R. D. Levine, in Theory of Chemical Reaction Dynamics, Vol. IV, edited by M. Baer (CRC Press, Boca Raton, 1985) pp. 1-64.
${ }^{42}$ G. Z. Whitten and B. S. Rabintovitch, J. Chem. Phys. 41, 1883 (1964).
${ }^{43}$ R. G. Gilbert and S. C. Smith, Theory of Unimolecular and Recombination Reactions, (Blackwell, Oxford, 1990), Chap. 2.
${ }^{44}$ R. Schinke, Photodissociation Dynamics (University Press, Cambridge, 1993) pp. 128-132.
${ }^{45}$ K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV, Constants of Diatomic Molecules (van Nostrand, New York, 1966).

Appendix A

CMLWSA: ${ }^{a}$ Raw data analysis program for the FRBM

I. Introduction

Data sets acquired with the time- and position-sensitive detector are stored in the most basic form possible. For each coincident event, seven scalars are recorded: six charge fraction values representing $\mathrm{W} 1, \mathrm{~S} 1, \mathrm{Z} 1, \mathrm{~W} 2, \mathrm{~S} 2, \mathrm{Z} 2$, and the Δt value derived from the time-to-amplitude converter (TAC). For maximum flexibility, these rather large ($\sim 1-2 \mathrm{MB}$) raw data files are saved for each data set and converted into the more useful form of translational energy distributions $P\left(E_{\mathrm{T}}\right)$ and angular distributions $P(\theta)$ by the code CMLWSA. The practice of saving the raw data, rather than, for instance, a cartesian x, y, z file of fragment positions, allows the most flexibility in off-line analysis and the greatest confidence that no information has been discarded which might later be of use. In addition to the two important distributions mentioned above, CMLWSA produces a host of other distributions which are useful in analyzing time- and position-sensitive data. Diagnostic distributions produced by CMLWSA are:
(1) pulse height distributions: the distribution of ADC values for each of the seven raw data categories. Ideally these are narrow and peak at about half the full scale on the ADC. This data can be useful in identifying and eliminating double events.
(2) detector image: a scatter plot of the first n events showing the x, y position (i.e., in the plane of the detector) of the coincident fragment pairs.

[^5](3) TAC spectrum: the output of the TAC in ADC units
(4) centroid distributions: the distributions of the centroid for each coincident event in a variety of 2-D and 1-D projections.
(5) mass distributions: the fragment mass spectrum as determined by the parent mass M and each individual recoil distance r_{1}, r_{2}, from the center of the radical beam.
(6) one dimensional time-of-flight distributions for each particle.
(7) radial distributions for each particle.
(8) azimuthal angular distributions $P(\varphi)$.

Some of these distributions are produced within CMLWSA, and others must be viewed using the code PLOT which reads the output file fort. 8 from CMLWSA.

CMLWSA provides many methods to discriminate events according to their spatial, temporal, and pulse height distributions. This capability is crucial to exclude portions of each data set which are plagued by systematic errors of the detection scheme. Visualization of the distributions is provided by the NCAR (National Center for Atmospheric Research) graphics package which is FORTRAN callable. Therefore the code must be compiled in a FORTRAN environment which supports NCAR graphics.

The core of CMLWSA was written by Dr. Robert Continetti. The code has been extensively modified by Dr. Douglas Cyr, Dr. David Leahy, and the author. CMLWSA produces distributions which are uncorrected for the finite acceptance of the detector. The code designed to make this correction is described in Appendix B.

II. Routines comprising the CMLWSA program

CMLWSA is compiled from the following routines and subroutines. The most important routines are listed in all capitals:

CMLWSA.f: Main routine which calls all other routines. Creates the final output files which are used in later analysis steps.

CENTCAL.f: Determines the average center of the image, applies centroid discrimination, and plots the distribution of the centroids.
discr.f: Performs cartesian, radial, and azimuthal discrimination.
hist.f: Sets of the results histograms.
phaplt.f: Creates pulse heights distributions of the raw ADC data.
plotcentroid.f: Creates various 2-D and 1-D centroid distribution plots.
plotcoin.f: Plots the true coincident events image.
plotmass.f: Plots the fragment mass spectrum created in CENTCAL.f.
PSDCLCE.f: Converts x, y, z cartesian coordinates of each coincident event into the center-of-mass quantities R, θ, φ.
rawplot.f: Plots the raw image before discrimination.
savdfplt.f: Bins the 2-D projection on the detector face of the data for use by post-CMLWSA plotting routines.
srvrtn.f: Contains many service routines for CMLWSA.
tactime.f: Plots the TAC spectrum of either accepted or discriminated data.

WXZTOXY.f: Converts charge fraction and Δt values into x, y, z cartesian coordinates.

CMLWSA can be compiled on a UNIX platform by executing the make command:
make -f makecmlwsa
where the makefile is:

```
FFLAGS= -cg89 -dalign -03 -Bstatic -C
cmlwsa: cmlwsa.o centcal.o discr.o hist.o plotcentroid.o plotcoin.o
plotmass.o phaplt.o ps
dclce.o rawplot.o savdfplt.o srvrtn.o tactime.o wsztoxy.o
    ncargf77 -cg89 -dalign -03 -Bstatic -C cmlwsa.o centcal.o
discr.o hist.o plotcentr
oid.o plotcoin.o plotmass.o phaplt.o psdclce.o rawplot.o savdfplt.o
srvrtn.o tactime.o wsz
toxy.o -o cmlwsa
```


III. Usage

A. Input and Output files

Files required as input to CMLWSA are:
adc_cal.dat: Contains calibration data for the ADCs such that each channel produces identical outputs for an identical input.
namelist.dat: Contains all the parameters which are commonly changed by the user. Must be modified for each data set.
param.dat: Contains the factors discussed in Chapter 2 and Appendix D.
phd.dat: Contains upper and lower limits on the values allowed by each of the seven ADC channels and the sum of the upper and lower WSA.
raw_data.dat: Contains the seven column files of ADC scalars. The ordering of the columns is $\mathrm{W} 1, \mathrm{~S} 1, \mathrm{Z} 1, \mathrm{TAC}, \mathrm{W} 2, \mathrm{~S} 2, \mathrm{Z} 2$.
tcal.dat: Contains calibration information which converts the observed Δt values, (which are modified by the delay cable which ensures that start always comes before stop) into the true Δt values.
title.dat: Title card for each experiment, a string of up to 40 characters.

Files produce as output to CMLWSA are:
fort.8: File of 1-D distribution which is read by the program PLOT to create NCAR graphics plots of these distributions.
fort.9: File containing the 2-D $P_{\mathrm{raw}}\left(E_{\mathrm{T}}, \theta\right)$ distribution. This is the only output of CMLWSA which is used for input to TDAF and the rest of the data analysis pipeline.

B. General usage information

CMLWSA interacts with the user via a series of interactive questions which are relatively user-friendly. Responses to most questions are either yes or no, specified by either 0 or 1 . Some questions have multiple answers which are listed in the question. Some portions of the data analysis are contained within others in a branched tree structure, i.e., answering no to certain questions skips entire sections of the analysis.

The most important usage information is the interpretation of the parameters in the
namelist. dat file. Therefore, a sample file is given below with annotations:
\$inp

blocky	$=4 e 0$,
chllm	$=13 e 0$,
ebeam	$=8125 e 0$,
emax	$=3.0$,
emin	$=0.0$,
debug 4	$=. f a l s e .$,
dpsd	$=995 .$,
iforce	$=1$,
int_chan	$=1$,
ipolang	$=0$,

 iusephd \(=0\),
 nbine \(\quad=100\),
 nbinpha $=256$,
nbinrad $=100$,
nchan $=1$,
npp $=2000$,
nth $=180$,
rbeammax $=1.4$,
radical_mass $=41.0$,
rfov - $=20.0$,
sxmin $=-20.3$,
sxmax $\quad=20.3$,
symin $\quad=-20.3$,
symax $=20.3$,
tcomin $=-250$,
tcomax $=250$.,
title $\quad={ }^{\prime} \mathrm{HCCO} 8 \mathrm{kV}$ d01'
tmax $=5.3$,
$\operatorname{tmin}=4.75$,
$x 0 \quad=-0.35$,
$\mathrm{y}^{0}=-0.2$,
send
begin parameter input
half-width of blocking strip (cm)
channel 1 light mass (amu)
ion beam energy (eV)
maximum value of E_{T}
minimum value of E_{T}
toggles on (true) or off debugging output
distance from dissociation laser to detector (mm)
force fragment masses to values given by chnlm analyze this product channel when nchan > 1
laser polarization angle: \bar{E} parallel to radical beam axis $\equiv 0$; \vec{E} perpendicular to radical beam axis $\equiv 90$
if 0 , use pulse height discrimination limits in phd. dat; otherwise ignore this file
if 0 , obtain data from raw_data.dat; otherwise obtain data from raw_disc.dat (latter option seldom used)
number of E_{T} bins
number of pulse height analysis bins number of radial bins for centroid plots number of chemical product channels (up to 4)
number of events used in image plots
number of θ (polar angle) bins
maximum allowed centroid radius
parent radical mass
radius of circle drawn in image plots
minimum cartesian x value allowed
maximum cartesian x value allowed
minimum cartesian y value allowed
maximum cartesian y value allowed
minimum coincidence time $\tau(\equiv \Delta t)$ allowed
maximum coincidence time $\tau(\equiv \Delta t)$ allowed
title string (should be identical to title.dat)
maximum particle time-of-flight from laser to detector
minimum particle time-of-flight from laser to detector
center of radical beam along the x-axis relative to detector center
center of radical beam along the y-axis relative to detector center
end parameter input

A few parameters deserve special mention:
(1) ebeam: when the compressor is in use, this mean value for the ion beam energy is typically set at the beam acceleration voltage plus half the compressor voltage.
(2) iforce: when this parameter is set to 1 , the masses of the two fragments are forced to take on the values given in the parameter(s) chnlm. When this parameter is set to 0 , CMLWSA does not bias the fragment masses towards any particular value, and instead determines the mass ratio for each coincidence event. When a radical is first investigated, the latter choice should be made so that all fragment mass channels are given equal footing. Once the n product channels are identified in this manner, set iforce $=1$, enter the values of the light masses in chnlm, and analyze each product channel independently by choosing each value of int_chan in turn.
(3) nth: this parameter should always be set to 180 for compatibility with the TDAF and MAVABFIT codes in which it is not variable.
(4) rbeammax: this parameter should be tightened when fragment channels with highly disparate mass ratios $\left(\frac{m_{1}}{m_{2}}<\frac{1}{3}\right)$ are examined to prevent inclusion of false coincidences in the final output.

IV. FORTRAN code of CMLWSA

Routines are listed in alphabetical order. In addition, the code for PLOT, which is not part of CMLWSA, but is used to visualize many of the distributions produced by CMLWSA, is given for completeness at the end of this section.

CENTCAL.f

```
Subroutine centcal
c
c UNIX version 911113 REC
c latest version 921207 DRC
    This routine determines the average center of the image and plots
    the distribution of the centroids
        Requires: a system with known mass fragment channels
        a first order guess for x0,y0
    implicit real*4 (a-h,o-z)
    logical debug4
    parameter ( n1 = 100000 )
    parameter ( n2 = 300 )
    parameter ( n3 = 50 )
    parameter ( n4 = 200 )
    parameter (n7 = 400)
    common / beam / ebeam, vbeam, dpsd, rbeammax, rbeammin
    common / centdata / cent_x(nl),cent_y(nI)
    common / debug / debug4
        common / discinf /
ispatdis,isdis,inlf,yll,yul,isdisp,phil,phi2,
        > iraddis,idisan,rlld,ruld,ttl,ttu,
        > nphddis,ncartdis,npoldis,nraddis,ncentdis
C
    common / display / idfimg(n2,n2),sxmin,sxmax,symin,symax,dsx,
                                    dsy,nx,ny
c
    common / flags / iforce,iabs
    common / fov / xfov(n4),yfov(n4), nfov
    common / image / xu(n1),yu(n1),xl(n1),yl(n1),ival1(n1),
        > ivaltmp(nl)
cc
    common / local /nok,x_value,y_value,x_centavg(3),y_centavg(3),
                            dist min
cc The following 6 arrays are the parallel arrays, which are passed
cc only to centnotok. They never go to plotting routines under
cc these names
    common / local2 /
        > iraddisttmp(n4),ixbindisttmp(n4),iybindisttmp(n4),
        > pimtutmp(n2)
    common / multchan / radical_mass,fragmass (4, 2), nchan,int_chan
    common / phys / blocky,rfov,iwkst,x0,y0,ico,icf,npp,ipolang
c
    common / psdhist / emin,emax,dse,
        > thmin,thmax,dsth,umin, umax, du,gmin,gmax,dsm,
        > tmin,tmax, dwell,tcomin,tcomax,dwellbc,
    > nbine,nbinm,nt,ntbc,nth,nproj,ymx,
    ypmin, rpmin,dyp,drp
```

c

```
    common / radinf / radmin,radmax,dsrad,nbinrad,iraddist(n4),
    @ ixbindist(n4),iybindist(n4)
c
    dimension chan_cent (4,2),x_cent (4,2),Y_cent (4,2)
    dimension ivalIorig(n1)
    integer selordisc,selpart
    real*4 lowy,upy
c
    data rad,pi,degree / 0.01745329, 3.14159625, 57.29577951 /
    data ch1,ch2,ch3,ch4,light,heavy / 1, 2, 3, 4, 1, 2 /
C
c
C
    radmin = 0.0
    radmax = rbeammax
    dsrad = (radmax - radmin) / nbinrad
c cent x and cent_y arrays hold centroid coords for passing to
centroid
c plotting routines
    do i = 1,ico
        cent x(i) = 0.0
        cent_y(i) = 0.0
    enddo
    ifind = 0
C
C
************************************************************************
c The following iforce conditional encompasses MOST of this
subroutine
C
    if(iforce.eq.l) then
    write(*,*)
    write(*,*)'Enter 0 to find center of image ',
    >
    read(*,*)ifind
    write(*,*)'Enter 0 for mass channel selected centroids (1)'
    read(*,*)iselect
    if(iselect.eq.0) then
        write(*,*)'Enter 0 to select int_chan, 1 to discriminate it'
        read(*,*) selordisc
    endif
    write(6,*)'Enter 0 to select data from parts of centroid
    @ distribution (1)'
    read(5,*) selpart
if(selpart.eq.0) then
    write(6,*)'Enter lower and upper y values to accept data'
    read(5,*) lowy, upy
    endif !selpart.eq.0
        do ichan = 1,nchan
        write(*,*)
        write(*,100) ichan, fragmass(ichan,light), fragmass(ichan,heavy)
100
                        format('Assume channel ',il,' has fragments with ',
```

```
            > 'masses ',f7.4, ' amu and ', f7.4, ' amu')
            enddo
            write(***)
            write(*,150)int chan
150 format('Calculations will be performed using ',
    > 'channel ',il,' data.')
    if(iabs.eq.l) then
                write(*,*)
                    write(*,*)'Absolute forcing of channel ',int_chan,' active!'
            endif
            write(*,*)
            write(*,*)'Location of the center: ',
            > 'x0 = ', x0,' mm'
            > write(*,*)' 'y0 = ', y0,' mm'
c
    do i = 1, ico ! the ivallorig array allows the ivall array to be
reset
            ivallorig(i) = ivall(i)
        end do
        icforig = icf
c
c now begin finding the center of the data wrt the detector
c look for center in eight iterations, starting at x0,y0.
    Test each point for apparent mass
        combination according to current x0,y0
*****************
c j is the iteration index; this loop encompasses a great deal of
code
c *******************
    do j = 1,8
    if(ifind.eq.1) j = 8 !force the center to lie at namelist
values
c
    write (*,*)
    write(*,*)'Maximum centroid acceptance radius: ',rbeammax,'
mm'
    if(rbeammin.gt.0.0) then
        write(*,*) 'Minimum centroid acceptance radius: ',rbeammin,'
mm'
    endif
    write(*,*)
    write(*,*)'Calculating ... '
c
c initialize arrays before each centroid optimization iteration
(indexed by j)
c
    do i = 1,3
        x_centavg(i) = 0.0
        y_centavg(i) = 0.0
        endido
        do i = 1,nbinm
        pimtu(i)=0 ! imtu (integer upper mass) binning array
        enddo
        do i = 1,nbinrad
            iraddist(i) = 0
        enddo
    nok = 0 ! number of ok centers
    nin = 0 ! number of centroids inside rbeammin
    nout = 0 ! number of centroids outside rbeammax
    nundblock = 0 ! number of centroids under blocker
    noutyrange = 0 ! # of centroids outside y range (see selpart)
c
c ****** Master index i loops over coincident events ******
```

```
c
c Calculate where the centroids lie for each coinc event. Check each
given
c mass channel for best centroid fit before settling on point
c
    do i = 1,ico
        ivall(i) = ivallorig(i) ! restore ivall array (superfluous for
j=1)
    ivaltmp(i) = 0 !only want ivaltmp from j = 8 loop
    if(ivall(i).eq.0) goto 2000 !skip all this for a bad event
    if(z_corr(i).lt.0.0) then
                first_hit = -1 : fragment on bottom half hit first
    else
                first_hit = 1 ! fragment on top half hit first
                endif
c
c Master discrimination conditional: checks ttim and yu,yl for
validity
c the endif for this if is quite a ways downstream
    if( (yu(i).ge.blocky).and.(yl(i).le.-blocky) ) then
c
c point OK! calculate distances from assumed centroid for each mass
channel
c and for light particle hitting top or bottom
c x_cent and y_cent are only intermediate arrays; the centroid will
be stored
c for posterity in the cent_x(i),cent_y(i) array a bit later
c z_corr(i) is in mm; dpsd in mm; epsilon is unitless
c epsilon is greater than zero when top particle arrives at detector
first
c
    epsilon = z corr(i)/dpsd
c epsilon = 0.0 !just test without asymmetry corr.
c write(6,*) i,vbeam,ttim(i),epsilon
    do ichan = 1,nchan
    frac_light = fragmass(ichan,light)/radical_mass ! light=1;
    frac heavy = fragmass(ichan,heavy)/radical-mass ! heavy=2
c assume light mass hit upper half of detector
                    x_cent (ichan,light) =
xu(i)*frac light*(I+frac heavy*epsilon)
    > - + xl(i) * frac heavy * (1 - frac_light*epsilon)
        y_cent (ichan,light)=
yu(i)*frac light*(I+frac heavy*epsilon)
                                    + yl(i) * frac_heavy * (1 - frac_light*epsilon)
        dist_to_cent = sqrE}((x_cent(ichan,light) - x0)**2
                            + (y-cent(ichan,light) - y0)**2)
        chan_cent (ichan,light)= dist_to_cent
c now assume heāvy mass hit upper half o\overline{f}}\mathrm{ détector
        x_cent(ichan, heavy) =
xu(i)*frac_heavy*(1+frac_light*epsilon)
    > + + Xl(i) * frac_light * (1 - frac_heavy*epsilon)
        y_cent (ichan, heavy)}
yu(i)*frac heavy*(1+frac light*epsilon)
                        + yl(i) * frac_light * (1 - frac_heavy*epsilon)
        dist_to_cent = sqrt ((x_cent (ichan,heavy) - x0)**2
                            +(y \overline{cent (ichan, heavy) - y0)**2)}
                chan_cent(ichan,heavy) = dist_to_cent
                enddo
c
c iabs conditional: iabs=1 suppresses the loop over mass channels,
                constraining the mass analysis to int chan
c Here we determine the best mass channel, centroid coordinates
```

```
c
distance
            if(iabs.eq.0) then
            do ichan = 1,nchan
            do mass = light, heavy ! light=1; heavy=2
                    if(chan cent(ichan,mass).lt.dist_min) then
                        dist min = chan_cent (ichan,mass)
                        x_vaIue = x_cent (ichan,mass) ! x_value and y_value are
only
                        y_value = y_cent(ichan,mass) ! temporary storage
variables
                            imtu(i) = fragmass(ichan,mass) * first hit
                            endif ! here imtu(i) is assigned to best matched channel
            enddo
            enddo
            else ! iabs = 1
c note: iabs = 1 always assigns imtu(i) to int_chan even if int_chan
was
c not the best mass channel
            do mass = light, heavy
                if(chan cent (int chan,mass).lt.distmin) then
                        dist_min = chan_cent(int_chan,mass)
                        x value = x_cen\overline{t}}\mathrm{ (int chan},\mathrm{ mass)
                                y_value = y_cent(int_chan,mass)
                                imtu(i) = fragmass(iñt_chan,mass) * first_hit
                endif
            enddo
            endif ! end of iabs conditional
c
c test to see if centroid is ok
c if((dist min.le.rbeammax).and.(dist min.gt.rbeammin)) then
            if(iselect.eq.0) then !only look at selected centroids
            if(selordisc.eq.0) then !only look at channel of interest
                        if((abs(imtu(i)).eq.fragmass(int_chan,light)).or.
            > (abs(imtu(i)).eq.fragmass(int_chan,heavy))) then
                call centok(i) ! centroid is OK, *and* belongs to int_chan
        else !if((abs(imtu(i)).eq.....or) (i.e. event wasn't
int_chan)
            ivall(i) = 0
            ivaltmp(i) = 1
            call centnotok(i)
            if(dist min.gt.rbeammax) then
                    nout = nout + 1
                    else
                        nin}=n\mp@code{nin}+
                    endif
        endif: !if((abs(imtu(i)).eq.....or)
        else !if(selordisc.eq.0) i.e. **discriminate** int_chan
            if((abs(imtu(i)).ne.fragmass(int_chan,light)).and.
```



```
            call centok(i) ! centroid is OK, but is not int_chan
        else !if((abs(imtu(i))....and.) (i.e. event was int_chan)
        ivall(i) = 0
        ivaltmp(i) = 1
        call centnotok(i)
        if(dist_min.gt.rbeammax) then
```

```
                nout = nout + 1
            else
                nin}=\operatorname{nin}+
                endif
            endif !if((abs(imtu(i))....and.)
    endif !if(selordisc.eq.0)
    else !if(iselect.eq.0) i.e. look at *all* centroids (trad. way)
    if(selpart.eq.0) then !use data from only some y centroids
    if((y_value - y0.ge.lowy).and.(y_value-y0.le.upy)) then
                            call centok(i) : centroid is OK, doesn't matter
which chan
            else
                ivall(i) = 0
                ivaltmp(i) = 1
                call centnotok(i)
                noutyrange = noutyrange + 1
            endif !no discrimination of y centroids (normal situation)
            else
                call centok(i) ! centroid is OK, doesn't matter which
chan
    endif !selpart.eq.0
    endif !if(iselect.eq.0)
            else ! from if(dist_min.le.rb...) centroid is not ok
        ivall(i) = 0
        ivaltmp(i) = 1
        call centnotok(i)
        if(dist_min.gt.rbeammax) then
            nout = nout + 1
            else
                        nin}=n\mp@code{nin}+
            endif
        endif ! end of dist_min validity (wrt to rbeammax,min)
conditional
    else !woops, at least one part. must be under the beam block
        ivall(i) = 0
        ivaltmp(i) = 1
        nundblock = nundblock + 1
        cali centnotok(i)
            endif ! end of centroid validity (wrt beam block)
condiEional
2000 enddo ! end of coincident events loop (i index)
c
    ndisc = nin + nout + nundblock + noutyrange
    ncentdis = icf - nok !for use in totals at the end
    If(ndisc.ne.ncentdis) then
        write(6,*)'nin = ', nin,' nout = ',nout,' nundblock = ', nundblock
        write(6,*)'noutyrange = ', noutyrange,' icf = ',icf,'nok = ', nok
        write (6,*)'nin + nout + nundblock + noutyrange = ',ndisc
        write(6,*)'icf - nok = ',ncentdis
        stop 'number of discriminated events does not match'
        endif
            frin = float(nin) / float(icf)
            frout = float(nout) / float(icf)
    frbblk = float(nundblock) / float(icf)
    frydisc = float(noutyrange) / float(icf)
            frok = float(nok) / float(icf)
            call sigmac ( x_centavg , x_centavg(1) , x_centavg(2) )
```

```
    call sigmac (y_centavg , y_centavg(1) , Y_centavg(2) )
    write(*,*)
    write(6,290) rbeammax, rbeammin
    write(6,295) frout, frin, frbblk, frydisc,frok
write(6,*)'nundblock = ', nundblock,' nout = ',nout
    write (6,297)ndisc,icf,(frok*100)
if(j.eq.8) then
    icf = nok
else
    icf = icforig !reinitialize for another centroid pass
    nundblock = 0
    nin}=
    nout = 0
endif
    write(*,*)
write (6,300)x_centavg(1), x_centavg (2),y_centavg (1),y_centavg (2)
```



```
>> Minimum radius of acceptance = ', f6.4,' mm ')
295 format(' Fraction outside maximum centroid radius = ',f7.6,1,
            > ! Fraction inside minimum centroid radius = ',f7.6,%,
            > ' Fraction under the beam block = ',f7.6,/,
            > :Fraction discriminated in y coord. = ',f7.6,1,
            > ' Fraction within centroid limits =
1,f7.6,/.)
    297 format(' ',i5,' events discriminated out of ',i6,'
events.'./,
        > ' ',f6.2,' percent of the data remains')
    300 format(t2,'Using best choice of mass channels ',
        > 'for each data point: ',/,
        > t15,' x = ',f7.4,' std. dev. = ',f7.4,/,
        > t15,' y = ',f7.4,' std. dev. = ',f7.4)
    write(6,*)
    if(ifind.eq.0) then
        x0 = x_centavg(1)
        y0 = y-centavg(1)
        write(\overline{6},*)' x0 = ',x0,' y0 = ',y0
    else
        write(6,*)'However, x0,y0 remain as given in namelist.dat: '
        write(6,*)' (x0 = ',x0,' y0 = ',y0
    endif
    if(j.eq.8) then ! end of centroid iterations
        write(6,*)'Enter 0 for centroid plotting.'
        read(5,*) iplot
        if(iselect.eq.0)then
        if(selordisc.eq.0) then
        write(*,*)'**Centroid plots contain only channel',int_chan
        else
            write(*,*)'**Centroid plots contain everything *except*
        > channel',int_chan
        endif
    endif
    if (iplot.eq.0) then
        write(*,*)
        write(*,*)'Enter 0 for centroid scatter plot (1):'
        read(*,*)iplt
                if(iplt.ne.1) then
                    call plotcent (0)
```

```
    endif
    write(*,*)
    write(*,*)'Enter 0 for scatter plot of discr. centroids (1):'
    read(*,*)iplt
        if(iplt.ne.1) then
        call plotcent(3)
    endif
    write(*,*)
    write(*,*)'Enter 0 to plot centroid contours (1):'
    read(*,*)iplt
        if(iplt.ne.1) then
        call plotcont
    endif
    write(*,*)
    write(*,*)'Enter 0 to plot centroid surface (1):'
    read(*,*)iplt
        if(iplt.ne.l) then
        call plotsurf
    endif
    write(*,*)
    write(*,*)'Enter 0 to plot radial distribution. (1)'
        read(*,*)iplt
    if(iplt.ne.l) then
    call plotrad
    endif
    write(*,*)
    write(*,*)'Enter 0 to plot radial dist. of disc. centroids(1)'
        read(*,*)iplt
    if(iplt.ne.1) then
    call swaptemp(0)
    call plotrad
    call swaptemp(1)
    endif
end if ! iplot.eq.0 conditional
write(*,*)
write(*,*)'Enter 0 to plot mass distribution. (1)*
read(*,*)iplt
if(iplt.ne.1) then
    call plotmass
endif
write(*,*)
write(*,*)'Enter 0 to plot mass dist. of disc. centroids (1)'
read(*,*)iplt
if(iplt.ne.1) then
    call swaptemp(0)
    call plotmass
    call swaptermp(1)
endif
    endif ! if j=8 conditional
    enddo ! *** end of the lengthy j loop (centroid optimization
loop)
C
    write(*,*)
            write(*,320)x0,y0
    320 format(t5,'Nominal Center = ',f10.4,', ',f10.4,' mm')
C
c ******** Here ends the really lengthy iforce=1 block
c
    else ! iforce = 0
c Here iforce = 0; we do not know the masses,
            and we must discriminate against false coincidences by
            checking that the line joining the two points passes
            through the circle defined by rbeammax
```

```
c To do this:
c 1) Calculate the angle of the line between the two data points
c
    2) Calculate the angle of the line between the lower data
        point and the center x0,y0
C
c two lines. Once this is known, the cosine and sine projections
of
c the line in 2) give, respectively,
c 4) The best guess at the length of the lower moment arm of the
total
c relative velocity vector magnitude, from which the masses are
                found, and
            5) The shortest distance distance from the center, (x0,y0),
        to the line in 1), from which the validity of this event is
        determined, (i.e. centroid disrimination)
```

c

```
    do i = 1,ico
        ivallorig(i) = ivall(i) !preserve ivall array for multiple x0,y0
        ivaltmp(i) = 0
    enddo
    icforig = icf
330 nok=0 ! line 330 is re-entry point for new centroid guess
    do i=1,ico
    if(ivall(i).eq.0) goto 3000 !skip all this for each bad event
    if(z_corr(i).lt.0.0) then
                first_hit = -1 ! fragment on bottom half hit first
    else
                first_hit = 1 ! fragment on top half hit first
                    endif
                if(abs(xu(i)-xl(i)).gt.le-6) then
                slpdata = (yu(i)-yl(i))/(xu(i)-xl(i))
                angdata = atan(slpdata) * degree
                if(angdata.lt.0) then
                    angdata = 180 + angdata
                endif
            else
        stop 'Very rare case of xu(i) = xl(i) found. See centcal'
            endif
            if(abs(x0-xl(i)).gt.1e-6) then
                anglowr = atan((y0 - yl(i))/(x0-xl(i))) * degree
                    if(anglowr.lt.0) then
                        anglowr = 180 + anglowr
                endif
            else
        stop 'Very rare case of x0 = xl(i) found. See centcal'
            endif
```

c now calculate the quatities of interest for both the linoid
c method of centroid discrimination, and the best guess at the
c mass ratio when iforce $=0$
slower $=\operatorname{sqrt}((x 0-x l(i)) * * 2+(y 0-y l(i)) * * 2)$
rul $=\operatorname{sqrt}((x u(i)-x i(i)) * * 2+(y u(i)-y l(i)) * * 2)$
$c \quad \cos$ is an even function, so sign of it's argument doesn't matter
anglecent $=$ anglowr - angdata \quad angle betw. 2 almost parallel
lines
rlbest $=$ rlower*cos(anglecent/degree) \quad !best guess at lower
moment arm
rdist $=a b s(r l o w e r * s i n(a n g l e c e n t / d e g r e e))$) distance from $x 0, y 0$
if(abs (anglecent).gt.89) write (*,*)'Large angle in centcal!!?!'
c the preceding warning means something is wrong with the angular
c determinations in finding anglecent. These two lines should be c nearly parallel, so anglecent is small. I don't think it will happen.

```
    if((rdist.ge.rbeammin).and.(rdist.le.rbeammax)) then
        nok = nok + I ! centroid is OK!
        upper mass(i) = radical mass * (rlbest/rul)
        imtu(\overline{i})= nint(upper mass(i))*first hit
        call binmass(gmin,gmax,dsm, nbinm, upp̄er_mass(i),imass,imassinc)
            pimtu(imass) = pimtu(imass) + imassinc
    else
    ivall(i) = 0 !centriod is not OK
    ivaltmp(i) = 1
    temp_mass = radical mass * (rlbest/rul)
    call binmass (gmin,gmax, dsm, nbinm, temp mass,imass,imassinc)
                pimtutmp(imass) = pimtutmp(imass) + imassinc
            endif
3000 enddo ! end of i coincidence event loop
c
    ncentdis = icf - nok
    write(6,340) icf-nok
340 format(i6,' events thrown out by centroid discrimination')
    frrej = 1.0 - float(nok)/float(icf)
    write(6,345) frrej
345 format(' Fraction rejected by centroids = ',fl0.6)
    icf = nok
    frrej = 1.0 - float(nok)/float(ico)
    write(6,350) frrej
350 format(' Cumulative Fraction rejected = ',f10.6)
    write(*,*)
    write(*,*)'Enter 0 to plot mass distribution. (1)'
    read(*,*)iplt
    if(iplt.ne.l) call plotmass
    write(*,*)
        write (*,*)
        write(*,*)'Enter 0 to plot mass dist. of disc. centroids (1)'
        read(*,*)iplt
        if(iplt.ne.1) then
            call swaptemp(0)
            call plotmass
            call swaptemp(1)
        endif
    write(*,*)'Enter 0 to change x0 and y0 and repeat. (1)'
    read(*,*) ichng
    if(ichng.ne.1) then
        icf = icforig
        do i = 1,nbinm
            pimtu(i) = 0 ! imtu (integer upper mass) binning array
            pimtutmp(i) = 0
        enddo
        do i = 1,ico
            ivall(i) = ivallorig(i) !get a fresh start with the old ivall
array
            ivaltmp(i) = 0
        enddo
        write(*,*)'Enter new x0,y0 : '
            read(*,*) x0,y0
                    goto 330
                endif
            endif ! end of the else (iforce=0) block of the iforce=1
conditional
c
    write(6,*)'Enter 0 for centroid-filtered plotting.'
    read(5,*) iplot
```

```
    if (iplot.eq.0) then
    write(*,*)
    write(*,*)'Enter 0 to plot the pos. of coincident points. (1)'
    read(*,*) iptxyv
    if(iptxyv.eq.0) call rawplot(0)
c
    write(*,*)
    write(*,*)'Enter 0 to plot the pos. of non-coincident pts. (1)'
    read(*,*) iptxyn
    if(iptxyn.eq.0) call rawplot(2)
c
c plot valid TAC distribution if desired
    write(*,*)
    write(*,*)'Enter 0 to plot the valid TAC spectrum. (1)'
    read(*,*)iptv
    if(iptv.ne.1) call tactime(0)
        write(*,*)
        write(*,*)'Enter 0 to plot TAC spectrum of only the ',
        > 'discriminated points. (1)'
        read(*,*)iptv
        if(iptv.eq.0) call tactime(3)
        write(*,*)
    endif ! end of iplot conditional
C
c
c
c
c
    return
    end
******
    Subroutine centok(i)
        This subroutine just increments some indices and bins things
c Some of the common blocks have very few variables in this
c subroutine.
    implicit real*4 (a-h,o-z)
    logical debug4
c
    parameter ( n1 = 100000 )
    parameter ( n2 = 300 )
    parameter ( n3 = 50 )
    parameter ( n4 = 200 )
    parameter ( }\textrm{n}7=400\mathrm{ )
CC
            uses all variables
    common / local /nok,x_value,y_value,x_centavg(3),y_centavg(3),
        > dist_min
cc uses all variables
    common / centdata / cent_x(n1),cent_y(n1)
cc uses xu,yu,xl,yl
    common / image / xu(n1),yu(nl),xl(n1),yl(n1),ivall(n1),
        > ivaltmp(n1)
cc uses radical mass
    common / multchan / radical_mass,fragmass(4,2),nchan,int_chan
cc uses x0,y0
    common / phys / blocky,rfov,iwkst,x0,y0,ico,icf,npp,ipolang
cc uses gmin,gmax,dsm, nbinm
common / psdhist / emin,emax,dse,
        > thmin,thmax,dsth,umin,umax,du,gmin,gmax,dsm,
        > tmin,tmax,dwell,tcomin,tcomax, dwellbc,
```

```
        > nbine,nbinm,nt,ntbc,nth,nproj,ymx,
        >
cc uses all variables
    common / radinf / radmin,radmax,dsrad,nbinrad,iraddist(n4),
        @ ixbindist(n4),iybindist(n4)
cc uses upper_mass
    common / results / z_corr(n1),imtu(n1),upper_mass(n1), energy(n1)
cc uses pimtu
    common / signal / ecm(n2),th(n2),u(n2), ephetc(n2, 2*n2),
    > ethetc(n2,n2),emcc(n2),pthcmc(n2),pphcmc(2*n2),pmcc(n2),
    > ptltlab(n2),pthvlab(n2),ptcolab(n2),ptecbin(n2),tlab(n2),
    > ph(2*n2),tcolab(n2),ptecabin(n2),pimtu(n2),pylt(n7),
    > pyhv(n7),prlt (n7),prhv(n7)
c*******Here's the real
code*************************************************
    nok = nok + 1 ! centroid is OK, doesn't matter which
chan
    cent_x(i) = x_value
    cent_y(i) = Y_value
    call sigmap ( x_value , x_centavg )
    call sigmap ( y-value , Y_centavg )
c bin dist_min (centroid distance from beam center) into iraddist
array
    Call xbinnr2(radmin,radmax,dsrad,nbinrad,
                                dist min,irad,iradinc)
    iraddist(irad) = Irraddist(irad) + iradinc
c*******************
c bin radial distribution by }x\mathrm{ and }y\mathrm{ to see elipticity in centroids
    call xbinnr2(-radmax, radmax, 2*dsrad,nbinrad,
    @ x_value - x0,ixbin,ixbininc)
        ixbindist(ixbin)}= ixbindist(ixbin) + ixbinin
        call xbinnr2(-radmax,radmax,2*dsrad,nbinrad,
    @ y value - y0,iybin,iybininc)
        iybindist(iybin) = iybindist(iybin) + iybininc
c****************************
    upper_mass(i)}=~\operatorname{sqrt((xl(i)-x0)**2+(yl(i)-y0)**2)
                                (sqrt ((xl(\overline{i})-x0)**2+(yl(i)-y0)**2) +
                                sqrt((xu (i) -x0)**2+(yu(i) -y0)**2))
c bin upper_mass(i) into pimtu array
            call binmass(gmin,gmax,dsm,nbinm,
                    upper_mass(i),imass,imassinc)
            pimtu(imass) = pimtu(imass) + imassinc
        return
    end
************************************************************************
*****
**********************************************************************
******
Subroutine centnotok(i)
\(C\) This subroutine does the same thing as the as centok, but for the
c events which have more recently been discriminated against. c Their ivaltmp(i) = 1. It involves 4 "parallel" arrays with \(c\) similar names to the ones in centok. These are always compiled. c When a plot is needed, these arrays are swapped into the places \(c\) of the true arrays, the plot generated, and then they are \(c\) swapped back out so as not to corrupt the real arrays
```

```
implicit real*4 (a-h,o-z)
```

```
implicit real*4 (a-h,o-z)
```

```
    logical debug4
c
    parameter ( nl = 100000 )
    parameter ( n2 = 300 )
    parameter ( n3 = 50 )
    parameter ( n4 = 200 )
cc uses x_value, y value, dist min
    common T local Tnok, x_value,y_value, x_centavg(3), y_centavg(3),
        > disE_min
cc uses xu,yu,xl,yl
    common / image / xu(n1),yu(n1),xl(n1),yl(n1),ivall(n1),
        > ivaltmp(n1)
cc uses radical mass
    common / mult\overline{chan / radical_mass,fragmass(4,2),nchan,int_chan}
CC
    uses x0,y0
    common / phys / blocky,rfov,iwkst,x0,y0,ico,icf,npp,ipolang
Cc
    uses gmin,gmax,dsm,nbinm
    common / psdhist / emin, emax,dse,
        > thmin,thmax,dsth,umin,umax, du, gmin,gmax, dsm,
        > tmin,tmax,dwell,tcomin,tcomax,dwellbc,
        > nbine,nbinm,nt,ntbc,nth,nproj,ymx,
        > ypmin,rpmin,dyp,drp
cc uses radmin,radmax,dsrad,nbinrad
    common / radinf / radmin,radmax,dsrad,nbinrad,iraddist(n4),
        @ ixbindist(n4), iybindist(n4)
c The following 4 arrays are the parallel arrays, which are passed
c only to centcal. They never go to plotting routines under
c these names.
    common / local2 /
    > iraddisttmp(n4),ixbindisttmp(n4),iybindisttmp(n4),
    > pimtutmp(n2)
c*******Here's the real
code************************************************
    cent_xtmp(i) = x_value
    cent_ytmp(i) = y_value
c bin dist_min (centroid distance from beam center) into iraddisttmp
array
    call xbinnr2(radmin,radmax,dsrad,nbinrad,
                            dist_min,irad,iradinc)
                            iraddisttmp(irad)}== iraddisttmp(irad) + iradin
c********************
c bin radial distribution by }x\mathrm{ and }y\mathrm{ to see elipticity in centroids
        call xbinnr2(-radmax,radmax,2*dsrad,nbinrad,
    @ x value - x0,ixbin,ixbininc)
        ixbindisttmp(ixbin) = ixbindisttmp(ixbin) + ixbininc
        call xbinnr2(-radmax,radmax,2*dsrad,nbinrad,
        @ y_value - y0,iybin,iybininc)
        iybindisttmp(iybin) = iybindisttmp(iybin) + iybininc
C***************************
            temp_mass = sqrt ((xl (i) -x0)** 2+(yl(i)-y0)**2)
                            * radical mass /
                            (sqryt((xl(\overline{i})-x0)**2+(yl(i)-y0)**2) +
                            sqrt((xu(i)-x0)**2+(yu(i)-y0)**2))
c bin temporary mass (scalar) into pimtutmp array
            call binmass(gmin,gmax,dsm,nbinm,
                temp mass,imass,imassinc)
            pimtutmp(imas\overline{s}) = pimtutmp(imass) + imassinc
    return
    end
C***********姟********************************************************
******
```

```
C********************************************************************
******
    subroutine swaptemp(idirect)
c This subroutine swaps the temporary arrays defined in centnotok
c into the real arrays (that will be used in the rest of cmlwsa)
c soley for plotting the data that has just recently been
discriminated
    implicit real*4 (a-h,o-z)
    logical debug4
c
    parameter ( nl = 100000)
    parameter ( n2 = 300 )
    parameter ( n3 = 50 )
    parameter ( n4 = 200 )
    parameter (n7 = 400)
c uses all
    common / local2 /
        > iraddisttmp(n4),ixbindisttmp(n4),iybindisttmp(n4),
        > pimtutmp(n2)
c uses ivall
    common / image / xu(n1),yu(n1),xl(n1),yl(nl),ivall(n1),
    ivaltmp(n1)
c uses nbinrad,iraddist,ixbindist,iybindist
    common / radinf / radmin,radmax,dsrad,nbinrad,iraddist(n4),
        @ ixbindist(n4),iybindist(n4)
cc uses nbinm
    common / psdhist / emin,emax,dse,
        > thmin,thmax,dsth,umin,umax,du,gmin,gmax,dsm,
        > tmin,tmax,dwell,tcomin,tcomax, dwellbc,
        > nbine,nbinm,nt,ntbc,nth,nproj,ymx,
        uses pimtu
    common / signal / ecm(n2),th(n2),u(n2), ephetc(n2, 2*n2),
        > ethetc(n2,n2),emcc(n2),pthcmc(n2),pphcmc (2*n2), pmcc(n2),
        > ptltlab(n2),pthvlab(n2),ptcolab(n2),ptecbin(n2),tlab(n2),
        > ph(2*n2),tcolab(n2),ptecabin(n2),pimtu(n2),pylt(n7),
        > pyhv(n7),prlt(n7),prhv(n7)
    dimension istor_rad(n4),istor_xdis(n4)
    dimension istor_ydis(n4),stor_pmt(n2)
c idirect = 0 swap parallel arrays into real arrays
c idirect = 1 swap real arrays back to their permanent spots
c ARRAY LENGTHS:
c iraddist, ixbindist, iybindist : nbinrad
c pimtu :
nbinm
if(idirect.eq. 0 ) then
c copy the true arrays to temporary ones during plotting
do \(i=1\) nbinrad
istor_rad(i) = iraddist(i) !save old arrays
istor xdis(i) = ixbindist(i)
istor_ydis(i) = iybindist(i)
iraddist(i) \(=\) iraddisttmp(i) !put bad values in old arrays
ixbindist(i) \(=\) ixbindisttmp(i)
iybindist(i) \(=\) iybindisttmp(i)
enddo
do \(i=1\), nbinm
stor_pmt(i) \(=\) pimtu(i) !save old arrays
```

```
    pimtu(i) = pimtutmp(i) !put bad values in old arrays
enddo
else !in this case, swap the good values back in
do i = 1,nbinrad
    iraddist(i) = istor_rad(i) !reinstate "good" arrays
    ixbindist(i) = istor xdis(i)
    iybindist(i) = istor_ydis(i)
enddo
do i = 1,nbinm
    pimtu(i) = stor_pmt(i) !reinstate "good" arrays
enddo
endif
return
end
```


CMLWSA.f

```
*deck cmlwsa
    Program cmlwsa
c
C latest unix version 921122 DRC
                    from REC
    This routine reads in raw coincidence data from raw_data.dat, wsa
        conversion factors and TAC info from param.dat and tcal.dat,
        experimental constants from namelist.dat (in namelist format)
        and ADC calibration
c data from adc_cal.dat. It first uses wsztoxy to allow pulse
height
c discrimination and also to convert the raw data to }x\mathrm{ and }
c positions on the detector face. A raw coincidence time can
then
c be calculated. At this point the program allows the center
cf detector to be found, or the user to assume a center of his
c choosing via the namelist. The routine psdclce is then
employed
c to calculate the many quantities of interest from the raw
c coincedence data, such as the cm translational energy, cm
angle
c and mass distributions.
c
    implicit real*4 (a-h,o-z)
    parameter ( n1 = 100000)
    parameter ( n2 = 300)
    parameter ( n3 = 50)
    parameter ( n4 = 200)
    parameter ( n5 = 50)
    parameter ( n6 = 8192)
    parameter (n7 = 400)
            real*4 lctws,lctwz,lctsw,lctsz
        integer light,heavy, chanval
        logical. debug4
        character*40 title
c **************VARIABLE DEFINITIONS**************
c ico: number of post pulse height discriminated events (wsztoxy)
c icf: number of final valid events
c icfn: temporary value of icf in discr subroutine. (icfn.le.icf)
```


c
 ```**********END VARIABLE DEFINITIONS************```

common / adcinf / vadc (n3), adcw1 (n3), adcs1 (n3), adcz1 (n3),
$>\quad \operatorname{adcw} 2(\mathrm{n} 3), \operatorname{adcs} 2(\mathrm{n} 3), \operatorname{adcz} 2(\mathrm{n} 3)$,
$>$ nadc,sw1,w1int,ss1,slint,sz1,
> z1int,sw2,w2int,ss2,s2int,sz2,z2int,
$>\quad \mathrm{cw} 1, \mathrm{cs} 1, \mathrm{cz} 1, \mathrm{cw} 2, \mathrm{cs} 2, \mathrm{cz} 2$
c
c *** Old, Bob-style algorithm factors, saved for posterity
c
c common / algo / dmewu,dmesu,dmczu,dmewl,dmesl,dmczl,
$>$ dacwu,dacsu,dacwl,dacsl,
$>\quad$ uctws, uctwz, uctsw, uctsz,
> lctws,lctwz,lctsw,lctsz

```
*** New, xyzlsq-style factors DJL 11/93
```

common / algo / param(16) ! wasn't that easy?
common / bearn / ebeam, vbeam,dpsd, rbeammax, rbearmin
common / debug / debug4
common / discinf /
ispatdis,isdis,ihlf,yll,yul,isdisp,phil,phi2,
$>$ iraddis,idisan,rlld,ruld,ttl,ttu,
> nphddis,ncartdis,npoldis,nraddis,ncentdis
c
common / display / idfimg(n2,n2),sxmin,sxmax,symin,symax,dsx,
$>$
dsy,nx,ny
C
common / flags / iforce,iabs
c
common / image / xu(nl),yu(n1), xl(nl), yl(nl),ivall(nl),
$>$ ivaltmp(n1)
c
common / multchan / radical_mass,fragmass (4, 2), nchan,int_chan
c
common / pha / puwpha(n6), puspha(n6),
$>\quad$ puzpha(n6), plwpha (n6),
$>\quad$ plspha (n6), plzpha (n6),
$>\quad$ tacpha(n6),ptacpha(n6), upha(n6), pupha(n6),
lpha(n6), plpha(n6), nbinpha, phvpha(n6),pltpha(n6),
$>$ iusephd
C
common / phys / blocky,rfov,iwkst,x0,y0,ico,icf,npp,ipolang
common / psohist / emin, emax, dse,
$>$ thmin,thmax, dsth, umin, umax,du, gmin,gmax,dsm,
$>$ tmin,tmax, dwell,tcomin,tcomax,dwellbc,
$>$ nbine,nbinm,nt,ntbc,nth,nproj,ymx,
$>$ ypmin, rpmin, dyp,drp
c common / radinf / radmin, radmax, dsrad, nbinrad,iraddist (n4), © ixbindist(n4),iybindist(n4)
c
common / results / z_corr (nl),imtu(nl), upper_mass (ni), energy (ni)
c
common / signal / ecm(n2), th (n2),u(n2), ephetc (n2, 2*n2),
 $>\quad$ ptltlab(n2), pthvlab(n2), ptcolab(n2), ptecbin(n2), tlab(n2), $>\quad \mathrm{ph}(2 * \mathrm{n} 2), \mathrm{tcolab}(\mathrm{n} 2), \mathrm{ptecabin}(\mathrm{n} 2), \mathrm{pimtu}(\mathrm{n} 2), \mathrm{pylt}(\mathrm{n} 7)$,
ebeam $=6000 \mathrm{e} 0$
c the maximum KER bin (eV)
emax $=8 e 0$
c the minimum KER bin (eV)
emin $=0 e 0$
c prints diagnostic stuff to screen in subroutine psdclce
debug $4=$.true.
C the distance from the center of the dissociation volume to the
c face of the c-wsa mcp's (mm)
dpsd $=1000$.
c the parent mass (amu)
radical mass $=60 \mathrm{e} 0$
iabs $\equiv 1$, absolutely force the mass to the channel specified
iabs $=0$
c iforce $=1$ force the mass, $=0$ don't
iforce $=0$
c int chan is the channel of interest for calculations
int_chan = 1
iūsephd = 1 ask before using phd.dat, $=0$ don't
iusephd $=1$
c ipolang $=0$ for horizontal polarization, 90 for vertical
polarization
ipolang $=0$
c iuseraw = 1 take calculated positions and time from
raw_disc.dat
iuseraw $=0$
c the number of energy bins
nbine $=100$
c the number of pulse-height distribution bins
nbinpha= 2048

```
c the number of radial centroid distribution bins
        nbinrad= 25
            the number of mass channels
        nchan = 1
    the default number of points to plot for the image
        npp = 2500
    the number of y and r projection bins
            nproj = 200
c the number of flight-time bins
            nt = 200
c the number of coincidence-time bins
            ntbc = 200
c the number of cm-angle bins
            nth}=5
c the number of }x\mathrm{ position bins
            nx = 240
c the number of y position bins
            ny = 240
c the maximum radius of centroid acceptance (mm)
            rbeammax = 1.0e0
    the minimum radius of centroid acceptance (mm)
        rbeammin = 0.0e0
c the radius within which centroids are to be binned radially
(mm)
        radmax = 5.0
    the radius of the field-of-view (mm)
        rfov = 19e0
c the minimum x position (mm)
        sxmin = -25.0
C the maximum x position (mm)
        sxmax = 25.0
c the minimum y position (mm)
        symin = -25.0
    the maximum y position (mm)
        symax = 25.0
    the minimum coincidence time to be binned. (ns)
        tcomin = 0e0
    the maximum coincidence time to be binned (ns)
        tcomax = 500e0
    Eitle
        title = 'FRBM TPS Coincidence Data Analysis'
    the maximum flight-time to be binned (microseconds)
        tmax = 10e0
    :he minimum flight-time to be binned (microseconds)
        tmin = 4e0
E the nominal x-origin of the detector (mm)
        x0 = 0e0
c the nominal y-origin of the detector (mm)
        yo = 0e0
        set up histogram array generator
        call numgen
c read in raw coincidence data from
raw_data.dat
c or phd discriminated data from raw_disc.dat
param.dat
c read in TAC-ADC calibration factors from
        read in experimental constants from namelist.dat
                            (in namelist format)
        output product energy distribution into fort.8
        product angular (theta) distrib.
```

tcal.dat namelist.dat
fort. 8

```
            product angular (phi) distrib.
            product energy-angle distribu.
            product mass spectrum
        light particle TOF
        heavy particle TOF
        coincidence distrib
    output product KER - theta spectra into fort.9
    read in ADC calibration data from adc_cal.dat
        read in phd data from
        phd.dat
            output averaged results into stdout
    if plots are made, they are put into the following
    files via ishell calls:
        raw.img: raw image
        rawtac.img: raw tac spectrum
        taccal.img: tac calibration curve
        coinc.img: image of coincident points
        centroid.img: image of centroid positions
        valtac.img: valid tac spectrum
    read in experimental constants from namelist.dat
    in namelist: format
    open(unit=4,file='namelist.dat',status='old')
    read(4,inp,iostat=ioerr)
    if(ioerr.ne.0) then
        write(*,*)'Error in namelist input!'
    write(6,*) 'Most recent changes: ebm --> ebeam'
    write(6,*) 'ntce,tcocmin,tcocmax,gmin,gmax, eliminated'
    write(6,*) ' DJL 4/94;
    write(6,*) 'nbinm eliminated--DJL 10/94'
        go to }99
        endif
        close(4)
c **************************************************
    open(unit=7,file='title.dat')
    write(*,5030) title
    write(7,5030) title
c **************************************************
    if(nchan.lt.int_chan) then
        write(*,*)'Errōr in namelist input: int_chan > nchan!'
        write(*,*) 'Exiting now!'
        stop
        endif
c
c gmin and gmax are the lower and upper limits for mass plotting
        These are chosen so that the bins are centered on integers
    gmin = 0.5
    gmax = radical mass - 0.5
    nbinm = radical_mass - 1
    vbeam = sqrt( 2*ebeam*1.60219E-19/(radical_mass*1.66056E-27) )
    vbeam = vbeam * 1000. ! convert from m/s to mm/s
        do i = 1,nchan
        if(i.eq.1) fragmass(ch1,light) = chllm
        if(i.eq.2) fragmass(ch2,light) = ch2lm
        if(i.eq.3) fragmass(ch3,light) = ch3lm
        if(i.eq.4) fragmass(ch3,light) = ch4lm
```

```
            if(fragmass(i,light).gt.(radical mass/2)) then
            write (*,*)'Error in mass channel input, enter light masses ',
```

$>$ 'for each channel!'
go to 999
endif
enddo
do $i=1$, nchan
fragmass (i,heavy) = radical_mass - fragmass(i,light)
enddo
c
c
c
c
now call subroutine hist to set up the results histograms
call hist
c
c read in workstation type from standard input, calibration and
c scaling factors from various files, and then raw coincidence
c data from raw_data.dat
c
write (*,*)
write(*,*)'Enter 0 for sun, 1 for TEK, 2 for Xll or 3 for
batch:'
read(*,*) iwkst
c
write (*, *) 'Input files used by cmlwsa:'
write (*,*) 'cmlwsa parameter list ----> namelist.dat'
write (*,*) 'raw charge data $\quad-->$ raw_data.dat'
write (*,*) 'charge to pos factors - -->> param. dat'
write(*,*)'time:adc calibration ----> tcal.dat'
write (*,*)'adc calibration data $-\rightarrow>$ adc_cal.dat'
write(*,*) 'pulse height limits $\quad-\quad->$ phd.dat'
write (*,*)'xy input data (opt.) ---> raw_disc.dat'
c
now see if data has been run through previously. If so, then
read in the $x u, y u, x l, y l, t$ data from raw_disc.dat
If not, data is actually read in in wsztoxy. \bar{f}
if(iuseraw.eq.1) then !Note, raw data.dat is read into
wsztoxy!!
write (*,*)
write (*,*)'!!! Reading in data from raw_disc.dat !!!'
write (*, *)
write(*,*)'If you have altered critical parameters, (for
example'
write (*, *)'namelist.dat, param.dat, tcal.dat, phd.dat,',
$>$ ' or adc_cal.dat), then please'
write (*, *)'start again with iuseraw $=0$ in namelist.dat ...'
write (*,*)
write (*,*)'Reading ... '
open(unit=25, file='raw_disc.dat')
ico $=0$
do $i=1, n 1$
read(25,fmt=*, end=10) xu(i),yu(i),xl(i),yl(i),ttim(i)
ico = ico + 1
enddo
close(25)
10 continue
if(ico.eq.0) then
write (*,*)
write (*, *) 'Error reading in raw disc.dat, ',
$>\quad$ 'trying raw_data.dat ...'
iuseraw $=0$
else
write (*,*)
write (*, *) ico, ' events read in from raw_disc.dat'

```
endif
write(6,*)
write(6,*)'Enter 0 to plot raw image. (I)'
read(5,*) irawplt
if(irawplt.eq.0) call rawplot(1)
    endif ! if iuseraw.eq.1
** Old Bob-style wedge-strip-zig factor read-in
**** Preserved in case we want to re-analyze old N3 or CH2NO2 data
                                    DJL 11/93
    read in wsa scaling factors and TAC info from dff_tcal.dat
:8 open(unit=3,file='dff tcal.dat',status='old')
            read(3,*)dmcwu, dmcsu,dmczu,dmcwl,dmesl,dmezl,
        > dacwu,dacsu,dacwl,dacsl,
                uctws,uctwz,uctsw, uctsz,
                lctws,lctwz,lctsw,lctsz
            ntac =0
            do i = 1,n3
                read(3,*, end=19) tactrue (i),tacval (i)
            ntac = ntac + 1
            enddo
:c continue
            close (3)
    **** End of commented-out Bob-style factors
    **** Now comes the new, xyzlsq-style factors
                            DJL 11/93
Summary of param(i) conversion factors:
as of 2/94: 1,3,5,7 are multiplicative factors for upper
c wedge, upper strip, lower wedge and lower strip. 2,4,6,8 are the
c corresponding additive factors. }9\mathrm{ and 11 are wedge-z crosstalk.
c 10 and 12 are tiltx and tilty corrections for deltaz. 13 and 14
c are multiplicative and additive factors for deltaz. 15 and 16 are
c quadratic corrections (equal for upper and lower) for the wedge and
strip.
18 open(10,file='param.dat',status='old')
    read(10,*) dummy
    do i=1,16
        read(10,*) dummy,param(i)
    end do
```

c
close (10)
c Read in time-to-amplitude converter calibration numbers (and tdelay)
open (12,file='tcal. dat^{\prime}, status='old')
read $(12, *)$ tdelay
ntac $=0$
50 ntac $=$ ntac +1
read ($12, *$, end $=60$) tactrue (ntac), tacval (ntac)
goto 50
60 ntac $=$ ntac -1
close (12)
c
c
c
c
now call subroutine wsztoxy to generate phd's, do pulse height discrimination, convert raw adc data to nominal x, y positions for each coincident event: $x u(i), y u(i)$ and $x l(i), y l(i)$
call wsztoxy

C
write (*, *)
write (*,*)'Enter 0 to plot raw image. (1)'
read(*,*)irawplt
if(irawplt.eq.0) then
call rawplot(1) write (*,*)'Enter 0 if you wish to try another ',
$>$
'param.dat file (1): '
read(*,*)iredo
if(iredo.eq.0) goto 18
endif

```
here is where we ask the user if they would like to make a
            raw_disc.dat file with the data they have calculated from the
            phd discriminated raw data
        write (*,*)
        write(*,*)'Enter O if you wish to write to raw_disc.dat. (1)'
        read(*,*)iwrtft2
        if(iwrtft2.eq.0) then
            open(unit=25,file='raw_disc.dat')
            do i = 1,ico
            write(25,100) xu(i),yu(i), xl(i),yl(i),ttim(i)
            enddo
100 format (5 (2x, f10.5))
            close (25)
        endif
        endif ! from if(iuseraw.ne.1)
c
c plot tac spectrum if desired
```

c
call tactime (1)
c
c now, implement the various spatio-temporal (!!) discrimination
c algorithms. Used to do this in centcal, after finding the
c all the centroid information. The variable ico contains the
c number of post phd-disc coincident events. Use this as a starting
c point for discr.f by setting icf $=$ ico
c
icf = ico
call discr

```
c
now call centcal, to find the center of the image, if necessary,
        and to then discriminate against false coincidences
    call centcal
    now call savdfplt to save an array containing the binned detector
    face image
    call savdfplt ! or not DJL 10/94
    now, given the x,y,t data, call subroutine psdclce (borrowed from
        psdclc.f routine in cmlfrb2) to convert to energy,angle and
mass
    distributions
```



```
    call psdclce
```



```
    do i = 1,ico
        chanval = chanval + ivall(i) !valid events in int_chan
    enddo
    accchanval = 100.*float (chanval)/float(ico)
c
c
c
c
c
c
c
c
c output averaged results to standard output
c
write(*,*)
write(6,4011)ico,icf, frrej*100e0, chanval, accchanval
4011 format(t10,i5,t20,' Raw coincidence events read ',/,
    > t10,i5,t20,' Coincidence events accepted ',/,
    > t10,g10.4,t20,' Percent rejected',/,
    > tl0,i5,t20,' Events accepted in int_chan',/,
    > tl0,g10.4,t20,' Percent accepted in int_chan',/)
        write (6,4012) nphddis, ncartdis, npoldis, nraddis, ncentdis
4012 format(t10,i5,t20,' Events pulse height discriminated',/,
    > t10,i5,t20,' Events cartesian discriminated './',
    > tl0,i5,t20,' Events azimuthal angle discriminated ',/,
    > tlo,i5,t20,' Events radially discriminated ',%,
        write (6,4014)x0,y0
4014 format(t5,'Nominal center of image = ',t ' ' % g10.4, 1x,g10.4,' mm
    > ,//)
        write(6,4024) emltavg(1), emltavg(2), emhvavg(1), emhvavg (2)
4024 format(t5,'Av light particle mass =',t40,glo.4,' amu ',/,
    > tl0,'Standard deviation = ',t40,g10.4,/,
    > t5,'Av heavy particle mass = ', t40,g10.4,' amu ',/,
    > t10,'Standard deviation = ',t40,g10.4)
        write(6,4050) tcoavg(1),tcoavg(2)
```

4050 format (t5, 'Average Coincidence time $={ }^{\prime}, t 40, g 10.4,1 \mathrm{~ns}{ }^{\prime}$, $/$, $>t 10$, 'Standard deviation $=$ ',t40, g10.4) write (6,4060) ecmcavg (1), ecmcavg (2), epk, efw
4060 format ($t 5$, 'Average CM KER $=1, t 40, \mathrm{~g} 10.4, \mathrm{I}^{\prime} \mathrm{eV}$ ',/, $>t 10, '$ Standard deviation $=1, t 40,910.4, \%$ $>$ t5, 'Peak CM KER $=$ ', t40, g10.4,' eV ',/, $>$ t5,' CM KER FWHM = ', t40, g10.4,' eV ') write (6,4070) ecmcaavg (1), ecmcaavg (2)
4070 format (t5,' Approximate KER Calculation: ',/, $>$ t5,'Average $\mathrm{CM} \mathrm{KER}=$ ',t40, g10.4,' eV ', $/$, $>$ t10,'Standard deviation. $=$ ',t40, g10.4)
c call wrtla (8 , tmin, dwell, nt) call wrtarr (8, ptltlab, nt)
C heavy particle TOF call wrtla (8 , tmin, dwell, nt) call wrtarr(8 , pthvlab, nt)
c coincidence TOF spectrum call wrtla (8 , tcomin, dwellbc, ntbc) call wrtarr (8 , ptcolab, ntbc)
c light particle y projection call wrtla (8, -ymx, dyp, nproj) call wrtarr(8, pylt , nproj)
c heavy particle y projection call wrtla (8, -ymx, dyp, nproj) call wrtarr(8, pyhv, nproj)
c light particle radial distribution call wrtla (8, -ymx, drp, nproj) call wrtarr(8, prlt, nproj)
c heavy particle radial distribution call wrtla (8, -ymx, drp, nproj) call wrtarr(8, prhv, nproj) call wrtla (8, gmin, dsm, nbinm) call wrtarr(8, pimtu, nbinm)
c
C Now output (energy, $P(e))$ to fort. 55 for making daf corrected KER plots
call wrtari2 (55, ptecbin, nbine)
Write 2-d KER-theta distribution to fort. 9
write ($9, *$) nbine
write (9,5000) (ecm(i), $i=1$, nbine)

```
    write(9,*) nth
    write (9,5000) (th(i),i=1,nth)
    do j=1,nth
        write(9,5020)(ethetc(i,j),i=1, nbine)
    enddo
c write(19,*) nbine
c write(19,5000)(ecm(i),i=1,nbine)
c write(19,*)2*nth
write(19,5000) (ph(i),i=1,2*nth)
do j = 1,2*nth
    write(19,5020) (ephetc(i,j),i=1,nbine)
    enddo
5000 format(6(1x,f8.4))
5020 format(6(1x,e10.5))
c********************************************
5030 format (a25)
C*******************************************
C
999 continue
    end
```

c
c
c
c
discr.f
subroutine discr
c
c UNIX Version 920722 REC
c This routine performs the various spatial and temporal
discrimination
c routines.
c
implicit real*4 (a-h,o-z)
c
parameter $(\mathrm{n} 1=100000)$
parameter $(\mathrm{n} 2=300$)
parameter $\quad(n 3=50$
parameter $(n 4=200)$
c
common / discinf /
ispatdis,isdis,ihlf,yll,yul,isdisp,phil,phi2,
iraddis,idisan, rlld, ruld,ttl,ttu,
$>$ nphddis,ncartdis,npoldis,nraddis,ncentdis
c
common / image / xu(n1),yu(n1),xi(n1),yl(n1),ival1(n1),
$>$ ivaltmp(n1)
c
common / phys / blocky,rfov,iwkst, x0,y0,ico,icf,npp,ipolang
c
common / results / z_corr (nl),imtu(nI), upper_mass (n1), energy ($n 1$)
c
common / tacinf / tslope,tint,tdelay,
$>\quad$ ttim(n1), tactrue(n3), tacval(n3), ntac
c
data rad,pi / 0.01745329, 3.14159625 /
dimension ivalorig(n1)
c
c
C
c currently, if y is within a range, check if x is and discriminate
C

```
    icforig = icf
```

 do \(i=1, i c o\)
 ivall (i) \(=1 \quad\) !validity flag. ivall \(=1\) implies a good event
 ivaltmp(i) \(=0\) !temporary flag for use in plotting bad events
 enddo
 write (*,*)
 write (*,*)'Enter 0 to perform spatial or temporal ',
 \(>\) 'discrimination. (1)'
 read(*,*)ispatdis
 if(ispatdis.eq.0) then
 write (*,*)
 write (*,*)'Enter 0 to implement cartesian discrimination. (I)'
 read(*,*) isdis
 if(isdis.eq.0) then
 irspds = 1 !don't reset ival arrays if this is first time
 399
if(irspds.eq.0) then
do $i=1$,ico
ivall(i) $=1$!reset validity flag
ivaltmp(i) $=0$!reset temp flag
enddo
icf = icforig \quad !reset number of valid events too
endif
write (*, *)
write (*, *)'Enter 0 for upper half, 1 for lower, 2 for both:'
read(*,*)inlf
write (*, *) 'Enter lower and upper y limits for discrimination'
write (*,*), (absolute value of distance from the center [mm]):'
read(*,*)yll, yul
write (*,*) 'Enter left and right x limits for discrimination:'
read(*,*) xll, xrl
write (*,*)'Enter lower and upper limits for abs (deltaT) in ns'
read(*,*)ttl,ttu
c temporal discrimination
icfn = icf
do $i=1$,ico
if ((ivall(i).eq.1).and.
(e ((abs(ttim(i)).lt.ttl).or.(abs(ttim(i)).gt.ttu)))
then
ivall(i) $=0$
ivaltmp(i) $=1$!this will allow plots for thrown out pts.
icfn = icfn - I
endif
end do
c upper half cartesian discrimination
if(ihlf.eq.0.or.ihlf.eq.2) then
do $i=1$,ico
if(ivall(i).eq.1) then
if((yu(i).lt.yli).or.(yu(i). It.blocky).or.(yu(i).gt.yul).or.
(xu(i).lt.xll).or.(xu(i).gt.xrl)) then
ivall(i) $=0$
ivaltmp(i) $=1$
icfn = icfn - 1

```
            endif
            endif ! ival.eq.1? don't re-discriminate!
            enddo ! event loop, i index
        endif
c lower half cartesion discrimination
    if(ihlf.eq.1.or.ihlf.eq.2) then
        do i = 1,ico
            if(ivall(i).eq.1) then
                if((abs(yl(i)).lt.yll).or.(abs(yl(i)).lt.blocky).or.
        > (abs(yl(i)).gt.yul).or.(xl(i).lt.xll).or.(xl(i).gt.xrl)) then
                ivall(i) = 0
                ivaltmp(i) = 1
                icfn := icfn - 1
            endif
        endif
    enddo
    endif
    write(*,*)
    write(*,*)'No. of cart. disc. rejected points = ',icf - icfn
    ncartdis = icf - icfn
    icf = icf:n
    write(6,*) 'Enter 0 for plotting.'
    read(5,*) iplot
    if (iplot.eq.0) then
        write(*,*)'Enter 0 to plot the spatially discriminated ',
        > 'TAC spectrum. (1)'
        read(*,*)iptv
        if(iptv.eq.0) call tactime(0)
        write(*,*)
        write(*,*)'Enter 0 to plot TAC spectrum of only the ',
        > 'discriminated points. (1)'
        read(*,*)iptv
        if(iptv.eq.0) call tactime(3)
        write(*,*)
        write(*,*)'Enter 0 to plot the pos. of coincident points. (1)'
        read(*,*)iptxyv
        if(iptxyv.eq.0) call rawplot(0)
        write(*,*)
        write (*,*)
        write(*,*)'Enter 0 to plot the pos. of only disc. points. (1)'
        read(*,*)iptxyv
        if(iptxyv.eq.0) call rawplot(3)
        write(*,*)
        write(*,*)'Enter 0 to plot array of coincident points. (1)'
        read(*,*)iptarr
        if(iptarr.eq.0) call plotcoin
        write(*,*)
        write(*,*)'Enter 0 to do cart. discrimination again. (1)'
        read(*,*)irspds
        if(irspds.eq.0) goto 399
    endif ! iplot.eq.0 conditional
    endif ! isdis.eq.0 conditional
    write (*,*)
    write(*,*)'Enter 0 to implement polar spatial ',
        > 'discrimination. (1)'
    read(*,*)isdisp
    if(isdisp.eq.0) then
    icfn = icf
    icforig= icf lok, move on to next discr., with new icforig
    do i = 1,ico
    ivalorici(i) = ivall(i) !preserve ival array for 2nd time
    enddo
    irspds = 1
4 0 2
                                    continue
```

```
    if(irspds.eq.0) then
        icfn = icforig
        icf = icforig
        do i = 1,ico
        ivall(i) = ivalorig(i) !get a fresh start on 2nd time thru
    enddo
    endif
    write(*,*)
    write(*,405)
405 format (2x,'Polar spatial discrimination:',/,
    > 2x,' Enter phil ( acute ) and phi2 ( obtuse ) in degrees',/,
    > 2x,' These angles specify the azimuthal angles relative
    > 2x,' the true center of the detector between which real',/,
    > 2x,' data must fall (defined in the upper half plane as',/,
    > 2x,' you view the detector).')
    read(*,*)phil,phi2
    do i = 1,ico
        ivaltmp(i) = 0
        if(ivall(i).eq.1) then
c check upper half, from +x axis go counterclockwise
        if(xu(i).gt.0e0) then
            phiu = atan(yu(i)/xu(i))/rad
        else
            phiu = atan(yu(i)/xu(i))/rad + pi/rad
        endif
        if((phiu.lt.phil).or.(phiu.gt.phi2)) then
            ivall(i) = 0
            ivaltmp(i) = 1
        endif
c check lower half, from +x axis go clockwise
        if(xl(i).lt.0e0) then
            phil = atan(abs(yl(i))/xl(i))/rad + pi/rad
        else
            phil = atan(abs(yl(i))/xl(i))/rad
        endif
        if((phil.lt.phil).or.(phil.gt.phi2)) then
            ivall(i) = 0
            ivaltmp(i) = 1
        endif
        if(ivall(i).eq.0) icfn = icfn - l
    endif ! if ival.eq.l
enddo
write(*,*)
write(*,*)'No. of azimuth angle rejected points = ',icf - icfn
npoldis = icf - icfn
icf = icfn
write(6,*) 'Enter 0 for plotting.'
read(5,*) iplot
if (iplot.eq.0) then
    write(*,*)'Enter 0 to plot the spatially discriminated ',
    > 'TAC spectrum. (1)'
    read(*,*)iptv
    if(iptv.eq.0) call tactime(0)
    write(*,*)
    write(*,*)'Enter 0 to plot TAC spectrum of only the ',
    > 'discriminated points. (I)'
    read(*,*)iptv
    if(iptv.eq.0) call tactime(3)
    write(*,*)
    write(*,*)'Enter 0 to plot the position of coincident ',
    > 'points. (1)'
    read(*,*) iptxyv
    if(iptxyv.eq.0) call rawplot(0)
```

```
        write(*,*)'Enter 0 to plot the pos. of only disc. points. (1)'
        read(*,*) iptxyv
        if(iptxyv.eq.0) call rawplot(3)
        write(*,*)
        write(*,*)
        write(*,*)'Enter 0 to plot array of coincident points. (1)'
        read(*,*)iptarr
        if(iptarr.eq.O) call plotcoin
        write(*,*)
        write(*,*)'Enter 0 to do polar discrimination again. (1)'
        read(*,*)irspds
        if(irspds.eq.0) go to 402
    end if ! iplot.eq.0
    endif ! isdisp.eq.0
c
    write(*,*)
    write(*,*)'Enter 0 to implement radial discrimination. (1)'
    read(*,*)i.raddis
    if(iraddis.eq.0) then
    icfn = icf
    icforig = icf lok, move on to next discr., with new icforig
    do i = 1,ico
        ivalorig(i) = ivall(i) !preserve ival array for 2nd time
    enddo
    irspds = 1
4 0 7
if(irspds.eq.0) then
    icfn = icforig
    icf = icforig
    do i = 1,ico
        ivall(i) = ivalorig(i) !get a fresh start on 2nd time thru
    enddo
    endif
    write(*,*)
    write(*,*)'Enter 0 for upper half, 1 for lower, 2 for both:'
    read(*,*)ihlf
    write(*,*)
    write(*,*)'Enter 0 to discriminate an annulus, I to accept:'
    read(*,*)idisan
    write(*,*)
    write(*,*)'Enter lower and upper radial limits for ',
        > 'discrimination.'
    write(*,*)' (distance from the center (mm)):'
    read(*,*) rlld, ruld
    if(ihlf.eq.0.or.ihlf.eq.2) then
        do i = 1,ico
        ivaltmp(i) = 0 !must always reinitialize
        if(ivall(i).eq.1) then
            ruu = sqrt(xu(i)**2 + yu(i)**2)
            if(idisan.eq.0) then
                if(ruu.gt.rlld.and.ruu.lt.ruld) then
                    ivall(i) = 0
            ivaltmp(i) = 1
                icfn = icfn - I
                    endif
                    else
                        if(ruu.lt.rlld.or.ruu.gt.ruld) then
                            ivall(i) = 0
            ivaltmp(i) = 1
                                    icfn = icfn - 1
                                endif
                                endif
                endif
    enddo ! event loop, i index
```

```
    endif ! discrim top? conditional
    if(ihlf.eq.1.or.inlf.eq.2) then
    do i = 1,ico
        if(ival1(i).eq.1) then
            rll = sqrt(xl(i)**2 + yl(i)**2)
            if(idisan.eq.0) then
                if(rll.gt.rlld.and.rll.lt.ruld) then
                ival1(i) = 0
    ivaltmp(i) = 1 !no need to reinitialize for lower half :-
                icfn = icfn - 1
                endif ! rll inside?
                else
                if(rll.lt.rlld.or.rll.gt.ruld) then
                ivall(i) = 0
        ivaltmp(i) = 1
                icfn = icfn - 1
                endif ! rll outside?
            endif ! accept inside or outside?
            endif ! ival.eq.1?
    enddo ! event loop, i index
    endif ! discrim bottom? conditional
    write(*,*)
    write(*,*)'No. of radially rejected points = ',icf - icfn
    nraddis = icf - icfn
    icf = icfn
    write(6,*)'Enter 0 for plotting.'
    read(5,*) iplot
    if (iplot.eq.0) then
        write(*,*)
    write(*,*)'Enter 0 to plot the spatial disc. TAC spectrum.(1)'
    read(*,*)iptv
    if(iptv.eq.0) call tactime(0)
    write(*,*)
    write(*,*)'Enter 0 to plot TAC spectrum of only the ',
    > 'discriminated points. (1)'
    read(*,*)iptv
    if(iptv.eq.0) call tactime(3)
    write(*,*)
    write(*,*)'Enter 0 to plot the pos. of coincident points. (1)'
    read(*,*) iptxyv
    If(iptxyv.eq.0) call rawplot(0)
    write(*,*)
    write(*,*)'Enter 0 to plot the pos. of only disc. points. (1)'
    read(*,*)iptxyv
    if(iptxyv.eq.0) call rawplot(3)
    write(*,*)
    write(*,*)'Enter 0 to plot array of coincident points. (1)'
    read(*,*)iptarr
    iE(iptarr.eq.0) call plotcoin
    write (*,*)
    write(*,*)'Enter 0 to do radial discrimination again. (1)'
    read(*,*)irspds
    if(irspds.eq.0) go to 407
    end if ! iplot.eq.0
endif ! iraddis.eq.0
    endif ! ispatdis.eq.0 (the big one)
c
    return
    end
```


hist.f

*deck hist.f
Subroutine hist
c
c
c
c
c
c
unix version 911114 REC
this subroutine sets up the results histograms for the
cmlwsa.f program
implicit real*4 (a-h,o-z)
parameter ($\mathrm{nl}=100000$)
parameter ($n 2=300$)
parameter (n3 $=50$)
parameter $(n 4=200$)
parameter ($n 5=50$)
parameter ($n 7=400$)
logical debug4
common / beam / ebeam, vbeam,dpsd, rbeammax, rbeammin
common / debug / debug 4
common / display / idfimg(n2,n2),sxmin,sxmax,symin,symax,dsx,
$>$ dsy,nx,ny
common / fov / xfov(n4),yfov(n4),nfov
common / phys / blocky,rfov,iwkst, x0,y0,ico,icf,npp,ipolang
common / psdhist / emin, emax, dse,

data pi,degree / 3.14159265,57.29577951 /
do $5 i=1,3$
ecmcaavg(i) $=0$ e0
ecmcavg(i) $=0 e 0$
emitavg(i) $=0 \mathrm{e} 0$
emhvavg(i) $=0 \in 0$
tltavg(i) $=0$ eo
thvavg (i) $=0$ e0
tcoavg (i) $=0 \mathrm{e} 0$
5 continue
c

```
c prepare for histogramming of the translational energy
distributions
c
c first generate angular distribution arrays
c
    thmin = 0e0
    thmax = pi*degree
    phminc = 0e0
    phmaxc = 2e0*pi*degree
    call vsets ( nth, pthcmc, 1, 0e0 )
    call vsets ( 2*nth, pphemc, 1, 0e0 )
    dsth = ( thmax - thmin )/float(nth )
    call grsl ( nth , thmin , dsth, th )
    call grsl ( 2*nth , phminc , dsth, ph ) !phi array of same bin
size
c
c generate translational energy distribution array
    call vsets ( nbine, ptecbin, 1, 0e0 )
    call vsets ( nbine, ptecabin, l, 0e0 )
    dse = ( emax - emin )/( nbine )
    call grsl ( nbine, emin , dse, ecm )
c
    position arrays for each particle
    dsx = ( sxmax - sxmin )/(nx)
        dsy = ( symax - symin )/(ny)
    initialize the 2-d arrays P(ecm,theta) and P(ecm,phi)
    call asets( nbine, nth , ethetc , 0e0 )
    call asets( nbine, 2*nth , ephetc , 0e0 )
c
c
c
    call vsets(nbinm,pmcc,1,0e0)
    call vsets(nbinm,pimtu,1,0e0)
    dsm = ( gmax - gmin )/(nbinm)
    call grsi( nbinm, gmin, dsm, emcc)
c
c initialize time of arrival arrays for both products
c and the coincidence time array.
    call vsets(nt,ptltlab,1,0e0)
    call vsets(nt,pthvlab,1,0e0)
    call vsets(ntbc,ptcolab,1,0e0)
    dwellbc = ( tcomax - tcomin )/( ntbc )
    dwell = ( tmax - tmin )/( nt )
    call grsl( nt , tmin , dwell , tlab )
    call grsi( ntbc, tcomin, dwellbc, tcolab)
c
c prepare detector face array for plots
c
    xmax = sxmax
    xmin = sxmin
    ymax = symax
    ymin = symin
    nfov = n4/2
    dfov = ( 2eo*pi )/float( nfov - 1 )
    do 10 i = 1,nfov
            xfov(i) = rfov*cos( float(i-1)*dfov )
            yfov(i) = rfov*sin( float(i-1)*dfov )
    10 continue
c
```

c prepare r and y arrays for both light and heavy particles
call vsets (nproj, pylt, 1, 0e0)
call vsets (nproj, pyhv, $1,0 e 0$)
call vsets (nproj, prlt, 1, 0e0)
call vsets(nproj, prhv, 1, 0e0)
ymx $=y m a x$
ypmin $=0 e 0$
rpmin $=0 e 0$
$d y p=2 \star y m x /(n p r o j)$
$\operatorname{drp}=2 * y m x /(n p r o j)$
c
c
I don't know why ypart and rpart arrays exist. Must
be for histerical reasons. Trash them for now.
call grsl(nproj, ypmin, dyp, ypart)
call grsl(nproj, rpmin, drp , rpart)
return
end

phaplt.f

*deck phaplt
Subroutine phaplt
c
$c \quad$ unix version 920229 REC
This subroutine plot raw tac data into pha spectrum
implicit real*4 (a-h,0-z)
c
parameter $(\mathrm{n} 1=100000)$
parameter (n3 $=50$)
parameter ($\mathrm{n} 6=8192$)
character*40 title
$=$
common / pha / puwpha(n6), puspha(n6),
$>\quad$ puzpha (n6),plwpha(n6),
$>\quad$ plspha(n6),plzpha(n6),
$>\quad$ tacpha (n6), ptacpha(n6), upha (n6), pupha(n6),
$>\quad$ lpha(n6),plpha(n6),nbin,phvpha(n6),pltpha(n6),
> iusephd
c
common / phys / blocky, rfov,iwkst, $x 0, y 0, i c 0, i c f, n p p, i p o l a n g$
c
common / words / title
call opngks
c Plot Upper W PHA
call setusv('PB', 2)
call agsetc ('LABEL/NAME.','I')
call agseti ('LINE/NUMBER.',100)
call agsetc ('IINE/TEXT.','No. of Counts\$')
call agsetc ('IABEL/NAME.', 'B')
call agseti ('IINE/NUMBER.', -100)
call agsetc ('LINE/TEXT.','Upper W PHD (ADC units)\$')
call ezxy (upha, puwpha, nbin,title)
c Plot Upper S PHA
call setusv ('PB', 2)
call agsetc ('LABEL/NAME.','L')
call agseti ('LINE/NUMBER.',100)
call agsetc ('LINE/TEXT.','No. of Counts\$')
call agsetc ('LABEL/NAME.','B')
call agseti ('LINE/NUMBER.', -100)
call agsetc ('IINE/TEXT.','Upper S PHD (ADC units)\$')
call ezxy (upha,puspha,nbin,title)
C Plot Upper Z PHA
call setusv('PB',2)
call agsetc ('LABEL/NAME.','L')
call agseti ('LINE/NUMBER.',100)
call agsetc ('LINE/TEXT.','No. of Counts\$')
call agsetc ('LABEL/NAME.', 'B')
call agseti ('LINE/NUMBER.', -100)
call agsetc ('LINE/TEXT.','Upper Z PHD (ADC units)\$')
call ezxy (upha,puzpha,nbin,title)
c Plot Lower W PHA
call setusv('PB',2)
call agsetc ('LABEL/NAME.', 'I')
call agseti ('LINE/NUMBER.',100)
call agsetc ('IINE/TEXT.','No. of Counts\$')
call agsetc ('LABEL/NAME.','B')
call agseti ('LINE/NUMBER.',-100)
call agsetc ('LINE/TEXT.','Lower W PHD (ADC units)S')
call ezxy (lpha,plwpha, nbin,title)
c Plot Lower S PHA
call setusv('PB',2)
call agsetc ('LABEL/NAME.','L')
call agseti (${ }^{\prime}$ LINE/NUMBER. ${ }^{1}, 100$)
call agsetc ('LINE/TEXT.', 'No. of Counts\$')
call agsetc ('LABEL/NAME.', 'B')
call agseti ('LINE/NUMBER.', -100)
call agsetc ('LINE/TEXT.','Lower S PHD (ADC units)\$')
call ezxy (lpha,plspha, nbin,title)
c Plot Lower Z PHA
call setusv ('PB', 2)
call agsetc ('LABEL/NAME.', 'L')
call agseti ('IINE/NUMBER.',100)
call agsetc ('IINE/TEXT.','No. of Counts\$')
call agsetc ('LABEL/NAME.','B')
call agseti ('IINE/NUMBER.',-100)
call agsetc ('LINE/TEXT.','Lower Z PHD (ADC units)\$')
call ezxy (lpha,plzpha, nbin,title)
c Plot Upper Sum PHA
call setusv('PB',2)
call agsetc ('LABEL/NAME.','L')
call agseti ('LINE/NUMBER.',100)
call agsetc ('LINE/TEXT.','No. of Counts\$')
call agsetc ('LABEL/NAME.','B')
call agseti ('LINE/NUMBER.', -100)
call agsetc ('LINE/TEXT.','Upper Sum PHD (ADC units)\$')
call ezxy (upha, pupha,nbin,title)
c Plot Lower Sum PHA
call setusv('PB',2)
call agsetc ('LABEL/NAME.', 'L')
call agseti ('LINE/NUMBER.',100)
call agsetc ('IINE/TEXT.','No. of Counts\$')
call agsetc ('LABEL/NAME.', 'B')
call agseti ('LINE/NUMBER.',-100)
call agsetc ('LINE/TEXT.','Lower Sum PHD (ADC units)s')
call ezxy (lpha,plpha,nbin,title)
c Plot TAC PHA
call setusv('PB', 2)
call agsetc ('LABEL/NAME.','L')
call agseti ('LINE/NUMBER.',100)
call agsetc ('LINE/TEXT.','No. of Counts\$')
call agsetc ('LABEL/NAME.','B')

```
call agseti ( 'LINE/NUMBER.',-100)
call agsetc ( 'IINE/TEXT.','TAC PHD (ADC units)$')
call ezxy (tacpha,ptacpha,nbin,title)
call clsgks
ierr = system( 'mv gmeta pha.img' )
if(iwkst.eq.0) ierr = system( 'ictrans -d sunview pha.img' )
if(iwkst.eq.1) ierr = system( 'ictrans -d t4010 pha.img')
if(iwkst.eq.2) ierr = system( 'ictrans -d Xll -bell pha.img' )
return
end
```

c

plotcentroid.f

```
c
This file contains four subroutines, namely:
    plotcent creates scatter plot of centroids
    plotcont contour plot of centroid distribution
    plotsurf mesh surface plot of centroid distribution
    plotrad radial distribution of centroids
                                DJL 4/94
****************************************************************************
*****
            subroutine plotcent(ivalid)
        common / words / title
            dimension icentpos(n2,n2)
            dimension rminx(n4),rminy(n4)
            dimension ithreshdist(n2)
c
            data pi,degree / 3.14159265,57.29577951 /
            data ch1,ch2,ch3,ch4,light,heavy / 1, 2, 3, 4, 1, 2/
```

```
c
using the x,y data in common / centdata /, bin into a position
array icentpos(n2,n2)
xbin = 2 * rbeammax/float(nx)
ybin = 2 * rbeammax/float(ny)
put the centroids of valid events (ivall=1) into the
        position array within rbeammax
    if(ivalid.eq.0) then !normal plot of valid centroids
    do i = 1,ico
            if (ivall(i).eq.1) then
                ixubin = nint((cent_x(i) - x0)/xbin + nx/2 + 0.5)
            iyubin = nint((cent_y(i) - y0)/ybin + ny/2 + 0.5)
        if((ixubin.ge.1).and. (ixubin.le.240).and.
    > (iyubin.ge.1).and.(iyubin.le.240)) then
            iwin = iwin + 1
            icentpos(ixubin,iyubin) = icentpos(ixubin,iyubin) + 1
            endif
            endif
    enddo
    elseif(ivalid.eq.3) then
        do i = 1,ico
            if (ivaltmp(i).eq.1) then !plot recently discr. centroids
                ixubin = nint((cent_x(i) - x0)/xbin + nx/2 + 0.5)
                iyubin = nint((cent-y(i) - y0)/ybin + ny/2 + 0.5)
        if((ixubin.ge.1).and. (ixubin.le.240).and.
    > (iyubin.ge.1).and.(iyubin.le.240)) then
            iwin = iwin + 1
            icentpos(ixubin,iyubin) = icentpos(ixubin,iyubin) + I
            endif
        endif
        enddo
    else
    stop 'check plotcentroid calling routine for argument error'
    endif !if (ivalid.eq.0)
        write(*,*)
    write(*,*)iwin,' valid events found within the ', rbeammax,
    > ' mm test radius.'
        maxthreshdist = 1
        do i = 1,nx
            do j = 1,ny
            if((icentpos(i,j).gt.0).and.(icentpos(i,j).le.n2)) then
                ithreshdist(icentpos(i,j)) = ithreshdist(icentpos(i,j)) + 1
                if(icentpos(i,j).gt.maxthreshdist) then
                    maxthreshdist = icentpos(i,j)
            endif
            endif
        enddo
    enddo
    write(*,*)
    nbinspos = nx*ny
99 write(*,*)'Out of a possible ', nbinspos, ' bins, there are:'
    do i = 1,maxthreshdist
        if(ithreshdist(i).gt.0) then
            write(*,*)ithreshdist(i), ' bins with ', i, ' centroids'
            endif
    enddo
c
c
                    now plot the image
    d4 = ( 2e0*pi )/float( n4 - 1 )
    do }100i=1,n
```

```
            mminx(i) = rbeammax*cos( float(i-1)*d4 ) + x0
            mminy(i) = rbeammax*sin( float(i-1)*d4 ) + y0
            continue
            xpmax = rbeammax + x0
            xpmin = xpmax - (2*rbeammax)
            ypmax = rbeammax + y0
            ypmin = ypmax - (2*rbeammax)
            call opngks
            call setusv('PB',2)
            call agseti('FRAME.',2)
            call agsetf('X/MAXIMUM.',xpmax)
            call agsetf('X/MINIMUM.',xpmin)
            call agsetf('Y/MAXIMUM.',ypmax)
            call agsetf('Y/MINIMUM.',ypmin)
            call agseti('SET.',-1)
            call agsetc('LABEL/NAME.','I')
            call agseti('LINE/NUMBER.',100)
            call agsetc('LINE/TEXT.','Y [mm]$')
            call agsetc('LABEL/NAME.','B')
            call agseti('IINE/NUMBER.',-100)
            call agsetc('LINE/TEXT.',
            @ 'X [mm] Scatter Plot of Valid Centroids$')
            call ezxy(rminx, rminy,n4,title)
            call points(rminx, mminy,n4,-1,0)
            ithresh = 1
            write(*,*)
            write(*,*)'Enter the plotting threshold:'
            read(*,*)ithresh
c put crosshairs at x0,y0
    call line (x0, (y0+rbeammax), x0, (y0-rbeammax))
    call line ((x0-rbeammax), y0, (x0+rbeammax), y0)
c now plot all the centroid bins with greater than 'ithresh'
    do i = 1,nx
            do j = 1,ny
            if(icentpos(i,j).ge.ithresh) then
                    xpk = (float(i - nx/2) - 0.5)*xbin + x0
                    ypk = (float(j - ny/2) - 0.5)*ybin + y0
                    call point(xpk,ypk)
            endif
            enddo
    enddo
c
    call clsgks
    ierr = system( 'mv gmeta centroid.img' )
    if(iwkst.eq.0) ierr = system('ictrans -d sunview
centroid.img' )
            if(iwkst.eq.1) ierr = system( 'ictrans -d t4010 centroid.img'
)
            if(iwkst.eq.2) ierr =
        @ system( 'ictrans -d X11 -bell centroid.img' )
            write(*,*)
            write(*,*)'Enter 0 if you want to try another threshold. (1)'
                    read(*,*)iathr
                    if(iathr.eq.0) go to 99
                    return
            end
C
```



```
\star****
    subroutine plotcont
c
c
unix version 930318 DRC
```

c
c
this subroutine bins and plots the centroids as a contour
plot in the centcal routine
implicit real*4 (a-h,o-z)
parameter ($n 1=100000$)
parameter ($\mathrm{n} 2=300$)
parameter (n4 = 200)
parameter (ns $=25$)
character*40 title
common / beam / ebeam, vbeam, dpsd, rbeammax, rbeammin
common / centdata / cent_x(nl), cent_y(n1)
common / display / idfimg (n2, n2), sxmin,sxmax,symin,symax,dsx, dsy,nx,ny
common / image / xu(nl), yu(nl), xl(n1), yl(nl),ivall(nl),
$>$ ivaltmp(n1)
common / multchan / radical_mass,fragmass $(4,2)$, nchan, int_chan
common / phys / blocky, rfov,iwkst, x0,y0,ico,icf,npp,ipolang
common / words / title
dimension centpos (n5,n5)
dimension ithreshdist(n5)
data pi, degree / 3.14159265,57.29577951/
data ch1,ch2,ch3,ch4, light, heavy / 1, 2, 3, 4, 1, 2 /
using the x, y data in common / centdata /, bin into a position array centpos (n5,n5)

> nxcont $=\mathrm{n} 5$
> nycont $=\mathrm{n} 5$

```
do i = 1,nxcont
    do j = 1,nycont
        centpos(i,j) = 0.0
    enddo
    enddo
    xbin = 2.0 * rbeammax/float(nxcont)
    ybin = 2.0 * rbeammax/float (nycont)
```

put the centroids of valid events (ivall=1) into the
position array within rbeammax
do $i=1, i c o$
if(ivall(i).eq.1) then
ixubin $=$ nint $(($ cent_x $(i)-x 0) / x b i n+$ float (nxcont) $/ 2+0.5)$
iyubin $=$ nint $(($ cent_y $(i)-y 0) / y b i n+f l o a t$ (nycont) $/ 2+0.5)$
if((ixubin.ge.1). and. (ixubin.le.nxcont). and.
(iyubin.ge.1).and. (iyubin.le.nycont)) then
iwin = iwin + 1
centpos(ixubin,iyubin) $=$ centpos(ixubin,iyubin) +1.0
endif
endif
enddo
write (*, *)

```
        write(*,*)iwin,' valid events found within the ', rbeammax,
        > 'mm test radius.'
        maxthreshdist = 1
        do i = 1,nxcont
            do j = 1,nycont
            if(int(centpos(i,j)).gt.maxthreshdist) then
                maxthreshdist = int(centpos(i,j))
            endif
            enddo
        enddo
        ibinsize = int(maxthreshdist/n5) + 1
        numbins = n5
        do i = 1,nxcont
            do j = 1,nycont
            if(int(centpos(i,j)/ibinsize).gt.0) then
                ithreshdist(int(centpos(i,j)/ibinsize)) = 1 +
    >
            endif
            enddo
        enddo
        write(*,*)
        nbinspos = nxcont*nycont
        write(*,*)'Out of a possible ', nbinspos, ' bins, there are:'
        do i = 1, numbins
            if(ithreshdist(i).gt.0) then
            write(*,*)'Number of bins with between ',(ibinsize*(i-1)),
        > ' and ',(ibinsize*i),' is : ',ithreshdist(i)
            endif
    enddo
            now plot the centroid image with contours
now get set for contours
    call opngks
    ierror = 0
    call GSELNT(0)
c now generate contours
    distmax = float (maxthreshdist)
    contspace = int(0.01*float(maxthreshdist)) * 10.0
    call WTSTR (0.5, 0.975,
    > 'Contour plot of centroids',2,0,0)
    call CONREC (centpos, nxcont,nycont, nycont,
    > 0.0,distmax, contspace,0,0,0)
    call FRAME
    if(ierror.ne.0) then
        write(*,*)
        write(*,*)'ERROR in CONREC!!!!!''
    endif
    do i = 1,nxcont
        do j = 1,nycont
            write(91,*)i,j,centpos(i,j)
        enddo
    enddo
    call clsgks
    ierr = system( 'mv gmeta centcont.img' )
    if(iwkst.eq.0) ierr = system( 'ictrans -d sunview
centcont.img')
```

c
c
c
c
c
c

```
    if(iwkst.eq.1) ierr =
    @ system('ictrans -d t4010 centcont.img')
    if(iwkst.eq.2) ierr =
    @ system( 'ictrans -d Xll -bell centcont.img' )
    return
    end
```

c
c

subroutine plotsurf
unix version 930321 DRC
this subroutine bins and plots the centroids as a surface
plot in the centcal routine
implicit real*4 (a-h,o-z)
parameter $(\mathrm{n} 1=100000)$
parameter $(n 2=300)$
parameter $(n 4=200)$
parameter $(n 5=30$)
character*40 title
common / beam / ebeam, vbeam, dpsd, rbeammax, rbeammin

```
    nxcont = n5
```

 nycont \(=\) n5
 c

```
    do i = 1,nxcont
    do j = 1,nycont
        zheight(i,j) = 0.0
```

```
        enddo
    enddo
    xbin = 2.0 * rbeammax/float (nxcont)
    ybin = 2.0 * rbeammax/float (nycont)
    do i = I,nxcont
        xx(i) = (i-0.5)*xbin + x0 - rbeammax
    enddo
    do i = 1,nycont
        yy(i) =(i-0.5)*ybin + y0 - rbeammax
        enddo
put the centroids of valid events (ivall=1) into the
            position array within rbeammax
        do i = 1,ico
            if(ivall(i).eq.1) then
            ixubin = nint ((cent_x(i) - x0)/xbin + float (nxcont)/2 + 0.5)
            iyubin = nint((cent_y(i) - y0)/ybin + float(nycont)/2 + 0.5)
            if((ixubin.ge.1).and.(ixubin.le.nxcont).and.
    > (iyubin.ge.1).and.(iyubin.le.nycont)) then
                iwin = iwin + 1
                zheight(ixubin,iyubin) = zheight(ixubin,iyubin) + 1.0
            endif
        endif
        enddo
        write(*,*)
        write(*,*)iwin,' valid events found within the ', rbeammax,
    > ' mm test radius.'
        zheightmax = 1
        do i = 1,nxcont
            do j = 1,nycont
            if(zheight(i,j).gt.zheightmax) then
                zheightmax = zheight(i,j)
            endif
        enddo
        enddo
normalize so zheightmax is now 2.0*n5
    do i = 1,nxcont
        do j = 1,nycont
            zheight(i,j) = zheight(i,j) * n5 / zheightmax
        enddo
    enddo
    sight(3) = 5.0*n5
        now plot the centroid image as a surface
now get set for surface
    call opngks
    ierror = 0
    set surface parameters to suppres the FRAME call and draw contours
    IFR=0
    IDRZ = I
        select normalization transformation number 0 (?)
```

```
    call GSELNT(0)
    use text alignment to center string, set character height
    call GSTXAL (2,3)
    call GSCHH(0.015)
    looking from bottom of front of detector
        sight(1) = -4.0 * rbeammax
    sight(2) = -5.0 * rbeammax
now write the text, generate surface
    call GTX (0.5, 0.975,
    >
    call SRFACE(xx,yy,zheight,scratch,n5,n5,n5,sight,0.0)
    if(ierror.ne.0) then
            write(*,*)
            write(*,*)'ERROR in CONREC!!!!!'>
    endif
looking from left of front of detector
    sight(1) = 5.0 * rbeammax
    sight (2) = -4.0 * rbeammax
now write the text, generate surface
    call GTX (0.5, 0.975,
    >
                        'CENTROID DENSITY MAP FROM BOTTOM/RIGHT/ERONT')
    call SRFACE(xx,yy, zheight,scratch,n5,n5,n5,sight,0.0)
    if(ierror.ne.0) then
        write(*,*)
            write(*,*)'ERROR in CONREC!!!!!!'
        endif
    write(91,*) sight
    write(91,*)
    write(91,*) xx
    write(91,*)
    write(91,*) yy
    write(91,*)
    write(91,*) zheightmax
    write(91,*)
    write(91,*) zheight
    call clsgks
    ierr = system( 'mv gmeta centsurf.img' )
    if(iwkst.eq.0) ierr =
    (d system('ictrans -d sunview centsurf.img' )
    if(iwkst.eq.1) ierr =
    a system( 'ictrans -d t4010 centsurf.img' )
    if(iwkst.eq.2) ierr =
    @ system( 'ictrans -d X11 -bell centsurf.img' )
    return
    end
```

c
c
c

```
c
***********************************************************************
*****
    subroutine plotrad
                    unix version 921201 DRC
    this subroutine plots the radial histogram of the centroids
    as found in the centcal routine, with options for
    thresholding the image, etc.
        implicit real*4 (a-h,o-z)
        parameter ( n4 = 200 )
    character*.40 title
        common / phys / blocky,rfov,iwkst,x0,y0,ico,icf,npp,ipolang
        common / radinf / radmin,radmax,dsrad, nbinrad,iraddist(n4),
        @ ixbindist(n4),iybindist(n4)
            common / words / title
C
            dimension radialdistx(3*n4+1),gridpt(3*n4+1)
            dimension radialdisty1(3*n4+1), radialdisty2(3*n4+1)
            dimension xdist(3*n4+1),ydist (3*n4+1)
                    C
            data pi,degree / 3.14159265,57.29577951 /
    using the data in common / radinf /, construct and plot a
            histogram of the results
            nbin = nbinrad
c now plot the histogram, remembering the normalization factor
            for the area found in a given annulus
            xpmax = 1.05*radmax
            xpmin = radmin-0.05*radmax
            ypmin = 0
            ypmax = 1.05
            do i = 1,(3*nbin+1) !radialdistx is the radial coordinate
values
            radialdistx(i) = float(i/3) * radmax/float(nbin)
            enddo
c
    do i = 1,(3*nbin+1)
    if(mod(i,3).eq.1) then !mod(i,3) returns remainder of i/3
        radialdistyl(i) = 0.0
            else !demoninator in radialdistyl is area of anulus!
            radialdistyl(i) = float(iraddist(((i-1)/3) + 1)) /
> (radialdistx(i+1)**2 - radialdistx(i-1)**2)
            endif
    enddo
    ymaxval = 0
    do i = 3,(3*nbin),3 !find maximum in radialdistyl
            if(radialdistyl(i).gt.ymaxval) then
            ymaxval = radialdistyl(i)
            endif
            enddo
    do i = 1,(3*nbin+1) !normalize radialdistyl
            radialdistyl(i) = radialdistyl(i) / ymaxval
            enddo
```

```
c
C*********************************************************
C Insert arrays for radial distribution along x and y axes
c Since we want to see the centroid distributions for both positive
c and negative values of }x\mathrm{ and }y\mathrm{ , creat new set of grid points.
These
c points are spaced at half the resolution of the radial points, but
c cover twice the distance, so the points per bin will be comparable
    do i = 1,(3*nbin+1) !radialdistx is the radial coordinate
values
            gridpt(i) = (float(-nbin) + 2*(float(i/3))) *
radmax/float(nbin)
            enddo
c x axis first
            do i = 1,(3*nbin+1)
                if(mod(i,3).eq.1) then
                xdist(i) = 0.0
                else lassign intensities for histogram along x axis
                xdist(i) = float(ixbindist(((i-1)/3) + l))
            endif
        enddo
        xmaxval = 0 !find maximum
        do i = 3,(3*nbin),3
            if(xdist(i).gt.xmaxval) then
                xmaxval = xdist(i)
            endif
            enddo
c do i = 1,(3*nbin+1) !normalize intensity to 1
c xdist(i) = xdist(i) / xmaxval
c enddo
c now do y axis distribution
        do i = 1,(3*nbin+1)
            if(mod(i,3).eq.1) then
                ydist(i) = 0.0
            else
                ydist(i) = float(iybindist(((i-1)/3) + 1))
            endif
        enddo
        ymaxval = 0
        do i = 3,(3*nbin),3
            if(ydist(i).gt.ymaxval) then
                ymaxval = ydist(i)
            endif
        enddo
c do i = 1,(3*nbin+1) !normalize to 1
c ydist(i) = ydist(i)/ ymaxval
c enddo
```

```
    open(unit = 99)
```

 open(unit = 99)
 do i = 1,nbin
 do i = 1,nbin
 write(99,*)iraddist(i),ixbindist(i),iybindist(i)
 write(99,*)iraddist(i),ixbindist(i),iybindist(i)
 enddo
 enddo
 close (99)
 close (99)
 c*************************end of x,y axes
c*************************end of x,y axes
distributions*******************
distributions*******************
c change normalization factor
c change normalization factor
c

```
```

 do i = 1,(3*nbin+1)
 if(mod(i,3).eq.1) then
 radialdisty2(i) = 0.0
 else !not normalized to area of anulus
 radialdisty2(i) = float(iraddist(((i-1)/3) + l))
 endif
 enddo
 ymaxval = 0
 do i = 3, (3*nbin),3
 if(radialdisty2(i).gt.ymaxval) then
 ymaxval = radialdisty2(i)
 endif
 enddo
 do i = 1, (3*nbin+1)
 radialdisty2(i) = radialdisty2(i) / ymaxval
 enddo
 c
c
c
now plot radial distributions
call opngks
call setusv('PB',2)
call agseti('SET.',1)
call agseti('FRAME.',1)
call agsetc('LABEL/NAME.','L')
call agseti('LINE/NUMBER.',100)
call agsetc('LINE/TEXT.','Normalized Counts [arb]$')
 call agsetc('LABEL/NAME.','B')
 call agseti('LINE/NUMBER.',-100)
 call agsetc('LINE/TEXT.',
(& 'Radius [mm] Centroid Radial Distribution$')
call ezxy(radialdistx,radialdistyl, (3*nbin+1),title)
call setusv('PB',2)
call agsetc('LABEL/NAME.','L')
call agseti('LINE/NUMBER.',100)
call agsetc('LINE/TEXT.','Counts [arb]$')
 call agsetc('LABEL/NAME.','B')
 call agseti('LINE/NUMBER.',-100)
 call agsetc('LINE/TEXT.',
(f 'Radius [mm] Centroid Radial Distribution$')
call ezxy(radialdistx, radialdisty2, (3*nbin+1),title)
call setusv('PB',2)
call agsetc('LABEL/NAME.','L')
call agseti('IINE/NUMBER.',100)
call agsetc('LINE/TEXT.','Counts [arb]$')
 call agsetc('LABEL/NAME.','B')
 call agseti('IINE/NUMBER.',-100)
 call agsetc('LINE/TEXT.',
 @ 'Radius [mm] X AXIS CENTROID DISTS')
 call ezxy(gridpt,xdist,(3*nbin+1),title)
 call setusv('PB',2)
 call agsetc('LABEL/NAME.','L')
 call agseti('IINE/NUMBER.',100)
 call agsetc('LINE/TEXT.','Counts [arb]$')
call agsetc('LABEL/NAME.','B')
call agseti('LINE/NUMBER.',-100)
call agsetc('IINE/TEXT.',
@ 'Radius [mm] Y AXIS CENTROID DISTS')
call ezxy(gridpt,ydist, (3*nbin+1),title)
call clsgks
ierr = system('mv gmeta raddist.img')
if(iwkst.eq.0) ierr = system('ictrans -d sunview raddist.img'
if(iwkst.eq.1) ierr = system('ictrans -d t4010 raddist.img')

```
```

 if(iwkst.eq.2) ierr = system('ictrans -d Xll -bell
 raddist.img')
return
end

```
plotcoin.f
```

*deck plotcoin.f
subroutine plotcoin
c
c unix version 911118 REC
c this subroutine bins and plots the true coincidences as
c found in the centcal routine, with options for thresholding
c the image, etc.
c
implicit real*4 (a-h,o-z)
c
parameter ($\mathrm{nl}=100000$)
parameter (n2 $=300$)
parameter (n3 $=50$)
parameter (n4 = 200)
character*40 title
c
common / display / idfimg (n2,n2),sxmin,sxmax,symin,symax,dsx,
>
dsy,nx,ny
c
common / fov / xfov(n4), yfov(n4), nfov
common / image / xu(n1),yu(n1),xl(n1),yl(n1),ivall(n1),
$>\quad$ ivaltmp (n 1)
c
common / phys / blocky,rfov,iwkst,x0,y0,ico,icf,npp,ipolang
common / tacinf / tslope,tint,tdelay,
$>\quad$ ttim(n1),tactrue (n3),tacval(n3),ntac
c
common / words / title
c using the x, y data in common / image /, bin into a position
C
xref $=($ sxmax - sxmin $) / 2 e 0$
yref $=($ symax - symin $) / 2 e 0$
xbin $=($ sxmax - sxmin $) / f l o a t(n x)$
ybin $=($ symax - symin $) / f l o a t(n y)$
c
write (*, *)'Enter 0 to plot x, y for a specific coinc.
window. (I)'
read(*,*)ipsco
c
c
c
if (ipsco.eq.0) then
continue
do $i=1, n 2$
do $j=1, n 2$
idfimg $(i, j)=0$
enddo
enddo
write (*,*)'Enter lower and upper coinc. times (in nsec)'
read(*,*) ttl,ttu
iwin $=0$

```
```

 do i = 1,ico
 if((abs(ttim(i)).ge.ttl).and.(abs(ttim(i)).le.ttu)) then
 if(ivall(i).eq.1) then
 iwin = iwin + 1
 if(xu(i).le.sxmax.and.xu(i).ge.sxmin) then
 if(yu(i).le.symax.and.yu(i).ge.symin) then
 ixubin = int((xu(i) + xref) /xbin) + 1
 iyubin = int((yu(i) + yref) /ybin) + I
 idfimg(ixubin,iyubin) = idfimg(ixubin,iyubin) + 1
 endif
 endif
 if(xl(i).le.sxmax.and.xl(i).ge.sxmin) then
 if(yl(i).le.symax.and.yl(i).ge.symin) then
 ixlbin = int((xl(i) + xref) /xbin) + l
 iylbin = int((yl(i) + yref) /ybin) + l
 idfimg(ixlbin,iylbin) = idfimg(ixlbin,iylbin) + 1
 endif
 endif
 endif
 endif
 enddo
 write(*,*)iwin,' valid events found within this window'
 else
do i = 1,ico
if(ivall(i).eq.1) then
if(xu(i).le.sxmax.and.xu(i).ge.sxmin) then
if(yu(i).le.symax.and.yu(i).ge.symin) then
ixubin = int((xu(i) + xref) /xbin) + 1
iyubin = int((yu(i) + yref) /ybin) + 1
idfimg(ixubin,iyubin) = idfimg(ixubin,iyubin) + 1
end.if
endif
if(xl(i).le.sxmax.and.xl(i).ge.sxmin) then
if(yl(i).le.symax.and.yl(i).ge.symin) then
ixlbin = int((xl(i) + xref) /xbin) + 1
iylbin = int((yl(i) + yref) /ybin) + 1
id:fimg(ixlbin,iylbin) = idfimg(ixlbin,iylbin) + 1
endif
endif
endif
enddo
endif
now plot the image, if desired
write(*,*)'Enter 0 to plot the image of valid data.(1)'
read(*,*)ivalt
if(ivalt.eq.0) then
continue
call opngks
call setusv('PB',2)
call agseti('FRAME.',2)
call agseti('X/MAXIMUM.',sxmax)
call agseti('X/MINIMUM.',sxmin)
call agseti('Y/MAXIMUM.',symax)
call agseti('Y/MINIMUM.',symin)
call agseti('SET.',-1)
call ezxy(xfov,yfov,nfov,'Scatter Plot of Valid Events\$')
call points(xfov,yfov,nfov,-1,0)
thresh = le0
write(*,*)'Enter the plotting threshold'
read(*,*)ithresh
C mark center
call points (x0,y0,1,-2,0)

```
```

 do i = 1,nx
 do j = 1,ny
 if(idfimg(i,j).ge.ithresh) then
 xpk = (float(i) - 0.5)*xbin - xref
 ypk = (float(j) - 0.5)*ybin - yref
 call point (xpk,ypk)
 endif
 enddo
 enddo
 call clsgks
 ierr = system('mv gmeta coinc.img')
 if(iwkst.eq.0) ierr = system('ictrans -d sunview coinc.img')
 if(iwkst.eq.1) ierr = system('ictrans -d t4010 coinc.img')
 if(iwkst.eq.2) ierr = system('ictrans -d Xll coinc.img')
 write(*,*)'Enter 0 if you want to try another threshold. (1)'
 read(*,*)iathr
 if(iathr.eq.0) go to }9
 write(*,*)'Enter 0 if you want to try another coinc. window
 (1)'
read(*,*)icowin
if(icowin.eq.0) go to 98
endif
return
end

```

\section*{plotmass.f}
subroutine plotmass
\(c\) c
common / words / title
dimension axis_mass \((0: 3 * n 2)\), top_mass \((0: 3 * n 2)\), all_mass \((0: 3 * n 2)\)
c using the mass data in common / signal /, namely, in pimtu,
\(c\) construct and plot a histogram of the results
c
open(22, file='massdist.dat')
do \(i=1, n b i n m\)
write (22,*) i,(pimtu(i) + pimtu(nbinm-i+1))/2. !all data
enddo
close(22)
c
c The data bins are centered on the integers; bin 1 is mass=1, and so on
c (There are no bins for mass \(=0\) or mass = radical mass)
c nbinm = radical_mass - 1; the bin spacing is fixed at dsm = 1
c Histogram points come in triplets:
lst point is top left of bar for the ith point
2nd point is top right of bar
3rd point is bottom right of bar (i.e., \(y\) value is zero)
There is one bonus point at the beginning for the bottom left of the first
c histogram bar; thus the arrays go from 0 to \(3 *_{n}\), for a total of \(3 *_{n+1}\)
c
axis mass (0) \(=0.5\)
do \(i^{-}=1\), nbinm*3
axis_mass \((i)=0.5+((i+1) / 3)\)
enddo
c
top_mass \((0)=0\)
all mass \((0)=0\)
do \(\bar{i}=1, \mathrm{nbinm}\)
top_mass (3*i-2) = pimtu(i)
top_mass \((3 * i-1)=\) pimtu(i)
topmass \(\left(3 \star_{i}\right)=0.0\)
all_mass \(\left(3 *_{i}-2\right)=(\) pimtu \((i)+\operatorname{pimtu}(n b i n m+1-i)) / 2\)
all_mass \((3 * i-1)=(\) pimtu \((i)+\) pimtu(nbinm+1-i) ) / 2
all_mass(3*i) \(=0.0\)
enddo
c
c now plot mass spec graphs: top_mass and all_mass vs. axis_mass
call opngks
call setusv('PB',2)
call agseti('SET.',1)
call agseti ('FRAME.',1)
call agsetc('LABEL/NAME.','L')
call agseti ('LINE/NUMBER.',100)
call agsetc ('LINE/TEXT.','Top Half of Detector Raw Counts\$')
call agsetc ('LABEL/NAME. ' \({ }^{\prime} \mathrm{B}^{\prime}\) )
call agseti('LINE/NUMBER.',-100)
call agsetc('LINE/TEXT.',
@ 'Mass [amu] Mass Spec, Top Half of Detector Onlys') call ezxy (axis mass,top_mass,nbinm*3+1,title)
call setusv('P政', 2)
call agsetc ('LABEL/NAME.','L')
call agseti('LINE/NUMBER.',100)
call agsetc('LINE/TEXT.','All Raw Counts\$')
call agsetc ('LABEL/NAME.', 'B')
call agseti ('LINE/NUMBER.', -100)
call agsetc('LINE/TEXT.',
@ 'Mass [amu] Raw Mass Spectrum, All DataS')
call ezxy(axis_mass,all_mass,nbinm*3+1,title)
call cisgks
ierr = system( 'mv gmeta massdist.img' )
```

if(iwkst.eq.0) ierr = system('ictrans -d sunview massdist.img'
if(iwkst.eq.1) ierr = system('ictrans -d t4010 massdist.img')
if(iwkst.eq.2) ierr = system('ictrans -d X11 massdist.img')
return
end

```

\section*{PSDCLCE.f}
```

 subroutine psdclce
 c

```

```

c
c
c
c
c This subroutine is adapted from the psdclc.f subroutine in the
c cmlfrb2 program.
c It takes results of raw coincidence data and converts to the
c center-of-mass quantities and bins the results as desired.
c MODIFIED 12/11/92 by DLO to use vertically polarized data.
c
C------------
c
ipolang: laser polarization angle (0 = horiz., }90=\mathrm{ vert.)
radical_mass : parent mass
common block signal
ecm(nbine) is the cm trans. energy array
th(nth) is the vector which defines the cm angle bins
ethetc(nbine, nth) is the array of cm energy vs. angle
erived
c from the experimental observables
c imtu(nbinm) is the integer mass dist. that is negative
imtu(noinm) is the integer mass dist. that is negative Also
remember that imtu and pimtu only refer to the upper half.
imtu is an array which gives this info for all events,
whereas pimtu will be used by plotmass and at any given
point in the code may only represent a subset of the valid
data. That's why you need them both. imtu is created in
centcal and is never modified later. pimtu is frequently
modified throughout the code.
pimtu(nbinm) is the mass distribution binned to nint
is always positive
ptltlab(nt) is the toa distribution for light particle.
pthvlab(nt) is the toa distribution for heavy particle.
ptcolab(ntbc) is the coinc. time distribution
ptecbin(np) is the calculated cm energy distribution
tlab(nt) is the toa array
tcolab(ntbc) is the time-of-coincidence array
C
C-------
c
implicit real*4 (a-h,o-z)
parameter (n1 = 100000)
parameter (n2 = 300)
parameter (n3 = 50)
parameter (n5 = 50)

```
parameter \((\mathrm{n} 7=400)\)
    logical debug4
    common / beam / ebeam, vbeam,dpsd, rbeammax, rbeammin
    common / debug / debug4
    common / flags / iforce,iabs
    common / image / \(x u(n 1), y u(n 1), x l(n 1), y l(n 1), i v a l l(n 1)\),
    \(>\quad\) ivaltmp(n1)
    common / multchan / radical_mass,fragmass (4, 2), nchan,int_chan
    common / phys / blocky,rfov,iwkst,x0,y0,ico,icf,npp,ipolang
    common / psdhist / emin,emax,dse,
    \(>\) thmin,thmax,dsth, umin, umax, du, gmin, gmax, dsm
    \(>\quad\) tmin, tmax, dwell,tcomin,tcomax, dwellbc,
    \(>\) nbine, nbinm,nt,ntbc,nth,nproj,ymx,
    \(>\) ypmin, rpmin,dyp,drp
common / results / z_corr(n1),imtu(n1), upper_mass(n1), energy (n1)
    common / signal / ecm(n2),th(n2),u(n2), ephetc(n2,2*n2),
    \(>\quad\) ethetc \((n 2, n 2)\), emcc \((n 2)\), pthcmc \((n 2), \operatorname{pphcmc}(2 * n 2), \operatorname{pmcc}(n 2)\),
    \(>\quad\) ptltlab(n2), pthvlab(n2), ptcolab(n2), ptecbin(n2), tlab(n2),
    \(>\quad \mathrm{ph}(2 \star n 2), t \operatorname{colab}(\mathrm{n} 2), \mathrm{ptecabin}(\mathrm{n} 2), \operatorname{pimtu}(\mathrm{n} 2), \mathrm{pylt}(\mathrm{n} 7)\),
    \(>\quad\) pyhv(n7),prlt(n7),prhv(n7)
    common / stat / tltavg(3), thvavg (3), tcoavg (3), ecmcavg (3),
    \(>\) ecmcaavg (3), emltavg (3), emhvavg (3)
        common / tacinf / tslope,tint,tdelay,
    \(>\quad\) ttim (n1),tactrue (n3), tacval (n3),ntac
    real*4 lower_mass, rul(4), pimtuold(n2)
    character*1 mas̄̄ch
    character*20 massfile
    real*4 posnum, negnum, posfrac, negfrac
    data rad, pi / 0.01745329, 3.14159265 /
    data degree / 57.29577951 /
    data ch1, ch \(2, \operatorname{ch} 3, \operatorname{ch} 4,1\) ight, heavy \(/ 1,2,3,4,1,2 /\)
    write (*,*)
    write (*, *)'radical beam energy \(=\) ', ebeam,' eV '
    write ( \({ }^{*}, *\) ) 'radical beam velocity \(=1\), vbeam \(/ 1000\). ' \(^{\prime} \mathrm{m} / \mathrm{s}^{\prime}\)
    reset ivall to 0 for all events not belonging to int chan
    (the channel of interest) only if we know the mass channels
        if(iforce.eq.1) then
        do 35 i \(=1\),ico
    if (ivall(i).eq.0) goto 35 !if it's already junk, skip it:
        if((abs (imtu(i)). ne.fragmass (int_chan,light)).and.
    \(\left.>\quad\left(a b s(i m t u(i)) . n e . f r a g m a s s\left(i n t \_c h a n, h e a v y\right)\right)\right)\) then
            ivall(i) \(=0\)
        endif
        enddo
    endif !if(iforce.eq.1)
```

c
c reset the upper fragment mass spectrum array so better
c discriminated data is accumulated into fresh array
C

```
```

 do i = 1,nbinm
    ```
    do i = 1,nbinm
        pimtu(i) = 0
        pimtu(i) = 0
    enddo
    enddo
c
    do 7000 i=1,ico
        if(ivall(i).eq.0) goto }700
c
c If ttim(i) < 0 then the 'stop' would have come first, if not for
c the digital delay box;
c this means the particle hit the bottom half of the psd first.
    if(abs(ttim(i)).gt.tcomax) goto 7000
c
c rul is the total distance between the two fragments ( in
mm )
C
        rul(1) = xu(i) - xl(i)
        rul(2) = yu(i) - yl(i)
        rul(3) = 0
        rul(4) = vnorm(rul, 3)
        if(debug4) then
            write (*,*)
            write (*,*) ' rul(1), rul(2), rul(3), rul(4)'
            write (*,*) rul(1), rul(2), rul(3), rul(4)
        endif
c*************************Begin angle determination if
block********************
c interrogate ipolang with if statement and choose appropriate
block
c
    if(ipolang.eq.0) then
c
c thomc is the cm polar scattering angle from 0 to 180
degrees
C
    found (for this polarization)
    by taking the inverse tangent of the line from the lower
            fragment to the upper fragment divided by the distance
            equal to the beam velocity multiplied by the coincidence
            time. ttim(i) is the array which contains the center of
        mass time information. Positive values correspond to a particle
        hitting the top half of the detector first, negative values to
        a fragment hitting the bottom half first. This used to be an
        absolute value quantity when theta was calculated only from
        0 to 90. To correspond with tdaf definitions, a vector is drawn
        pointing from the heavy to the light mass. This vector is
        compared with the detector based coordinate axes to determine
the
        values of theta and phi.
        phomc is the cm azimuthal scattering angle from 0 to 180
        degrees found
        by taking the inverse tangent of the y component of the
    line
c from the lower
    fragment to the upper fragment divided by the x component
        that same line
        WARNING: Leave the cases in this order: horizontal:1,3,2,4
        and vertical 1,2,3,4 so that equal mass channels are properly
        treated. For equal mass, heavy = light, and only two cases are
```

cc
if((imtu (i) .le. (radicalmass/2)) and. (imtu(i).ge.0.)) then
thome is OK the way it is $0<$ theta <90
if(rul(1).lt.0.0) then \quad if not, $0<p h i<90$
phcme $=$ phcme $+360!270<$ phi <360
endif

c

 else !if this else block is reached, something is really wrong.
 write \((6, *)\) 'No category found in theta/phi conditional in
 psiclce!'
write $(6, *)^{\text {' Check }}$ your mass chan. of interest, among other
things.'
stop
endif !from imtu.compared to.radical_mass/2 block
if (thomc.lt.0) then
write $(6, *)$ 'thomc less than zero?!'
write $(6, *){ }^{\prime} i=1, i, ' t h e t a=', t h c m c, ' p h i=', p h c m c, ' i m t u='$, imtu(i)

end if
c
c
unique. The current ordering makes sure that the first two unique
cases encountered are one with theta $=0-90$, one with $90-180$.
Note: if ipolang $=0$ (horizontal polarization), for equal mass
the particle that hits the top of the detector is defined as the "light" particle.
thome $=\operatorname{atan}\left(r u l(4) / z _c o r r(i)\right) *$ degree ! theta and phi in phome $=$ atan(rul(1)/rul(2)) * degree ! 'detector frame' coords
endif
case3: light frag, second, on top (imtu small and neg.)
elseif((-imtu(i).le.(radical mass/2)).and. (imtu(i).le.0.)) then
theme $=$ thome $+180 \quad!90^{-}<$theta <180
if(rul(1).lt.0.0) then ! if not, $0<p h i<90$
phome $=$ phome +360 ! $270<$ phi <360
endif
case2: light frag, first, on bottom (imtu large and neg.)
elseif(-imtu(i).gt. (radical_mass/2)) then
thome $=-1.0 *$ theme ! $0^{-}<$theta <90
phomc $=$ phemc +180 ! $90<$ phi <270
elseif(imtu(i).gt. (radical mass/2)) then
theme $=180$ - themc $!90<$ theta <180
phome $=$ phomc $+180 \quad$: $90<$ phi <270

psaclce!'
s.'
else \quad : from if(ipolang.eq.0) statement; here, ipolang $=90$
if (ipolang.ne.90) stop 'ipolang should be or 90'
thomc is the cm polar scattering angle from 0 to 180 degrees and
found by adding in quadrature votau and x divided by y. The
arctangent of this quotient is theta. Remember that our
observables are x, y, and tau in the coordinates Bob has
always used. Without considerable recoding, this must remain
as the basic coordinate system.
For equal mass: As in the ipolang=0 block, only the first two
cases apply; $0<$ theta <180, but phi is in the first or fourth
quadrants only.

```
c
c Note: if ipolang = 90 (vertical polarization), for equal mass
c
c
c
c
c
c
c thomc is OK here
    if(rul(1).ge.0.0) then
        phomc = 360 - phcme ! 270< phi < 360
    else
        phomc = -phomc ! 0< phi < 90
    endif
            case2: light frag, first, on bottom (imtu large and neg.)
    elseif(-imtu(i).ge.(radical_mass/2)) then
    thcmc = 180 - thcmc
    if(rul(1).ge.0.0) then
        phomc = -phcmc ! 0< phi < 90
    else
        phcmc = 360 - phcmc ! 270 < phi < 360
    endif
            case3: light frag, second, on top (imtu small and neg.)
elseif((-imtu(i).lt.(radical_mass/2)).and.(imtu(i).le.0.)) then
    thomc is OK here
    phomc = 180 - phomc ! 90< phi < 270
            case4: light frag, second, on bottom (imtu large and pos.)
elseif(imtu(i).gt.(radical_mass/2)) then
            themc = 180 - themc
    phomc = 180 - phcmc ! 90< phi < 270
c
else
    write(6,*)'psdclce failed to assign theta and phi to '
    write(6,*)'data point',i,'. imtu(i)=',imtu(i)
    stop
c
    end if ! from imtu.compared to.radical_mass conditionals
    if (thomc.lt.0) then
    write (6,*) 'thomc less than zero?!'
    write(6,*) 'i=',i,' theta=',thcmc,' phi=',phcmc,' imtu=',imtu(i)
    @ '' z_c=',z_corr(i),' ttim=',ttim(i)
    end if
        endif !(from if(ipolang.eq.0) statement)
c**********************End angle determination if
block********************
c
c
c
            bin the angular distribution
            call xbinnr2(thmin,thmax,dsth,nth,thcmc,ithc,iincth)
            call xbinnr2(thmin,2e0*thmax,dsth,2*nth,phomc,ithpc,iincph)
            pthomc(ithc) = pthomc(ithc) + iincth ! fort. }
            pphomc(ithpc)= pphcmc(ithpc) + iincph ! fort.8
C*************************
```

c bin pimtu, the mass distribution on the upper half

```
    if (iforce.eq.1) then
        lower_mass = radical_mass - abs(imtu(i))
        call
```

binmass (gmin, gmax, dsm, nbinm, real (abs (imtu(i))),imass,imassinc)
else
lower_mass $=$ radical_mass - upper_mass (i)
call \bar{b} inmass (gmin, gmax, dsm, nbinm, $\bar{u} p p e r$ mass (i), imass,imassinc)
end if
pimtu(imass) $=$ pimtu(imass) + imassinc !fort. 8
c*************************
c determine heavy and light particle tofs
c bin the y and r positions relative to the nominal $x 0, y 0$ center
for the light and heavy particles
Note that for equal mass, the following if statement always
finds that the upper mass is light. This is exactly consistent
with the earlier definitions of ipolang $=0$. But for ipolang $=$
90,
c it is not correct. For now I will just leave it incorrect
c for the ipolang $=90$ case.
C
c As of $2 / 9 / 95$, the $P(y)$ and $P(r)$ plots will now contain negative
c values on the x axis. For $P(y)$ this means negative values of
c y. For $P(r)$, a "negative" radius means the probability of
c receiving a given radius on the lower half, while a positive
c radius means upper half.
if(lower_mass.lt.(radical_mass/2.0)) then ! lower mass is
light part.
rhv $=\operatorname{sqrt}((x u(i)-x 0) * * 2+(y u(i)-y 0) * * 2)$
rlt $=-1 . * \operatorname{sqrt}((x l(i)-x 0) * * 2+(y l(i)-y 0) * * 2)$
emhv $=$ radical mass - lower_mass
emlt $=$ lower mass
tltlab $=($ dpsd/vbeam $) * 1 e 06$
@ +(emhv/radical mass)*ttim(i)*le-03 ! microseconds
thvlab $=(\text { dpsd } / \text { vbeam })^{{ }^{*}} 1$ e06
©
-(emit/radical_mass)*ttim(i)*1e-03
c
call xbinnr2(-ymx,ymx, dyp, nproj, (yl(i)-y0),iylt,iinc)
call xbinnr2 (-ymx,ymx, dyp, nproj, (yu(i)-y0), iyhv,iinc)
else ! upper fragment is the light fragment
rhv $=-1 .{ }^{*}$ sqrt $((x l(i)-x 0) * * 2+(y l(i)-y 0) * * 2)$
rlt $=\operatorname{sqrt}((x u(i)-x 0) * * 2+(y u(i)-y 0) * * 2)$
if((lower mass.eq. (radical mass/2.0)). and.
@ - (imtu(i).ge.0)) then !only for equal mass case
rlt $=-1 . * r l t$!forward scat. light \Rightarrow negative radius
rhv $=-1 . * r h v$!backward scat. heavy \Rightarrow positive radius
endif
emhv = lower mass
emlt $=$ radicāl mass - lower mass
tltlab $=($ dpsd/vbeam $) * 1 e 06$
©
-(emhv/radical_mass)*ttim(i)*1e-03
thvlab $=(\text { dpsd } / \text { vbeam })^{\star} 1 e 06$
$+\left(e m l t / r a d i c a l _m a s s\right) * t t i m(i) * 1 e-03$
call xbinnr2 (-ymx,ymx, dyp, nproj, (yu(i) -y0), iylt,iinc)
call xbinnr2 (-ymx,ymx, dyp, nproj, (yl(i)-y0), iyhv,iinc)
endif
c
call xbinnr2 (-ymx,ymx, drp, nproj,rlt,irlt,iinc)
call xbinnr2 (-ymx,ymx, drp, nproj, rhv,irhv,iinc)


```
c bin heavy and light masses
c
    call binmass(gmin,gmax,dsm,nbinm,emhv,imhvc,iinch)
    call binmass(gmin,gmax,dsm,nbinm,emlt,imltc,iincl)
c
c
c
find locations in time-of-arrival arrays
    call xbinnr2(tmin,tmax,dwell,nt,tltlab,itltlab,iinclt)
    call xbinnr2(tmin,tmax,dwell,nt,thvlab,ithvlab,iincht)
    call xbinnr2(tcomin,tcomax,dwellbc,ntbc,ttim(i),itco,iinctc)
        if(ttim(i).ge.0.) then
        posnum = posnum + 1.
        else
        negnum = negnum + 1
        endif
C
c now accumulate these calculated results in the appropriate
arrays
c including statistics only for the position arrays at this
time
C
        ptltlab(itltlab) = iinclt + ptltlab(itltlab) !fort.8
        pthvlab(ithvlab) = iincht + pthvlab(ithvlab) !fort.8
        ptcolab(itco)
        pmcc(imltc)
        pmcc (imhve)
        pylt(iylt)
        pyhv(iyhv)
        prlt(irlt)
        prhv(irhv) = iinc + prlt(irlt) !fort.8
        = iinc + prhv(irhv)
        call sigmap ( tltlab , tltavg )
        call sigmap ( thvlab, thvavg )
        call sigmap ( abs(ttim(i)), tcoavg )
        call sigmap ( emlt , emltavg )
        call sigmap ( emhv , emhvavg )
c
c
=
    lower_mass = radical mass - abs(imtu(i))
        energy(i) = ebeam*( (abs(imtu(i))*lower_mass)/radical_mass**2
1*
    > (rul(4)*rul(4) + z_corr(i)*z_corr(i) ) /
    > (dpsd*dpsd + 2.0*dpsd*z_corr(i) *
    > ( (abs(imtu(i))-lower mass) / radicalmass ) +
    > (labs(imtu(i))-lower_mass) / radicalmmass ) t + ((abs(imtu(i))-lowermmass) / radical_mass)**2 *
    > z_corr(i)*z_corr(i) ) j
=
= newest, finally accurate equation, with uppermass(i)
= Jess accurate when masses are, equivalent otherwise
    lower_mass = radical_mass - upper_mass(i)
        etrca = ebeam*(- (upper_mass(i)*lower_mass) / radical_mass**2
) *
    > (rul(4)*rul(4) + z_corr(i)*z_corr(i) ) /
    > (dpsd*dpsd + 2.0*dpsd*z_corr(i) *
    > ( (upper_mass(i)-lower_mass) / radical_mass ) +
    > ( ((uppe\overline{r}mass(i)-lower_mass) / radicaI_mass)**2 *
    > z_corr(i)末z_corr(i) ) )
C
        call xbinnr2(emin,emax,dse,nbine,energy(i), ietrc,iincec)
        call xbinnr2(emin,emax,dse,nbine,etrca,ietrca,iinceca)
        ethetc(ietrc,ithc) = ethetc(ietrc,ithc) + iincth*iincec
```

```
ephetc(ietrc,ithpc) = ephetc(ietrc,ithpc) + iincph*iincec
ptecbin(ietrc) = ptecbin(ietrc) + iincec !fort. }
ptecabin(ietrca) = ptecabin(ietrca) + innceca !fort.8
if(debug4) then
    write (*,*)
    write(*,*)' Values calculated from exp. observables:'
    write(*,*)' rul(4), mutual sepn = ',rul(4),' mm '
    write(*,*): coincidence time = ',ttim(i),' nsec '
    write(*,*)' mass of particle 2 = ',upper_mass(i),' amu '
    write(*,*)' mass of particle 3= ',lower_mass,' amu '
    write(*,*)' parent mass = ',radic\overline{al_mass,' amu '}
    write(*,*)' theta cm = ',thomc,' deg.
    write (*,*)' phi cm = ',phcmc,' deg. '
    write(*,*)' e trans, cm. = ',energy(i),' ev '
    write(*,*)' e trans, cm. appx = ',etrca,' eV '
    write(*,*)
    write(*,*)'Enter 0 to leave debug mode. (1)'
    read(*,*) idebug4
    if(idebug4.eq.0) debug4 = .false.
endif
call sigmap ( etrca , ecmcaavg )
call sigmap ( energy(i) , ecmcavg )
```

C
c
7000
index)
c
posfrac $=100 *$ posnum $/$ (posnum + negnum)
negfrac $=100 *$ negnum $/$ (posnum + negnum)
write (6,2500) posfrac
write (6,2501) negfrac
2500 format('positive delta t is ',f4.1,' '\% of total')
2501 format('negative delta t is ',f4.1,' $\%$ of total')
c*******The next section will allow mass spectra for a section of the $c * * * * * * * \mathrm{KER}$. This is useful if you have two well-separated features in $c * * * * * * *$ he KER and you believe they might be two different product channels.
if(iforce.eq.0) then !only allow energy windows for multiple chan write (*,*)
write (*,*)'Enter 0 to examine data over an energy range. (1)'
read(*,*)ichoice
if (ichoice.eq.0) then
do $i=1$, nbinm !save original pimtu array pimtuold(i) $=$ pimtu(i)
enddo
write (*,*)
8000 write (*, *)'Enter the minimum and maximum energies to retain'
read(*,*)ewinmin, ewinmax
do $i=1, n b i n m \quad$!reset pimtu to zero
pimtu(i) $=0$
enddo
do $i=1$, ico
if(ivall(i).eq.1)then !only look at good data
if((energy (i).ge.ewinmin). and. (energy(i).le.ewinmax)) then
call binmass (gmin, gmax, dsm, nbinm, upper_mass(i),
@ imass,imassinc)
pimtu(imass) = pimtu(imass) + imassinc
endif !if (energy withing range)
endif !if (ivall.eq.1)

```
            enddo !loop over all events
write(6,*)'Do you want to save the mass spec to file? [y/n]'
read(5,*) massch
if(massch.eq.'Y') then
    write(6,*) 'Enter filename'
    read(5,*) massfile
    open(unit = 25, file =massfile)
    do i = 1,nbinm
            write(25,*) float(i)/float(nbinm)*radical_mass,pimtu(i) +
C
                            pimtu(nbinm + 1 - i)
    enddo
endif
call plotmass
ccccccccccccec
            write (*,*)
            write(*,*)'Differences in each mass bin:*
            do i = 1,nbinm
            if(pimtu(i).ne.pimtuold(i)) then
            write(*,*)'pimtu(',i,') =',pimtu(i),' pimtuold(',i,') = ',
            @ pimtuold(i)
            endif
            enddo
ccccccccccccccccccc
    write(*,*)
    write(*,*)'Enter 0 to use another energy range. (I)'
    read(*,*)ichoice
    if(ichoice.eq.0) goto 8000
    endif !if(ichoice.eq.0)
endif !if(iforce.eq.0)
write(*,*)
write(*,*)'Enter 0 to plot up final image. (I)'
read(*,*) iplot
if(iplot.eq.0) call rawplot(0)
    return
    end
```


rawplot.f

```
subroutine rawplot(ivalid)
            unix version 911114 REC
this subroutine makes a scatter plot of the image
            if ivalid = 0, plot true coincidences
            if ivalid = l, plot all data
            if ivalid = 2, plot non-coincidences
            if ivalid = 3, plot only points just discriminated against
            implicit real*4 (a-h,o-z)
            parameter ( n1 = 100000 )
            parameter ( n2 = 300 )
            parameter (n3 = 50 )
            parameter (n4 = 200 )
```

character*40 title
c
c
c
c
c
xmax $=$ nint (sxmax)
xmin $=$ nint (sxmin)
ymax $=$ nint $($ symax $)$
ymin $=$ nint (symin)
call opngks
call setusv('PB',2)
c draw a boundary around the edge of the plotter frame
call bndary
c suppress the frame advance
call agseti('ERAME.',2)
c set limits for axes
call agseti('X/MAXIMUM.',xmax)
call agseti('X/MINIMUM.', xmin)
call agseti('Y/MAXIMUM.',ymax)
call agseti('Y/MINIMUM.',ymin)
C suppress the drawing of curves by the EZ... routines
call agseti('SET.', -1)
C draw the background using EZXY
call ezxy (xfov,yfov, nfov,' '
c put a plus sign at each of the $x-y$ positions
call points (xfov, yfov, nfov, $-1,0$)
c put a plus sign at the center of the image
call points ($x 0, y 0,1,-2,0$)
draw the blocking strip
call line (xmin,blocky, xmax,blocky)
call line (xmin,-blocky, xmax,-blocky)
c
call setusv('MS',1000)
c ico is number of post-phd events : npp is num. pnts. to plt. (2500)
$n p=\min (i c o, n p p)$
if(ivalid.ne.1) then !to plot all points, move below
ictl $=1$
$t t 1=0 \mathrm{e} 0$
ttu $=1000 \mathrm{e} 0$
write (*,*)
write (*,*)'Enter 0 to override $0-1000$ ns coinc. time limits.
(1)'
read(*,*)ictl
if(ictl.eq.0) then
write (*, *)
write (*,*)'Enter lower and upper Coinc. Time limits in nsec:'
read(*,*)ttl,ttu
endif
icond $=1$
if(ivalid.eq. 2) icond $=0$

```
    do i = 1,np
        if(ivalid.eq.0.or.ivalid.eq.2) then
        if(ivall(i).eq.icond) then
            if( (abs(ttim(i)).ge.ttl).and.(abs(ttim(i)).le.ttu) ) then
                call point (xu(i),yu(i))
                call point (xl(i),yl(i))
            endif
        endif
    else !(ivalid.eq.0.or.ivalid.eq.2) here plot recent discr. evnts.
c
low S/N
            if(ivaltmp(i).eq.1) then
            if( (abs(ttim(i)).ge.tt1).and.(abs(ttim(i)).le.ttu) ) then
                call point (xu(i),yu(i))
                call point (xl(i),yl(i))
            endif
        endif
    endif !(ivalid.eq.0.or.ivalid.eq.2)
    end do
            else !(ivalid.ne.1) !plot all points, regardless of ival
    do i = l,np
        call point (xu(i),yu(i))
        call point (xl(i),yl(i))
    end do
                endif
c close gks
            call clsgks
            if(ivalid.eq.1) then
            ierr = system( 'mv gmeta raw.img' )
            if(iwkst.eq.0) ierr = system( 'ictrans -d sunview raw.img' )
            if(iwkst.eq.1) ierr = system( 'ictrans -d t4010 raw.img')
            if(iwkst.eq.2) ierr = system( 'ictrans -d X11 raw.img')
            endif
            if(ivalid.eq.0) then
                ierr = system( 'mv gmeta coincs.img' )
            if(iwkst.eq.0) ierr = system( 'ictrans -d sunview coincs.img'
)
            if(iwkst.eq.1) ierr = system( 'ictrans -d t4010 coincs.img' )
            if(iwkst.eq.2) ierr = system( 'ictrans -d X11 coincs.img')
            endif
            if(ivalid.eq.2) then
            ierr = system( 'mv gmeta ncoincs.img' )
            if(iwkst.eq.0) ierr = system( 'ictrans -d sunview
ncoincs.img')
            if(iwkst.eq.1) ierr = system( 'ictrans -d t4010 ncoincs.img' )
            if(iwkst.eq.2) ierr = system( 'ictrans -d X11 ncoincs.img' )
            endif
            if(ivalid.eq.3) then
                ierr = system( 'mv gmeta discncs.img' )
            if(iwkst.eq.0) ierr = system( 'ictrans -d sunview discncs.img'
)
            if(iwkst.eq.1) ierr = system( 'ictrans -d t4010 discncs.img' )
            if(iwkst.eq.2) ierr = system( 'ictrans -d Xll discncs.img' )
            endif
c
return
end
```


savdfplt.f

```
*deck savdfplt.f
```

```
```

 subroutine savdfplt
    ```
```

```
    subroutine savdfplt
```

```
this subroutine bins and saves the detector face valid
```

this subroutine bins and saves the detector face valid
data array for later plotting on graphics machines (or our
data array for later plotting on graphics machines (or our
future color monitor!)
future color monitor!)
implicit real*4 (a-h,O-z)
implicit real*4 (a-h,O-z)
parameter (nl = 100000)
parameter (nl = 100000)
parameter (n2 = 300)
parameter (n2 = 300)
parameter (n3 = 50)
parameter (n3 = 50)
parameter (n4 = 200)
parameter (n4 = 200)
common / display / idfimg(n2,n2),sxmin,sxmax,symin,symax,dsx,
common / display / idfimg(n2,n2),sxmin,sxmax,symin,symax,dsx,
>
>
common / fov / xfov(n4),yfov(n4),nfov
common / fov / xfov(n4),yfov(n4),nfov
common / image / xu(nl),yu(nl),xl(nl),yl(nl),ivall(nl),
common / image / xu(nl),yu(nl),xl(nl),yl(nl),ivall(nl),
> ivaltmp(nl)
> ivaltmp(nl)
common / phys / blocky,rfov,iwkst,x0,y0,ico,icf,npp,ipolang
common / phys / blocky,rfov,iwkst,x0,y0,ico,icf,npp,ipolang
using the x,y data in common / image /, bin into a position
using the x,y data in common / image /, bin into a position
xref = (sxmax - sxmin)/2e0
xref = (sxmax - sxmin)/2e0
yref = (symax - symin)/2e0
yref = (symax - symin)/2e0
xbin = (sxmax - sxmin)/float(nx)
xbin = (sxmax - sxmin)/float(nx)
ybin = (symax - symin)/float (ny)
ybin = (symax - symin)/float (ny)
put valid events (ivall=1) into the position array
put valid events (ivall=1) into the position array
do i = 1,n2
do i = 1,n2
do j = 1,n2
do j = 1,n2
idfimg(i,j) = 0
idfimg(i,j) = 0
enddo
enddo
enddo
enddo
do i = 1,ico
do i = 1,ico
if(ivall(i).eq.1) then
if(ivall(i).eq.1) then
if(xu(i).le.sxmax.and.xu(i).ge.sxmin) then
if(xu(i).le.sxmax.and.xu(i).ge.sxmin) then
if(yu(i).le.symax.and.yu(i).ge.0) then
if(yu(i).le.symax.and.yu(i).ge.0) then
ixubin = int((xu(i) + xref) /xbin) + 1
ixubin = int((xu(i) + xref) /xbin) + 1
iyubin = int((yu(i) + yref) /ybin) + 1
iyubin = int((yu(i) + yref) /ybin) + 1
idfimg(ixubin,iyubin) = idfimg(ixubin,iyubin) + 1
idfimg(ixubin,iyubin) = idfimg(ixubin,iyubin) + 1
endif
endif
endif
endif
if(xl(i).le.sxmax.and.xl(i).ge.sxmin) then
if(xl(i).le.sxmax.and.xl(i).ge.sxmin) then
if(yl(i).le.0.and.yl(i).ge.symin) then
if(yl(i).le.0.and.yl(i).ge.symin) then
ixlbin = int((xl(i) + xref) /xbin) + 1
ixlbin = int((xl(i) + xref) /xbin) + 1
iylbin = int((yl(i) + yref) /ybin) + 1
iylbin = int((yl(i) + yref) /ybin) + 1
idfimg(ixibin,iylbin) = idfimg(ixlbin,iylbin) + 1
idfimg(ixibin,iylbin) = idfimg(ixlbin,iylbin) + 1
endif
endif
endif
endif
endif
endif
enddo
enddo
now save the detector face image array
now save the detector face image array
write(*,*)
write(*,*)
write(*,*)'Writing detector face array ...'
write(*,*)'Writing detector face array ...'
open(unit=22,file='savdfplt.out')

```
open(unit=22,file='savdfplt.out')
```

```
    do i = 1,nx
            do j = 1,ny,6
        write(22,1000) idfimg(i,j),idfimg(i,j+1),idfimg(i,j+2),
>
    enddo
    enddo
    close(22)
1000 format(6(i10))
    return
    end
```


srvrtn.f

```
*deck srvrtn.f
c unix version 911114 REC
c
c service routines for the cmlwsa program
c Modified 12/8/92 by DLO by addition of wrtarr2 routine
c which writes the KER in a one column file
c
*deck Asets
    Subroutine Asets(nx,ny,axy,s)
c
c
c last modified 900818 REC
c nx, ny are the dimensions of the array
c axy is the 2-d array
c s is the scalar
c
    integer nx,ny
    dimension axy(nx,ny)
    do 2 i = 1,nx
        do 1 j = 1,ny
            axy(i,j) = s
    1 continue
    2 continue
        return
        end
*deck fwhm
    Subroutine fwhm(f,x,px,n,xh,xpk,xl,fw)
c
    find peak and FW at f maximum of distribution px
    dimension x(n),px(n)
c
    pxmax = 0e0
    do }10\textrm{i}=1,
        if(px(i).gt.pxmax) then
            pxmax = px(i)
            xpk = x(i)
            imax = i
        endif
10 continue
    pxf = pxmax*f
c
                        look for low FWHM
    do 20 i = 1,imax
```

```
    if( px(i).le.pxf ) then
    xl = x(i)
        ilfmax = i
        endif
    continue
        look for high FWHM
    do 30 i = imax,n
    if( px(i).ge.pxf ) then
        xh = x(i)
        infmax = i
    endif
    continue
    fw = xh - xl
    return
    end
*deck grsI
    subroutine grsi ( n, a, b, v )
c
c
c
c === Latest Revision: | 890226 at 11:39:26 |
c this subroutine generates a real scaling vector v(i)
        such that v(i) =a+b*(i-1)
    the routine is optimized so that
        the additional loop overhead for vectorization is
        avoided for n.lt.9
        as compared to generating the appropriate vector in the
        calling loop, this routine breaks even at n=12 (calling
    overhead)
c
```



```
-----------
c
implicit real*4 ( a - h, O - z )
    dimension v(n)
    common / vector / fpn(64), igr(64)
    save / vector /
c
c--------------------------- execution begins here
    c
c
    if (n .lt. 1 ) RETURN
    IF ( n .gt. 8 ) THEN
        ij = 0
        do 1 j = 1, n, 64
            jo = j - 1
                ni}=\operatorname{min0}0(j+63,n)-j
                ao = a + b*(64*ij)
                ij = ij + 1
                do 2 i = 1, ni
                    v(i+jo) = ao + b*fpn(i)
                continue
            continue
    ELSE
        neven = mod (n,2)
        do 101 i = 1+neven, n-1, 2
            v(i) = a + b*(i-1)
        v(i+1)=a+b*i
```

```
101 continue
    if ( neven .eq. 0 ) RETURN
    v(1)=a
    END IF
c
    return
    end
*deck numgen
    subroutine numgen
c
c------------------------------------ numgen
c
c >>> numgen -- fills up common blocks with integer and floating
consts
c
c === Latest Revision: | 890226 at 11:35:12 | combine loops
```



```
c
    implicit real*4 ( a - h, 0-z )
c
    common / vector / fpn(64), igr(64)
    save /vector/
c
c----------_------_----------- execution begins here
c
        do 1 i = 1, 64
        igr(i) = i - 1
        fpn(i) = igr(i)
    1 continue
c
    return
    end
*deck sigmac
    subroutine sigmac ( xa, avg, sdev )
c
c-------------------------------------------
c
c >>> sigmac --
c
```



```
c
    implicit real*4 ( a - h, o - z )
c
    dimension xa(3)
c
c------------------------- execution begins here
-----------
c
    xnit = le0
    if ( xa(3) .gt. 0e0) xnit = xnit/xa(3)
    avg = xnit*xa(1)
    sdev = xnit*xa(2)
    sdev = sqrt(max(0e0, sdev-avg**2))
c
    return
    end
*deck sigmap
    subroutine sigmap ( x, xa )
```

```
c
```

```
c---------------------------------------------------------------------------
c
    integer n
    integer ia
c
    real*4 a(n)
    real*4 s
c
```



```
-----------
c
    IF ( ia .ne. 1 ) THEN
c
        ix = 1
        do 1 i = 1, n
            a(ix) = s
            ix=ix + ia
        continue
    c
C
    ELSE
c
        do 2 i = I, n
        a(i) = s
        continue
c
    END IF
c
    return
    end
*deck wrtarr
    subroutine wrtarr (iunit,a,n)
C
```



```
----------
c
c >>> wrtarr -- writes out an array to iunit
c
```



```
----------
C
    implicit real*4 (a - h, o - z )
c
    dimension a(n)
c
    1000 format ( lx,i8)
    1001 format ( 1x,6g13.5 )
c
    write ( iunit, 1000 ) n
    write ( iunit, 1001) a
C
    return
    end
*deck wrtarr2
        subroutine wrtarr2 (iunit,a,n)
c
```

```
c------------------------------- wrtarr2
c
c >>> wrtarr2 -- writes out an array to iunit
c
c----------------------------------------------------------------------------
c
```

```
    implicit real*4 ( a - h, o - z )
c
    dimension a(n)
c
c1000 format ( 1x,i8)
1001 format ( 1x,g13.5 )
c
c write ( iunit, 1000 ) n
    write ( iunit, 1001) a
c
    return
    end
*deck wrtla
    subroutine wrtla ( iunit, al, da, n )
c
```



```
c
c >>> wrtla -- writes out stuff
c
C------------------------------------------------------------------------------
_--_-------
c
    implicit real*4 (a - h, o - z )
c
c
c-----------_--------------- execution begins here --------------------
-----------
c
    write (iunit, 1000 ) n
    write ( iunit, 1001 ) al, da
    1000 format ( Ix, i7)
    1001 format ( 1x, 6g13.5 )
c
    return
    end
*deck xbinnr
    subroutine xbinnr ( xmin,xmax,dx,nx,x,weight,dis )
c
c--------------_------------------------------------------------------
----------
c
c >>> xbinnr -- accumulates counts into bins
c accumulates counts into bins,
        ibin=1 implies too low
        ibin=nx implies too high
            ibin=2 ==> x between xmin and xmin+dx
            ibin=3 =>> x between xmin+dx and xmin+2*dx, etc.
            ibin=nx-1 ==> x between xmax-dx and xmax
```



```
-----------
c
    implicit real*4 (a - h, O- z )
c
    dimension dis(nx)
c
c------------------------ execution begins here
c
    wgt = weight
    ibin = int( (x-xmin)/dx ) + 1
```

```
    if ( x .lt. xmin ) then
        ibin = 1
        wgt = 0e0
    endif
    if ( x .gt. xmax ) then
        ibin = nx
        wgt = 0e0
    endif
    dis(ibin) = dis(ibin) + wgt
c
    return
    end
*deck xbinnr2
subroutine xbinnr2 ( xmin,xmax,dx,nx,x,ibin,iinc)
c
c-----------------------------------------------------------------------
c
c >>> xbinnr2 -- determines bin numbers
c this routine is used for binning with truncation (uses int)
c e.g. xmin = 0, xmax = 10, dx = 1, nx = 10 will put all
c numbers from [0,1) in the first bin, [1,2) in second bin..., ,
c up to [9,10] in the 10th bin. x = 10 used to cause ibin = 11,
c which is not a good idea. Now it is included as noted above.
c
c
```



```
----------
c
implicit real*4 (a - h, o - z )
c
c------------------------- execution begins here
c
    iinc = 1
    ibin = int( (x-xmin)/dx ) + 1
    if ( x .lt. xmin ) then
        ibin = 1
        iinc=0
        endif
    if ( x .gt. xmax ) then
        ibin = nx
        iinc = 0
        endif
        if ( x .eq. xmax ) then !added 2/9/95 to handle x = xmax (DLO)
        ibin = nx
        iinc=1
        endif
    return
    end
C
*deck bin
    subroutine bin (xmin,xmax,dx,nx,x,ibin,iinc)
c
c-------------------------- bin---------------------------------------------
------
c
c >>> bin -- determines bin numbers, binning to nearest bin
        #, ie uses nint, which rounds 1.5 up to 2, and
c rounds 2.4999 down to 2
c accumulates counts into bins,
c ibin=1 implies too low, innc set to 0
```

```
c
c DLO 1/14/95
c >>> binmass -- determines bin numbers for masses, binning to
nearest bin
c #, ie uses nint, which rounds 1.5 up to 2, and
                    rounds 2.4999 down to 2
    remember that for mass binning, xmin = 0.5, xmax = radmass - 0.5
    and nbinm = radmass - 1 There is no Oth bin or radmassth bin
    and the bin width, dx, is always equal to 1 mass unit. Therefore
    this routine is very simple
            accumulates counts into bins,
                    for x < 0.5 or x.ge.(radmass - 0.5), iinc = 0, and nothing
        is incremented in the calling routine. For all other values,
        iinc = 1, and pimtu(ibin) = pimtu(ibin) + 1
    note that xmin and nx do'not appear, but I leave them in anyway
c-------------
c
    implicit real*4 (a - h, O - z )
c
c----------------------- execution begins here ----------------------------
-----------
c
    ibin = nint(x/dx)
    iinc = 1
    if(ibin.eq.0) iinc = 0
    if(ibin.ecI.nint(xmax)) iinc = 0
        return
        end
```


tactime.f

*deck tactime
Subroutine tactime (ivalid)
c
$c \quad$ unix version 911114 REC
c
c This subroutine plots tac-adc data
c if ivalid $=0$, just plot the valid events
c if ivalid $=3$, plot the recently discriminated events
c It plots ttim(i), that is, actual signed coincidence time deltat
c
c
c
parameter $(n 1=100000)$ parameter (n2 = 400)
parameter $(n 3=50)$
character*40 title
c
common / image / xu(nl),yu(n1), xl(nl),yl(nl),ivall(nl),
$>$ ivaltmp(n1)
c
common / phys / blocky,rfov,iwkst, $x 0, y 0, i c o, i c f, n p p, i p o l a n g$
c
common / tacinf / tslope,tint,tdelay,
$>$ ttim(n1), tactrue(n3),tacval(n3), ntac
c
common / psdhist / emin,emax,dse,

$>$	thmin, thmax, dsth, umin, umax, du, gmin, gmax, dsm,
$>$	tmin, tmax, dwell, tcomin, tcomax, dwellbc,
$>$	nbine, nbinm, nt, ntbc, nth, nproj, ymx,
$>$	ypmin, rpmin, dyp,drp

c
common / words / title
dimension ptac (n2),tac(n2)
dimension tc(n3), tcv(n3)
real*4 posnum, negnum, posfrac, negfrac
c
c
write ($6, *$)'iplttac $=$ ',iplttac
if(ivalid.eq.0.or.ivalid.eq.3) go to 222
write (*,*)
write (*,*)'Enter 0 if you want to plot TAC spectrum. (1)'
read(*,*)iplttac
if(iplttac.eq.0) then
ivalid $=1$!skip to else statement
else
ivalid $=2$!don't plot anything, just get out of here endif
if(iplttac.ne.1) ivalid $=0$
222 continue
write ($6, *$) 'You have reached tactime!, ivalid $=$ ', ivalid
write ($6, *$)'iplttac $=$ ',iplttac
if(ivalid.eq.0) iplttac $=0$
if(iplttac.eq.0) then
if((ivalid.eq.0).or. (ivalid.eq.1).or.(ivalid.eq.3)) then
if(ivalid.eq.0.or.ivalid.eq.3) then
xmax $=$ tcomax
$x \min =$ tcomin
posnum $=0$.
negnum $=0$.
posfrac $=0$.

```
    negfrac = 0.
        call vsets(ntbc,ptac,1,0e0)
c dwellr = (xmax - xmin)/float( n2 - l ) !old hard-coded way
    dwellr = dwellbc
        call grsl( ntbc, xmin, dwellr, tac )
        if(ivalid.eq.0) then
            do i = 1,ico
                if(ivall(i).eq.I) then
                call xbinnr(xmin,xmax, dwellr,ntbc,ttim(i),1e0,ptac)
    if(ttim(i).ge.0.) then
        posnum := posnum + 1.
    else
        negnum := negnum + 1
    endif
                endif
                enddo
            elseif(ivalid.eq.3) then
    write(6,*)'WARNING: This plot contains only ''bad'' data!'
            do i=1,ico
                    if(ivaltmp(i).eq.1) then !these are the points you've just
disc.
                            call xbinnr(xmin,xmax,dwellr,ntbc,ttim(i),le0,ptac)
        if(ttim(i).ge.0.) then
        posnum = posnum + 1.
        else
        negnum = negnum + 1
        endif
            endif
            enddo
            else
                do i = 1,ico
                    call xbinnr(xmin,xmax,dwellr,ntbc,ttim(i),le0,ptac)
        if(ttim(i).ge.0.) then
        posnum = posnum + 1.
        else
            negnum = negnum + 1
        endif
            enddo
            endif
    posfrac = 100*posnum / (posnum + negnum)
    negfrac = 100*negnum / (posnum + negnum)
    write (6, 2500) posfrac
    w=ite(6,2501)negfrac
2500 format('positive delta t is ',f4.1,'% of total')
250: format('negative delta t is ',f4.1,'% of total')
        call opngks
        call setusv('PB',2)
=
        call agsetc ( 'LABEL/NAME.','I')
        call agseti ('LINE/NUMBER.',100)
        call agsetc ('LINE/TEXT.','No. of Counts$')
=
        call agsetc ( 'LABEI/NAME.','B')
        call agseti ( 'LINE/NUMBER.',-100)
        call agsetc ( 'LINE/TEXT.',
    @ 'Coincidence Time (nsec) TAC Spectrum$')
c
        call agseti('X/MAXIMUM.',xmax)
        call agseti('X/MINIMUM.',xmin)
c call agseti('Y/MINIMUM.',0e0)
c call agseti('Y/MAXIMUM.',1.E36)
        call agseti('Y/LO.',0)
        call agseti('FRAME.',2)
```

c
call agseti('SET.',1)
call ezxy (tac,ptac, ntbc,title)
c uncomment the following line if you want only points plotted
$c \quad$ call points (tac,ptac, ntbc, $-4,0$)
call clsgks
if(ivalid.eq.1) then ierr $=$ system ('mv gmeta tac.img') if(iwkst.eq.0) ierr = system('ictrans -d sunview tac.img') if(iwkst.eq.1) ierr = system('ictrans -d t4010 tac.img') if(iwkst.eq.2) ierr $=$ system('ictrans -d X11 tac.img')
else ierr $=$ system('mv gmeta valtac.img') if(iwkst.eq.0) ierr = system('ictrans -d sunview valtac.img'
if(iwkst.eq.1) ierr $=$ system('ictrans -d t 4010 valtac.img')
if(iwkst.eq.2) ierr $=$ system('ictrans -d X11 valtac.img')
endif
endif
if (ivalid.eq.0) go to 333
c write (*,*)'Enter 0 if you want to plot TAC calibration curve.
read(*,*)ipltcal
ipltcal = 1
if(ipltcal.eq.0) then
$x \max =1000 \mathrm{e} 0$
xmin $=000$
$d t=(x m a x-x m i n) / 49 e 0$
do $i=1, n 3$
tc(i) $=$ float (i-1)*dt
tcv(i) $=$ tslope*tc(i) + tint
enddo
call opngks
call setusv('PB',2)
c
call agsetc ('LABEL/NAME.','L')
call agseti ('LINE/NUMBER.',100)
call agsetc ('LINE/TEXT.','No. of Counts\$')
call agsetc ('LABEL/NAME.', 'B.')
call agseti ('LINE/NUMBER.',-100)
call agsetc ('IINE/TEXT.', 'Coinc. Time (nsec) \$')
call agseti('X/MAXIMUM.', xmax)
call agseti('X/MINIMUM.', xmin)
call agseti('Y/MINIMUM.',0e0)
call agseti('Y/MAXIMUM.',1.E36)
call agseti('X/LO.', 0)
call agseti ('Y/LO.', O)
call agseti('FRAME.', 2)
call agseti('SET.',1)
call ezxy (tc,tcv,n3,' TAC Calibration Curve\$')
c uncomment the following line if you want only points plotted
call points (tactrue, tacval, ntac, $-4,0$)
call clsgks
ierr $=$ system ('mv gmeta taccal.img')
if(iwkst.eq.0) ierr = system('ictrans -d sunview taccal.img'
if(iwkst.eq. 1) ierr $=$ system('ictrans -d t 4010 taccal.img') if(iwkst.eq.2) ierr = system('ictrans - d X11 taccal.img')
endif ! end of ipltcal conditional
333 continue
if(ivalid.eq.2) ivalid = 1

```
c NOTE: THIS IS THE WEIRDEST THING I HAVE EVER SEEN IN FORTRAN. IF
YOU
c EXECUTE THE CALL "CALL TACTIME(1)" IN THE MAIN PROGRAM, AND IN
TACTIME
c YOU CHANGE IVAIID TO 2, UPON RETURNING TO THE MAIN PROGRAM, FORTRAN
C GETS SCREWED UP BEYOND BELIEF. TRY IT SOMETIME FOR KICKS.
c THEREFORE I HAVE INSERTED THE PRECEDING LINE TO KEEP FORTRAN HAPPY
        return
        end
    *deck linfit
        Subroutine linfit(x,y,n,em,b)
c
    c this subroutine does a linear least squares fit to
    c a set of x,y data
c
                dimension X(n),Y(n)
                sigxy = 0e0
                sigx = 0e0
                sigy = 0e0
                sigxsq = 0e0
                do 10 i = 1,n
                        sigxy = sigxy + x(i)*y(i)
                        sigx = sigx + x(i)
                sigy = sigy + y(i)
                sigxsq = sigxsq + x(i)**2
    10 continue
C
    now, using the well-known least squares equations
c calculate the slope and intercept.
c
```

```
            em = (float (n)*sigxy - sigx*sigy)/(float(n)*sigxsq -
```

 em = (float (n)*sigxy - sigx*sigy)/(float(n)*sigxsq -
 > sigx**2)
 > sigx**2)
 b = ((sigy*sigxsq) - (sigxy*sigx))/(float(n)*sigxsq -
 b = ((sigy*sigxsq) - (sigxy*sigx))/(float(n)*sigxsq -
 > sigx**2)
 > sigx**2)
 return
 return
 end
    ```
            end
```


WSZTOXY.f

```
*deck wsztoxy
        Subroutine wsztoxy
            unix version 920328 REC
            newest version 921122 DRC
            modified December 92 by David Leahy to include
                    corrections for strip nonlinearity
            (dmczu is quadratic wedge coefficient 'qw', and
            dmczl is quadratic strip coefficient 'qs')
    ***** Modified to take 'factors' as they appear in the O2
        ***** least squares fitting program xyzlsq! DJL 11/93
    this subroutine takes raw wedge, strip and z data and
        converts it to }x,y\mathrm{ values for upper and lower halves of
        the detector
            if iusephd = 0, this algorithm will apply the pulse height
            discrimination parameters found in phd.dat upon initial read-
in
c
    implicit real*4 (a-h,o-z)
```

c
parameter (n1 = 100000)
parameter ($\mathrm{n} 5=50$)
parameter ($\mathrm{n} 6=8192$)
character*20 gostring
integer readpart, lowiim, range
common / adcinf / vadc(n5), adcwl(n5), adcsi(n5), adczi(n5),
$>\quad$ adcw2(n5), adcs2(n5),adcz2(n5),
$>$ nadc,swl,wlint,ss1,slint,sz1,
$>\quad z 1$ int,sw2,w2int,ss2,s2int,sz2,z2int,
> cw1,cs1,cz1,cw2,cs2,cz2
c Old Bob-style, commented out DJL 11/93
common / algo / dmewu,dmesu,dmczu,dmcwl,dmcsl,dmezl,
$>$ dacwu, dacsu,dacwl, dacsl,
$>$ uctws,uctwz,uctsw,uctsz,
> lctws,lctwz,lctsw,lctsz
common / algo / param(16) ! new xyzlsq-style params DJL 11/93
C
common / beam / ebeam, vbeam, dpsd, rbeammax, rbeammin
c
common / discinf /
ispatdis,isdis,ihlf,yll,yul,isdisp,phil,phi2,

```
> iraddis,idisan,rlld,ruld,ttl,ttu,
```

c
common / image / xu(n1),yu(nl), xl(n1),yl(n1),ivall(n1), $>\quad$ ivaltmp(nl)
c
common / pha / puwpha(n6), puspha(n6),
$>\quad$ puzpha(n6), plwpha (n6),
$>\quad$ plspha(n6), plzpha(n6),
$>\quad$ tacpha (n6),ptacpha (n6), upha (n6), pupha(n6),
lpha ($n 6$), plpha ($n 6$), nbinpha, phvpha ($n 6$), pltpha ($n 6$), iusephd
C
common / phys / blocky, rfov,iwkst, x0,y0,ico,icf,npp,ipolang.
c
common / results / $z_{\text {_ }}$ corr (nl), imtu(nl), upper_mass (nl), energy (nl)
C
common / tacinf / tslope,tint,tdelay,
$>\quad$ ttim(n1),tactrue (n5), tacval (n5), ntac
c
c
c As of $12 / 93$, this linfit doesn't include any correction for the
c pulse generation time (around 45 ns) of the digital delay
generator.
c Indeed, the variable to has been nixed entirely. Furthermore, the
c array ttim(i) now holds the actual signed coincidence times, rather
c than the 'raw coinc times', which were displaced by tottdelay. DJI
C
call linfit (tactrue, tacval, ntac,tslope,tint)
write ($6, *)^{\text {' linfit }}$ results: tslope=', tslope,' tint=',tint
c
c call linfit to get the linear fit to all the other ADC
channels
c note, adcscale in units of adc unit/volt
C adcscale $=8064.0 / 10.0$ call linfit (adcw1, vadc, nadc,sw1,w1int)

```
    call linfit(adcs1,vadc,nadc,ss1,slint)
    call linfit(adcz1,vadc,nadc,sz1,zlint)
    call linfit (adcw2,vadc,nadc,sw2,w2int)
    call linfit (adcs2,vadc,nadc,ss2,s2int)
    call linfit(adcz2,vadc,nadc,sz2,z2int)
    if(iusephd.eq.0) then
    read(14,*) idusuml,idusumu,idlsuml,idlsumu,idtl,idtu
        rewind(14)
            write(*,*)
            write(*,*)'Using pulse height discrimination values ',
        >
            close (14)
        endif
        write(*,*)
        write(*,*)' Current discriminator settings are:'
    write(6,*) idusuml,idusumu,idlsuml,idlsumu,idtl,idtu
        write(*,*)
        write(*,*)'Reading data in ...'
        write(*,*)
    clear pha arrays
    call vsets (nbin, puwpha,1,0e0)
    call vsets(nbin,puspha,1,0e0)
    call vsets(nbin,puzpha,1,0e0)
    call vsets(nbin,plwpha,1,0e0)
    call vsets(nbin,plspha,1,0e0)
    call vsets(nbin,plzpha,1,0e0)
    call vsets(nbin,ptacpha,1,0e0)
    call vsets(nbin,pupha,1,0e0)
    call vsets(nbin,plpha,1,0e0)
    call vsets(nbin,phvpha,1,0e0)
    call vsets(nbin,pltpha,1,0e0)
c Parameter list: NEW as of 11/93 DJL
c 1 awedgeu 2 bwedgeu 3 astripu 4 bstripu
c 5 awedgel 6 bwedgel }7\mathrm{ astripl }8\mathrm{ bstripl
```

C
c
C
c
C
c
c

```
    awedgeu = PARAM(1)
    bwedgeu = PARAM(2)
    astripu = PARAM(3)
    bstripu = PARAM(4)
    awedgel = PARAM(5)
    bwedgel = PARAM(6)
    astripl = PARAM(7)
    bstripl = PARAM(8)
    ctwzu = PARAM(9)
    tiltx = PARAM(10)
    ctwzl = PARAM(11)
    tilty = PARAM(12)
    az = PARAM(13)
    bz = PARAM(14)
    qw = PARAM(15)
    qs = PARAM(16)
```

C
c Beginning of point-by-point data read-in loop
C
c Modified $9 / 8 / 95$ to do readins of fractions of a data set in
c order to check reproducibility, etc.

```
    write(6,*)'Enter 0 to read only part of the data file (1)'
    read(5,*) readpart
    if(readpart.eq.0) then
    write(6,*)'Enter event number to begin data read'
    read(5,*) lowlim
    write(6,*)'Enter number of points to use'
    read(5,*) range
    write(6,*)'***** ***** ***** **********'
    write(6,*)'Using data from point ',lowlim,
        @ ' to ',lowlim + range-1
```



```
else !do normal read of all data
    lowlim = 1
    range = nl
endif !ifreadpart.eq.0
    irawdata = 0
    open(unit=1,file='raw_data.dat',status='old')
    do 200 i = I,n1 T *** master raw data read-in loop ***
        read(1, fmt=*,end=201)iuw,ius,iuz,itac,ilw,ils,ilz
        if((i.lt.lowlim).or.(i.gt.lowlim+range-1)) goto 200
        irawdata = irawdata + 1
c implement software discrimination
    normsumu = (iuw+ius+iuz)/4.0
    if(normsumu.lt.idusuml) goto 200
    if(normsumu.gt.idusumu) goto 200
    normsuml = (ilw+ils+ilz)/4.0
    if(normsuml.lt.idlsuml) goto 200
    if(normsuml.gt.idlsumu) goto 200
        if(itac.lt.idtl) go to 200
        if(itac.gt.idtu) go to 200
    Point is OK! Increment coincident event index
    ico = ico + I
bin raw pulse height distributions
```

c
call xbinnr(xmin, xmax, chnwid, nbin,float (iuw), leo, puwpha)
call xbinnr(xmin,xmax, chnwid,nbin,float(ius),le0,puspha)
call xbinnr(xmin,2*xmax, 2*chnwid,nbin,float(iuz), le0,puzpha) call xbinnr(xmin,xmax, chnwid, nbin,float(ilw), leo, plwpha) call xbinnr (xmin, xmax, chnwid, nbin,float (ils), le0,plspha) call xbinnr(xmin,2*xmax,2*chnwid, nbin,float(ilz), 1e0,plzpha) call xbinnr (xmin, xmax, chnwid, nbin,float (itac), le0, ptacpha) call xbinnr (xmin, xmax, chnwid, nbin,float (normsumu), leo,pupha) call xbinnr (xmin, xmax, chnwid, nbin,float (normsuml), le0,plpha)
correct $A D C$ data using the appropriate calibration curves
 recorded
c under the same conditions as the experiment. This is to say: c the internal conversion time of the digital delay box (about 45 ns,
c formerly referred to in this program as 'to') must be present c during both the calibration and the experiment. If in the experiment
c the delay for the lower half fragment timing is generated by some c other means than the digital delay box, e.g., by a cable delay, then
c the calibration data must take this into account. DJI $12 / 93$
c
ttim(ico) $=($ float (itac) - tint)/tslope - tdelay
c write ($6, *$) ico,' itac=',itac,' ttim(ico) $=$ ', ttim(ico)
c read $(5, *)$ gostring
c
C Old Bob-style algorithm is commented out
c New algorithm follows DJL 11/93
c
get upper x, y, using the 'new' algorithm
dmozu is the quadratic wedge coefficient in this version dmczl is the quadratic strip coefficient
iuz = iuz*dmczu ! there are no z multiplicative factors in
his v.

```
totchgu = iuw + ius + iuz
```

 wedgfx \(=\) iuw/totchgu
 strpfir \(=\) ius/totchgu
 zfrac \(=\) iuz/totchgu
 \(\mathrm{xu}(\mathrm{ico})=28.399+\) dacwu
 \(>\)
 \(\gg\)
 \(>\)
 \(>\)
 + \(1.0-3.0 \times\) uctwz)
 + iuw*iuw* (dmczu-1)/totchgu)
 / totchgu)
 \(y u(i c o)=-4.563+\) dacsu
 + (63.750* dmesu *
 (float(ius) - float(iuz) *
 ((uctsw - uctsz)
 (1.0 - 3.0 * uctsz))
 +ius*ius*(dmczl-1)/totchgu)
 \(/\) totchgu)
    ```
c get lower x,y
c ilz = ilz*dmczl ! there are no z multiplicative factors
in this v.
c totchgl = ilw + ils + ilz
c wedgfr = ilw/totchgl
strpfr = ils/totchgl
        zfrac = ilz/totchgl
        xl(ico) = - 28.399 - dacwl
                        + ( 113.596 * dmewl *
                ( float(ilw) - float(ilz) *
                ( ( lctws - lctwz )
                                / ( 1.0 - 3.0 * lctwz ) )
                                + ilw*ilw*(dmczu-1)/totchgu )
                                / totchgl )
    yl(ico) = 4.563 - dacsl
    > - (63.750 * dmesl *
                                ( float(ils) - float(ilz) *
                                ( ( lctsw - lctsz )
                                / ( 1.0 - 3.0 * lctsz) )
                                + ils*ils*(dmczl-1)/totchgl )
                        / totchgl )
Here's the new algorithm DJL 11/93
tcu = iuw + ius + iuz
tcl = ilw + ils + ilz
fwu = iuw/tcu
fsu = ius/tcu
fzu = iuz/tcu
fwl = ilw/tcl
fsl = ils/tcl
fzl = ilz/tcl
xu(ico) = -awedgeu*(fwu+(ctwzu-1)*fzu+(qw-1)*fwu*fwu)-bwedgeu
yu(ico) = astripu*(fsu+(qs-1)*fsu*fsu)+bstripu
xl(ico) = awedgel*(fwl+(ctwzl-1)*fzl+(qw-1)*fwl*fwl)+bwedgel
yl(ico) = -astripl*(fsl+(qs-1)*fsl*fsl)-bstripl
z_corr(ico) = vbeam*(ttim(ico)/le9)*az + bz
@- + tiltx*(xu(ico)-xl(ico)) + tilty*(yu(ico)-yl(ico))
c
200 continue
201 continue
    write(*,*)'# of raw data events read in:', irawdata
    write(*,*)'# of events remaining after phd:', ico
        prontdis = float((irawdata - ico) * 100) / float(irawdata)
        nphddis = irawdata - ico
        write(*,*)'% of events discriminated by phd:', prontdis
        write(*,*)
        rewind(1)
        close(1)
c
c plot pulse height distributions, and if necessary apply software
c discriminators
```

```
write(*,*)
```

write(*,*)
write(*,*)'Enter 0 to plot pulse height distributions. (1)'
write(*,*)'Enter 0 to plot pulse height distributions. (1)'
read(*,*)iphd
read(*,*)iphd
if(iphd.eq.0) call phaplt
if(iphd.eq.0) call phaplt
if(iusephd.eq.0) goto 5000
if(iusephd.eq.0) goto 5000
write(*,*)
write(*,*)
write(*,*)"Enter 0 to implement phd's from phd.dat. (1)"
write(*,*)"Enter 0 to implement phd's from phd.dat. (1)"
read(*,*)idisc
read(*,*)idisc
if(idisc.eq.0) then

```
if(idisc.eq.0) then
```

```
    ico = 0
        iusephd = 0
        goto 100
        endif
    c
    5000 return
        end
```

plot.f
Program plot
Version 921212
Program to plot out the various diagnostic distributions
written to fort. 8 by the cmlwsa program. Plots done by
NCAR 3.01.
Plots:
P(calc cm trans E) vs. translational energy
P(app. calc Etr, cm) vs. translational energy
P(theta) vs. theta
P(phi) vs. phi
P(product mass) vs. mass
P(toa 2) vs. toa
P(toa 3) vs. toa
P(toa sum) vs. toa
P(t coinc.) vs. tcoinc
$\left.\begin{array}{cl}\mathrm{P}(\mathrm{y}, 2 \\ \mathrm{P}(\mathrm{y}, 3\end{array}\right) \quad$ vs. y
$P(r, 2)$ vs. r
P(r, 3) vs. r
P (upper frag mass) vs. mass
P(all frag mass) vs. mass
P(heavy grag mass) vs. mass
implicit Real*4 (a-h,o-z)
parameter ($\mathrm{n} 1=512$)
parameter (n2 = 720)
character*40 title
dimension ecbin(n1), pecbin(n1),
$>\quad$ emcbin(n1), pmcc(n1), pimtu(n1),tbbin(n1),
$>\quad$ ptblab(n1),tcbin(n1), ptclab(n1),tcobin(n1),
$>$ ptcolab(n1),pecabin(n1)
dimension th(n1), pth(n1), ph(n2), pph(n2)
dimension $y(n 1), r(n 1), p y b(n 1), p y c(n 1), p r b(n 1), p r c(n 1)$
dimension axis_mass (0:n1), top_mass $(0: n 1)$, all_mass $(0: n 1)$
OK, read all this stuff in from unit 8
read in calculated cm translational energy distribution
open (unit=88,file='cmlwsa.ker')
open (8, status='old')
read $(8,5000)$ title
5000 format (A40)
read $(8, *)$ ncebin
read $(8, *)$ ecbinmin, decbin
read $(8, *)$ ndum
read ($8, *$) (pecbin(i), $i=1$, ncebin)
do $i=1$, ncebin

```
    ecbin(i) = ecbinmin + (float(i)-0.5)*decbin
write (88,*)ecbin(i), pecbin(i)
    enddo
    close(88)
```

```
read in toa light particle distribution
```

read in toa light particle distribution
read(8,*)ntbbin
read((8,*) tbbinmin, dtbbin
read (8,*) ndum
read(8,*)(ptblab(i),i=1,ntbbin)
do i = 1,ntbbin
tbbin(i) = tbbinmin + (float(i)-0.5)*dtbbin
enddo
read in toa heavy particle distribution
read(8,*) ntcbin
read(8,*) tcbinmin, dtcbin
read(8,*) ndum
read(8,*)(ptclab(i),i=1,ntcbin)
do i = 1,ntcbin
tcbin(i) = tcbinmin + (float(i)-0.5)*dtcbin

```

C
\(c\) c

C
c
c
\(c\)
c
c
c
read \((8, *)\) nbinm
read \((8, *)\) gmin, dsm
read \((8, *)\) ndum
read ( \(8, *\) ) (pimtu(i), \(i=1, n b i n m\) )
\(c\)

C
c The data bins are centered on the integers; bin 1 is mass=1, and so on
c (There are no bins for mass \(=0\) or mass \(=\) radical mass)
c nbin \(=\) radical mass -1 ; the bin spacing is fixed at dsm \(=1\)
c Histogram points come in triplets:
lst point is top left of bar for the ith point
2nd point is top right of bar
3rd point is bottom right of bar (i.e., y value is zero)
c There is one bonus point at the beginning for the bottom left of
the first
c histogram bar; thus the arrays go from 0 to \(3 * n\), for a total of 3*n+1
c
axis_mass \((0)=0.5\)
do \(i^{-}=1\), nbinm*3
axis_mass \((i)=0.5+((i+1) / 3)\)
enddo
C
top_mass \((0)=0\)
all-mass \((0)=0\)
do \(\bar{i}=1, n b i n m\)
top_mass ( \(3 * i-2\) ) \(=\) pimtu (i)
top_mass \((3 * i-1)=\) pimtu (i)
top_mass \((3 * i)=0.0\)
all_mass \((3 * i-2)=(\) pimtu \((i)+\) pimtu (nbinm+1-i) ) / 2
all_mass \(\left(3 \star_{i-1}\right)=(\) pimtu(i) + pimtu(nbinm+1-i) \() / 2\)
all_mass \((3 * i)=0.0\)
enddo
c

*
c ok, all distributions are read in now
c now, plot one at a time with NCAR.
c
c
Plot translational energy distribution
write \((*, *)\) 'Enter 0 for Suntools, 1 for TEK, 2
'or 3 for Batch'
read(*,*)iwkst \(\quad\) Plot calc'd translational energy distribution
call opngks
call setusv('PB',2)
call agsetc('LABEL/NAME.','L')
call agseti('LINE/NUMBER.',100)
call agsetc('LINE/TEXT.','P(Et)\$')
call agsetc ('LABEL/NAME.', 'B')
call agseti ('LINE/NUMBER.',-100)
call agsetc ('LINE/TEXT.', 'Calc. CM Kinetic Energy (eV)\$')
call fwhm(ecbin, pecbin, ncebin, xh, xpk, xl,fw)
write (*,*) 'CM KER peak = ', xpk,' eV; FWHM = ', fw,' \(\mathrm{eV}^{\text {' }}\)
call ezxy(ecbin,pecbin, ncebin,title)
c call agseti('SET.',1)
call agsetc ('LABEL/NAME.','L')
call agseti ('LINE/NUMBER.',100)
call agsetc ('LINE/TEXT.','P(Et)\$')
call agsetc ('LABEL/NAME.', 'B')
call agseti('LINE/NUMBER.',-100)
call agsetc ('LINE/TEXT.','Approx. Calc. CM Etrans (eV) \$')
call fwhm (ecbin, pecabin, ncebin, xh, xpk, xl,fw)
write (*, *) 'Approx CM KER peak \(=1, x p k\);' eV; FWHM \(=1, f w, ' e V '\)
call ezxy (ecbin, pecabin, ncebin,title)
Plot theta angular distribution
call setusv('PB',2)
call agsetc('LABEL/NAME.','L')
call agseti ('LINE/NUMBER.',100)
call agsetc ('LINE/TEXT.','P(theta) \$')
call agsetc ('LABEL/NAME.', 'B')
call agseti ('LINE/NUMBER.', -100)
call agsetc ('IINE/TEXT.','CM Angle Distribution, Theta (deg)\$')
call fwhm(th,pth, nth, xh, xpk, xl,fw)
```

write(*,*)'CM Angle Theta peak = ',xpk,' deg; FWHM = ',fw,'
deg}\mp@subsup{}{}{\prime
call ezxy(th,pth,nth,title)
c Plot phi angular distribution
call setusv('PB',2)
call agsetc('LABEL/NAME.','L')
call agseti('LINE/NUMBER.',100)
call agsetc('LINE/TEXT.','P(phi)$')
 call agsetc('LABEL/NAME.','B')
 call agseti('LINE/NUMBER.',-100)
 call agsetc('LINE/TEXT.','CM Angle Distribution, Phi (deg)$')
call agseti('X/MAXIMUM.',350) !plots from 0 to 360 (not a
typo)
call fwhm(ph,pph,nph,xh,xpk,xl,fw)
write(*,*)'CM Angle Phi peak = ',xpk,' deg; FWHM = ',fw,'
deg'
call ezxy(ph,pph,nph,title)
c
Plot calc'd mass distribution
call agseti('SET.',1) !very important, set maximum back to
default
call setusv('PB',2)
call agsetc('LABEL/NAME.','L')
call agseti('LINE/NUMBER.',100)
call agsetc('LINE/TEXT.','P(M)$')
 call agsetc('LABEL/NAME.','B')
 call agseti('LINE/NUMBER.',-100)
 call agsetc('LINE/TEXT.','Mass (amu) MASS SPECTRUMS')
 call fwhm(emcbin,pmcc,nmcbin, xh, xpk,xl,fw)
 write(*,*)'Peak Mass = ',xpk,' amu; FWHM = ',fw,' amu'
 call ezxy(emcbin,pmcc,nmcbin,title)
 Plot light particle toa distribution
 call setusv('PB',2)
 call agsetc('LABEL/NAME.','L')
 call agseti('IINE/NUMBER.',100)
 call agsetc('LINE/TEXT.','P(t)$')
call agsetc('LABEL/NAME.','B')
call agseti('IINE/NUMBER.',-100)
call agsetc('IINE/TEXT.','TOA Light Particle (microsec.)$')
 call fwhm(tbbin,ptblab,ntbbin,xh,xpk,xl,fw)
 write(*,*)'Peak light TOF = ',xpk,' us; FWHM = ',fw,' us'
 call ezxy(tbbin,ptblab,ntbbin,title)
 Plot particle 3 toa distribution
 call setusv('PB',2)
 call agsetc('LABEL/NAME.','L')
 call agseti ('LINE/NUMBER.',100)
 call agsetc('LINE/TEXT.','P(t)$')
call agsetc('LABEL/NAME.','B')
call agseti('LINE/NUMBER.',-100)
call agsetc('LINE/TEXT.','TOA Heavy Particle (microsec.)\$')
call fwhm(tcbin,ptclab,ntbbin,xh,xpk,xl,fw)
write(*,*)'Peak heavy TOF = ', xpk,' us; FWHM = ',fw,' us'
call ezxy(tcbin,ptclab,ntcbin,title)
sum tof spectra
do i = 1,ntcbin
ptclab(i) = (ptclab(i) + ptblab(i))/2e0
enddo
output summed tof spectrum to unit 15
do i = 1,ntcbin
write(15,*)tcbin(i),ptclab(i)
enddo

```
plot summed tof spectrum
call setusv('PB',2)
call agsetc('LABEL/NAME.','L')
call agseti('LINE/NUMBER.',100)
call agsetc('LINE/TEXT.','P(t) \$')
call agsetc ('LABEL/NAME.', 'B')
call agseti('LINE/NUMBER.',-100)
call agsetc('LINE/TEXT.','Summed TOA Spectrum (microsec.) \$')
call fwhm(tcbin, ptclab,ntcbin, xh, xpk, xl,fw)
write (*,*)'Peak sum TOF = ', xpk,' us; FWHM = ',fw,' us'
call ezxy (tcbin, ptclab,ntcbin,title)
Plot Coinc. time distribution
call setusv('PB',2)
call agsetc('LABEL/NAME.','L')
call agseti('LINE/NUMBER.',100)
call agsetc('LINE/TEXT.','P(t)\$')
call agsetc ('LABEL/NAME.' ' 'B')
call agseti('LINE/NUMBER.',-100)
call agsetc('LINE/TEXT.', 'Coinc. Time Distribution (nsec) \$')
call fwhm(tcobin, ptcolab, ntcobin, xh, xpk, xl,fw)
write (*,*)'Peak Coinc time = ', xpk,' ns ; \(F\) WHM = ',fw,' ns'
call ezxy(tcobin, ptcolab, ntcobin,title)
Plot \(Y(b)\) distribution
call setusv('PB',2)
call agsetc('LABEL/NAME.', 'I')
call agseti('LINE/NUMBER.' '100)
call agsetc ('LINE/TEXT.','P(y)\$')
call agsetc ('LABEL/NAME.', 'B')
call agseti('LINE/NUMBER.',-100)
call agsetc('LINE/TEXT.','Y(mm) Light Mass Y Distributions')
call ezxy(y,pyb,nproj,title)
Plot \(Y(c)\) distribution
call setusv('PB',2)
call agsetc ('LABEL/NAME.', 'L')
call agseti ('LINE/NUMBER.',100)
call agsetc('LINE/TEXT.','P(y) \$')
call agsetc ('LABEL/NAME.', 'B')
call agseti('LINE/NUMBER.',-100)
call agsetc('IINE/TEXT.','Y(mm) Heavy Mass Y Distribution\$')
call ezxy (y,pyc, nproj,title)
Plot \(r(b)\) distribution
call setusv('PB', 2)
call agsetc('LABEL/NAME.', 'L')
call agseti ('LINE/NUMBER.' 1 100)
call agsetc('LINE/TEXT.','P(r)\$')
call agsetc ('LABEL/NAME.', 'B')
call agseti('LINE/NUMBER.', -100)
call agsetc('LINE/TEXT.','r(mm) Light Mass Radial Dist. \({ }^{\prime}\) ')
call ezxy(r,prb,nproj,title)
Plot \(r(c)\) distribution
call setusv('PB',2)
call agsetc ('LABEL/NAME.','L')
call agseti('LINE/NUMBER.',100)
call agsetc('LINE/TEXT.','P(r)\$')
call agsetc ('LABEL/NAME.', 'B')
call agseti('LINE/NUMBER.', -100)
call agsetc('LINE/TEXT.','r(mm) Heavy Mass Radial Dist. \({ }^{\prime}\) )
call ezxy(r,prc,nproj,title)
call setusv('PB',2)
call agsetc('LABEL/NAME.','L')
```

 call agseti('LINE/NUMBER.',100)
 call agsetc('LINE/TEXT.','Top Half of Detector Raw Counts$')
 call agsetc('LABEL/NAME.','B')
 call agseti('LINE/NUMBER.',-100)
 call agsetc('LINE/TEXT.','Mass [amu] Spectrum, Top Half$')
 call ezxy(axis_mass,top_mass,nbinm*3+1,title)
 c
call setusv('PB',2)
call agsetc('LABEL/NAME.','L')
call agseti('IINE/NUMBER.',100)
call agsetc('LINE/TEXT.','All Raw Counts$')
 call agsetc('LABEL/NAME.','B')
 call agseti('LINE/NUMBER.',-100)
 call agsetc('LINE/TEXT.','Mass [amu] Spectrum, All Data$')
call ezxy(axis_mass,all_mass,nbinm*3+1,title)
c
call clsgks
c
ierr == system(' mv gmeta dynrsl.img ')
if(iwkst.eq.0) ierr = system(' ictrans -d sunview dynrsl.img
')
if(iwkst.eq.1) ierr = system(' ictrans -d t4010 dynrsl.img')
if(iwkst.eq.2) ierr = system(' ictrans -d X11 -bell
dynrsl.img')
stop
end
*deck fwhm
Subroutine fwhm(x,px,n,xh,xpk,xl,fw)
c
c
c
dimension x(n),px(n)
c
pxmax = 0e0
do }10\textrm{i}=1,
if(px(i).gt.pxmax) then
pxmax = px(i)
xpk = x(i)
imax = i
endif
continue
pxhalf = pxmax/2e0
c look for low FWHM
do 20 i = 1,imax
if(px(i).le.pxhalf) then
xl = x(i)
ilhmax = i
endif
continue
look for high FWHM
do }30i=imax,
if(px(i).ge.pxhalf) then
xh = x(i)
ihhmax = i
endif
3 0
continue
fw = xh - xl
return
end

```

\section*{Appendix B}

\section*{TDAF \(^{a}\) and TDAFXDATA \({ }^{b}\) : Detector acceptance function correction}

\section*{I. Introduction}

A general discussion of the detector acceptance function (DAF) was given in the Ph.D. dissertation of Douglas Cyr, and only a brief description is given here, along with usage information and the FORTRAN code which accomplishes the DAF treatment. Due to the finite geometric acceptance of the time- and position-sensitive detector, the \(P_{\mathrm{raw}}\left(E_{\mathrm{T}}, \theta\right)\) 2-D coupled energy-angle distribution produced by CMLWSA must be corrected in order to produce the true distribution \(P_{\text {truc }}\left(E_{\mathrm{T}}, \theta\right)\) which would be observed if the detector had a full \(4 \pi\) steradian active area. The correction is accomplished by calculating the geometric detector acceptance function \(D\left(E_{\mathrm{T}}, \theta\right)\) which describes the probability of receiving an event at each ( \(E_{\mathrm{T}}, \theta\) ) combination. This function is given by:
\[
D\left(E_{\mathrm{T}}, \theta\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} D^{\prime}\left(E_{\mathrm{T}}, \theta, \varphi\right) d \varphi
\]
where \(D^{\prime}\left(E_{\mathrm{T}}, \theta, \varphi\right)\) is the doubly-differential DAF (which is what TDAF actually calculates). Integration over the azimuthal coordinate gives the desired function \(D\left(E_{\mathrm{T}}, \theta\right)\). The true energy-angle distribution can then be constructed from:
\[
P_{\text {true }}\left(E_{\mathrm{T}}, \theta\right)=\frac{P_{\mathrm{raw}}\left(E_{\mathrm{T}}, \theta\right)}{D\left(E_{\mathrm{T}}, \theta\right)}
\]

\footnotetext{
\({ }^{a}\) TDAF stands for Theta Detector Acceptance Function
\({ }^{b}\) TDAFXDATA stands for Theta Detector Acceptance Function Times DATA.
}

The 2-D distribution \(P_{\text {true }}\left(E_{\mathrm{T}}, \theta\right)\) is the input to the code MAVABFIT which finds the two 1-D distributions which are most physically meaningful, namely the translational energy distribution \(P\left(E_{\mathrm{T}}\right)\) and the energy dependent anisotropy parameter \(\beta\left(E_{\mathrm{T}}\right)\).

A second code is also described in this appendix, TDAFXDATA, which is used to accomplish the division of \(P_{\mathrm{raw}}\left(E_{\mathrm{T}}, \theta\right)\) by the detector acceptance function \(D\left(E_{\mathrm{T}}, \theta\right)\).

\section*{II. Usage}

\section*{A. Input file}

One file is required on input to TDAF, and is similar to the namelist. dat file used for CMLWSA. This input file can have any prefix but must have the suffix . list. An annotated example is given below:
```

\$inp
ipolang= 0,
nbine = 100,
rfov = 20.0,
rmin = 0.0,
x0 = -0.2785,
y0 = -0.5803,
iphdisc= 1,
phdisc = 35,

```
    blocky \(=4 e 0\), half-width of blocking strip (cm)
    light \(=13 \mathrm{e} 0\), light fragment mass (amu)
    heavy \(=28 \mathrm{e} 0\), heavy fragment mass (amu)
    cbins \(=360\), number of azimuthal angle \((\varphi)\) bins
    dpsd \(=0.995\), distance from dissociation laser to detector (mm)
    ebm \(=8125 e 0\), ion beam energy ( eV )
    emax \(=3.0\), maximum value of \(E_{T}\)
    emin \(=0.0, \quad\) minimum value of \(E_{\mathrm{T}}\)
    radmass \(=41 e 0\), parent radical mass
half-width of blocking strip (cm)
light fragment mass (amu)
heavy fragment mass (amu)
number of azimuthal angle ( \(\varphi\) ) bins
distance from dissociation laser to detector (mm)
ion beam energy (eV)
maximum value of \(E_{\mathrm{T}}\)
parent radical mass
laser polarization angle: \(\bar{E}\) parallel to radical beam axis \(\equiv 0 ; \vec{E}\) perpendicular to radical beam axis \(\equiv\) 90
number of \(E_{\mathrm{T}}\) bins
maximum allowed radius of single particle recoil \({ }^{a}\)
minimum allowed radius of single particle recoil
center of radical beam along the \(x\)-axis relative to detector center
center of radical beam along the \(y\)-axis relative to detector center
if iphdisc \(=1\), use azimuthal discrimination
discriminates all events which have \(\varphi<\) phdisc or \(\varphi>180\)-phdisc and the complementary angles on the lower half of the detector

\footnotetext{
\({ }^{a}\) Note that the variable \(r\) fov in namelist. dat for CMLWSA (cf. Appendix A) has an different meaning than the variable used here. The value of rfov in the TDAF code should correspond to the upper radial discrimination limit given interactively in CMLWSA.
}
```

 rbeammax = 1.4, maximum allowed centroid radius
 fwhmx = 1.7.
 fwhmy = 1.4,
 ngridx = 10,
ngridy = 10,
\$end

```
maximum allowed centroid radius
FWHM along \(x\)-axis of radical beam shape
FWHM along \(y\)-axis of radical beam shape number of grid points defining the \(x\)-axis radical beam shape
number of grid points defining the \(y\)-axis radical beam shape
```

send

```

All user input to TDAFXDATA is given interactively and is self-explanatory. Of course, TDAFXDATA cannot be executed without first obtaining the output of both CMLWSA (the data) and the output of TDAF (the DAF).

\section*{B. Output files}

On output, TDAF produces many plots using the NCAR graphics package which give a visual interpretation of the detector acceptance function. However, the most important output is the file *.tdaf, where * is the same prefix used on the *.list input file to TDAF. The *.tdaf file, together with fort. 9 produced by CMLWSA (which contains the \(P_{\mathrm{raw}}\left(E_{\mathrm{T}}, \theta\right)\) distribution), are the files which TDAFXDATA reads.

On output, TDAFXDATA produces the file *.cpth, the \(P_{\text {tru }}\left(E_{\mathrm{T}}, \theta\right)\) 2-D distribution. This file in turn is the input to MAVABFIT, described in Appendix C.

\section*{III. FORTRAN code of TDAF and TDAFXDATA}

\section*{tdaf.f}
```

 Program thetadaf
    ```
C unix version 920804 DRC
c
\(c \quad\) When given the orientation of the
\(c\) polarization of the \(E\) vector relative to the radical beam,
\(c\) masses of the photofragments of interest, radical beam kinetic
\(c\) energy, physical characteristics of the
\(c\) detector, and an energy window of interest, this routine
calculates
\(c\) the appropriate theta (i.e. integrated over phi)
c detector acceptance functions (DAF) to be used to normalize raw data.
c A vector for the center of mass recoil is defined which has as its
c base the heavy mass and as its point the light mass. This vector is
\(c\) stepped through phi and theta for each energy and the total of
valid
c events is summed for each energy and angle. This is the most
differential
c form of the data. The code is ready for full theta \(=1-180\), phi \(=\)
c 1-360 data from cmlwsa when that becomes available. For now this
\(c\) problem is dealt with in tdafxdata, where the second half of the tdaf
\(c\) is ignored. DLO 3/94
c Modified 12/15/92 to include angular (phi) discrimination, but only
c in the horizontal (ipolang \(=0\) ) mode. DLO
c Now will also work in vertical mode. DLO 3/94
c Modified \(2 / 2 / 93\) to do multiple energy windows, as mentioned above.
C optimized for speed. now only writes out thdaf and not thdafinv
c tdaffile now contains emin, emax, nbine
c DJL 3/93
C vo : parent beam velocity ( \(\mathrm{km} / \mathrm{sec}\) )
C radmass : parent mass
c light : light fragment mass
heavy : heavy fragment mass
ipolang : polarization of laser \(E\) vector relative to the radical
c beam axis (should be 0 or 90)
\(c\) dpsd : is the nominal flight distance from photodiss. center to the center of the detector
\(c \quad x 0 \quad\) : the \(x\) coordinate where the undissociated radical
beam
c would impinge on the detector if the true center of
the
\(c \quad\) detector were \((0,0)\) in mm
\(c \quad y^{0} \quad: \quad\) similar story as \(\times 0\)
c rbeammax: a radial cutoff for the centroids which matches the rbeammax \(c\) in cmlwsa
\(C\) ith : the angle of fragment recoil axis relative to the \(E\) vector of the polarized laser light
iphdisc: Do phi discrimination? \(0=\) no, \(1=\) yes
phdisc : the angle in phi to discriminate data at angles lower than phi or higher than 180 - phi.
nsubbine: The width (in bins) of each subwindow (over which theta is ~ constant) (at the moment \(=1\) always)
\(c\) fwhmx : the full width at half maximum of the neutral radical beam
\(c \quad\) in the \(x\) and (fwhmy) \(y\) directions
c ngridx : number of grids to use to approximate gaussian. should \(c\) be an even number!
C
```

implicit real*4 (a-h,o-z)
parameter (n2 = 300)
parameter (n4 = 360)

```
parameter ( \(\mathrm{n} 6=300\) ) \(!\mathrm{NOTE}: \mathrm{n} 6\) should be .ge. nbine!!
real*4 ebinval(n2), factor(n2), cosval (2*n4), sinval (2*n4)
real*4 thetaval (n4), thdaf(n4), lorentznorm, corrfac
real*4 thdafex (n6, n4), thdafexsum (n6, n4), phival (2*n4)
real*4 light, heavy, radmass, forwnum, backnum
real*4 suma(n6)
integer phlower, phupper, phdisc,integr(n2), cbins
character*20 outfile, temp,listfile
logical debug4
c
c the radius of the field-of-view (mm)
rfov \(=19\)
c the minimum radius for radial discrimination (mm) rmin \(=4\)
\(c\) the nominal x-origin of the detector (mm)
```

 x0 = 0e0
 c the nominal y-origin of the detector (mm)
yo = 0e0
c the radial cutoff beyond which we will not consider events
rbeammax = 1.5
do phi discrimination ? 0 = no, 1 = yes
iphdisc = 1
c angles in phi to do discrimination
phdisc = 0
full width half max of gausian in x dimension (mm)
fwhmx = 1.0
full width half max of gausian in y dimension (mm)
fwhmy = 1.0
c the number of (x) sections to divide the gaussian into (even
number!)
ngridx = 10
c the number of (}Y\mathrm{) sections to divide the gaussian into (even
number!)
ngridy = 10
discriminate against all events lying outside a vertical strip
half width of the strip. To not discriminate, make this large
strdisc = 200.0 DEFUNCT 5/94
read in experimental constants from *.list
(in namelist format) (formerly fort.4)
output detector acceptance functions into *.out
(formerly fort.18)
output averaged results into
stdout
(????)
C
read in experimental constants in namelist format
corrfac = cbins/(2.0*pi)
write(6,*)'Enter root name of namelist file'
read(5,*) temp
call addsuffix(temp,'.list',listfile)
write(6,*)"Reading namelist variables from ',listfile
open(unit = 4, file = listfile,status = 'old')
read(4,inp,iostat=ioerr)
if(ioerr.ne.0) stop 'Error in namelist input!'
if (strdisc.ne.200) stop 'strdisc not implemented in tdaf.f!!'
Following line commented out 3/2/93. Could see no reason for it.
DLO
C if (emin.ne.0) stop 'Yikes! emin not zero!'
if (emin.ne.0) then
write(6,*) 'emin is not zero: emin = ',emin
endif
if((iphdisc.eq.0).and.(phdisc.ne.0)) then
write(6,*)'if you do not want phi discrimination,'
write(6,*)'then set phdisc = 0 in the namelist!'
stop
endif
if((float(ngridx/2).ne.ngridx/2.0).or.
@ (float(ngridy/2).ne.ngridy/2.0))
a stop 'ngridx and ngridy must be even numbers!'
if(mod(cbins,4).ne.0) stop 'cbins must be divisible by 4'
if(cbins.gt.2*n4) stop 'cbins is too large. change param n4)'
c
write(6,*)'Enter output file ''root'' name'

```
```

 read(5,*) temp
 call addsuffix(temp,'.tdaf',outfile)
 write(6,*)'tdaf output will be stored in: ',outfile
 c
write(*,*)'Enter 0 for sun, 1 for TEK, 2 for Xl1 or 3 for
batch:
read(*,*)iwkst
c
c start calculations
c determine vo in m/s
c
c Since the code cannot yet handle phi discrimination with vertical
c polarization, exit if both iphdisc = 1 and ipolang = 90
C
if((iphdisc.eq.1).and.(ipolang.eq.90)) then
write(6,*)
write(6,*)
write(6,*) 'The code now handles phi'
write(6,*) 'discrimination with vertical polarization.
write(6,*) 'Finally you can sleep at night again!'
write(6,*) '**'
endif
c
if(iphdisc.eq.1) then !(do phi discrimination)
phlower = phdisc
phupper = 180 - phdisc
else !(no phi disc)
phlower = 0
phupper = 180
endif
*
v0 = sqrt((2.0*ebm*amutokg*eVtoJ)/radmass)
gam = vo/dpsd !gam = 1/flight time. It is an REC era
obscure term
dpsdmm = dpsd*1000 !flight distance in mm
write(*,*)
write(*,*)' Incident beam energy = ',ebm,' ev'
write(*,*)' Incident beam veloc. = ',v0,' m/sec '
write(*,*)
write(*,*)' Beam center at x = ',x0,' y = ',y0
write(*,*)
=
begin by initializing three do loops that calculate, in turn,
if a given set of center of mass (com) energy, polar angle
Che:a
=
and azimuthal angle phi will result in a valid coincidence
\epsilon\becauseยR:
c
Or ipolang = 0, (the laser polarization is parallel to the
radical beam direction of propagation) y~sin(th)cos(ph) and
x~sin(th)sin(ph). In these two expressions, }y\mathrm{ and }x\mathrm{ are in
detector
c coordinates, while the variables th and ph are in the
c photodissociation coordinate system. Keep this in mind
throughout!
c Phi is referenced from ph=0 as the light
mass is heading straight upward when th=90
pd coords : z towards the detector, x up, rh coords
detector coords : x to right, Y up, z towards source
transformation : pd -> det
x -> y
y -> x

```
```

C
z -> -z
for ipolang = 90, (the laser polarization is perpendicular to
the radical beam direction of propagation) y~cos(th)
and x~-sin(th)sin(ph). Phi is referenced from ph=0 as the
mass is heading parallel to the radical beam axis when th=90
pd coords : X towards the detector, z up, rh coords
detector coords : }x\mathrm{ to right, y up, z towards source (same as
above)
C
C
C
C
now decide whether to use distribution beam shape or not
write(6,*)'Enter 0 for gaussian beam shape, 1 for point source'
write(6,*)'2 for lorentzian beam shape'
read(5,*) igauss
if(igauss.eq.0) then
sigmax = fwhmx/2.345
write(6,*)'sigmax =',sigmax
sigmay = fwhmy/2.345
xbinwdth = 2*rbeammax/float(ngridx)
write(6,*) 'xbinwidth =' ,xbinwdth
ybinwdth = 2*rbeammax/ngridy
elseif(igauss.eq.2) then
xbinwdth = 2*rbeammax/float(ngridx) lkluge for widthrange
ybinwdth = 2*rbeammax/float(ngridy)
endif
erange = emax - emin
if ((erange.le.0).or.(nbine.gt.n2)) then
write(*,*) 'Energy range or bin number incompatibility, ',
>
stop
endif
if (abs(light + heavy - radmass).gt.1e-4) then
write(*,*) 'Parent and fragments mass incompatibility, ',
> 'check namelist!!!
stop
endif
if((ipolang.ne.0).and.(ipolang.ne.90)) then
write(*,*) 'Laser polarization variable incorrect, ',
> 'check namelist!!!'
stop
endif
redmass = light * heavy / radmass
step = erange / nbine
c
c nbinel = (ewinmin/emax)*nbine + 1
c nbine2 = (ewinmax/emax)*nbine
c
write(*,*)'step size = ',step*1000,' meV'
C
c create xcenter,ycenter, which are the "true" centers
xcenter = x0
ycenter = yo
if(igauss.eq.1) then !if point source, then disable distribution
loops
xbinwath == 0.0
ybinwdth == 0.0
ngridx = 1

```
```

 ngridy = 1
 endif
 cccccccocc calculate tabulated data for main loop
ccccccccccccecccccccccccc
c
write(6,*)'Calculating tabulated arrays'
ratio = light/heavy
c write(6,*)'light = ',light,'heavy =',heavy,'radmass =',radmass
c write(6,*)'ratio =',ratio,'redmass =',redmass,amutokg,eVtoJ
do inrg = 1, nbine
ebinval(inrg) = emin + ((inrg - 0.5) * step)
vrel = sqrt((2*ebinval(inrg)*amutokg*eVtoJ)/redmass) !m/sec
factor(inrg) = 1000 * heavy/radmass*vrel/gam !([m3/M]*vrel*t in
mm)
c write(6,*)'ebinval(',inrg,') = ',ebinval(inrg)
c write(6,*)'vrel = ',vrel,'gam = ',gam,'factor = ',factor(inrg)
c The quantity (vrel/gam) is the ideal distance between the two
particles.
c i.e. It is the distance when the center of mass is in the plane of
c the detector.
end do
angstep = 360.0/cbins
do ith = 1, cbins/2
thetaval(ith) = (ith - 0.5)*angstep !converts index to angle
end do
c create trig tables
do iph = 1,cbins
phival(iph) = (iph - 0.5)*angstep !converts index to angle
cosval(iph) = cos((iph - 0.5)*angstep/corrfac)
sinval(iph) = sin((iph - 0.5)*angstep/corrfac)
c tanval(iph) = tan((iph - 0.5)*angstep/corrfac)
end do
c
ccccocccccc Begin loop over energy
cccccccccccccccccccccccccceccccccccccc
write(6,*)'Entering main loop.'
if(nint(light).ne.nint(heavy)) then !use full range of phi
C
(very long conditional)
do }80\mathrm{ inrg = 1, nbine
ccccccc begin beam center loops coccccccccoccccccocccccccccccocccc
C
do }85\mathrm{ ix = I,ngridx
x0 = xcenter - 0.5*xbinwath + float(ix - ngridx/2)*xbinwdth
do }87\mathrm{ iy = 1,ngridy
y0 = ycenter - 0.5*ybinwdth + float(iy - ngridy/2)*ybinwdth
c skip out of entire calculation if center point is outside rbeammax
c dist_from_cent = sqrt((x0-xcenter)**2 + (y0 - ycenter)**2)
c if(dist_from_cent.gt.rbeammax) goto 87
cccccccccccc now that the binwidths are defined in terms of rbeammax,
there
cccccccocccc is no need for the preceeding statement
if(igauss.eq.0) then
c calculate value of distribution to use in normalization
zx = (x0 - xcenter)/sigmax
zy = (y0 - ycenter)/sigmay
gausnorm = (1.0/(2.0*sigmax*sigmay*pi))
probdist = gausnorm*exp(-0.5*(zx*zx + zy*zy))
elseif(igauss.eq.2) then

```
```

 zx = (x0 - xcenter) /(0.5* fwhmx)
 zy = (y0 - ycenter)/(0.5* fwhmy)
 lorentznorm = 1.0/(pi*pi)
 probdist = 1orentznorm*(1.0/(1.0+(zx*zx)))*(1.0/(1.0+(zy*zy)))
 else
probdist = 1.0
endif
ccccccccccc Begin loops over theta，energy，and phi
ccccccccocccccecccccc
c Note that these loops are over photodissociation coordinates
c In this section，the loop over phi and theta，which describes
c different space in the lab frame for vertical vs．
horizontal
$c \quad l a s e r ~ p o l a r i z a t i o n, ~ g i v e s ~ x 2, x 3, y 2, y 3$ in detector coordinates，
c which are the same regardless of polarization．Discrimination is accomplished in this frame of reference，and the tdaf is accumulated in the photodissociation frame（theta and phi）． Eventually cmlwsa should also put out pd frame data from theta $=1-180$ and phi $=1-360$ ． A vector with base at heavy particle，arrow point at light particle，is swept through the coordinates theta and phi DLO
c Now，for equal mass，one would overcount using the above definitions
$c \quad$ In keeping with cmlwsa＇s definitions in psdclce，for equal mass
c in either polarization，we will use theta $=1-180$ ，phi $=1$－
c and phi $=271-360 \quad$ DLO 6／94
$c \quad$ Don＇t worry that a choice of cbins．ne． 360 means that theta c and phi don＇t seem to go to 180 and 360 degrees，respectively c This is taken care of earlier，when the tables are created．

```

``` ここここ
```

```
 do 100 ith = 1, cbins/2
```

            do 100 ith = 1, cbins/2
                    do 300 iph = 1, cbins
                    do 300 iph = 1, cbins
                        x2 = factor(inrg)*sinval(ith)*sinval(iph) + x0
                        x2 = factor(inrg)*sinval(ith)*sinval(iph) + x0
                        x3 = -ratio*(x2 - x0) + x0
                        x3 = -ratio*(x2 - x0) + x0
                        if(ipolang.eq.0) then
                        if(ipolang.eq.0) then
                        y2 = factor(inrg)*sinval(ith)*cosval(iph) + y0
                        y2 = factor(inrg)*sinval(ith)*cosval(iph) + y0
                        elseif(ipolang.eq.90) then
                        elseif(ipolang.eq.90) then
                        x2 = - (x2 - x0) + x0
                        x2 = - (x2 - x0) + x0
                        x3 =- (x3 - x0) + x0
                        x3 =- (x3 - x0) + x0
                y2 = factor(inrg)*cosval(ith) + yo
                y2 = factor(inrg)*cosval(ith) + yo
        z2 =-factor(inrg)*sinval(ith)*cosval(iph) !needed for thprime
        z2 =-factor(inrg)*sinval(ith)*cosval(iph) !needed for thprime
    c z3 = -ratio*z2 ldon't need z3
c z3 = -ratio*z2 ldon't need z3
endif
endif
y3 = -ratio*(y2 - y0) + y0
y3 = -ratio*(y2 - y0) + y0
c
c Now do discrimination for beam block, field of view, and phi
C angular disrimination
c First calculate phprime, the phi angle with respect to the
c center point of the beam block, being careful of arctangent
c pitfalls. Phprime is a detector coordinate frame based phi angle.
c For vertical polarization it may seem confusing. The phi disc
values
c given in cmlwsa always refer to **detector coordinates** and it
c is phprime that must be equated to these values, even if, (as is
the

```
```

c case for vertical polarization) this is not the [center of mass]
phi
c we normally discuss. Therefore the tdaf plots for a vertical
c polarization will look much funkier than those for horizontal
c polarization since we have broken lab frame azimuthal symmetry
c DLO 3/94
c Now create also a detector based theta angle in order to correct
c for the forward/backward scattering effect. Basically we will
c modify the x2,y2, x3,y3 values based on the angle thprime such that
c these cartesian displacements are not referenced to their values
c at the time the center of mass hits the detector, but their values
c when each particle hits the detector, i.e. real life.
c due to a bizarre case in which x2 rounded to zero, add the
following:
if(x2.eq.0.0) x2 = x2 + 0.000005
if(x3.eq.0.0) x3 = x3 + 0.000005
c go figure
c the value of thprime depends on ipolang
if(ipolang.eq.0) then
thprime = 180 - thetaval(ith) !thprime is zero towards source
else land 180 towards detector
thprime = acos(z2/factor(inrg))*degree
endif
c Now modify $x 2, y 2, x 3, y 3$ as described above to reflect the real
c positions of the particles when they strike the detector
c For thprime < 90, the light particle (\#2) is back scattered, and
c therefore its real life recoil must increase. For thprime > 90
c \#2 is forward scattered, and its recoil must decrease. The
c change in sign is from the tangent function.
c Since the forward/backward asymmetry is accounted for in
c detector coordinates, which are the same for horizontal and
c vertical polarization, this section doesn't depend on ipolang.
radius2 = sqrt (x2*x2 + y2*y2)
tanval = tan(thprime/degree)
corr2 = 1+ (radius2/dpsdmm) / tanval
corr3 = 1- (radius3/dpsdmm) / tanval
x2 = x2*corr2
x3 = x3*corr3
y2 = y2*corr2
y3 = y3*corr3

```
 phprime2 \(=\operatorname{atan}(y 2 / x 2) *\) degree
 if (phprime2.1t.0.0) then ! (avoid arctan range
problem)
 phprime2 \(=\) phprime \(2+180.0\)
 endif
 phprime3 \(=\) atan (y3/x3)*degree
 if (phprime3.lt.0.0) then
 ! (avoid arctan range
problem)
 phprime3 \(=\) phprime3 +180.0
 endif
c
c Here it is: the detector acceptance conditional!
c WARNING this version no longer pays attention to strdisc!!
```

C
if ( (min(phprime2,phprime3).ge.phlower).and.
@ (max(phprime2,phprime3).le.phupper) ) then
if ( (radius2.le.rfov).and.(radius3.le.rfov) ) then
if ( (radius2.ge.rmin).and.(radius3.ge.rmin)) then
if ( (abs(y3).ge.blocky).and.(abs(y2).ge.blocky) ) then
thdaf(ith) = thdaf(ith) + 1 !(sum over phi and energy)
integr(inrg) = integr(inrg) + 1
endif
endif
end if
end if
300 contirue ! end of phi loop
C
thdafex(inrg,ith) = thdaf(ith)*sinval(ith)*360/cbins !(jacobian)
c thdafex(inrg,ith) = thdaf(ith) !(without jacobian)
C
100 continue ! end of theta loop
c
c accumulate the thdafex sums from each x0,y0 in the distribution
do 225 ith = 1,cbins/2
c now multiply by probdist to normalize daf for distribution
beam shape
thdafexsum(inrg,ith) = thdafexsum(inrg,ith)
@ + thdafex(inrg,ith)*probdist
thdafex(inrg,ith) = 0.0 ! set to zero for next distribution point
thdaf(ith)=0.0
225
continue
ccccccccccec End Main Loops

```

```

87 continue !(loop over ngridy)
85 continue !(loop over ngridx)
do jjj = 1,cbins/2
thdaf(jjj) = 0.0 ! (this array used inside each main loop)
c now that the entire distribution grid has been cycled through for
c one energy bin, rename thdafexsum to thdafex.
thdafex(inrg,jjj) = thdafexsum(inrg,jjj)
enddo
thdafmax = 1e-36
thdafmin = 1e36
suma(inrg) = 0.0
forwnum = 0.0
backnum = 0.0
do 400 ith = 1,cbins/2
suma(inrg) = suma(inrg) + thdafex(inrg,ith)
if (thdafex(inrg,ith).ge.thdafmax) then
thdafmax = thdafex(inrg,ith)
endif
if (thdafex(inrg,ith).le.thdafmin.and.
> thdafex(inrg,ith).gt.1e-9) then
thdafmin = thdafex(inrg,ith)
endif
if(ith.le.cbins/4) then
forwnum = forwnum + thdafex(inrg,ith)
else
backnum = backnum + thdafex(inrg,ith)
endif
400 continue
c write(6,*) 'Integrated intensity (early) = ',suma(inrg)

```
```

    suma(inrg) = suma(inrg)/(360*cbins/pi)
    write(6,*) 'Energy bin ',inrg,' of energy ',ebinval(inrg)
    write(6,*) 'Integrated intensity = ',suma(inrg)
    write(6,*) 'Light Particle recoil = ',factor(inrg),' (mm)'
    if((suma(inrg).gt.0.0).and.(ipolang.eq.0)) then
    write(6,272) 'Forward scatt. = ',
    @ 100*forwnum/(forwnum + backnum).'%'
    write(6,272) 'Backward scatt. = ',
    @ 100*backnum/(forwnum + backnum),'%'
    endif
write(6,*) ' '
c
write(6,*) 'Un-sine-thetad integrated intenisty = ',integr(inrg)
write(6,*) 'thdafmax = ',thdafmax
write(6,*) 'thdafmin = ',thdafmin
write(6,*) 'number of theta singularities = ', isingul
write(6,*)
80 continue ! end of inrg index loop
272 format(A18,F5.2,A1)
else !from if(light.ne.heavy), i.e. this is the equal mass case
do 180 inrg = 1,nbine
ccccccc begin beam center loops cccccccocccocccococcccocccocccc
c
do 185 ix = 1, ngridx
x0 = xcenter - 0.5*xbinwdth + float(ix - ngridx/2)*xbinwdth
do 187 iy = 1,ngridy
y0 = ycenter - 0.5*ybinwdth + float(iy - ngridy/2)*ybinwdth
c skip out of entire calculation if center point is outside rbeammax
c dist_from_cent = sqrt((x0-xcenter)**2 + (y0 - ycenter)**2)
c if(dist_from_cent.gt.rbeammax) goto 187
cccccccccccc now that the binwidths are defined in terms of rbeammax,
there
cccccccccocc is no need for the preceeding statement
if(igauss.eq.0) then
c calculate value of distribution to use in normalization
zx = (x0 - xcenter)/sigmax
zy = (y0 - ycenter)/sigmay
gausnorm = (1.0/(2.0*sigmax*sigmay*pi))
probdist = gausnorm*exp( -0.5* (zx*zx + zy*zy) )
elseif(igauss.eq.2) then
zx = (x0 - xcenter)/(0.5*fwhmx)
zy = (y0 - ycenter)/(0.5* fwhmy)
lorentznorm = 1.0/(pi*pi)
probdist = lorentznorm*(1.0/(1.0+(zx*zx)))*(1.0/(1.0+(zy*zy)))
else
probdist = 1.0
endif
ccccccccccc Begin loops over theta, energy, and phi cccccccccccoccccecccc
c Note that these loops are over photodissociation coordinates
$c$ In this section, the loop over phi and theta, which describes $c$ different space in the lab frame for vertical vs.
horizontal

```
c laser polarization, gives \(x 2, x^{3}, y^{2}, y^{3}\) in detector coordinates,
c which are the same regardless of polarization. Discrimination \(c\) is accomplished in this frame of reference, and the tdaf is c accumulated in the photodissociation frame (theta and phi). c Eventually cmlwsa should also put out pd frame data from \(c \quad\) theta \(=1-180\) and phi \(=1-360\).
c A vector with base at heavy particle, arrow point at light \(c\) particle, is swept through the coordinates theta and phi DLO
c Now, for equal mass, one would overcount using the above definitions
c In keeping with cmlwsa's definitions in psdclce, for equal
mass
c in either polarization, we will use theta \(=1-180\), phi \(=1-\)
90
c and phi \(=271-360 \quad\) DLO 6/94
 cccc
do 1000 ith \(=1\), cbins \(/ 2\)
do 3000 iph \(=1\), cbins
if((iph.gt.cbins/4).and.(iph.le.3*cbins/4)) goto 3000!i.e. skip 90
- 270
\(\mathrm{x} 2=\) factor (inrg)*sinval(ith)*sinval(iph) +x 0
\(\mathrm{x} 3=-\mathrm{ratio}(\mathrm{x} 2-\mathrm{x} 0)+\mathrm{x} 0\)
if(ipolang.eq.0) then
\(y^{2}:=\) factor (inrg)*sinval(ith)*cosval (iph) \(+y^{0}\)
elseif(ipolang.eq.90) then
\(x 2:=-(x 2-x 0)+x 0\)
\(x^{3}=-(x 3-x 0)+x 0\)
\(y_{2}=\) factor (inrg)*cosval(ith) + yo
z2 \(=-\) factor (inrg)*sinval(ith)*cosval(iph) !needed for thprime
\(\mathrm{c} \quad \mathrm{z} 3=\)-ratio*z2 !don't need z 3 endif
\(y^{3}=-r a t i o^{*}\left(y^{2}-y_{0}\right)+y^{0}\)
\(c\) Now do discrimination for beam block, field of view, and phi
c angular disrimination
c First calculate phprime, the phi angle with respect to the
\(c\) center point of the beam block, being careful of arctangent
c pitfalls. Phprime is a detector coordinate frame based phi angle.
\(c\) For vertical polarization it may seem confusing. The phi disc
values
c given in cmlwsa always refer to **detector coordinates** and it
\(c\) is phprime that must be equated to these values, even if, (as is the
c case for vertical polarization) this is not the [center of mass] phi
c we normally discuss. Therefore the tdaf plots for a vertical
c polarization will look much funkier than those for horizontal
c polarization since we have broken lab frame azimuthal symmetry DLO 3/94
c Now create also a detector based theta angle in order to correct
c for the forward/backward scattering effect. Basically we will
c modify the \(x 2, y 2, x 3, y 3\) values based on the angle thprime such that
\(c\) these cartesian displacements are not referenced to their values \(c\) at the time the center of mass hits the detector, but their values \(c\) when each particle hits the detector, i.e. real life.
```

c due to a bizarre case in which x2 rounded to zero, add the
following:
if(x2.eq.0.0) x2 = x2 + 0.000005
if(x3.eq.0.0) x3 = x3 + 0.000005
c go figure
if(ipolang.eq.0) then
thprime = 180 - thetaval(ith) !thprime is zero towards source
else land 180 towards detector
thprime = acos(z2/factor(inrg))*degree
c arccos(x) is 0 to pi as x goes from 1 to -1
ccccccoccceccocccccccccccccccccec
c if(inrg.eq.28) write(6,*) 'Div 1'
endif
c Now modify x2,y2,x3,y3 as described above to reflect the real
c positions of the particles when they strike the detector

```
```

radius2 = sqrt(x2*x2 + y2*y2)

```
radius2 = sqrt(x2*x2 + y2*y2)
radius3 = sqrt(x3*x3 + y3*y3)
radius3 = sqrt(x3*x3 + y3*y3)
 tanval = tan(thprime/degree)
ccccccccccccccccccocccccccccccccc
c if(inrg.eq.28) write(6,*) 'Div 2'
c for 0 < thprime < 90, tanval > 0, so
c for thprime near 0 or 180, tanval approaches +inf or -inf
c such that corr2 approaches 1
 corr2 = 1+ (radius2/dpsdmm) / tanval
ccccccccccccccccccccccccccccccccc
c if(inrg.eq.28) write(6,*) 'Div 3'
 corr3 = 1- (radius3/dpsdmm) / tanval
ccccccccccccccccccccccccccccccccc
c if(inrg.eq.28) write(6,*) 'Div 4'
 x2 = x2*corr2
 x3 = x3*corr3
 y2 = y2*corr2
 y3 = Y 3*corr3
phprime2 \(=\operatorname{atan}(\mathrm{y} 2 / \mathrm{x} 2) *\) degree \(\operatorname{cocccccccccccccccccccccccccc}\) C if(inrg.eq.28) write (6,*) 'Div 5'
if (phprime2.1t.0.0) then ! (avoid arctan range problem)
phprime2 \(=\) phprime \(2+180.0\)
endif
if (abs (x3).It. 0.00001) then
write (6,*) 'Div/0 coming',inrg,ith,iph,
a ' \(y^{3}=1, y^{3}, x^{3}=1, x 3, x 2\)
write (6,*)'factor =', factor (inrg)
iiiii = 1
endif
phprime \(3=\operatorname{atan}(y 3 / \times 3) *\) degree
if(iiiii.eq.1) then
write(6,*) 'phprime3 = ', phprime3
iiiii \(=0\)
endif
if (phprime3.lt.0.0) then \(\quad\) (avoid arctan range
problem)
phprime3 \(=\) phprime \(3+180.0\)
endif
```

```
 radius2 = sqrt (x2* }22+y\mp@subsup{2}{}{*}Y2
 radius3 = sqrt(x3*x3 + y3*y3)
C
c Here it is: the detector acceptance conditional:
 WARNING this version no longer pays attention to strdisc!!
c
C
 if ((min(phprime2,phprime3).ge.phlower).and.
 (max(phprime2,phprime3).le.phupper)) then
 if ((radius2.le.rfov).and.(radius3.le.rfov)) then
 if ((radius2.ge.rmin).and.(radius3.ge.rmin)) then
 if ((abs(y3).ge.blocky).and.(abs (y2).ge.blocky)) then
 thdaf(ith) = thdaf(ith) + 1 !(sum over phi and energy)
 integr(inrg) = integr(inrg) + 1
 endif
 endif
 end if
 end if
3000 continue ! end of phi loop
c
 thdafex(inrg,ith) = thdaf(ith)*sinval(ith)*360/cbins !(jacobian)
C thdafex(inrg,ith) = thdaf(ith) !(without jacobian)
C
1000 continue ! end of theta loop
c
C accumulate the thdafex sums from each x0,y0 in the distribution
 do 2250 ith = 1,cbins/2
c now multiply by probdist to normalize daf for distribution
beam shape
 thdafexsum(inrg,ith) = thdafexsum(inrg,ith)
 @ + thdafex(inrg,ith)*probdist
 thdafex(inrg,ith) = 0.0 ! set to zero for next distribution point
 thdaf(ith) = 0.0
2250 continue
cccccccccccc End Main Loops
```



```
187 continue !(loop over ngridy)
185 continue !(loop over ngridx)
 do jjj = 1,cbins/2
 thdaf(jjj) = 0.0 !(this array used inside each main loop)
c now that the entire distribution grid has been cycled through for
c one energy bin, rename thdafexsum to thdafex.
 thdafex(inrg,jjj) = thdafexsum(inrg,jjj)
 enddo
 thdafmax = 1e-36
 thdafmin = 1e36
 suma(inrg) = 0.0
 forwnum = 0.0
 backnum = 0.0
 do 4000 ith = 1,cbins/2
 suma(inrg) = suma(inrg) + thdafex(inrg,ith)
 if (thdafex(inrg,ith).ge.thdafmax) then
 thdafmax = thdafex(inrg,ith)
 endif
 if (thdafex(inrg,ith).le.thdafmin.and.
 >
 thdafex(inrg,ith).gt.1e-9) then
```

```
 thdafmin = thdafex(inrg,ith)
 endif
 if(ith.le.cbins/4) then
 forwnum = forwnum + thdafex(inrg,ith)
 else
 backnum = backnum + thdafex(inrg,ith)
 endif
4000 continue
c write(6,*) 'Integrated intensity (early) = ',suma(inrg)
 suma(inrg) = suma(inrg)/(360*cbins/pi)
 write(6,*) 'Energy bin ',inrg,' of energy ', eoinval(inrg)
 write(6,*) 'Integrated intensity = ',suma(inrg)
 if(suma(inrg).gt.0.0) then
 write(6,272) 'Forward scatt. = ',
 @ 100*forwnum/(forwnum + backnum),'%
 write(6,272) 'Backward scatt. = ',
 @ 100*backnum/(forwnum + backnum),'''
 endif
 write(6,*) ' '
 write(6,*) 'Un-sine-thetad integrated intenisty = ',integr(inrg)
 write(6,*) 'thdafmax = ',thdafmax
 write(6,*) 'thdafmin = ',thdafmin
 write(6,*) 'number of theta singularities = ', isingul
write(6,*)
```

180 continue ! end of inrg index loop
endif !from if(light.ne.heavy)
write(6,*) 'out of calculation loops !!'
c
c now write out detector acceptance function to outfile
open(unit $=18$, file $=$ outfile)
write(6,*)'nbine = ', nbine
write (18,*) emin,emax, nbine ! this is for kdaf.f
do 590 inrg = 1,nbine
write (18,*) inrg
do 600 ith $=1$,cbins $/ 2$
write $(18,1001)$ thetaval(ith), thdafex(inrg,ith)
600
continue
continue
close (18)
1001 format (f7.1,f16.7)
C Now create 1-D arrays for each energy-bin-thdaf. This
$c$ is done solely for ncarg plotting reasons. Overwrite
$c$ this array each time.
C
call opngks
c
C plot 'isotropic' (beta=0) 1-D detector acceptance $D(E)$
C
call setusv('PB',2)
call agsetc ('LABEL/NAME.', 'L')
call agseti('LINE/NUMBER.',100)
call agsetc ('LINE/TEXT.','D(E) \$')
call agsetc ('LABEL/NAME.', 'B')
call agseti('LINE/NUMBER.', -100)

```
 call agsetc('LINE/TEXT.','Energy$')
 call ezxy(ebinval,suma,nbine,
 > 'Isotropic Detector Acceptance Function$')
c
 do 2000 inrg = 1, nbine
 do 1900 ith = 1,cbins/2
 thdaf(ith) = thdafex(inrg,ith)
1 9 0 0
 continue
c plot normalized theta detector acceptance function
c
 call setusv('PB',2)
 call agsetc('LABEL/NAME.','L')
 call agseti('LINE/NUMBER.',100)
 call agsetc('LINE/TEXT.','P(E,theta)$')
 call agsetc('LABEL/NAME.','B')
 call agseti('LINE/NUMBER.',-100)
 call agsetc('LINE/TEXT.','Theta$')
 call ezxy(thetaval,thdaf,cbins/2,
 > 'Theta Detector Acceptance Function$')
c
2000 continue
c
 call clsgks
 ierr = system(' mv gmeta tdaf.img ')
 if(iwkst.eq.0) ierr = system(' ictrans -d sunview tdaf.img ')
 if(iwkst.eq.1) ierr = system(' ictrans -d t4010 tdaf.img')
 if(iwkst.eq.2) ierr = system(' ictrans -d X11 -bell tdaf.img')
c
 end
```


## tdafxdata.f

## program thetadafxdata

c
c this program takes the energy and angle resolved two dimensional array
c from cmlwsat, and divides each row of this array in energy by
$c$ the thetadaf factors previously generated by tdaf.
c nbine from tdaf output file should aggree exactly
c with the nbine of fort. 4 fort cmlwsa. Then the daf corrected
c angular distributions (at each energy) are added together.
$c$ Care must be taken to use only the section of the data (in
c theta) which all energies contribute to.
$c$ The output file with error bars
c (daf corrected KER ) is named by the user (ch variable outfile).
c The cmlwsa code is now set to run with theta $=180$, and so this
c code will now use that data too. DLO 3/94
c Previously, the threshold for the daf (or daf inverse) was
c implemented in thdafex, throwing away information irrevocably.
c Now we're implementing the cutoff at the dafxdata stage. 3/93
C
implicit real*4 (a-h,o-z)
parameter ( $\mathrm{n} 6=150$ ) !energy array range
parameter ( $n 7=180$ ) ! theta array range
dimension th(n7), rptherr (n6, n7), cptherr (n6, n7)
dimension thdaf ( $n 6, n 7$ ), thdafmin ( $n 6$ ), thdafmax ( $n 6$ )
dimension cpth(n6, n7), ecm(n6), ebinval(n6), pthfinal(n7), pthraw(n7) dimension varpthfinal(n7), pthfinalerr(n7), integint (n6)
dimension varpthraw (n7), pthrawerr (n7), dafplot (n7), expplot (n7)
integer anydatal (n6), anydata2 (n6), anydaf1 (n6), anydaf2 (n6) dimension expmax (n6), dafmmax (n6)
integer expthmin2(n6), expthmax2 (n6)
dimension ithmin2 (n6), ithmax2 (n6)
integer expthmin1 ( $n 6$ ), expthmax1 ( $n 6$ ), zerocount, totalcount
dimension ethetc ( $n 6, n 7$ ), ithmin1 ( $n 6$ ), ithmax1 ( $n 6$ )
character*20 root,tdaffile,fort9file, cpthfile, outfile
character*1 comp,graphq
character*55 title
character*3 char(174)
c


Prompts for two input files and one output file
Also writes single-energy-bin-wide ang dist'ns to cpth.dat
Also writes raw data in energy interval to fort. 73
write(*,*)'Enter 2 for X11, 3 for batch'
read(*,*) iwkst
write (6,*)'Enter root name of tdaf file (from thdafex)'
read (5,*) root
call addsuffix(root,'.tdaf',tdaffile)
c write (6,*)'Enter tdaf lower cutoff, in $\%$ of maximum daf'
$c$ read (5,*) tdafcutoff
write(6,*)'Enter name of raw data file (i.e., fort.9)'
read(5,*) fort9file
c
the
c other junk in fort. 8 ahead of the theta information
write(6,*)'Reading raw data from ', fort9file
open(unit=9,file $=$ fort9file, status='old')
read (9,*) nbine
write ( $6, *$ ) nbine
read (9,5000) (ecm(i), $i=1$, nbine)
write $(6,5000)$ (ecm(i), $i=1$, nbine)
nbine1 = 1
nbine2 = nbine
ewinmin = ecm(1)
ewinmax $=$ ecm(nbine) $+e c m(2)$-ecm(1)
read (9, *) nth
if (nth.ne.180) then
write (6,*)'nth=',nth

```
 write(6,*) 'nth not equal to 180 bozo!'
 write(6,*) 'abfit needs to have nth = 180 for its indexing'
 stop
 end if
 read (9,5000) (th(i),i=1,nth)
 cmlwsa has th(i) from 0-179: I use instead th(i) from 0.5-179.5
 do i = 1,nth
 th(i) = th(i) + 0.5
 enddo
c
 do j = 1,nth
 read (9,5020)(ethetc(i,j),i=1,nbine)
 enddo
 format (6(1x,f8.4))
 format(6(1x,e10.5))
5 0 2 0
C
c read in all thdaf functions from tdaffile
c
 write(6,*)'Reading thetadaf from ',tdaffile
 open (unit=18,file = tdaffile, status = 'old')
 read(18,*) emin, emax, nbineprime
 if (nint(ewinmin*1000).ne.nint(emin*1000)) stop 'emin
imcompatible!'
 if (nint (ewinmax*1000).ne.nint (emax*1000)) stop 'emax
imcompatible!'
 if (nbine.ne.nbineprime) stop 'nbine imcompatible!'
 erange = emax - emin
 step = erange/nbine
 do 80 j = 1, nbine
 read(18,*) iwin
 read(18,*)(trsh1,thdaf(iwin,ith),ith=1,nth)
80 continue
C
 close(unit = 18) ! done with tdaffile
c
c find tdaf cutoff for each energy bin
27 write(}6,*)'Enter tdaf lower cutoff, in % of maximum daf'
 read(5,*) tdafcutoff
 write(6,*)'Finding thetadaf threshold for each energy bin.'
 do iwin = 1, nbine
 thdafmax(iwin) =0.0
 anydaf1(iwin) = 0
 anydaf2(iwin) = 0
 anydata1(iwin) = 0
 anydata2(iwin) = 0
 do ith = 1,nth
 if (thdaf(iwin,ith).gt.thdafmax(iwin))
 @ thdafmax(iwin)=thdaf(iwin,ith)
 end do
 thdafmin(iwin)=thdafmax(iwin)*(tdafcutoff/100)
 do ith = 1, nth/2
 if (thdaf(iwin,ith).gt.thdafmin(iwin)) anydaf1(iwin)=1
 if (ethetc(iwin,ith).gt.0.0) anydatal(iwin) = 1
 end do
 do ith = (nth/2)+1, nth
 if (thdaf(iwin,ith).gt.thdafmin(iwin)) anydaf2(iwin)=1
 if (ethetc(iwin,ith).gt.0.0) anydata2(iwin) = 1
 end do
 end do
 zerocount = 0
```

```
 totalcount = 0
 do i = 1,nbine
 do j = 1,nth
 if(ethetc(i,j).eq.0.0) zerocount = zerocount + 1
 if(ethetc(i,j).ge.0.0) totalcount = totalcount + 1
 enddo
 enddo
 write(6,*)'# of matrix elements with value zero = ',zerocount
 write(6,*) 'total counts = ',totalcount
c
c do multiplication of each thetadaf by each row of fort. }9\mathrm{ and
generate
 error bars
 To add the cpth(ith) values for a range of energies together,
 you must add only the angular range in which all energy
 values have finite probabilities. E.g., you will never add
 over theta = 0 --> ~16 degrees, since the blocker always
c discriminates there (horizontal polarization). You must pick the
c largest block of
c theta values for which each energy has a daf value above your
cutoff.
C
 write(6,*)'Finding theta acceptance window,'
 write(6,*)'and calculating cpth array.'
 do iwin = 1, nbine
 ithmin1(iwin) = 0
 ithmax1(iwin) = 91
 ithmin2(iwin) = 90
 ithmax2(iwin) = 181
 expthmin1(iwin) = 0
 expthmax1(iwin) = 91
 expthmin2(iwin) = 90
 expthmax2(iwin) = 181
 enddo
C
 do 90 iwin = 1, nbine
c interrogate each row (iwin index) of thdaf(iwin,ith)
c to find what range of theta has above-threshold probabilities.
c
C
C
 if (anydafl(iwin).eq.0) then ! if thdaf(iwin,ith)=0 for all ith
 ithmin1(iwin)=45
 ithmax1(iwin)=45
 else
 ithmin1(iwin) = ithminl(iwin) + 1
 if(thdaf(iwin,ithmin1(iwin)).lt.thdafmin(iwin)) goto 96
 ithmaxl(iwin) = ithmaxl(iwin) - 1
 if(thdaf(iwin,ithmax1(iwin)).lt.thdafmin(iwin)) goto 97
 end if
 second half of theta distribution
 if (anydaf2(iwin).eq.0) then ! if thdaf(iwin,ith)=0 for all ith
 ithmin2(iwin) = 135
 ithmax2(iwin) = 135
 else
 ithmin2(iwin) = ithmin2(iwin) + 1
 if(thdaf(iwin,ithmin2(iwin)).lt.thdafmin(iwin)) goto 196
 ithmax2(iwin) = ithmax2(iwin) - 1
 if(thdaf(iwin,ithmax2(iwin)).lt.thdafmin(iwin)) goto 197
 end if
c
```

```
c do the same again, but looking for data
c
 if (anydatal(iwin).eq.0) then ! if ethetc(iwin,ith)=0 for all
theta
 expthminl(iwin)=0
 expthmaxll(iwin)=0
 else
98 expthmin1(iwin) = expthmin1(iwin) + 1
 if(ethetc(iwin, expthminl(iwin)).eq.0.0) goto 98
99 expthmaxl(iwin) = expthmax1(iwin) - 1
 if(ethetc(iwin, expthmaxl(iwin)).eq.0.0) goto }9
 end if
 if (anydata2(iwin).eq.0) then ! if ethetc(iwin,ith)=0 for all
theta
 expthmin2(iwin)=0
 expthmax2 (iwin)=0
 else
198 expthmin2(iwin) = expthmin2(iwin) + 1
 if(ethetc(iwin, expthmin2(iwin)).eq.0.0) goto 198
199 expthmax2(iwin) = expthmax2(iwin) - 1
 if(ethetc(iwin,expthmax2(iwin)).eq.0.0) goto 199
 end if
c
 do }100\mathrm{ ith = 1,nth
c
C ethetc(iwin,ith) is the raw energy,theta array from cmlwsa
c cpth(iwin,ith) is the thdafex corrected angular distribution
c
c Because these bins don't hold very many counts, we tend to sum
= over a few energy bins to get good statistics. However, let's
~ wirite out chis info just for kicks.
c :: chdaf is zero, set it to le-20; none of the
cesulting cpth elements will ever be used later in the program
c
 if (thdaf(iwin,ith).eq.0) thdaf(iwin,ith) = 1e-20
=
 rptherr(iwin,ith) = sqrt(ethetc(iwin,ith))
 cpth(iwin,ith) = ethetc(iwin,ith)/thdaf(iwin,ith)
 cptherr(iwin,ith) = rptherr(iwin,ith)/thdaf(iwin,ith)
=
:こ continue !theta loop
Sc continue !iwin (energy index) loop
=
 write(6,*)'Enter root name of .cpth file: '
 read(5,*) root
 call addsuffix(root,'.cpth',cpthfile)
 write(6,*)'Writing out ',cpthfile
 open(33,file = cpthfile)
 write(33,*) emin, emax, nbine
 do iwin = 1,nbine
 ebinval(iwin) = emin + (iwin - 0.5)*step
c :rite out this bin's energy
 write(33,*) iwin, ebinval(iwin),(ithmax1(iwin)-
ithminl(iwin)+1),
 @ (ithmax2(iwin)-ithmin2(iwin)+1)
c Write out the corrected intensities, with errors
c first half
 do ith = ithminl(iwin),ithmaxl(iwin)
 if (cpth(iwin,ith).ne.0) then
 write(33,*) ' ',ith, cpth(iwin,ith), cptherr(iwin,ith)
 else ! if no counts, write out one count error
```

```
 write(33,*) ' ',ith, cpth(iwin,ith),1/thdaf(iwin,ith)
 end if
 end do
 second half
 do ith = ithmin2(iwin),ithmax2(iwin)
 if (cpth(iwin,ith).ne.0) then
 write(33,*) ' ',ith, cpth(iwin,ith), cptherr(iwin,ith)
 else ! if no counts, write out one count error
 write(33,*) ' ',ith,cpth(iwin,ith),1/thdaf(iwin,ith)
 end if
 end do
 end do
 close(33)
C Now add option of comparing, for a given E, the range of theta
c which was observed from the data and the range of theta that the
C DAF predicts is possible.
c create angle integrated raw distribution
 do i = 1, nbine
 integint(i) = 0.0
 enddo
 do i = 1,nbine
 do j = 1,nth
 integint(i) = integint(i) + ethetc(i,j)
 enddo
 enddo
 write(6,*)'Make comparison of th ranges bwt. data and DAF? (y/n)'
650 read (5,*) comp
 if (comp.eq.'Y') then
 write(6,*)'Energy Bin# Intens Data DAF
 write(6,*)' DAF' min max min max
 @ min max min max'
 do iwin=1,nbine
 write(6,6000) ebinval(iwin),iwin,integint(iwin),
 @ expthminl(iwin), expthmaxl(iwin),
 @ ithminl(iwin),ithmaxl(iwin),
 @ expthmin2(iwin), expthmax2(iwin),
 @ ithmin2(iwin),ithmax2(iwin)
 enddo
 elseif(comp.ne.'n') then
 write(6,*)'Please enter [y] or [n]'
 goto 650
 endif
 write(6,*)'Would you also like a graphical comparison? (y/n)'
 read(5,*)graphq
 if(graphq.eq.'Y') goto 7000
5900 continue
6000 format(f7.5,3x,i3,3x,i6,3x,i3, 2x,i3,3x,i3,2x,i3, 2x,
 @ i3,2x,i3,2x,i3,2x,i3)
8000 write(6,*)'Do you want to try a different cutoff value to'
 write(6,*)'compare with the data?'
 read(5,*) comp
 if(comp.eq.'y') goto 27
 write(6,*)'Enter 0 to end program here,'
 write(6,*)' 1 to integrate P(E,theta) over energy range: '
 read(*,*) iend
 if(iend.eq.0) goto 1000
C***
c allow user to select different energy window
```

```
C
10 write(*,*)'Current Energy range is'
 write(*,*)ewinmin,' to ',ewinmax
 write(*,*)'or bin ranges ',nbine1,' to ',nbine2
 write(*,*)
 write(*,*)'Enter (0) to use a new energy range (1)'
 write(*,*)
 read(5,*)ichoice
 if(ichoice.eq.0) then
 write(*,*)'enter new values of min. and max. Energy'
 read(5,*) ewinmin, ewinmax
 write(6,*)'if you get non-sensical results, try a smaller energy'
 write(6,*)'range that is centered about your data'
 nbinel = nint(nbine*(ewinmin - emin)/(emax - emin) + 1)
 nbine2 = nint(nbine*(ewinmax - emin)/(emax - emin))
 if(nbine2.gt.nbine) then
 write(6,*)'***'
 write(6,*)'Screw up: bin number ',nbine2,' was attempted'
 nbine2 = nbine
 write(6,*)'Max bin is now set to ', nbine2
 write(6,*)'***************************************'
 endif
 if (nbinel.gt.nbine2) then
 write(6,*)'That''s a mighty narrow energy window!!:
 nbine2 = nbinel
 endif
 write(*,*) 'multiplication of daf and data will proceed from'
 write(*,*) '(energy) bin ', nbine1, ' to bin ',nbine2
 endif
 write(6,*)'Enter output file name'
 read(5,*) outfile
c
C
C
C
 iabsthmin1 = 0
 iabsthmax1 = 90
 iabsthmin2 = 90
 iabsthmax2 = 180
 do iwin = nbine1,nbine2
 if (ithminl(iwin).ge.iabsthminl) then
 iabsthmin1 = ithmin1(iwin)
 endif
 if (ithmax1(iwin).le.iabsthmax1) then
 iabsthmax1 = ithmax1(iwin)
 endif
 if (ithmin2(iwin).ge.iabsthmin2) then
 iabsthmin2 = ithmin2(iwin)
 endif
 if (ithmax2(iwin).le.iabsthmax2) then
 iabsthmax2 = ithmax2(iwin)
 endif
 enddo
C
 write(*,*)'The usable (tdaf) range of THETA for integrating
P(theta,E)
 write(*,*)'over Energy is:'
 write(*,*) iabsthmin1,' to ',iabsthmax1,' and '.
 @ iabsthmin2,' to ',iabsthmax2,' degrees '
C
c now, add together the rows of the cpth(iwin,ith) matrix
```

```
c to give the angular distribution for the useable window
c
 do ith = 1,nth
 pthfinal(ith) = 0.0
 varpthfinal(ith) = 0.0
 enddo
C
c Here comes the final result (in two parts, first and second half)
c
c first half of theta distribution:
 do ith = iabsthmin1,iabsthmax1
 do iwin = nbine1, nbine2
 pthfinal(ith) = pthfinal(ith) + cpth(iwin,ith)
 varpthfinal(ith) = varpthfinal(ith) + (cptherr(iwin,ith))**2
 enddo ! end of energy bin loop
C
c Find theta bins for which the variance is zero (i.e., no counts in
that
c theta bin), and set the variance equal to the value it would have
if there
c had been one count in the middle bin of the energy window
c This fix avoids having any variances = 0, which screw up the
betafits
C
 if (varpthfinal(ith).1t.1E-30) then
 if(pthfinal(ith).ne.0) stop 'screw-up with zero variances!'
 varpthfinal(ith) = 1/thdaf((nbine1+nbine2)/2,ith)**2
 end if
 enddo ! end of theta bin loop
 do ith = iabsthmin2,iabsthmax2
 do iwin = nbinel, nbine2
 pthfinal(ith) = pthfinal(ith) + cpth(iwin,ith)
 varpthfinal(ith) = varpthfinal(ith) + (cptherr(iwin,ith))**2
 enddo ! end of energy bin loop
 if (varpthfinal(ith).lt.1E-30) then
 if(pthfinal(ith).ne.0) stop 'screw-up with zero variances!'
 varpthfinal(ith) = 1/thdaf((nbinel+nbine2)/2,ith)**2
 end if
 enddo ! end of theta bin loop
C
C create raw data plots with error bars too.
C
 do iwin = nbine1, nbine2
 do ith = 1,nth
 pthraw(ith) = pthraw(ith) + ethetc(iwin,ith)
 varpthraw(ith) = varpthraw(ith) + (rptherr(iwin,ith))**2
C
 enddo
 enddo
c
c now find the st.dev. in quadrature for each energy value
 do ith = iabsthminl,iabsthmaxl
 pthfinalerr(ith) = sqrt(varpthfinal(ith))
 enddo
C
 do ith = 1,nth
 pthrawerr(ith) = sqrt(varpthraw(ith))
 enddo
C
 do i = 1,nth
 write(73,*) th(i),pthraw(i),pthrawerr(i)
```

```
 enddo
C
 open (unit=74,file = outfile)
 do i = iabsthmin1,iabsthmax1
 write(74,7400) th(i),pthfinal(i),pthfinalerr(i)
 enddo
 do i = iabsthmin2,iabsthmax2
 write(74,7400) th(i),pthfinal(i),pthfinalerr(i)
 enddo
 close(unit=74)
7400 format (F6.1,F14.7,F14.7)
c
c now, plot distribution using NCAR.
c
 if(iwkst.eq.3) goto 1234
 call opngks
c Plot (uncorrected) theta angular distribution
 call setusv('PB',2)
 call agseti('SET.',1)
 call agseti('FRAME.',1)
 call agsetc('LABEL/NAME.','L')
 call agseti('LINE/NUMBER.',100)
 call agsetc('LINE/TEXT.','P(theta)$')
 call agsetc('LABEL/NAME.','B')
 call agseti('LINE/NUMBER.',-100)
 call agsetc('LINE/TEXT.','CM Angle, theta (deg)$')
 call ezxy(th,pthraw,nth,'(uncorr) CM Angular Dist. (Theta)$')
C Plot DAF corrected theta angular distribution
 call setusv('PB',2)
 call agsetc('LABEL/NAME.','L')
 call agseti('LINE/NUMBER.',100)
 call agsetc('LINE/TEXT.','P(theta)$')
 call agsetc('LABEL/NAME.','B')
 call agseti('LINE/NUMBER.',-100)
 call agsetc('LINE/TEXT.','CM Angle, theta (deg)$')
 call ezxy(th,pthfinal,nth,'DAF corr. CM Angular Dist.
(Theta)$')
C
 call clsgks
c
 ierr := system(' mv gmeta tdist.img ')
 if(iwkst.eq.0) ierr = system(' ictrans -d sunview tdist.img
')
 if(iwkst.eq.1) ierr = system(' ictrans -d t4010 tdist.img')
 if(iwkst.eq.2) ierr = system(' ictrans -d X11 tdist.img')
C
1234 write(*,*)
 write(*,*)'Enter (0) to try a different energy range (1)'
 write(*,*)
 read(5,*)ich2
 if(ich2.eq.0) then
 goto }1
 else
 stop 'THANK YOU FOR USING MY CPU!!'
 endif
999 continue
7000 if(graphq.ne.'Y') goto 1000
C now, plot distribution using NCAR.
C
c first find max of each following array for each energy
```

```
 do i = 1,nbine
 do j = 1,nth
 expmax(i) = 0
 dafmmax(j) = 0
 enddo
 enddo
 do inrg = 1,nbine
 do ith = 1,nth
 if(ethetc(inrg,ith).gt.expmax(inrg)) then
 expmax(inrg) = ethetc(inrg,ith)
 endif
 if(thdaf(inrg,ith).gt.dafmmax(inrg)) then
 dafmmax(inrg) = thdaf(inrg,ith)
 endif
 enddo
 enddo
 if(iwkst.eq.3) goto 1234
 call opngks
 do 2000 inrg = 1, nbine
c inrg = 1
 do }1900\mathrm{ ith =1,nth
 expplot(ith) = ethetc(inrg,ith)
 dafplot(ith) = thdaf(inrg,ith)/dafmmax(inrg)*expmax(inrg)
1 9 0 0
 continue
 title = 'Raw data and DAF for energy bin '
 @ //char(inrg)//'$'
C
 Plot (uncorrected) theta angular distribution
 call agseti('FRAME.',2) ! two plots per frame
 call setusv('PB',2)
 call agsetc('LABEL/NAME.','L')
 call agseti('LINE/NUMBER.',100)
 call agsetc('LINE/TEXT.','P(thet)$')
 call agsetc('LABEL/NAME.','B')
 call agseti('LINE/NUMBER.',-100)
 call agsetc('LINE/TEXT.','CM Angle, thet (deg)$')
 call ezxy(th, expplot,nth,title)
 call points(th,dafplot,nth,-1,0)
 call FRAME
2000 continue
 call clsgks
c
 ierr = system(' mv gmeta tdis.img ')
 if(iwkst.eq.0) ierr = system(' ictrans -d sunview tdis.img ')
 if(iwkst.eq.1) ierr = system(' ictrans -d t4010 tdis.img')
 if(iwkst.eq.2) ierr = system(' ictrans -d Xll -bell
tdis.img')
 goto 8000
1000 stop
 end
```


## Appendix C

## MAVABFIT ${ }^{\boldsymbol{a}}$ : Energy and angular distribution analysis

## I. Introduction

The final step in analysis of time- and position-sensitive data is the resolution of the 2-D $P_{\text {true }}\left(E_{\mathrm{T}}, \theta\right)$ distribution into the two 1-D distributions $P\left(E_{\mathrm{T}}\right)$, the translation energy distribution, and $\beta\left(E_{T}\right)$, the energy dependent anisotropy parameter. The code MAVABFIT accomplishes this resolution by a linear least-squares fit of the function

$$
P_{\text {true }}\left(E_{\mathrm{T}}, \theta\right)=P\left(E_{\mathrm{T}}\right) \cdot\left\{1+\beta\left(E_{\mathrm{T}}\right) \cdot P_{2}(\cos \theta)\right\}
$$

where $P\left(E_{\mathrm{T}}\right)$ and $\beta\left(E_{\mathrm{T}}\right)$ are the fitting parameters.
In order to obtain reasonable statistics on the function $\beta\left(E_{\mathrm{T}}\right)$, is is necessary to assume that over a small enough window in $E_{\mathrm{T}}$, the value of $\beta\left(E_{\mathrm{T}}\right)$ is constant. In practice, the data is divided into translational energy windows of some fixed width, for example 0.4 eV , and $E^{\prime}$ is defined as a running parameter such that $E^{\prime} \leq E_{\mathrm{T}} \leq\left(E^{\prime}+0.4 \mathrm{eV}\right) . \quad \beta$ is determined from a linear least squares fit of the distribution $P_{\text {true }}\left(E_{\mathrm{T}}, \theta\right)$ with both $P\left(E_{\mathrm{T}}\right)$ and $\beta$ as active fitting parameters. The quantity $E^{\prime}$ is then incremented in 30 meV steps beginning with $E^{\prime}=0$ and the fitting procedure is repeated until the entire energy range of the data is covered. In other words, $\beta\left(E_{\mathrm{T}}\right)$ is constructed as a moving average over 0.4 eV windows in $E_{\mathrm{T}}$. Using these values of $\beta\left(E_{\mathrm{T}}\right)$, a second linear least squares fit in the single parameter $P\left(E_{\mathrm{T}}\right)$ is determined for each individual energy bin, completing the separation of $P_{\text {tue }}\left(E_{\mathrm{T}}, \theta\right)$ into two one dimensional distributions, i.e., $P\left(E_{\mathrm{T}}\right)$ and $\beta\left(E_{\mathrm{T}}\right)$. An older version

[^6]of the code, ABFIT, is available if a moving average is not desired. The core of this program was written by Dr. David Leahy

## II. Routines comprising the MAVABFIT program

MAVABFIT is compiled from the following routines and subroutines:
mavabfit.f: main calling routine addsuffix.f: concatenates a prefix and a suffix string interp.f: does linear interpolation between known function values.

The following routines are from Numerical Recipes ${ }^{a}$
covsrt.f: creates covariance matrix
fleg.f: calculates Legendre polynomials
gammin.f: gamma function routine
gammq.f: gamma function routine
gaussj.f: Gauss-Jordon matrix inversion
gcf.f: gamma function routine
gser.f: gamma function routine
Ifit.f: linear least squares fit to a Legendre polynomial

MAVABFIT can be compiled on a UNIX platform by executing the make command:

```
make -f makemavabfit
```

[^7]where the makefile is:
makemavabfit
FFLAGS = -C
mavabfit: mavabfit.o lfit.o gaussj.o covsrt.o fleg.o gammq. o gser.o gcf. 0 gammln. o addsuffix. o interp. 0
ncargf77 mavabfit. 0 lfit. o gaussj.o covsrt. o fleg. o gammq. 0 gser. o gef. 0 gammln.o addsuffix.o interp.o -o mavabfit

## III. Usage

## A. Input

All user input to MAVABFIT is given interactively and is self-explanatory. MAVABFIT reads as input the *. cpth file produced by TDAFXDATA (cf. Appendix B). It is possible to fix the parameter $\beta$ such that only the parameter $P\left(E_{\mathrm{T}}\right)$ is adjusted in the fit. However, only the value of $\beta=0$ may be chosen if $\beta$ is fixed.

## B. Output

MAVABFIT produces several output files which are explained below. Again, the

* in the filenames corresponds to the prefix established by the TDAF execution.
*mav.angd: the complete angular distribution information at each value of $E_{\mathrm{T}}$ at which $\beta\left(E_{\mathrm{T}}\right)$ was determined. The angular distribution is presented consecutively for each value of $E_{\mathrm{T}}$ by three columns which consist of $\theta$ as the first column, the experimental values of $P(\theta)$ as the second column, and the values $\left\{1+\beta\left(E_{\mathrm{T}}\right) \cdot P_{2}(\cos \theta)\right\}$ with $E_{\mathrm{T}}=$ constant as the third column.
*mav.aoe: three column file containing the translational energy distribution as $E_{\mathrm{T}}, P\left(E_{\mathrm{T}}\right), \sigma\left\{P\left(E_{\mathrm{T}}\right)\right\}$, where the final column gives the error bars $( \pm$ 1 standard deviation) for $P\left(E_{\mathrm{T}}\right)$.
*mav.boe: three column file containing $E_{\mathrm{T}}, \beta\left(E_{\mathrm{T}}\right), \sigma\left\{\beta\left(E_{\mathrm{T}}\right)\right\}$.
*mav.saoe: the same file as *mav.aoe, but without the third column.
*mavl.aoe: three column file similar to *mav.aoe, except that the final least squares fitting to obtain $P\left(E_{\mathrm{T}}\right)$.is done using the lower error bar values of $\beta\left(E_{\mathrm{T}}\right)$ rather than the average values of $\beta\left(E_{\mathrm{T}}\right)$. This gives an estimate of the error introduced into the $P\left(E_{\mathrm{T}}\right)$.from the error in $\beta\left(E_{\mathrm{T}}\right)$.
*mavu.aoe: three column file corresponding to *mavl.aoe but for the upper error bars of $\beta\left(E_{\mathrm{T}}\right)$.


## IV. FORTRAN CODE

## MAVABFIT.f

program mavabfit
$c$ This program reads in data from cpth. dat, and fits each energy
$c$ bin. Yow. DJL 2/14/93
$c$ Added code to integrate area under alphafit $K E R$ curve for branching ratio
c concerns. DRC 4/07/93
c Added code to give some simple statistics about KER curve.
$c$ Included in this is:
C
$C$ Average $P$ (Etrans)
Most Probable $P$ (Etrans)
$c \quad$ Highest KER observed
c This version first fits beta to windows whose energy widths depend on
$c$ the data, and on the user-entered parameter 'minevents'.
$c$ It beta-fits all of the cpth data to these variable width windows, $c$ and then goes on to do an alphafit using interpolated beta curves. c DJL 5/25/93
c Full theta range: requires that . cpth input file is binned in $c$ one degree theta steps, with a total of 180 bins possible; the . cpth
c file gives explicitly the number of dafxdata-filled bins for both the
c first $(0<t h e t a<90)$ and second (90<theta < 180) quadrants.
c Finally the moving average code is written．This code takes abfit c of 4／23／96（with a few very minor bugs fixed）and adds the moving c average capability to beta determinations．
c DLO 4／25／96
implicit none
integer n2，n3，mmax
parameter（ $n 2=300$ ）！max \＃of energy bins
parameter $(\mathrm{n} 3=180)$ ：max $\#$ of angle bins
parameter（mmax＝3）
real＊4 enrg（n2），emin，emax，erange，step，system，nrgdiff
real＊4 xra（n3），yra（n3），fit（n3）
real＊4 $\operatorname{cpth}(n 2, n 3), \operatorname{sig}(n 2, n 3), \operatorname{cpthsum}(n 2, n 3)$ ，varsum（n2，n3）
real＊4 sigfit（n3），covar（mmax，mmax），chisq，a（mmax）
integer lista（mmax），ma，mfit，ncvm
real＊4 xx，xxsum，xysum，yysum
real＊4 alpha（n2），chisqr（n2）
real＊4 alphasig（n2），alphacent（n2）
real＊4 slope，intercept，pi，costheta
real＊4 nrg（n2），betasig（n2），beta（n2）
real＊4 betacent（n2），betaupper（n2），betalower（n2），betaorig（n2）
real＊4 betau（n2），betal（n2），alphau（n2），alphal（n2）
real＊4 alphausig（n2），alphalsig（n2），chisqru（n2），chisqri（n2）
real＊4 alphaavg，alphaavgl，alphaavgu
real＊4 alphamp，alphamaxker，alphaint，alphaintl，alphaintu
real＊4 eventsum，nrgsum，ebinsum，event＿threshold
real＊4 theta＿val，cpth＿val，sig＿val，fixbetaval
$c$ integer lowedge（n2）
integer ithmin（n2），ithmax（n2），nth（n2），minevents，events（n2）
integer ithmin2（n2），ithmax2（n2），nth2（n2）
integer ibad（n2），i，iwin，ith，index，nbetawin，nbine，ii
integer inrgmin（n2），inrgmax（n2），ithminwin（n2），ithmaxwin（n2）
integer ithminwin2（n2），ithmaxwin2（n2）
integer nthwin（n2）
integer writepass，nfile，ierr，iwkst
character＊20 betaroot，betaint，betafile，cpthroot，cpthfile，alphafile
character＊20 angdistfile，salphafile，angbinfile，tempname
character＊55 title
character＊3 char（174）
character＊1 fixbeta，steptype
real＊4 winwidtheV
ınteger winwidth，iwinstart
$c$
character＊25 titleorg
open（unit $=77$ ，file＝＂title．dat＂，status＝＇old＇）
read（77，3000）titleorg
こここ0 format（a25）
write（＊，＊）titleorg
$c$


```
 @ '135','136','137','138','139','140','141','142','143','144',
 '145','146','147','148','149','150','151','152','153','154',
 '155','156','157','158','159','160','161','162','163','164',
 '165','166','167','168','169','170','171','172','173','174'
/
c
*******************Section 1: Get inputs from user******************
 pi = 3.1415926
 write(6,*) 'Enter 2 for X11, 3 for batch'
 read(5,*) iwkst
 write(6,*) 'Event threshold for individual energy bin inclusion?'
 read(5,*) event_threshold
 write(6,*) 'Enter root name of .cpth file'
 read(5,*) cpthroot
 call addsuffix(cpthroot,'.cpth',cpthfile)
17 write(6,*) 'Fix beta at a given value? [y/n]'
 read(5,*) fixbeta
 if(fixbeta.eq.'y') then
 write(6,*) 'Enter value of beta to fix at'
 read(5,*) fixbetaval
 if(fixbetaval.ne.0.0) stop 'can only fix beta at zero!!!'
 elseif(fixbeta.ne.'n') then
 write(6,*) 'Please enter [Y]es or [n]0, squidbreath'
 goto }1
 endif
 Section 2: Read in 2-D P(E,theta) file********
 write(6,*) 'Reading in corrected cpth(E,theta) from ',cpthfile
 open(15,file = cpthfile, status = 'old')
 read(15,*) emin,emax,nbine ! read in energy scale parameters
 erange = emax - emin
 step = erange/nbine
 write(6,*)
 write(6,*) 'Energy runs from',emin,' to',emax,' in',nbine,' bins,'
 write(6,*) 'amounting to ',1000*step,' meV/bin.'
 write(6,*)
c write(6,*)"Enter the moving average spacing in bins [1 or higher]'
c read(5,*)spacing
 write(6,*)"Currently the moving av. spacing is 1 bin'
 write(6,*)
 write(6,*) 'Determine betawindow width from # of [e]vents
 @or fixed energy [r]ange?'
101 read(5,*) steptype
 if (steptype.eq.'e') then
 write(6,*) 'Minimum number of events required for betafit step?'
 read(5,*) minevents
 elseif(steptype.eq.'r') then
102 write(6,*) 'Enter the width of betawindows in eV'
 read(5,*) winwidtheV
 winwidth = nint(winwidtheV / step)
 if(winwidth.eq.0) then
 write(6,*)'Choose a larger window width, furball'
 goto 102
 endif
 numbetawin = nbine - winwidth + 1
 do i = 1,numbetawin
 lowedge(i) = i !value in ebins
 enddo
 lowedge(numbetawin + 1) = emax !need this upper limit later
 write(6,*) numbetwin," betawindows created, each ',winwidth,
```

```
C E bins wide
 else
 write(6,*)'Enter ''e'' or ''r'', you rubber rat'
 goto 101
 endif !if(steptype.eq.'e')
 do i=1,nbine
 read(15,*) ii,enrg(i),nth(i),nth2(i)
 write(6,*) i,ii,enrg(i),(emin+(i-0.5)*step)
 nrgdiff = (1000*enrg(i)) - (1000*(emin+(i-0.5)*step))
 if ((nrgdiff.gt.1e-2).or.(ii.ne.i)) then
 write(6,*) nint(1000*enrg(i)), nint(1000*(emin+(i-0.5)*step))
 write(6,4200) 'i = ',i,' nrg =',1000*(emin+(i-0.5)*step)
 write(6,4200) 'ii = ',ii,' enrg =',1000*enrg(i)
 format(A5,i3,A8,F16.9)
 stop 'bad energy index'
 endif
 do index = 1,nth(i)+nth2(i)
 read(15,*) theta_val,cpth_val,sig_val
 ith = theta_val
 if (index.eq.1) then ! record theta limits for this energy bin
 ithmin(i) = ith
 ithmax(i) = ith + nth(i) - 1
 end if
 if (index .eq. (nth(i)+1)) then : 2nd quad theta limits
 ithmin2(i) = ith
 ithmax2(i) = ith + nth2(i) - 1
 end if
 cpth(i,ith) = cpth_val
 sig(i,ith) = sig_val
 end do ! index (theta bin) loop
 write(6,*) nth(i)+nth2(i),' points read for energy =', enrg(i)
 end do ! energy bin loop
 close(15)
(thmin,max, Ewidth)**
C
c Step through energy index of cpth and establish a beta-fitting
c window, delimited in energy by inrgmin and inrgmax.
c Accumulate angular distributions in cpthsum array.
c Then fit the data to get beta. Finally repeat by defining the next
c beta window.
c ---> i is energy bin index
c
c i = 0 ! index of energy bins (increment by 1)
 iwinstart = 0 !index of starting energy bin for each window
 iwin = 0
100 iwin = iwin + 1 ! index of betawindows
 inrgmin(iwin) = iwinstart + 1 !lowest ebin in this betawindow
 i = iwinstart
 eventsum = 0
 nrgsum = 0
C
c ithminwin and ithmaxwin are the theta limits for each beta window
iwin.
c They represent the most stringent ithmin and ithmax values within
the
c energy interval of this beta window.
c
 ithminwin(iwin) = 0
 ithmaxwin(iwin) =90
 ithminwin2(iwin) = 91
```

```
ithmaxwin2(iwin) = 180
c Begin a betawindow
120 i = i + I
c calculate number of events in energy bin i; if too small then skip
e bin
c ebinsum is the number of RAW events in at energybin i
c nrgsum/eventsum is <E> = SUM[E*P(E)]/SUM[P(E)]
 ebinsum = 0.0
 do ith = ithmin(i),ithmax(i) ! first quandrant in theta
 ebinsum = ebinsum + (cpth(i,ith)/sig(i,ith))**2
 end do
 do ith = ithmin2(i).ithmax2(i) : 2nd quadrant in theta
 ebinsum = ebinsum + (cpth(i,ith)/sig(i,ith))**2
 end do
 if(ebinsum.ge.event_threshold) then
 if (ithmin(i).gt.ithminwin(iwin)) ithminwin(iwin)=ithmin(i)
 if (ithmax(i).it.ithmaxwin(iwin)) ithmaxwin(iwin)=ithmax(i)
 if (ithmin2(i).gt.ithminwin2(iwin)) ithminwin2(iwin)=ithmin2(i)
 if (ithmax2(i).1t.ithmaxwin2(iwin)) ithmaxwin2(iwin)=ithmax2(i)
 eventsum = eventsum + ebinsum
 do ith = ithmin(i),ithmax(i) ! sum over 1st quad in
theta...
 nrgsum = nrgsum + enrg(i)*(cpth(i,ith)/sig(i,ith))**2
 cpthsum(iwin,ith) = cpthsum(iwin,ith) + cpth(i,ith)
 varsum(iwin,ith) = varsum(iwin,ith) + sig(i,ith)**2
 end do
 do ith = ithmin2(i),ithmax2(i) ! ...and 2nd quad in theta
 nrgsum = nrgsum + enrg(i)*(cpth(i,ith)/sig(i,ith))**2
 cpthsum(iwin,ith) = cpthsum(iwin,ith) + cpth(i,ith)
 varsum(iwin,ith) = varsum(iwin,ith) + sig(i,ith)**2
 end do
 endif
 if(steptype.eq.'e') then
 if ((eventsum.1t.minevents).and.(i.lt.nbine)) goto 120
 else !using fixed width windows
 If (i.ge.iwinstart + winwidth) then
 goto 150 !move on to next betawindow
 else
 goto 120 !not so fast--have to finish this betawindow
 endif
 endif
:50 inrgmax(iwin) = i ! final assignments for window iwin
 if (ithminwin(iwin).gt.ithmaxwin(iwin)) then ! check for window
ccilapse
 ithminwin(iwin) = 45
 iChmaxwin(iwin) = 45
 end if
 if (ithminwin2(iwin).gt.ithmaxwin2(iwin)) then
 ithminwin2(iwin) = 135
 ithmaxwin2(iwin) = 135
 end if
 nthwin(iwin) = (ithmaxwin(iwin) - ithminwin(iwin) + 1)
 @ + (ithmaxwin2(iwin) - ithminwin2(iwin) + 1)
 events(iwin) = eventsum
 if(eventsum.lt.1) then
 write(6,*) events(iwin),' events between theta limits of ',
 ithminwin(iwin),' -',ithmaxwin(iwin),' and',
 ithminwin2(iwin),' -',ithmaxwin2(iwin)
 write{6,*) 'Therefore betafit will not be done.'
```

```
 iwin = iwin - 1 !don't count this empty window
 i=nbine !this will cause exit
 goto 570
endif
nrg(iwin) = nrgsum/eventsum !<E>
write(6,*)'Beta window',iwin,':',
 @ enrg(inrgmin(iwin)), enrg(inrgmax(iwin)),' Mean:',nrg(iwin)
write(6,*) events(iwin),' events between theta limits of ',
 @ ithminwin(iwin),' -',ithmaxwin(iwin),' and',
 @ ithminwin2(iwin),' -',ithmaxwin2(iwin)
c if (i.lt.nbine) goto 100 ! go start the next beta window
c instead, in mavabfit, we fit beta now for this window!
c nbetawin = iwin
c write(6,*) nbetawin,' beta windows'
```

```
*********************Section 4: Find beta for each betawindow********
```

*********************Section 4: Find beta for each betawindow********
C
C
C********************************************
C********************************************
c Master beta-window loop (iwin is still the betawindow index)
c Master beta-window loop (iwin is still the betawindow index)
c The beta fitting happens here
c The beta fitting happens here
c
c
if(iwin.eq.1) then
if(iwin.eq.1) then
write(6,*) 'Enter root name of output Beta files?'
write(6,*) 'Enter root name of output Beta files?'
read(5,*) betaroot
read(5,*) betaroot
call addsuffix(betaroot,'.fit',betafile)
call addsuffix(betaroot,'.fit',betafile)
open(11,file=betafile) ! file for beta (and alpha) fit results
open(11,file=betafile) ! file for beta (and alpha) fit results
endif
endif
c do iwin = 1, nbetawin
c do iwin = 1, nbetawin
c Create 1-D arrays for lfit (Legendre polynomial coefficient fitting
c Create 1-D arrays for lfit (Legendre polynomial coefficient fitting
routine)
routine)
index = 0
index = 0
do ith = ithminwin(iwin),ithmaxwin(iwin)
do ith = ithminwin(iwin),ithmaxwin(iwin)
index = index + 1 ! index runs from 1 up
index = index + 1 ! index runs from 1 up
xra(index) = cos((ith-0.5)*pi/180.) ! lfit wants cosines for x
xra(index) = cos((ith-0.5)*pi/180.) ! lfit wants cosines for x
array
array
Yra(index) = cpthsum(iwin,ith)
Yra(index) = cpthsum(iwin,ith)
sigfit(index) = sqrt(varsum(iwin,ith))
sigfit(index) = sqrt(varsum(iwin,ith))
end do
end do
do ith = ithminwin2(iwin),ithmaxwin2(iwin)
do ith = ithminwin2(iwin),ithmaxwin2(iwin)
index = index +1 ! index carries over from lst quad
index = index +1 ! index carries over from lst quad
xra(index) = cos((ith-0.5)*pi/180.) ! lfit wants cosines for x
xra(index) = cos((ith-0.5)*pi/180.) ! lfit wants cosines for x
array
array
yra(index) = cpthsum(iwin,ith)
yra(index) = cpthsum(iwin,ith)
sigfit(index) = sqrt(varsum(iwin,ith))
sigfit(index) = sqrt(varsum(iwin,ith))
end do
end do
c
c
lista(1) = 1 ! basis fxn \#1 = PO(x)
lista(1) = 1 ! basis fxn \#1 = PO(x)
if(fixbeta.eq.'Y') then
if(fixbeta.eq.'Y') then
mfit = 1
mfit = 1
a(3) = fixbetaval
a(3) = fixbetaval
else
else
lista(2) = 3 ! basis fxn \#2 = P2(x)
lista(2) = 3 ! basis fxn \#2 = P2(x)
mfit = 2 ! \# of coefficients to vary (= \# fxns for us here)
mfit = 2 ! \# of coefficients to vary (= \# fxns for us here)
endif
endif
ma = 3 ! order of the fit, i.e., \# of basis fxns
ma = 3 ! order of the fit, i.e., \# of basis fxns
ncvm = 3 ! physical size of 2d covar array
ncvm = 3 ! physical size of 2d covar array
c Go for it
c Go for it
call lfit(xra,yra,sigfit,nthwin(iwin),
call lfit(xra,yra,sigfit,nthwin(iwin),
@ a,ma,lista,mfit,covar,ncvm,chisq)

```
 @ a,ma,lista,mfit,covar,ncvm,chisq)
```

```
c Gone done it
 alphacent(iwin) = a(1)
 betaorig(iwin) = a(3)/a(1)
c calculate error of }x=a(3)/a(1) = norm(d(a(3))/a(1) , -
a(3)*d(a(1))/a(1)**2)
 betasig(iwin) = sqrt((sqrt(covar(3,3)) /a(1))**2 +
 @ (a(3)*sqrt(covar(1,1))/(a(1)*a(1)))**2)
c -1< beta < 2
 betacent(iwin) = min(2, max(-1, betaorig(iwin)))
 betalower(iwin) = max(-1, betaorig(iwin)-betasig(iwin))
 betaupper(iwin) = min(2, betaorig(iwin)+betasig(iwin))
c Write out fit results to screen and to file
 writepass = 0
 nfile = 6
550 write(nfile,*) 'Fit results for window ',iwin
 if(a(1).lt.0)
 (a write(nfile,*)'WARNING: BOGUS FIT RESULTS, alpha is
negative!
 @ !@#$%!@##$#@$%!#$%#^!@#%#$^!$#^!#$^^@^!#^#$^!@%!#$^#^@#^タ!
 write(nfile,*) ' spanning the energy range from',
 @ enrg(inrgmin(iwin)),' to',enrg(inrgmax(iwin))
 write(nfile,*)'# events, lst ebin, last ebin, <E>,
 @ theta limits'
 write(nfile,*) events(iwin),inrgmin(iwin),inrgmax(iwin)
 & ,nrg(iwin),
 @ ithminwin(iwin),' -',ithmaxwin(iwin),' ;',
 @ ithminwin2(iwin),' -',ithmaxwin2(iwin)
 write(nfile,*) 'alpha =',a(1),' +/-',sqrt(covar(1,1))
C Note: the usual beta we are used to seeing is really divided
c or normalized by the intensity at theta=54.7 degrees, i.e. a(1)
 write(nfile,*) 'beta =',a(3)/abs(a(1)),
 @ ' +/-',betasig(iwin)
 write(nfile,*) 'Chisq/(N-M) =',
 @ chisq/(nthwin(iwin)-mfit)
 write(nfile,*) 'Covariance matrix:
 write(nfile,1000) covar(1,1),covar(1,3)
 write(nfile,1000) covar(3,1), covar(3,3)
 write(nfile,*)
 if (writepass.eq.0) then
 writepass = 1
 nfile = 11
 goto 550
 endif
c end do ! beta-window loop index (iwin)
c Now return to make the next betawindow
c Use a value other than 1 to increment iwinstart for coarser moving
av.
 iwinstart = iwinstart + 1
570 if(i.lt.nbine) goto 100 !else, we are done betafitting
 nbetawin = iwin
 write(6,*)
 write(6,*) nbetawin,' beta windows'
 write(6,*)
1000
 format(3(E13.4))
c
590 call addsuffix(betaroot,'.boe',betafile)
 open(33,file=betafile)
 write(6,*)'Writing betas with errors to ',betafile
 if(fixbeta.eq.'Y') then
```

```
 Write(6,*) 1************************************'
 write(6,*)'NOTE: Beta is fixed at ',fixbetaval
 write(6,*) '***************************************
 endif
 call addsuffix(betaroot,'.angb',tempname)
 call addsuffix(tempname,'ins',angbinfile)
 open(88,file=angbinfile)
 do i = 1,nbetawin
 write(33,*) nrg(i),betaorig(i),betasig(i)
 write(88,*) nrg(i),nthwin(i) !num of angle bins
end do
close(88)
close(33)
c
**********************Section 5: Interpolate beta to give a beta******
 beta value for each energy bin***************
 call addsuffix(betaroot,'.int ',betaint)
 call addsuffix(betaint,'boe',betafile)
 write(6,*)'Writing interpolated betas to ',betafile
 open(35,file=betafile)
 call addsuffix(betaroot,'1.int',betaint)
 call addsuffix(betaint,'boe',betafile)
 write(6,*)'Writing interpolated lower betalimits to ',betafile
 open(34,file=betafile)
 call addsuffix(betaroot,'u.int',betaint)
 call addsuffix(betaint,'boe',betafile)
 write(6,*)'Writing interpolated lower betalimits to ',betafile
 open(36,file=betafile)
C
c Construct interpolated beta(E)'s from the betaorig(i) data points
C
c The subroutine interp returns the slope and intercept of the
beta(E)
c function for the linear interpolation between the adjacent points
in
c the nrg array
C
 do i = 1,nbine
 call interp(enrg(i),nrg,betacent,
 > nbetawin,slope,intercept)
 beta(i) = enrg(i)*slope + intercept
 write(35,1500) enrg(i), beta(i)
 call interp(enrg(i),nrg,betalower
 > nbetawin,slope,intercept)
 betal(i) = enrg(i)*slope + intercept
 write(34,1500) enrg(i), betal(i) !fixed typo 4/25/96 DLO
 call interp(enrg(i),nrg,betaupper,
 > nbetawin,slope,intercept)
 betau(i) = enrg(i)*slope + intercept
 write(36,1500) enrg(i), betau(i)
 enddo
 close(35)
 close(34)
 close(36)
1500 format(5x,f10.5,5x,f8.5)
```

```
******Section 6: Do 3 alphafits for beta, beta+/- sigma********
```

******Section 6: Do 3 alphafits for beta, beta+/- sigma********
C Find alpha(E) given the interpolated beta(E) values, and also

```
```

c keep track of integrated alpha(E)
c
write(11,*)'Alpha fit results:'
write(11,*)'energy alpha sigma norm. chi squared'
alphaavg = 0
alphaavgl = 0
alphaavgu = 0
alphamp = 0
alphamaxker = 0
alphaint = 0
alphaintl =0
alphaintu = 0
do i=1, nbine
if (nth(i)+nth2(i).le.2) then ! test for daf-impossible
ebins
ibad(i) = 1 ! warning flag for output loop
else ! go ahead and fit, even if there's no data
yYsum = 0 ! NOTE: yysum only needs to be calculated once,
xysum = 0 ! while xxsum and xysum depend on beta
xxsum = 0
c Calculate sums for least squares formulae
do ith = ithmin(i),ithmax(i)
costhet:a = cos((ith-0.5)*pi/180.)
xx = 1 + beta(i)*(1.5*costheta*costheta - 0.5)
xysum = xysum + xx*cpth(i,ith)/(sig(i,ith)*sig(i,ith))
xxsum = xxsum + xx*xx/(sig(i,ith)*sig(i,ith))
yysum == yysum +
cpth(i,ith)*cpth(i,ith)/(sig(i,ith)*sig(i,ith))
end do
do ith = ithmin2(i),ithmax2(i)
costheta = cos((ith-0.5)*pi/180.)
xx = 1 + beta(i)*(1.5*costheta*costheta - 0.5)
xysum = xysum + xx*cpth(i,ith)/(sig(i,ith)*sig(i,ith))
xxsum = xxsum + xx*xx/(sig(i,ith)*sig(i,ith))
yysum = yysum +
cpth(i,ith)*cpth(i,ith)/(sig(i,ith)*sig(i,ith))
end do
C
if(xxsum.eq.0.0) xxsum = 1e-10
c write(6,*)i,nth(i)+nth2(i),xxsum,xysum,yysum
alpha(i)= xysum/xxsum
alphaavg = alphaavg + alpha(i)*enrg(i)
if(alpha(i).gt.alphamp) then
alphamp = enrg(i)
endif
if(alpha(i).gt.le-8) then
alphamaxker = enrg(i)
endif
alphaint = alphaint + alpha(i)
alphasig(i) = sqrt( 1/xxsum )
c reduced chisqr for the alphafit (1 parameter fit)
chisqr(i) = (yysum - 2*alpha(i)*xysum
@ + alpha(i)*alpha(i)*xxsum) / (nth(i)+nth2(i) - 1)
c write alphafit results to unit 11 ("betafile")
write(11,2525) enrg(i),alpha(i),alphasig(i),chisqr(i)
xysum = 0
xxsum = 0
c calculate sums again, for upper beta
do ith = ithmin(i),ithmax(i)

```
```

    costheta = cos((ith-0.5)*pi/180.)
    xx = 1 + betau(i)*(1.5*costheta*costheta - 0.5)
    xysum = xysum + xx*cpth(i,ith)/(sig(i,ith)*sig(i,ith))
    xxsum = xxsum + xx*xx/(sig(i,ith)*sig(i,ith))
    end do
do ith = ithmin2(i),ithmax2(i)
costheta = cos((ith-0.5)*pi/180.)
xx = 1 + betau(i)*(1.5*costheta*costheta - 0.5)
xysum = xysum + xx*cpth(i,ith)/(sig(i,ith)*sig(i,ith))
xxsum = xxsum + xx*xx/(sig(i,ith)*sig(i,ith))
end do
C
if(xxsum.eq.0.0) xxsum = 1e-10
C ***********************************************************
alphau(i)= xysum/xxsum
alphaavgu = alphaavgu + alphau(i)*enrg(i)
alphaintu = alphaintu + alphau(i)
alphausig(i) = sqrt( 1/xxsum )
chisqru(i) = (yysum - 2*alphau(i)*xysum
@ + alphau(i)*alphau(i)*xxsum)/(nth(i)+nth2(i) - 1)
xysum = 0
xxsum = 0
c Calculate sums a last time, for lower beta
do ith = ithmin(i),ithmax(i)
costheta = cos((ith-0.5)*pi/180.)
xx = 1 + betal(i)*(1.5*costheta*costheta - 0.5)
xysum = xysum + xx*cpth(i,ith)/(sig(i,ith)*sig(i,ith))
xxsum = xxsum + xx*xx/(sig(i,ith)*sig(i,ith))
end do
do ith = ithmin2(i),ithmax2(i)
costheta = cos((ith-0.5)*pi/180.)
xx = 1 + betal(i)*(1.5*costheta*costheta - 0.5)
xysum = xysum + xx*cpth(i,ith)/(sig(i,ith)*sig(i,ith))
xxsum = xxsum + xx*xx/(sig(i,ith)*sig(i,ith))
end do
c
if(xxsum.eq.0.0) xxsum = 1e-10
C ***********************************************************
alphal(i)= xysum/xxsum
alphaavgl = alphaavgl + alphal(i)*enrg(i)
alphaintl = alphaintl + alphal(i)
alphalsig(i) = sqrt( 1/xxsum )
chisqrl(i) = (yysum - 2*alphal(i)*xysum
@ + alphal(i)*alphal(i)*xxsum)/(nth(i)+nth2(i) - 1)
end if
end do ! energy bin loop
********************Section 7: Statistics, files, plotting********
c
c Write out fit results
C
call addsuffix(betaroot,'.aoe',alphafile)
open(25,file=alphafile)
call addsuffix(betaroot,'.saoe',salphafile)
open(45,file=salphafile) !simple aoe file in x,y format

```
```

    write(6,*)'Writing P(E) to ',alphafile
    call addsuffix(betaroot,'l.aoe',alphafile)
    open(24,file=alphafile)
    write(6,*)'Writing lower beta limit P(E) to ',alphafile
    call addsuffix(betaroot,'u.aoe',alphafile)
    open(26,file=alphafile)
    write(6,*)'Writing upper beta limit P(E) to ',alphafile
        call addsuffix(betaroot,'.kcal',alphafile)
        open(27,file=alphafile)
        write(6,*)'Writing kcal P(E) to ',alphafile
    do i=1, nbine
    if (ibad(i).ne.1) then
        write(25,2526) enrg(i),alpha(i),alphasig(i)
        write(24,2526) enrg(i),alphal(i),alphalsig(i)
        write(26,2526) enrg(i),alphau(i),alphausig(i)
        write(45,*) enrg(i),alpha(i)
            write(27,2526) enrg(i)*23.06,alpha(i),alphasig(i)
        end if
    end do
    close(25)
    close(24)
    close (26)
    close(45)
    close (27)
    2525 format(f8.4,2E13.5,F10.4)
2526 format(f8.4,2E13.5)
Write out statistics for the alphafit KER curve
alphaavg = alphaavg / alphaint
alphaavgu = alphaavgu / alphaintu
alphaavgl = alphaavgl / alphaintl
call addsuffix(betaroot,'.stat',alphafile)
write(6,2530)alphaavg*23.06
write (6,2540)alphaavgu*23.06
write(6,2550) alphaavgl*23.06
write(6,2560)alphamp*23.06
write(6,2580) alphamaxker*23.06
write(6,*)
write(6,2600)alphaint
write(6,2650) alphaintu
write(6,2700)alphaintl
write(6,*)'**********************************************
open(28,file=alphafile)
c write(6,*)'Also writing statistics for the alphafit KER
curve ',
c > 'to ',alphafile
c write (28,2530)alphaavg*23.06
write (28,2540) alphaavgu*23.06
write (28,2550)alphaavg1*23.06
write (28,2560) alphamp*23.06
write(28,2580) alphamaxker*23.06
write(11,*)'**********************************************
write(11, 2600)alphaint
write(11,2650)alphaintu
write(11,2700)alphaintl
write(11,*)'**********************************************
close(11) ! finally close the fit results file
close(28)
c2530 format('Average KER for this channel using ',/,
c > 'best Beta values [kcal/mol]: ',e11.4)
c2540 format('Average KER for this channel using './,
c > 'upper Beta values [kcal/mol]: ',e11.4)

```
C
C
c
c
```

c2550 format('Average KER for this channel using ',',
c > 'lower Beta values [kcal/mol]: ',e11.4)
c2560 format('Most probable KER for this channel using best ',/,
c > 'Beta values [kcal/mol]: ',e11.4)
c2580 format('Maximum observed KER for this channel using best
c', > 'Beta values [kcal/mol]: ',e11.4)
2600 format('Area under best alphafit KER curve is: ',f11.6)
2650 format('Area under low limit alphafit KER curve is: ',f11.6)
2700 format('Area under highlimit alphafit KER curve is: ',f11.6)
C
c Call NCAR to generate P(E) and Beta(E) plots
C
write(6,*)'Plotting P(E) and Beta(E)'
call opngks
call setusv('PB',2)
call agsetc('LABEL/NAME.','L')
call agseti('LINE/NUMBER.',100)
call agsetc('LINE/TEXT.','P(E)$')
        call agsetc('LABEL/NAME.','B')
        call agseti('LINE/NUMBER.',-100)
        call agsetc('LINE/TEXT.','Energy$')
C***********************************************************
title = titleorg//'-DAF''d KER'//'$'
    call ezxy(enrg,alpha,nbine,title)
C*********************************************************
    call setusv('PB',2)
    call agsetc('LABEL/NAME.','L')
    call agseti('LINE/NUMBER.',100)
        call agsetc('LINE/TEXT.','Beta(E)$')
call agsetc('LABEL/NAME.','B')
call agseti('LINE/NUMBER.',-100)
call agsetc('LINE/TEXT.','Energy$')
C *****************************************************
    title = titleorg//'-Beta vs Energy'//'$'
call ezxy(enrg,beta,nbine,title)
call setusv('PB',2)
call agsetc('LABEL/NAME.','L')
call agseti('LINE/NUMBER.',100)
call agsetc('LINE/TEXT.','No. of Angular Bins Fit$')
    call agsetc('LABEL/NAME.','B')
    call agseti('LINE/NUMBER.',-100)
    call agsetc('LINE/TEXT.','Energy$')
C *******************************************************
title = titleorg//'-Ang. Bins vs Energy'//'\$'
call ezxy(nrg,nthwin,iwin,title)
*******************************************************
C
c Generate plots of beta window fits
call addsuffix(betaroot,'.angdist',angdistfile)
open(17,file=angdistfile)
write(6,*)'Writing P(Theta) to ',angdistfile
do iwin = 1, nbetawin
do ith = 1,180
xra(ith) = ith - 0.5

```
```

            costheta = cos(xra(ith)*pi/180.) ! cos(theta in radians)
            fit(ith) = alphacent(iwin)*
            (c) ( 1 + betaorig(iwin) * ( 1.5*costheta*costheta - 0.5 ) )
            yra(ith) = 0 ! initialize yra (gotta zero all 180)
        end do
        do ith = ithminwin(iwin),ithmaxwin(iwin)
            yra(ith) = cpthsum(iwin,ith)
        end do
        do ith = ithminwin2(iwin),ithmaxwin2(iwin)
            Yra(ith) = cpthsum(iwin,ith)
        end do
        do ith = 1,180
        write(17,*)xra(ith),yra(ith),fit(ith)
        enddo
    ```
```

C******************************************************************

```
C**
 title = titleorg//'; for '
 @ //char(inrgmin(iwin))//'-'//char(inrgmax(iwin))//'$'
C***
 call agseti('FRAME.',2) ! two plots per frame
 call setusv('PB',2)
 call agsetc('LABEL/NAME.','L')
 call agseti('LINE/NUMBER.',100)
 call agsetc('LINE/TEXT.','P(Theta)$')
 call agsetc('LABEL/NAME.','B')
 call agseti('LINE/NUMBER.',-100)
 call agsetc('LINE/TEXT.','Theta$')
 call ezxy(xra,yra,180,title)
 call points(xra,fit,180,-1,0)
 call FRAME
 end do
 call clsgks
 ierr = system(' mv gmeta abfit.img')
 if (iwkst.eq.2) ierr = system(' ictrans -d X11 -bell abfit.img')
 close(17)
c
 end
```


## addsuffix.f

subroutine addsuffix(rootname, suffix, fullname)
$c$ this subroutine takes inputs rootname (e.g. oxygen) and
$c$ suffix (e.g. .cker) from calling program, and returns the
c concatenated filename (e.g. oxygen.cker)
implicit none
character*5 suffix
character*20 rootname, fullname
integer loci,length
loc1 = index (rootname,' ') !find the first space in rootfile length $=10 c 1$ - 1 !length of filename rootword fullname = rootname(1:Iength) // suffix
return
end

## interp.f

subroutine interp (ebinval, ecenter, betapt, nbetapts, slope, intercept)
c This subroutine findes the slope and interecept of Beta(e) for
c each value of ebinval(i)
parameter $(\mathrm{n} 2=300)$
implicit none
integer nbetapts,i
real*4 ebinval, ecenter (n2), betapt (nbetapts)
real*4 slope,intercept
if(ebinval.le.ecenter(1)) then
slope $=0.0$
intercept $=$ betapt(1)
elseif(ebinval.ge.ecenter(nbetapts)) then slope $=0.0$ intercept $=$ betapt (nbetapts)
else
$c$ if the ebinval was not outside the boundary of beta(E), find
c out where it is.
$c$ first assign the two bounding neighbors of the point ebinval
$c$ i is the value of the ecenter point to the left of ebinval
$i=0$
$100 \quad i=i+1$
if ((ebinval.ge.ecenter(i)).and. (ebinval.le.ecenter(i+1))) then slope $=$ (betapt (i+1) - betapt(i))/(ecenter(i+l)-ecenter(i))
$=\quad$ write (6,*)'betapt(',i,') $=$ ', betapt(i)
c write (6,*)'slope = ', slope
$=\quad \operatorname{write}(6, *)$ 'ecenter (', i,') $=1$, ecenter(i)
intercept $=$ betapt (i) - slope*ecenter(i) goto 200
else
goto 100
endif
endif
200 return
end

## covsrt.f:

```
 SUBROUTINE COVSRT(COVAR,NCVM,MA,LISTA,MFIT)
 DIMENSION COVAR (NCVM,NCVM),LISTA (MFIT)
 DO }12\textrm{J}=1,\textrm{MA}-
 DO }11\textrm{I}=\textrm{J}+1,M
 COVAR (I,J)=0.
:1 CONTINUE
12 CONTINUE
 DO 14 I=1,MFIT-1
 DO 13 J=I +1,MFIT
 IF(LISTA(J).GT.LISTA(I)) THEN
 COVAR (IISTA (J),IISTA (I))=COVAR (I,J)
 ELSE
 COVAR(LISTA (I),LISTA (J))=COVAR (I,J)
 ENDIF
 CONTINUE
1 3
 CONTINUE
 SWAP=COVAR (1,1)
```

```
DO \(15 \mathrm{~J}=1\), MA
 \(\operatorname{COVAR}(1, J)=\operatorname{COVAR}(J, J)\)
 \(\operatorname{COVAR}(J, J)=0\).
 COVAR (LISTA(1),LISTA (1)) =SWAP
 DO \(16 \mathrm{~J}=2\), MFIT
 \(\operatorname{COVAR}(\operatorname{LISTA}(J), \operatorname{LISTA}(J))=\operatorname{COVAR}(1, J)\)
 DO \(18 \mathrm{~J}=2\), MA
 DO \(17 \mathrm{I}=1, \mathrm{~J}-1\)
 \(\operatorname{COVAR}(I, J)=\operatorname{COVAR}(J, I)\)
 CONTINUE
 CONTINUE
 RETURN
 END
```

    15 CONTINUE
    16 CONTINUE
    17
    fleg.f:
SUBROUTINE FLEG (X, PL, NL)
DIMENSION PL (NL)
PL (1) $=1$.
$\mathrm{PL}(2)=\mathrm{X}$
IF (NL.GT. 2) THEN
TWOX=2.*X
$\mathrm{F} 2=\mathrm{X}$
$\mathrm{D}=1$.
DO $11 \mathrm{~J}=3$, NL
F1=D
$\mathrm{F} 2=\mathrm{F} 2+\mathrm{TWOX}$
$\mathrm{D}=\mathrm{D}+1$.
$\operatorname{PL}(J)=(F 2 * P L(J-1)-F 1 * P L(J-2)) / D$
CONTINUE
ENDIF
RETURN
END

## gammln.f:

FUNCTION GAMMLN(XX)
REAL* 8 COF (6), STP, HALF, ONE, FPF, X, TMP, SER
DATA COF, STP/76.18009173D0,-86.50532033D0,24.01409822D0,

*     - $1.231739516 \mathrm{DO}, .120858003 \mathrm{D}-2,-.536382 \mathrm{D}-5,2.50662827465 \mathrm{DO} /$

DATA HALF,ONE,FPF/0.5DO,1.0D0,5.5DO/
$\mathrm{X}=\mathrm{XX}-\mathrm{ONE}$
$T M P=X+F P F$
TMP $=(\mathrm{X}+$ HALF $) *$ LOG (TMP $)-$ TMP
SER=ONE
DO $11 \mathrm{~J}=1,6$
$\mathrm{X}=\mathrm{X}+\mathrm{ONE}$
$S E R=S E R+C O F(J) / X$
11 CONTINUE
GAMMLN=TMP + LOG (STP*SER)
RETURN
END
gammq.f:
FUNCTION GAMMQ (A, X)
IF (X.LT.0. OR.A.LE. O.) PAUSE
IF (X.LT.A+1.)THEN
CALL GSER (GAMSER,A,X,GLN)

```
 GAMMQ=1.-GAMSER
ELSE
 CALL GCF (GAMMQ,A,X,GLN)
ENDIF
RETURN
END
```


## gaussj.f:

    SUBROUTINE GAUSSJ (A,N,NP, B, M, MP)
    PARAMETER (NMAX=50)
    DIMENSION A (NP, NP) , B(NP,MP), IPIV (NMAX), INDXR (NMAX), INDXC (NMAX)
    DO \(11 \mathrm{~J}=1, \mathrm{~N}\)
        \(\operatorname{IPIV}(J)=0\)
    CONTINUE
    DO \(22 \mathrm{I}=1, \mathrm{~N}\)
    BIG=0.
    DO \(13 \mathrm{~J}=1, \mathrm{~N}\)
        IF (IPIV (J) . NE . 1) THEN
            DO \(12 \mathrm{~K}=1, \mathrm{~N}\)
                IF (IPIV(K).EQ.0) THEN
                    IF (ABS \((A(J, K)) . G E . B I G)\) THEN
                    \(B I G=A B S(A(J, K))\)
                    IROW=J
                        ICOL=K
                ENDIF
                ELSE IF (IPIV(K).GT.1) THEN
                                    PAUSE 'Singular matrix'
                ENDIF
            CONTINUE
        ENDIF
        CONTINUE
        \(\operatorname{IPIV}(\) ICOL \()=\operatorname{IPIV}(\) ICOL \()+1\)
        IF (IROW.NE.ICOL) THEN
        DO \(14 \mathrm{~L}=1, \mathrm{~N}\)
            DUM=A (IROW,L)
            A (IROW, L) \(=A\) (ICOL , L)
            A \((\) ICOL,\(L)=D U M\)
        CONTINUE
        DO \(15 \mathrm{~L}=1, \mathrm{M}\)
            DUM=B (IROW, L)
            \(B(\) IROW, L) \(=B(\) ICOL,\(L)\)
            \(B(I C O L, L)=D U M\)
        CONTINUE
        ENDIF
        INDXR (I) \(=\) IROW
        INDXC (I) =ICOL
        IF (A(ICOL,ICOL).EQ.O.) PAUSE 'Singular matrix.'
        PIVINV=1./A (ICOL, ICOL)
        \(A(I C O L, I C O L)=1\).
        DO \(16 \mathrm{~L}=1, \mathrm{~N}\)
        A \((\) ICOL,\(L)=A(I C O L, L) * P I V I N V\)
    CONTINUE
    DO \(17 \mathrm{~L}=1, \mathrm{M}\)
        B(ICOL,L) \(=\) B (ICOL,L) *PIVINV
    CONTINUE
    DO 21 LL=1,N
        IF (LL.NE. ICOL) THEN
        DUM=A (LL, ICOL)
        \(\mathrm{A}(\mathrm{LL}, \mathrm{ICOL})=0\).
        DO \(18 \mathrm{~L}=1, \mathrm{~N}\)
            \(A(L L, L)=A(L L, L)-A(I C O L, L) * D U M\)
        CONTINUE
    ```
 DO 19 L=1,M
 B(LL,L)=B(LL,L) - B (ICOL,L) *DUM
 CONTINUE
 ENDIF
 CONTINUE
CONTINUE
 DO 24 L=N,1,-1
 IF (INDXR (L) .NE.INDXC (L)) THEN
 DO 23 K=1,N
 DUM=A(K,INDXR(L))
 A (K,INDXR (L)) =A (K,INDXC (L))
 A(K, INDXC (L))=DUM
 CONTINUE
 ENDIF
 CONTINUE
 RETURN
 END
```

gcf.f:
SUBROUTINE GCF (GAMMCF, A, X, GLN)
PARAMETER (ITMAX=100,EPS=3.E-7)
GLN=GAMMLN (A)
GOLD=0.
$A 0=1$.
$\mathrm{A} 1=\mathrm{X}$
$\mathrm{BO}=0$.
$\mathrm{B} 1=1$.
$\mathrm{FAC}=1$.
DO $11 \mathrm{~N}=1$, ITMAX
AN=FLOAT ( N )
$\mathrm{ANA}=\mathrm{AN}-\mathrm{A}$
$A 0=(A 1+A 0 * A N A) * F A C$
$B 0=(B 1+B 0 * A N A) * F A C$
ANF $=A N * F A C$
$\mathrm{A} 1=\mathrm{X}^{*} \mathrm{~A} 0+\mathrm{ANF}{ }^{*} \mathrm{~A} 1$
$\mathrm{B} 1=\mathrm{X} * \mathrm{BO}+\mathrm{ANF} \mathrm{A}^{\mathrm{B}} 1$
IF (A1.NE.0.) THEN
$F A C=1 . / A 1$
$\mathrm{G}=\mathrm{B} 1$ *FAC
IF (ABS ( (G-GOLD)/G).LT.EPS)GO TO 1
GOLD=G
ENDIF
$\therefore \quad$ CONTINUE
PAUSE 'A too large, ITMAX too small'
GAMMCF $=E X P(-X+A * A L O G(X)-G L N) * G$
RETURN
END
gser.f:
SUBROUTINE GSER (GAMSER,A, X, GLN)
PARAMETER (ITMAX=100,EPS=3.E-7)
GLN =GAMMLN (A)
IF (X.LE.0.)THEN
IF (X.LT.0.)PAUSE
GAMSER=0.
RETURN
ENDIF

```
 AP=A
 SUM=1./A
 DEL=SUM
 DO }11\mathrm{ N=1,ITMAX
 AP=AP+1
 DEL=DEL*X/AP
 SUM=SUM+DEL
 IF (ABS (DEL).LT.ABS (SUM) *EPS)GO TO 1
 CONTINUE
 PAUSE 'A too large, ITMAX too small'
 GAMSER=SUM*EXP(-X+A*LOG (X) -GLN)
 RETURN
 END
```

Ifit.f:
SUBROUTINE LFIT (X,Y,SIG,NDATA,A,MA,LISTA,MFIT,COVAR,NCVM,CHISQ)
PARAMETER (MMAX=3)
DIMENSION X (NDATA), Y(NDATA), SIG (NDATA), A(MA), LISTA (MA),
* COVAR (NCVM, NCVM) , BETA (MMAX) , AFUNC (MMAX)
real*4 qfit,nu,nu2
$\mathrm{KK}=\mathrm{MFIT}+1$
c write (6,*)'ma',ma,'mfit',mfit
c write(6,*)'lista:',lista
DO $12 \mathrm{~J}=1$, MA
IHIT=0
DO $11 \mathrm{~K}=1$, MFIT
c write( $6, *$ ) k, lista(K)
IF (LISTA(K).EQ.J) IHIT=IHIT+1
11 CONTINUE
IF (IHIT.EQ.O) THEN
LISTA (KK) =J
$K K=K K+1$
ELSE IF (IHIT.GT.1) THEN
PAUSE 'Improper set in LISTA'
ENDIF
12 CONTINUE
c write(6,*)'final lista:', lista
IF (KK.NE. (MA+1)) PAUSE 'Improper set in LISTA'
DO $14 \mathrm{~J}=1, \mathrm{MFIT}$
DO $13 \mathrm{~K}=1$, MFIT
$\operatorname{COVAR}(J, K)=0$.
CONTINUE
$\operatorname{BETA}(J)=0$.
CONTINUE
DO $18 \mathrm{I}=1$, NDATA
CALL fleg (X (I), AFUNC,MA)
$c$ write $(6, *)$ 'successful call of funcs'
$\mathrm{YM}=\mathrm{Y}(\mathrm{I})$
IF (MFIT.LT.MA) THEN
c get residuals for parameters which are held fixed
DO $15 \mathrm{~J}=\mathrm{MFIT}+1$, MA
YM=YM-A(LISTA (J)) *AFUNC (LISTA (J))
CONTINUE
ENDIF
SIG2I=1./SIG(I)**2 ! (errors)
DO $17 \mathrm{~J}=1, \mathrm{MFIT}$ ! (create covar matrix from params which
are fit
WT=AFUNC (LISTA (J)) *SIG2I
DO $16 \mathrm{~K}=1, \mathrm{~J}$
$\operatorname{COVAR}(\mathrm{J}, \mathrm{K})=\operatorname{COVAR}(\mathrm{J}, \mathrm{K})+W T * A F U N C(\operatorname{LISTA}(\mathrm{~K}))$
16
CONTINUE
$\operatorname{BETA}(J)=\operatorname{BETA}(J)+Y M * W T$
CONTINUE
17
CONTINUE
IF (MFIT.GT.1) THEN
DO $21 \mathrm{~J}=2$, MFIT
DO $19 \mathrm{~K}=1, \mathrm{~J}-1$
$\operatorname{COVAR}(\mathrm{K}, \mathrm{J})=\operatorname{COVAR}(\mathrm{J}, \mathrm{K})$
CONTINUE
CONTINUE
ENDIF
CALL GAUSSJ (COVAR,MFIT,NCVM, BETA, 1, 1)
DO $22 \mathrm{~J}=1$, MFIT A (LISTA $(J))=$ BETA $(J)$
CONTINUE
CHISQ=0.
DO $24 I=1$, NDATA
CALL fleg ( $\mathrm{X}(\mathrm{I}), \mathrm{AFUNC}, \mathrm{MA}$ ) SUM=0. DO $23 \mathrm{~J}=1$, MA

SUM $=$ SUM + A (J) *AFUNC (J) CONTINUE CHISQ $=$ CHISQ $+(\{Y(I)-S U M) / S I G(I)) * * 2$
CONTINUE
nu = ndata-mfit
$\mathrm{nu} 2=\mathrm{nu} / 2.0$
chisq2 $=$ chisq / 2.0
qfit $=$ GAMMQ (nu2, chisq2)
write (6,*)'Goodness of fit, $Q=$ '
write (6,1100) qfit
1100 format (f14.9)
CALL COVSRT (COVAR,NCVM,MA,LISTA,MFIT)
RETURN
END

## Appendix D

## XYZLSQ: Creation of detector factors for the time- and positionsensitive detector.

## I. Introduction

The XYZLSQ code generates factors which covert charge fraction and $\Delta t$ data into particle position information based on a non-linear least-squares fit to dissociation data from $\mathrm{O}_{2}$ as described in Chapter 2. The factors are then employed in the CMLWSA code given in Appendix A to routinely convert charge fraction and $\Delta t$ data into product mass ratios, translational energy, and angular distributions. The code was written and/or compiled by Dr. David Leahy and is given in the present dissertation for the sake of completeness.

The conceptual basis for this code was presented in Chapter 1. This appendix presents practical information needed to run the program, a description of the subroutines involved, and the actual code itself.

## II. Routines comprising the XYZLSQ program

XYZLSQ is compiled from the following routines and subroutines:
xyzlsq.f: Main routine which calls all other routines and performs the Levenberg-Marquardt non-linear least-squares optimization.
xyzin.f: Reads in the initial guesses for all fit parameters and many other constants which are adjusted only by the user.
genpin.f: Reads the fit parameters into the least-squares algorithm.
xyzcal.f: At the heart of the program, this routine does the conversion of charge fraction and $\Delta t$ data into $\mathrm{x}, \mathrm{y}$, and z positions. On output it gives the length of the center-of-mass recoil vector for each coincident event.
jmdiag.f: Matrix manipulation routine. matinv.f: Matrix inversion routine.
xyznrg.f: performs diagnostics upon completion of the fit linfit.f: Linear least-squares fitting of data to a line.

XYZLSQ can be compiled on a UNIX platform by executing the make command: make -f makexyz
where the makefile is:

## makexyz

FFLAGS $=-$ cg89 -dalign -03
xyzlsq: xyzlsq. 0 xyzin. 0 genpin. 0 xyzcal. 0 jmdiag. 0 matinv. 0 xyznrg.o linfit. 0
f77 -cg89 -dalign -O3 xyzlsq.0 xyzin. 0 genpin. 0 xyzcal. 0 jmdiag. 0 matinv.o xyznrg.o linfit.o -o xyzlsq

## III. Usage

## A. General information and input / output files

A minimum of two files are required on input. The aptly named input file contains initial values for all parameters, flags to denote whether a given parameter should
be adjusted or fixed during the fit, and various user-defined parameters which are never adjusted during the fit. The raw data file consists of the six charge fraction readings and the TAC reading for each coincident event. On output the file param. dat contains the values of the fit parameters from the last iteration. By selecting the appropriate flag in the input file, the initial guesses for the next run of XYZLSQ can be read directly from param.dat.

The following is a sample input file with each line annotated. The corresponding parameters discussed in Chapter 2 are given in parentheses after each annotation. The right handed coordinate system is defined with $z$ normal to the plane of the detector, $y$ pointing towards the top of the detector. The subscripts 1 and 2 refer to the upper and lower halves of the detector, respectively. $R_{x y}$ is the projection of the recoil vector on the plane of the detector, while $R_{z}$ is the projection along the radical beam axis.
input: input file for XYZLSQ code

```
16 number of parameters
156.29852
v
-41.52153
v
64.71810
v
-6.58297
v
149.98367
v
-38.28748
v
64.11207
v
-5.96814
v
0.98
f
0.00140
```

number of parameters
multiplicative wedge upper ( $a_{1 x}$ ) flag to vary ( v ) of fix ( $f$ ) the preceding parameter
additive wedge upper ( $b_{1 x}$ )
fix/vary
multiplicative strip upper ( $a_{1 y}$ ) fix/vary
additive strip upper ( $b_{1 y}$ ) fix/vary
multiplicative wedge lower ( $a_{2 x}$ ) fix/vary
additive wedge lower ( $b_{2 x}$ )
fix/vary
multiplicative strip lower ( $a_{2 y}$ ) fix/vary
additive strip lower ( $b_{2 y}$ ) fix/vary
cross talk wedge/zig-zag upper
fix/vary
tilt of detector around $x$-axis (tilt- $x$ )

```
v
0.98
f
0.01167
v
1.00
f
-0.04622
v
1.00
f
1.40543
I
1
0. 0.9
995
0.14
0.07
0.7
0.018.0
1.0
1.5
4. 18.
4. 18.
-20. 20.
-20. 20.
-60. 60.
50. 130.
1
15000
500
raw_data.dat
7
24.6
4 . 9 7 0
15
. }
0
2
```

fix/vary
cross talk wedge/zig-zag lower
fix/vary
tilt of detector around $y$-axis (tilt-y) fix/vary
slope of TAC conversion to $\Delta t(T A C-m)$
fix/vary
intercept of TAC conversion to $\Delta t(T A C-b)$
fix/vary
quadratic wedge factor $\left(c_{x}\right)$
fix/vary
quadratic strip factor $\left(c_{y}\right)$
fix/vary
If 1, get parameters from param. dat file, If 0 , get parameter values from input file.
position of radical beam in detector coordinates: $x_{0}, y_{0}$
flight length $L$ ( mm )
$R_{x y}$ error (mm)
$R_{z}$ error (mm)
centroid radius error (mm)
spatial and temporal discrimination (mm)
minimum and maximum acceptable radial recoil: $R_{\min }, R_{\max }$ maximum acceptable recoil error maximum acceptable centroid radius allowed range for $|y|$ values, upper balf allowed range for $|y|$ values, lower half allowed range for $x$ values, upper half allowed range for $x$ values, lower half allowed range for $z$ values, i.e. $v_{\text {bean }} \bullet \Delta t$ allowed range for azimuthal angle $\varphi$
number of data files to fit
number of data points to fit
skip first $n$ data points in each file name of raw data file $\mathrm{O}_{2}$ Schumann-Runge upper state vibrational quantum number energy offset from the $\mathrm{O}\left({ }^{3} P_{2}\right)+\mathrm{O}\left({ }^{3} P_{2}\right)$ energetic limit beam energy (kV)
number of non-linear least-squares fit iterations starting value for $\lambda$, a parameter of the fitting engine (default $=0.1$ ) output verbosity selector ( 0 is most verbose)
output files verbosity selector ( 0 is most verbose)

The output file $\circ 2$. dat contains diagnostic information about the results of the fit, and is self-explanatory.
o2.dat: output file from XYZLSQ

```
tslope: 7.36594 ADC units/ns
tint: 3645.50 ADC units
centroid: 0. 0.90000000000000 mm
length: }995.000\textrm{mm
 12575 points read from raw_data.dat
O2 dissociation from vB=7
Ediss of J=2,J=2: 1.53579; fit to mean: 1.51137
beam energy: }\quad4.97000\textrm{keV
beam velocity: 173113. m/s
recoil (R): 34.7025 +/- 0.160000(xy) 8.00000E-02(z)
centroid radial uncertainty: }0.700000\textrm{mm
Raw data discrimination: 0.730101 %
Min detector radius: 0. mm 0. %
Max detector radius: }18.0000\textrm{mm}10.15792
Max recoil error: 1.00000 mm 16.7566%
Max centroid radius: 1.50000 mm 8.45171 %
yu min: 4.00000 mm 1.19038E-02 %
yu max: }\quad18.0000\textrm{mm}\quad2.06730
Yl min: }\quad4.00000\textrm{mm}\quad1.58718\textrm{E}-02
Yl max: }\quad18.0000\textrm{mm}\quad2.38076\textrm{E}-02
xu min: }\quad-20.0000\textrm{mm}0.
xu max: }\quad20.0000\textrm{mm}0.
xl min: }\quad-20.0000\textrm{mm}0.
xl max: }\quad20.0000\textrm{mm}0.
z min: }\quad-60.0000\textrm{mm}\quad3.96794E-03
z max: }\quad60.0000\textrm{mm}\quad0.123006
phi min: 50.0000 degrees 17.1336%
phi max: 130.000 degrees 19.8754 %
Total percentage disc'd: 50.1032%
1
```

Least Squares Pass: 0 CONVERGENCE HAS BEEN ACHIEVED
Bagged out on JMDIAG
Energy analysis:
Mean energy: 1511.42 meV
std. dev. (wrt nrg mean): 16.9826 meV
Std. dev. (of the fit): 16.9841 meV
Peak: $\quad 1518 \mathrm{meV}$
FWHM: $\quad 21 \mathrm{meV}$
DeltaZ mean: $\quad-0.781932 \mathrm{~mm}$

OUTPUT FROM FINAL LEAST SQUARES PASS		
Param	Param Value	Uncertainty
1*	157.30984	0.11978
2*	-41.80790	0.03206
3*	62.63658	0.04134
4*	-6.19427	0.01215
5*	150.29530	0.11462
5*	-38.36240	0.02945
7*	63.44763	0.04440
8*	-6.04078	0.01172
9	0.98000	
10*	0.00129	0.00001
11	0.98000	
12*	0.01274	0.00003
13	1.00000	
14*	-0.03871	0.00019

```
 15 1.00000
 1 6 ~ 1 . 4 6 0 0 0
 Reduced Chi Squared: 1.12405
Variance of the Fit: 5.73180E-02
Standard Deviation of the Fit: 2.39412E-01
```

The output file param. dat contains the factors in a compact form which can be read back into XYZLSQ or used for data analysis with CMLWSA. The order of the parameters is identical to the order given in the input file.
param.dat: output file from XYZLSQ

16	
1	155.71308898926
2	-41.409950256348
3	57.684650000000
4	-5.0801897048950
5	149.54177856445
6	-37.332431793213
7	61.891620635986
8	-5.5053655909881
9	0.9800000000000
10	$1.1247047223151 \mathrm{D}-03$
11	0.98000000000000
12	$1.0954268276691 \mathrm{D}-02$
13	1.0038297176361
14	$-3.7268795073032 \mathrm{D}-02$
15	1.000000000000
16	1.6000000000000

In addition, the file nrg. dat contains the $P\left(E_{\mathrm{T}}\right)$ distribution for visual inspection. Finally, the program NRGPLOT, compiled from the source code nrgplot.f, displays the data in a variety of contour plot formats which can be useful in interpreting systematic errors in specific regions of the detector face.

## B. Systematic fitting of the parameters

The most important criterion for assessing whether the fit is satisfactory is the standard deviation of the fit. In addition, a truly converged set of parameters will converge on the next run of XYZLSQ in a single iteration. As with any non-linear fit, the
chances of reaching convergence depends (sometimes quite critically) on the initial guesses for the parameters. It is wise to begin a fit of a new data set with the converged parameters from a previous data set. Beyond these rather obvious points, there is a more-or-less systematic way of arriving at a converged set of factors suitable for use in general photodissociation applications.
(1) Begin from a previous data set parameter file by fixing all parameters except the four multiplicative and the four additive parameters, i.e. the $a$ and $b$ values in input. For the sake of speed in fitting, it is often desirable to begin with only 5000 data points. For final fitting the number of data points is increased, concurrent with an increase in required computing time. To begin, use $x$ discrimination limits $[-14,14]$ and $y$ limits [8,18]. In general the $\varphi$ discrimination limits are fixed at [50,130].
(2) As the fit reaches convergence with only these eight parameters, free the tilt-x, tilt-y, $T A C-m$. and $T A C-b$ parameters in turn. It may not be necessary to leave these parameters free indefinitely, but they should be allowed to adjust at this point.
(3) Leave the quadratic strip factor fixed, but adjust its value by hand and refit the data. Typical values are between 1.4 and 1.6 for this parameter. It is possible to allow this parameter to be adjusted by the fit, but this often requires fixing one or more of the linear surip parameters.
(4) When converged to this point, use CMLWSA to view the image of the $\mathrm{O}_{2}$ data set on the detector face. Normally the data does not go all the way to the beam block. If this is the case, the multiplicative strip factors, both linear and non-linear, must be fixed and increased "by hand." After converging the XYZLSQ fit, view the new image
using CMLWSA and iterate this procedure until a satisfactory image is obtained which nevertheless preserves most of the energy resolution gained by the fully optimized fit.
(5) Depending on the specific application, it may be wise to adjust the factors for data collection on a particular free radical, or even a particular combination of flight length, beam energy, etc. for a given radical. In general, the discrimination limits set in step (1) should also be adjusted to determine how much of the detector face may be used in the real experiments. The most grievously distorted parts of the spatial detector response occur for azimuthal angles $\varphi=[0-30]$ and $[150,180]$ and their compliments on the lower half of the detector. Without significant detector modifications it is doubtful whether these regions of the detector will ever be useful.

## IV. FORTRAN code of XYZLSQ.

Routines are listed in the order given by the makefile, section III.

## xyzlsq.f

PROGRAM XYZLSQ
c Program reads in 02 data in wedge-strip-z charge data format
$c$ and fits wedge-and-strip anode parameters to minimize the energy spread
$c$ and centroid size
c
c Subroutine xyzin.f is the lengthy input subroutine
c genpin.f reads in the initial guesses for the parameters
$c$ xyzcal.f holds the algorithm for parameter-based conversion of
charge
$c$ data to $x-y$ positions
c jmdiag.f, matinv.f are matrix manipulation programs used by the fit $c$ xyznrg.f performs diagnostics at the end of the fit c

## implicit none

COMMON /BLOCK1/ PARAM(20), NPARAM
COMMON /BLOCK2/ ydata(50000),ydataerror (50000),NUMBER
COMMON /BLOCK3/ $\operatorname{HDIAG}(20,20), \operatorname{EIGVEC}(20,20), \operatorname{EIGVAL}(20)$
COMMON /rawdata/ wedgeu (25000), wedgel (25000), stripu(25000),
e stripl $(25000), \mathrm{zu}(25000), \mathrm{zl}(25000), \mathrm{z}(25000)$, time $(25000), \mathrm{x} 0, \mathrm{y} 0$
common /procdata/ xul(25000),xl1(25000),yul(25000),yl1(25000)
real*4 z,time, zmean, zsum
real*4 xu1,yu1,xl1,y11
integer wedgeu, stripu, zu, wedgel, stripl, zl, dummy, yesno
REAL*8 PARAM, SIGMA(20), DELTA(20), x0, Yo

REAL*4 ydata,ydataerror,temp
REAL* 8 ARRAY $(20,20)$, ALPHA $(20,20)$, BETA (20), LAMBDA
REAL*8 HDIAG, EIGVEC, EIGVAL
REAL*4 CTRANS (50000), $\operatorname{DTRANS}(50000), \operatorname{DERIV}(50000,16)$,
(a)PTEMP (20)

REAL*8 TAU, PEMP, STEP, DEL, REFCOS, EPSILN, COSINE, NU REAL*8 DETERM, VARNCE, SIGMAO, CHIA, CHIB
integer N, NUMBER,NPARAM, NREP, IPASS, LASTPS, NFIT, NUMFIT (20)
integer I, ISUB, ILIMIT, K, KO,L, output, ierr, system
C DATA PARAM
$C$ DATA ydata $/ 1024 * 0.0$
/ 20*0.0
DATA SIGMA / $20 * 0.0$
DATA DELTA / $20 * 0.0$ /
DATA ARRAY / $400 * 0.0 /$
DATA ALPHA $/ 400 * 0.0 /$
DATA HDIAG / 400*0.0 /
DATA EIGVEC / $400 * 0.0 /$
DATA EIGVAL / 20*0.0 /
DATA BETA / $20 * 0.0 /$
C DATA CTRANS $/ 30000 * 0.0$
c DATA DTRANS / 30000*0.0/
c DATA DERIV / 300000*0.0/
DATA PTEMP $/ 20 * 0.0 /$
$\begin{array}{llr}\text { DATA NUMFIT } & \text { / } 20 * 0 \\ \text { DATA VARNCE } & / \\ \text { DATA } & 0.0 /\end{array}$
DATA SIGMAO 1
$\left.\begin{array}{ll}\text { PARAMETER } & (\text { DEL }=1.0 \mathrm{D}-6 \\ \text { PARAMETER } & (\text { REFCOS }=7.071067812 \mathrm{D}-1) \\ \text { PARAMETER } & (\text { EPSILN }=5.0 \mathrm{D}-7 \\ \text { PARAMETER } & (\text { TAU }=1.0 \mathrm{D}-6 \\ \text { PARAMETER } & \text { (NU }=10.0 \\ \text { PARAMETER } & \text { (ILIMIT }=12\end{array}\right)$

CALL GENPIN ( NFIT, NUMFIT, 1 )
IF (Nfit.gt.16) stop 'Too many fit params for DERIV array'
c
c write (6,*) 'Get parameters from param.dat? (1=yes)'
read (5,*) yesno
if (yesno.eq.1) then
open(10,file='param.dat',status='old')
read (10,*) dummy
do $i=1$, nparam
read(10,*) dummy, param(i)
end do
close(10)
write(6,*)'Read in parameters from param.dat'
end if

CALL XYZLINDISC
WRITE(6,*) 'Enter desired number of iterations:'
READ (5,*) NREP
WRITE (6,*) 'Enter starting value for lambda'
READ (5,*) LAMBDA
c output flag: 0 gives final fit results with diagnostics
1 gives progress of fit step by step
2 gives sampling of residuals
3 gives matrices and xyz.dat
write ( $6, *$ ) 'Enter desired level of output ( $0<1<2<3$ )'
read (5,*) output
DO $175 \mathrm{~N}=1$, NUMBER

```
175 SIGMAO = SIGMAO + 1.0 / YDATAerror (N)**2
 IPASS = 0
 LASTPS = 0
 DETERM = 0.0
 LAMBDA = LAMBDA * NU
200 CHIA = 0.0
 CALL GENCAL(CTRANS)
 DO 250 N=1, NUMBER
250 CHIA = CHIA + ((ydata(N) - CTRANS (N)) /ydataerror (N))**2
 CHIA = CHIA / (NUMBER - NFIT)
 WRITE (7,7300)
300 if (output.lt.1) goto 600
 WRITE(7,5300) IPASS
 WRITE (7,5400)
 DO 500 I=1, NPARAM
 DO 350 K=1, NFIT
 IF (NUMFIT(K) .EQ. I) GO TO 400
350 CONTINUE
 WRITE (7,5550) I, PARAM(I)
 GO TO 500
400 WRITE(7,5500) I, PARAM(I), SIGMA(K), DELTA(K)
500 CONTINUE
 WRITE (7,5700) DETERM, LAMBDA*MINO(1,IPASS)
 WRITE (7,6300) COSINE, STEP
 WRITE (7, 8000) CHIA
 IF ((NREP .NE. 0) .AND. (NFIT .NE. 0)) GO TO 600
 VRITE (7,6700) IPASS
 GO TO 4060
600 IF ((IPASS .LT. NREP) .OR. (NREP .LT. 0)) GO TO 700
 WRITE(7,6700) IPASS
 LASTPS = 1
 LAMBDA = 0.0
 GO TO 2600
O0 IPASS = IPASS + 1
 ISUB = 0
 LAMBDA = LAMBDA / NU
= fie:e we calculate numbers (i.e. DERIV, BETA) for use in this
2:\epsilonとaこion,
 including all subiterations
 DO 2200 K=1, NFIT
 FO = NUMFIT (K)
 TEMP = PARAM(K0)
 FARAM(K0) = (1.0 + DEL)*TEMP
 IF (TEMP .EQ. 0.0) PARAM(K0) = DEL
 CALI GENCAL(DTRANS)
 DO 2100 N=1, NUMBER
 DERIV(N,K) = (DTRANS (N) - CTRANS (N)) / DEL
2100 IF (TEMP .NE. 0.0) DERIV (N,K) = DERIV (N,K) / TEMP
2200 PARAM(KO) = TEMP
 DO 2300 K=1, NFIT
 BETA(K) = 0.0
 DO 2300 N=1, NUMBER
2300 BETA (K) = BETA (K) + DERIV (N,K)*(Ydata (N) - CTRANS (N)) /
 1 ydataerror (N)**2
 DO 2400 K=1, NFIT
 DO 2400 I=1, NFIT
```

```
 ALPHA(I,K) = 0.0
 DO 2400 N=1, NUMBER
2400 ALPHA (I,K) = ALPHAA (I,K) + DERIV (N,I)*DERIV (N,K) /
ydataerror(N)**2
 DO 2500 I=1, NFIT
2500 BETA(I) = BETA(I) / SQRT(ALPHA(I,I))
c Here is the repeat point for sub-iteration:
2600 write(6,*) IPASS, ISUB+1
 DO 2800 K=1, NFIT
 DO 2700 I=1, NFIT
2700 ARRAY(I,K) = ALPHA(I,K) / SQRT(ALPHA (I,I))/SQRT (ALPHA (K,K))
2800 ARRAY (K,K) = ARRAY (K,K) + LAMBDA
 IF (LASTPS .EQ. 0) GOTO 2875
C This code (up to 2875) is executed only when the fit is over
 DO 2850 I=1, NFIT
 DO 2850 K=1, NFIT
2850 HDIAG(K,I) = ARRAY(K,I)
C CALL JMDIAG(NFIT)
 write(7,*)'Bagged out on JMDIAG'
 DO 2860 I=1, NFIT
 EIGVAL(I) = HDIAG(I,I)
 DO 2860 K=1, NFIT
2860 HDIAG (K,I) = ARRAY (K,I)
2875 CALL MATINV(ARRAY, NFIT, DETERM)
 IF (DETERM .EQ. 0.0) then
 write(7,*)'Array was singular!'
 stop
 end if
 IF (LASTPS .NE. 0) GO TO 4000
c This code is only executed for fits in progress
 DO 3000 I=1, NFIT
 DELTA(I) = 0.0
 DO 2900 K=1, NFIT
2900 DELTA(I) = DELTA(I) + ARRAY(I,K)*BETA(K)
 DELTA(I) = DELTA(I) / SQRT(ALPHA(I,I))
3000 PTEMP(I) = PARAM(NUMFIT(I))
 TEMP = 0.0
 PEMP = 0.0
 COSINE = 0.0
 DO 3010 I=1, NFIT
 COSINE = COSINE + DELTA(I)*BETA(I)
 TEMP = TEMP + DELTA(I)**2
3010 PEMP = PEMP + BETA(I)**2
 COSINE = COSINE / SQRT(TEMP) / SQRT(PEMP)
 STEP = 1.0
3020 DO 3040 I=1, NFIT
c write(6,*) I, delta(i)
 IF (ABS (STEP*DELTA(I)) .GE. EPSILN*ABS (TAU+PTEMP(I)))
 1 GO TO 3120
3040 CONTINUE
 WRITE (7,6400) IPASS - 1
3060 LASTPS = 1
 LAMBDA = 0.0
3080 DO 3100 I=1, NFIT
```

```
3100 PARAM(NUMFIT(I)) = PTEMP(I)
 GO TO 2600
3120 DO 3140 I=1, NFIT
3140 PARAM(NUMFIT(I)) = PTEMP(I) + STEP*DELTA(I)
 CHIB = 0.0
 CALL GENCAL (CTRANS)
 DO 3160 N=1, NUMBER
3160 CHIB = CHIB + ((ydata (N) - CTRANS (N)) / ydataerror (N))**2
 CHIB = CHIB / (NUMBER - NFIT)
 IF (CHIB .LE. CHIA) GO TO 3200
 ISUB = ISUB + 1
 IF (ISUB .LEE. ILIMIT) GO TO }318
 WRITE(7,6750) IPASS - 1
 GO TO 3060
3180 IF (COSINE .LT. REFCOS) GO TO 3190
 STEP = 0.5*STEP
 GO TO 3020
L190 LAMBDA = LAMBDA*NU
 GO TO 3080
3200 DO 3300 I=1, NFIT
3300 SIGMA(I) = SQRT(CHIB*ARRAY(I,I) / ALPHA(I,I))
 CHIA = CHIB
 GO TO 300
4000 continue ! write(7,*)'Successfully inverted matrix'
 DO 4020 K=1, NFIT
 DO 4020 I=1, NFIT
4020 ARRAY(I,K) = CHIA*ARRAY(I,K) /
SQRT (ALPHA (I,I))/SQRT(ALPHA (K,K))
 DO 4040 K=1, NFIT
 SIGMA (K) = SQRT(ARRAY (K,K))
 DO 4040 I=K, NFIT
 IF (I .EQ. K) GO TO 4040
 ARRAY(I,K) = ARRAY(I,K) / SQRT(ARRAY(I,I))/SQRT(ARRAY (K,K))
4040 CONTINUE
4060 call xyznrg
 do N=1, number/2
 zsum = zsum + z(N)
 end do
 zmean = zsum / (number/2)
 write(7,*) 'DeltaZ mean: ',zmean,' mm'
 VARNCE = FLOAT(NUMBER) * CHIA / SIGMAO
 WRITE(7,7600)
 WRITE (7,7700)
 DO 4120 I=1, NPARAM
 DO 4080 K=1, NFIT
 IF (NUMFIT(K) .EQ. I) GO.TO 4100
4080 CONTINUE
 WRITE (7,7900) I, PARAM(I)
 GO TO 4120
4100 WRITE(7,7800) I, PARAM(I), SIGMA(K)
4120 CONTINUE
 WRITE (7,8000) CHIA
 WRITE(7.8600) VARNCE
 WRITE(7,8700) SQRT(VARNCE)
 if (output.IT.2) goto 4890 ! if zero, don't write out any data
```

```
4200 WRITE (7,5900)
 WRITE (7,6000)
 WRITE (7, 6100)
 DO N=1, NUMBER, 100
 if (N.lt.NUMBER/2) then
 write(7,6150) N,wedgeu(N), stripu(N), zu(N),
 @ wedgel(N),stripl(N),zl(N)
 write(7,6175) xul(N),yul(N),xll(N),yll(N),z(N)
 end if
 TEMP = ydata(N) - CTRANS (N)
 WRITE (7,6200) ydata(N), CTRANS (N), TEMP, TEMP / ydataerror(N)
 end do
 if(output.LT.3) goto 4890 ! skip matrices and xyz output
c open(17,file='xyz.dat')
c DO N=1, NUMBER/2
c write(17,6175) xul(N),yul(N),xll(N),Yll(N),time(N)
c end do
c close(17)
 DO 4880 L=1, 3
 GO TO (4670, 4680, 4700), L
4670 WRITE (7,8500)
 GO TO 4750
4680 WRITE (7,8100)
 WRITE(7,8200)
 DO 4690 I=1, NFIT
4690 WRITE(7.7850) I, EIGVAL (I), SQRT(ALPHA (I,I))
 WRITE (7,8400)
 GO TO 4750
4700 WRITE (7,6500)
4750 DO 4870 K=1, NFIT, 4
 KO = MINO(4, NFIT-K+1)
 IF (KO.EQ. O) K0 = 4
 DO 4850 I=1, NFIT
 GO TO (4760, 4780, 4800), L
4760 WRITE (7,6250) (HDIAG (I,N), N=K, K-1+K0)
 GO TO 4850
4780 WRITE (7,6250) (EIGVEC (I,N), N=K, K-1+K0)
 GO TO 4850
4800 WRITE (7, 6250) (ARRAY(I,N), N=K, K-1+K0)
4 8 5 0 ~ C O N T I N U E ~
4870 WRITE (7,6800)
4 8 8 0 ~ C O N T I N U E ~
4890 CLOSE (7)
```

```
 OPEN(8,file='param.dat')
```

    OPEN(8,file='param.dat')
    write(8,*) NPARAM
    write(8,*) NPARAM
    DO I=1, NPARAM
    DO I=1, NPARAM
        WRITE(8,*) I, PARAM(I)
        WRITE(8,*) I, PARAM(I)
    end do
    end do
    close (8)
    close (8)
    goto 4900 ! skip plotting for now
    ```
 goto 4900 ! skip plotting for now
```

C PLOTTING JUNK
call opngks
c call setusv('PB', 2)
$c$ draw a boundary around the edge of the plotter frame
call bndary
c suppress the frame advance
c call agseti('FRAME.',2)
$c$ set limits for axes
c call agseti('X/MAXIMUM.',20)

```
 call agseti('X/MINIMUM.',-20)
 call agseti('Y/MAXIMUM.',20)
 call agseti('Y/MINIMUM.',-20)
suppress the drawing of curves by the EZ... routines
 call agseti('SET.',-1)
draw the background using EZXY
 call ezxy (xfov,yfov,nfov,' ')
put a plus sign at each of the x-y positions
 call points (xfov,yfov,nfov,-1,0)
put a plus sign at the center of the image
 call points (x0,y0,1,-2,0)
 draw the blocking strip
 call line (-20,-4,20,-4)
 call line(-20,4,20,4)
draw the minimum and maximum reference circumference for
 finding discrimination of data for detector center and
 mass distribution purposes
 call points (1.5,1.5,800,-1,0)
 call points (20,20,800,-1,0)
call setusv('MS',1000)
 DO N=1, NUMBER/2
 call point (xul(N),yul(N))
 call point (xll(N),yll(N))
end do
close gks
 call clsgks
 ierr = system('mv gmeta coincs.img')
 ierr = system('ictrans -d X11 coincs.img')
C END PLOTTING JUNK
```

FORMAT(12HDeterminant:, +1PE12.4, 6X, 7HLambda:, +1PE12.4) FORMAT(/8X,37HTABLE OF DEPENDENT VARIABLE RESIDUALS/) FORMAT(4HData, 6X, 8HMeasured, 4X, 10HCalculated, 2X, 8HResidual, 4X, 19HNormalized Residual) FORMAT(5HPoint, 5X, 8HVariable, 3(4X, 8HVariable)/)
format (I5, 6(4X,I5)) format (5 (F9.4)) FORMAT (4 (F13.5) /) FORMAT (4 (2X, +1PE16.6)) FORMAT(7HCosine:, F12.6, 8X, 5HStep:, F12.6) FORMAT(/6X, 19HLeast Squares Pass:, I3, 5X, 29HCONVERGENCE HAS BEEN ACHIEVED) FORMAT (//5X, 31HCOVARIANCE - CORRELATION MATRIX/) FORMAT(/6X, 19HLeast Squares Pass:, I3, 5X, 33HITERATION LIMIT HAS BEEN ACHIEVED) FORMAT(/6X, 19HLeast Squares Pass:, I3. 5X,

```
 1 36HITERATION SUBLIMIT HAS BEEN ACHIEVED)
6800
6900
 FORMAT(1H)
 FORMAT(4HData,5X,25HI N D E P E N D E N T
 15HV A R I A B L E,8X,21HD E P EN DENT
 15HV AR I A B L E)
7 0 0 0
 1
 FORMAT (1H
,4X,5HPoint,5X,5HValue,5X,11HUncertainty,5X,5HValue,
 1 5X,11HUncertainty/)
7100 FORMAT(1H ,I3,(4X,+1PE16.8,4X,+1PE16.8,X))
 FORMAT(5X,35HDATA AND UNCERTAINTIES UTILIZED IN
 34HLEAST SQUARES REGRESSION PROCEDURE/)
7300 FORMAT (1H1)
7 6 0 0
 1
 FORMAT(/3X,32HOUTPUT FROM FINAL LEAST SQUARES ,
 4HPASS)
7700 FORMAT(/5HParam, 5X, 11HParam Value, 5X,
 1 11HUncertainty)
7800 FORMAT(1H , I2, 1H*, 2X, 2(2X, F12.5))
7850 FORMAT(1H, I2, 3X, 2(2X, F12.5))
7900 FORMAT (1H , I2, 5X, F12.5)
8000 FORMAT (2X, 20HReduced Chi Squared:, F12.5)
8100
 1
 FORMAT(//5X, 32HEIGENVALUES OF SCALED CURVATURE
 6HMATRIX/)
 FORMAT(/6HNumber, 10X, lOHEigenvalue, 13X,
 I FORMAT(1H , I3, 12HScale Factor)
8300 FORMAT(1H , I3, 4X, 2(8X, +1PE16.8))
8400
 1 6HMATRIX//)
8500 FORMAT(//5X, 23HSCALED CURVATURE MATRIX//)
8600 FORMAT (20HVariance of the Fit:, +1PE16.5)
8700 FORMAT(30HStandard Deviation of the Fit:, +1PE16.5/)
 END
```


## xyzin.f

## SUBROUTINE XYZLINDISC

c
c Reads in experimental parameters, and data, with discrimination c Allows the reading in of multiple data sets with different beam energies c for simultaneous fitting c
c Requires:
$c$ tcal.dat holds tdelay and some tdc calibration data points
c adc_cal. dat holds calibration for the adc converters
$c$ phd.dat holds raw data upper and lower discrimination levels
$c$ All other discrimination values read in from standard input c O2 data filename(s) are read in from standard input
c Subroutine linfit.f is called to fit a line through the calibration data
c
implicit none
COMMON /BLOCK1/ PARAM (20), NPARAM
COMMON /BLOCK2/ ydata(50000),ydataerror (50000),NUMBER
COMMON /experimental/ length, energyo (10), masso
common /rawdata/ wedgeu (25000), wedgel (25000), stripu(25000),
@ stripl $(25000), \mathrm{zu}(25000), \mathrm{zl}(25000), \mathrm{z}(25000)$, time $(25000), \mathrm{x} 0, \mathrm{y} 0$
real*8 param,x0,y0
real*4 Rmax, Rerrormax, Cmax, xu,yu,xl,yl,phi
real*4 Rmin, qs, qw, fwu,fsu,fzu,fwl,fsl,fzl,tcu,tcl

```
real*4 az,bz,zz,tiltx,tilty
real*4 zmax,zmin,xumax,xumin,xlmax,xlmin,phimin,phimax
real*4 yumax,yumin,ylmax,ylmin
REAL*4 ydata,ydataerror
REAL*4 length,beamnrg(10), energyo,mass0,vbeam(10),nrgoffset
REAI*4 R(10),Rxyerror,Rzerror,centersize
real*4 tint,tslope,tdelay,z,time,numread
REAL*4 awedgeu,bwedgeu,astripu,bstripu,ctwzu,ctszu
REAL*4 awedgel,bwedgel,astripl,bstripl,ctwzl,ctszl
real*4 tactrue(30), tacval (30),cw1,cs1,cz1,cw2,cs2,cz2
real*4 vadc(30),adcw1 (30),adcs1 (30),adcz1(30)
real*4 adcw2(30), adcs2(30), adcz2(30),adcscale
real*4 sw1,ss1,sz1,sw2,ss2,sz2
real*4 w1int,slint, z1int,w2int,s2int,z2int
real*4 TB(0:17),recoilnrg(0:17)
integer wedgeu,wedgel,stripu,stripl,zu,zl
integer NUMBER,N,discRmax,discCmax
integer discyumax,discyumin,discylmax, discylmin
integer discRmin,discRerrormax, discphimax, discphimin
integer disczmin,disczmax, discxumin,discxumax, discxlmin,discxlmax
integer I, nparam,NN,vib
integer Nfiles,numpoints(10),discflag,discnum
integer ntoss,dum1, dum2, dum3, dum4, dum5,dum6,dum7
integer ntac, nadc
integer iuw,ius,iuz,ilw,ils,ilz,itac,discraw
integer idt:1,idtu,idlsumu,idusumu,idlsuml,idusuml
CHARACTER*40 FILENM (10)
```



```
masso = 15.9994 * 1.660565E-27 ! mass of O atom in kg
```

masso = 15.9994 * 1.660565E-27 ! mass of O atom in kg
TB(0)=49356.81
TB(1)=50044.37
TB(2)=50709.53
TB(3)=51350.78
TB(4) = 51968.26
TB (5) = 52559.75
TB(6) = 53121.44
TB(7) = 53654.72
TB(8)=54154.92
TB(9)=54621.12
TB(10) = 55049.72
TB(11) = 55437.75
TB(12) = 55782.95
TB(13)=56083.68
TB(14) = 56338.43
TB(15) = 56548.26
TB(16) = 56716.64
TB(17) = 56848.65
c TB(vB) is defined with respect to v = 0 of X state; 5.1166 is DO of
X state in eV
do i = 0,17
recoilnrg(i) = TB(i) / 8065.479 - 5.1166
write(6,*) 'v =',i,' recoil energy = ',recoilnrg(i)
end do
c *** bob stuff (tac and adc calibration)

```
c
c
c
c Read in time-to-amplitude converter calibration numbers (and tdelay)
open (12,file='tcal.dat',status='old')
read (12,*) tdelay
ntac \(=0\)
50 ntac \(=\) ntac +1
read (12,*, end \(=60\)) tactrue (ntac), tacval (ntac)
goto 50
60 ntac \(=\) ntac -1
close (12)
c
c call linfit to get the linear fit to the TAC calibration curve
call linfit(tactrue,tacval,ntac,tslope,tint)
write(6,*)'tslope:',tslope,' tint:',tint
C
c read in adc calibration curve data from fort. 10
C
open(10,file='adc_cal.dat',status='old')
\(i=0\)
read(10, *)cw1,cs1,cz1,cw2,cs2,cz2
\(i=i+1\)
read(10, *, end=80) vadc(i), adcw1 (i), adcs \(1(i), \operatorname{adcz} 1(i)\),
\(>\)
adcw2 (i), adcs2 (i), adcz2 (i)
goto 70
nadc \(=i-1\)
close (10)
c
C call linfit to get the linear fit to all the other \(A D C\)
channels
c note, adcscale in units of adc unit/volt
c
adcscale \(=8064.0 / 10.0\)
call linfit (adcw1, vadc, nadc, sw1,w1int)
c write (6,*)'sw1:',sw1,' wlint:',w1int
call linfit (adcs1, vadc, nadc, ss1,slint)
c write(6,*)'ss1:',ss1,' slint:',slint
call linfit(adcz1, vadc, nadc,sz1,z1int)
c write (6,*)'sz1:',szl,' zlint:', zlint
call linfit (adcw2, vadc, nade,sw2,w2int)
c write(6,*)'sw2:',sw2,' w2int:',w2int
call linfit (adcs 2 , vadc, nadc, ss2,s2int)
c write(6,*)'ss2:',ss2,' s2int:',s2int call linfit (adcz2, vadc, nadc, sz2, z2int)
c write(6,*)'sz2:',sz2,' z2int:',z2int
c Read in raw data discrimination levels format of input in unit 14:
upper wedge lower and upper level
upper strip lower and upper level
upper zig lower and upper level
lower wedge lower and upper level
lower strip lower and upper level
lower zig lower and upper level
tac lower and upper level
open (14, file='phd.dat', status='old')
read(14,*) idusuml,idusumu,idlsuml,idlsumu,idtl,idtu
close(14)
c
c *** end bob continetti-era code
\(c\) write (6,*) ' x 0 , y 0 ?'
read (5, *) \(x 0, y 0\)
c write(6,*)'Centroid coords:',x0,y0
c write (\(6, *\)) 'Flight path length following dissociation? (in mm)'
read (5,*) length
write(6,*)'flight length=',length,' mm' c
\(c\) older recoil energy code, using ground vibrational level and wavelength;
c replaced by upper vibrational level method DJL 8/93
```

c O2 constants used below: D00=5.1166 eV omegae=1580.361 cm-1

```
 omegae*xe \(=12.0730 \mathrm{cm-1} \quad \mathrm{Be}=1.44567 \mathrm{~cm}-1 \quad\) alphae \(=\)
\(0.01579 \mathrm{~cm}-1\)
c
\(c\) energyo (I) \(=(1 / 210.228) * 1 e 7\)
c \(\quad+(4.5 * 1580.361-4.5 * 4.5 * 12.0730+2 * 1.44567-\)
2*4.5*0.01579)
c @ - (0.5*1580.361-0.5*0.5*12.0730 + 2*1.44567-
2*0.5*0.01579)
c c - \(5.1166 * 8065.479\) ! energy in cm-1
\(c\) Convert to \(e \mathrm{~V}\), and subtract off energy of atoms in (\(\mathrm{J}=2, \mathrm{~J}=1\))
\(c E(J=2)=0 ; E(J=1)=0.0196 \mathrm{eV} ; E(J=0)=0.0281 \mathrm{eV}\)
c
*************Note: Commented out (\(6, *\)) stuff for ease of
viewing******
c write (6,*) "Uncertainty in xy-recoil? (mm)'
 read (5,*) Rxyerror
c write (6,*)"Uncertainty in z-recoil? (mm)'
 read (5,*) Rzerror
C write (\(6, *\))"Uncertainty in centroid radius (mm)?'
 read(5,*) centersize
\(c\) Read in discrimination parameters
c write (\(6, *\)) 'Minimum and maximum radii on detector? (mm)'
 read (5,*) Rmin, Rmax
\(c\) write (\(6, *\)) 'Maximum recoil error? (mm)'
 read (5,*) Rerrormax
c write (6,*) 'Maximum centroid radius? (mm)!
 read \((5, *)\) Cmax
\(C\) write (6,*) 'Min. and max. upper \(y\) values? (mm)'
 read (5,*) yumin, yumax
c write (6,*) 'Min. and max. abs (lower y) values? (mm)'
 read (5,*) ylmin, ylmax
\(C\) write (\(6, *\)) 'Min. and max. upper \(x\) values? (mm)'
 read (\(5, *\)) xumin, xumax
\(c\) write (6,*) 'Min. and max. lower \(x\) values? (mm)'
 read \((5, *)\) xlmin, xlmax
\(c\) write \((6, *)\) 'Min. and max. (signed) z values? (mm)'
 read (5,*) zmin, zmax
\(c\) write \((6, *)\) 'Min. and max. phi value? (degrees)'
 read (5,*) phimin, phimax
c Parameter list:
c 1 awedgeu 2 bwedgeu 3 astripu 4 bstripu
c 5 awedgel 6 bwedgel 7 astripl 8 bstripl
c 9-12 cross talk terms
 awedgeu \(=\) PARAM (1)
 bwedgeu = PARAM(2)
 astripu \(=\) PARAM(3)
 bstripu \(=\operatorname{PARAM}(4)\)
 awedgel \(=\) PARAM(5)
 bwedgel \(=\operatorname{PARAM}(6)\)
 astripl \(=\operatorname{PARAM}(7)\)
 bstripl \(=\) PARAM (8)
 ctwzu = PARAM (9)
 ctwzl = PARAM(11)
c tilt modification
\(c\) ctszu \(=\operatorname{PARAM}(10)\)
```

C ctszl = PARAM(12)
ctszu = 1.
ctszl = 1.
tiltx = param(10)
tilty = param(12)
c end tilt modification
az = PARAM(13)
bz = PARAM(14)
qw = PARAM(15)
qs = PARAM(16)
c write(6,*) 'How many oxygen data files?'
read(5,*) Nfiles
do I=1,Nfiles
c WRITE(6,*) 'How many coincidence events from file',I,'?'
read(5,*) numpoints(I)
c WRITE(6,*) 'Skip how many events in file',I,'?'
read(5,*) ntoss
c. WRITE(6,*)'Enter name of data file',I,':'
READ (5,8000) FILENM(I)
c
c Get vibrational level, beam energy; calculate recoil energy and
distance
c
c write(6,*) 'B state vibrational level for file',I,'?'
read(5,*) vib
write(6,*)'O2 dissociation from vB =',vib
energyo(I) = recoilnrg(vib) : ground state (2,2) limit in eV
c write(6,*)'Mean energy offset from (2,2) limit? (meV)'
write(6,*)'(Enter 0 for (2,1) limit at 19.6 meV)'
read(5,*) nrgoffset
1f (nrgoffset.eq.0) nrgoffset = 19.6
energyo(I) = energyo(I) - nrgoffset/1000
write(6,*)'Ediss of J=2,J=2:',recoilnrg(vib),
@ '; fit to mean:', energyo(I)
energyo(I) = energyo(I) * 1.6021917D-19 ! convert eV to Joules
c write(6,*)'Beam energy for file',I,'? (in keV)'
read(5,*) beamnrg(I)
urite(6,*)'beamenergy:',beamnrg(I),' keV'
beamnrg(I) = beamnrg(I) * 1.602E-16 ! convert keV to Joules
\forallbeam(I) = 1000 * sqrt(beamnrg(I) / massO)
write(6,*)'beam velocity =',vbeam(I)/1000,' m/s'
R(I) = 2 * length * sqrt(energyo(I)/beamnrg(I))
urite(6,*) 'relative particle recoil R =',R(I),' mm'
C Fead in raw data
OPEN (3, NAME = filenm(I), STATUS = 'OLD')
do N = 1, ntoss
READ (3,*) dum1,dum2,dum3,dum4,dum5,dum6,dum7
end do
l:=1
E Eegin discriminatory read-in loop
100 discflag = 0
NN = number + N
c
READ(3,*,END=350) iuw,ius,iuz,itac,ilw,ils,ilz
C. if( nint((iuw+ius+iuz)/4.0) .lt. idusuml) goto
if( nint((ilw+ils+ilz)/4.0) .lt. idlsuml ) goto 200
if( nint((iuw+ius+iuz)/4.0) .gt. idusumu ) goto 200
if( nint((ilw+ils+ilz)/4.0) .gt. idlsumu ) goto 200
if((itac.lt.idtl).or.(itac.gt.idtu)) go to 200
goto 300
200 discflag = 1
discraw = discraw + 1

```

C
tcu \(=\) wedgeu (NN) + stripu (NN) \(+\operatorname{zu}(\mathrm{NN})\)
tcl \(=\) wedgel (NN) + stripl(NN) \(+\mathrm{zl}(\mathrm{NN})\)
fwu \(=\) wedgeu (NN) /tcu
fsu \(=\) stripu (NN)/tcu
\(\mathrm{fzu}=\mathrm{zu}(\mathrm{NN}) / \mathrm{tcu}\)
fwl = wedgel (NN)/tcl
fsl \(=\operatorname{stripl}(\mathrm{NN}) / t c l\)
\(\mathrm{Ezl}=\mathrm{zl}(\mathrm{NN}) / \mathrm{tcl}\)
C
```

xu = -awedgeu*(fwut(ctwzu-1)*fzu+(qw-1)*fwu*fwu) -bwedgeu
yu = astripu*(fsu+(ctszu-1)*fzu+(qs-1)*fsu*fsu)+bstripu
xl = awedgel*(fwl+(ctwzl-1)*fzl+(qw-1)*fwl*fwl) +bwedgel
yl = -astripl*(fsl+(ctszl-1)*fzl+(qs-1)*fsl*fsl)-bstripl
z(NN) = (((itac - tint)/tslope)-tdelay) * (le-9) * vbeam(I)
zz = az * z(NN) + bz + tiltx*(xu-xl) + tilty*(yu-yl)
if ((xu-xl).eq.0) then
phi=90
else
phi=(180/3.14159)*atan((yu-yl)/(xu-xI))
if (phi.lt.0) phi=phi+180
end if
if (min((xu*xu + yu*yu),(xl*xl + yl*yl)).LT.(Rmin*Rmin)) then
discRmin = discRmin + 1
discflag = 1
end if
if (max((xu*xu + yu*yu),(xl*xl + yl*yl)).GT.(Rmax*Rmax)) then
discRmax = discRmax + 1
discflag = 1
end if
if (abs(R(I)-sqrt ((xu-xl)* (xu-xl)+(yu-yl)* (yu-yl)+zz*zz))
@ .GT. Rerrormax) then
discRerrormax = discRerrormax + 1
discflag = 1
end if
if (((xu+xl-2*x0)* (xu+xl-2*x0) + (yu+yl-2*y0)* (yu+yl-2*y0))
@ .GT. 4*Cmax*Cmax ) then
discCmax = disccmax + 1
discflag = 1
end if
if (phi .LT. phimin) then
discphimin = discphimin + 1
discflag = 1
end if
if (phi .GT. phimax) then
discphimax = discphimax + 1
discflag = 1
end if
if (yu .LT. yumin) then
discyumin = discyumin + 1
discflag = 1
end if
if (yu .GT. yumax) then
discyumax = discyumax + 1
discflag = 1

```
```

    end if
    if (-Yl .LT. ylmin) then
    discylmin = discylmin + 1
    discflag = 1
    end if
    if (-Yl .GT. ylmax) then
        discylmax = discylmax + 1
        discflag = 1
    end if
    if (xu .LT. xumin) then
    discxumin = discxumin + 1
    discflag = 1
    end if
    if (xu .GT. xumax) then
    discxumax = discxumax + 1
    discflag = 1
    end if
    if (xl .LT. xlmin) then
    discxlmin = discxlmin + 1
    discflag = 1
    end if
    if (xl .GT. xlmax) then
        discxlmax = discxlmax + 1
        discflag = 1
    end if
    if (z(NN) .LT. zmin) then
        disczmin = disczmin + 1
    discflag = 1
    end if
    if (z(NN) .GT. zmax) then
        disczmax = disczmax + 1
        discflag = 1
    end if
    if (discflag.EQ.O) then
        ydata(NN) = R(I)
    ydataerror(NN) = ( sqrt( (xu-xl)*(xu-xl) +(yu-yl)*(yu-yl) )
    @ *Rxyerror + abs(zz)*Rzerror ) / R(I)
    time(NN) = (itac - tint)/tslope
    N = N + 1 !increment successful event index!
    else
    discnum = discnum + 1
    endif
    IF (N.LE.numpoints(I)) GOTO }10
    C Finished with data file I
350 numpoints(I) = N - 1
number = number + numpoints(I)
write(6,*) numpoints(I),' points read from ',filenm(I)
CLOSE (3)
end do l end of data file loop (index I)
do N = 1, NUMBER
ydata (N + NUMBER) =0.0
ydataerror(N + NUMBER) = centersize
end do
NUMBER=NUMBER*2 ! two "data points" per coincidence event
numread = number/2 + discnum
write(6,*)'Raw data discrimination:',100*discraw/numread,' %'
WRITE(6,*)'Min detector radius:',Rmin,' mm',
@ 100*discRmin/numread,' %'
WRITE (6,*)'Max detector radius:',Rmax,' mm',
@ 100*discRmax/numread,' %'
WRITE(6,*)'Max recoil error: ',Rerrormax,' mm',
@ 100*discRerrormax/numread,' %'

```
```

WRITE(6,*)'Max centroid radius:',Cmax,' mm',
@ 100*disccmax/numread,' 多'
WRITE(6,*)'yu min: ',yumin,' mm'.
@ 100*discyumin/numread,' %'
WRITE(6,*)'yu max: ',yumax,' mm',
a 100*discyumax/numread,' %'
WRITE(6,*)'yl min: ',ylmin,' mm'.
@ 100*discylmin/numread,' %'
WRITE(6,*)'yl max: ',ylmax,' mm',
@ 100*discylmax/numread,' %'
WRITE(6,*)'xu min: ',xumin,' mm',
@ 100*discxumin/numread,' %'0
WRITE(6,*)'xu max: ',xumax,' mm',
@ 100*discxumax/numread,' %'
WRITE(6,*)'xl min: ',xlmin,' mm',
@ 100*discxlmin/numread,' %'
WRITE(6,*)'xl max: ',xlmax,' mm',
@ 100*discxlmax/numread,' %'
WRITE(6,*)'zmin: ',zmin,' mm'
@ 100*disczmin/numread,' %'
WRITE(6,*)'zmax: ', zmax,' mm',
@ 100*disczmax/numread,' %'
WRITE(6,*)'phimin: ',phimin,' degrees',
(a 100*discphimin/numread,' %''
WRITE(6,*)'phimax: ',phimax,' degrees',
@ 100*discphimax/numread,' %'
write(6,*)'Percentage thrown out:',100.*discnum/numread,' %'
OPEN(UNIT=7,FILE='02.dat')
write(7,*)'tslope: ',tslope,' ADC units/ns'
write(7,*)"tint: ',tint,' ADC units'
write(7,*)"centroid: ',x0,y0,' mm'
write(7,*)"length: ',length,' mm'
do I=1,Nfiles
write(7,*) numpoints(I),' points read from ',filenm(I)
write(7,*)'O2 dissociation from vB =',vib
write(7,*)'Ediss of J=2,J=2:',recoilnrg(vib),
@ '; fit to mean:', energyo(I)/1.602E-19
WRITE (7,*)'beam energy: ',beamnrg(I)/1.602E-16,' keV'
w:ite(7,*)'beam velocity: ',vbeam(I)/1000,' m/s'
write(7,*)'recoil (R): ',R(I),' +/-',
@ Rxyerror,'(xy)',Rzerror,'(z)'
end do
~::ite(7,*)'centroid radial uncertainty:',centersize,' mm'
mrite(7,*)'Raw data discrimination: ',100*discraw/numread,' %'
\thereforeRITE(7,*)'Min detector radius:',Rmin,' mm',
a 100*discRmin/numread,' %'
\thereforeE.ITE(7,*)'Max detector radius:',Rmax,' mm',
@ 100*discRmax/numread,' %'
\#RITE(7,*)'Max recoil error: ',Rerrormax,' mm',
(a 100*discRerrormax/numread,' %'
\becauseRITE(7,*)'Max centroid radius:',Cmax,' mm',
@ 100*disccmax/numread,' %'
WRITE(7,*)'yu min: ',yumin,' mm',
@ 100*discyumin/numread,' %'
WRITE(7,*)'yu max: ',yumax,' mm',
@ 100*discyumax/numread,' %'
WRITE(7,*)'Yl min: ',ylmin,' mm',
@ 100*discylmin/numread,' %'
WRITE(7,*)'yl max: , ylmax,' mm',
@ 100*discylmax/numread,' %'
WRITE(7,*)'xu min: , xumin,' mm'
@ 100*discxumin/numread,' %'

```
```

    WRITE(7,*)'xu max: ',xumax,' mm',
    @ 100*discxumax/numread,' %'
    WRITE(7,*)'xl min: ',xlmin,' mm',
100*discxlmin/numread,' %'
WRITE(7,*)'xl max: ',xlmax,' mm',
@ 100*discxlmax/numread,' %'
WRITE(7,*)'z min: ',zmin,' mm',
@ 100*disczmin/numread,' %'
WRITE(7,*)'z max: ',zmax,' mm',
100*disczmax/numread,' %'
WRITE(7,*)'phi min: ',phimin,' degrees',
@ 100*discphimin/numread,' %'
WRITE(7,*)'phi max: ',phimax,' degrees',
@ 100*discphimax/numread,' s''
write(7,*)'Total percentage disc''d:',100.*discnum/numread,' %'
9 9 9 9
RETURN
8000 FORMAT (A)
END
genpin.f
SUBROUTINE GENPIN (NFIT, NUMFIT, IFLAG)
COMMON /BLOCK1/ PARAM(20), NPARAM
real*8 PARAM
integer NUMFIT(20)
CHARACTER*1 ANSWER
c WRITE (6,5000)
READ (5,5100) NPARAM
NFIT = 0
c WRITE (6,5200)
DO 100 I=1, NPARAM
NUMFIT(I) = 0
c WRITE (6,5300) I
READ (5,*) PARAM(I)
c WRITE(6,*) PARAM(I)
IF (IFLAG .EQ. O) GO TO }10
C WRITE (6,5400)
READ (5,5600) ANSWER
IF ((ANSWER .NE. 'V').and.(ANSWER .NE. 'V')) GO TO 100
NFIT = NFIT + 1
NUMFIT(NFIT) = I
100
CONTINUE
RETURN
5000 FORMAT(35HEnter number of parameters in fit: )
5100 FORMAT(I4)
5200 FORMAT(50HEnter initial values and flags for each
Parameter:)
5300 FORMAT(4X,9HParameter,I3,5X,7HValue: )
5400 FORMAT(22X,6HFlag: )
5600 FORMAT(A1)

```
 END
```

xyzcal.f
SUBROUTINE GENCAL ( CY )
implicit none
COMMON /BLOCK1/ PARAM(20), NPARAM
COMMON /BLOCK2/ ydata(50000),ydataerror(50000),NUMBER
COMMON /rawdata/ wedgeu(25000),wedgel (25000),stripu(25000),
@ stripl(25000),zu(25000),zl(25000),z(25000),time(25000),x0,y0
common /procdata/ xul(25000),x11(25000),yu1(25000),y11(25000)
common /experimental/ length,energyo(10),masso
real*8 PARAM
real*4 CY(50000),ydata,ydataerror,z,time
real*4 length, energyo,masso
REAL*8 xu,yu,xl,yl,x0,y0,xc,yc,eps,az,bz,zz
real*4 xu1,xl1,yul,yl1
REAL*8 awedgeu,bwedgeu,astripu,bstripu,ctwzu,qw,qs
REAL*8 awedgel,bwedgel,astripl,bstripl,ctwzl
integer wedgeu,wedgel,stripu,stripl,zu,zl
real*8 fwu,fsu,fzu,fwl,fsl,fzl,tcu,tcl
real*8 tiltx,tilty
INTEGER NUMBER,NPARAM,N
c Parameter 1ist:
c 1 awedgeu 2 bwedgeu 3 astripu 4 bstripu
c 5 awedgel 6 bwedgel }7\mathrm{ astripl }8\mathrm{ bstripl
c 9-16 cross talk terms
awedgeu = PARAM(1)
bwedgeu = PARAM(2)
astripu = PARAM(3)
bstripu = PARAM(4)
awedgel = PARAM(5)
bwedgel = PARAM(6)
astripl = PARAM(7)
bstripl = PARAM(8)
ctwzu = PARAM(9)
ctwzl = PARAM(11)
c modification, so that I can include tilt parameters
tiltx = PARAM(10)
tilty = PARAM(12)
c end tilt modification
az = PARAM(13)
bz = PARAM(14)
qw = PARAM(15)
qs = PARAM(16)
C
DO N=1, NUMBER/2
tcu = wedgeu(N) + stripu(N) + zu(N)
tcl = wedgel(N) + stripl(N) + zl(N)
fwu = wedgeu (N)/tcu
fsu = stripu(N)/tcu
fzu = zu(N)/tcu
fwl = wedgel(N)/tcl
fsl = stripl(N)/tcl
fzl=zl(N)/tcl
c
xu = -awedgeu*(fwu+(ctwzu-1)*fzu+(qw-1)*fwu*fwu)-bwedgeu
yu = astripu*(fsu+(qs-1)*fsu*fsu)+bstripu
xl = awedgel*(fwl+(ctwzl-1)*fzl+(qw-1)*fwl*fwl) +bwedgel
Yl = -astripl*(fsl+(qs-1)*fsl*fsl)-bstripl
zz = az * z(N) + bz + tiltx*(xu-xl) + tilty*(yu-yl)
c

```
c We assign these arrays for export to other routines, especially xyznrg
C
\(\mathrm{xu}(\mathrm{N})=\mathrm{xu}\)
yul (N) = yu
\(\mathrm{xll}(\mathrm{N})=\mathrm{xl}\)
\(\mathrm{Yll}(\mathrm{N})=\mathrm{Yl}\)
C
\(c y(N)=\operatorname{sqrt}((x u-x l) *(x u-x l)+(y u-y l) *(y u-y l)+z z * z z)\)
C
\(c\) Centroid is corrected for time-dependence of each particle's recoil
c (first order, assumes \(z(N) \ll\) length)
eps \(=z(N) /\) length
\(\mathrm{xc}=\mathrm{xu} *(1+\mathrm{eps} / 2) / 2+\mathrm{xl} *(1-\mathrm{eps} / 2) / 2\)
\(y c=y u^{*}(1+e p s / 2) / 2+y l^{*}(1-e p s / 2) / 2\)
c
\(C y(N+N U M B E R / 2)=\operatorname{sqrt}((x c-x 0) *(x c-x 0)+(y c-y 0) *(y c-y 0))\) end do
RETURN
END

\section*{jmdiag.f}

> SUBROUTINE JMDIAG (NORDER)

COMMON /BLOCK3/ \(\operatorname{HTOTAL}(20,20), \operatorname{EIGVEC}(20,20), \operatorname{EIGVAL}(20)\)
real*8 HTOTAL, EIGVEC, EIGVAL, THRES, ORDER
real* 8 FTHRES, \(C, D(82,4), S, T 1, T 2, W, D E G R E E\)
PARAMETER (DEGREE = 2.5D-17)
THRES \(=0.0 \mathrm{DO}\)
ORDER = FLOAT (NORDER)
DO \(200 \mathrm{I}=1\), NORDER
DO \(200 \mathrm{~J}=1\), NORDER
IF (I .EQ. J) GO TO 100
\(\operatorname{EIGVEC}(I, J)=0 . O D 0\)
THRES \(=\) THRES + HTOTAL \((I, J) * * 2\)
GO TO 200
\(100 \operatorname{EIGVEC}(I, J)=1.0 D 0\)
200 CONTINUE
FTHRES \(=\) THRES*DEGREE/ORDER
300 THRES \(=\) THRES / ORDER
IF (THRES .LE. FTHRES) RETURN
```

4 0 0 ~ D O ~ 5 0 0 ~ I = 1 , N O R D E R ~

```

DO \(500 \mathrm{~J}=\mathrm{I}\), NORDER
if (htotal(i,j).eq.0) stop('crash in jmdiag!')
IF (ABS (HTOTAL (I,J)) .GE. THRES .AND. I .NE. J) GO TO 600
500 CONTINUE
GO TO 300
\(600 \quad \mathrm{~T} 1=-\mathrm{HTOTAL}(\mathrm{I}, \mathrm{J})\)
\(\mathrm{T} 2=5.0 \mathrm{D}-1 *(\operatorname{HTOTAL}(\mathrm{I}, \mathrm{I})-\operatorname{HTOTAL}(\mathrm{J}, \mathrm{J}))\)
\(W=T 1\) * SIGN(1.ODO,T2) / SQRT(T1*T1 + T2*T2)
\(S=W / \operatorname{SQRT}(2.0 D 0 *(1.0 D 0+\operatorname{SQRT}(\operatorname{ABS}(1.0 D 0-W * W))))\)
\(C=S Q R T(1.0 D 0-S * S)\)
```

    DO 700 K=1, NORDER
    D(K,1) = HTOTAL (I,K)
    D (K,2) = HTOTAL (J,K)
    D(K,3) = EIGVEC(K,I)
    700 D(K,4) = EIGVEC (K,J)
DO 800 K=1,NORDER
EIGVEC (K,I) = C*D (K,3) - S*D (K,4)
EIGVEC(K,J) = S*D(K,3) + C*D (K,4)
IF (K .EQ. I .OR. K .EQ. J) GO TO }80
HTOTAL (I,K) = C*D(K,1) - S*D(K,2)
HTOTAL (K,I) = HTOTAL (I,K)
HTOTAL (J,K) = S*D(K,1) + C*D(K,2)
HTOTAL (K,J) = HTOTAL (J,K)
800
CONTINUE
HTOTAL (I,I) = C*C*D (I,1) - 2.0DO*C*S*D(J,1) + S*S*D (J,2)
HTOTAL (J,J) = S*S*D(I,1) + 2.0DO*C*S*D(J,1) + C*C*D(J,2)
HTOTAL (I,J) =(D(I,1)-D(J,2))*S*C + (C*C - S*S)*D(I,2)
HTOTAL (J,I) = HTOTAL (I,J)
GO TO 400
END

```

\section*{matinv.f}
```

C**
C
C Subroutine: MATINV.FOR - v2.1
Date: September 1982
C Purpose: To find the inverse of a symmetric matrix.
Purpose: To find the inverse of a symmetric matrix.
Parameters: MATRIX - on input, the matrix to be inverted. on output, the inverted matrix. NORDER - the order of the matrix to be inverted.
DETERM - the determinant of the input matrix

```
C*
C Modified dimension sizes from 25 to 20 David Leahy, Sept }199
C Also: made function calls generic (rather than double prec.)
c changed scalar definitions to generic (e.g., from 1.0D0 to 1.0)
C changed variable type definitions (e.g., doub. prec. to REAL*8)
 SUBROUTINE MATINV (MATRIX, NORDER, DETERM)
 REAL*8 MATRIX (20,20), DETERM, MAXVAL, TEMP
 INTEGER INUM(20); JNUM(20)
 DETERM = 1.0
 DO 1000 K=1, NORDER
 MAXVAL = 0.0
 DO }100\textrm{I}=\textrm{K}, NORDE
 DO }100\textrm{J}=\textrm{K}\mathrm{ , NORDER
 IF (ABS (MAXVAL) .GE. ABS (MATRIX(I,J))) GO TO 100
 MAXVAL = MATRIX(I,J)
 INUM(K) = I
 JNUM (K) = J
100 CONTINUE
 IF (MAXVAL .NE. O.0) GO TO 200
 DETERM = 0.0
 RETURN
200 NO = INUM(K)
 N1 = JNUM(K)
 IF (NO .EQ. K) GO TO 400
 DO 300 J=1, NORDER
 TEMP = MATRIX (K,J)
 MATRIX(K,J) = MATRIX (NO,J)
300 MATRIX(NO,J) = -TEMP
400 IF (N1 .EQ. K) GO TO 600
 DO 500 I=1, NORDER
 TEMP = MATRIX(I,K)
 MATRIX(I,K) = MATRIX(I,N1)
500 MATRIX(I,N1) = -TEMP
600 DO }700\textrm{I}=1\mathrm{ , NORDER
 IF (I .EQ. K) GO TO 700
 MATRIX(I,K) = -MATRIX(I,K) / MAXVAL
7 0 0 ~ C O N T I N U E
 DO }850 I=1, NORDE
 IF (I .EQ. K) GO TO }85
 DO }800\textrm{J}=1\mathrm{ , NORDER
 IF (J .EQ. K) GO TO }80
 MATRIX(I,J) = MATRIX(I,J) + MATRIX(I,K)*MATRIX (K,J)
800 CONTINUE
850 CONTINUE
 DO 900 J=1, NORDER
 IF (J .EQ. K) GO TO 900
 MATRIX(K,J) = MATRIX(K,J) / MAXVAL
900 CONTINUE
 MATRIX (K,K) = 1.0 / MAXVAL
1000 DETERM = DETERM * MAXVAL
 DO 1400 L=1, NORDER
 K = NORDER - L + 1
 NO = INUM(K)
 N1 = JNUM(K)
```

```
 IF (NO .LE. K) GO TO 1200
 DO 1100 I=1, NORDER
 TEMP = MATRIX(I,K)
 MATRIX(I,K) = -MATRIX(I,NO)
1100 MATRIX(I,NO) = TEMP
1200 IF (N1 .LE. K) GO TO }140
 DO 1300 J=1, NORDER
 TEMP = MATRIX(K,J)
 MATRIX(K,J) = -MATRIX (N1,J)
1300 MATRIX(N1,J) = TEMP
1400 CONTINUE
```

RETURN
END

## xyznrg.f

SUBROUTINE xyznrg
implicit none
COMMON /BLOCK1/ PARAM(20), NPARAM
COMMON /BLOCK2/ ydata(50000),ydataerror(50000), NUMBER
COMMON /experimental/ length,energyo(10),masso COMMON /rawdata/ wedgeu(25000), wedgel (25000), stripu(25000),
@ stripl (25000), zu(25000), zl(25000), z(25000), time (25000), x0,y0
common /procdata/ xul(25000),xl1(25000), yul(25000),yll(25000) common /smoothblock/ counts(-20:20,-20:20)
integer nbins
parameter (nbins=200) ! number of bins in nrg arrays (actually,
! it's nbins +1 bins, 'cuz the arrays go from $0: n b i n s$ )
real*8 PARAM real*4 xu1,xll,yul,yll integer wedgeu,stripu,zu,wedgel,stripl,zl,itheta real*4 calcY(50000),ydata,ydataerror,nrgstddev,nrgstddevfit REAL*4 nrg(25000), nrgsum, nrgmean, nrgsumfit real*4 xu2,x12,yu2,yl2,nrg2 real*4 deltaE,deltaR,deltax, deltay,bin,r,rprime real*4 z2d(-20:20, $-20: 20$ ), $\operatorname{nrg} 2 d(-20: 20,-20: 20)$ real*4 recoilxy (-20:20, -20:20), deltaR2d (-20:20, -20:20) real*4 nrgzld (-60:60), theta, Ptheta (-90:90) real*4 nzpos (-20:20,-20:20), nzneg (-20:20,-20:20) real*4 zposmean ( $-20: 20,-20: 20$ ), znegmean $(-20: 20,-20: 20)$ real*4 deltaz ( $-20: 20,-20: 20$ ), deltazsmooth( $-20: 20,-20: 20$ ) real*4 length, energyo, masso,z,z2,time, x0,y0, energyol, energyon integer nrgbin(0:4000), peakbin, leftbin, rightbin integer nrgbin3d, xbin,ybin, nrg3d( $-20: 20,-20: 20,0: n b i n s)$ integer raw2d(-20:20,-20:20), counts integer nrgcorr(0:nbins), nrgcorrz(0:nbins) integer zbin, countsz1d(-60:60), nrgz2d(-60:60,0:nbins) INTEGER NUMBER,NPARAM,N,binsize,diagnostics,topbottom integer binsize, nrgmin, nrgmax
binsize $=1$ ! number of meV per bin in nrg arrays
nrgmin $=1400 \quad$ ! nrg of first bin in nrg arrays
nrgmax $=$ nrgmin + nbins*binsize $!$ nrg of last bin in nrg arrays
C
diagnostics $=0$ writes nothing
= 1 writes nrg.dat
$=2$ writes all the 1d, 2d and 3d diagnostic arrays
$=3$ writes xyzcorr.dat (cmlwsa-ready input)

C write (6,*) 'Write out 3-D diagnostics? ( $0=$ no, $1=n r g, 2=a 11$ )' read(5,*) diagnostics
c
c Calculate energy distribution given by data + fit parameters call gencal (calcy)
c
c Kluge: energyol is the energyo of the first data set read in; this c routine will correctly give the recoil energies nrg(N) only if the beam
$c$ energy is equal for all of the data sets!! If the beam energies are
c different; but the recoil energies are all the same, use the commented
$c$ out nrg(N) line
c
energyo1 $=$ energyo (1) * $1000 / 1.60219 \mathrm{e}-19$ ! convert to meV
do $\mathrm{N}=1$, number/2
$\operatorname{nrg}(\mathrm{N})=$ energyo1*calcy $(\mathrm{n}) * \operatorname{calcy}(\mathrm{n}) /(y d a t a(1) * y d a t a(1))$
$\mathrm{c} \quad \operatorname{nrg}(\mathrm{N})=$ energyol*calcy $(\mathrm{n}) * \operatorname{calcy}(\mathrm{n}) /(\mathrm{ydata}(\mathrm{n}) * y d a t a(n))$
nrgbin(nint (nrg(N)/binsize)) =
@ $\quad \operatorname{nrgbin}($ nint (nrg(N)/binsize)) $+1 \quad$ ! bin 'em up!
nrgsum $=$ nrgsum $+\operatorname{nrg}(N)$
c also bin into 3-D nrg array
c points are binned twice; once by the top particle position, and once
c by the bottom particle position
if ( (nrg(N).gt.nrgmin). and. (nrg (N).lt.nrgmax)
.and. (diagnostics.gt.0) ) then
topbottom $=0$ ! 0 for top $x, y$ bin; 1 for bottom $x, y$ bin
700 if (topbottom.eq.0) then
$\mathrm{xbin}=\operatorname{nint}(\operatorname{xu1}(\mathrm{N}))$
ybin $=$ nint ( yul (N) )
raw2d(xbin,ybin) =raw2d(xbin,ybin)
@ $\quad+\operatorname{nint}($ (wedgeu (N)+stripu (N) $+\mathrm{zu}(\mathrm{N})) / 4.0$ )
else
$\mathrm{xbin}=\operatorname{nint}(\mathrm{xll}(\mathrm{N}))$
ybin $=$ nint $(y l 1(N))$
raw2d(xbin,ybin)=raw2d(xbin,ybin)
@ $\quad+\operatorname{nint}($ (wedgel (N) +stripl (N) + ZI (N) )/4.0)
end if
nrgbin3d $=$ nint ( (nrg(N) - nrgmin) / binsize )
nrg3d(xbin,ybin, nrgbin3d) $=$ nrg3d(xbin,ybin, nrgbin3d) +1
counts (xbin,ybin) $=$ counts (xbin,ybin) +1
nrg2d(xbin,ybin) $=\operatorname{nrg2d}(x b i n, y b i n)+\operatorname{nrg}(N)$
recoilxy (xbin,ybin) = recoilxy(xbin,ybin)
@ $\quad+\operatorname{sqrt}((\operatorname{xul}(N)-x 11(N)) *(x u 1(N)-x l 1(N))$
@ + (yul (N) -yll(N)) * (yul(N) -yll(N)) )
$z 2 d(x b i n, y b i n)=z 2 d(x b i n, y b i n)+a b s(z(N))$
if ( $\mathrm{z}(\mathrm{N}) . \mathrm{gt} .0)$ then
nzpos (xbin, ybin) =nzpos (xbin,ybin) +1
zposmean (xbin, ybin) =zposmean (xbin,ybin) $+z$ (N)
else
nzneg (xbin, ybin) =nzneg (xbin,ybin) +1
znegmean $(x b i n, y b i n)=z n e g m e a n(x b i n, y b i n)+z(N)$
end if
if (topbottom.eq.1) goto 800
topbottom $=1$
goto 700
c new arrays in $z$ coordinate
$800 \quad z b i n=\operatorname{nint}(z(N))$
nrgzld(zbin) $=\operatorname{nrgzld}(z b i n)+\operatorname{nrg}(N)$
countszld(zbin) $=$ countszid(zbin) +1 nrgz2d(zbin,nrgbin3d) $=$ nrgz2d(zbin,nrgbin3d) +1
end if

```
 end do
 nrgmean = nrgsum / (number/2)
c
c Write out binned results to nrg.dat
C
 if (diagnostics.1t.1) goto 999
 open(20,file='nrg.dat')
 do N=nrgmin/binsize,nrgmax/binsize
 write(20.*) N*binsize/1000., nrgbin(N)
 end do
 close(20)
 open(20,file='nrgfull.dat')
 do N=1,4000/binsize
 write(20,*) N*binsize/1000., nrgbin(N)
 end do
 close(20)
 write(6,*)'Wrote nrg.dat and nrgfull.dat'
c
c Write out nrg3d.dat array
c Normalize the nrg2d, raw2d, z2d, zposmean, znegmean, and recoilxy
arrays
c Calculate deltaz(xbin,ybin) array
c
 if (diagnostics.1t.2) goto }99
 open(21,file='nrg3a.dat')
 do xbin = --20, 20
 do ybin = -20, 20
 if (counts(xbin,ybin).gt.0) then
 nrg2d(xbin,ybin) = nrg2d(xbin,ybin)/counts(xbin,ybin)
 raw2d(xbin,ybin) =
nint(1.*raw2d(xbin,ybin)/counts(xbin,ybin))
 recoilxy(xbin,ybin) =
 recoilxy(xbin,ybin)/counts (xbin,ybin)
 z2d(xbin,ybin) = z2d(xbin,ybin)/counts(xbin,ybin)
 if ((nzpos(xbin,ybin).gt.0).and.(nzneg(xbin,ybin).gt.0))
then
 zposmean(xbin,ybin)=zposmean(xbin,ybin)/nzpos(xbin,ybin)
 znegmean(xbin,ybin)=znegmean(xbin,ybin)/nzneg(xbin,ybin)
 deltaz (xbin,ybin)=(zposmean(xbin,ybin)+znegmean(xbin,ybin))/2
 else
 deltaz (xbin,ybin)=0
 end if
 do N = 0,nbins
 if (nrg3d(xbin,ybin,N).gt.0)
 @ write(21,*) xbin,ybin,nrgmin+N*binsize,nrg3d(xbin,ybin,N)
 end do ! N loop
 end if ! counts>0 conditional
 end do ! ybin loop
 end do ! xbin loop
 close(21)
 call smooth(deltaz,deltazsmooth)
 call smooth(deltazsmooth,deltaz)
c
c Write out nrgz2d.dat array
c Normalize the nrgzld array
c
open(20,file='nrgz2d.dat')
 do zbin = -40, 40
 if (countszld(zbin).gt.0) then
 nrgzld(zbin) = nrgzld(zbin)/countszld(zbin)
 do N = 0,nbins
 if (nrgzad(zbin,N).gt.0)
 @ write(20,*) zbin,nrgmin+N*binsize,nrgz2d(zbin,N)
```

```
 end do ! N loop
 end if ! countszld>0 conditional
 end do ! zbin loop
 close(20)
 write(6,*) 'Wrote nrg3d.dat and nrgz2d.dat'
C
c Find standard deviation of raw energy distribution
c Also find raw theta distribution P(theta)
C
c Also, the nrg2d array is used to calculate new x,y positions
c for each coincidence event. The resulting array of
xu,yu,xl,yl,time
c events, cmlwsa-ready, will be written to xyzcorr.dat
C
c Also, use deltaz(xbin,ybin) correction to calculate nrgcorrz.dat
c nrgcorr.dat is derived from shifting each events energy by the
difference
 between the overall mean energy and that bin's mean energy
c
 nrgsum = 0
 if (diagnostics.ge.3) open(30,file='xyzcorr.dat')
 do N = 1,NUMBER/2
 energyON = energyO1*ydata(N)*ydata(N) / (ydata(1)*ydata(1))
 nrgsum = nrgsum + (nrg(N) - nrgmean) * (nrg(N) - nrgmean)
 nrgsumfit = nrgsumfit + (nrg(N) - energyON) * (nrg(N) -
energyoN)
 deltax = xul(N) - xll(N)
 deltay = yul(N) - yll(N)
 R = sqrt(deltax*deltax + deltay*deltay)
 itheta = nint((180./3.1415926) * atan(R/z(N)))
 Ptheta(itheta) = Ptheta(itheta) + 1
 deltaE = energyoN - 0.5*(nrg2d(nint(xul(N)),nint(yul(N)))
 @ + nrg2d(nint(xl1(N)),nint(yl1(N))))
 deltaR = sqrt(calcy (N)*calcy (N)* (1+deltaE/nrg(N))-z(N)*z(N)) -
R
 xu2 = xul(N) + 0.5*deltaR*deltax/R
 xl2 = xll(N) - 0.5*deltaR*deltax/R
 yu2 = yul (N) + 0.5*deltaR*deltay/R
 yl2 = yll(N) - 0.5*deltaR*deltay/R
 deltaR2d(xu1(N),yul(N)) = deltaR2d(xul(N),yul(N)) + deltaR
 deltaR2d(xll(N),yl1(N)) = deltaR2d(xl1(N),yl1(N)) + deltaR
 rprime = sqrt((xu2-xl2)*(xu2-xl2) + (yu2-y12)*(yu2-yl2))
 if (diagnostics.ge.3) write(30,5000) xu2,yu2,xl2,yl2,time(N)
 nrg2 = energyON*(rprime*rprime+z(N)*z(N)) / (ydata(N)*ydata(N))
 if ((nrg2.gt.nrgmin).and.(nrg2.lt.nrgmax)) then
 bin = nint((nrg2 - nrgmin)/binsize)
 nrgcorr(bin) = nrgcorr(bin) + 1
 end if
C Finally, use deltaz(xbin,ybin to calculate nrgcorrz array
 z2 = z(N) - deltaz(nint(xul(N)), nint (yu1(N)))
 nrg2 = energyoN*(r*r+z2*z2) / (ydata(N)*ydata(N))
 if ((nrg2.gt.nrgmin).and.(nrg2.1t.nrgmax)) then
 bin = nint((nrg2 - nrgmin)/binsize)
 nrgcorrz(bin) = nrgcorrz(bin) + 1
 end if
enddo
if (diagnostics.ge.3) then
 close(30)
 write(6,*) 'Wrote xyzcorr.dat'
endif
nrgstddev = sqrt(nrgsum / (number/2))
nrgstadevfit = sqrt(nrgsumfit / (number/2))
```

```
C
c Find peak energy bin
c
 peakbin = 1
 do N=2,4000/binsize
 if (nrgbin(N).gt.nrgbin(peakbin)) peakbin = N
 end do
c Find half-height bins
 N = 0
 leftbin = 0
 rightbin = 0
100 N = N + 1
 if (nrgbin(N).gt.(nrgbin(peakbin)/2)) leftbin = N
 if (leftbin.eq.0) goto 100
 N = 4000/binsize
200 N = N - 1
 if (nrgbin(N).gt.(nrgbin(peakbin)/2)) rightbin = N + 1
 if (rightbin.eq.0) goto 200
300 write(7,*) 'Energy analysis:'
 write(7,*) 'Mean energy: ',nrgmean,' meV'
 write(7,*) 'std. dev. (wrt nrg mean): ',nrgstddev,' mev'
 write(7,*) 'Std. dev. (of the fit): ',nrgstddevfit,' mev'
 write(7,*) 'Peak: ',peakbin*binsize,' meV'
 write(7,*) 'FWHM: '.(rightbin-leftbin-1)*binsize,' mev'
C
c Normalize deltaR2d array
C
 do xbin = -20, 20
 do ybin = -20, 20
 if (counts(xbin,ybin).gt.0) then
 deltaR2d(xbin,ybin) = deltaR2d(xbin,ybin)/counts(xbin,ybin)
 end if: ! counts>0 conditional
 end do ! ybin loop
 end do ! xbin loop
c
 open(22,file='deltar2d.dat')
 open(23,file='raw2d.dat')
 open(24,file='z2d.dat')
 open(25,file='recoil.dat')
 open(26,file='deltaz.dat')
 do xbin = -20, 20
 do ybin = -20, 20
 if (counts(xbin,ybin).gt.0) then
 write(23,*) xbin,ybin,raw2d(xbin,ybin)
 write(22,*) xbin,ybin,deltaR2d(xbin,ybin)
 write(24,*) xbin,ybin,z2d(xbin,ybin)
 write(25,*) xbin,ybin,recoilxy(xbin,ybin)
 write(26,*) xbin,ybin,deltaz(xbin,ybin)
 end if
 end do
 end do
 close(22)
 close(23)
 close(24)
 close(25)
 close(26)
 write(6,*)'Wrote raw2d.dat, z2d.dat, recoil.dat, deltar2d.dat'
c
c Write out nrgcorr.dat, nrgcorrz.dat
 open(30,file='nrgcorr.dat')
 open(31,file='nrgcorrz.dat')
 do N = 1,nbins
```

```
 if (nrgcorr(N).gt.0) then
 write(30,*)
(nrgmin+binsize*N)/1000.,nrgcorr (N),sqrt(1.*nrgcorr(N))
 else
 write(30,*) (nrgmin+binsize*N)/1000.,nrgcorr(N),1
 end if
 if (nrgcorrz(N).gt.0) then
 write(31,*)
(nrgmin+binsize*N)/1000.,nrgcorrz(N).sqrt(1.*nrgcorrz(N))
 else
 write(31,*) (nrgmin+binsize*N)/1000.,nrgcorrz(N),1
 end if
 end do
 close(30)
 close(31)
c
c Write out P(theta) array
c
 open(31,file='ptheta.dat')
 do itheta = 1,89
 theta = itheta*3.1415926/180.
 write(31,*) itheta, Ptheta(itheta)/sin(theta),
 (a) sqrt(Ptheta(itheta))/sin(theta)
 end do
c note that the 90 degree point is split evenly between +z and -z;
these
c two must be summed to form a full one degree angle bin, equally
weighted
c with the other angle bins
 write(31,*) 90,Ptheta(90)+Ptheta(-90),sqrt(Ptheta(90) +Ptheta(-90))
 do itheta = -89,-1
 theta = itheta*3.1415926/180.
 write(31,*) 180+itheta, Ptheta(itheta)/sin(-theta),
 (a) sqrt(Ptheta(itheta))/sin(-theta)
 end do
 close(31)
 write(6,*) 'Wrote nrgcorr.dat and ptheta.dat'
c
G9 RETURN
5006 format(5 (F9.4))
 er.d
c
C
c ** Subroutine smooth ***
c smooths 2D array
C smoothed array element = 4/9 orig value + 3/9 (av. of nearest
ne:ghbors)
= +2/9 (av. of diagonal neighbors)
C somewhat edited after lifting it from nrgplot.f
=
 subroutine smooth(ra,smoothra)
 implicit none
C
 integer nx,ny
c
parameter (nx = 41)
parameter (ny = 41)
C
 common /smoothblock/ counts(nx,ny)
c
 real*4 counts,ra(nx,ny),smoothra(nx,ny)
 integer xbin,ybin,near,diag,threshold
c
threshold = 5
```

```
 do xbin = 2, nx-1
 do ybin = 2, ny-1
 if (counts(xbin,ybin).ne.0) then
 C
 c The smooth correctly handles the edges of the data sets
 if (counts(xbin+1,ybin).ge.threshold) near = near + 1
 if (counts(xbin-1,ybin).ge.threshold) near = near + 1
 if (counts(xbin,ybin+1).ge.threshold) near = near + 1
 if (counts(xbin,ybin-1).ge.threshold) near = near + 1
 diag = 0 ! number of diagonal neighbors
 if (counts(xbin+1,ybin+1).ge.threshold) diag = diag + 1
 if (counts(xbin+1,ybin-1).ge.threshold) diag = diag + 1
 if (counts(xbin-1,ybin+1).ge.threshold) diag = diag + 1
 if (counts(xbin-1,ybin-1).ge.threshold) diag = diag + 1
 smoothra(xbin,ybin) =
 ((4/9.) + (4-near)/12. + (4-diag)/18.)*ra(xbin,ybin)
 + (ra(xbin+1,ybin) + ra(xbin,ybin+i)
 + ra(xbin-1,ybin) + ra(xbin,ybin-1))/12.
 + (ra(xbin+1,ybin+1) + ra(xbin-1,ybin+1)
 + ra(xbin+1,ybin-1) + ra(xbin-1,ybin-1) //18.
 end if ! counts conditional
 end do
 end do
 c
 return
 end
```


## linfit.f

```
*deck linfit
 Subroutine linfit(x,y,n,em,b)
 implicit none
c
c this subroutine does a linear least squares fit to
c a set of X,Y data
c
 real*4 x(30),y(30)
 real*4 sigxy,sigx,sigy,sigxsq,em,b
 integer n,i
 sigx = 0.0
 sigxy = 0e0
 sigy = 0e0
 sigxsq = 0e0
 do 10 i = 1,n
 sigxy = sigxy + x(i)*y(i)
 sigx = sigx + x(i)
 sigy = sigy + Y(i)
 sigxsq = sigxsq + x(i)*x(i)
 continue
 now, using the well-known least squares equations
 calculate the slope and intercept.
 em (float (n)*sigxy - sigx*sigy)/(float (n)*sigxsq -
```


[^0]:    ${ }^{a}$ Portions of this chapter are published in the Journal of Chemical Physics 103, 2495 (1995).

[^1]:    ${ }^{a}$ FHWM of vibrational peaks after deconvolution of experimental resolution. The left value in this column assumes production of only $\mathrm{O}\left({ }^{3} P_{2}\right)$, while the right value assumes a statistical $\mathrm{O}\left({ }^{3} P_{j}\right)$ distribution (see text).
    ${ }^{b}$ Average vibrational energy

[^2]:    ${ }^{c}$ FWHM of vibrational peaks after deconvolution of experimental resolution.
    ${ }^{d}$ Average vibrational energy

[^3]:    ${ }^{a}$ Total energy relative to the zero-point level of CH 2 CHO , in eV .
    ${ }^{b}$ Ref. 13
    ${ }^{c}$ Ref. 15

[^4]:    ${ }^{a}$ Ground state constants were fixed at these values from Ref. 9.
    ${ }^{b} \kappa=\varepsilon_{\mathrm{aa}}-\left(\varepsilon_{\mathrm{b}}+\varepsilon_{\mathrm{cc}}\right) / 2$
    ${ }^{c} \mu=\left(\varepsilon_{b b}+\varepsilon_{c c}\right) / 2$
    ${ }^{d}$ The value of $\kappa$ was assumed to be identical to the value obtained in the origin transition.

[^5]:    ${ }^{a}$ CMLWSA stands for Center of Mass to Lab conversion, Wedge and Strip Anode.

[^6]:    ${ }^{a}$ MAVABFIT stands for Moving AVerage Alpha-Beta FIT

[^7]:    ${ }^{a}$ W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes (Cambridge University Press, Cambridge, 1992).

