Characterization of Residual Chlorinated Organic Compounds in the Soil and Sediment at the Wilson's Corner Site

by

R. L. Nichols

Westinghouse Savannah River Company Savannah River Site Aiken, South Carolina 29808

T. R. Jarosch

K. M. Jerome

MASTER

DOE Contract No. DE-AC09-96SR18500

This paper was prepared in connection with work done under the above contract number with the U. S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.

THISUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

DISCLAIMER

Portions of this document may be illegible electronic image products. Images are produced from the best available original document.

CHARACTERIZATION OF RESIDUAL CHLORINATED ORGANIC COMPOUNDS IN THE SOIL AND SEDIMENT AT THE WILSON'S CORNER SITE (U)

January, 1997

R. L. Nichols T. R. Jarosch K. M. Jerome

> UNCLASSIFIED DOES NOT CONTAIN UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION ADC & Perviewing Official DB Conce Succession (Name and Title) Date: Mag. 413128

Westinghouse Savannah River Company Savannah River Site Aiken, SC

Prepared for the National Aeronautics and Space Administration under NASA HQ Order # W-18,895

Summary

Depth discrete bulk sediment samples were collected from 15 different locations at the Wilson's Corner site on the Kennedy Space Center during August 1996. Approximately 800 feet of continuous core and 800 sediment samples were collected. Four hundred of the samples were analyzed for chlorinated volatile organic compounds (CVOCs) using a modified version of EPA Method 5021 for headspace analysis of CVOCs in soil and water samples.

Sediments beneath the Wilson's Corner Site at the Kennedy Space Center contain residual trichloroethylene (TCE), cis-dichloroethylene (cDCE), vinyl chloride (VC), and Freon-113 (F113). Trichloroethylene has moved downward beneath source areas through the porous surficial aquifer along bedding planes until it encountered a silty sand and clay layer and then began to move laterally through the silty sand layer and along the top of the clay layer. Anaerobic biodegradation of trichloroethylene has produced cis-dichloroethylene and vinyl chloride along the migration path. The highest concentrations of CVOCs are immediately below the source areas and in a depression at the base of the surficial aquifer located south of the current stripper control room building.

Currently the Wilson's Corner Site has a network of recovery wells operating to maintain hydraulic control of the contamination and remove contaminant mass. Future remediation enhancements should focus on improved source term remediation and optimizing natural bioremediation, such as; Dual phase remediation of sediments in the source areas, installation of a deep recovery well near sampling location NASA1 where the depression in the surficial aquifer is located, air sparging at the leading edge of the plume to degrade biodegradation products, and targeted excavation of shallow contaminated soils.

Introduction

The Wilson's Corner site is located east of Titusville, Florida on the Kennedy Space Center (KSC) on the north side of State Route 402. Wilson's Corner was the location of the Propellant Systems Components Laboratory which was constructed in 1963. In addition to the laboratory building a facility for solvent cleaning of components such as rocket fuel lines was located east of the main building. Solvent storage tanks were located north of the main building.

In January 1986 moderate to low concentrations of CVOCs were reported for 3 monitoring wells located at the Wilson's Corner site. A groundwater remediation system for the contamination at the Wilson's Corner site was constructed and began operation in 1989. The current system is stabilizing the groundwater contamination and removing dissolved contamination. Environmental personnel at KSC noticed that the CVOC concentrations in the recovered groundwater had leveled off at concentrations above their remediation goals and decided to investigate ways to enhance the removal of CVOCs. All previous characterization studies focused on groundwater sampling and as a result there was very little information on the residual contamination in the soil and sediments beneath the Wilson's Corner site. In 1994 KSC contacted the Savannah River Technology Center (SRTC) regarding the innovative technologies that had been studied at the Integrated Demonstration Site on the Savannah River Site. Following the discussions, KSC requested SRTC to conduct a detailed study of the residual contamination at the Wilson's Corner site and to assist in identifying potential enhancements to the existing remediation system. This report presents the results of a detailed study of the residual CVOC contamination in the soil and sediment at the Wilson's Corner site.

Sampling and Analysis

An innovative method for the sampling and analysis of CVOCs (Looney et al, 1993) in soil and groundwater, that was developed by the SRTC, was used to study the residual CVOC contamination in the soil and sediment at the Wilson's Corner site. This method has subsequently been refined by others, adopted and approved by the Environmental Protection Agency (EPA) as Method 5021 (Rev. 0, January 1995).

Depth discrete bulk sediment samples were collected from 15 different locations at the Wilson's Corner site on the Kennedy Space Center during August 1996, Figure. 1, Table 1. Continuous core was collected to a depth of 50 - 55 feet at each location using steam cleaned hollow stem augers and split spoon sampling tubes. The total depth at each core location was determined by the location of the confining layer at the base of the surficial aquifer. Once the core had been removed from the ground, 2 - 3 cm³ samples of the bulk sediment were immediately collected at 2 feet intervals and at significant lithologic changes using a modified plastic syringe and transferred to a 22.5 mL glass vials. 5 mL of deionized water was added to each vial as a suspending solution (giving a total sample volume of 7 to 8 mL) and then a Teflon lined rubber septa and aluminum crimp top were placed on the bottle. All samples were refrigerated until analysis. After the depth discrete bulk sediment samples had been collected the geologist providing technical oversight of the drilling prepared a detailed lithologic description of the core, (Appendix A)

Prior to sampling the average weight of a 22.5 mL glass vial with 5 mL of pure deionized water and a Teflon lined rubber septa and aluminum crimp top (tare) was determined. The weight of the sediment sample was determined by weighing the sealed sample bottle and subtracting the average tare weight.

Each sample was then analyzed using a Hewlett Packard (HP) 5890 gas chromatograph (GC) equipped with an electron capture detector, a flame ionization detector, an HP 19395 headspace sampler, and a 60 m widebore glass capillary column (Supelco VOCOL[™]). The samples are heated to 70 degrees C in the autosampler prior to injection into the GC to maximize the transfer of CVOCs into the vapor phase (Looney et al, 1993). A complete set of standards in water (7.5 mL) was run with each set of samples for calibration. This method is a slightly modified version of the newly approved EPA Method 5021 for headspace analysis of CVOCs in soil and water samples.

The headspace method is best when used on sediment samples with minimal organic carbon content. High organic carbon content can produce results with lower than actual concentrations due to increased adsorption on the organic carbon. Several core locations had sediments with high organic carbon content in the 5 to 8 feet deep range and these results should be treated as suspect.

Results

Approximately 800 feet of continuous core and 800 sediment samples were collected. Four hundred of the samples were analyzed and a duplicate set was archived for future analysis as necessary. Results of the continuous coring indicate that the surficial aquifer is composed of a sandy shell hash and a silty medium to fine grained sand. The shell hash overlies the silty sand and varies in thickness from 8 - 25 feet. Occasionally the shell hash is present in 2 layers separated by fine grained sand. The surficial aquifer was deposited in a shore zone depositional environment and as a result has well developed bedding planes. The surficial aquifer is overlain by backfill, peat, and silty sand and is underlain by a silty clay layer approximately 50 feet deep, Figure 2. The clay layer generally dips from east to west and has a local low in the center of the Wilson's Corner Site, Figure 3. On Figure 3 the color contours illustrate the structure of the top of the clay layer and the columns depict the cored locations and total sampling depth.

Trichloroethylene (TCE), cis-dichloroethylene (cDCE), vinyl chloride (VC), and Freon-113 (F113) were the primary CVOCs detected, Table 2. Breakdown products of F113 were also detected but not quantified due to a lack of calibration standards. Locations NASA3 and NASA5 had the highest concentrations of CVOCs as was expected since these locations are in the immediate vicinity of known source areas. CVOCs were present from the surface to the bottom of the surficial aquifer at NASA3 and NASA5. Figures 4 - 7 show the trichloroethylene, cis-dichloroethylene, vinyl chloride and Freon-113 profiles for 4 sampling locations, NASA1, NASA3, NASA5 and NASA6. Results from the sample analysis vary over 5 orders of magnitude and as a result the concentration is plotted on a log scale in figures 4 - 7.

Sampling locations NASA3 and NASA5 are characteristic of source areas and NASA1 and NASA6 are downgradient on the primary migration path. Trichloroethylene has migrated farther than Freon-113 has as shown by the presence of trichlorethylene in NASA 1 and NASA6 and the lack of detectable Freon-113 in the same locations.

Data from the soil analysis was compiled into a contaminant model using 3 dimensional interpolation. The interpolation was performed using earthVision a product of Dynamic Graphics Inc. EarthVision uses a 3 dimensional minimum tension gridding algorithm to interpolate 3 dimensional data sets and can incorporate a vertical influence factor and 2 dimensional surfaces to constrain the model. In the Wilson's Corner model the vertical influence factor was used to increase the weighting in the lateral direction for interpolation to simulate the effect of bedding planes on contaminant migration.

Two dimensional surfaces were prepared for the surface topography, water table, and top of the clay layer using data from the field work. The top and bottom of the contaminant model were constrained using the surface topography and top of the clay layer respectively.

The 3 dimensional migration yields a complex contamination pattern that is difficult to determine with conventional groundwater investigation methods. In Figure 8, a slice through the model reveals the pattern of contaminant migration beneath the equipment cleaning facility. The low concentrations at the bottom of the surficial aquifer beneath the source area in Figure 8 are due to contaminant removal from operation of recovery well NPSH-1. The high concentrations west of the source area in Figure 8 are in the depression in the clay layer at the base of the surficial aquifer. Note that cis-dichloroethylene and vinyl chloride have formed around the trichloroethylene in the depression and are migrating westward ahead of the trichloroethylene.

In Figure 9 you can see two primary contaminant source areas and the contamination that has resulted from downward and lateral migration. This pattern suggests that the contaminant moved downward through the porous surficial aquifer along bedding planes until it encountered the clay layer and then began to move laterally through a silty sand layer along the top of the clay layer. The lateral cross section through the model, at the base of Figure 9, reveals two areas of elevated TCE concentration just above the clay layer. The area of elevated TCE in the center of the site is the result of the migration of TCE from the sources along bedding planes and the top of the clay layer and into the depression that was shown in Figure 3. This is typical behavior of Dense Non-Aqueous Phase Liquids, (DNAPL) such as TCE. Again note that cis-dichloroethylene and vinyl chloride have formed around the trichloroethylene and are migrating westward ahead of the trichloroethylene. In addition, two aspects of the site remedial operations may enhance the pooling of contaminants in the region of the depression. First, there are no recovery wells at any depth in the vicinity of the depression to remove soluble contaminants. Second, the region is overlain by two major irrigation circuits which produce a vertical recharge gradient that may act to force or flush contaminants downward.

The trichloroethylene in the subsurface at Wilson's Corner has weathered forming cisdichloroethylene and vinyl chloride. The weathering is the result of in-situ anaerobic biodegradation. The weathering byproducts are most concentrated in the peat layer beneath the source areas, and beneath the trichloroethylene in the depression in the clay layer. The high organic carbon content of the peat has adsorbed large amounts of trichloroethylene and produces a strong reducing environment optimal for anaerobic biodegradation producing cisdichloroethylene and vinyl chloride. Vinyl chloride is resistant to further anaerobic biodegradation and will continue to accumulate in the subsurface unless it migrates into an aerobic environment where it can be degraded to CO2, Cl, and water.

Trichloroethylene trapped in the depression has begun to biodegrade into cisdichloroethylene and vinyl chloride. Cis-dichloroethylene and vinyl chloride that formed at the fringes of the trichloroethylene in the depression are migrating southwestward with the ambient groundwater flow toward recovery wells NPSH5 and NPSH20. No trichloroethylene was detected in NASA6 however, both cis-dichloroethylene and vinyl chloride were detected in NASA6 indicating that the leading edge of the trichloroethylene plume is currently biodegrading faster than it is moving. This data is consistent with monitoring results for well NPSH20 which has had no detectable trichloroethylene but has had cis-dichloroethylene and vinyl chloride.

Conclusions

Sediments beneath the Wilson's Corner Site at the Kennedy Space Center contain residual trichloroethylene (TCE), cis-dichloroethylene (cDCE), vinyl chloride (VC), and Freon-113 (F113). The residual CVOCs are present in the following forms:

- Adsorbed to shallow peat layer and aquifer matrix
- Diffused into porous shell fragments and fine grained sediments
- Micro-droplets trapped in individual pore throats

Trichloroethylene moved downward beneath source areas through the porous surficial aquifer and along bedding planes until it encountered the clay layer and then began to move laterally along the top of the clay layer. Anaerobic biodegradation of trichloroethylene has produced cis-dichloroethylene and vinyl chloride along the migration path. The highest concentrations of CVOCs are immediately below the source areas and in the depression in the clay layer at the base of the surficial aquifer.

Currently the Wilson's Corner Site has a network of recovery wells operating to maintain hydraulic control of the contamination and remove contaminant mass. Future remediation enhancements should focus on improved source term remediation and optimizing natural bioremediation. Potential enhancements include:

- Dual phase remediation of sediments in the source areas. This would include installation of a shallow recovery well screened from 12 - 27 feet near NPSH1 and NPSH14 and pumping hard enough to lower the water table below the top of the screen. Vacuum extraction would be simultaneously performed on the shallow recovery well. Vacuum extraction will draw air downward through the contaminated peat layer and sediments and into the exposed well screen efficiently removing the volatile contaminants while the pumping will recover highly contaminated water from the most permeable zone at the Wilson's Corner Site.
- Install a deep recovery well near sampling location NASA1. After the dual phase remediation has been operated, a deep recovery well could be installed near NASA1 to remove the trichloroethylene that has migrated down to the base of the surficial aquifer preventing further diffusion into fine grained sediments and naturally migrating groundwater.
- Air sparging between NPSH 5 and NPSH20. Addition of air to the downgradient extent of the contamination would produce aerobic conditions capable of supporting biodegradation of cis-dichloroethylene and vinyl chloride.
- Targeted excavation and on-site management through biopiles. Limited excavation of shallow (<10 feet deep) contaminated sediments at source areas that remain after dual phase remediation could be beneficial if the waste is managed on-site through biopiling. Biopiling is a cost effective method for on-site remediation of excavated soils containing volatile and biodegradable contaminants.

References

Looney, B. B., C. A. Eddy, and W. R. Sims, 1993. *Evaluation of Headspace Method for Volatile Constituents in Soils and Sediments*. In Measuring and Interpreting VOCs in Soils: State of the Art and Research Needs, US Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Las Vegas NV 89193.

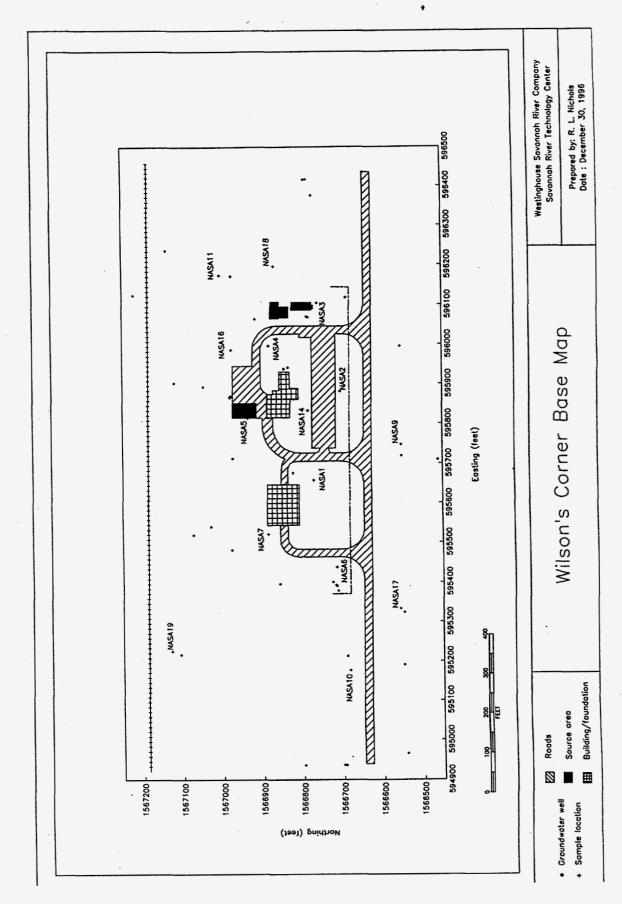
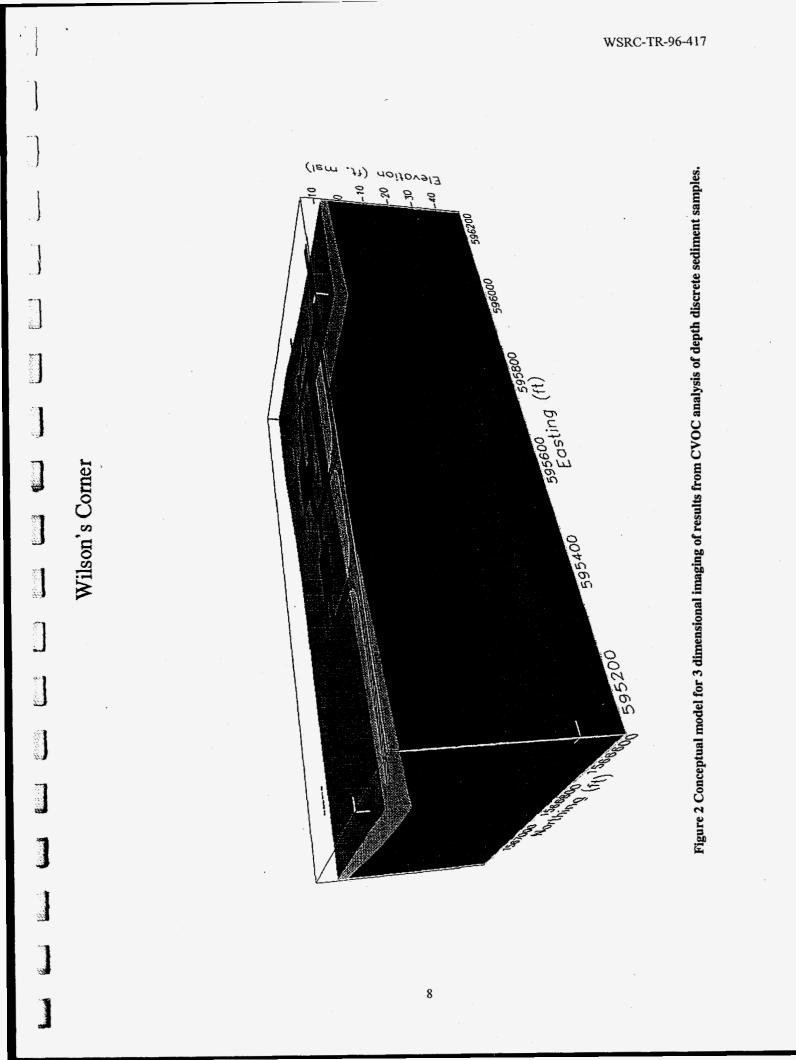

Location Id	Easting (feet)	Northing (feet)	Surf. Elev. (ft, msl)
NASA1	595,657.98	1,566,770.46	7.25
NASA2	595,881.07	1,566,703.44	8.7
NASA3	596,070.49	1,566,785.33	8.14
NASA4	595,997.15	1,566,881.07	8.16
NASA5	595,813.02	1,566,933.90	7.7
NASA6	595,436.91	1,566,715.65	6.32
NASA7	595,521.68	1,566,884.84	7.24
NASA9	595,747.67	1,566,552.52	6.97
NASA10	595,176.13	1,566,682.56	5.53
NASA11	596,173.38	1,567,003.41	9.64
NASA14	595,833.11	1,566,783.49	8.52
NASA16	595,986.54	1,566,975.14	8.44
NASA17	595,333.69	1,566,556.48	4.99
NASA18	596,195.57	1,566,867.68	8.46
NASA19	595,225.22	1,567,128.44	7.15

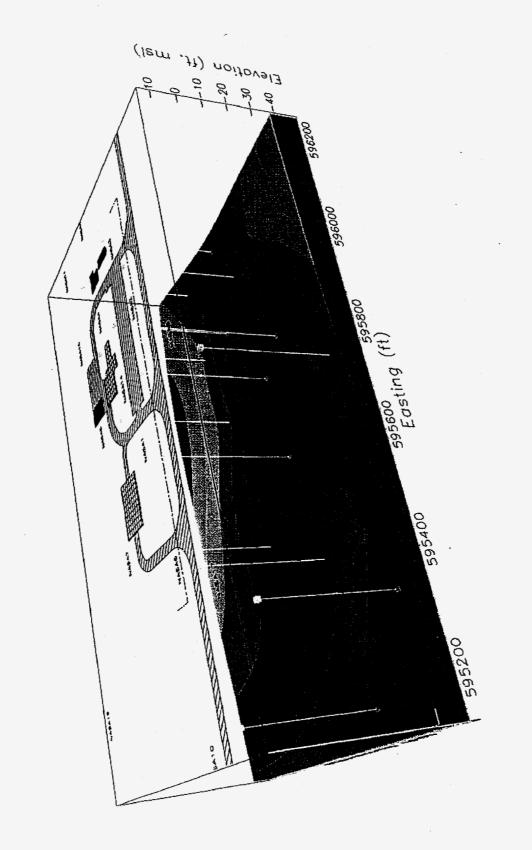
Table 1 Coordinates for sample locations at the Wilson's Corner Site.

Sec.

Table2 Summary of primary contaminants detected in bulk sediment samples at the Wilson's Corner Site.

Chlorinated Volatile Organic Compound	Detection Limit (ug/gm)	Maximum (ug/gm)	Location of Maximum
Trichloroethylene	0.001	19.37	NASA3, 9 feet deep
cis-Dichloroethylene	0.001	87.36	NASA5, 7 feet deep
Vinyl Chloride	0.001	6.45	NASA5, 7 feet deep
Freon 113	0.001	42.11	NASA5, 7 feet deep




()

the second second

a straight

WSRC-TR-96-417

Wilson's Comer

Handard

S. New York

in the set

STRUCTION STRUCT

Concernance of

an interest

Figure 3 Structural map of the top of the confining unit at the base of the surficial aquifer.

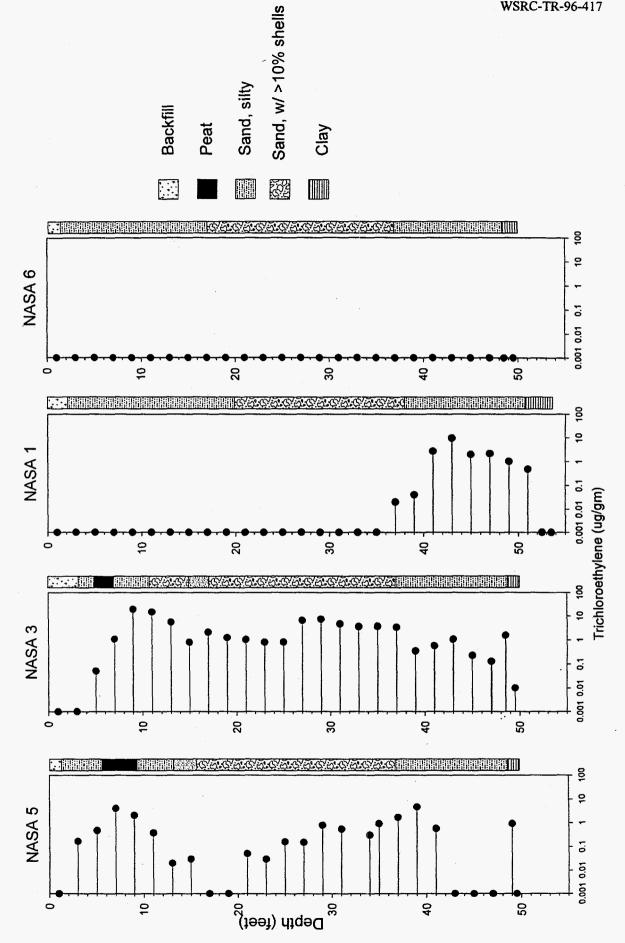
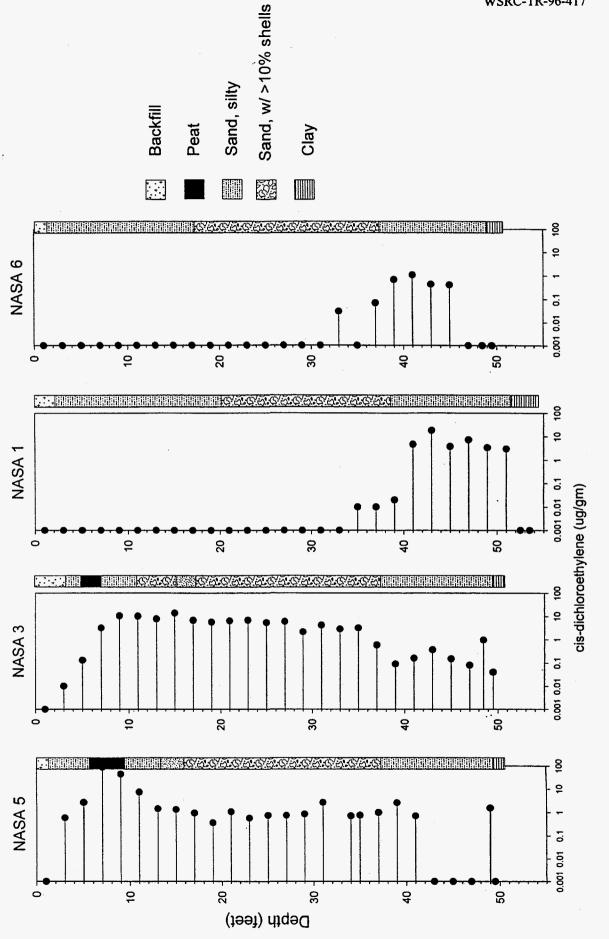



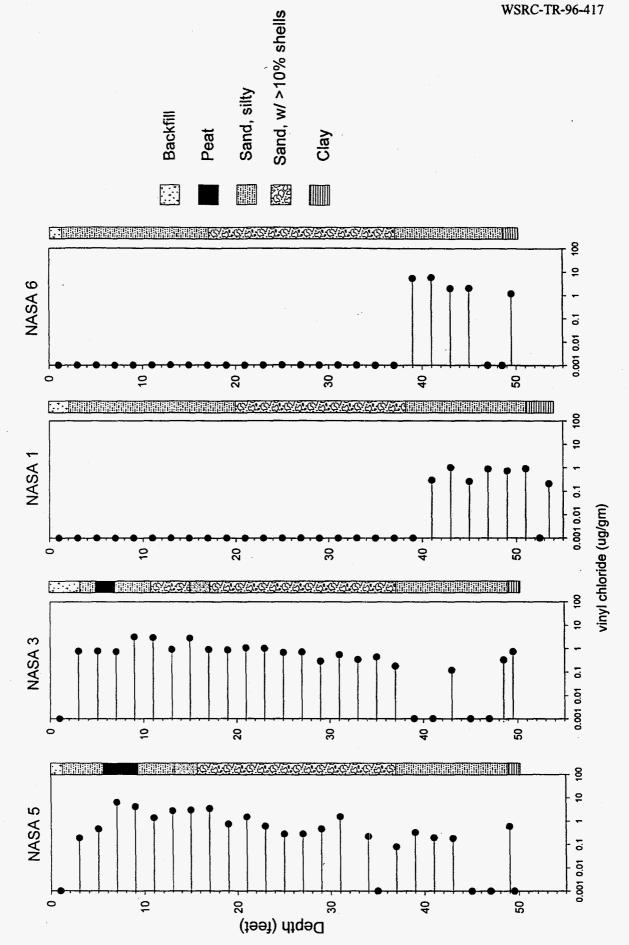
Figure 4 Trichloroethylene profiles for NASA 1, NASA3, NASA5, and NASA6 sediment sampling locations.

WSRC-TR-96-417

1000 A

200-002

() | |


in the second second

a desired

a second and a second se

Figure 5 Cis-dichloroethylene profiles for NASA 1, NASA3, NASA5, and NASA6 sediment sampling locations.

WSRC-TR-96-417

F

1

a la cal

Sur a main

Figure 6 Vinyl chloride profiles for NASA 1, NASA3, NASA5, and NASA6 sediment sampling locations.

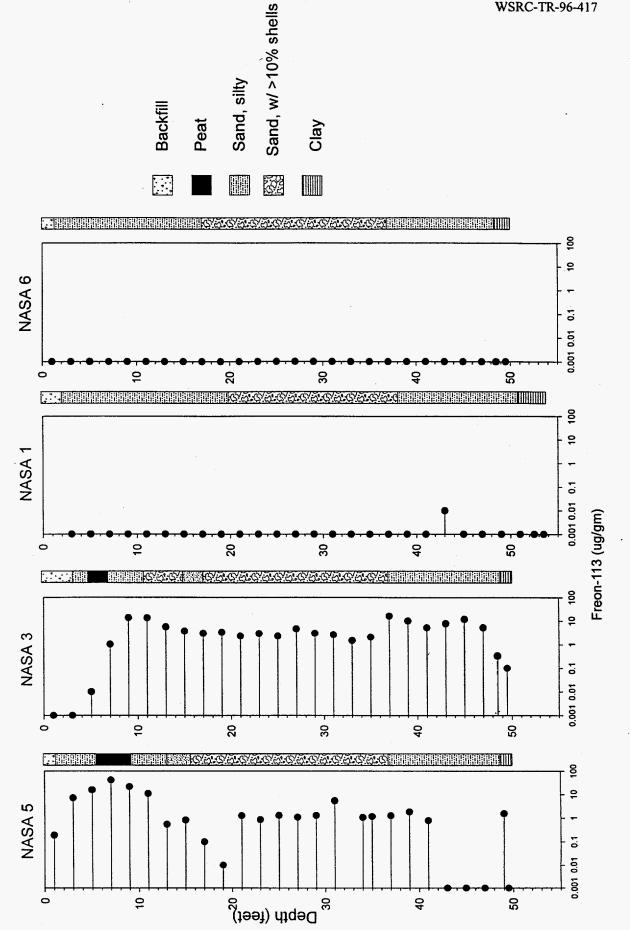


Figure 7 Freon-113 profiles for NASA 1, NASA3, NASA5, and NASA6 sediment sampling locations.

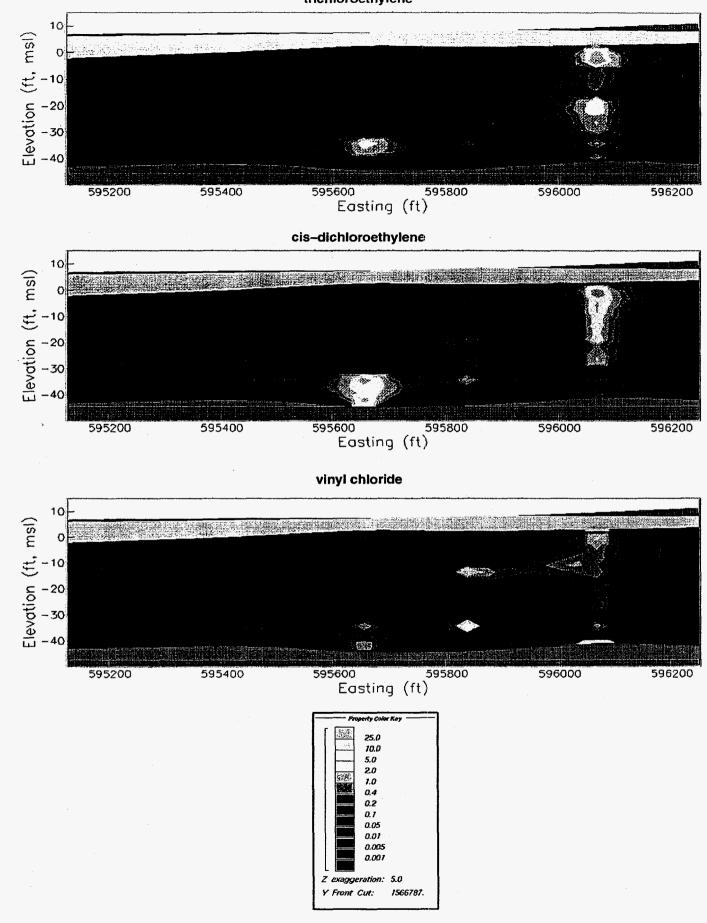


Figure 8 Cross section through 3 dimensional models of trichloroethylene, cis-dichloroethylene, and vinyl chloride results from headspace analysis of sediment samples.

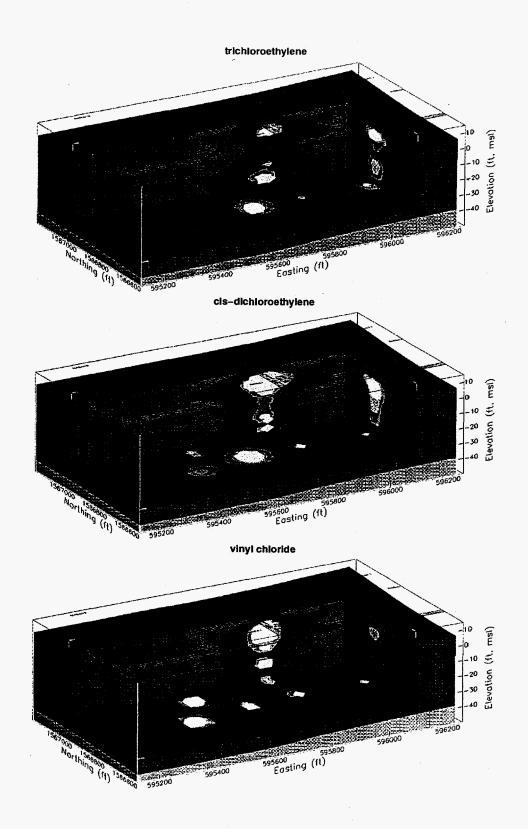


Figure 9 Three dimensional models of trichloroethylene, cis-dichloroethylene, and vinyl chloride results from headspace analysis of sediment samples showing the contaminant sources and migration along the top of the confining unit

行いる ្ប Sec. (instants)

2

Appendix A

Soil Boring Logs

2

Sec. Sec.

No.

5

Second S

in and the second s

1

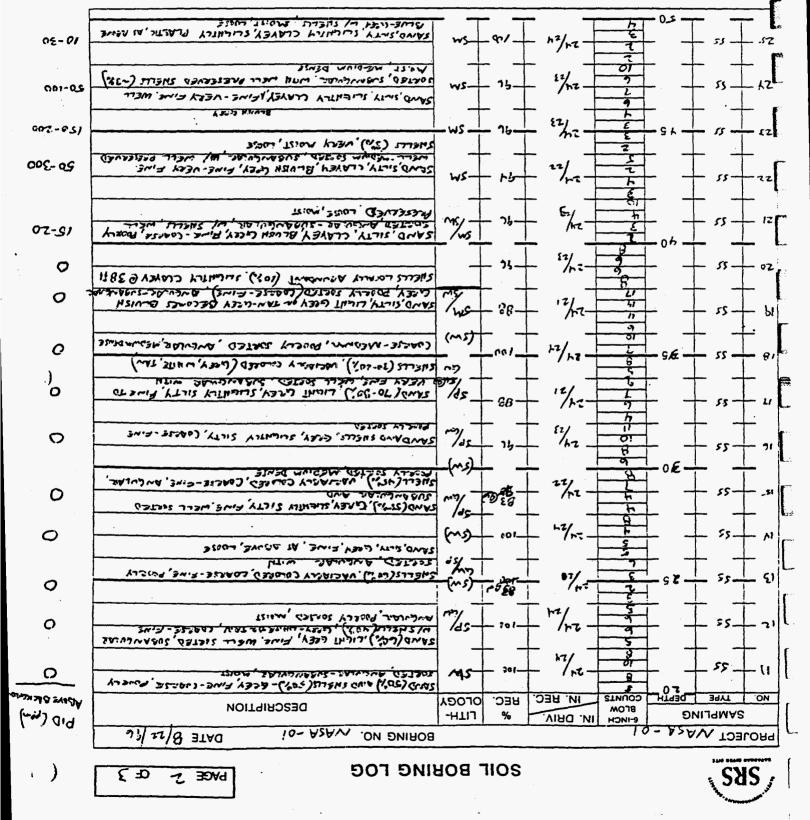
1. A. S.

SOIL BORING LOG

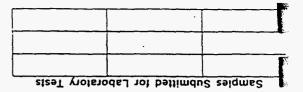
PAGE 1

OSR 14-366 (Rev. 10/92)

œЗ


MASA - WILSON	DATE 8/22/96 AREA		
SORING NO. $\mathcal{N}ASA = OI$	SRS COOR	DINATES	E REFERENCE ELEVATION
DRILLER Reserves	DRILLING S		TRACTOR TOTAL HOLE DEPTH
ECHNICAL OVERSIGHT	GROUNDW	ATER DE	PTHS DRILLING METHODS AND DEPTHS
JAMES WEDEKIND OVERSIGHT COMPANY CDM FEDERAL	ES VEDEKIND DATE TIME BHT COMPANY 8/21/1 0917		951 (Fortenerative) How STEN AUGER
SAMPLING 6-INCH IN. DI BLOW		LITH-	DESCRIPTION
			GRASS AND TOPSOIL WITH CRUSHED STONE
1 + 55 + 24		FILL	SECONES SAND, LIENT GEV, SI-TY, WITH ROOTS, ORGANILS
		- SM -	BELMAS SAND, SNTY, LESY DOARK LEEY OF BLACK ADMONT OR GAVIN
$2 + 55 + \frac{4}{50/2} + \frac{24}{50/2}$	<u></u>	54	SPOON REFUSAL - MATERIAL PALES TILNTLY IN STON
$3 - 55 - 5 - \frac{13}{12} - \frac{24}{20}$	LY -100-	- 54 -	SAND, S. 214, DACK GREY-BEOWN FINE, WELL SORTED SUBANGULAR, ABUNDANT BRGANLS, DENSE, SLIGHTWARS
4	/	-sm	OLCASIONAL SHELL FRAGMENTS, WHITE, COACSE
$5 - 5r - \frac{13}{4}$	-+		JAND, SILTY, BEDWN, FINE, WELL SMTED, SUBANGULAR, ABUNDONT OLCOWILG LOOSE MOIST, WITH ROTTS
$6 - \frac{5}{2} + \frac{10}{2} + \frac{10}{$			SAND, SILTY, LIGHT BEDWA, BEGORES GREY SUBANGUAR, EINE, WELL SURTED, WAT, WILL ROOTS, LOOIE
7 - 55	- 100 -	<u>_</u>	SAND, SILTY, LIGHT BEAMS OR GREY, AS ABOVE, VERY LOOSE WET-SLOVICH ??
3 - 55 - 15 - word Zu / 2 / 2			SAND, SILTY, BEDWN, BECOMES CREY AS ABOVE POSSIBLY SLOUGH DEF.NOTE SLOUGH
$q \rightarrow ss \rightarrow \frac{3}{2}$		S M	SAND, SILTY GORY, FINE, WELL SERTED MED, UN DENSE WITH SHELLS, WHITE, COROLE, BRUKEN
	/	SM	- JLOUGH (SUX of surph) SAND, SINTY, (254, FINE TO JECY FINE, MEDIUM - WELL JORJED SUBANGUAL, W/ SNELLS (~3-5%) WHITE, BENKENI

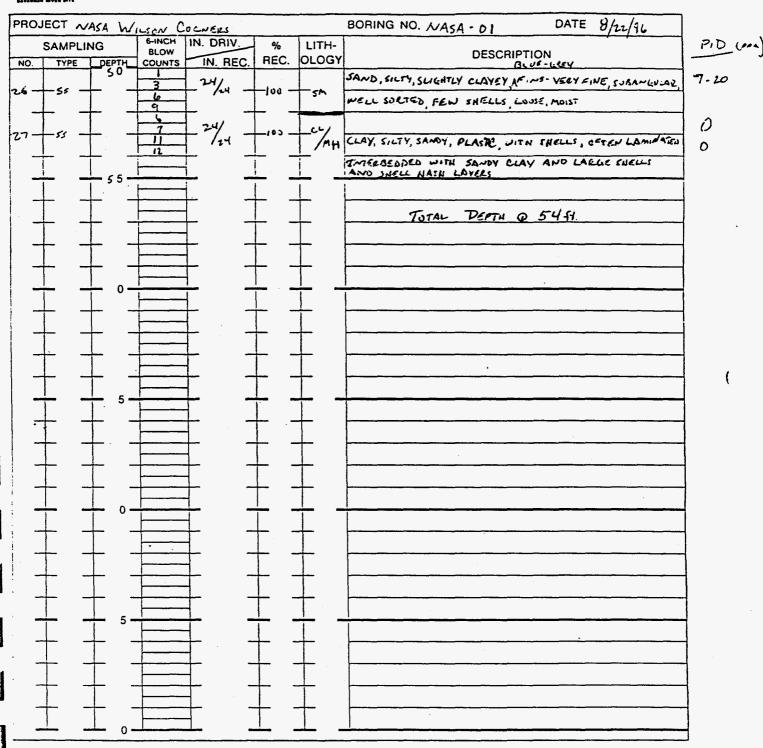
Samples	Submitted	for Laboratory	Tests


NOTE: Standard Penetration Resistance is Sum of Blows for 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split Barrel Sampler with 140 pound hammer falling 30 inches.

٠.

(26/01 - ~ 299 (Kev. 10/92)

NOTE: Standard Penetration Resistance is Sum of Blows for 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split Barrel Sampler with 140 pound hammer falling 30 inches.


Acres 10

OSR 14-366 (Rev. 10/92)

SOIL BORING LOG

PAGE 3 OF 3

Samples Submitted for Laboratory Tests

NOTE: Standard Penetration Resistance is Sum of Blows for 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split Barrel Sampler with 140 pound hammer falling 30 inches.

SRS
BATABOLA BITLE BITE

2000 S

Sec. 1

F. Suma

dist in the

den

SOIL BORING LOG

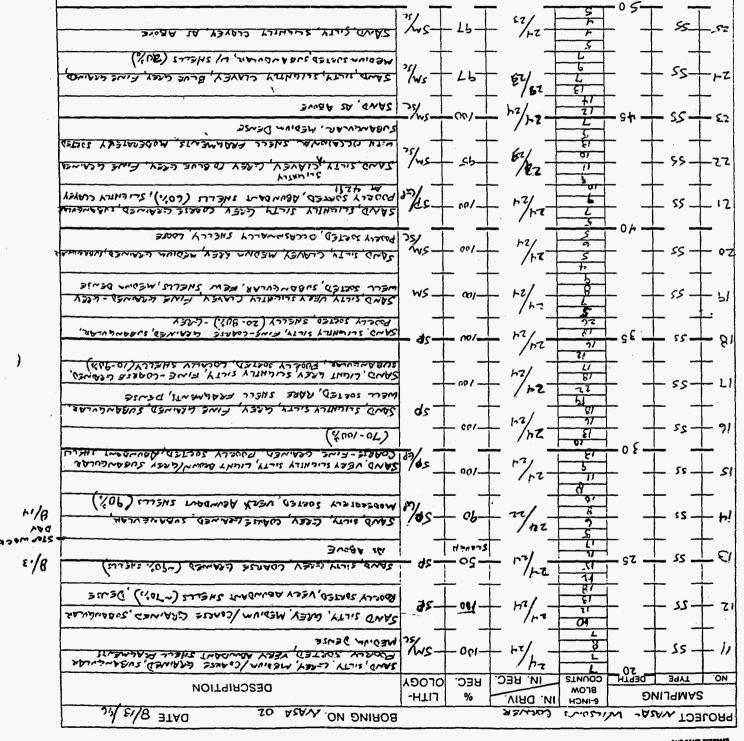
PAGE 1 OF 3

PROJECT NASA					DATE 8/13/96 AREA
WILSONS COA	NER, FI	<u>'</u>			
BORING NO.	- SES (COORI	DINATES	E	REFERENCE ELEVATION
NASA 02				_	TOTAL HOLE DEPTH
		, ,	SUBCON	TRACTOR	54 ft:
Robert Snow TECHNICAL OVERSIGHT		estek	ATER DE	PTHS	DRILLING METHODS AND DEPTHS
James Wedekind OVERSIGHT COMPANY CDM Federal	ş - · - 7	DATE 3/96	TIME 1425	DEPTH →8 Ff	HSAT CONTINUOUS SPLIT SPORNS
SAMPLING 6-INCH BLOW NO TYPE DEPTH COUNTS	IN. DRIV.	% REC.	LITH- OLOGY		DESCRIPTION
0 2	24				MEROCK (FILL) AND TOPSIL, SANDY, BLACK
	2-/2-119		SM	JAND SILTY DA	LE GREY SUBANGULAR, MODEROTELY IST. TRACE DECOMICS, FINE GRAINED
2 - 55	-24/18 -	_75 _	SM	SAND SILTY GRE	Y FINE GRAINED, SUBDALLULAR, WELL SOLTED
3 - 55 - 5 - 5	-24/24			SAND, AS ABOVE	, WI SNELL FRALS AND ROOTS
3 - 55 - 5	- /24			SAND, DARK BRO	WAY TO BLACK, SILTY, VERY FINE GRAINE
	24/ T		+P7	MOIST	RY DREANIC, PEAT-RICH, WODE FARGE
$4 - 55 \frac{10}{13}$	_ /₩ _	-/00 - 	SM	SAND, SILTY, GEET	TO BROUNISH BLACK, VELY FINE GRAINED, SHELL FRAGMENTS, PEAT, DENSE
5-55-5	- 1/24 -	-0-	-NR	NO RECOVERY	
		 40 _	SM -	SAND, SILTY, BR	OWN WET - POSSIBLY SLOUGH, SOFT
7 - 55		 - 60 -	+ 	JUBANGULAN WE	"/ BLACKISH MOTTLING, VERY FINE LANNED LL SUGIED EXPECT FOR OCCASINAL
			+-	SHELL FRAGMENTS	
	-24/24	-100 -		MODERATELY SUAT	ED, SUBA-GULAIZ, ABUNDANT SHELL FRAGS.
$q - 55 - \frac{6}{12}$	-21/24 -	-90 -	SF	SAND, GREY SO GRAINED, PUDRLY	JARTED SJEANGULAR, SHELL INTERVAL
	24/	_ 11.5		C1811.	
	- /24	- 100 -	SM	SAND, GREY, SLIG	HILY SILTY, SHELLY, AS ABOVE

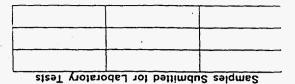
Samples Submitted for Laboratory Tests

NOTE: Standard Penetration Resistance is Sum of Blows for 2nd - 6" and 3rd - 6" to Drive 1-3/8" 1.D., 2" O.D. Split Barrel Sampler with 140 pound hammer falling 30 inches.

1


OSR 14-366 (Rev. 10/92)

OSR 14-366 (Rev. 10/92)


PAGE

QE 3

NOTE: Standard Penetration Resistance is Sum of Blows for 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split Barrel Sampler with 140 pound hammer falling 30 inches.

SRS

Sec. 1.

1

2003

OSR 14-366 (Rev. 10/92)

SOIL BORING LOG

PAGE 3 OF 3

(

ł

١.

OJECT	NASA -	WILSON	15 CORNE	ર		BORING NO. NASA - 22 DATE 8/14/96
SAMP	LINĠ	6-INCH BLOW	IN. DRIV.	%	LITH-	
TYPE			IN. REC.	REC.	OLOGY	DESCRIPTION
	<u>рертн</u> 50		24/		SM.	SAND, SILTY, SLIGHTLY CLAYEY, BLUE GREY, SUBANGULAR.
55	+ -	4	- /24 -	/ • • -	100000	Parely SORTED, WITH SHELLS (10-ZU'S)
_ _		7		├	+	
\$\$		ч			L'ML	SAND, CLAYEY, SLITY, BLUE LEEY, SUBANGULAR, WEL MEDINIM SUBSTICK FEW SNELLS
<u> </u>		4	24/22		تسب ا	CLAY, SILLTY, BLUE GREY STIFF, SLIGHTLY MOIST, PLASTI
		<u> </u>	- 102 -	-90 -	CLJ.	
<u> </u>			<u>-</u>	<u> </u>		FEW SHELLS - Gradatinal contact over ~ 3ft
			1	<u> </u>		TDO 54 H
T					T	
+			<u> </u>	+	+	
			1		<u>_</u>	
			4			
			— —		T	
- <u>+</u>	÷ 0-	1			<u> </u>	
		· ·	1	1		
Ì						
			<u>├</u> -	<u>†</u> − -	+-	
			1		_ _	
			4			
\uparrow		ļ		<u> </u>	†	
		1	<u>-</u>	┼╴╺		
			1	L.		
•			4			
+	+ -		j	+		
<u> </u>				╄		
			-			
				T -		
	<u> </u>	1	<u>-</u> -			1
			1			
	T -					
+-	-+		+ -			
			1 -	Ļ		
			-{			
				T '		
	5-	1	+	<u> </u>		
			1	L		
			+	+		
			- -			
			-			,
-	+		<u> </u>	1		•

Samples Submitted for Laboratory Tests

.

NOTE: Standard Penetration Resistance is Sum of Blows for 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split Barrel Sampler with 140 pound hammer falling 30 inches.

ł	A4900 ()	[[[0]]] (10)]3(0)[3		- 001-	- N2/N2 -	6		- 55-	- 9
	י צייהב׳ צחפעי מינהרטני מיברר צועשצעי צרוריאן מיתע ברייזב	SULLA MOIST, MED		- 001-	- h ² / _{w²} -	7 L R 5 F	- 01 -	- 55	۔ ع ــ
	ער אין	צעמט'מפרג צירגא ע	WS-	_ 001_	- h ² / _h 2-	0 23		- 55-	- *
1	ספטערי צויקנ אבטא צורנא' שע ניג פרואאי נייסוצו' איינא	ALL SALTS ALLAN	74	-100/-	- 12/12-	5 5	_ s _		-ε
	ש רוראן הינה איני בי בי בי בי איני בי איני איני איני	110 US1385 7737	WS_			2 5 6			
	· · · · · · · · · · · · · · · · · · ·		לבירד) נבר	_ 001_	- /hz-			- 55-	- 7
)	ואירג' צורגא היגוא צויברד (בורך:)	(777)	ーーーー	(0)	- "/hz -	2		ss	-,
ッ	- TNEN COARSE AGGRERASE (LIMELOCK)	भटडराध्य १२४२ इ.२४२२			IN' BEC.	COUNTS	0		
10	DESCRIPTION		70000 -HTIJ	REC. %	IN. DRIV.	BLOW BLOW 6-INCH		ANPLIN Bart	ON
1	w/ Bewinning Mub						NAGMOC	SIGHT (
	DRILLING METHODS AND DEPTHS Halling Methods and depths	РТНЗ СЕРТН	IEG RET BMIT	AWDNU 3TAO	она Сна	600	A S S S S S S S S S S S S S S S S S S S	1 sew	V∩_
	тота ноге рертн 50 {}	ROTOARI	יא	31033	2			173995	
		Э Э	SETANI		N		60	NASA.	/
	АЗЯА							1	
	DATE 8/20/96		\$	מראביר	1 LON C	'M	AZAI	$^{\vee}$ 103	เดยฯ
	PAGE 1 GFZ	ING FOG	BOB	lios				SSS	53

÷ .

Barrel Sampler with 140 pound hammer falling 30 inches. 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split NOTE: Standard Penetration Resistance is Sum of Blows for

צדאים (20%) לענא קברניאב אוברר צמנונט צחטשאנחרטבי

SAND, SLEY, LEEV, AS ADAVE EXCEPT WET WITH FEW SHELLS

ציינדים אל זמפרדיל 30 אל שביויוש - כטטעזי שניויוש זיענעט צעענ נטיין היל ניעל ביעה ביור גיור אדא זורגא שנייוש אבר

SOLED, SLIGNTY SILTY, MEDIUM DENSE, MOIST

באבובם שתרחושה אינא באאס (אסני) ביאר נעבא

אותי שלרא בסרובש עתרחדשר הינה אעריטערל כסרטעבא לשריחדשר הינה

CONVECTORE MILH OPADNE WINEWARS (~ 2%)

CORPSE - MEDIUM

YOL) SATEHS

Trien , Maist

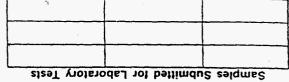
57 26

92

ю/

101

oþ


ej

1

21

2

NELL

٤I

67

57

27

77 TT

<u>6</u>T

6

Ť

T

TT

ᠶ

11

12/22

52/

12/12

m, 1/12-

100

M7

My

<u>ጦን/</u>

روله

/m7

25/

100

16

ንጌ

50

SL

55-

55

55-

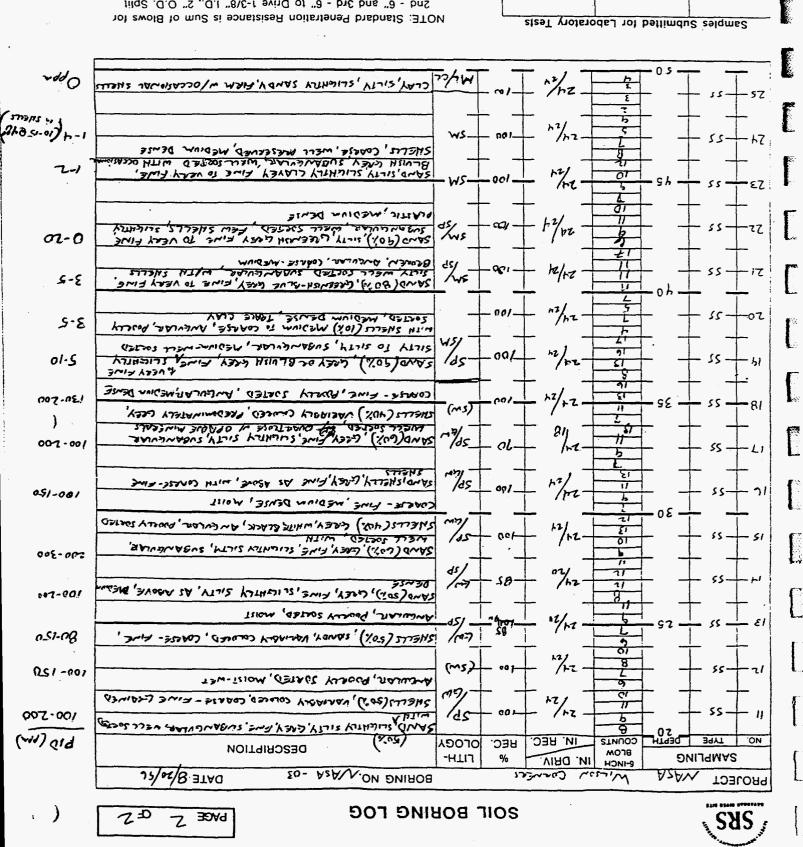
55.

01

L

8

L


Salin

8

ſ

ſ

OSR 14-366 (Rev. 10/92)

Barrel Sampler with 140 pound hammer falling 30 inches. 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split

OSK 14- 366 (Rev. 10/92)

7

]

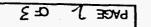
Ĵ

]

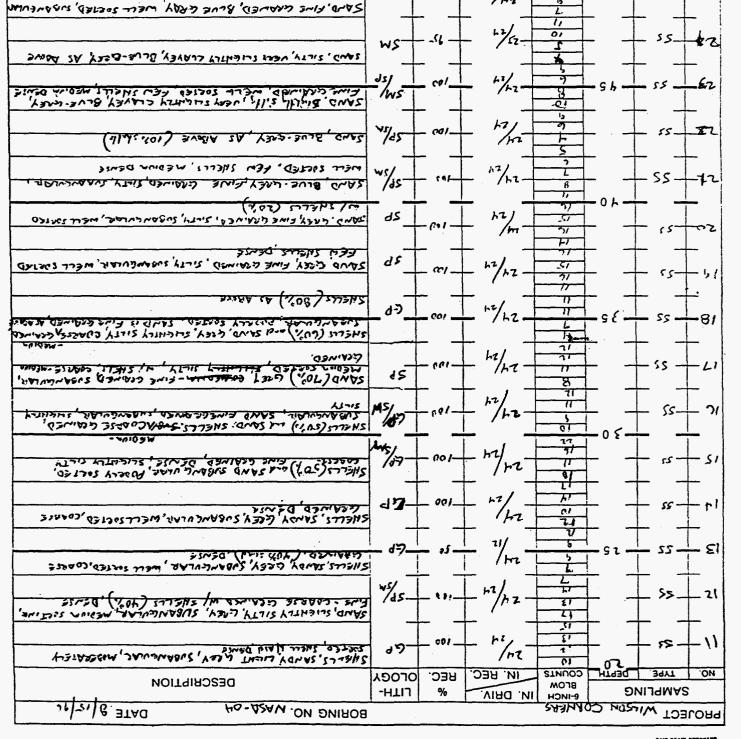
]

SOIL BORING LOG

PAGE 1 OF 3


					<u>_</u>		DATE
PROJECT NASA - V	NILSON	(CARI	UFRS				DATE 8/14/96
		00.0	,				AREA
							44501
			0000 000				REFERENCE ELEVATION
BORING NO.	,		N N	JURI	DINATES	E	REFERENCE ELEVATION
NASA -04							
DRILLER			_			TRACTOR	TOTAL HOLE DEPTH
Robert Snow	<u>-</u>			EOT			52 Fl.
TECHNICAL OVERSIG		- i			TIME	PTHS CEPTH	DRILLING METHODS AND DEPTHS
James Wedekind					1650		HOLLOW STEM AUGER
OVERSIGHT COMPAN	Y	}	-7.7		1050	1 11	W/ BENTONITE MUD
CDM Federal F	manger						7
	6-INCH	IN. DRI	V T		1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
SAMPLING	BLOW			% EC.	LITH-		DESCRIPTION
NO. TYPE DEPTH	COUNTS	IN. R	EC. H		OLOGY	Linder Tara	AND CRUSHED STONE (FILL) TO 1.0
1-55	6	- /18	<u> </u>	75 -	FILL	BECOMES SILT	BROWNY, SANDY WITH CRUSHED STONE (FILL)
	6	. 110		75			, SANDY CLAYEY WITH ROUTS TOPSOIL
	7	±,	.+-	_	+mL	AND ORGANIC MAT	REIAL STIFF
2-55	8	24/2	₃ <u></u> '	96-	- SM	CA D LARVE T	Y, FINE WELL SORTED, SUBANEVIAR,
	12					LVITH ROOTS AND	MOTILING GRADES TO PEAT, DENSE
	16	24/23			PT		
3 5	17	<u>+</u> /23	\$ ++-	96 -	+ -	PEAT, SANDY, SIL	TY, DARK BROWN TO BLACKISH BROWN
	20	1	_ _ _	_	+ PT	WITH ROUTS A	ECOMES BROWN SILTY SAND, DRY DENSE
	6	24/		75 -	<u></u>		
4 + 55 + -	7	24/18		15	SM	SAND, BROWIN, SIL	TY, FINE -MEDIUM, SUBANGULAR ABUNDANT OR GANICS, WET MEDIUM
	4	<u>}-</u>	+	-	+-	DENSE	ABONDANT OF CANCE, WIST REDUCT
5-55	3	24/24	_ <u>+</u> _	100-	∔	TOWN ROMANCE	
	5	- '24				SAND, BROWN, SI	LTY, FINE GRANED, AS ABOVE, LOUIS
	7	- -	T	-	Τ –		
6-55	9 13	- 24/24	1 + 1	100-	+	SHELLS SANDY	GREY TO LIGHT GREY, COARSE TO MEDIUM
-++	16	-	+	-	GP	HIGNLY BROKEN.	MEDIUM SORTED MEDIUM DENSE
7 - 55	16	24/		įov -	IGM	QUARTZUSE W.	TH OPAQUE MIMERALS (5%)
	16	1 /2	4 T	,	Τ		
	<u>u</u>	<u>+</u> ,	+	-	ISM/	SAND, GARY, SLIGI	ITLY SILTY FINE, SUBANGULAR, MEDIUM
8 55 15	11	1 24/i	8 +	75 -	SM/SP_	SORTED, WITH SI	IELLS (10%) DENSE
	<u>15</u> 20	1 "	·				
	13		T	_	T	SAND GACY, SLI	CHTLY SILTY FINE SUBANGULAR
9	15	1 24/2	4+	100 -	+-	MEDIUM SOLTEI	AS ABOVE W/ SNELLS MEDIUM DENIE
	21	1			+-		
10-55	13	24/		100	10	SUBANGULAR A	NED GREEN GREY VERY SLIGHTLY SILTY, MEDIUM SOLIED WITH SNELL HASH (50)
10 - 55	18	24/2	4 T	100 -		DENSE	
	18	- L	<u> </u>	-			
· .							

NOTE: Standard Penetration Resistance is Sum of Blows for 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split Barrel Sampler with 140 pound hammer falling 30 inches. 3/14


.

OSR 14-366 (Rev. 10/92)

OSR 14-366 (Rev. 10/92)

SOIL BORING LOG

5/ws

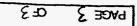
NOTE: Standard Penetration Resistance is Sum of Blows for 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split Barrel Sampler with 140 pound hammer falling 30 inches.

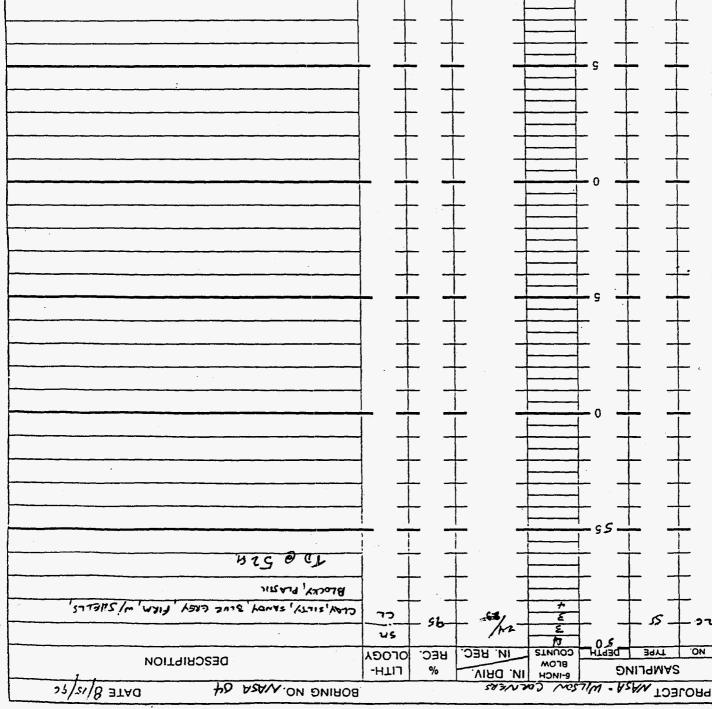
הינא זובדו (10-20) אערר שנצוניהני)

7,

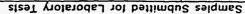
ß

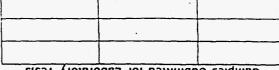
ha/


1-2


05.

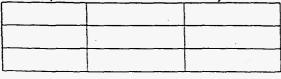
55.


SRS



Barrel Sampler with 140 pound hammer falling 30 inches. 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split NOTE: Standard Penetration Resistance is Sum of Blows for

and the second


SÓIL BORING LOG

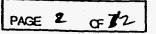
PAGE 1 OF2

PROJECT	·					
PROJECT NASA V	NILSON	s Cor	wer, FI	L		DATE 8/16/96
+ 2 <u>5</u>						AREA
						• •
BORING NO.	gw	S	RS COORE	DINATES	E	REFERENCE ELEVATION
NASA (05 05					
DRILLER		D	RILLING S		THACTOH	
Robert Snow TECHNICAL OVERSIG	SHT		GEOTEL BROUNDWA		PTHS	DRILLING METHODS AND DEPTHS
James Wedek			DATE	TIME	CEPTH	HSA WITH
OVERSIGHT COMPAN			8/16/94	0800	~6'	Bentraite Mud
CDM Federal					r.	
**	6-INCH			1		
SAMPLING -	BLOW	IN. DRIV		LITH- OLOGY		DESCRIPTION
NO. TYPE DEPTH	COUNTS	IN. RE	-0.	F -	GRASS AND TOP	SOIL, DARK BROW , WITH SOME CANINED STUR
1-55	2	24/10	75-	<u> </u>		WO PARK GREY, FINE, SUBANGULAR
	2	⊢`		SMA	MEDINA SOLTING	WITH ROUTS, LAMINATS?
2-55	3	-24/18	+75-	_		INE, SUSANEULAN MEDNIN DATUS,
	2	18			MOTTLED/ ROUTS,	A JIST
	2	24/			SALID SILTY I.R.	Y M JUST AT ABOYE
3-55-5-	2	- 1/20		T -		
	7	- ·	+ -	PEAT	P	
4-55	10	- 24/22		+ ~		, DARK MOLIN, DRY, BECOMES
	18	+ /20	-+ -	+-	WET AT BASE,	\$1/+~
5-55	3	- 24/22		+		
	3	1 /2		<u></u>	4	
6-55-		241		SM	•	we , Free - MEDIUM, SUB ANEULAN, MEDIUL
	+	24/24		Γ	MEL JURTED, DEC	AMICS, WET, WOTE
	1	1		T	5. 12	
17 +3 + -		24/24		tsm	4/ SHELLI (5%),	WAR GRADES TO GREENISH GREY
	12	-10	-+	+	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
8 53 15	2	- 24/24		+ -		EN-GREY, MEDING VELL SMITED
	2	1 /24		L	JUSANEVLAN, WA	87, LOUSE, -/ SHELLI - 1%)
		Lzu/		SP	SAND SLIGHTLY	SILTY GREY, FINE. MEDIUM, WELL
	12	-1"/14	-700-	51		R. DENSE N/ SNELLS (10%) and
		-	+ -	Τ	OPAQUE MINERALS	(1%),
10-55	10	1	+ -	- SP		(40%) AL ABONE,
	13	-L		- <u> </u>	<u>al</u>	

Samples Submitted for Laboratory Tests

ł

NOTE: Standard Penetration Resistance is Sum of Blows for 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split Barrel Sampler with 140 pound hammer falling 30 inches.


OSR 14-366 (Rev. 10/92)

]

SOIL BORING LOG

OSR 14-366 (Rev. 10/92)

ROJECT NASA &					BORING NO. NASA 05 DATE 8/16/96	
SAMPLING	6-INCH BLOW	IN. DRIV.	% REC.	LITH- OLOGY	DESCRIPTION	5
NO. TYPE DEPTH 2.0	COUNTS	1N. HEC. 21/	neo.	<u> </u>	SAND (65%) - GREY, EINE, SUBANGULAD, WELL SORTED	
7	10]0]]	- 1/2.1 -	- 14 -	LSP	W SUELLS (40%) LIGHT GREY, BACK, WITE, TAN, SUBANGUER COACSE - MEDIUM	
	15 15	24/	 - 9 0 -	- sp	SAND (70'A) ALAONE	
	15	/22			SHELL (30%) AS ABOYE STOD SHELL J (70%) COALSE - MEDIUM GRAIDED, VARIABLY	
3 - 55 - 25 -		24/	-96 -	LGW_	COLDRED ANGULAR AND SAND GLEEV, FINE CURANGULAR	
14 - - - -	9	-24/24 -	 -/vo -	Fau	SNELLS (90%) AS. ABOVE	
	15 19			-	SAND (10%) AS ABOVA	
<i>15</i> + <i>55</i> +	29	-24/24 -	- 100 -	6.0	SHELLS (70%) COARSE MEDIN GOMMED, VARIAGLY COLDEED ANGWAR, POORY SOLSED FOND (30%), GREY, SUCHELY SILTY FINE, SUBANEWLAR, WELL	Î
16	17 11 13	-24/	-96-		SAND, QUARTLASE DELY FINE SAND, (BOX) FINEALLEY, SILTY SUBANGULAR, MEDNINGLL	
	13	<u>}</u>		SM/ SP	SNELL (30%) MEDIUM - CORRECE GERAINED, VARIAS-4 COLORED	1
	19	24/12 _	- 50-		MUSILY, C. der	
(8	12 13	- 24/2r -	-90 -	5P/	SAND/60% - FINE LIGHT GESY FINE SUBANGULAR. MELL SONAD WITH 2% OPAQUE MINEMLS	22
·	- 14 - 11 - 10			+	SNELLS (45%) - COORSE - LIGHT WAY ANGULAR. SHELLS AND SAND AS ABOVE, INTERBEDDED, MEDING DELSE	
19	14 17 3	/21 _		T_	SAND, SLIGHTLY SILTY GREY, TO BLUE GREY, FINE, SUBANENLAR,	
20-55	5 5 7	24/24 -		5My SP	MEDIUM JORTING, W/ SNELLS (5%), MEDIUM DENSE	2
2 k - 35	16 19	-24/24 -	-100-		SAND SILTY BUR WRY-GREY, FINE, SUBANGULAR, WELL SOUTED, of SULAISMAL SHELLY LAVERS, MEDIUM DELSE	
	, <u>2</u> 9 10	- 24/24 -			SAND SINTY VERY SLIGHTLY CLAVEY F, ME - VERY F, ME SUBANGULAR, WELLISS MEDIUM SUBJED of 28 SHELLS	
	17 13 V	ļ _	- 100 -	<u> </u>	BLUE-GREY	
z] 55 45 -		24/22 -	-90 -		SAND, SILTY, BLUE GREY, AS ABOVE	
2 4	19 3 5 5 7	- 24/ -	- 100 -	SM	SAND SILTY SUIGHTLY CLAYEY ISINE TO VERY FINE, SUBANGULAR, MEDINA SOCEAD, MY 5% SHELLS - OFTEN UNBROKEN	
	3	- 24 -	-90 -		CLAY, SILTY, SANDY, HITH SANDY LAMINAE	1
2,5 0-	1	1 '11		_cr_	AND AND A AN	

Samples Submitted for Laboratory Tests

·

oratory Tests NOTE

TO @ SOFI.

NOTE: Standard Penetration Resistance is Sum of Blows for 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split Barrel Sampler with 140 pound hammer falling 30 inches.

.

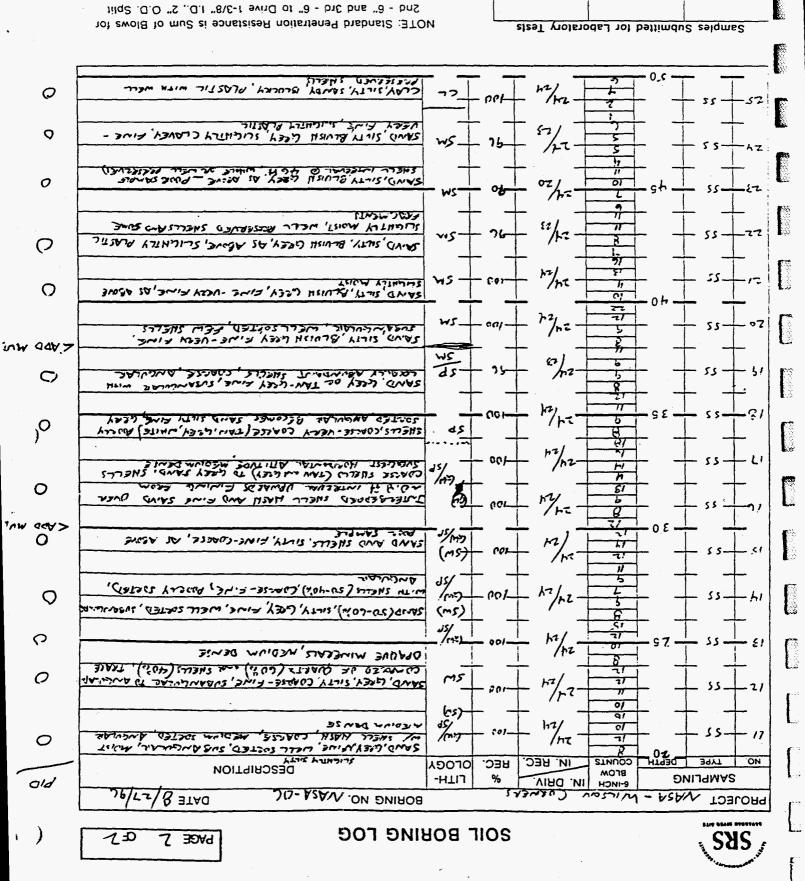
1. Carl

Hickory

delan

SOIL BORING LOG

PAGE 1 OF 2


OSR 14-366 (Rev. 10/92)

PROJECT	<u></u>			<u> </u>		DATE	
						8/27/96	
NASA -	WIL	SON C	DRNE	RS	,	AREA	
BORING NO.	SRS	COOR	DINATES		REFERENCE ELEVATION		
NASA-06					Е		
DRILLER					FRACTOR	TOTAL HOLE DEPTH	
ROMENT SNOW			EDTR		07.10	50 ft	
TECHNICAL OVERSIGHT			DATE	ATER DE	CEPTH	DRILLING METHODS AND DEPTHS	
OVERSIGHT COMPANY						Hollow STEM AUGER	
CDM FEDERAL				<u></u>		with Beatonik Mud	
SAMPLING	6-INCH BLOW	IN. DRIV.	%	LITH-		DESCRIPTION	P
NO. TYPE DEPTH	COUNTS	IN. REC.	REC.	OLOGY	I AACE AND TO	PSDIL WITH SHELL FRAGMENTS AND	<u>├</u> ─-
1-55	2	- 24/23 -		FILL	JAND SILTY LELL)	0
	4	- /23 -	L _	IM	A LON THE ALL DARK		
2-55	2	1		-sm	SLICHTLY MOIST	BROWN FINE, WELL SOFTED, SUBANGUAR , LOUSE	0
	4	24/18 -	<u> </u>				
3-55-5-	3				SAND, SILTY BOWN GRAPSS TO LIGHT BROWN, FINE TO MEDIUM MEDIUM SOUTER, SUBAUGULAR TO TUBROUND		Ċ
3 + ss + s - s	3	+ 24/24 -	- 600 -		LOUSE, MOIST		1
	5		Τ -	T	SAND CHEY MIL	I WATE ENDE TO VELY FINE	
	17	- 24/ -	-100 -	HAR DAN	SAND, SILTY MILLY WHITE FINE, TO VELY FINE, SUBANEVLAL, WELL SOLTED, PARTIALLY CEMENTED		
	2	+- ·· -	+ -	IN TO UT ON	(HARDPAN), MUIS		
5-55	3	- 24/24 -	- 100 -	+			
	5	<u>+</u> ' -	┿╴╺		SAND LIGHT LEEV	SILTY, FINE, SUBANGULAL, WELL SURTED	
6-55	5	-24/ -	+1w -	(NARDES	}		$\left\{ \right.$
-++	9	- 124 -	+ -	F	WEATHED WHITE	ENSE, WITH TEACE FOSSIL DEBRIS SCANDONALY EXAMINED (HALDPAN); WET	-
7	10	- 24/24 -	- 00 -	-sm	CAND IN THE COCH ASSAULT AS ACOUS COMPANY AND		
	21		∔ -	(HAR. MN)	(NARDFAN)	MEDNA DENSE	1
8 15	13	24/ _				••	
	18 22	<u> </u>	$\Box^{\prime \circ \circ}$	HALDRON	MOIST DENSE	GET FINE, SUBANGULAE, WELL SOLTED PARTIALLY CEMENTED INTO] (
	17		Γ	Im	IRREGULAR "NO	DULES", TRACE SHELL DEBLIS, BECOMES	
4 - 55 - -	9	- 124 -		MALSPAN			1
	5	- 24	†			LA SAND (40-30%) CEAGNTED ABUNDANT PRIMARY BUSITY	ן י
	8	- 24/24 -	- 100 -	NANDAN SNOW	PLUTLY CONFOLIPOTED	, MEDIUM DENSE, WET, BECOMES	
				- Islaced -	SAFLLS(701), VERY	CJARSE, WELL JARTED , ANGULAR	1
Lange	·····				HAN JAND (10%)		-

Samples Submitted for Laboratory Tests

NOTE: Standard Penetration Resistance is Sum of Blows for 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split Barrel Sampler with 140 pound hammer falling 30 inches.

.

Barrel Sampler with 140 pound hammer falling 30 inches.

O2K 14- 366 (Rev. 10/92)

-

ы 191

-

8

the second

250 A.M.

SOIL BORING LOG

PAGE 1 CF Z

OSR 14-366 (Rev. 10/92)

NASA - WILSON Co.	RNERS		•	DATE & /23/96 AREA
BORING NO.	SRS COOR	DINATES		REFERENCE ELEVATION
NASA-07	N		E	
DRILLER	DRILLING S	SUBCON	FRACTOR	TOTAL HOLE DEPTH
ROBERT SNOW	GEOTAK			50 Ft
ECHNICAL OVERSIGHT	GROUNDWATER DEPTHS			DRILLING METHODS AND DEPTHS
JAMES WEDEKIND	8/23/46		~6-951	How STEN AUGAR
CDM FEDERAL	01-5110			W/ MUD (BENTONIFA)
SAMPLING 6-INCH IN. DE	IIV %	LITH-		
BLOW	REC. REC.	OLOGY		DESCRIPTION
		Fill	SAND AND SHE	ELS, WHITE -BLACK, BECOMES SAND, SILTY
$1 \rightarrow 5S \rightarrow 1 \rightarrow 14/2$	3 + 16 -	SM	DACK GEEY-A	SCOUN, SUBARILVIAC, WELL SURTED, FANG
$2 - 55 - \frac{3}{1 - 24/2}$, +91 -	sm	SAND LIGHTLA SURTED. MOIST.	WY ROOTS, TRACE DECEMAS
	-+	EA		ARK BROWN, WERY SILTY, SLIGHTLY AWIST
$3 - 55 - 5 - \frac{4}{10} - \frac{24}{2}$	- 100-	SM PL	W/ ACUNDONT	ARGANKS, WITH INTSTAEDCED NT GARY, U/ ROSS, STIFF
		34		
$4 + ss + \frac{3}{3} + \frac{2}{2} \frac{1}{2} \frac$	4	-Pt 		ELY SILTY, FINE, SUBANGULAR, WELL
	T -	Tom		
$5 - 55 - 10 - \frac{1}{W_{eff}}$	- coi k		SAND, LIGHT B. SORTED, LAMI	ROWN, SILTY, FINE, SUBANGULAR, WELL NOTED SOTURATED, VERY LODIE
6 - 55	; <u>-</u> ii -	- 54	SAND, LIGHT B	ROWN, SINTY, FINE, AS ADJUE, SULLHT ATURATED, VERY LOSSE
T T III w	T.			
$7 - ss - \frac{\omega \omega d}{\omega d} / l2$		t sn	SAND, GARY, SIL SATURATED, VI	TY RINE, SUBBYGULAR, WELL SONTED, ERY LOOSE - POSSIBLE SLOUGH
8 - 55 - 15 - weil - 21/	2 -50-	-sm-	SAND, AS ABOU	1E-POOR SAMPLE
	-+	+		<u></u>
$q + ss + \frac{s}{1} + \frac{s}{$	r	SM	SURTED WITH	IN FINE, SUBANGULAIL, WELL- AUCLY SHELLS, WHITE, WEATHERED LOCALLY
10 55 - 3 24/2	4 -100-	sw	SAND WITH SHE	-25%) CLLS (20-30%), SAMD. GREY, URRY FINE. CURSE-MEDIUM

Samples Submitted for Laboratory Tests								

7

NOTE: Standard Penetration Resistance is Sum of Blows for 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split Barrel Sampler with 140 pound hammer falling 30 inches.

05 CLAY SAUDY SILTI PLATE, LANINATED 22 L 3 55 001 m F צאבררנ' צאאא' זורנג' הפעג אברך שעבנערגפ <u>เกรรี</u> 3/ 8 ws 01 /22 4-11 577575 ENGROUND' WELL SOLTED, MOIST, WITH WELL PRESERVED WhE FREN EINE D NERY LINE STOUTHING L צעאי צורנגל צרונינרא כרעאצא חברא צדוריאשדא עדעצור τ m 52 wŚ 50 SH ניאב-גבל ביאב פרחוצא רעבא שטינו ערטי זידגר צרימתונה כרטהבא צרוראנרג טרטצנור ~1 /22 55 22 ร ~1~~~~L aid ð הבת באבובים הוכרטוויאשר צאבדר בטויידיים (איצא) 11/12 02> SWO SKEY BLUEL CREET FINE - NEW FINE SUNE at 12 9 12. ġ 04 ניקרדא דעאנגל ניוענובי זערט זירוא פרתווא קבגא עז עצימצ' טברעניממידא hI ò 12-01 001 1/2 cz55. זרו היאגרא לרעצוטר היזידר דיידובט' במדררו (ב נסיי) שטורג גיזידה איזידני ערט' זורגא פרחב - פידא' ביייה - הפרא ביייה צווינערעני ना ws 22/2 Ъ 05 02 55. . 51 5 21/2: צא בררצ (30-202)' מעהיעטרג ניוראבצי בחענצ - ארציוראב' עיידי אור π 75 32 ns 11 81 0 þ אישיא צדוראנרא צויעא שאיא א רוראו היבא' בייאב אבדר) бī 22/22 64/m5 21 55 -BE COMES LIGHT TAN, SHELLY CONDES TO SAUD, CARY, FINE WITH FEW SALLEL 51 34 m 0 5/2 SHELLS, VARIANAY CADRED, (80%) and SAIVE AS ABAVE 27 35 55. 2! 9! JSUVCY ' 1 IN STANKS JUS S ds Sol 30 CREWN ONVER SAND WITH 1-24, OPADIE MINERAL ħ Q צאיתם' באעבא' עויאבי אים שארחידטוב-ציוש נאברר זיעברר זינבים h7/2 Ø1 _5 0.01 15. Я is/my עד שלאת (דצי זרסתרא) צריאטנגעיי) ייד צוודרי (שיי) רענג׳ שאחרא צובני 0 21 hu/ ত ms. 101 55-· /~/ 9 WELL SUCCED; GEADES TO SAUD, SILTY WITH ARWINGENT 5 hal 0 13 52 15 c @1 55 ישא ההרטיר צעיים וז ביאה הדדא ביאי צחי 13 ቖ צקבררי אעזיעזרא בסיסבר גל היאינב באאי ציעיר as/MD $\overline{2}$ (05-027 CANS my (202-07) 5773HS hyma 9 0 55-21 61 SAND IS OVERTZOLE (98%) CUITH (81.) OPADUE MINERAS 5 כסשהנצ - נויהבי שיי נירוא ניניבובט טאריאושר זאנשיית באברר (רס.צ) ייים נשא שלאטיי) לעבא השהיבט נייאנשי 61 Ì 102 55. . 11 מאניענגב שעמהינשנה Ο MS 0 2 Hid30 Tol ald STNUOD ON REC. IN BEC TYPE **VDOLOGY** DESCRIPTION WOJB SAMPLING -HTIJ % VIAD .NI P-INCH TO-AZAN .ON DNIROB VIASA 27/22/8 3TAD CURNERS NICSON PROJECT SOIL BORING LOG 2 D SRS 2 30A9

Barrel Sampler with 140 pound hammer falling 30 inches. 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split NOTE: Standard Penetration Resistance is Sum of Blows for Samples Submitted for Laboratory Tests

OSK 14- 366 (Rev. 10/92)

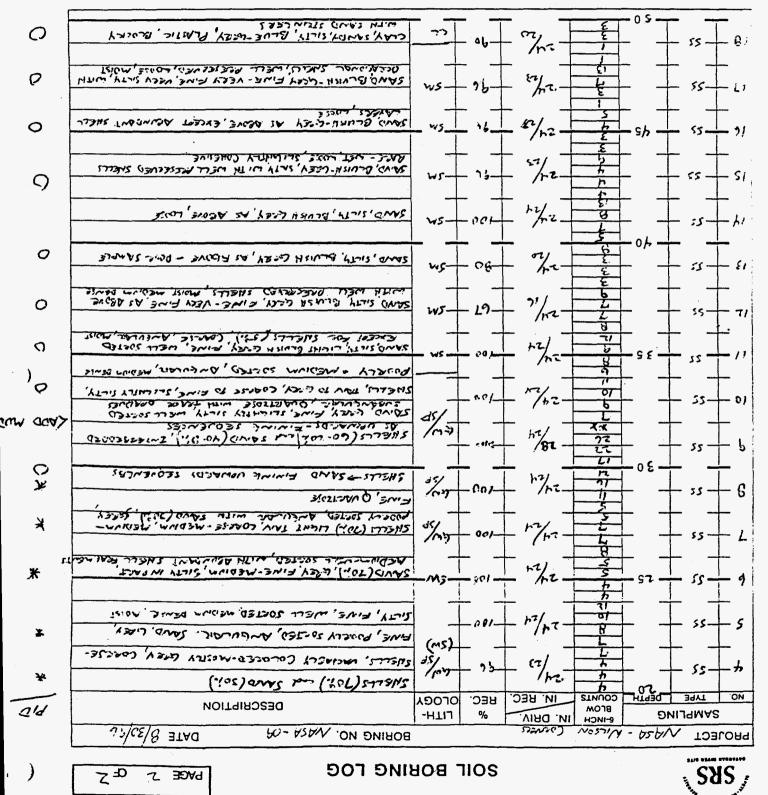
Second Second

2000 C

100 A

SOIL BORING LOG

PAGE 1 Œ


OSR 14-366 (Rev. 10/92)

BORING NO.	· · · · · · · · · · · · · · · · · · ·	ISBS CO	ORDINATE	<u></u>	REFERENCE ELEVAT	10N
NASA - 09		N	ORDINALE	E		
DRILLER		DRILLIN	IG SUBCON	ITRACTOR	TOTAL HOLE DEPTH	
Robert Snow TECHNICAL OVERSIG		Geo	TEK		50 #	
			DWATER D	EPTHS CEPTH	DRILLING METHODS	AND DEPTH
James Wedekind					HULLOW STEM	AUGER
OVERSIGHT COMPAN	Υ.					
CDM Federal						
SAMPLING	6-INCH IN. E		% LITH-		DESCRIPTION	
NO TYPE DEPTH	COUNTS IN	REC. RI	EC. OLOG			
		· _		GRASS and	SAND BEANN SILTY	
			sm			
<u>_</u>				SAND, LIGHT BE		
\ <u>`</u>						•
				-		
$\pm \pm 2$		T	PEAT	DARK BERLA, U	ALK TO REAY SILTY AUGER 7	DRILL
+ $+$ $<$		T	T		70 1451	
+ + -			+	WET O~8		
-+ -+ -		+				
		-	+sm	SAND DAGE AN	WING, SILTY, WET	······································
		(+)	+ .	-		
-+ -+ -		$\setminus +$				
+ -+ -		\rightarrow	+ sm	SAND DALK BO	AWNY, SILTY WET	
		\mathcal{A}				
	 	'	4~			
	1 2	$\sqrt{\perp}$		SAND, SILTY C	LEY, BECOMES LIGHTER GO	LEY FINE, WEL
	5	/12 I		IN AZ JATER	AL Q~1551.	
	7	vT.			· · · · ·	
2++-	7	1 +1	50-50	SAVD (50-66 ;.)	, GREY, SILTY, FIRE, WELLS (50-402), MOSTLY WHI	ORTED SUBANK

KPD Malfuli

Samples Submitted for Laboratory Tests

_	

And Standard Penetration Resistance is Sum of Blows for NOTE: Standard Penetration Resistance is Sum of Blows for Snd - 6" and 3rd - 6" to Drive 1-3/8" 1.D., 2" O.D. Split

Barrel Sampler with 140 pound hammer falling 30 inches.

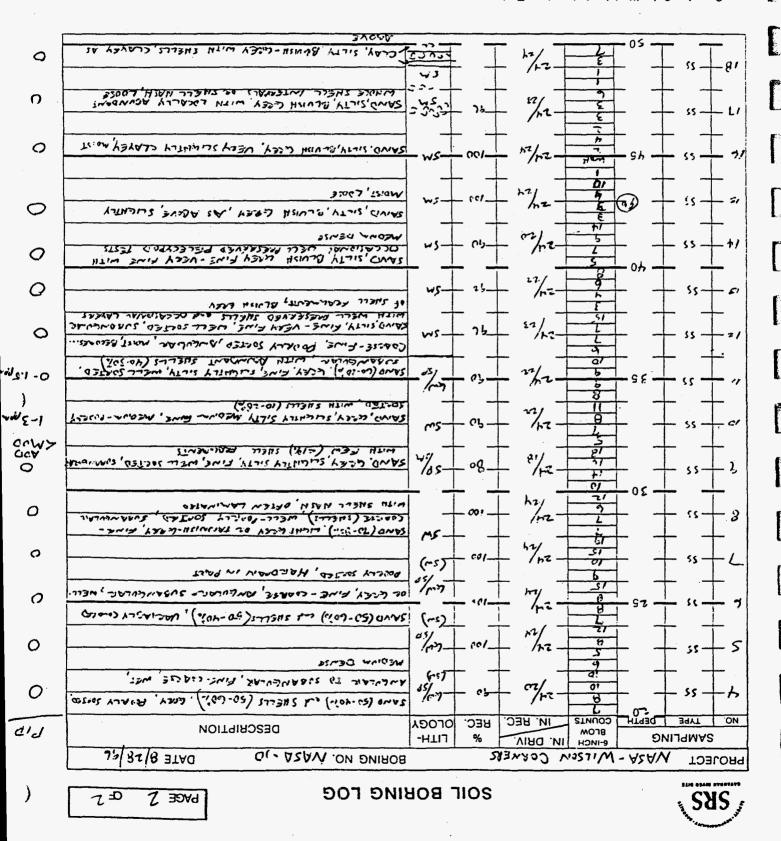
Samples Submitted for Laboratory Tests

O2K 14-366 (Kev. 10/92)

OSR 14-	366	(Rev.	10/92)
---------	-----	-------	--------

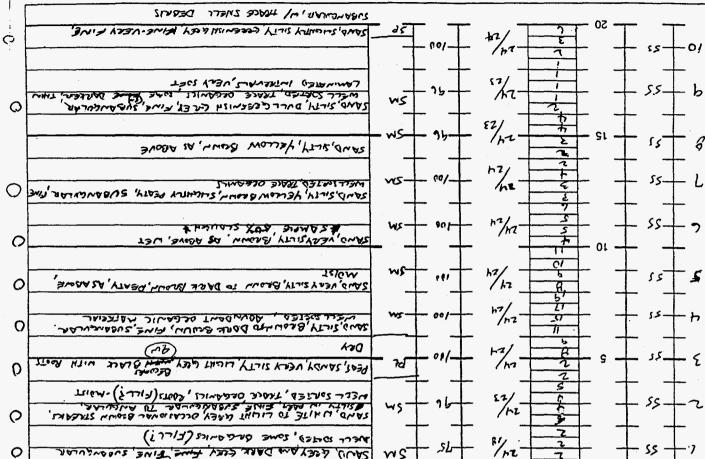
	and the second second second	
£	SRS	• • • • •

a transfer

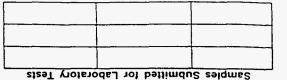

SOIL BORING LOG

PAGE 1 OF2

PROJECT				DATE 8/28/96	1
NASA - W	ilson C	NENERS		AREA	
BORING NO.	SRS C N	OORDINATES	E	REFERENCE ELEVATION	
DRILLER		ING SUBCON	TRACTOR	TOTAL HOLE DEPTH	
Robert South TECHNICAL OVERSIGHT	GROU	EOTER NDWATER DE		DRILLING METHODS AND DEPTHS	1
James Weddand OVERSIGHT COMPANY		ATE TIME	CEPTH	HOLLOW STEM AUGER	
CDM Federal					j 1
SAMPLING BLOW NO. TYPE DEPTH COUNTS	IN. DRIV.	% LITH- REC. OLOGY		DESCRIPTION	/
			L-RASS DND	SAMD, SILTY, GREY	
			SAND SIJY B	e Du/n/	
				A	
		• 🕂 =			
+ $+$ $+$	- +		SAND SILTY Gee	Y WET	
				R DEILL TO 14 FH	
	\setminus +	·	OBS	ERVE CUTTINES ONLY	
	- _ +	·			
			SAIND SILTY C	264 ~/	
	- +	· +	OCCASIONAL SNE WEATNERED, WE		
	24/			VACIONALY CONCEO/GEEY WHITE), ANEULAR GONT ACONA-PORLY 154.7AD	
1 - 55 - 15 - 13 - 13 - 13 - 13 - 13 - 1	- 24/18	· · · · · · · · · · · · · · · · · · ·	SA.VD (40 SUTU)	LIGHTLY SILTY FING, WELL SOLTED	
	-24/12 -	-150 - (w)/ /SP	SHELLS (70-80%), SAND (10-107)	AS ACOVE POOR SAMPLE	
	-24/18 -	- 80 - 6- 15P	-	LARY WHITE, COORSE FINE, MEDUM	
3 55 20			SAND (52 40%) . 64	RY, FINE, WELL SORTED, SUBANGULAR,]


Samples S	ubmitted for Lab	oratory Tests
	······	
L		L

OSR 14- 366 (Rev. 10/92)


NOTE: Standard Penetration Resistance is Sum of Blows for 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split Barrel Sampler with 140 pound hammer talling 30 inches. SizeT Yoofalor Laboratory Tests

	En I BOAR	ואפ רספ	ROB	SOIL					SRS T	S ,
	аруу (1919 азва			5330	کمی	~~~~/	η	- A2f		агояч
		3		соовр	N SHS		1	1 - 056	₩ 10 N0	NIROB
	тотас исте DEPTH	ROTOAR	гиораг	NECK TINE 21	-			<u>ک</u> به مس		ייא סצורר
	DRILLING METHODS AND DEPTHS WJLLOW STON ANGLE	HT530					6~	NAPAS	M FED SIGHT (NSICHT (NSICHL (OVER √∧.~
	DESCRIPTION	· · · · · · · · · · · · · · · · · · ·	סרספג רובא-	BEC. %	I. REC.	MO	ו פר			
	ב פנינים אונצ (בורן) שנה ברבא בייחבי בואבי צחוטאלחיטור צירוג לא		~~s~	- st-					- 55 -	-7
?]]	ורה טבהאיונן , במנה היה אישוע איז בעפאנגיייבר זו היובעיריב, ורוא נענגא טרנאושאר פיטחא גדעבאני	הברר זיענבף 'אמ ארדר זיי שמייב עמירה ייז שמייב עמים חאונב גם ר	ws-	- 16-	51	h1			_ \$\$_	-2
0[שה) ורגא רוריון לכא האבין טרערג חינא נייינל	PEAS, SANDY, VELY S	25	0\$/		h3	22	- 9	<u></u>	- 2

NOTE: Standard Penetration Resistance is Sum of Blows for 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split Barrel Sampler with 140 pound hammer falling 30 inches.

.

Sec. 12

Sec. 1

Sec. 1

See.

ł

]

Value of

SOIL BORING LOG

OSR 14-366 (Rev. 10/92)

PAGE	2	œ7

(

ROJECT /VALA	WILSON				BORING NO. NASA -11 DATE 8/14/96
SAMPLING	6-INCH BLOW COUNTS	IN. DRIV.	% REC.	LITH- OLOGY	DESCRIPTION
0. TYPE DEPTH 20 53	2 2 3	24/ 	-85 -		SAND, SLIGHTLY SILTY GREENISH GREY FINE TO VERY FINE SUGANGULAR, WELL-MEDING TURTING / SNELLEF FRANKLING (~2%) - POUR SAMPLE 40% SLOUGH -
	9 -7 -7 -7 -7 -7	- 24/ -	 -9c -	SP/	SAND (50%), SLICHTLY SILTY, GLEY FINE VERY FINE
+ +	5	24/	-100 -		SAEUS (50%), CURESE - FINE, UALIARY WORED (GEY, white
+ + -	9	-24/24		+	PODELY SORTED, SWEWLAR-SUBERLEULAR MEDIUM DENSE
	9	-24/21 -	-100 -	+SW@	SAND/ (CIX) SLIGHTLY SILTY, GREV, FINE. SUBANGULAR, SOLAN SOLTED. AND, SHELLS (402), VARIABLY COLORED
	10 1 3 3	24/24		Ţ	(GELY, WHITE, TON), ANGULAE, MEDIUN DENSE
	7 	- 24/ -	-100		SAND, (70 %), SLICHTLY SILTY, CARY FINE SUBANGUAR POWELY FORTED, PUARTINE (TUR) of USA UN ANGONS (CIT) and SHELLS (2) %), VARIABLY GURED, ANKULOR, CODAX- FIRE
	1J 4 6	24/20 -	100	İ.ω	LOOSE - MEDINA DENSE SAND (70%), SLIGHTLY SILTY W/ SHELLS(30%) AS AANE
	5 io 9	- 24/ -			PODRLY SOUTED, CODESE-FINE, MEDIUM DENSE
	18 B T				SAND (LO).) NERY SUMMILY SILTY, GARY FINE, WELL SARTED, SUBANGULAR, QUARTZOSE WITH OPAQUE MINERALS AND SHELLS(40%), VARIABLY COLORED (LOREY, MATE, BLACK, TAN)
+ + -	16 15 9	24/24		+-	COARSC - FINE, POORLY SONIED, AN GULAR, MEDIUM DENSE BECOMES LIGHT GREVISH BROWN WITH RARE DARK GOT STREAKS
		-24/22 -	-90 -		SAND, SILTY, BLUISN GREY FINE TO VERY FINE, SUBANGUAR
	9	-24/12 -	-90 -	- Ism	WELL SOLTED, QUARTZEE, MEDIUM DENSE, WITH SHELLS (27)
	3 5 10,	- 24/24 -		SP/sm	SAND, SILTY, BLUGH GLEY, FINE TO VERY FINT SUBANGUAR WELL SUBJED, MITH SHELLS (2-5%), COASE GRAINED, SUBANGULAR, POULLY SORTED, MEDIUM DENSE
	12	24/24 -	100 -		
	12 0 0 10 10	-24/ - -24/ -			SAND. SILTY BLUDH LREY, FINS TO VERY FINE, SUBANGULAR WELL SORTED WITH SHELLS (2%) COMUNE CREATED MEDIUM SURTED, ANGULAR, MEDIUM DRUGE
	4 4 4 10		-96 -		SAND, SILTY, SLIGHTLY CLAYEY GIVE TO VERY FORE AS ABOVE WITH UELL ARSTELLED SHELLS - WELL TO SURE GREY

Samples Submitted for Laboratory Tests

·	

Trans and

Here State

and the second

1.0.16

OSR 14-366 (Rev. 10/92)

SOIL BORING LOG

PAGE 3 OF 3

(

Om

ĺ

				Wisson	CORNELS	· · · · · · · · · · · · · · · · · · ·		BORING NO. NASA-11 DATE 8/19/96
	SAMP	LING	COTU	6-INCH BLOW COUNTS	IN. DRIV.	% REC.	LITH- OLOGY	DESCRIPTION
NO.	TYPE		^{ЕРТН_} 5 ⁰		_24/ _		SM	
26-	- 55	T		6	- /24 -	_100_	CL/ML	CLAY, SILTY, SLILATLY JANDY, BLUISN GEEN STIEF
	T_		_	<u> </u>	l			WITH THE BED OF SAELLS OR CLAYEY SAND.
_	<u> </u>	4	_	<u> </u>		<u> </u>	<u> </u>	Total Depth @ 52 Fl.
-	<u> </u>	<u> </u>	5 -			<u> </u>		
-	+-	+	_		<u> </u>			
-	<u> </u>	+		<u> </u>	╡╴	┝ -	<u> </u>	
-	+-	+	-		<u>↓</u>	<u>├</u> -		
		十	 0					
		\square	- 0					
_	<u> </u>		-			<u> </u>	<u> </u>	
-	1		-		↓ −		+	
-	+-	+	-		<u> </u>		+-	
-	+-	+	5 -	 	<u>∔</u> ⊸ –	<u> </u>	┼╸╺	
-	╉╾	+	-		<u>∔</u> -	+ -	+-	
			-					·
_			_		-	<u> </u>		
· -	<u> </u>	4	0 -	<u> </u>	<u>+</u>	<u> </u>		
-	+	+	-					
-	+	+-	-]		+-	
	+-	+	-		<u>∔-</u> -	┼╸ -	+-	
-	+-	+-	-			+ -		
-	Í		5 -				<u> </u>	
	Γ				-	\Box		
								· · · · · · · · · · · · · · · · · · ·
-	-							
-			• 0 •					1

Samples Submitted for Laboratory Tests

NOTE: Standard Penetration Resistance is Sum of Blows for 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split Barrel Sampler with 140 pound hammer falling 30 inches.

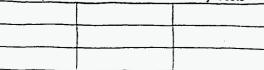
1

J

Sec. 3

Sec. 1

SOIL BORING LOG


PAGE 1 OF 3

OSR 14-366 (Rev. 10/92)

NASA -	Wil	.50,V (OUNERS			DATE 8/21/96 AREA	
BORING NO.	······	s	RS COOR	DINATES		REFERENCE ELEVATION	
NASA -14			N		E		
DRILLER		C	RILLING	SUBCON'	TRACTOR	TOTAL HOLE DEPTH	
ROSENT SNOW		!	GEOT	€K		54 FT	
TECHNICAL OVERSIGH		ic		ATER DE	PTHS DEPTH	DRILLING METHODS AND DEPTHS	
JAMES WEDERI			DAIL	11.1.2		HULLOW STEM AUGER	
OVERSIGHT COMPANY CDM FEDERAL	(" BENTONITE MUD	
r	6-INCH						(non)
	BLOW	IN. DRIV		LITH- OLOGY		DESCRIPTION	Pic
1-55	1	-241		Fill	L	ADIL WITH LIMERAR CRUINED STONE	0
	w) & +	- 24/ - /23	- 46	, 	SHELLS AND SAND	SILTY BLACK - WHITE (FILL)	
2-55-	<u>2</u> 1 3	-24/	-14	FILL	WET JOST	E TO PARE BOWN, WITH SHELLS (FILL)	0
3	i	- 14/		-Fill -	PLANDER BLOCK IN CU	PE (DRAW FIELD ?) RINKS	
	3	- 14/20		<u></u>	WET WITH ROTTS		0
4-55	2 7	-24/	- 100 -	2.02057 -	TOPSOIL, BLACK, SI SAIND GREY FINE, SI	LTY MANY LOUTS. LTY WITH REDITS SOLT, WET	
	2 17 6	124	+ .	PL	PEAT, URRYSILTY VERY STIFF	SONDY FINE BLACK TO DAILY MONT	υ
5 + 55 + -	-9 -10 -7	24/18			SAND, VERY SILTY D - WELL SOLTED	MOLE BEDWAY, E.NE, SUBANGULAL, MEDINA MUST MEDINA DENSE	0
6-55-		- 24/			SAND, SILTY, BROW WELL SOITED WET	THE SUBANGULAL FINE TO VERY FINE SOFT, QUALTLOSS (WITH VELY FEW OPONDES	٥
7 + 55 + -	WOH 1 Wedd	-24/14		+sn	BOD SAME (SAND, SINTY BOWN, WET, YEAN SOFT	BOJON (OK) THEN GLEY, FINE TO VELY FINE, WELL SOULD	0
8 55 15		24/24			-BETTER JOARE (SAIND, SILTY VERY SUSAILLAG TO S	SON SLOUGH) IF, NE TO F. NE MEDIUM - WELL DRTED URADUS, WELL VELY SOFT, GREY, TRACESHELL	0
9-55	4 17 12	- 24/24			I WAANGULAL TO	FINE TO FINE MEDIUL-WELL SULTED SUBROUND MEDIUL DENSE, WAT GREY SOME SHELL FRALMENTS	0
10	21 21 25	-%	+0	Ew,?	·	SAMPLE - (SHALLS ?) - PIPE STUCK ADD WATER	:
			<u>-</u> .			Prin Diriocite Abbreach] ¦

* WOH - Weight on HARMER

Samples Submitted for Laboratory Tests

NO.

6

 \odot

Ð

4

15D

16

De

18

1\$

21

22

23

SOIL BORING LOG

WILSON PROJECT NASA-BORING NO. CERNER DATE 8/21/96 A5A - 14 6-INCH IN. DRIV SAMPLING LITH-% BLOW PID . Jure DESCRIPTION OLOGY DEPTI TYPE IN. REC. REC COUNTS (ten) budyn SHELLS VARIACLY COLDEED (GEEY, BLACK, WHITE, TAN) 4 24/23 3 6w/ 96 0 COARSE - FINE ANGULAR, PODELY SOCTED 6 WITH 1s? SAND (30-40)), GREY, FINE, SUGATLY SILTY, SUBANGULAIL 6-13 pm (we) 24/ ۶ 96 WELL SOCIED LOUSE - MEDIUM DENSE, MOINT 4-8---24/23 SAND, SUGATLY SILTY, GERY TO LIGHT GERY, FINE, DUCULAR SP/ SOLTED uni WITH law SUELLS (40%), WARDELY COLDERD, COARSE-FINE, PODELY SOCTED, ANGULAR, LOOSE, MOIST 3.5 LOOS & , MOIST رک 24/24 75~) 170-40% 10 SHELLS VARIAGLY COLDERD, COASSE - FINE ANGULAR, inj 7-12 OCTO alited 24/24 lsr SAND (30- (~<u>`</u>) GREYFINE WELL SORTED, SUBANGULAR 30 MEDIUN DENSE, MOIST GELONES SANDJER @ 32 F 27/24 51 1.2 100 15P SNELLS (70;), VALIASHY COLORED (GERY, WHITE TAN, B.A. 0 2/24 8 PUDELY FORTED ANGULAS VERY LOGISE ALLAN ω 70 51 703 See out 9 HORIZONTALLY JT kÞ NTED WITH SAND (30%) GREY, FINE - VERY FINE, SLIGHTLY SILTY H fsiw) ť 10 AS ABOVE, MEDIUM DENSE, MOIST 11 35 0 24/24 00 Ko r SNELLS (60%), AND SAND (40%) AS ADDIE k 12 SILTY BLUISH-GREY SAND AT BASE 24/24 20-30 s 100 - 1-1 /SP SAND SILTY, BLUISH- GIEY FINE VERY FINE SUBANCE h 10-20 SM' / e 4 W.TH SHELLS (22%) WELL SOLTED PARSARVED 40 159 THROUGHOUT 15-20 رد 24/24 ere ້າບວ SHELLS, LOAFSE, VARIABLY LOLOCED, ALCREY SORTED @ 4151 14 SAND, SILTY, BLUISH GREY, FINE -VERY FINE, WELL 13.20- 5A SOP.TED LURAN LULAR 24/24 دى 700 301 12 30-snews SHELLY MITH ABJUDANT SHELLS INTERBEDDE SAIND 17 -SM 3 · 5 M WITH SAND, SILTY, BLUISH GREY WITH 24/24 55 /ar 0 WELL PRESERVED SHELLS, MEDIUM DENSE 24/24 ε 4 88 SAND, SILTY, SUCHTLY CLAYEY, WELL SOFTED, BLUSH GAEY, WITH NELL PRESERVED SHELLS, MOIST, MEDINA DENSE 12 0 12 -SM 10) 124 SAND, SILTY SLIGHTLY CLAYEY, BLUISH GREY, AS ASUVE O

Samples Submitted for Laboratory Tests

50

· · · · · · · · · · · · · · · · · · ·		
		i
		ſ
		Į.
	·	

NOTE: Standard Penetration Resistance is Sum of Blows for 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split Barrel Sampler with 140 pound hammer falling 30 inches.

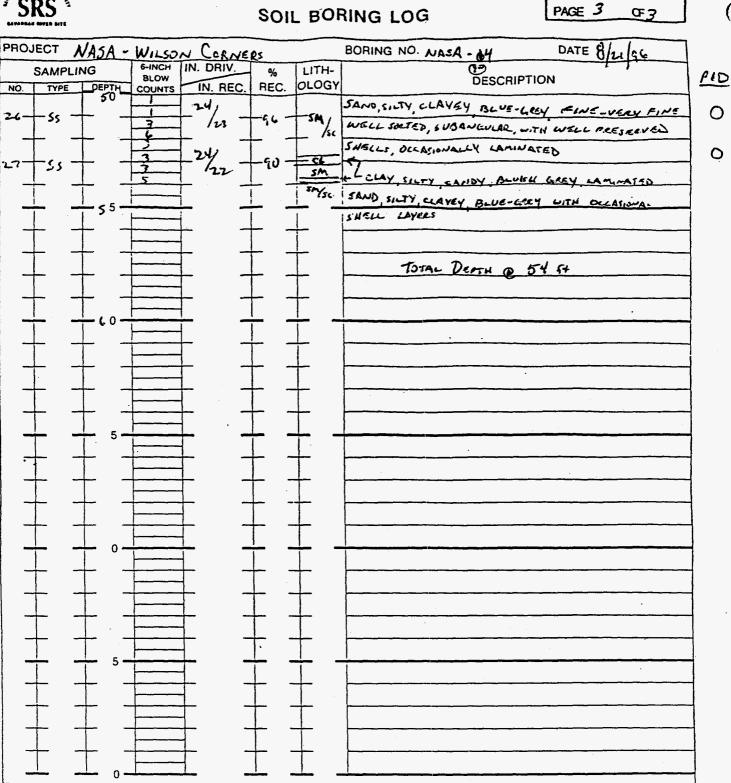
Ð Variable b 20.51 values

OSR 14-366 (Rev. 10/92)

2

œ3

PAGE


Standor Sta

Sec. 1

derina and

OSR 14- 366 (Rev. 10/92)

+ F .

Samples Submitted for Laboratory Tests

NOTE: Standard Penetration Resistance is Sum of Blows for 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split Barrel Sampler with 140 pound hammer falling 30 inches.

(

]

Ĵ

and in

OSR 14-366 (Rev. 10/92)

SOIL BORING LOG

PAGE 1 OF 2

NASA WILSON CORNE	~ ~				8/17/96 AREA
· · · · · · · · · · · · · · · · · · ·					
BORING NO.		CORE	DINATES	E	REFERENCE ELEVATION
NASA - 16 DRILLER	00111		UDCON		TOTAL HOLE DEPTH
				FRACTOR	TOTAL HOLE DEPTH
<u>Robert Snow</u> rechnical Oversight	the second s	EOTE I	K TER DE	отис	DRILLING METHODS AND DEPTHS
• .		DATE	TIME	DEPTH	
James Wedekind OVERSIGHT COMPANY	רי/8	1/96	0950	74	Howen Stan Avaza
CDM FEDERAL					W/ Bentunk Mud
SAMPLING 6-INCH IN	I. DRIV.	%	LITH-		
NO. TYPE DEPTH COUNTS	IN. REC.		OLOGY		DESCRIPTION
1-55-0-2-3-	24/	-90	FILL	TOPSOIL AND LIP	ECOLK, DARK BROWN, SILTY, SANDY
	120			GRADES TO PEAT, 5	anox, at Base (FILL)
				SAND SILLY DAK	K BROWN, FINE, SUBBNGULAL
	24/ +	-96 -	-sm	MEDIUM SORTED, W/ SUME TOPSOIL M	FEW SHELLS ABUNDANT OCHANILS!
				JUME TOTISTE M	
$3 \rightarrow 55 \rightarrow 5 \rightarrow 5 \rightarrow 5 \rightarrow 11$	24/22 +	-92 -	-sm -	SAND SILTY BROWN	TO LIGHT BROWN, SUBANGULAK,
+ $+$ $ -$	/ · · · +		↓ !		WITH ROOTS, OLGANICS MEDIUM DANSE
	24/22 +	-96 -			
	/24		PE	PEAT SANDY SILTY AROUND SILTY SE	HIGHLY DECENIC GEADER TO SAND, IGHTLY MOIST MEDIUM DENSE
	T		F		- SURANGULAR WELL SUCTED
5 - 55	24/24 +	-/06	5M	WORGANICS, MO	
	-+-		SP	54.VD (707.) and LI	CHT GREY SLIGHTLY SILTY SJRANGUL
	24/24 +	-/00	1	1. · · · · · · · · · · · · · · · · · · ·	WI ASUNDONT SHELLS (SU%) ANGULAR
+ + + + + + + + + + + + + + + + + + + +	-+			COARSE -MEDIUM	GRANED
7+55+ -	24, -	-100	GW	BUNKEN, AND CU	RY LIGHT GLEY SANDY, SILTY, ANGULAR, ANSE TO MEDIUA
	123			SAND (TUZ) SILTY, E TRACE DEGANICS	SCOLLY MA BERRY, FINE TO USERY FING. SECOMES RULE-LORY, WELL SORTEN, FINA
			5p	MSNELLS	, , ,
	24/		† -	SAND, BEEREY, V	ERYSHIGHTLY SILTY FINE TO DECY FINE L SOLIED, FEW SHELLS
21	24/20 +	-10 -	T	•	· · · · · · · · · · · · · · · · · · ·
9 55 20	-+		+	- PUDR SAMPLE	EXCEPT BLINN-POSSIBLY SLONGH !!
	24/ +		<u>†</u>		La EV Esperie - E
$10 + 55 + \frac{5}{2}$	24/ +	-50 -	tan		ANDY, GREY, COARSE - FINE, ANGULAR AND SAND (40%) GREY, F.NE

Samples Submitted for Laboratory Tests

OSR 14- 366 (Rev. 10/92)

SOIL BORING LOG

GZ PAGE Z

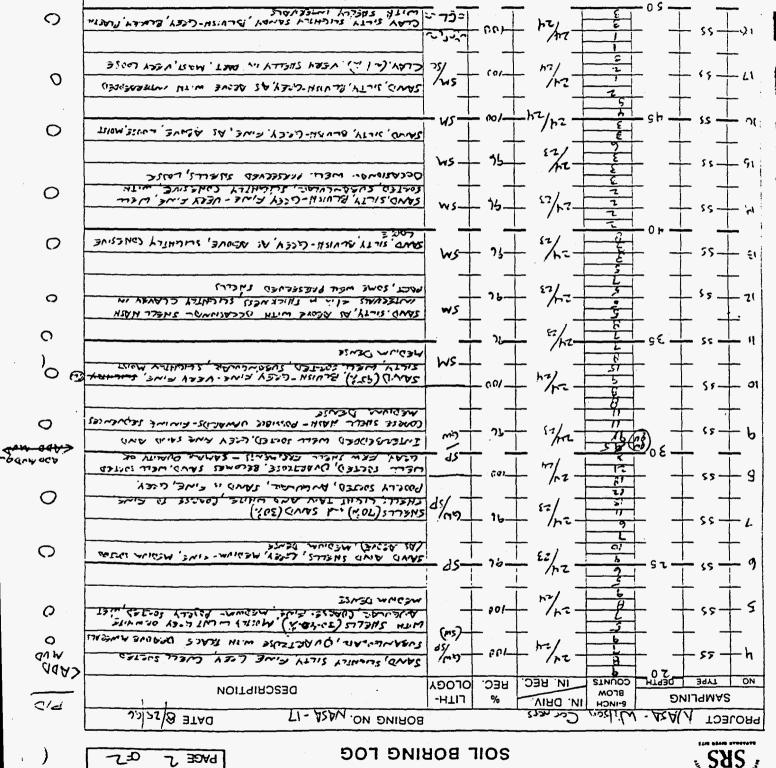
			6-INCH	IN. DRIV.			BORING NO. NASA - 16 DATE 8/17/56
S.	AMPLI	DEPTH	BLOW	IN. REC.	% REC.	LITH- OLOGY	DESCRIPTION
/	-55 -		5 	- 24/ -	- 100 -	SP, Kw	SAND (60%), GREY, FINE FURDANEMAR, WELL SUETED, W/ SHELLS (40%) VARIABLY COLDER, GREY WHITE, BLACK, TAN, ANEWLAR, COREST- FINE, LOUSE, MEDIUM DEMA
2 +	-55	-	10 12	-24/24 -	-100 -		SAND AND SHELLS. AE ABUVE
3 -	- 55 -	- 25 -	9 7 9 4	24/24	- 100 -	Gw/ SP	SHELLS (70%), VARIABLY CONDRED. CUARSE - FINE, AS ABOVE AND SAND (30%), GREY, FINE - VERY FINE, ANGULAR, MEDIUM-WELL SARTED, MEDIUM DENSE
4	-35			24/ -	-75-	Gwy Isr	SHELLS OF DODINE
s 🕂	- 51 -	- 30-		-24/24 -		Lay_	SHELLS (70%), VARIABLY COLARED (GREY, BLACK, YELLON LINENT BROWN), COARSE-FINE, ANGULAR, POURLY SOUTED
د <u>ا</u>	-55 -		-7 	24/21 -	- /W -	/SP	WELL SOLTED, OVATITOSE (98%) of DROULE MINERALS (-2%)
7 +	- 22 -	<u>+-</u>	1 10 7 7 7	24/24 -	100 -	SP/	GRADES TO SAND, SAELLY, MEDIUM DENSE SAND (70%), GREY, SLIGHTLY SILTY, FINE TO VERY FINE WELL-MEDIUM SONTING, SUBANGULAR, MEDIUM DENSE
• <u>+</u> ∙	- 55	35-	13	24/14 -	-/00 -		WITH SHELLS (30%), VARIABLY CONRED, SUB ONGULAR BECOMES LIGHTER GREY, TAN @ 36 FI
ـــــــــــــــــــــــــــــــــــــ	<i>ss</i> 	<u>↓</u> -	<u>о</u> 7 ч	24/23 -	- 96 -	SP	SAND(809), LIGHT GREY, FINE, WELL-MED, UM SONTING, W/SHELLS (20%), LIGHT BLOWN, GREY, CUARSE, BRUKEN, ANEVLAR
<u>-</u> ه	- <i>5</i> 5 -	- 40 -	10	24/24 -	- 100 -		SAND AS ABOVE EXCEPT SHUHTLY BLUISH-GREN SLIGHTLY SILTY
		+	3 5 4	-24/	100	SP, SM	SAND SHEHILY SILTY, CLAYEY, BLUGH GREY, FINE TO VERY FINE WELL SOLTED, SUBANGULAR, N.TH SHELLS (2%) COARSE-FINE OFTEN WHOLK
	- <i>נצ</i> -	+	5	-24/24 -	-/ 00 -		SAND, SKTY, CLAYEY, BLUISB GEEV, EINE. TO VEEY FINE WELL SUETED, SUBDNENLOR, OCCASIONALLY SUBRUND, WITH WELL PRESERVED SNELLS (2%), SLIGHTLY PLATTIC
ບ	- 55 -		8 13	-24/24 -	- 180 -		SAND, AS ABOVE SUIGHTLY MORE SNELL FRALMENTS
.4	- 55 -		6 77 6 5		- 100 -	sm	<u> </u>
z,		± -	7	-24/24 -	-100 -	CL	CLAY SILTY SANDY BLUISH GREYNA GREENSH LEEY, OCCASIONAL THIN SHELL LAVERS STIFF

Samples Submitted for Laboratory Tests

.

SRS	SOIL BORING LOG	PAGE 1 OF 2
PROJECT		DATE 8/29/96
NASA - Wilson BORING NO.	SRS COORDINATES	REFERENCE ELEVATION
NASA - 17 DRILLER Robert Snow	DRILLING SUBCONTRACTOR Geotek	TOTAL HOLE DEPTH
TECHNICAL OVERSIGHT James Wedekind OVERSIGHT COMPANY		DRILLING METHODS AND DEPTHS Hollow Stem Augels
SAMPLING GINCH	IN. DRIV% LITH-	
NO TYPE DEPTH COUNTS		JESCRIPTION
	SAND, SILTY, LIG	
2 5 5		
	SM SAND SILTY LIC	CHT BEDWAN AUGER ANLY TO 14 FH
		EY, FINE-MEDUM, WELL SORTED,
$1 - 55 - 15 - \frac{5}{10}$	24 100 SUBANGULAR, W	IGHTLY SILTY, GREY, FINE, WELL SILAED,
$\begin{array}{c} 2 - 51 - 41 \\ - 41 - 41 \\ - 41 - 41 \\ - 41 - 41$	- 24/20 - 90 - 600/ SURANEVLAR SP SHELLS(50-20) (Sw)	WITH
$3 + c_3 + \frac{q}{13}$	- 24/ - 100 - SAND (40-int.), C Reaconant	KAY FINE WITH ACUNDONT SHELL SHELL HASH

Samples S	Samples Submitted for Laboratory Tests										


No.

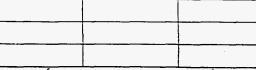
PID Melfundos - humidity i

(76/01 'APX) 99E -#1 XSO

2-0	ן אעפ£, ך

SOIL BORING LOG

Barrel Sampler with 140 pound hammer talling 30 inches. 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split NOTE: Standard Penetration Resistance is Sum of Blows for Samples Submitted for Laboratory Tests


א בסושיא בתרר עדיש צרסוולא

	Yours	BECONES SHERE	45			11	T T 50 -	•
		- 1202	ws-	- 101-	- hz/ht	L	- + ss+	- 01
	בררכ (בגג) המינע מבטאנעני נישר	DUSK CEEL CO	-+			$\frac{1}{2}$		-
	בא צייאביצאשעירד הרשול אברר צטיגובף	23 then's 'antes	45	- 26-	- 1/2-		ss -	- 5
LAND		7 432 7300				5		.]
<0V	- שרשותה כינהא בייתה עת עראת באבע הינה		- 45-	- cop	- Mm.	Hom	- 51 - 15 -	- 6
	C				11.0		34 35	
	אבל דטיבע -אברא רגוטבק וא היצבגו גם שעיד רצבא ע'אב' אבאאיראיא	121 200 200 12D	·		h2/	2		-
		Dense, wet	ws	_ 001 _	- /me-	1		- L
	הכבבוואייקי גבאלגן אינטוטיי	17555 205350				0/	┝╴╺╋╸╺╄	-
	- גנצוות ערטשיין בויאלי צחע שיורהרטיבי	ALL STANDS	45-	- 001-	- 1/2	<u>l</u> : 5		- >
·					_ .	- Er	- 01	-
	MUL AS AGAVE, EXCEPT WEY, ARDIN NO AND	rad Kinis' Guys	W5	_ 16_	- 12	L		- 5
		tseene			772	5		· •
		GARAS OF REAL	24					-
the second	יניטרביינז' צרוביקורג אייוצן		· · · · ·	— Qe1—	- 1/12	11		
	WWARD JARK OF JARK BROWN				- · ·	11	╞╸╶┼╴╺┼	-
0			- 25-	_ @0] _	- 1/2.		- 22 22	- 2
		THE PARTY SUP			ļ	19		-
	או היצא אינה מעירה ציאיות גוארפטול				- 1/2	h		- 2
0			I	.,		h		
	כרר ציישור אונא קינון ליידיא בייעולי	LING ONE CLAR DE L			571.	2		-
0		·····	WS_	- 15-	17/12			- /
		L P~ 5(133M	DIOGA	REC.	IN. REC.	COUNTS	TYPE DEPTH	ON
SID	DESCRIPTION		-HTIJ	%	VIRO .V	BLOW 6-INCH	SAMPLING	
1			·····					
		•				,	WC REPERT	
	How STEN AUGEN						AMES WASSER	
	DRILLING METHODS AND DEPTHS	DI HZ DI HZ	TER DEI	AWQNU Stad	овэ		HUICAL OVERSIG	
	HIG			10357			ROBELT SNOW	
		ROTOARI	LNODBU	S DNIT	סצור		ษยา	סצוו
		Е			N	- · · ·	BI-ASALA	
	REFERENCE ELEVATION		SETANI	28002			ON DNI	ROB
	ABRA		5733	Cocul	ורצטת ן	M - H	s V V	
	22/22/8					·	JECT	онч
4		<u></u>						لتتت
	PAGE 1 CF 3	SOT SNI	<u>ноа</u> .	1105		•	585	<u>,</u>
	· · · · · · · · · · · · · · · · · · ·		•				· ····	

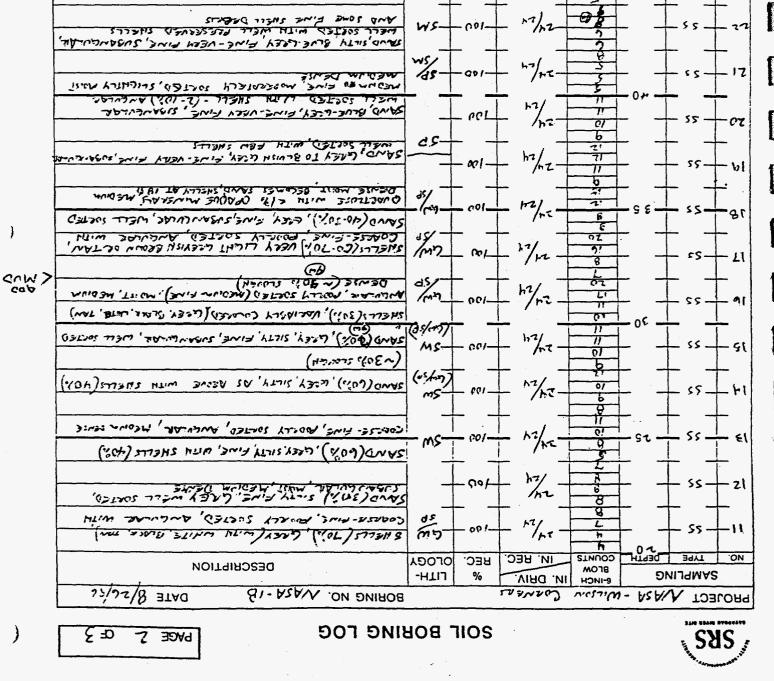
Barrel Sampler with 140 pound hammer falling 30 inches. 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split NOTE: Standard Penetration Resistance is Sum of Blows for

Samples Submitted for Laboratory Tests

-- 50 ----

Ĩ

12. N. P.

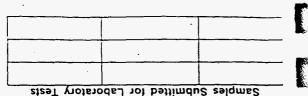

1800 C

ſ

-

OSK 14- 366 (Rev. 10/92)

OSR 14-366 (Rev. 10/92)



NOTE: Standard Penetration Resistance is Sum of Blows for 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split Barrel Sampler with 140 pound hammer talling 30 inches.

ערתב-רידל על ערשאנ אינא ואקרר שינג לאברר אלרת

2000 SILY SLUE CLER AND STORE WITH MANUE

DEERTONNE CONNON WELL METERNED SHELL

म्र

þ

L

Ŧ

z

ন

ç

Ř

"ha

2/12

12/2

VS.

ws

WS

76

とうそう

05

92

55

55.

\$5.

12

SOIL BORING LOG

PAGE 3 OF 3

OSR 14- 366 (Rev. 10/92)

РНО	JECT	NASA	- WIL	IN. DRIV.	ERS		BORING NO. NASA-18 DATE Ofuc fic
NO.	SAMPL		6-INCH BLOW COUNTS	IN. DRIV.	% REC.	LITH- OLOGY	
		DEPTH_ 5 0	4			SM	SAND, SILTY, WITH SHELLS. AS BEFORE
26-	55	+ -	3	-24/23 -	-gi -	66	CLAY, SILTY, SANDY, BLUE- GREY, PLASTIC, WITH P
	┼╸	+ -	5				SHELLS, WELL PRESERVED. IN LAYERS +1/4 + the se
- 72	+ .				┝	╂	Disenimated in MATRIX
_	-				<u> </u>	<u> </u>	
	Ļ .	<u> </u>				<u> </u>	f 1
_	<u> </u>					Ļ	TOTAL DEPTN @ 52 Fl.
	L.						
	T ·					T	
-	- ·	+				+	
-	÷	-00-					
	<u></u> + ∙					<u> </u>	
_	<u>↓</u> .					1	
` -	Ļ.						
						1.	
-	Γ.	65					
	+ ·	+ -			<u> </u>		
-	<u></u> - − •					-	
_	+- ·					<u> -</u>	
		+				_	
-	Ļ.						
_							·
						T I	
						<u> </u>	
	+	+ -				+	
-						-	
	<u> </u>	75 -					
	╞╴						
_	ļ						·
			· · · · · ·			•	
_	r -	+ -				-	
_	·	لــ و ئ ــل					

Samples S	ubmitted for Lab	oratory Tests
······		·

NOTE: Standard Penetration Resistance is Sum of Blows for 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split Barrel Sampler with 140 pound hammer falling 30 inches.

and the second

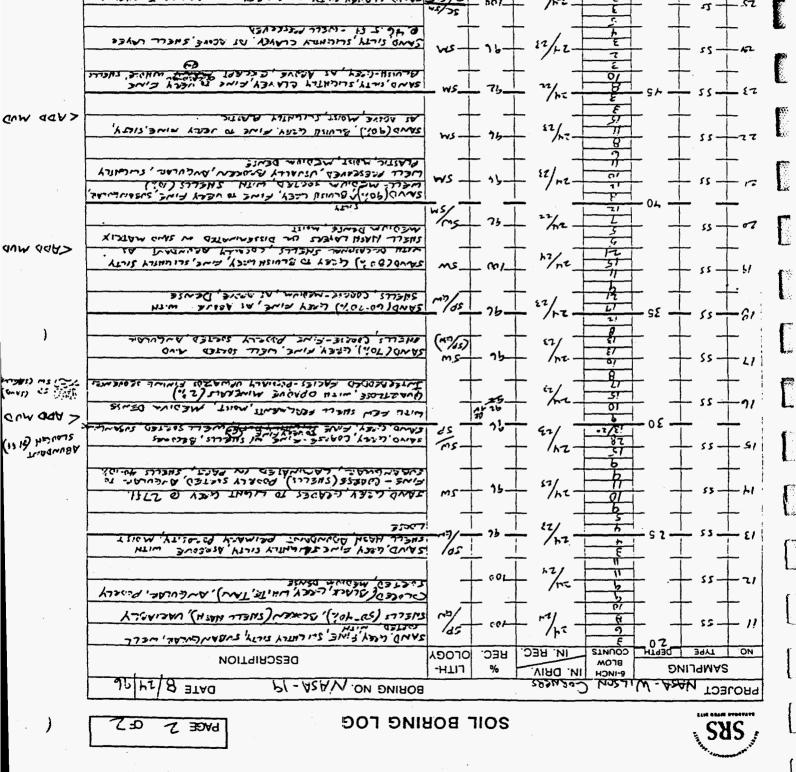
]

]

SOIL BORING LOG

OSR 14-366 (Rev. 10/92)

PAGE 1 OF Z

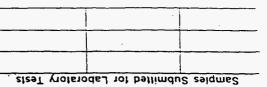

ROJECT	- WI	LSO~ C	LORNER	2	•	DATE 8/24/96 AREA
ORING NO. NASA-J	0 in 19		IS COORI	DINATES	E	REFERENCE ELEVATION
RILLER	<u>.</u>	DF	RILLING S	SUBCON	TRACTOR	TOTAL HOLE DEPTH
ROBERT SNOW	/		GROTE	ĸ		50 FI.
ECHNICAL OVERSIO		GF		ATER DE	PTHS CEPTH	DRILLING METHODS AND DEPTHS
JAMES LA/EDE					•	HOLLOW STEM AUGER
COM FEDERA	<u></u>					WITH BENTONITE MUD
SAMPLING	6-INCH BLOW	IN. DRIV.	REC.	LITH- OLOGY		DESCRIPTION
	COUNTS	IN. REC	<u>, neo.</u>		GRASS	
	2	- 24/13		-sm	SAND CILTY, EIG FINE, SUR ANGULA	ANT GREY WITH BLOCK STREAKS Ne, WELL-MEDIUM SOLTED, SOME ORGONICS
	4	24/23	<u> </u>	SM	SAVID, SILTY LIGHT	cred more t
	3	/23		Fr	DEAT VERY SILF	Y, GANDY, ABUNDANT DEGONILS, RUDIS DEY
5 - 5 -	3	- 24/21		54		PRDALELY 70% SLOUISH)
	8			PL?	: 	
4	12	24/24	-100 -	5m At	SAND SILTY LIGHT	GERY FINE SUBANGULAS WELL SOFTEN
+ + -	14	<u>+-</u>	+ -	+.、	PRAT, AS ABUIR	MESSIGN DENCA
	3	24/24	- 00	-SM	SAND, VERY SILTY, SORTED, BROWN	PRATY, F.NE, SUBANLULAL, MEDIUM-NEW TO DARK BROWN, MOIST, LOOSE
		24/24		-sm	AND WEAK T. T	, DARK BLOWN - BRONN, SATURATED
	work	1 '		<u></u>	AS ABOUR	
	Δ	-NS	+0-	-rvs	NO SAMPLE	12-14 St (PROBACLY SILTY SAND)
	2	24/	+ -	+ sm	SAND, SILTY, BEL	WWISH-GERY FINE, SUBANGULAR,
		/24	10-			
	3			SM	SAND, SILTY, GRE SUBBNGULAR, W	Y MON MOTTLED BROWN, FINE, ELL SORJED, MEDIUM DENSE, WET
			+ -		SHELLS (60-107.) VACIASLY COLORED (GARY, WHITE)
0		+	80 -	LGW/	COARSE - MEDIUM	ANULULAR, POULY SOLTED WITH

Samples Submitted for Laboratory Tests

NOTE: Standard Penetration Resistance is Sum of Blows for 2nd - 6" and 3rd - 6" to Drive 1-3/8" I.D., 2" O.D. Split Barrel Sampler with 140 pound hammer falling 30 inches.

- PID Melfunctioning - DID NOT USE

O2K 14- 366 (Rev. 10/92)



Barrel Sampler with 140 pound hammer falling 30 inches. 2nd - 6" and 3rd - 6" to Drive 1-3/8" 1.D., 2" O.D. Split NOTE: Standard Penetration Resistance is Sum of Blows for

- דר שבנאיתו כדשא זירוא ציישא היוח עריאקטיין גאברדי עצוב בדר שבנאי היגא עריאקא צורגא פרחב היבא אוגא עריאקטיין זחברדי

(1873 " ac-5+) 13 !

1.0.0 2.9.1

Ę

mh.

05

Appendix B

Results from Headspace Analysis of Sediment Samples Collected at the Wilson's Corner Site

	f	eet	-				
Loc. Id	depth	elevation	VCI	F-113	cis-DCE	TCE	Samp. Id
NASA-1	1	6.25	<0.001	<0.001	<0.001	<0.001	NASA0100
NASA-1	3	4.25	< 0.001	< 0.001	< 0.001	<0.001	NASA0101
NASA-1	5	2.25	< 0.001	<0.001	<0.001	<0.001	NASA0102
NASA-1	7	0.25	<0.001	< 0.001	0.005	<0.001	NASA0103
NASA-1	9	-1.75	<0.001	<0.001	0.003	<0.001	NASA0104
NASA-1	11	-3.75	<0.001	<0.001	< 0.001	<0.001	NASA0105
NASA-1	13	-5.75	< 0.001	< 0.001	< 0.001	<0.001	NASA0106
NASA-1	15	-7.75	< 0.001	< 0.001	< 0.001	< 0.001	NASA0107
NASA-1	17	-9.75	< 0.001	< 0.001	< 0.001	< 0.001	NASA0108
NASA-1	19	-11.75	<0.001	< 0.001	< 0.001	<0.001	NASA0109
NASA-1	21	-13.75	<0.001	< 0.001	< 0.001	<0.001	NASA0110
NASA-1	23	-15.75	< 0.001	< 0.001	< 0.001	<0.001	NASA0111
NASA-1	25	-17.75	< 0.001	< 0.001	0.005	< 0.001	NASA0112
NASA-1	27	-19.75	< 0.001	<0.001	< 0.001	<0.001	NASA0113
NASA-1	29	-21.75	<0.001	< 0.001	< 0.001	<0.001	NASA0114
NASA-1	31	-23.75	< 0.001	<0.001	< 0.001	0.002	NASA0115
NASA-1	33	-25.75	<0.001	< 0.001	0.002	0.004	NASA0116
NASA-1	35	-27.75	< 0.001	< 0.001	0.005	0.003	NASA0117
NASA-1	37	-29.75	< 0.001	< 0.001	0.007	0.020	NASA0118
NASA-1	39	-31.75	< 0.001	< 0.001	0.019	0.042	NASA0119
NASA-1	41	-33.75	0.294	0.002	4.756	2.739	NASA0120
NASA-1	43	-35.75	1.016	0.008	18.661	9.805	NASA0121
NASA-1	45	-37.75	0.256	0.001	3.873	2.022	NASA0122
NASA-1	47	-39.75	0.883	0.003	7.349	2.174	NASA0123
NASA-1	49	-41.75	0.727	0.002	3.425	1.011	NASA0124
NASA-1	51	-43.75	0.913	0.002	2.986	0.481	NASA0125
NASA-1	52.5	-45.25	< 0.001	< 0.001	< 0.001	< 0.001	NASA0126
NASA-1	53.5	-46.25	0.206	< 0.001	< 0.001	< 0.001	NASA0127
NASA-2	1	7.70	0.896	< 0.001	< 0.001	< 0.001	NASA0200
NASA-2	3	5.70	< 0.001	< 0.001	< 0.001	< 0.001	NASA0201
NASA-2	4.5	4.20	0.766	< 0.001	< 0.001	< 0.001	NASA0202
NASA-2	7.5	1.20	1.470	<0.001	0.075	<0.001	NASA0204
NASA-2	12.5	-3.80	< 0.001	< 0.001	0.013	< 0.001	NASA0206
NASA-2	14	-5.30	0.242	< 0.001	0.009	< 0.001	NASA0207
NASA-2	22.5	-13.80	1.053	< 0.001	< 0.000	0.002	NASA0212
NASA-2	29.5	-20.80	0.398	<0.001	<0.001	<0.002	NASA0212
NASA-2	35	-26.30	< 0.001	< 0.001	< 0.001	< 0.001	NASA0218
NASA-2	39.5	-30.80	<0.001	< 0.001	0.033	0.009	NASA0220
NASA-2	41	-32.30	0.225	< 0.001	< 0.001	< 0.001	NASA0221
NASA-2	43	-34.30	<0.001	<0.001	0.036	0.002	NASA0222
NASA-2	45	-34.30	<0.001	<0.001	<0.000	0.002	NASA0223
NASA-2	47	-38.30	<0.001	<0.001	<0.001	<0.001	NASA0224
NASA-2	49	-40.30	<0.001	<0.001	<0.001	<0.001	NASA0225
NASA-2	51	-40.30	0.013	<0.001	<0.001	<0.001	NASA0223
NASA-2	52	-43.30	<0.013	0.001	<0.001	<0.001	NASA0220 NASA0227
NASA-2	53.5	-43.30	0.526	<0.001	<0.001	<0.001	NASA0227
NASA-2 NASA-3	1	7.14	<0.001	<0.001	<0.001	<0.001	NASA0223

]

]

Charles and

	f	eet					
Loc. ld	depth	elevation	VCI	F-113	cis-DCE	TCE	Samp. Id
NASA-3	3	5.14	0.781	<0.001	0.006	<0.001	NASA0301
NASA-3	5	3.14	0.784	0.012	0.130	0.054	NASA0302
NASA-3	7	1.14	0.739	1.016	3.210	1.110	NASA0303
NASA-3	9	-0.86	3.194	13.742	10.586	19.871	NASA0304
NASA-3	11	-2.86	2.954	13.390	10.191	15.005	NASA0305
NASA-3	13	-4.86	0.915	5.598	7.797	5.579	NASA0306
NASA-3	15	-6.86	2.820	3.718	13.812	0.808	NASA0307
NASA-3	17	-8.86	0.906	2.972	6.844	2.137	NASA0308
NASA-3	19	-10.86	0.866	3.306	5.779	1.253	NASA0309
NASA-3	21	-12.86	1.082	2.286	6.484	1.038	NASA0310
NASA-3	23	-14.86	1.027	2.906	6.886	0.810	NASA0311
NASA-3	25	-16.86	0.679	2.297	5.475	0.808	NASA0312
NASA-3	27	-18.86	0.714	4.648	6.016	6.557	NASA0313
NASA-3	29	-20.86	0.288	2.988	2.160	7.478	NASA0314
NASA-3	31	-22.86	0.555	2.622	4.235	4.793	NASA0315
NASA-3	33	-24.86	0.336	1.476	2.882	3.695	NASA0316
NASA-3	35	-26.86	0.436	2.074	3.253	3.745	NASA0317
NASA-3	37	-28.86	0.180	16.233	0.581	3.475	NASA0318
NASA-3	39	-30.86	< 0.001	10.193	0.092	0.345	NASA0319
NASA-3	41	-32.86	< 0.001	5.263	0.156	0.573	NASA0320
NASA-3	43	-34.86	0.124	7.819	0.370	1.067	NASA0321
NASA-3	45	-36.86	< 0.001	11.899	0.146	0.229	NASA0322
NASA-3	47	-38.86	< 0.001	5.311	0.084	0.126	NASA0323
NASA-3	48.5	-40.36	0.331	0.325	0.956	1.569	NASA0324
NASA-3	49.5	-41.36	0.741	0.103	0.041	0.013	NASA0325
NASA-4	1.5	6.66	0.651	0.022	< 0.001	0.001	NASA0400
NASA-4	3	5.16	< 0.001	< 0.001	< 0.001	< 0.001	NASA0401
NASA-4	. 4	4.16	< 0.001	0.010	0.225	2.300	NASA0402
NASA-4	5.5	2.66	0.968	0.001	0.034	0.200	NASA0403
NASA-4	8	0.16	< 0.001	< 0.001	0.007	0.001	NASA0404
NASA-4	11	-2.84	< 0.001	< 0.001	< 0.001	< 0.001	NASA0406
NASA-4	19	-10.84	0.540	< 0.001	< 0.001	0.001	NASA0410
NASA-4	21	-12.84	0.777	< 0.001	< 0.001	< 0.001	NASA0411
NASA-4	23	-14.84	< 0.001	< 0.001	< 0.001	< 0.001	NASA0412
NASA-4	25	-16.84	< 0.001	< 0.001	< 0.001	0.001	NASA0413
NASA-4	27	-18.84	< 0.001	0.023	< 0.001	< 0.001	NASA0414
NASA-4	29	-20.84	< 0.001	0.023	< 0.001	0.002	NASA0415
NASA-4	33	-24.84	< 0.001	0.046	< 0.001	0.003	NASA0417
NASA-4	35	-26.84	< 0.001	< 0.001	< 0.001	< 0.001	NASA0418
NASA-4	37	-28.84	< 0.001	<0.001	< 0.001	<0.001	NASA0419
NASA-4	39	-30.84	< 0.001	< 0.001	< 0.001	0.002	NASA0420
NASA-4	41	-32.84	< 0.001	<0.001	<0.001	<0.001	NASA042
NASA-4	43	-34.84	<0.001	<0.001	< 0.001	< 0.001	NASA0422
NASA-4	45	-36.84	< 0.001	< 0.001	< 0.001	< 0.001	NASA042
NASA-4	47	-38.84	< 0.001	< 0.001	< 0.001	< 0.001	NASA0424
NASA-4	49	-40.84	<0.001	0.023	<0.001	0.002	NASA042
NASA-4	51.5	-43.34	0.743	0.014	< 0.001	< 0.001	NASA042

<u>}</u>

្ប

J

No. State

Loc. Id		eet	ug/kg				
	depth	elevation	VCI	F-113	cis-DCE	TCE	Samp. Id
NASA-5	1	7	<0.001	0.191	0.004	0.002	NASA0500
NASA-5	3	5	0.188	7.204	0.585	0.171	NASA0501
NASA-5	5	3	0.463	15.767	2.711	0.481	NASA0502
NASA-5	7	1	6.461	42.107	87.357	4.143	NASA0503
NASA-5	9	-1	4.251	21.816	45.315	2.108	NASA0504
NASA-5	11	-3	1.397	11.006	7.468	0.381	NASA0505
NASA-5	13	-5	2.774	0.541	1.463	0.021	NASA0506
NASA-5	15	-7	3.049	0.816	1.346	0.030	NASA0507
NASA-5	17	-9	3.493	0.099	0.936	0.005	NASA0508
NASA-5	.19	-11	0.753	0.015	0.358	< 0.001	NASA0509
NASA-5	21	-13	1.522	1.267	1.081	0.054	NASA0510
NASA-5	23	-15	0.606	0.856	0.570	0.030	NASA0511
NASA-5	25	-17	0.285	1.309	0.750	0.161	NASA0512
NASA-5	27	-19	0.282	1.101	0.752	0.149	NASA0513
NASA-5	29	-21	0.473	1.314	0.857	0.792	NASA0514
NASA-5	31	-23	1.585	5.454	2.756	0.546	NASA0515
NASA-5	34	-26	0.222	1.069	0.721	0.310	NASA0516
NASA-5	35	-27	<0.001	1.178	0.771	0.907	NASA0517
NASA-5	37	-29	0.076	1.270	0.998	1.698	NASA0518
NASA-5	39	-31	0.323	1.861	2.657	4.724	NASA0519
NASA-5	41	-33	0.191	0.787	0.711	0.574	NASA0520
NASA-5	43	-35	0.182	<0.001	< 0.001	<0.001	NASA0521
NASA-5	45	-37	< 0.001	<0.001	< 0.001	<0.001	NASA0522
NASA-5	47	-39	<0.001	<0.001	< 0.001	<0.001	NASA0523
NASA-5	49	-41	0.586	1.572	1.584	0.908	NASA0524
NASA-5	49.5	-42	< 0.001	< 0.001	<0.001	<0.001	NASA0525
NASA-6	1	5.32	< 0.001	< 0.001	< 0.001	< 0.001	NASA0600
NASA-6	3	3.32	< 0.001	< 0.001	< 0.001	< 0.001	NASA0601
NASA-6	5	1.32	< 0.001	< 0.001	<0.001	< 0.001	NASA0602
NASA-6	7	-0.68	< 0.001	< 0.001	< 0.001	<0.001	NASA0603
NASA-6	9	-2.68	< 0.001	< 0.001	<0.001	< 0.001	NASA0604
NASA-6	11	-4.68	<0.001	<0.001	< 0.001	<0.001	NASA0605
NASA-6	13	-6.68	<0.001	< 0.001	<0.001	<0.001	NASA0606
NASA-6	15	-8.68	< 0.001	<0.001	<0.001	< 0.001	NASA0607
NASA-6	17	-10.68	<0.001	<0.001	< 0.001	< 0.001	NASA0608
NASA-6	19	-12.68	<0.001	<0.001	<0.001	<0.001	NASA0609
NASA-6	21	-14.68	<0.001	<0.001	<0.001	<0.001	NASA0610
NASA-6	23	-16.68	< 0.001	< 0.001	< 0.001	<0.001	NASA0611
NASA-6	25	-18.68	<0.001	<0.001	<0.001	<0.001	NASA0612
NASA-6	27	-20.68	<0.001	<0.001	0.001	< 0.001	NASA0613
NASA-6	29	-22.68	< 0.001	<0.001	<0.001	<0.001	NASA0614
NASA-6	31	-24.68	<0.001	< 0.001	0.003	0.002	NASA0615
NASA-6	33	-26.68	< 0.001	< 0.001	0.033	< 0.001	NASA0616
NASA-6	35	-28.68	< 0.001	< 0.001	< 0.001	< 0.001	NASA0617
NASA-6	37	-30.68	< 0.001	< 0.001	0.065	0.002	NASA0618
NASA-6	39	-32.68	5.384	< 0.001	0.689	< 0.001	NASA0619
NASA-6	41	-34.68	5.832	< 0.001	1.101	< 0.001	NASA0620

J

]

	fe	eet					
Loc. Id	depth	elevation	VCI	F-113	cis-DCE	TCE	Samp. Id
NASA-6	43	-36.68	1.982	<0.001	0.444	<0.001	NASA0621
NASA-6	45	-38.68	2.015	<0.001	0.412	<0.001	NASA0622
NASA-6	47	-40.68	<0.001	<0.001	<0.001	<0.001	NASA0623
NASA-6	48.5	-42.18	<0.001	<0.001	< 0.001	<0.001	NASA0624
NASA-6	49.5	-43.18	1.165	< 0.001	< 0.001	<0.001	NASA0625
NASA-7	1	6.24	< 0.001	<0.001	< 0.001	<0.001	NASA0700
NASA-7	3	4.24	< 0.001	< 0.001	<0.001	<0.001	NASA0701
NASA-7	5	2.24	< 0.001	< 0.001	<0.001	<0.001	NASA0702
NASA-7	7	0.24	<0.001	< 0.001	0.005	<0.001	NASA0703
NASA-7	9	-1.76	<0.001	< 0.001	0.014	<0.001	NASA0704
NASA-7	11	-3.76	<0.001	< 0.001	0.010	< 0.001	NASA0705
NASA-7	13	-5.76	< 0.001	< 0.001	< 0.001	< 0.001	NASA0706
NASA-7	15	-7.76	< 0.001	<0.001	0.003	<0.001	NASA0707
NASA-7	17	-9.76	< 0.001	< 0.001	< 0.001	< 0.001	NASA0708
NASA-7	19	-11.76	< 0.001	< 0.001	< 0.001	<0.001	NASA0709
NASA-7	21	-13.76	< 0.001	< 0.001	< 0.001	<0.001	NASA0710
NASA-7	23	-15.76	< 0.001	< 0.001	< 0.001	<0.001	NASA0711
NASA-7	25	-17.76	< 0.001	<0.001	<0.001	<0.001	NASA0712
NASA-7	27	-19.76	< 0.001	< 0.001	< 0.001	< 0.001	NASA0713
NASA-7	29	-21.76	< 0.001	< 0.001	< 0.001	< 0.001	NASA0714
NASA-7	31	-23.76	< 0.001	< 0.001	< 0.001	< 0.001	NASA0715
NASA-7	33	-25.76	< 0.001	< 0.001	< 0.001	< 0.001	NASA0716
NASA-7	35	-27.76	< 0.001	<0.001	0.019	0.007	NASA0717
NASA-7	37	-29.76	2.894	<0.001	0.143	0.003	NASA0718
NASA-7	39	-31.76	< 0.001	< 0.001	<0.001	< 0.001	NASA0719
NASA-7	41	-33.76	2.296	< 0.001	0.173	0.001	NASA0720
NASA-7	43	-35.76	1.137	<0.001	0.011	< 0.001	NASA0721
NASA-7	45	-37.76	<0.001	< 0.001	<0.001	< 0.001	NASA0722
NASA-7	47	-39.76	< 0.001	<0.001	< 0.001	<0.001	NASA0723
NASA-7	48.5	-41.26	< 0.001	< 0.001	0.030	< 0.001	NASA0724
NASA-7	49.5	-42.26	< 0.001	< 0.001	< 0.001	< 0.001	NASA0725
NASA-9	15	-8.03	< 0.001	<0.001	< 0.001	< 0.001	NASA0900
NASA-9	18	-11.03	<0.001	< 0.001	<0.001	< 0.001	NASA0901
NASA-9	20	-13.03	< 0.001	< 0.001	< 0.001	< 0.001	NASA0902
NASA-9	21	-14.03	< 0.001	< 0.001	< 0.001	< 0.001	NASA0903
NASA-9	23	-16.03	< 0.001	< 0.001	< 0.001	< 0.001	NASA0904
NASA-9	25	-18.03	< 0.001	<0.001	< 0.001	< 0.001	NASA0905
NASA-9	27	-20.03	< 0.001	< 0.001	< 0.001	< 0.001	NASA0906
NASA-9	29	-22.03	< 0.001	< 0.001	< 0.001	< 0.001	NASA0907
NASA-9	31	-24.03	< 0.001	< 0.001	< 0.001	< 0.001	NASA0908
NASA-9	33	-26.03	< 0.001	<0.001	<0.001	<0.001	NASA0909
NASA-9	35	-28.03	< 0.001	<0.001	<0.001	<0.001	NASA0910
NASA-9	37.5	-30.53	<0.001	<0.001	< 0.001	< 0.001	NASA0911
NASA-9	40	-33.03	<0.001	<0.001	< 0.001	< 0.001	NASA0912
NASA-9	41	-34.03	< 0.001	<0.001	< 0.001	< 0.001	NASA0913
NASA-9	43	-36.03	< 0.001	< 0.001	< 0.001	< 0.001	NASA0914
NASA-9	45	-38.03	< 0.001	< 0.001	< 0.001	< 0.001	NASA091

L		eet	-				
Loc. Id	depth	elevation	VCI	F-113	cis-DCE	TCE	Samp. Id
NASA-9	47	-40.03	<0.001	<0.001	<0.001	<0.001	NASA0916
NASA-9	49	-42.03	< 0.001	<0.001	<0.001	< 0.001	NASA0917
NASA-9	49.5	-42.53	<0.001	<0.001	<0.001	< 0.001	NASA0918
NASA-10	15	-9.47	<0.001	< 0.001	<0.001	< 0.001	NASA1000
NASA-10	17.5	-11.97	< 0.001	< 0.001	<0.001	< 0.001	NASA1001
NASA-10	19.5	-13.97	< 0.001	<0.001	< 0.001	<0.001	NASA1002
NASA-10	21	-15.47	<0.001	< 0.001	<0.001	<0.001	NASA1003
NASA-10	23	-17.47	<0.001	< 0.001	< 0.001	<0.001	NASA1004
NASA-10	25	-19.47	< 0.001	< 0.001	<0.001	<0.001	NASA1005
NASA-10	27	-21.47	< 0.001	< 0.001	< 0.001	<0.001	NASA1006
NASA-10	29	-23.47	<0.001	< 0.001	< 0.001	<0.001	NASA1007
NASA-10	31	-25.47	< 0.001	< 0.001	< 0.001	< 0.001	NASA1008
NASA-10	33	-27.47	< 0.001	< 0.001	< 0.001	<0.001	NASA1009
NASA-10	35	-29.47	< 0.001	< 0.001	< 0.001	<0.001	NASA1010
NASA-10	37	-31.47	<0.001	<0.001	< 0.001	<0.001	NASA1011
NASA-10	39	-33.47	<0.001	< 0.001	< 0.001	< 0.001	NASA1012
NASA-10	41	-35.47	<0.001	< 0.001	< 0.001	< 0.001	NASA1013
NASA-10	43	-37.47	< 0.001	< 0.001	< 0.001	<0.001	NASA1014
NASA-10	45	-39.47	<0.001	< 0.001	< 0.001	<0.001	NASA1015
NASA-10	47	-41.47	<0.001	< 0.001	< 0.001	<0.001	NASA1016
NASA-10	49.8	-44.27	< 0.001	< 0.001	< 0.001	<0.001	NASA1017
NASA-10	50	-44.47	<0.001	< 0.001	< 0.001	<0.001	NASA1018
NASA-11	1	8.64	< 0.001	< 0.001	< 0.001	<0.001	NASA1100
NASA-11	3	6.64	< 0.001	< 0.001	< 0.001	<0.001	NASA1101
NASA-11	5	4.64	< 0.001	< 0.001	< 0.001	<0.001	NASA1102
NASA-11	7	2.64	< 0.001	< 0.001	< 0.001	<0.001	NASA1103
NASA-11	9	0.64	< 0.001	< 0.001	< 0.001	< 0.001	NASA1104
NASA-11	11	-1.36	< 0.001	< 0.001	< 0.001	<0.001	NASA1105
NASA-11	13	-3.36	< 0.001	<0.001	< 0.001	< 0.001	NASA1106
NASA-11	15	-5.36	< 0.001	< 0.001	< 0.001	< 0.001	NASA1107
NASA-11	17	-7.36	< 0.001	< 0.001	<0.001	< 0.001	NASA1108
NASA-11	19	-9.36	< 0.001	< 0.001	<0.001	< 0.001	NASA1109
NASA-11	21	-11.36	< 0.001	< 0.001	<0.001	< 0.001	NASA1110
NASA-11	23	-13.36	< 0.001	< 0.001	< 0.001	< 0.001	NASA111
NASA-11	25	-15.36	< 0.001	< 0.001	< 0.001	< 0.001	NASA1112
NASA-11	27	-17.36	< 0.001	< 0.001	< 0.001	< 0.001	NASA1113
NASA-11	29	-19.36	< 0.001	< 0.001	<0.001	< 0.001	NASA1114
NASA-11	31	-21.36	<0.001	< 0.001	<0.001	< 0.001	NASA111
NASA-11	33	-23.36	< 0.001	< 0.001	<0.001	< 0.001	NASA111
NASA-11	35	-25.36	<0.001	< 0.001	<0.001	<0.001	NASA111
NASA-11	37	-27.36	< 0.001	0.002	<0.001	<0.001	NASA1118
NASA-11	39	-29.36	< 0.001	< 0.001	<0.001	<0.001	NASA111
NASA-11	41	-31.36	<0.001	<0.001	< 0.001	<0.001	NASA112
NASA-11	43	-33.36	< 0.001	<0.001	< 0.001	<0.001	NASA112
NASA-11	45	-35.36	<0.001	<0.001	< 0.001	< 0.001	NASA112
NASA-11	47	-37.36	< 0.001	< 0.001	< 0.001	< 0.001	NASA112
NASA-11	49	-39.36	< 0.001	< 0.001	< 0.001	< 0.001	NASA112

۲. ا

No.

	fe	et					
Loc. Id	depth	elevation	VCI	F-113	cis-DCE	TCE	Samp. Id
NASA-11	50.5	-40.86	< 0.001	< 0.001	<0.001	<0.001	NASA1125
NASA-11	51.5	-41.86	<0.001	0.004	<0.001	0.001	NASA1126
NASA-14	1	7.52	<0.001	< 0.001	<0.001	<0.001	NASA1400
NASA-14	3	5.52	< 0.001	< 0.001	< 0.001	< 0.001	NASA1401
NASA-14	5	3.52	< 0.001	< 0.001	<0.001	<0.001	NASA1402
NASA-14	7	1.52	< 0.001	<0.001	<0.001	<0.001	NASA1403
NASA-14	9	-0.48	< 0.001	< 0.001	0.046	<0.001	NASA1404
NASA-14	11	-2.48	<0.001	< 0.001	<0.001	<0.001	NASA1405
NASA-14	.13.5	-4.98	< 0.001	< 0.001	0.023	<0.001	NASA1406
NASA-14	15	-6.48	< 0.001	< 0.001	< 0.001	< 0.001	NASA1407
NASA-14	17	-8.48	< 0.001	< 0.001	< 0.001	< 0.001	NASA1408
NASA-14	21	-12.48	0.629	< 0.001	0.022	0.002	NASA1409
NASA-14	23	-14.48	0.925	< 0.001	0.223	0.003	NASA1410
NASA-14	25	-16.48	0.138	< 0.001	0.313	0.007	NASA1411
NASA-14	27	-18.48	0.019	< 0.001	0.510	0.016	NASA1412
NASA-14	29	-20.48	< 0.001	< 0.001	0.322	0.013	NASA1413
NASA-14	31	-22.48	< 0.001	< 0.001	0.057	0.002	NASA1414
NASA-14	33	-24.48	< 0.001	< 0.001	0.075	0.007	NASA1415
NASA-14	35	-26.48	< 0.001	< 0.001	0.043	0.002	NASA1416
NASA-14	37	-28.48	< 0.001	<0.001	0.127	0.052	NASA1417
NASA-14	39	-30.48	<0.001	<0.001	< 0.001	< 0.001	NASA1418
NASA-14	41	-32.48	0.066	< 0.001	0.363	0.128	NASA1419
NASA-14	43	-34.48	1.442	<0.001	0.443	0.164	NASA1420
NASA-14	45	-36.48	0.624	< 0.001	0.007	0.004	NASA1421
NASA-14	47	-38.48	< 0.001	< 0.001	<0.001	< 0.001	NASA1422
NASA-14	49	-40.48	<0.001	< 0.001	<0.001	< 0.001	NASA1423
NASA-14	51	-42.48	< 0.001	< 0.001	0.046	0.021	NASA1424
NASA-14	52.5	-43.98	< 0.001	< 0.001	<0.001	< 0.001	NASA1425
NASA-14	53.5	-44.98	< 0.001	<0.001	< 0.001	< 0.001	NASA1426
NASA-16	1	7.44	< 0.001	< 0.001	<0.001	< 0.001	NASA1600
NASA-16	3	5.44	0.088	< 0.001	< 0.001	< 0.001	NASA1601
NASA-16	5	3.44	< 0.001	<0.001	< 0.001	< 0.001	NASA1602
NASA-16	7	1.44	1.071	1.421	0.277	0.093	NASA1603
NASA-16	9	-0.56	1.013	< 0.001	0.749	< 0.001	NASA1604
NASA-16	11	-2.56	< 0.001	0.030	0.063	0.017	NASA1605
NASA-16	13	-4.56	< 0.001	0.009	0.018	0.006	NASA1606
NASA-16	15	-6.56	0.765	0.006	0.595	0.009	NASA1607
NASA-16	17	-8.56	0.386	0.029	0.387	0.021	NASA1608
NASA-16	19.75	-11.31	< 0.001	< 0.001	< 0.001	< 0.001	NASA1609
NASA-16	21	-12.56	< 0.001	< 0.001	< 0.001	< 0.001	NASA1610
NASA-16	23	-14.56	< 0.001	<0.001	0.007	< 0.001	NASA1611
NASA-16	25	-16.56	< 0.001	<0.001	< 0.001	<0.001	NASA1612
NASA-16	27.5	-19.06	0.002	<0.001	< 0.001	< 0.001	NASA1613
NASA-16	29	-20.56	< 0.001	< 0.001	< 0.001	< 0.001	NASA1614
NASA-16	31	-22.56	0.197	< 0.001	< 0.001	< 0.001	NASA161
NASA-16	33	-24.56	< 0.001	<0.001	< 0.001	< 0.001	NASA1616
NASA-16	35	-26.56	< 0.001	< 0.001	< 0.001	< 0.001	NASA161

(James)

a state of the

	feet		-	ug			
Loc. Id	depth	elevation	VCI	F-113	cis-DCE	TCE	Samp. Id
NASA-16	37	-28.56	< 0.001	<0.001	< 0.001	< 0.001	NASA1618
NASA-16	39	-30.56	0.148	< 0.001	< 0.001	< 0.001	NASA1619
NASA-16	41	-32.56	< 0.001	< 0.001	< 0.001	< 0.001	NASA1620
NASA-16	43	-34.56	0.188	< 0.001	< 0.001	< 0.001	NASA1621
NASA-16	45	-36.56	< 0.001	< 0.001	< 0.001	< 0.001	NASA1622
NASA-16	47	-38.56	< 0.001	< 0.001	< 0.001	< 0.001	NASA1623
NASA-16	48.5	-40.06	< 0.001	< 0.001	0.007	< 0.001	NASA1624
NASA-16	49.5	-41.06	0.129	< 0.001	< 0.001	< 0.001	NASA1625
NASA-17	15	-10.01	< 0.001	< 0.001	< 0.001	< 0.001	NASA1700
NASA-17	17	-12.01	< 0.001	< 0.001	< 0.001	< 0.001	NASA1701
NASA-17	19	-14.01	< 0.001	< 0.001	< 0.001	< 0.001	NASA1702
NASA-17	21	-16.01	< 0.001	< 0.001	< 0.001	< 0.001	NASA1703
NASA-17	23	-18.01	< 0.001	< 0.001	< 0.001	< 0.001	NASA1704
NASA-17	25	-20.01	< 0.001	< 0.001	< 0.001	< 0.001	NASA1705
NASA-17	27	-22.01	< 0.001	< 0.001	< 0.001	< 0.001	NASA1706
NASA-17	29	-24.01	< 0.001	< 0.001	< 0.001	< 0.001	NASA1707
NASA-17	31	-26.01	< 0.001	< 0.001	< 0.001	< 0.001	NASA1708
NASA-17	33	-28.01	< 0.001	< 0.001	<0.001	< 0.001	NASA1709
NASA-17 NASA-17	35	-30.01	<0.001	< 0.001	< 0.001	< 0.001	NASA1710
NASA-17 NASA-17	37	-32.01	<0.001	<0.001	<0.001	< 0.001	NASA1711
NASA-17 NASA-17	39	-34.01	<0.001	<0.001	<0.001	< 0.001	NASA1712
NASA-17 NASA-17	<u></u>	-34.01	<0.001	0.003	<0.001	< 0.001	NASA1712
NASA-17 NASA-17	41	-38.01	<0.001	<0.003	<0.001	<0.001	NASA1714
NASA-17 NASA-17	45	-40.01	< 0.001	<0.001	<0.001	<0.001	NASA1715
NASA-17 NASA-17	45	-40.01	<0.001	<0.001	<0.001	<0.001	NASA1716
NASA-17 NASA-17	49.3	-44.31	<0.001	<0.001	<0.001	<0.001	NASA1717
NASA-17 NASA-17		-44.81	<0.001	< 0.001	<0.001	<0.001	NASA1718
	49.8	7.46	<0.001	0.001	<0.001	< 0.001	NASA1800
NASA-18	13	5.46	<0.001	< 0.001	<0.001	<0.001	NASA1800
NASA-18	5	3.46	<0.001	<0.001	<0.001	<0.001	NASA1802
NASA-18	5		<0.001	1.297	0.009	<0.001	NASA1802
NASA-18		1.46	<0.001		0.009	<0.001	NASA1804
NASA-18	·9	-0.54		0.083			
NASA-18	11	-2.54	< 0.001	0.007	0.023	<0.001	NASA1805 NASA1806
NASA-18	13	-4.54	< 0.001	0.122	0.012	<0.001	
NASA-18	15	-6.54	< 0.001	<0.001	< 0.001	< 0.001	NASA1807
NASA-18	17	-8.54	< 0.001	<0.001	< 0.001	<0.001	NASA1808
NASA-18	19	-10.54	< 0.001	< 0.001	< 0.001	<0.001	NASA1809
NASA-18	21	-12.54	<0.001	< 0.001	<0.001	<0.001	NASA1810
NASA-18	23	-14.54	< 0.001	< 0.001	< 0.001	<0.001	NASA181
NASA-18	25	-16.54	< 0.001	< 0.001	< 0.001	<0.001	NASA1812
NASA-18	27	-18.54	< 0.001	< 0.001	< 0.001	<0.001	NASA181
NASA-18	29	-20.54	< 0.001	0.005	< 0.001	< 0.001	NASA181
NASA-18	31	-22.54	< 0.001	0.002	<0.001	< 0.001	NASA181
NASA-18	33	-24.54	< 0.001	< 0.001	< 0.001	< 0.001	NASA181
NASA-18	35	-26.54	< 0.001	< 0.001	< 0.001	< 0.001	NASA181
NASA-18	37	-28.54	< 0.001	0.002	< 0.001	< 0.001	NASA181
NASA-18	39	-30.54	<0.001	0.008	<0.001	<0.001	NASA181

1

the second se

and the second

the second second

Sector Sector

	feet						
Loc. Id	depth	elevation	VCI	F-113	cis-DCE	TCE	Samp. Id
NASA-18	41	-32.54	<0.001	<0.001	<0.001	<0.001	NASA1820
NASA-18	43	-34.54	<0.001	< 0.001	<0.001	<0.001	NASA1821
NASA-18	45	-36.54	<0.001	<0.001	< 0.001	<0.001	NASA1822
NASA-18	47	-38.54	<0.001	<0.001	<0.001	<0.001	NASA1823
NASA-18	49	-40.54	< 0.001	<0.001	<0.001	<0.001	NASA1824
NASA-18	51.5	-43.04	< 0.001	< 0.001	<0.001	<0.001	NASA1825
NASA-18	50.5	-42.04	<0.001	< 0.001	< 0.001	< 0.001	NASA1826
NASA-19	1	6.15	< 0.001	< 0.001	< 0.001	<0.001	NASA1900
NASA-19	3	4.15	< 0.001	< 0.001	<0.001	<0.001	NASA1901
NASA-19	5	2.15	< 0.001	< 0.001	< 0.001	< 0.001	NASA1902
NASA-19	7	0.15	<0.001	< 0.001	< 0.001	< 0.001	NASA1903
NASA-19	9	-1.85	< 0.001	<0.001	< 0.001	<0.001	NASA1904
NASA-19	11	-3.85	<0.001	< 0.001	< 0.001	< 0.001	NASA1905
NASA-19	15	-7.85	< 0.001	< 0.001	< 0.001	< 0.001	NASA1906
NASA-19	17	-9.85	< 0.001	< 0.001	< 0.001	< 0.001	NASA1907
NASA-19	19	-11.85	< 0.001	< 0.001	< 0.001	< 0.001	NASA1908
NASA-19	21	-13.85	< 0.001	< 0.001	< 0.001	< 0.001	NASA1909
NASA-19	23	-15.85	< 0.001	< 0.001	< 0.001	< 0.001	NASA1910
NASA-19	25	-17.85	<0.001	< 0.001	< 0.001	< 0.001	NASA1911
NASA-19	27	-19.85	< 0.001	< 0.001	< 0.001	< 0.001	NASA1912
NASA-19	29	-21.85	< 0.001	< 0.001	< 0.001	< 0.001	NASA1913
NASA-19	31	-23.85	< 0.001	< 0.001	<0.001	< 0.001	NASA1914
NASA-19	33	-25.85	<0.001	< 0.001	< 0.001	<0.001	NASA1915
NASA-19	35	-27.85	< 0.001	< 0.001	<0.001	<0.001	NASA1916
NASA-19	37	-29.85	<0.001	<0.001	<0.001	<0.001	NASA1917
NASA-19	39	-31.85	< 0.001	<0.001	< 0.001	< 0.001	NASA1918
NASA-19	41	-33.85	<0.001	<0.001	<0.001	<0.001	NASA1919
NASA-19	43	-35.85	<0.001	<0.001	<0.001	< 0.001	NASA1920
NASA-19	45	-37.85	< 0.001	< 0.001	<0.001	<0.001	NASA1921
NASA-19	47	-39.85	< 0.001	< 0.001	<0.001	< 0.001	NASA1922
NASA-19	49	-41.85	< 0.001	< 0.001	< 0.001	< 0.001	NASA1923

J

Minal N

100

Allow Mark

Real of the

Section 2.