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Abstract. Regression or function classes of Euclidean type with com- 
pact support and certain smoothness properties are shown to be PAC 
learnable by the Nadaraya-Watson estimator based on complete orthonor- 
mal systems. While requiring more smoothness properties than typical 
PAC formulations, this estimator is computationally efficient, easy to 
implement, and known to perform well in a number of practical applica- 
tions. The sample sizes necessary for PAC learning of regressions or func- 
tions under sup norm cost are derived for a general orthonormal system. 
The result covers the widely used estimators based on Haar wavelets, 
trignometric functions, and Daubechies wavelets. 

1 Introduction 

The problem of learning regressions 01: functions in the Probably Approximately 
Correct (PAC) framework of Valiant [32] continues to generate significant in- 
terest and activity [l, 3, 4,  21. The ability to obtain sample sizes that ensure 
specified levels of precision and confidence is one of the main strengths of this 
paradigm. Recent results establish that a function which achieves small empir- 
ical error on an independently and identically distributed (iid) sample yields a 
PAC approximation under the finiteness of combinatorial parameters such as 
the fat-shattering index [l, 51, Euclidean parameters [31, 331, pseudo-dimension 
[14, 231, and capacity [34]. Smoothness properties such as piecewise differentia- 
bility [IS], nth order continuous differentiability [21], and bounded variation [24] 
have also been used for obtaining PAC results. 

The function estimation is a special case of the well-known non-linear regres- 
sion problem studied in classical statistics 113, 251. Typical results for regression 
estimators are asymptotic [30, 171 and are warranted by smoothness properties 
[22]. The appeal of such estimators stems from the ease of implementation and 
good performance in practical applications [7]. 

Recently, by combining smoothness and combinatorial (capacity) conditions, 
several specific statistical estimators based on Haar kernels have been shown 
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to provide PAC solutions for function estimation [26]. In this paper, we obtain 
PAC-style sample size estimates for the regression problem using the Nadaraya- 
Watson estimator [19] based on general orthogonal systems when: (a) the regres- 
sion class is Euclidean [20, 331, and (b) the expansion coefficients of the marginal 
density and the product of regression and marginal density functions with re- 
spect to the orthonormal system satisfy mild decay conditions. The Euclidean 
class includes several well-known function classes such as VC graph class [ll] 
and functions with finite pseudo-dimension [23]. Our approach is also applicable 
to more general regression classes with bounded scale-sensitive dimension [l]. 

Let (X,Y) be a random vector on B x 2, for compact B c 2. General- 
ization of our results to  higher dimensions can be done using existing methods 
(see [27, 121). We denote random and deterministic variables by X and z, re- 
spectively. The regresszon functzon is g(z) = E(YIX = x). Let C2(D)  denote 
the Hilbert space of real square integrable functions defined on the set D ,  and 
let h(. l  .) E C 2 ( B  x 2) and f(.) E C2(B) denote the density of X and Y, and 
the marginal density of X,  respectively. Let m ( x )  = Jyh(x,y)dy exist and be 
square integrable on B. Note that the regression is given by g ( x )  = m(x)/f(x). 
Given the iid sample (XI ,  Yl), (Xz Yz), . . . , (X, , Y,), the regression problem in 
random deszgn setting deals with estimating g(z) from the sample. Such prob- 
lems have been extensively studied in statistics, and more recently in machine 
learning [35, 11. In this paper, we consider the classical Nadaraya-Watson esti- 
mator, based on a measurable orthonormal system {&li = 1 ,2 , .  . .} defined on 
A ?I?; the regression estimator is defined by 

k = l  i = l  

k=l i= l  
0 elsewhere, 

where s, = [ n w o ] ,  wo 5 1/2. These estimators have been extensively studied 
[19, 121, and are known to perform well in practice. Rigorous results for these 
estimators, however, are in terms of asymptotic consistency [30, 101 or conver- 
gence rates [17, 121. In fact, the same is true for most nonparametric regression 
estimators, with the possible exception of [27, 281, whose results can be used to  
derive samples sizes under certain smoothness conditions. Here we obtain sample 
size n that ensures 

p SUP Isn(z) - s(x)l > e < 61 1 ( I t B  
where P denotes the distribution of the sample (XI,  Y I ) ~  (X21 Y2), . . . , (X,, Y,). 
The sample size is a function of E ,  6, and certain parameters of regressions and 
marginal densities. Due to the compactness of B ,  the above condition also implies 



for the same sample size. This condition is often used in the PAC formulations 
of the function learning problem. 

Additional motivation for our work stems from the computational complex- 
ity. In general, PAC results are associated with high computational complexity. 
For instance, when feedforward Heaviside networks are used as estimators, the 
computational problem is NP-complete [6]. In our case, however, the estimated 
function value, gn(z), at any 2, can be computed in O(nl+"o) evaluations of 
d e ( . ) ;  for some orthogonal systems (e.g. Haar wavelets) each evaluation can be 
done in O( 1) time. These computational properties of gn (.) are achieved at the 
expense of the following trade-offs: (i) the results are based on smoothness condi- 
tions for densities and regressions, and (ii) sample size estimates are less "com- 
pact" compared to usual PAC results. However, this makes the results more 
transparent since smoothness conditions are sometimes easy to visualize and 
quantify. The interpretation of the bounds is also easier since their dependence 
on various smoothness and combinatorial factors is more explicit. Furthermore, 
our results provide sample sizes for the estimator based on familiar orthonormal 
systems such as Haar wavelets, trignometric functions, and Daubechies wavelets. 

In section 3, we present a result valid when the regression is chosen from a Eu- 
clidean class and satisfies certain smoothness conditions. Then we consider some 
interesting variations of this result in Section 4, where the orthonormal system 
itself is a Euclidean class, as is the case with trignometric system, Daubechies 
wavelets, and Chebyshev polynomials. Euclidean classes of Lipschitz functions 
are considered in Section 5. 

2 Preliminaries 

Let d be a collection of subsets of % d .  The trace t r ( S , d )  of a set S c 3' with 
respect to A C 28d is defined as t r (S,A)  = {S n AIA E A}.  For 15'1 = n (here 
1 .  I denotes cardinality), we have lt~(S,d)I 5 2n. The growth function is defined 
by Un(d) = l t r ( S , d ) I  . Then d is called VC class of dimension IC if 

IC is the largest j such that 17j(d) = 23. 
Let C(S) and P ( S )  denote the classes of continuous and essentially bounded 

functions defined on S & %', respectively. For f E Lc"(S), we have 1 1  f /I,= 
esssup{lf(z)l : z E S}. The modulus of smoothness o f f  E P ( S )  is defined as 
w,(f; r )  = sup (ess sup If(z+h)-f(z)l) where S(h)  = {z E S : z+h E S }  and 

lhl, = max(Ih1 I,. . . , lhdl). A function f E C(S) is called Lipschitz if there exist 
0 < C < 00, 0 < CY 5 1 (called Lipschitz constant and exponent, respectively) 
such that w,( f ,  r )  5 Cra. We denote the class of such Lipschitz functions by 

The graph of a function f is defined as graph( f )  = { (2, t )  E 3' x % I 0 5 t 5 
f(z) or f(z) 5 t 5 0). F is called a VC graph class if { g r a p h ( f )  I f E F} has 
finite VC dimension. If Q is a measure, we will use Q ( F )  or simply QF to denote 

FdQ.  For 1 5 p < cc and P a probability measure, the covering number of F 

max 
SCW, ISI=n 

Ihlao<r S ( h )  

C f f (S) .  



is defined by 

For two functions f , g  : S - 3, we say f 2 g if f(z) 2 g ( z )  for all z E S .  
The envelope of a function class F is a function satisfying F 2 I f l ,  for any 
f E 3. Then F is defined as Euclidean class [20] with envelope F if there exist 
constants C3 and VF (called Euclidean parameters) such that for any measure 
Q of finite support, we have N ~ ( E Q F ,  3, Q )  5 C ‘ F E - ~ ~ .  Each VC graph class 
is Euclidean with envelope sup I f l ,  and each class of bounded functions with 

finite pseudo-dimension is also Euclidean [23, 201. Like the VC-dimension, the 
Euclidean property is not immediately appealing to intuition. Metaphorically 
speaking, a class of functions is Euclidean if it  contains elements that are suffi- 
ciently “well-behaved” and thus - in some sense - predictable. 

Let F . ~ = { f g l f E F , g E ~ } , a n d f . G = ( f g l g E ~ } f o r a g i v e n f u n c t i o n  
f E F. The following Lemma is based on ideas from [23, 201. 

.f€3 

Lemma 1. (2) Assume F, 6 are Euclidean wath envelopes F ,  G ,  respectively. 
Then  3 .  G has an envelope F G  with parameters C3.g = 2v7+vGC3C~ and 

(ii) If 3 is Euclidean wath envelope F ,  we have N ~ ( E ,  3, Q )  5 NI ($, F .3, Q )  . 
V7g = v3+ VG. 

Moreover, zfmaxF(z) 5 73, then N ~ ( E , F , Q )  5 CF (%)vF . 

Proof: Consider part (i). Let Q be a measure with finite support, and let A,p 
denote measures of densities F and G ,  respectively, with respect to Q.  Let 
m = N 1 ( e Q F , F , Q )  and n = N ~ ( E Q G , G , Q ) .  Then for any E > 0 there exist 
{fi,..-,fm} and {g~,g2,~~~,gn}suchthatforanyfE3,gE~,andforsomei 
and j, we have AI f - fil < E M ,  and p1g - g j  I < cpG, respectively. Observe that 

There are at most mn different f i g j  in 3 .  G, and hence we.have 

which proves Part (i). Part (ii) follows from the inequalities &If  - f i J2  5 2QFI f - 
fil 5 2-2- 2 = E’, where { F f i }  is the cover for F . C3 with covering number 

N&, F T ,  Q ) .  
The following result follows from Talagrand [31] (also see van der Vaart and 

Wellner [33]) .  

Lemma2. Consader a class 3 of functaons f such that 0 5 f 5 1. Assume that 
for any given E > 0 ,  and a n y  probability Q on f2 that is supported on a compact 



set, we have N 2 ( ~ , 3 , & )  5 (!)", where V ,v  are constants independent of E. 
Then,  for  ala M > 0 ,  we have 

where KF(V, w) = (9)' with I = ( V )  specajied in Talagrand [31]. 

Proof: From [31], we have 

from which the lemma follows. 0 

Lemma3. Suppose a ,  b, c. d .  and 5 are posztzve finzte constants and  n 2s a pos- 
ztzve znteger. Then the znequalzty anbe-cnd 5 6 zs satzsfied f o r  n 2 w(a ,  6, e, d, h), 
where 

21n 4 (2b - cd)4b 
' e2d2 

Proof: If n 2 w(a,  b, e,  6) ,  then 

end a - > I n - .  
2 -  6 

Moreover, since nd 2 9, by letting t = g, we have nd 2 

tnd 2 ln nd, implying 9 2 In nd, or 

= 
and 2 (1 - t )nd.  It follows that etnd 2 tnd + 7 tanZd 2 nd. Therefore 

cnd b - 2 -Innd = blnn. 2 d  

Combining (2.1) and (2.2), we have end = ?$ + ?$ 2 blnn + In 4.  Thus, 
In6 2 lna  + blnn - cnd, yielding anbe-end 5 6 . 0 

3 Main Result 

Let { d k  : k = 1 , 2 , .  . .} be an orthonormal system defined on A 
I .  maxl$k(z)l 5 u2kWZ for all IC, and some finite w2 E 3, u2 > 0. 

Let 3 = {f} and M = {m}  denote sets of functions in C2(A) with compact 
support B C A ,  and G = { g  = m/ f : f E 3, m E M }  satisfy the following 
conditions: 

% such that: 

XEA 

I I a  G is Euclidean with L1-integrable envelope G 5 1 and parameters (CG, VG). 



I Ib  
I I C  

min I f(x)l 2 u > 0, for f E F, where u is a constant. 
x E B  
The functions f E F and m E M satisfy, for some 771 , 772, C1, C2 > 0 

The condition I specifies that the magnitude of the elements of the orthonor- 
mal system must not increase faster than a polynomial in the index variable. 
The condition IIa specifies that the regression class be Euclidean; in spirit, this 
condition is similar to specifying the finiteness of capacity or graph dimension 
used in PAC paradigms. Euclidean class is not the weakest function class that  is 
learnable, but our approach can be applied to more general classes (see Reamrk 
4.1). The condition I Ib  specifies that the marginal density be bounded away from 
zero. The condition I I c  relates the function classes F and M to the orthonormal 
system in that each function must be expressible in terms of the orthonormal 
system with decaying coefficients. Essentially, the conditions I and IIa-c guar- 
antee that the regressions to be estimated and the orthonormal systems used 
to represent the regressions are reasonable enough both in terms of smoothness 
and combinatorial parameters. 

Compared to the distribution-free results typical in the PAC paradigm, addi- 
tional smoothness is required here both on marginal densities (which are assumed 
to exist) and regressions. Conditions such as I I a  (or weaker forms, see Remark 
4.1) are usual for the PAC paradigm [5, 21, while I, IIb-c are typical for the 
statistical paradigm [28, 171. 

Theorem4. Let {dk} be an orthonormal system satisfying condition I. If func- 
tion classes 3 and &7 satisfy conditions I I a  through IIc, then for  a n y  5 > 0 and 
E > 0 we have 

for sample size n 2 max(N11, N12, Na1, N22, N31, N33) with Nja of f o r m  e(a/b)"c 
a 
M)] lid with the for- and Njl of f o m  w ( a , b , c , d , e )  = [max 1,2/cln;, 

lowing parameters 

where sn = nWo, 0 < wo I l /2 ,  20 = 1 - 2wo(l + wa), and €1 = w, 



k=l a=1 k = l  i=l 
such that gn(z) = m n ( z ) / f n ( z ) .  Nadaraya's decomposition inequality yields 1181: 

Writing 

we estimate the first term, 11, as 

) P sup Im,(z) - rn(z)l > 2 E 1  
( x E B  

= 111 + 112. 

The term 112 can be made zero when n is large enough such that s, = nwo >_ 
1 

e(?) v 2  which yields the expression for N12. Now, for 0 < E < €1, we have 

For any E > 0, the first term is upperbounded by 



which is in turn upperbounded by 

where the last step is due to Chebyschev's inequality. Now each term under 
the expectation is zero, and hence the sum is zero. Thus for n > N12 and 
@Sn = (41,421.. . . $&), we have 

From Lemma 1, 4G is Euclidean with parameters (aVG'GcG1 VG) with envelope 
2 VG 

q5G, which yields N ~ ( E ,  4 G ,  Q )  5 PC$/c) . Thus by Lemmas 2 and 3, we 

have, for n 2 Nil, 

The treatment of the terms I2 and 13 is similar, and we consider 13. For 
-L 

1 ' I l W O  n 1 N 3 2  = e ( :  ) , we have 

I3 I 

IP 

I 

1 - -0 (Z+JWz) The last term is upperbounded by 18n1t2woe-'2/4n since the supre- 
mum is taken over a finite set of functions uniformly bounded by sx2 = nwowz 
[34]. Then Lemma 3 yields the expression for N31. 0 



We now describe well-known examples from harmonic analysis, where condi- 
tions I and IIc are extensively investigated. Note that the additional conditions 
IIa-b are needed for sample estimates based on Theorem 4. 

Example 3.1: When the trignometric system is used for {$k}, w2 = 0, A = 3, 
and condition I Ic  is satisfied for Lipschitz functions ([36], p. 61). Since w2 = 0, a 
simpler formulae can be obtained for the sample sizes of Theorem 4. By choosing 
wo = 1/4, we have w = 1/2. For simplicity assume that p < 1 and E < 1, which 

1 

implies that €1 5 E. Let LG = max 18, KG(JZCG=, 2VG)E1VG ( 
the following simpler form for the sample size 

1 - [ln(3/5) + l n L ~ ] ~  4 
I ~ ~ x ( c ,  .coJmax(tll ,n2) 

when sn is chosen to be e . Compared to typical PAC esti- 
mates, this sample size is higher since it is proportional to: (a) l /c f  as compared 
to the usual 1/~’, and (b) the square of 1nLG as compared to the linear depen- 
dence on a similar term (for example, based on capacity or graph dimension). On 
the other hand, the estimated function value can be computed in O(n3I2) time. 
Note that the computational problem of minimizing empirical error required by 
PAC methods could be intractable. 

Example 3.2: For Haar wavelets, we have w2 = 1/2, A = B = [0,1], [12], and 
condition IIc holds for any function f with U ~ ( ~ , T )  = O ( P ) ,  0 < CY 5 1 [8]. 
Thespecific properties of the Haar system have been utilized in [26] for sample 
size estimates, whereas Theorem 4 is more general. 

Example 3.3: For Legendre polynomials, we have w2 = 1/2 [28]. Let h(z )  
be integrable on [-1,1] with bounded variation. Then functions of the form 

f(z) = f(-1) + 

€ 1  

X 

h(z)dx satisfy condition IIc (Jackson’s Theorem [29]). 
-1 

4 Variations 

Consider the following conditions: 
Ia 

Ib 

IIa’ 

max]Qn:(z)l = Alc, where ulICwl 5 A k  5 u2kw2, and u1 > 0, uz > 0, w1 5 
0, w2 2 w1. 
Cfi = ( Q k / A k ,  IC = 1 ,2 , .  . .} is Euclidean with .L1-integrable envelope H and 
parameters (Ce, VG). 
F, 
(C,, VG), respectively. 

X 

are Euclidean with C1-integrable envelopes F,  G and parameters (CF, VF), 

Theorem5. Let {$k} be an orthonormal system satzsfying conditions I a  and Ib. 
If function classes 3 , G  satzsfies conditions I I a ’  and IIb-c, then for any 5 > 0, 
E > 0 we have / \ 



for sample size n 2 rnax(N11,Ar12, N21, N 2 2 ,  N311 N33), with Nj2 ofform 

and Njl of form w ( a ,  b,  c, d ,  e) = [rnax 1,2/cln e ,  a w)]l'd C 2 d 2  with the fol- ( 
lowing parameters 

where €2 = 9, and sn = nwo such that 0 < wo < 4; + i w g  - y .  
To prove Theorem 5, we need the following lemma. 

Lemma 6. Let 3 denote a Euclidean class of function with envelope F bounded 
by 1. For f k  E 3, we have 

Proof: Noting 

the lemma follows from Lemma 2. 0 
Proof of Theorem 5:  The proof is similar to Theorem 4 except for details of 
the bounds for N11, iV21 and iV31. For n > N12, by using Lemma 1, we have 



By Lemma 3 ,  11 < 5,  for n > max(N11,1V12), where iV13 = w(a ,  b, c ,  d, 6 / 3 ) ,  and 

For 13 ( 1 2  can be similarly handled), we have 

for n = max(N31, N32), where N31 = exp and 1V32 = w ( a ,  b ,  c ,d ,  6/3) 
with parameters specified in the statement of the theorem. 0 

Remark 4.1: Condition IIa can be relaxed in Theorem 4, namely: with 
envelope G 5 1 has finite P,,-dimension [l]. A different expression for N11 must 
be derived in this case by using the sample size estimate of [l]. 

Remark 4.2: A generalization of Theorem 5 can be obtained by eliminating 
condition I b  and replacing IIa' by IIa, along the lines of Theorem 4. Conditions 
Ia and Ib,  however, are satisfied by a number of orthonormal systems, which 
results in the above compact form for the sample size estimates. 

Lemma 7. T h e  following orthonormal systems are Euclidean with parameters 

(a) trignometric system {sin n z ,  cos n z }  on [-a, a]; 
( b )  Daubechies wavelets on SR; and 
( e )  Chebyshev polynomials, Tn(x), on [-1,1]. 

Proof: Noting that T,(z) = cos(narccosz)), (a)-(.) follow from Lemma 22 
of [20] because sinx, cos2 and Daubechies' mother wavelet [9] are of bounded 
variation. Furthermore, we can obtain N ~ ( E ,  3, &) 5 CE-*, for function classes 

(C, 4): 

(a)-(c>. 

5 Lipschitz Functions 

In this section, we show that condition IIc is satisfied for Lipschitz functions 
for several orthonormal systems. Recall that for trignometric system and Haar 
wavelets condition IIc holds for Lipschitz functions, when A is [-T, a] and [O, 11, 
respectively (Examples 3.1 and 3.2). 

For Lipschitz functions, we now show that condition I Ic  is satisfied by the 
Daubechies wavelets { 4 j , k } ,  generated by the scaling function C$ (details can be 
found in [9]). 



? - j ( k + l )  
Proof: Let b j , k  = 2.1 

2 - 3  k 
C1 > 0 such that 1 )  f(z) - 

f ( z ) d z .  From 1151 for any f E Cff(%!), there exists 

bj,k4(2jz - k )  )I,< C 1 2 - j ~ ” .  Then we have 
k € Z  

lf(x)4(2Jz - k ) d z  - s f(k2-’)4(23z - k)dx:( 

J’ s < IC Iz - 2-’kla4(23z - k)dz l  = IC 2- f f J - J l y l f f 4 (y )dy  5 c*2-(ff+l)j .  

Notice that j” f ( k 2 - J ) & ( Y z  - k ) d z  = f(IC2-3)2-J and 

5 c12-3” + c22- j f f  1 1  I4(2jz - k) l  /I,< c 3 2 - e  0 
k 

For functions with compact support, it is convenient to replace the two indices 
j ,  k by a single index, n. For each j E Z+ U { 0 } ,  k E 2, let us define t o  = 0, 
t k  = 21k( - $ - 1/2,  6 2 1 and n = ( ’ + t k ) ( ’ + t k + l l + t k  2 + 1 (see the table below). 
It is easy to  prove that these relationships establish a one-to-one correspondence 
between (Z+ U (0)) x 2 and Z+. 

j \ k  
0 
- 

1 
2 
3 
4 
5 - 

t k  

0 1 -1 2 -2 3 -3 . . .  
1 3 6 10 15 . . .  
2 5 9 14 . . .  
4 8 13 . . .  
7 12 . . .  
11 . . .  

0 1 2 3 4 5 6 . . .  
. . .  

Lemma9. Wzth the definztzons above, zf f zs Lapschztz wzth support zn [-1,1], 
we have 

/I - (Pnf)(x) l l o o ~  ~ 4 2 - l a  s ~ s n - ~ ’ ~ ,  

f o r  some Ca, C5 > 0 ,  where Pn is the wavelet approxzmation. 



Proof: Since f has support in [-1.11. the case IkI > 23 is uninteresting. If IC is 
cut off at 2 3 ,  then t k  x 2 /k l  and n M 2k2 x 2 2 3 .  Thus, using the lemmas above 

2-3a M n - a / 3  0. II f - P n f  llco= 
Remark 5.1: In this paper, we consider batch PAC formulation under smooth 
densities with sup norm cost. whereas [16] considered distribution-free on-line 
formulation under L2-norm for piecewise twice-differentiable continuous func- 
tions. 

6 Conclusions 

Euclidean classes of functions and regression with compact support and certain 
smoothness properties are shown to be PAC learnable. The Nadaraya-Watson 
estimator based on complete orthonormal systems is employed to learn the re- 
gressions or functions. The results require more smoothness properties than typ- 
ical PAC formulations, but. offer computationally efficiency. Furthermore, this 
estimator is known to perform well in a number of practical applications. Al- 
though well-studied in statistics. the available results on Nadaraya-Watson esti- 
mator only specify asymptotic consistency or convergence rates. By combining 
the traditional analysis methods with PAC-style results, we derived sample sizes 
necessary for learning regressions or functions under sup norm cost. Further- 
more, by restricting the estimator to an orthonormal system, low computational 
complexity is achieved. Our results also provide finite sample results for widely 
used estimators based on Haar wavelets, trignometric functions, and Daubechies 
wavelets. 

There are several open issues and futher research directions. It will be inter- 
esting to see lower bounds for the sample sizes under the conditions considered 
in this paper. Also, a more direct comparison with existing function learning 
methods will be useful in juding the performance of the proposed method. It is 
expected that larger sample sizes are needed for our method, but, at a lower com- 
putational cost. Finally, it will be useful to investigate other estimators known 
in statistics, such as Kernel estimators, regressograms, and delta estimators, for 
solving function or regression learning problems. 
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