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Introduction. We apply the ideas from optimal design theory to  the very 
specific area of monitoring large computer networks. The behavior of these 
networks is so complex and uncertain that it is quite natural to use the 
statistical methods of experimental design developed for situations in which 
the random character of phenomena is a crucial component and systems 
are too complicated to be described by any reasonable deterministic model. 
We want t o  emphasize that only the first steps have been completed, and 
relatively simple underlying concepts about network functioning have been 
used. Our immediate goal is to  initiate studies focused on developing efficient 
experimental design techniques which can be used by practitioners working 
with large networks operating and evolving in a random environment. 

In most cases a computer network can be represented as a graph with a 
given and fixed number of nodes (vertices, or sites) and with edges (links. 
communication channels). Possible objectives of experiment(s) may include: 
delays on a given subset (subset of interest) of edges, processing times at a 
given subset of nodes, traveling times from one subset of nodes to another, 
et  al. The  existing software and hardware allow the measurement (see, 
for instance, Monk and Claffy (1996), Claffy (1996) of a large variety of 
network performance indicators, i.e., in general our “measurement” is a 
vector. Types of measurement strategies may be very different. For instance, 
a meter can be installed at any chosen node and measure input and output 
flows; a device is located a t  a host node, and a preselected set of nodes 
or edges can be monitored; a practitioner can cooperate with others (i.e., 
there are multiple host nodes) to  monitor a network. Thus, if we have a n  
opportunity to  plan (design) experiments, we may look for the best subset 
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of nodes where devices must be allocated? find the most informative subset 
of nodes and edges to  be monitored by a given host, select the most effective 
group of host nodes and match them with the set of nodes and edges to  be 
monitored. 

Our approach assumes that  only the correlation structure of-the network 
is known (either theoretically or empirically) and is essentially based on 
the theory of optimal experimental design for correlated observations (see 
Fedorov (1996), for the survey of main results and further references). 

Main assumptions. Let there be S nodes X = (31,. . . ,x,) of interest. 
' At each of these nodes we can observe a few response variables, such as 
flow rates, delays in various types of processing, queue lengths, etc. To 
keep notations simple we consider only the univariate case. We admit the 
possibility of repeated observations.. For instance. a selected node may be 
interrogated several times during a relatively short period. If the long term 
trends are neglected or properly eliminated then the following model may 
be applied 

yjk(zi) = uj(zi) + E j k ( z i ) ,  (1) 

where uj (s i )  describes the i-th node at moment j, and ~ jk (z ; )  is the cor- 
responding observational error, k = 1,. . . , ~ ; j .  All components in (1) are 
assumed to  be random variables. The first one, u(z;)  describes the random 
behavior of the network, while the second one is related to  observational 
errors or short time disturbances. The same characters are used both for 
random variables and their realizations. The latter ones are standardly 
marked by additional indices: Le., u(z;) stands for the random variable, 
and uj(zc;) is its realization. 

Let the vector U = (u(zl), . . ., ~ ( z s ) ) ~  describe the network perfor- 
mance, and E,(U) = Uo, VUT,(U) = E [(U - Uo)(U - 1 = I<> where 
the S x 1 vector Uo and the S x S covariance matrix I< are given. The  
subscript u (or E) means tha t  expectation or variance is taken with respect 
to  u (or E). The obvious transform U - U - UO zeroes the expectation 
of U and, therefore, in what follows we assume tha t  E,(U) = 0. The  ob- 
servational errors are assumed to  have zero means and to be uncorrelated: 
E, ( ~ j ( z ; ) )  = 0, E, ( ~ j ( z ; ) ~ j , ( z i ) )  z 026;;,6jj,. Introduction of o2 depend- 
ing on z does not lead to  any significant changes and is not considered here. 

We assume that for all j moments the same nodes are interrogated or 
observed: 

i= 1 
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The set In is called an experimental design in the standard statistical set- 
ting, and pi is called weight of the node 2;. Let IC(Cn) be a submatrix of 
K ,  which corresponds to  the nodes 51,. . . , xn; K ( z 7 < n )  be a column vec- 
tor of covariances between u ( z )  and u(q), . . . , v(zn); the matrix W ( I n )  
be diagonal with the elements Wii = Na-2pi- We also use the matrices 
K ( Z , t n )  = (K(z1,&),. . .. I < ( z q 7 & ) ) ,  where 21,. . .,zq E 2 C -Y, and K(2) 
is a submatrix of K corresponding to  the nodes from 2. The set 2 may be 
considered as a set of nodes where the response variable must be predicted. 

Estimation and optimality criteria. Let Yj(&) be the vector of averaged 
observations 

The  estimator 

minimizes the matrix of expected squared residuals 

among all linear estimators o(2) such that 

definite matrices. From (1) and (3) we can derive that  

[O(Z) - U ( Z ) ]  = 0. 
Minimization must be understood in the sense of ordering of nonnegative 

D(<n) = l ~ ( 2 )  - I C T ( ~ ,  t n )  ( Ic( tn)  + w-' (En))-' ~{(z, I n )  (4) 

The objective of this study is to provide some methods which allow the 
minimization of some given functions of the matrix D(In ) ,  for instance, 
trD(Cn), In ID(&)l, max; Di;(&), etc. See Cook and Fedorov (1995) for 
details about optimality criteria and further references. Thus, we have to 
consider the following optimization problem 

where 9 is a selected objective function. 
Properties of optimal designs. Optimization problem (5) may be simpli- 

fied both theoretically and numerically if we allow weights to be continuous, 
so that  0 5 pi  5.1, Cy=l p ;  = 1. and make n = S. Zero weights may neces- 
sitate using the limit transition in (4). When n = S and 2 coincides with X 
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then from (4) and the identity (A + B)-' = A-' - A-'(A-' + W - Q - l  

(6) 
it follows tha t  

D(&) = (I<-' + W(tn))-l. 

Of course, the regularity of the matrix K is assumed in the latter formula. 
The  subscript n will be skipped if it does not lead to  ambiguity. Let us  
assume that  the function Q(D) is convex and has a directional derivative 
+ ( < * , E )  for any = (1 - CY)<* + CY< and 0 <_ Q: < 1. 

Then a necessary and sufficient condition for a design <* to be optimal 
is fulfillment of the inequality 

where ( is any other design. This result is widely used in experimental 
design theory (c.f. Cook and Fedorov (1995)). 

Inequality (7) leads to  constructive results only when some simple presen- 
tation of 4 ( r ,  t) exists. For instance? for the D-criterion (entropy criterion 
in the  case of normally distributed u and E ) :  

Theorem 1 A necessary and suficient condition for t* to be D-optimal is 
that 

S 
m a x ~ i i ( t * )  I C p l D i i ( < * ) ,  

i=l 

and equality holds for all nodes with p r  > 0.  A D-optimal design also mini- 
mizes the maximal variance of prediction: 

t* = arg min maxD;i(<). 
E '  

In this theorem and in what follows maxi means maximization over all points 
from X, Le., 1 5 i 5 S. 

On an intuitive level this theorem leads to  a very transparent method of 
selecting of sites: we have to  take measurements at nodes where the variance 
of prediction may be worst. 

For the averaged variance of prediction 

Q ( D )  = t rD and 4( {= , ( )  = t r  (W(<') - W(<))  D*(<'), 

and the following result holds. 
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Theorem 2 A necessary and suficient condition for [* to be optimal is 
that 

s s 
m a x x  Df j ( t* )  I C p f D : j ( t * ) ,  
' j=1 j=1 

and the equality holds for all nodes with pf > 0.  
If the set of interest 2 does not coincide with the whole network X then 

instead-of directly solving (4) one may introduce matrix q x S { A } ; j  = 6; j ,  
if zi E 2, and {Ajk}  = 0, otherwise, and minimize S ( A D A T ) .  For instance, 
for the variance of prediction averaged over 2 S ( A D A T )  = t rADAT,  a 
necessary and sufficient condition for (* to be optimal is that 

where I ( 2 )  is the set of all indices corresponding nodes from 2, and the 
equality holds for.all nodes with pf > 0. 

First order algorithms. The above theorems help to  develop and ana- 
lyze various first order algorithms for the construction of optimal designs. 
Large matrices are required for processing and calculating applications to 
computer networks. It is, therefore, especially important t o  use recursions 
which are computationally simple and stable. The  most convenient in this 
sense are algorithms similar to  the first order exchange type algorithms (see, 
for instance, Mitchell (1974)). Here we formulate the simplest version of that  
kind of algorithm for D-criterion. 

Let the  initial design 6 be such that all weights poi = bjao ,  where 6; is 
an integer and 
a) Given < and D((), find a = argmax; Djj (<) .  Add the weight a, to  point 
z, to  construct <$ and D((:). 
b) Find d = argminiErt Dj;(<$), where It is a set of all supporting points of 
( f ,  i.e., points with nonzero weights. Delete at from the weight of point zd 
to construct &+I. 

c) If lD(&+l)l /lD(Ct)l < 1 - 7, where y is a small positive number, put 
at+l = at and go to  (a). Otherwise aS+1 = as/2 and then go to  (a). 

Computations may be stopped when as is sufficiently small. The follow- 
ing recursions 

poi = 1. 

where C;(e)  = D,;(&)D,j(&) and Ct = nd2Nat, make computations sim- 
pler. The  versions of (9) for the deleting procedure are obvious. 
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